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INSTABILITY OF A COMPRESSIBLE CIRCULAR FREE JET WITH

CONSIDERATION OF THE INFLUENCE OF THE JET BOUNDARY LAYER THICKNESS

Alfons Michalke .

SUMMARY

The instability of a circular jet is investigated by means of the

inviscid linearized stability theory. By variation of a jet parameter

which takes the ratio of Jet radius to boundary layer thickness into

account, the influence of axisymmetry on the spatial growth rate and dis-

turbance phase velocity is studied. Furthermore, the influence of the

Mach number and temperature ratio is discussed. A comparison with mea-

surements shows that the instability of a turbulent jet boundary layer

may also be explained by these results.

1. INTRODUCTION

The instability of a circular free jet with respect to small pertur-

bations caused by acoustic waves was observed by J. Tyndall [1]. Lord

Rayleigh [2] made a theoretical analysis of this instability using an

idealized round free jet which is produced by a circular vortex layer.

The result of this theoretical investigation where the friction was ig-

nored confirms the instability of the round free jet with respect to

axisymmetric perturbations.

During the 1930's, G. B. Brown [3] concerned himself with the in-

stability of a plane-free jet and the related vortex creation. The

laminar-turbulent transition in a circular free jet was considered

again in 1952 by R. Wille [4]. A large number of experimental and

theoretical papers of the free jet instability were performed (see [5-

30]) under his direction at the Hermann Foettinger Institute for Fluid

Mechanics of the Technical University, Berlin,, and later at the D. F.

.*Numbers in margirTilTdicfate'"p'aginat±on~~in~Toreign text..
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V. L. R. Institute for Turbulence Research in Berlin. A. J. Reynolds

[31], H. A. Becker, and T. A. Massaro [32] concerned themselves with

the phenomena associated with vortex formation in a circular free jet.

The organ pipe tones of a circular free jet was investigated by A. B.

C. Anderson [3̂ , 35].

In general, a circular free jet consists of a potential jet core

where the jet velocity is constant as well as a jet boundary layer which

surrounds the jet core and within which the velocity decreases from its
4

maximum value to zero. For Reynolds numbers on the order of Re = 10 ,

the flow near the nozzle mouth is approximately parallel. The Reynolds

number is referred to the maximum jet velocity and nozzle diameter. In

addition, in the vicinity of the nozzle, the thickness of the free jet

boundary layer is very small compared with the free jet diameter.

For the theoretical treatment of the free jet instability, usually

the following assumptions were made:

I. The influence of friction is negligible for the stability

calculations. This means that the frictionless linearized perturbation

equations can be used.

II. The undisturbed free jet can be considered as a parallel flow

which is infinite upstream and downstream, and only has an axial velo-

city component.

III. The boundary layer of the free jet and the inflection point of

the velocity profile determines the instability. This means that for a

small boundary layer thickness compared with the free jet diameter, one

can ignore the axial symmetry of the free jet. This means that the free

jet boundary layer can be replaced by a plane free shear layer.

Assumption I was confirmed by experiments of H. Schade and A. Michal-

ke [13], as well as P. Freymuth [21, 23] for a round-free jet, and by

H. Sato [36] as well as A-Michalke and R. Wille [22] for the plane free

jet. Theoretical results for the free jet instability were also derived

by A Michalke [16, 20] using the assumptions I to III. P. Freymuth [21,

23] compared the results with experiments and .it was found that there

was agreement only when the so-called space excitation perturbation was

assumed in the theory, such as in [20], Here we are dealing with wave

perturbations, whose amplitudes increased exponentially in the direction

of the free jet. Already M. Gaster [37, 38] pointed out that instead

of using the conventional time excitation perturbations of classical



stability theory, only space excitation perturbations would make

physical sense for free boundary layers.

The agreement between the theory and the experiment was quite good /320

for small frequency perturbations. At higher frequencies there were

deviations, which were explained by A. Michalke [28] using the condition

that assumption II was violated. In a free-jet emerging from a nozzle,

the flow is not exactly parallel because the velocity distribution

changes from the wall boundary layer profile in the nozzle into the

free jet profile with the inflection point. This profile conversion

in the flow direction apparently is not important for perturbations

with a small frequency and a large wavelength. Apparently it does

influence the instability mechanism considerably for perturbations

with a high frequency and a small wavelength.

The limitations of the theoretical treatment of the free jet in-

stability by ignoring the axial symmetry (assumption III) are for the

most part unknown. The approximate investigations of this influence

by A. Michalke and H. Schade indicated that especially for small fre-

quencies and/or relatively thick free jet boundary layers, the axial

symmetry cannot be ignored. This is obvious because then the pertur-

bation wavelength is on the order of the free jet diameter.

The theoretical investigation of this influence of axial symmetry

on the instability of a round free jet is the topic .of this paper.

Using the assumptions I and II, we will discuss the free jet instabi-

lity and we will drop the assumption III. The calculation is based

on space excitation perturbations which make physical sense. The com-

pressibility of the medium.is considered in order to investigate the

influence of the.Mach number and a temperature distribution on the free

jet instability. This influence was already investigated by H. Grope-

ngeiser [26] and W. Blumen [39] for a plane free shear layer.

Lord Rayleigh [2] and H. Schade [10] considered the instability of

a round free jet, as well as G. K. Batchelor and A. E. Gill [40]. A.

E. Gill [40] as well as A. Michalke and H. Schade [13] calculated the

eigenvalues for the incompressible free jets with a simple velocity

profile. M. Lessen, J. A. Pox and H. M. Zein [4l], as well as A. E.

Gill [42] investigated the influence of the Mach number on the insta-

bility of the cylindrical vortex layer. T. Kambe [43] considered the

influence of the Reynolds number on the instability of a circular free

jet with parabolic velocity profile. All of these investigations



assumed perturbations which are excited in time. For perturbations

excited in space, the instability of the cylindrical vortex layer was

discussed by A. Michalke [30] as well as S. C. Crow and P. H. Champagne

[44]. The results for these "ideal" round free jets with zero boundary

layer thickness showed considerable deviations with earlier results

calculated for perturbations excited in time. Therefore it seems ap-

propriate to expand the stability investigation to circular free jets

with finite boundary layer thickness.

The meaning of the instability of the laminar boundary layer for the

creation of turbulence in a circular free jet is certainly well known.

Apparently, not only is the laminar free jet boundary layer unstable,

but a turbulent free jet boundary layer is also unstable. Experiments

by S. C. Grow and P. H. Champagne [44] showed, that a turbulent free

jet boundary layer also undergoes an instability process. Just like in

the laminar case, there are wave components excited in space which lead

to the formation of turbulent ring vortices. This instability of the

turbulent-free jet boundary layer which can be observed in a region up

to about six nozzle diameters behind the nozzle could be very impor-

tant for the sound production mechanism in the free jet. This is be-

cause the region of the free jet producing the sound is influenced sub-

stantially by this instability. The experimental wavelengths of the

perturbations found are greater than the free jet diameter and the

frequencies are very small. Therefore, for the theoretical investi-

gation of this instability, it can be assumed that the high frequency

turbulent fluctuation motion in the turbulent boundary layer can be

ignored as a first approximation, and that only the average velocity

profile is important. This velocity profile in the important region

(about two nozzle diameters downstream of the nozzle) has a relatively

thick boundary layer. Therefore, in a stability calculation, the axial

symmetry certainly cannot be ignored. In this sense, the results of

the present paper are also applicable to the instability of the tur-

bulent-free jet boundary layer if the parameters are appropriately

selected.

In section 2 we will first discuss the undisturbed flow in a circular

free jet, whose instability will be investigated.. In section 3, we

will discuss the solution of the instability problem, and in section 4

we will discuss the results.



2. THE UNDISTURBED PLOW IN A CIRCULAR FREE JET

In order to describe the flow field in a circular free jet, we will

use a .cylindrical coordinate system *, r, ?'} where the x-axis points in

the free jet axis direction. The velocity components are then Cs,cr,c.,,,

The velocity distribution in the undisturbed free jet can be assumed

to be parallel according to assumption II for large Reynolds numbers.

Within this approximation, the free jet only has an axial velocity

component U(r) which is independent of x. At the jet axis r = 0, we

have U(o) = U, , whereas outside U(r) -»• 0 for r -»• °°. The free jet radius

R is called the radius for which the velocity is reduced to one-half

of the maximum value, that is, U(R) = U,/2.

The undisturbed free jet can also have a temperature profile T(r),

where the absolute temperature below the jet axis is T(o) = ̂  and in

the surroundings we have T(«>) = TQ . If the speed of sound along the

jet axis corresponding to T is called a^, and if TQ corresponds to a ,

then the local speed of sound a(r) is given by:

(2-1) « (r) = 8l VTWfi .

The pressure p is constant in the undisturbed free jet. Therefore

we obtain the density distribution as follows from the state equation

for ideal gases: /321.

(2.2) eM = ffi7VT(r).

p is the density along the free jet axis. p is the density of

the surrounding medium at rest, and we obtain the following for the

temperature ratio T*:

(2.3) T* = TO/T! = £>,//?„ = (V«.)2 •

The Mach number of the free jet is defined by

<2.H) M = Ul/ai.

In general, the velocity and temperature profiles are not independent

in the boundary layer. Just. like in the paper by H. Gropengeisser [26],

the temperature-velocity coupling is assumed according to Busemann-

Crocco Law:

(2.5)
' i

Here y is tne ratio of these specific heats. Relationship (2.5) applies



for a Prandtl number Pr = 1 and a constant specific heat.
The momentum loss boundary layer thickness & is used as the charac-

teristic of the free jet boundary layer. For the compressible free jet

boundary layer, it is defined as follows:

Because of (2.2) and (2.5), & depends on the velocity profile U(r) and

the Mach number M and the temperature ratio T* .

We can give a physically meaningful function for the velocity pro-

file U(r). Here we will not investigate free jets with well-developed

velocity profiles, but free jet profiles with a relatively large po-

tential jet core, as can be found just behind the nozzle mouth. In

addition, the profiles must have an analytical description. In the

following, we will carry out the calculation of the free jet insta-

bility for two simple analytic velocity profiles.

The velocity profile 1 is defined by the following:

(2.7) U(r

d_
__ 2

-- I 1 + tanh

ft
forR--2

where the value 6 < 2R must be so large that the discontinuity in the

profile at r = R - 6/2 can be ignored, that is, tanh b-L6/2 R) ^ 1. The

quantity b is a measure for the velocity gradient or for the boundary

layer thickness.

The velocity profile 2 is defined by:

(2.8, .

which is valid over the entire range 0 <_ r <_ °°. The quantity b- is

also a measure for the boundary layer thickness.

The velocity profiles and also the temperature profiles, according

to (2.5), depend on r/R and a free jet parameter R/#. which is a measure

for the ratio of the jet radius and the jet boundary layer thickness.
R/0 is considered a characteristic variable for the influence of the

axial symmetry on the instability of the free jet in the following.

For a specified free jet parameter value R/0 it is possible to cal-

culate b.^ and b2 using (2.6). We then obtain the following for profile



1:

(2.9) i = ~ f (M, T*),

where y = U(r)/U is the boundary laver function f defined by

(2.10)

This integral can be solved in closed form.

For profile 2, we obtain an explicit solution for b? only for the

temperature ratio T*_ = 1. In_jbhzLs_case , we have

(2.11)
2 V

The variation of the boundary layer function f as a function of the

Mach number M is shown in Figure 1 for the temperature ratios T* = 1

and T* = 0.5. We have assumed a value for air (y = l.*0 for the ratio

of the specific heats, which will also be maintained in the following

stability calculations.

The velocity profiles 1 and 2 can be calculated for fixed free jet

parameters R/& using (2.9) and (2.11). Figure 2 shows the velocity

profiles for M = 0 and T* = 1 for different values of RW . The velo-

Figure 1: Boundary function f :as a function of the Mach number M for
Y = 1.^ and two values of the temperature ratio T /T, .

city profiles 1 are anti-symmetric with respect to the value r = R,

and the profiles 2 are asymmmetrie. For R/0 = i2,s , we can see the

relatively small differences for both profile shapes. Velocity pro-

files with R/# = so to 100 are typical for the free jet region near the

nozzle mouth where the laminar-transition occurs. On the other hand,

profiles with R/0<12,5 should be important for the instability of tur-

bulent free jet boundary layers.



In Figure 3, we show the velocity and temperature profiles for a

single Mach number M = 1.2 and one temperature ratio T* = 1 for R/t? =

and 6.25. The velocity profiles are slightly flatter than for M = 0

(see Figure 2) because of the smaller value of f (see Figure 1). The

1,0

7322

Figure 2: Velocity profiles 1
temperature ratio T
parameter RIO

and 2 at the Mach number M = 0 and the
/T- for various values of the free jet

u/u,
r/r,

0,5

profi
.—profiT°i=C 1--,~.y w,

\u/u,

0,5 1,0 1,5
r/K

2,0

Figure 3: Velocity and temperature profiles in air ( y =1.4) for two
values of the free jet parameter '*>& for a Mach number M =
1.2 and temperature ratio T /T, = 1.

maximum of the temperature in the boundary layer thickness is a conse-

quence of the aerodynamic heating at higher Mach numbers.

For a hot free jet, the velocity and temperature profiles are shown

in Figure 4. Here, we have M = 0 and .T* = 0.5. The velocity profile

1 for R/0 = sq and 25 is steeper than for T* = 1 (see Figure 2) because

of the larger value of f (see Figure 1).

For a fixed ^ the free jet profile 1 becomes the plane hyperbolic

tangent velocity profile for R •* °° which was investigated for stabi-

lity by A. Michalke. In the following, we will perform stability cal-

culations for the velocity profiles shown in Figures 2 through 4.
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3. SOLUTION OF THE INSTABILITY PROBLEM

3.1 The Perturbation Differential Equations

In order to investigate instability we will superimpose small per-

turbations (cx',cr',cv', P',Q) on to the parallel flow of the undisturbed free

jet. It is assumed that the Prandtl number Pr = 1. Since also the

Reynolds number was assumed to be very large, we can use the friction-

less equations of motion (assumption I). Also in this case the entropy

of the flowing particles remains constant during the motion. The 11-*.

nearized flow equations were derived with these assumptions in [30].

Because of the linearity of the perturbation equations, it is then

sufficient to consider the behavior of single-wave perturbations. One

trial solution which is compatible with the equations is

= [u (r), v (r), w (r), p (r), Q (r)] ? <« + "•* ~ « .

For perturbations excited in space, which are the only ones considered

here, the circular frequency $ and the whole azimuth wave number m

of the perturbation are real, whereas a=a+ja.is in general complex.

a is the axial wave number of the perturbation and -a- > 0 is its

buildup factor in space. For m = 0, we have axisymmetric perturbations,

and for m = 1 we have the first azimuthal perturbation, etc.

Using the trial solution ( 3- 1) , we eliminate the amplitude functions

u(r), w(r) and p"(r) from the linearized perturbations. According to

[30], we obtain the following differential equation system for the

amplitude functions v(r) and p(r) :

17 £\ \ d (r v)
i a e (if - — ) ----- V-L\ Oil r dr(3.2)

(3.3) ""W-7;r- *•
where we have used the abbreviation

AU _
- j- udr

As a boundary condition for the instability problem, we must require

that perturbations, that is the solutions of (3.2) and (3-3), are re-

gular at r = 0 and vanish for r -»• ». Therefore, we have to solve the

following eigenvalue problem: For a specified basic flow, U(r), p(r)



and a(r) and the prescribed values of m and 3, we must determine the

complex eigenvalue a in such a way that the boincfery conditions are

satisfied.

For r -»• 0, we have U ->• U , p -*• p , and.a_+ a.. . The asymptotic solu-

tion for the pressure amplitude which satisfies the boundary condition

at r = 0 is then the following for r -»• 0:

(3.5) P (r) - /« (A4 r) .

Here, I is the modified vessel function of the first kind of order mm
and A-, is the value of A(0) according to (3.4) with a positive real

part.

For r -»• °° , we have U -»• 0, p -»• p0 and a -»• aQ. The asymptotic solu- /32

tion which satisfies the second boundary condition is the following for

r •*• °° :

(3.6) p (r) - Km (A0 r),

where K is the modified vessel function of the second kind of order m

and AQ is the value of A(°°) with a positive real part.

3-2 Numerical Solution of the Eigenvalue Problem

The eigenvalue problem can only be solved numerically for the velo-

city profiles 1 and 2 of section 2. Therefore, the equation system

(3.2) and (3-3) should be converted. By introducing the function

(3.7) x (r) = - i« v (-)/ * (
r) -

which was also used by H. Gropengeisser [26] we obtain a complex non-

linear differential equation of first order,

(3.8)

For sufficiently small or large r, in the square bracket the quantity

dU/dr can be ignored compared with the first term. The asymptotic

behavior of the function X can be calculated from (3-5) or (3.6.) and

(3-3). If the corresponding radii are called r-^ and r , then we obtain

(39) , , _ _ «2 P. (t/i ~ P/*) /» (*i >-i)
~~ '~

as well as

10



(-5 i n i v fr i = ° i(j. iu) x iro) , £• - /, \'
AO r*m \A0 '01

where I ' and K ' are the derivatives of the functions I and K and

with respect to their argument. For the velocity profile 1, we select

r, = R = 6/2 and r = R + 6/2.1 o
For an arbitrarily-selected value pair a differential equation (3.8)

with the initial value (3-9) can be numerically integrated from r = r

to r = R. It can be indicated with the initial value (3-10) from r =

r to r = R. For the correct eigenvalue a, the difference of the two

solutions will be 0 at r = .R. This can be used to solve the eigenvalue

problem using a zero-point method for complex functions.

The integration of the complex differential equation (3-8) was done

using a Runge-Kutta method, which determines the local optimum step for

a prescribed accuracy*. The zero method is based on complex parabolic

interpolation. A subprogram for calculating the modified Bessel functions

with complex arguments was used to calculate the initial values (3-9

and 3-10). It is known that [11] the boundary layer thickness is a

characteristic length for the instability of a free boundary layer.

Therefore, the momentum loss boundary layer thickness # is selected

as a reference length for the instability problem. The reference velo-

city selected is the free jet velocity U,. The normalized complex eigen-

values <*& depend on the azimuth wave number m, the normalized frequency

or Strouhal number pWUi and the flow parameters R/&, M and T*. Cal-

culations for the axisymmetric and first azimuth perturbations were

first made for M = 0 and T* = 1 with the free jet parameter values

KTff = 100, 50, 25, 12.5 and 6.25 in order to investigate the influence

of axial symmetry on the incompressible free jet. For T* = 1 and R/d

= 100, and 6.25, we calculated for M = 0.4, 0.8, and 1.2 in order to

study the influence of the Mach number on the instability behavior.

The instability of a hot free jet with T* = 0.5 and R/# = SO and 25 were

also calculated for the Mach number M = 0.

3.3 Instability Behavior of a Round Free Jet for Very Small Frequencies,

P. G. Drazin and L. N. Howard [45] showed that a plane free shear

*The numerical calcuations were done on a digital computer, Zuse Z-23,
made available by the German Research Federation, Bonn-Bad, Godesberg.
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layer behaves like a plane vortex layer with respect to two-dimensional

perturbations at very low frequencies. The special form of the velo-

city profile of the shear layer then no longer is important. However,

this is not true for three-dimensional perturbations [27, 26]. There-

fore, we could expect that a circular free jet will behave like a cylin-

drical vortex layer with respect to axisymmetric perturbations at very

small freuencies. The investigation of the instability of the cylin-

drical vortex layer excitation is space was done by A. Michalke [30] as

well as S. C. Crow and P. H. Champagne [44]. The result is that in

addition to the "regular" perturbation mode with a ^ 0 for 3 •-»• 0,

there are other "irregular" perturbation modes which for 3 ->• 0 give

a buildup factor a. > 0 which is different from zero. The physical

meaning of .this "irregular perturbation mode", however, is not
clarified. Since these modes have not yet been observed in experiments,

it is natural to believe that these solutions are a consequence of an
infinite parallel flow (assumption II).

For an incompressible circular free jet with a velocity profile 1

for R/# = so , we compared the calculated eigenvalues «,# and -«;#_ of

the axisymmetric perturbation m = 0, with the results for the cylindrical

vortex layer for a small 'frdlÛ  value. The curves are given in Figure 5.

For the "regular" mode I, it can be seen that the continuous velocity
profile 1 does indeed behave like a cylindrical vortex layer for 0#/l/,-*o

and large values of R/& . Therefore, for small frequencies, the phase

velocity c , = 3/ot of the axisymmetric perturbation is greater than

the jet velocity U . The "irregular"'perturbation modes also occur for

the continuous velocity profile 1, and the first mode will be called II.

For this mode II, the cylindrical vortex layer is a good approximation.
Approximately for 0 #/U, ̂0,04 , the wave number ar of mode II in Figure 5

becomes zero. Therefore its phase velocity C , = 3/fct becomes infinite.

Physically speaking, this "irregular" mode II is probably meaningless,

as already mentioned. 7324

For three-dimensional perturbations with m ̂  1, even for 3 = 0 , the

special velocity profile of the free jet influences the eigenvalues.

In order to calculate these eigenvalues for 3 = 0, we use the following

function in .the differential equation (3-8) and in the boundary condi-

tions (3-9) and (3-10), and we introduce the new eigenvalue
(3.11) X=~x/<*«

12



Figure 4: Velocity and temperature profiles for 2 values of the free
jet parameter R/» for a Mach number M = 0 and a temperature
ratio of T /T, = 0.5.

(3.12). c = /J/«

It is assumed that c remains finite for 3 ->• 0. In the limiting case
3=0 the eigenvalue c for m >_ 1 is calculated from the differential

equation

— = - -ru- >"+'
dr

(3-13)

U

with the boundary value

\ X (r0) = - £>„ c ra m~
l.

The influence of the Mach number on the instability expressed by the
o

function A according to (3.4) no longer occurs in this limiting case,

For the first azimuth perturbation of the velocity profiles, the
ratios arU../3 and -a.U,/3 are shown on Figure 6 as a function of

M) for M =" Q and T* = 1. This is compared with the results for

the cylindrical vortex layer. The free jet parameter here is R/# = ioo

and 25. It can be seen that these values are different, even for 3= 0

and the deviation is greater for smaller values of RJ# . It is found

that just like for the plane shear layer [27], the phase velocity C ,

of the three-dimensional perturbation is smaller than the jet velocity
U, for the limiting value g =0.

13



4. DISCUSSION OP RESULTS

4.1 Influence of Free Jet Parameter on the Instability of an Incom-
pressible Circular Free Jet.

We assume an incompressible free jet if the Mach number is M = 0,

and the temperature ratio is T* = 1. For this case we will first in-

vestigate the influence of axial symmetry expressed by the free jet

parameter R/# . The instability problem for the velocity profile 1 and

using the substitution
(4.1) r=R-ij

in (2.7), as well as the differential equation (3.8) and the boundary

values (3-9) and (3.10), for R ^ °° , can be reduced to the instability

problem of the plane hyperbolic tangent shear layer profile, which was

solved in [20]. The eigenvalue curves for this case, therefore, are

the limiting curves for the instability of the free jet profile 1 for

Figure 7 shows, as a function of the normalized frequency

the normalized phase velocity c h/U, and the normalized build-up factor
— «i# of the axisymmetric "regular" perturbation (m = 0) for different

free jet parameter values R/& . For E/i? = ioo, the buildup factor -«,-»?

differs only very slightly from the values for R/#=°° , and the axial

symmetry can be ignored here. The same is true for the phase velocity

c V./U-, for values 'ft#/U,> 0,.!_. For smaller frequencies, the phase velo-

city deviates greatly from the values of the plane shear layer (R/& = <x)

and becomes greater than the jet velocity, such as was the case for

the cylindrical vortex layer [30, 44]. Therefore, the influence of

axial symmetry on the phase velocity for small frequencies cannot be

ignored, even for a free jet with large R/& .
0,101 1 7-, 0,701

7325

0,08

0,04

0,08

0,04

"cylindrical
'vortex layer

0 0,04 0,08
f , fltn,

Figure 5: Comparison of eigenvalues a and -a. of an axisymmetric
perturbation for'profile 1 with those of the^ylindrical vortex layer
at Ri0~so for small circular frequencies 3(M = 0, T /T, = i)
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0,8

Figure 6: Comparison of eigenvalue a and -a of the first azimuthal
perturbation for profile 1 with those of the cylindrical

and 25 for small circular frequenciesvortex layer R/»-N» ai
6(M = 0, T /T.. = 1.)

For smaller Rid values, the maximum of the phase velocity decreases

and at the same time the maximum of the buildup factor becomes smaller

and is displaced towards larger p$IU) values. In other words, the in-

creasing influence of axial symmetry reduces the instability of the

free jet. In Figues 7 and for R/# = i2,5 , we show the curves for the

velocity profile 1 and for the profile 2. One can see, especially for

the curves -«,-# , that even for small R/& the shape of the velocity pro-

file has a substantial influence on the free jet instability.

The frequencies in a round-free jet are often characterized by the

Strouhal number SD formed with the nozzle diameter D. If we set approxi-

mately D = 2R for the free jets considered here, then this Strouhal

number SD is related to /J#/l/, as follows:

(4.2)
_

bl)

R

•& '

Therefore, we obtain the order of the Strouhal number range of SD < 8

and a maximum buildup occurs at S_ = 3 for R/# = ioo . For R/a_̂ 6,25 , the

instability region is given by S, K 0.65 with a maximum buildup at

about SD = 0.35.

According to P. Freymuth [21, 23] the Strouhal number range for

R/#=~ioo is characteristic :for laminar-turbulent transition. According

15



0,10
}
0,05

0

m=o —profile 1
M=Q — profile 2
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Figure 7: Phase velocity c h and buildup factor -a± of the asymmetric

perturbation as a function of circular frequency 8 for
various free jet parameter values R/.MM = o, yr, = D

to S. C. Crow and F. H. Champagne [44], the range for R/tf_= 6,25 is char-

acteristic of the instability of the turbulent free jet boundary layer.

Figure 8 shows that this instability of the free turbulent boundary

layer does indeed approximately follow the linearized theory. Here we

show the phase velocity of the axisymme.tric perturbations in the turbu-

lent free jet measured in [44] as a function of the Strouhal number Sp,

In addition, we show the theoretical curves for the velocity profile 2

with R/& = 12,5 and 6.25. The last curve corresponds approximately to the

average velocity profile which was measured by S. C. Crow and F. H.

Champagne [44] at the distance x = 2D behind the nozzle. The rela-

tively good agreement of measured values of phase velocity and the

position of maximum buildup with the theoretical values for R/t> = 6,25

shows that in [44], it was erroneously believed that the theory of

space buildup of perturbations had failed. S. C. Crow and F. H. Cham-

pagne [44] reached this conclusion by comparing their measured and

theoretical values for cylindrical vortex layers. It was found that per-

turbations excited in time resulted in a better agreement with the

measured values than perturbations excited in space. From Figure 8,

.it can be seen that it is not the theory of perturbations excited in

space which fails, but that the approximation of replacing a free jet

boundary layer profile with approximately R/#=6 by means of a cylin-

drical vortex layer is not permissible.

For the non-axisymmetric perturbations with m >_ 1, for R -*• °°, the

influence of the axial symmetry vanishes as does the dependence on M.
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For R/# = °° , the .two-dimensional perturbation of the plane free jet also

results in limiting curves for m >_ 1. Figure 9 shows the normalized

phase velocity and the buildup factor for the same free jet parameter

values R/0 as in Figure 7, as a function of /ffl/i/,. The phase velocity

here in general is smaller than U , especially .for /iv/u^o. As a com-

parison with Figure 7 shows, the curves of phase velocity for m = 0

Figure 8

Figure 9

I,U
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0,6

' I

X
\
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o°\
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\
\
\ 0

\
\ t\\ \

0 °V"~<J

theoretical curves for the
axisymmetric perturbation
measured values in the turbulent-free jet.
Crow and Champagne, 1970 " ~ ~ ~
maximum buildup excitation

' 0 °

- — JLL-

3 WU, <
i I i i

0,25 0,50 0,75 1,00

Measured phase velocity c , of the asymmetric perturbation
-•^ o /^ r>^-»oH- iKi (T» +• r\ r i i i i~ i do n f u.nc t ionin the turbulent free jet^1 according to [44] as a

of the Strouhal number SD compared with theoretical values

for profile 2 and the free jet parameter values /w = i2,s and
6.25 (M = 0,

- <*">,
TO/TI =
1,0

0,5
WO 25 12,5 6,25.^_L^- S.L-J'-..-

o,w
1

0,05 :

0

^T^ZTprbfile 1
M=O —/profile 2

^30,1 4.*- flWU,
0,3

Phase velocity c , and buildup factor -<*i of the first azi-

muthal perturbation as a function of circular frequency 3
for various free jet parameter'values **» <M - o. ryr, -1>

and m = 1 are quite different. The curves for the buildup factor for 7326

large values of R/0, are approximately the same as for m = 0. FOE smaller

values of R/# , the maximum buildup for m = 1 drops somewhat more than

for m = 0.. However, the buildup for small gi>/Ui values is greater

than for m = 0 because of the approximately linear increase of the

curves, where the variation is approximatley parabolic. We therefore
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can expect that for M ->• 0 and.K/#<io} the part of the first azimuth

turbulence component in the round free jet is greater for very small

Strouhal numbers for about SD < 0.2 because of the greater instability,

than for the axisymmetric component.

4.2 Influence of Mach Number on Instability of a Circular Free Jet

In the case of a plane shear layer, the instability becomes reduced

for increasing Mach numbers, as H. Gropengeisser [26] and W. Blumen

[39] have shown. The same is true for the circular free jet as Figure

10 shows for the axisymmetric perturbation. This shows the normalized

buildup factor-«;#as a function of /3#/U, for the velocity profile -1

with R/V = 100 and for the velocity profile 2 forR/# = 6,25. The curve

parameter is the Mach number M. The temperature ratio is T* = 1, the

temperature distribution in the free jet, however, is not constant

(see Figure 3). For both velocity profiles, as the Mach number in-

creases, the unstable frequency range becomes smaller. The maximum

buildup decreases and is displaced toward smaller values of /?#/U, .

The first azimuth perturbation with m = 1 has the same tendency

as far as Mach number dependence is concerned. Their buildup factor

Figure 10: Buildup factor of the axisymmetric perturbation as a func-
tion of the circular frequency. 3 for R/« = IM and 6.25, and
various Mach numbers # b = }-*-T</Ti ~li.

is shown in Figure 11 for the same velocity profiles and Mach numbers.

Comparison of the curves for M = .1 and M = 0 in Figure 10 shows that

for a free jet parameter R/# = ioo, the curves are hardly different, as
could be expected for R/t>^™ . For R/0 — 6,25 } on the other hand, the

buildup factor of the axisymmetric perturbation decreases more with

increasing Mach number than for m = 1. For Mach numbers M > 0.8, the

latter is excited more over the entire unstable frequency range than

is the axisymmetric perturbation. This result is important for the

instability of the turbulent free jet boundary layer, and leads to the
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assumption that for high Mach numbers, in the entire Strouhal number

range SD < 0.65, the contribution of the first azimuth turbulence com-

ponent increases, whereas the contribution of the axisymmetric compo-

nent is reduced.

^J. 3 Influence of Temperature Ratio on the Instability of a Circular
Free Jet

The influence of temperature on the instability of a plane shear

layer which is the limiting case of a free jet for R -»• °° was inves-

tigated by H. Gropengeisser [26]. He found that a hot jet which flows

into cold surroundings is more unstable than isothermal jets. For the

circular free jet with the boundary layer thickness #=o , (cylindrical

vortex layer), we find the same tendency for the perturbations built

up in space [30]. However, we have a peculiar phenomenon in which for

temperature ratios T* > 0.7 the eigenvalue curves of the 'regular"

mode and of the first "irregular" mode exchange their variation over

a certain frequency range. This means that it is no longer possible

to uniquely define the "regular" and "irregular" modes, just like for

T* > 0.7. The same is true for finite values of the free jet parameter

R/# . Figure 12 shows the variation of the buildup factor of axi-

symmetric perturbations for the temperature ratio T* = 0.5 and the

velocity profile 1. The Mach number is M = 0. The curve R/& = 20,000

effectively coincides with the variation of the buildup factor for the

plane shear layer. The value.for the maximum buildup factor here is

almost twice as great as for T* = •! in Figure 7. Therefore, a hot free

jet is less stable than a cold one.

For K/J? = SO and 25 we see in Figure 12 clearly that the curve of the

"regular" mode for values p#/U1 below the maximum buildup become those

of the "irregular" mode, which has a buildup -ai > 0 which is different

from 0 for 3 = 0 . The curves which start at -a. = 0 at 3 = 0, on

the other hand, terminate at a certain value of P&/ui, because there

the corresponding wave number a becomes 0, which could be seen for /327

the "irregular" mode II for T* = 1 in Figure 5.

However, these theoretical results for the hot free jet cannot be

physically explained up to the present. Unfortunately, no experimental

results about the instability of hot free jets are available, which

would give information about the actual instability mechanism. There-

fore we can assume that for a hot free jet, the instability for small,
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Figure 11

Figure 12

0,1 0,2 0,3
00/U,

Buildup factor -a. of the first aximuthal perturbation as

a function of circular frequency 3 for RA» = I«O and 6.25 and
various Mach numbers M (Y = 1.4, TO/T. = 1)

00/U,

Buildup factor -a. "of "the axi symmetric perturbation as a

function of circular frequency 3 for hot free jets (T /T.
= 0.5) with various values of R/MM = O) . 1

values is much more complicated than for a cold jet, or that the

assumption II of the theory about an infinite parallel flow is no

longer applicable for a hot free jet.

Institute for Turbulence Research (director: R. Wille) of the German
Research and Test Facility for Aerodynamics and space flight D.P.V.L.R.)
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