NASA Contractor Report 145281

Expansion of Flight Simulator Capability for Study and Solution of Aircraft Directional Control Problems on Runways - Appendixes

J. A. McGowan

McDonnell Douglas Corporation
Douglas Aircraft Company

CONTRACT NAS1-13981
JANUARY 1978

EXPANSION OF FLIGHT SIMULATOR CAPABILITY FOR STUDY AND SOLUTION OF AIRCRAFT DIRECTIONAL CONTROL PROBLEMS ON RUNWAYS

APPENDIXES

20 JANUARY 1978

PREPARED UNDER CONTRACT NO. NAST-13981

FOR

LANGLEY RESEARCH CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LANGLEY STATION, HAMPTON, VIRGINIA

MCDONNELL DOUGLAS CORPORATION DOUGLAS AIRCRAFT COMPANY LONG BEACH, CALIFORNIA

$$
\begin{aligned}
& i \\
& \text { Blowk }
\end{aligned}
$$

TABLE OF CONTENTS

PAGE
CONVERSION FACTORS iv
INTRODUCTION 1
APPENDIX A - Afrcraft Simulation 2
Section 1 - Basic Airframe Equations of Motion 7
Section 2 - Aerodynamic and Control System Models 23
Section 3 - Engine Model. 75
Section 4 _ Environmental Models 79
Section 5 - Struts Subroutine Implementation Notes 85
Section 6 - Auxiliary Equations 111
APPENDIX B - Software Antiskid 122
APPENDIX C - Analog/Hardware Antiskid 125
Section 1 - Introduction 125
Section 2 - Model Derivation 127
Section 3 - Program 156
Section 4 - Hardware 161
Section 5 - Analog Antiskid Simulator Validation 203
APPENDIX D - Cockpit Simulator 209
APPENDIX E - Programming Considerations 216
REFERENCES 219

The following table gives conversion factors from the English system to SI units for those quantities used in this report.

The sign and first two digits of each numerical entry represent a power of 10 .

TO CONVERT FROM	T0	MULTIPLY BY
Fahrenheit (temperature)	Celsius	$t_{c}=(5 / 9)\left(t_{f}-32\right)$
Foot	Meter	-01 3.048
Inch	Meter	-02 2.54
Knot (international)	Meter/Second	-01 5.144444
Mile (U.S. Statue)	Meter	+031.609 344
Mile (U.S. Nautical)	Meter	+03 1.852
Pound Force (lbf avoirdupois)	Newton	+00 4.448222
Slug	Kilograms	+01 1.459 390
Foot/Second ${ }^{2}$	Meter/Second ${ }^{2}$	-01 3.048
Free Fall, Standard (g's)	Meter/Second ${ }^{2}$	+00 9.80665
Foot ${ }^{2}$	Meter ${ }^{2}$	-02 9.290 304
lbf/Foot ${ }^{2}$	Newton/Meter ${ }^{2}$	+01 4.788026
psi(1bf/Inch ${ }^{\text {2 }}$)	Newton/Meter ${ }^{2}$	+036.894 757
Foot/second	Meter/Second	-013.048

The foregoing values were taken from Reference 11. Some of the values were rounded to six digits after the decimal point.

INTRODUCTION

The intention of this report is to present the models used implementing the DC-9-10 aircraft simulation for the Runway Direction Control study. The study was done on the Douglas Aircraft six-degree-of-freedom motion simulator at Long Beach.

The approach taken in documenting the models has been to describe them in algebraic form, to the extent possible. Furthermore, the effort has been directed toward presenting what was actually done rather than general forms.

The following Douglas personnel contributed to this report: P. L. Jernigan and R. E. Adams of the Systems Simulation group; G. W. Kibbee, R. A. Storley and R. P. Schiltz of Hydro-Mechanical group; and E. F. Admiral of Avionics group.

APPENDIX A

 AIRCRAFT SIMULATIONThe DC-9-10 aircraft was simulated using math models derived from information supplied by Aero Stability and Control, Power Plant and Hydro-Mechanical Controls groups. The supplied data was combined with classical kinematic and transformation equations to form the airframe model. The calculation flow of the airframe model is shown in Figure 1.

In developing the model it was assumed that the flight envelope would be in the low speed (mach $0-.3$) and low altitude ($0-500$ feet) region. Also, since the rums were to be short (i.e., approach, landing and roll out), the aircraft weight was assumed to be constant and the C.G. position fixed at 25% MAC.

Three basic axes systems are used to represent the relative motions and orientations of the aircraft. The inertial system (called earth axes) has its origin at the "touchdown" point of the rumway (see Figure 2). For the ground handling simulation the touchdown point was choosen to be 1000 feet in from the threshold. Another axes system called the Aircraft Body Axes System has its origin at the C.G. of the aircraft. (See Figure 3.) The sign conventions for these axes systems are as follows:

X body axis velocity positive forward
X earth axis velocity positive toward rumway and position positive beyond touchdown point
Y body axis velocity positive to right
Y earth axis velocity positive to the right and position positive to the right
Z body axis velocity positive down (negative up)
Z earth axis velocity negative up and position negative above ground.

A third axes system used is called the Stability Axes. This system is closely related to the body axes system but is aligned with the longitudinal wind vector rather than the body of the aircraft. The stability axes are used in defining most of the aerodynamic data.

Validation of the aircraft simulation was accomplished in three phases. First, the individual sections (aero, engine, etc.) were checked to see that they were statically correct. Secondly, to the extent possible, the various models were checked dynamically using inputs which produce transient responses. These responses, recorded as time histories, were then compared with expected responses. Where direct time histories were not available comparative parameters such as frequency and time to damp were used.

The third phase of validation was to have test pilots familiar with the DC-9-10 aircraft "fly", the simulator through various maneuvers. Their comments were used to adjust some parameters to improve the "feel" of the simulation.

The data collected during some of the validation runs and the associated comparative data is part of the file of rolled charts and is labeled Validation Data.

For convenience the description of the aircraft simulation has been divided into six sections. Sections 1 and 2 cover aerodynamics and equations of motion; Section 3 describes the engine model used; Section 4 explains the environmental model (winds, and runway conditions); Section 5 covers the landing gear but does not include the antiskid system which is described in Appendices B and C; and Section 6 picks up other programs such as instrument drives, motion drives, visual system drives, etc.

Section 1

Basic Airframe Equations of Motion

The calculations covered in the Equations of Motion (EOM) are those which form the six independent variables of the airframe system and preform the appropriate axes transformations between the three axes systems used. Basically these equations are those needed to describe the motions of any rigid body. The derivations of these equations are covered in almost any text on aerodynamics or rigid body dynamics. Looking at Figure 1, this section covers all the boxes enclosed by the dashed line.

The associated equations for the EOM boxes are shown in Figures 1.1-1.9. Table 1.1 has descriptions of all the symbols used.

The EOM used for the Ground Handling Simulation are essentially the same for any aircraft using the same axes systems. The documentation of the equations should be fairly self sufficient, however, there are a few things that might be mentioned.

The 57.3 and $1 / 57.3$ factors show up because it was desired to have the angular state variables in units of degrees rather than radians. The method employed is to assume the angles to be in degrees and convert them back to radians for summation into the force and moment equations. The results of the sumnations are then converted back to degrees!

In Figure 1.4 the $1 / 1.69$ factor in the $V e$ equation is the ratio of knots to feet per sec. It is more convenient to have Ve_{e} in units of knots.

The fact that weight and C.G. position were constant in this simulation meant that mass, moments of inertia, and the lever ams only had to be calculated once at initialization and remained constant during real time rus.

These EOM are designed to handle winds and wind shears, i.e., time-rate-of-change of wind speed and/or direction. This is acconplished by first defining the wind profile in the inertial (earth) axes system. The steady state part of the wind components are then summed directly onto the inertial velocities. The time-rate-of-change parts are transformed to the body axes and summed directly into the force equations. (See Figures 1.1 and 1.7). This method allows a very versatile representation of the wind conditions without sacrificing the true inertial effects of a changing wind vector on the aircraft dynamics.

It should be noted that although a transformation matrix (direction cosines) is defined, and its elements are mentioned, the EOM program uses no matrix type operations. Using the individual matrix elements streamlines the calculations by eliminating any operation where the result would be zero anyway, e.g., the gravity vector transformation into the body axes.

Validation of the EOM program consisted mainly of checking to see that the proper parameters were entered for the DC-9-10. Further tests and check runs were not made on the EOM thenselves for two reasons. First, this program has been used, in almost the same form, for numerous other transport type airframe simulations. Since the changes to the EOM for the DC-9-10 were minor it was felt that any more extensive checking would not be productive. Second, and foremost, the EQM are an integral part of the whole dynamic airframe simulation. For this reason it was felt that it would be more cost effective to validate the system as a whole and only do a detailed check if it was indicated. (Which, as it turned out, it was not.)

SyMal30L		TABLE I. (CONT.)	
AKGEBRAIC. SYMBOL		DRSCRINTION	cuvits
α	$A \angle F$	AWGLE OF ATTACK, ANGLE BETWEEN AIRCRAFT FLILHT Dभti UEROCIYY AND X BODY AXIS IN YHE DANE OF JYMAMETRY	deg
β	BET	SNESCID ANGLE, MNGLE BETWEEN AIECRAFT FLIGHT DAFH VELOCITY MND ALRPLANE OF SYMIANTPY	cleg
V	$V T$	CLIGHT PAYH UCLOCITY, TRUIE	$\mathrm{ft} / \mathrm{sec}$
Ve	VEKT	EQUIVALENT AIRSPED	knots.
0	RHO	AIK DENSITY	$s / 4 g / f_{t}{ }^{3}$
MACH	$\times \mathrm{MACH}$	AIRCRAFT MAMCH NUMBER	cmizeess
Sound	SOUND	SPEED OF SOCIND	$f+/ \mathrm{sec}$
$h_{C G}$	$H C G$	ALTITUOE OF C.G. ABUUE GROUND	ft
hewrec	HWHEEL	ALTITUAK OF MAIN LANOUG GEARE ABOUE GROGND	ft
X_{L}, c_{G}	XBWHCL	LONGITUDINAL DESAANCR TRROM MAIN GIEAR TO C.G.	ft
$z_{w, c b}$	ZBWHL		

	SYMBOL THBCE ELQUATIONS OK NGOTION TABCE M (CONT.)		
$\begin{gathered} \text { AKGFBRAFIC } \\ \text { SYMIBOL } \end{gathered}$		DRSCRIDTZON	unirs
$\dot{X}_{I}, \dot{y}_{I}, \dot{z}_{I}$	$\left.\right\|_{v \mid z} ^{v / v \mid y .}$	AIRLRAFT UELOCITY IN INERTINL (FAKTH) AXES	ftisec
$U \omega_{\omega_{k}}, V_{\omega_{n}}, \omega_{u_{k}}$	$\operatorname{vixx}_{\operatorname{vwz}, v w y}^{v w z}$	WIMD UELOCTY IN EARTH AXES	Fitsec
$\dot{C} \omega_{w_{k}}, \dot{V}_{w_{k}}, \dot{\omega}_{u_{k}}$	XDWE YOWE Z DW E	WIMD ACCELERATRONS (Sntkite) in Ramth mxes	$\mathrm{F} / \mathrm{Sec}^{2}$
ϕ, θ, ψ	$\begin{aligned} & \text { PHI, THR } \\ & \text { PSI } \end{aligned}$	EULFR ANGLES OF ROTATION RELATING ARCRMTF SOOV AXIES TO EARTH AXES (ROCL, PITCIA ANO YNW)	deg
P_{s}, q_{s}, μ_{s}	$\begin{aligned} & P_{S}, Q B \\ & R S \end{aligned}$	SNGGCAR VRCUCITIES (STABCITY AXES)	deglsee
$X_{p_{2}}, Y_{p_{k}}, Z_{p_{R}}$	$\begin{aligned} & X P E, Y P E \\ & Z P E \end{aligned}$	POSITION OF PILOTS EVIE IN IEMEYM MXES SYSTEME	ft
	$\begin{aligned} & X D P E, Y D P E \\ & Z D P E \end{aligned}$	URLUCITY OF DROTS FIVE In Fartit axks systen	$\mathrm{ft} / \mathrm{sec}$
($p_{1 s}, v_{P_{C}}, w_{p_{E}}$	$\begin{aligned} & \text { LPPE, VPRE } \\ & W P_{E} \end{aligned}$	UELOCITY OK, PICOTS RYG IN BdOY GXES SYSTEM	ftisec
$X_{P_{t, C G}}, Y_{p_{t}, C G}, z_{p_{R, C G}}$	$\begin{aligned} & X B P E, Y B P E \\ & Z B P E \end{aligned}$	X, Y ANO Z DISTANCIES CROM C.G. TO PILOTS RYE	ft
$X_{c, c G}, Y_{k, c G}, z_{c, c G}$	$\begin{aligned} & X B C, Y B C \\ & Z B C \end{aligned}$	x Y And z DISTANCRS RROM C.g. To CUCKDIt CENTRONS	ft
N_{x}, N_{y}, N_{z}	$\begin{aligned} & \text { ANX, } A N Y \\ & \text { ANZ } \end{aligned}$	AIXCRAFT ACCLELETCATIUNS ALONG X YY ANB Z DXES (BOOY AxES LOWO rextons)	$g{ }^{\prime}$
$N_{x_{c}}, N_{y_{c}}, N_{z_{c}}$	$A N X C, A N Y C$ $A N Z C$	AUCELRESATIONS OF Cockeder Centrulo	g g

FIG. 1.5
EQUATIONS OF KYOTZON

EURER ANGLE TRAUSCORXATION	
$\dot{\psi}=\left(\mu_{B} \cos \phi+f_{B} \sin \phi\right) / \cos \theta$	
$\dot{\theta}=f_{3} \cos \phi-\mu_{0} \sin \phi$	
TRAMSFORMATION OF BOOY AXES RATES TO STABILITY. AXES	
$P_{S}=P_{B} \cos \alpha+M_{B} \sin \alpha$	
$\mu_{S}=\mu_{B} \cos \alpha-P_{3} \sin \alpha$	

FIG. 1.6
EQUATIONS OF MOTION
TRANS CORXMATON CLLE MENENTS (AREETION cOSIVES)
$a_{1,1}=\cos \psi \cos \theta$
$a_{2,1}=\sin \phi \sin \theta \cos \psi-\cos \phi \sin \psi$
$a_{3,1}=\sin \phi \sin \psi+\cos \phi \sin \theta \cos \psi$
$a_{1,2}=\cos \theta \sin \psi$
$a_{2,2}=\cos \phi \cos \psi+\sin \phi \sin \theta \sin \psi$
$a_{3,2}=\cos \phi \sin \theta \sin \psi-\sin \phi \cos \psi$

Fル. 1.7
ratron
EQumTIONS
TRONS F-derination
$\begin{aligned} & \text { EARTH ARCRAKT } \\ &= a_{1,1} u_{B}+a_{2,1} \sqrt{B}+a_{3,1} \\ &=a_{1,2} u_{B}+a_{2,2} r_{B}+a_{3,2} \\ &= a_{1,3} u_{B}+a_{2,3} \sqrt{B}+a_{3,3}\end{aligned}$
TRANSFOR MATION

$\begin{array}{ll} \\ 3 & +\quad+\quad+ \\ 3 & \cdot 3^{3} \\ 3^{3} & \cdot 3^{3}\end{array}$

To
\dot{X}_{I}
\dot{Y}_{I}
\dot{z}_{I}
EARTH
EQUATIUNS
MOTION

$$
\begin{aligned}
& \text { Dosition } \\
& a_{1,1} X_{P_{E, C G}} \\
& a_{1,2} \times P_{E, C G} \\
& G_{1,3} \times P_{E, C G}
\end{aligned}
$$

$$
\mathcal{Z}_{p_{k}, C G}
$$

$$
F / G .1 .8
$$

$$
\begin{aligned}
& \text { ANO UEROCIT } \\
& +G_{3,1} Z_{p 1, C G} \\
& +G_{3,2} Z_{P E, C G} \\
& +G_{3,3} Z_{p_{1, C G}}
\end{aligned}
$$

UEROCITY

$$
\begin{aligned}
& \text { FOR UNUAL SYDTEM } \\
& \text { NOTE: DILOT IS ASSUNEO } \\
& \text { TO BE ON AMCCRART } \\
& \text { CENTER LINE THEKIENKIE } \\
& \text { YPE,CG }=0
\end{aligned}
$$

$$
\begin{aligned}
& 4 \\
& 0
\end{aligned}
$$

EQLATIONS OF MOTION

Section 2
Aerodynamic and Control System Models

This section contains descriptions of the Pilot Controls and Aero Forces and Moments algorithms. The information is presented in two parts. The first part is called Pilot Control Inputs to Aero Equations and the second is called Aerodynamic Equations.

The primary source for the data and algorithms used in this section is the Douglas Aircraft Estimated Data for Stability and Control. (Reference 6). The references cited in the equations are to, this document.

The aerodynamic equations were developed using the assumptions of low mach number and no weight change as stated. Aero elasticity terms were, however, included eventhough their value for this study is questionable.

Along with the inputs from the EOM the aero force equations require eight pilot control inputs. These eight inputs are generated from seven pilot operated controls in the cockpit as follows:

Elevator Input:

$$
\sqrt{e}=\left.\left(3.427+5.31 X_{C G}\right) \delta_{C c}\right|_{-25} ^{15}
$$

Where:
$X_{C G}$ is the C. Gposition as a ratio of MAC.
$\delta_{c c}$ is the position of the control column in inches and has a dead band of .25 inch.
δ_{e} is elevator deflection in degrees and is limited to the range of 15° trailing edge down to 25° trailing edge up.

Aileron Input:

Where:

$$
\delta_{a}=\left..25 \sqrt{\omega}\right|_{-20} ^{20}
$$

$\widehat{W}^{\prime \prime}$ is wheel deflection in degrees limited to ± 113 degrees with a dead band of .25 degrees.
\sqrt{a} is aileron deflection in degrees limited to the range of 20° for both trailing edge up and down.

Rudder Input:

$$
\delta_{r}=6.28 \delta_{r p}+\left.\delta_{y 0}\right|_{-30} ^{30}
$$

$\delta_{r p}$ is rudder pedal deflection in inches with stops at 4.78 inches left and right and a dead band of .25 inch.
δ_{γ} is rudder deflection in degrees limited to 30 degrees trailing edge left and right.
Gyp is rudder deflection due to yaw damper. This input is limited to approximately ± 1.6 degrees. (See Section 6 YAW DAMPER.)

Spoiler Input
On the DC-9-10 the spoiler surfaces are used for three areas of flight, 1) speed brakes, all spoilers go up at once as commanded by speed brake control, 2) ground spoilers, all spoilers go full up (60 degrees) automatically if armed and main gear spin up, and 3) lateral control spoilers, spoilers are deployed one side at a time to aid the ailerons in the rolling maneuver. In this simulation both the speed brake function and the ground spoiler function (symmetric spoiler deployment) are referred to as speed brakes.

Lateral Control Spoiler Input

$$
\delta_{s p}=f(\delta w)
$$

Where:
$\delta_{S p}$ is spoiler deflection in degrees, positive for right wing down and negative for left wing down.
$\sqrt{\omega}$ is control wheel deflection (same as drives the ailerons). $f\left(\delta_{\omega}\right)$ is defined by the following table:

$\delta \omega$	
0	$f(\delta \omega)$
3	0
10	0
20	.8
30	2.5
40	5.0
50	6.7
60	7.9
70	9.3
75	12.0
80	14.2
90	17.5
113	28.7
	60.0

The table is entered using absolute value of wheel deflection. The direction of the wheel deflection is tested and the function value is returned with a positive value for right wing down and a negative value for left wing down. This accounts for the differential nature of roll control.

Speed Brakes/Ground Spoilers

$$
\begin{aligned}
& \delta_{S B} \text { is speed brake deflection (symmetrical spoilers) from } 0 \text { to } 60 \text { degrees. } \\
& \text { The speed brakes move linearly with the speed brake control handle } \\
& \text { and produce } 60 \text { degrees of spoiler deflection for full control } \\
& \text { deflection. } \\
& \text { - OR - } \\
& \delta_{S B}=\delta_{S B C}\left(\frac{1}{.1 S+1}\right) \text { with } 150 \text { degrees per second rate limit. If } \\
& \text { auto ground spoilers are armed and the main gear have spun up } \delta_{S B_{C}} \\
& \text { goes from } 0 \text { to } 60 .
\end{aligned}
$$

It should be noted that all of the control surfaces mentioned above have some associated lags in the actual aircraft system. These lags are of the order of .1 to .3 of a second. These lags were not implemented in the ground handling simulation. It is felt that this omission does not significantly alter the overall fidelity of the simulation.

Horizontal Stabilizer Input
i_{H} is the angle of incidence of the horizontal stabilizer in degrees. i_{H} is limited to the range of 12 degrees trailing edge up and 1.5 degrees trailing edge down.

For the ground handling simulation i_{4} was controlled by a thumb switch on the left side of the wheel. Pushing the switch down caused i_{H} to move trailing edge up and pushing the switch up caused it to move in the opposite direction. The rate of l_{1+} movement was $1 / 3$ of a degree per second in both directions. The maximum displacement of i_{H} was limited to 12 degrees trailing edge up and 1.5 degrees trailing edge down represented as -12 and +1.5 degrees.

Flap Input
δ_{f} is the flap angle in degrees. δ_{f} is limited to the range of 0 to 50 degrees trailing edge down.

Only two flap positions were used during the ground handling study and the flap positions remained fixed during the runs. These two positions, 15 degrees and 50 degrees, represented nominal takeoff and landing configurations respectively.

If the flap handle had been changed during the runs δ_{f} would have moved toward the new commanded position at a rate of 2.2 degrees per second.

Landing Gear Position Input
Kgear represents the landing gear position

$$
\begin{aligned}
\text { Kgear } & =0 \text { is gear up } \\
K \text { gear } & =1 \text { is gear down }
\end{aligned}
$$

The gear was always down for the ground handling simulation.

\bigcirc

EQuATIONS
FIG. 2.4

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

EQUATIONS
AERODYNAIMIC SECTION

FUNCTION TABLE AERODYNAMIC SECTION

Function: $K_{g E}$ (hwheer)			TABCE 2.4		
hureer	KGE	hwheen	KGe	h Wheed	$k_{\text {ce }}$
\bigcirc	1.0	25	. 13	so	. 01
5	. 61	30	. 09	55	. 008
10	. 39	35	. 06	60	. 007
15	. 26	40	. 04	65	. 004
20	. 185	45	. 015	70	0
				REF: $D C$	
THESE FUNCTIONS HADE BEEN LINEARIZED					
$\Delta \epsilon\left(\delta_{S_{B}}\right)=0.0$					
$\Delta C_{m}\left(\delta_{S B}\right)=-.00203 \delta_{S B}$					
$\Delta C_{L}\left(\delta_{S B}\right)=-.01063 \delta_{S B}$					
$\Delta C_{D}\left(\delta_{S B}\right)=.00198 \delta_{S B}$					

.

FLAP

$(2$

20.00

แ

-

nnonne
nnonn
nononer

$00000 \cdot 91$ n00OO. 1 I 18.00000 19.00000 00000•n己

.

0

(3)

FUNCTION TABLE ARED OYNAMIC SECTION

O | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(3)

FUNCTION	TABCE	AEROO DNAMNIC	SECTI		TABLE 2.9 (COUT.)
Function:dsp	C_{n}	$\left.\delta_{s p}, \delta_{f}\right)$		EOR	$\sigma_{f}=50$
	α				
	-4	0	4	8	. 12
0	0	0	0	0	
5	. 0022	. 0017	. 0012	. 0009	
10	. 0051	. 0041	. 0030	. 0022	
15	. 0084	. 0070	. 0054	.0041	
20	. 0112	. 0098	. 0080	. 0063	
25	.0132	. 0117	. 0101	. 0080	
30	. 0146	.0131	. 0114	. 0092	
40	. 0167	. 0150	. 0133	. 0110	
50	. 0184	. 0166	. 0149	. 0126	
60	. 0199	. 0180	. 0163	. 0138	
					REF:

The simulation model for the JT8D DC-9. engine was developed from static and dynamic data provided by Pratt \& Whitney and Douglas Flight Test. The static data for forward and reverse thrust were formed into a table with mach number and E.P.R. as arguments. (See Table 3.1) Likewise, a table of E.P.R. versus cross shaft angle was formed. (See Table 3.2) Table 3.2 was taken directily from the published engine performance data for the sea level static case. The values of E.P.R. were taken from the 59 degree F curve with the exception that the reverse E.P.R.'s were made negative to facilitate entry into the thrust vs. E.P.R./mach no. table, Table 3.1.The dynamic data (consisting of typical engine acceleration and deceleration time histories) was used to estimate a representative time constant.

The engine model was configured as shown in Figure 3.1. The sensor on the cockpit throttle pedestal provides a positive signal for the position of the main throttle handles and a negative signal for the position of the reverse thrust levers. When this plus/minus signal reaches the computer it is biased and scaled to represent cross shaft angle (XS) which has a range of 2.5 to 90 degrees. A cross shaft angle between 2.5 and 20 degrees indicates reverse thrust and an XS angle between 45 and 90 degrees indicates forward thrust. The idle position is 38.4 degrees of XS.

The past value of $X S$ is subtracted from the current XS value to form a differential. After limiting the differential is integrated to form a new current value of XS angle. This process results in a first order lag which approximates the engine dynamics. The lagged $X S$ position is then used as an argument in Table 3.2to find E.P.R. and E.P.R. along with mach number is used to find thrust from Table 3.1 The absolute value of E.P.R. is limited and sent to the E.P.R. instrument in the cockpit and thrust is made available to the equations of motion for force calculations.

With the main throttle handles in the idle position, "reverse thrust" is commanded by pulling the reverse thrust levers up to a detent. At the detent the amber " $U N N L O C K$ " light is lit and a logic signal is sent to the engine program which starts a 2 second timer. After 2 seconds the computer returns a logic signal which causes the green "REVERSE THRUST' light to be lit and at the same time causes the detent to be retracted allowing the levers to move on up, thus increasing reverse thrust.

Returning the reverse thrust levers to the stowed position turns out the amber light and causes the computer to turn out the green light and reset the detent.

The engine model was validated by first comparing E.P.R. and thrust values for various cross shaft angles with supplied data. Secondly, the dynamic response of the engine model was adjusted using pilot comments and comparisons to supplied data.

NOTE: The actual engine acceleration and deceleration responses are not simple lags as used in the model. The deceleration of the engine is fairly close to a first order lag while the acceleration is more akin to a second order type response. Nevertheless, it has been found in past simulations, that a first order lag gives a very acceptable representation of engine dynamics. The data indicated a time constant of about 3 seconds, however, pilots seemed to prefer something a little less than 2 seconds. A time constant of 2 seconds was used in the simulation.

ENGINE MODEL FUNCTION TABLES

TABLE 3.1

THRUST VS. EPR AND MACH NO.

-2.2	-1.8	-1.4	-1	-. 6	EPR
1.	1.3	1.6	1.9	2.2	EPR
$\begin{array}{r} -7150 \\ 0 . \end{array}$	$\begin{array}{r} -4360 \\ 5250 . \end{array}$	$\begin{array}{r} -1920 . \\ 9520 . \end{array}$	$\begin{array}{r} -100 \\ 13200 . \end{array}$	$\begin{array}{r} 0 \\ 16400 \end{array}$	$\begin{aligned} & M=0 . \\ & M=0 \end{aligned}$
$\begin{array}{r} -9200 . \\ 0 . \end{array}$	$\begin{array}{r} -6230 . \\ 4750 . \end{array}$	$\begin{array}{r} -3400 \\ 8750 \end{array}$	$\begin{array}{r} -820 . \\ 12320 . \end{array}$	$\begin{array}{r} 0 \\ 15400 \end{array}$	$\begin{aligned} & \mathrm{M}=.1 \\ & \mathrm{M}=.1 \end{aligned}$
$\begin{array}{r} -11920 . \\ 90 \end{array}$	-8510.	-5130. 8240.	-1880. 11780.	$\begin{array}{r} 0 . \\ 14890 . \end{array}$	$\begin{aligned} & M=.2 \\ & M=.2 \end{aligned}$
$\begin{array}{r} -15200 \\ 200 \end{array}$	$\begin{array}{r} -11400 . \\ 4300 \end{array}$	$\begin{array}{r} -7600 \\ 8000 . \end{array}$	$\begin{aligned} & -3740 . \\ & 11470 . \end{aligned}$	$\begin{array}{r} 0 . \\ 14700 . \end{array}$	$M=.3$ $M=.3$

TABLE 3.2
EPR VS. CROSS SHAFT ANGLE

2.5	10.	15.	20.	35.	36.	XS
45.	55.	73.5	90.			XS
-2.13	-1.60	-1.27	-1.03	-1.03	1.03	EPR
1.03	1.03	1.70	2.16			EPR

This section covers the runway condition models (crown, roughness and friction), the wind model and the turbulence model.

The crown, roughness and friction models are fully described in MCAIR report - titled 'DC-9 Landing Gear Math Model for Directional Control On Rumway Flight Simulation', by Harry Passmore, Reference 4. The crown model is the same as that in the report and the roughness and friction models are essentially the same except for the following changes:

1) The runway roughness table used was the same as the table 7-1 of the Passmore report except that all the bump heights were multiplied by 2. Also, the starting point of the table was set 500 feet "in" from the threshold to allow a "smooth" area for trimning the airframe simulation on the ground.
2) The DC-9 Nose Tire Cornering Coefficient (see figure 7-4 of the Passmore report) was multiplied by a factor of $5 / 7$. This was done to reduce nose wheel steering sensitivity but did not take the resulting cornering force outside of an acceptable range. The main gear curves were the same as in the report.
3) The patchy rumway condition profiles used in the study were essentially the same as cases 3 and 4 of figure 7-3 of the Passmore report. The exception is that in case 4, the patchy asymmetric profile, the "ICE"
segments were replaced with 'WET" or "FLOODED" segments (see figure 4.1 below).

Turbulence Model:
The air turbulence model used for the ground handling study was developed from the Dryden* spectra (as opposed to the vol Karman spectra). The independent longitudinal, lateral and vertical gust components are generated by filtering Gaussian random signals with the following three filters:

Longitudinal

$$
\begin{aligned}
& F_{u}(S)=\sigma_{u} \sqrt{L_{\pi V}} \frac{1}{1+L_{4} / V} \\
& F_{v}(S)=\sigma_{v} \sqrt{L V /} \frac{1+\sqrt{3} L V / V}{(1+L V / V S)^{2}} \\
& F_{w}(S)=\sigma_{w} \sqrt{L w / 2 \pi V} \frac{1+\sqrt{3} L u / V}{}(1+L \omega / V)^{2}
\end{aligned}
$$

Lateral

Vertical
where:
$\sigma_{4}, \sigma_{r}, \sigma_{\omega}=$ RMS gust intensities.
These sigma values are a function of altitude.

ALT	σ_{4} AND σ_{V}	σ_{w}
20	.65	0
75	1.63	.15
150	3.61	.25
300	4.75	.31
450	.5	.09
600	.25	.06

*See, for example, Reference 7.

PATCHY RUNWAY CONDITION PROFILES

NOTE: Patchy symmetrical same as Case \#3 used in McAir simulator runs

FIGURE 4.1
$L_{4}, \mathcal{L}_{\nu}, L_{W}=$ scale lengths. These are normally functions of altitude, however, for the ground handling study they were held constant.

$$
L_{4}=L_{v}=400, \quad \angle w=200
$$

$V=$ the true airspeed of the aircraft. For this study the used for the filters was held constant at 100 f.p.s.
$S=$ the Laplace transform variable.

The turbulence model was activated by using a numerical Gaussian random number generator to supply the inputs to the filters. The outputs of the filters are then considered to be the X, Y and Z gust components.

$$
\begin{aligned}
& \text { GUSTy }=\operatorname{RAN}(1) * F_{u}(S) \\
& \text { GUSTy }=\operatorname{RAN}(2) * F_{U}(S) \\
& \text { GUSTy }_{2}=\operatorname{RAN}(3) * F_{W}(S)
\end{aligned}
$$

where:

$$
\text { GUST, GUSTy, GUSTy }=\begin{aligned}
& \text { gust velocity components in feet } \\
& \text { per second. }
\end{aligned}
$$

$\begin{aligned} \operatorname{RAN}(1), \operatorname{RAN}(2), \operatorname{RAN}(3)= & \begin{array}{l}\text { three Gaussian random numbers which } \\ \text { range from zero to }+1 \text { and are generated } \\ \text { in series from a common seed. }\end{array}\end{aligned}$
$F_{u}(S), F_{G}(S), F_{w}(S)=$ the three filters shown above.

The actual digital algorithm was patterned after that in a NASA-Ames Program Specification, titled 'Wind," by R. E. McFarland. (Reference 8). The algorithm used in the ground handling simulation did not include the rotational terms and had $1 / \sqrt{2}$ less gain than the 'Wind" algorithm.

Wind Model:
The wind model allowed for the specification of the wind components in the earth axes system. The X, Y and Z wind components could be specified as constants or functions of either range or altitude. Several of these tables of winds could be stored and the particular table desired could be called up before a run. Actually the tables for the gust paraemters, were also handled by the wind routine making it the complete definer of the wind conditions.

After calculating the various elements these elements were summed to form the total wind component for each axes.

$$
\begin{aligned}
& W_{W_{E}}=\text { SHEAR }_{x}+\text { STEADY }_{x}+\text { GUST }_{x} \\
& V_{W R}=\text { SHEAR }_{y}+\text { STEADY }+ \text { GUSTy } \\
& W_{W E}=\text { SHEAR }_{z}+\text { STRADYy }+ \text { GUST z }
\end{aligned}
$$

These wind components are then differentiated to form the wind acceleration components.

$$
\dot{U}_{W E}, \dot{V}_{W_{E}} \text { and } \dot{\omega}_{W E}
$$

The six wind velocities and accelerations are picked up in the EOM where the velocity components are added to the inertial velocity components and the acceleration components are transformed to the body axis where they are added to the body axis
force equations. See Figures $1.1,1.2$ and 1.7 of the EOM section.

The ground handling study only required a constant side wind and turbulence so that all terms except $\operatorname{STEADY}_{Y}$ and the three GUST terms were zero. Note that σ_{ω} was zero below 20 feet so that GUST_{Z} was zero on the ground. See description of turbulence model above.

The STRUTS subroutine, written in FORTRAN, is an implementation of the mathematical model defined in Ref. 4, 'DC-9 Landing Gear Math Model for Directional Control on Rumway Flight Simulation." Most of the FORTRAN names defined in that report are used in STRUTS. The basic structure of STRUTS is similar to the subroutine LNDGR mentioned in the above report. Figure El is a general flow chart of STRUTS with line number references to the listing of STRUTS. The differences between STRUTS and LNDGR occur in the implementation of coordinate transformations, strut dynamic model and antiskid model. Most of the changes were made to decrease compute time.

An examination of the numerous coordinate transformations required in the gear model indicates that many of the transformation matrices are sparce. (They have several elements which are zero.) Therefore, compute time can be saved by coding the transform equations directly rather than using a general matrix multiply subroutine. Compute time is saved by eliminating the overhead required for a subroutine linkage.

Simulation of the strut dynamics (strut plus wheel mass dynamics) as defined in the above report consumes a lot of compute time. The natural frequency of that mass suspended between the tire spring and the strut spring is $15-20 \mathrm{~Hz}$. Therefore, these equations must be solved approximately 200 times each second.

In the RDC simulation, STRUTS was called 20 times each second and these high frequency equations were solved 7 times for each pass through STRUTS. Satisfactory results were obtained with this solution rate of 140 times a second.

Compute time can be substantially reduced by minimizing the number of operations performed in the iterative loop used to solve for the strut dynamics. This was accomplished in STRUTS by expanding the dynamic equations and collecting all terms which are constant. All constant terms were moved outside the iterative 100 p and computed once for each pass through STRUTS to initialize the iterative loop.

Included in this initialization are calculations designed to minimize the step inputs to the strut dynamics. If the aircraft lands with a vertical velocity of 10 FPS and the simulation is solved 20 times a second, the step input to the landing
gear can be 6 inches. This is a large step when compared to the total tire and strut movement. Therefore, the step change in height input to STRUTS is divided by the number of passes through the strut dynamics. This makes each step into the strut dynamics less than 1 inch. No investigation was made of the efficacy of this technique.

It is recommended that elimination of the strut dynamics be investigated in future RDC programs. Adequate results can probably be obtained by allowing the aircraft mass to land on a non linear spring with a combined characteristic of the strut and tire. The savings in coding complexity and, therefore, compute time in the strut routine would be substantial.

See Appendix B for a detailed description of the software antiskid system.

A great deal of time was spent developing the low speed taxiing characteristics of the simulation. During checkout, the pilots had the sensation of skidding too much at low speeds. Also, after coming to a complete halt, an oscillation would occur which was very unreal. Adjustments of tire and strut damping did not affect the oscillation. Since the very low speed regime was not considered important in this program, speed logic and simple geometric relations were added to remedy these irregularities.

The following equations were added to the equations of motion (see subroutine EOM, lines 135-39 \& 196-201).

```
\(\mathrm{VE}=\mathrm{SQRT}(\mathrm{VIX} \star \mathrm{VIX}+\mathrm{VIY} \star \mathrm{VIY})=\sqrt{\mathrm{VIX}^{2}+\mathrm{VIY}{ }^{2}}\)
ROLLG \(=\) YAWG \(=0.0\)
\(F Y G=X M A S S *(U B * R B * D T R-Q S M * C Y B-32.2 * A T(2,3))\)
RB = VE*INS* . 0229
\(\mathrm{PB}=-\mathrm{PHI}\)
\(\mathrm{ANY}=\mathrm{VE} * \mathrm{RB} \star .000542\)
```

VE is the ground velocity of the aircraft in feet per second. When VE is less than 20 these simplified equations are used. The roll and yaw moments due to the gear are zeroed. The lateral force due to the gear, FYG, is set to a value that balances the aircraft side force equation. Body yaw rate, RB , is computed as simple circular motion based on the nose wheel steering angle, DNS, and VE. See Figure E2 for a derivation of the simplified $R B$ equation. Body roll rate, PB , is set equal to negative roll angle to washout any roll angle that exists when the low speed logic is entered. Lateral acceleration, ANY, is also computed based on simple circular motion.

Derivation of Yaw Rate Due to Nose Wheel Steering For low Speed steering equation

DNS = Nose Wheel Steering Angle, deg
$x=$ Normal from Nose Wheel plane to center of Rotation
$l=$ DIStance from cG to nose wheel, fo $=44.6$.
$r=$ Radius of Rotation, ft
$V E=$ AIRCRAFT SPEED, FPS
RB = AIrcraft Body Yaw rate, deg/sec
any = Aircraft. Lateral Acceleration, g's
FROM. TRIGONOMETRIC RELATIONS

$$
\begin{aligned}
& r=x \cos D N S \\
& l=x \sin D N S
\end{aligned}
$$

$$
\begin{aligned}
\therefore r & =l / \operatorname{taN} D N S \\
& =(44.6 / \text { INS } 575.3: \therefore \text { FT FOR SMALl ANGLES }
\end{aligned}
$$

From simple circular motion,

$$
R B=57.3 \mathrm{~V} E / \mathrm{r} ; \quad A N Y=V E * R B * \frac{1}{57.3 \times 32.2}
$$

$$
\begin{array}{ll}
\therefore \quad R B=V E * D N S * .0224 & D E G / s E C . \\
& A N Y=V E * R B * .000542 \quad g^{\prime} \mathrm{s} \\
\hline
\end{array}
$$

Definitions for Names used in Fortran SUbroutine struts

DEFINITIONS (con't)

This section contains descriptions of the models for the ILS and marker beacons; the instrument drive algorithms; and the yaw damper model. Also included are short descriptions of the interfaces to the motion base and the visual system.

ILS (Instrument Landing System):
The ILS consists of a glide slope beam (G/S) and a localizer beam (LOC). The G/S provides a descending path to the rumway touch-down point which is about 1000 ' in from the threshold. Typically this path is about 3 degrees. The LOC provides lateral guidance by defining a path down the center of the rumway. The origins of the LOC beam is at the far end of the runway.

The ILS model essentially does two things: 1) establish the position of the ILS receivers, on the aircraft, with respect to the transmitters on the ground, and 2) calculates the angular errors from the fixed beams.

The positions of the ILS sensors are transformed to the earth axes by the following equations:

G/S

$$
\begin{aligned}
& X_{G I}=X_{I}+X_{B G S A} A_{1,1}+z_{B G S} A_{3,1} \\
& z_{G I}=Z_{I}+X_{B G S} A_{1,3}+z_{B G S} A_{3,3}+A_{A L T}
\end{aligned}
$$

LOC

$$
\begin{aligned}
& X_{L I}=X_{I}+X_{B L} A_{1,1}+Z_{B L} A_{3,1} \\
& Y_{L I}=Y_{I}+X_{B L} A_{1,2}+Z_{B L} A_{3,2}
\end{aligned}
$$

Where:
$X_{B G S}, Z_{B G S}=$ the body axes coordinates of the G/S antenna.*
$X_{B L}, Y_{B L}=$ The body axes coordinates of the LOC antenna.*
$\begin{aligned} A_{i, j}= & \text { Elements of the body to earth transformation matrix } \\ & \text { (direction cosines) }\end{aligned}$ (direction cosines).
$X_{I}, Y_{I}, Z_{I}=$ Earth axes coordinates of the aircraft.
$\mathrm{AP}_{\mathrm{ALT}}=$ Airport altitude
$X_{\mathrm{GI}}, \mathrm{Z}_{\mathrm{GI}}=$ Earth axes coordinates of the G / S antenna.
$X_{L I}, Y_{L I}=$ Earth axes coordinates of the LOC antenna.

[^0]The earth axes positions of the ILS sensors on the aircraft are used to calculate the voltage errors as follows:

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{G} / \mathrm{S}}=\left[\mathrm{G} / \mathrm{S} X-\left(\operatorname{Arctan} \mathrm{Z}_{\mathrm{GI}} /_{X_{\mathrm{GI}}}\right) 57.3\right] .214 \\
& \mathrm{E}_{\mathrm{LDC}}=\left[\left(\operatorname{Arctan} \mathrm{Y}_{\left.\left.\mathrm{LI} / X_{\mathrm{LI}}-\mathrm{RWY}_{\mathrm{L}}\right) 57.3\right] .075}\right.\right.
\end{aligned}
$$

Where:

$$
\left.\begin{array}{rl}
\mathrm{G} / \mathrm{S} \mathrm{X}= & \text { The fixed glide path angle defined by the glide slope } \\
& \text { transmitter. } \\
\mathrm{RWO}_{\mathrm{L}}= & \text { The length of the rumay from the touch-down point to } \\
& \text { the far end (position of the localizer transmitter) }
\end{array}\right\}
$$

The glide slope and localizer error signals are sent to the indicators in the ADI and HSI instruments. The ILS displays are scaled in "DOTS" where . 075 voits equals one dot for both G/S and LOC.

Marker Beacons:

Two marker beacons were simulated for the RDC study. Typically airports will have 2 or 3 of these beacons spaced out along the runway approach. These beacons activate a beeper and lights in the cockpit. There is a light for each beacon.

The simulation model consisted of using comparisons on longitudinal and lateral aircraft displacement to define two rectangles within which the beeper and appropriate light are activated.

For the RDC study the following dimensions were used:

Outer Marker:

$$
\begin{gathered}
-35856<X_{I}<-33456 \text { range out from touch down point in feet } \\
-2100<Y_{I}<+2100 \quad \text { lateral displacement in feet }
\end{gathered}
$$

Middle Marker:

$$
\begin{aligned}
& -4640<X_{I}<-3440 \quad \text { range out from touch-down point in feet } \\
& -1000<Y_{I}<+1000 \\
& \text { lateral displacement in feet }
\end{aligned}
$$

The rectangle sizes are the approximate size of the beacon radiation pattern if the aircraft were following a 3 degree glide slope.

Instrunent Drives:
The six primary flight instruments were active at both the Captain's and First Officer's positions. 1 The Captain's instruments were DC-9 types and the First Officer's were DC-10 types. In addition the center panel contained two DC-9 type Engine Pressure Ratio (EPR) instruments. Both the DC-9 and DC-10 instruments were driven with the same parameters, for the most part.

ADI (Attitude and Director Indicator)
Artificial horizon - driven by pitch and roll (θ and ϕ).
ILS indicators - driven by the ILS parameters $E_{G / S}$ and $E_{L O C}$.
The flight director bars, speed command bug and skid ball were not driven.

HSI (Horizontal Situation Indicator)
Compas - driven by heading (4)
ILS - same as ADI
DME (Distance Measuring Equipment) indicator was not used.

BARO altimeter - driven by C.G. attitude ($h_{C G}$)
Radio altimeter - The altitude of the radio altimeter antenna is found as follows:

$$
h_{R A}=-h_{R A B I A S}-\left(Z_{I}+X_{B R A} A_{1,3}+Z_{B R A} A_{3,3}+A_{A L T}\right)
$$

Where:
$h_{R A}=$ radio altimeter altitude
$h_{\text {RABIAS }}=$ Bias such that the radio altimeter will read zero when the main gear just touch the ground and the aircraft pitch angle is 6 degrees.
$Z_{I}=$ earth axes Z component $\left(-h_{C G}\right)$.
$X_{B R A}=X$ body axes component of radio altimeter antenna position.*
$Z_{B R A}=Z$ body axes component of radio altimeter antenna position.*
$A_{i, j}=$ elements of body to earth transformation matrix.
$\mathrm{AP}_{\mathrm{ALT}}=$ airport altitude
*NOTE: Body axes coordinates are based on a longitudinal C.G. position at the quarter chord and on the aircraft center line.

In order to drive the radio altitude indicator $h_{R A}$ must be changed to a voltage. The $h_{R A}$. voltage relationship is non-linear as follows:

h_{RA}	VOLTS
0	.4
200	4.4
400	8.4
600	12.151
800	14.947
1000	17.130
1200	18.920
1400	20.438
1600	21.756
1800	22.920
2000	23.962
2200	24.907
2400	25.769
2600	26.6
2800	32.

* This point is used to drive the DC-10 tape instrument display out of sight.

VSI (Vertical Speed Indicator)
The VSI instrument was driven with a first order lag as shown. VSI drive $=\tau_{I / Y S+1}$

Where:

$$
\begin{aligned}
\dot{z}_{I} & =\text { aircraft vertical rate component in earth axes } \\
\gamma & =.5 \text { second }
\end{aligned}
$$

IAS (Indicated Air Speed)
IAS was driven with equivalent airspeed $\left(V_{e}\right)$ as calculated by EOM.

EPR (Engine Pressure Ratio)

EPR indicators were driven with EPR as calculated in the engine algorithm (see Section 3).

Yaw Damper
The DC-9 model used for the RDC study included a yaw damper. The yaw damper model used was optimized for the approach configuration. A block diagram of the yaw damper algorithm is shown in Figure 6.1.

The body axes yaw rate (r_{B}) is the primary damping loop while the body axes roll rate $\left(\mathrm{P}_{\mathrm{B}}\right)$ provides some turn coordination. The limiter is used to limit the authority of the yaw damper. K_{7} is needed to change the commanded rudder deflection in hinge coordinates to stream coordinates. Stream coordinates are used in the computation of aero forces.

Motion Base Drive
The algorithms for the motion base drive have been taken from NASA report TN D-7350 (Reference 3). The only changes made by Douglas to the algorithms, other than those which relate to the geometry of the platform, were as follows:

1) The braking acceleration circuit was not used.
2) The lead compensation was applied directly to the jack signals and not to the centroid position as shown in the report.
3) The washout parameters used are very similar to those shown in Table 2 of a.NASA paper presented at an AIAA conference (Reference 9). Table 6.1 below shows the actual values used for the Douglas motion base.

0

0

$$
\begin{aligned}
& \text { TURN COORDINATION } \\
& \text { MODE }
\end{aligned}
$$

> 6.1
> FIG.

VARIABLE		UNITS	VALUE
MATH	COMPUTER		
		HIGH PASS FILTER	
$K_{2,1}$	C1(3)	-	0.8
${ }^{5} 2,1$	ZET1(3)	-	0.7
$\omega_{n, 2,1}$	OM1 (3)	$\mathrm{rad} / \mathrm{sec}$	2.0
$\mathrm{K}_{\mathrm{Z}, 2}$	C2(3)	-	1.0
		LOW PASS FILTER	
$K_{\theta, 1}$	C1(1)	-	0.5
ξ_{θ}	ZET1(1)	-	0.7
$\omega_{n, \theta}$	OM1 (1)	rad/sec	5.0
$K_{\theta, 2}$	C2(1)	- .	0
$K_{\phi, 1}$	C1(2)	-	0.05
ξ_{ϕ}	ZET1 (2)	-	0.7
${ }^{\omega} \mathrm{n}, \phi$	OML (2)	$\mathrm{rad} / \mathrm{sec}$	5.0
$\mathrm{K}_{\boldsymbol{\phi}, 2}$	C2(2)	-	0

SIGNAL-SHAPING NETWORK

$K_{q, T, 1}$	$C 3(1)$	per Et.	0.001
$K_{q, T, 2}$	$\mathrm{C} 3(1)$	sec	30.0
$\mathrm{~K}_{\mathrm{q}, \mathrm{T}, 3}$	$\mathrm{C} 5(1)$	per sec.	0.05
$\mathrm{~K}_{\mathrm{p}, \mathrm{T}, 1}$	$\mathrm{C}(2)$	per ft.	$-0.001 *$
$\mathrm{~K}_{\mathrm{p}, \mathrm{T}, 2}$	$\mathrm{C}(2)$	sec	30.0
$\mathrm{~K}_{\mathrm{p}, \mathrm{T}, 3}$	$\mathrm{C}(2)$	per sec	0.05
$\mathrm{~K}_{\mathrm{r}, 1}$	per ft.	0.004	
$\mathrm{~K}_{\mathrm{r}, 2}$	$\mathrm{C}(3)$	sec	3.8
$\mathrm{~K}_{\mathrm{r}, 3}$	$\mathrm{C}(3)$	per sec.	0.05

* The minus value takes the place of the minus signs in the $\dot{\phi}_{\mathrm{T}}$ equation. (See page 21 of NASA report.)

MOTION BASE WASHOUT PARAMETERS
TABLE 6.1 (Cont'd)
VARIABLE
UNITS
VALUE
MATH
COMPUTER
SCALE AIRPLANE ANGULAR RATES

K_{p}	$C 6(1)$	-	0.7
K_{q}	$C 6(2)$	-	0.5
K_{r}	$C 6(3)$	-	0.2

TRANSLATIONAL WASHOUT

a_{1}	$\mathrm{C} 7(1)$	$\mathrm{rad} / \mathrm{sec}$	1.414
a_{2}	$\mathrm{C} 7(2)$	$\mathrm{rad} / \mathrm{sec}$	2.1
a_{3}	$\mathrm{C} 7(3)$	$\mathrm{rad} / \mathrm{sec}$	2.1
$\mathrm{~b}^{1}$	$\mathrm{C} 8(1)$	$\mathrm{rad} / \mathrm{sec}$	1.0
$\mathrm{~b}_{2}^{2}$	$\mathrm{C}(2)$	$\mathrm{rad} / \mathrm{sec}$	2.25
$\mathrm{~b}_{3}$	$\mathrm{C} 8(3)$	$\mathrm{rad} / \mathrm{sec}$	2.25

Visual System Drive
The visual system used during the RDC study was a T.V. viewed model type called a Visual Flight Attachment (VFA), made by Redifon of England.

The VFA T.V. camera is mounted on a moving platform which can be moved over the model. The moving platform is driven by servos with the controlling signals originating in a "mini" digital computer. The drive algorithms, which were supplied by Redifon*, are calculated in the mini computer. The basic aircraft position, rate and orientation signals are calculated and transformed to the pilot's eye position in the main simulation computer. These signals are then transmitted to the mini over an analog link.

The main simulation computer calculates the input signals for the VFA at a frame rate of 20 per second. The mini does its calculations at a frame rate of 50 per second.

It should be mentioned that the analog link is just that, the signals from the main computer are put through digital to analog converters (DAC's) and transmitted over analog trunk lines to the VFA area where they are redigitized by an analog-to-digital converter ($A D C$) and sent to the mini. It also should be mentioned that it is generally felt that an analog link is probably not the best way to interface two digital computers!

[^1]The software antiskid model defined in Ref. 4 , "DC-9 Landing Gear Math Model For Directional Control on Rumway Flight Simulation', pages $36-38$, was changed slightly to simplify the logic, decrease compute time and obtain the desired performance. This appendix will document those changes. The same notation is used here except the subscript, j, has been deleted in this appendix with the understanding that the equations and diagrams apply to both right and left main gears.

Figure B1 is a flow chart of the antiskid system as implemented in STRUTS, the Douglas subroutine implementation of the above report. Figure B2 is a typical time history of braking force with period $C p$ and duty C_{t}. In the original model, when $F_{B C O M}>F_{B O N}$ (see Figure $B 1$) antiskid cycling is started. In STRUTS, this decision point was made independent of C_{t} because at high speeds on wet rumways C_{t} is small which makes $F_{B O N}$ large and the antiskid did not cycle as desired. In STRUTS, $F_{B C O M}$ is compared to the product of the effective coefficient of friction, μ_{D}, normal tire load, F_{E}, and a constant, 1.35 , to determine the onset of antiskid cycling. $F_{B C O M}$ was also increased by changing the effective braking area from 5 to 8 square inches. In retrospect, this value of $F_{B C O M}$ was probably too high. However, since maximm performance stops were used on most test runs, the high command level was not obvious. The precise onset of antiskid cycling was not investigated.

During checkout of the simulation, the antiskid system was evaluated by Douglas pilots and compared with the analog (hardware) antiskid system. The result of this check was a modification to the period and duty of the antiskid cycling. This change is illustrated in Figure B3. The period, C_{p}, was increased 0.8 seconds over the entire speed range and the duty, C_{t}, was increased for wet and flooded rumay conditions.

RDC PROGRAM - digital Antiskid
Cp - Period of Antiskid cycles
C_{T} - FRACTION OF PERIOD BRAKES ARE ON (DUTY)

APPENDIX C ANALOG/HARDWARE ANTISKID

Section 1. INTRODUCTION

The analog/hardware antiskid simulator is a system that produces real time drag and cornering tire forces for the aircraft simulation. The system consists of an analog computer and actual aircraft hardware implemented as shown in Figure C-1.

The analog computer receives inputs from the digital aircraft simulation and brake pressure from the hydraulics and calculates in real time the tire drag and cornering forces and wheel speed. The wheel speed is output to the antiskid control box and the forces are output to the aircraft simulation. The antiskid control box produces an antiskid control valve signal that controls brake pressure.

FIGURE : C- 1 ANALOG ANTISKID BLOCK DIAGRAM

Section 2. MODEL DERIVATION

The math flow diagram of the model for one strut is shown in Figure C-2. Both strut mechanizations are identical. These equations are implemented on an analog computer because of the high frequencies involved.

PRIMARY TIRE CORNERING AND DRAG FORCE

Originally it was planned to generate tire cornering and drag forces similarly to the method developed in Exhibit A of Reference 2. However, the method gave excessive side loads in the unbraked condition. Figure $C-3$ illustrates this problem. A new empirical method was developed based on data from Reference 5. This new method is developed in Primary Tire Cornering and Drag Force Analysis.

SECOND TIRE CORNERING AND DRAG FORCES, STRUT FORE-AFT AND TWIST RATES 2 BRAKE TORQUE, TIRE AND WHEEL SPEED, AND TIRE SLIP RATIO

The remainder of the i tems shown in Figure $\mathrm{C}-3$ are developed in the above named analysis.

Tire yaw angle, degrees
FIGURE C-3 COMPARISON OF HYDRO AIRE'S TIRE CORNERING THEORY WITH THAT OF NASA TR R-64 --- WITHOUT BRAKING

InTRODUCTION
this section develops, Describes, and Correlates THE FRICTION FORCE MODELS USED FOR CORNERING AND DRAG IN THE ANALOG ANTISKID Simulation.

The model was developed to exhibit the trends SHOWN IN TESTING CONDUCTED AT NASA LANGLEY AIRCRAFT LANDING LOADS AND DOCUMENTED is Reference I. The Model also exhibits expected large angle performance.

THE MODEL BASICALLY RENNES THE UNBRAKED CORNERING FORCE AS A FUNCTION OF SLIP RATIO AND REDUCES THE DRAG FRICTION FORCE WITH increasing tire yaw angle.

Model Definition

FIGURE 1
TIRE FORCES
the cornering Friction force is determined
BY REDUCING THE UNBRAKED CORNERING FORCE AS A FUNCTION OF INCREASING SLIP RATIO.

UN BRAKED CORNERING FORCE. FLO

Figure z unbraked CORNERING FORCE
For small yaw Angles
$E Q N I \quad F_{C_{0}}=N \Psi \quad\left(-\frac{F_{T} \mu_{M A X}}{N}<\psi<\frac{F_{T} \mu_{M A X}}{N}\right)$
Where $N=$ tire cornering Power

$$
\begin{aligned}
& \Psi=\text { TIRE YAW ANGLE } \\
& \mu_{M}=\text { MAXIMUM TIRE FRICTION COEFFICIENT } \\
& F_{T}=\text { TIRE NORMAL LOAD }
\end{aligned}
$$

for large Positive yaw Angles
$E Q N 2 \quad F_{C_{0}}=\left(\frac{F_{T} \mu_{\text {MAX }}}{90-\frac{F_{T} \mu_{M A X}}{N}}\right)(90-\psi) \quad\left(\frac{F_{T} \mu_{M A X}}{N} \leq \psi<90^{\circ}\right)$
for large Negative Yaw Angles
$E Q N 3 \quad F_{C O}=-\left(\frac{F_{T} \mu_{M A X}}{90-\frac{F_{T} \mu_{M A X}}{N}}\right)(90+\varphi) \quad\left(-90<\psi \leq-\frac{F_{T} \mu_{M A X}}{N}\right)$
Note: This representation is a simplification of a Procedure that can be developed using Relationships Given in Reference 2 . This Procedure would be as follows: (eqn numbers are for ref 2)

1. Determine tire deflection from Normal LOAD F_{Z} USING EONS $23 \leqslant 24$.
2. Determine Cornering Power N from tire Deflection with EQN 82.
3. Determine tire Normal Force Fy, re From tire yaw angle 4 and Cornering Power WITH EQNS $79 \leqslant 80$.
4. Determine Cornering Force Fec from Normal Force WITH EQN 81.

THE CORNERING FORCE F_{c} is Determined by Reducing $F_{\text {co with increasing slip Ratio. }}^{\text {wit }}$

EQN $4 \quad F_{C}=F_{c_{0}} \cdot F_{5}(S R)$
WHERE SR = SLIP RATIO

$$
F_{S}(S R)=\text { MOVITONICACLY DECREASING FUNCTION }
$$ with a Value of $\%$ at sR=0, O AT SE =1., AND ADUSTED TO DUPLICATE EXPERIMENTAL Results between. (Figure 3)

DRAG FRICTION FORCE
the drag friction Coefficient Ratio $\frac{u_{m a x}}{}$ is
$E Q N 5 \quad \frac{\mu}{\mu_{M A X}}=f_{3}(S R, \psi)$
WHERE $f_{3}(S R, \varphi)$ IS AN EXPERIMENTALLY DETERMINED FUNCTION AS SHOWN in figure 4.

$$
f_{3}(S R, \psi)=f_{3 B}(S R)+f_{3 A}(S R) \times f_{3 C}(\psi)
$$

WHERE, $f_{3 A}$ (SR) IS AS SHOWN IN FIGUEE 5,

$$
\begin{aligned}
& f_{3 B}(S R) \\
& f_{3 C}(\psi)
\end{aligned} \quad " \quad 4 \quad \cdots \quad n \quad \cdots \quad .4,4
$$

the Drag friction force is

$$
E Q N 6 \quad F_{D}=\frac{\mu_{1}}{\mu_{M A X}} \times F_{T} \mu_{\text {MAX }}
$$

Maximum FRIction Coefficient
The maximum friction Coefficient Is Expressed as a function of Velocity
$E Q N 7 \quad \mu_{\text {MAY }}=f_{4}\left(\dot{X}_{1}\right)$

$$
\begin{aligned}
\text { WHERE } \dot{X}_{1}^{\prime \prime}= & \text { TOTAL VELOCITY } \\
f_{4}\left(\dot{X}_{1}^{\prime}\right)= & \text { FIGURE } 19 \text { OF REFERENCE } \\
& \text { (SHOWN HERE IN FIGURE 8) }
\end{aligned}
$$

$f_{s}($ se $)$-Corner force Reduction

FIGURE 3

			0	.0.							
				-							
						-					
						-					
					-	-					
						.					
								-			
									,		
									-		
		(0.0))	-	+	-	-				
					Heve	URE 5	,	,			
						(SR)					
						,					
					-	-					
	-					+					
		0)	,		.	T.	.				
						vuen 6					

¢				-	+		+ $=$		$\underline{ }$	H	+	+	1	F	+1+	
	-	\cdots	$\underline{ }$	\#	+	,	\cdots	5	\%	-	,	-			TE=	
				\bigcirc	1)	1	+ +	\cdots	+	\cdots	\pm	\cdots	+			
		-	1		+	-	\cdots	\bigcirc	=		1	\cdots	L	,	-	
													-	-	-	
			,		,	\pm	+	\pm			\cdots	-	1	17		
					3888		+	,		$f_{3} \mathrm{C}$	(4))	+	\pm	\square	
	-	-		\bigcirc	184	+	C	+			\cdots		$\underline{ }$	E		
							E.	-		-		,				
				1	(6, 7.5	5)				\pm	\square	-	,			
		$\underline{+}$			+	U	\pm			-	\cdots	$\pm \pm$	\pm	+	\pm	
		\cdots		+	,	$\underline{ }$	\pm	+120	-		,	1	+	\pm		
		-	\cdots	\cdots	1.	(-	$\underline{+}$	\#	=	\cdots	\square	1	\cdots	\bigcirc	
		,			-			,	=	-	-	\cdots	\cdots	.	,	
		-			-	-	,							,		
		+	-	+	\cdots	+	-	-	1		-	\square	-	F	- 1	
	"	\bigcirc	,	1	1	\cdots	,	-	-	-	-	E	+	\pm	1	
		-	-	+1.	+	\bigcirc		\pm		-	,	\cdots	$1+$	\cdots	\cdots	
		-		,	,	-	-		,		,	\cdots	1	-	-	
	\cdots	+1-1	$\underline{ }$	\cdots	+	\cdots	$\underline{+}$	1	+11-	-	-	\cdots	-	,	T	
							-									
							\square	+	,				,	\pm		
		\bigcirc	-	-	-	+	+	1	-	V	,	\pm		+	\cdots	
			,	-	-	\cdots	+	+	-	-				1t		
										\cdots				+	1×1	
	+	+	,	\cdots	+	-	7	+1.	15	-	\cdots	,	T	+	-	
					-	\cdots	\pm	\pm	T	=	,	T			\cdots	
					+	\cdots	+	F			L	\cdots			5	
	1	-	,	+	$\underline{+}$	$\underline{\square}$	$\underline{+}$	+	1-7	\pm	+	\cdots	41	40,0	,	
		-	$\underline{-1}$	\cdots	- 2	12.	$1 \times$	$40=$	\bigcirc	60	0.	480				
		-	,	+	-	+	-	+ 4	$4=$	\pm	\cdots	1+1.	+1.	$\underline{ }$.	
	-	\square	-	1.	\cdots	\cdots	+	\cdots	+	$\underline{\square}$	\cdots	17	F	,	\pm	
	-	\cdots	\cdots	$\underline{1}$	+	+	FIG	URE				1	$1+1$			
	-	\cdots	\cdots	\pm	+	+	\square		T	-	C	-		:		
				,		\cdots	-		=							
宣		-	-	+									-	-	+	
		+	\cdots	+	-	+	-	$\underline{+}$	\pm	,	F		+		,	
	-		$\underline{-1}$	\square	\cdots	\cdots	1	\cdots		$\underline{ }$	-					
		\pm	-	\cdots		+		-								
						-										
		,	-	,		T	+	Eİ								
	-	+	\pm	+	+	\pm	\pm	\square	\%	\%	3					
				\cdots												
													4	T:		
																\%

Model Correlation
TO ASSESS THE MODEL ACCURACY, PLOTS OF CORNERING AND drag force versus slip ratio were made using the model for 6 test conditions tested in Refeeencel. test data is then plotted in the proper Plot.
test data from ref i

test data feom refl

CONDITIONS						Experimental Values			
Run	$\begin{aligned} & \bar{\psi} \\ & 0 \end{aligned}$	${ }_{\text {F }}^{X_{1}}$	F_{T} LBS	time stec	38	μ_{s}	F_{c} LBS	μ_{d}	Fo LBS
$\sqrt{4}$	0	166	13700	1.3	. 05	-	-	. 38	5206
			1	1.6	. 09	-		. 55	7535
				2.0	. 10	-	-	. 58	7946
				2.6	. 18	-	-	. 68	9316
				3.0	. 90	-	-	. 32	4384
				3.5	. 03	-	-	. 2	2740
				4.0	. 06	-	-	. 38	5206
				5.0	. 08	-	-	. 5	6850
				6.0	. 10	-	-	. 6 [55,7)	8220
	\checkmark	\checkmark		7.0	. 11		-	. $65^{\text {con }}$	8905
29	3	169	17000	1.0	. 01	. 3	5100	. 05	850
				2.5	. 02	. 31	5270	. 14	2380
		1		2.7	. 05	. 30	5100	. 28	4760
		,		2.8	. 08	. 30	5100	. 38	6460
		-		3.0	. 09	. 31	5270	. 42	7140
				3.5	. 09	. 30	5100	. 48	8160
				4.0	. 10	. 31	5270	. 50	8500
!				4.5	. 11	. 29	4930	. 52	8840
1	\checkmark	\downarrow		5.0	. 12	. 28	4760	. 56	9520
38	6	169	18700	1.0	. 04	. 43	8041	. 07	1309
				2.6	. 09	. 40	7480	. 27	5049
				2.75	. 12	. 34	6358	. 40	7480
				3.0	. 13	. 31	5797	. 45	8415
				3.5	. 18	. 28	5236	. 45	8415
				4.0	. 20	. 20	3740	. 45	8415
			,	4.25	. 22	. 18	3366	. 50	9350
		\checkmark	\downarrow	4.4	. 50	. 08	1496.	. 40	7480

- Analytical Values computed bymodel

Analytical Values Computed by model

~

INTRODUCTION

THIS SECTION, DEVELOPS THE EQUATIONS FOR STRUT
AXLE DEFORMATIONS, BRAKE TORQUE, TIEE anD wheel Dynamics, and tire Slip ratio Computation.

MODEL DEFINITION

AXLE DEFLECTION
DURING BRAKING THE WHEEL AXLE DEFLECTS. THE Deflections are large enough that the deflection Velocities are important Considerations to the ANTISKID OPERATION. THE WHEEL AXLE DEFLECTION IS THE SUM OF THE FORE-AFt Deflection of THE STRUT AND THE AXLE TWIST ABOUT THE STRUT.

STRUT FORE-AFT DEFLECTION

INfluence coefficients Are used to derive the STRUT FORE-APT EQUATIONS OF MOTION. THE FORCES BENDING THE STRUT ARE DRAG FORCES, BRAKE TORQUE, INERTIA FORCES, AND STRUT DAMPING FORCES.

STRUT DAMPING FORCE - Viscous DAMPING is Assumeo in the model. the expression for the force IS DERIVED AS FOLLOWS:

Fig I Damping Force

By equating like coefficients to a single degree of Freedom equation of motion gives

EQ N 3

$$
K_{D}=2 \sum_{24} \sqrt{\frac{M_{2}}{\delta_{11}}}
$$

WHERE $\xi_{x_{2}}$ 'CRITICAL DAMPING RATIO

$$
\begin{aligned}
& \text { INERTIA FORCE }=M_{2}\left(\ddot{X}_{1}+\ddot{X}_{2}\right) \text { SEE FIG } 2 \\
& \text { WHERE } \ddot{X}_{1}=\text { AIRCRAFT LONGITUDINAL ACCELERATION I } \\
& \text { DRAG FORCE }=F_{D}+F_{D}^{\prime} \\
& \text { WHERE } F_{D}=\text { PRIMARY TIRE DRAG FORCE } \\
& F_{D}^{\prime}=\text { SECOND TIRE DRAG FORCE }
\end{aligned}
$$

brake torque - FOR Simplification, tat Assumption total is made that. theibrake torque acting on the strut is twice the primary brake torque tb.
\qquad Fix
the strut Displacement is

EON $4 X_{2}=-\left(F_{D}+F_{D}^{\prime}\right) \delta_{11}-2 T_{B} \delta_{12}-M_{2}\left(\ddot{X}_{1}+\ddot{x}_{2}\right) \delta_{11}-2 \xi_{x_{2}} \sqrt{M_{2} \delta_{11}} \dot{X}_{2}$ Where $\delta_{12}=$ influence coeff-Deflection at strut due to a I ft-lb torque

Rearranging eqn 4 gives

$$
\text { EQNS. } \quad \ddot{X}_{2}=-\frac{X_{2}}{M_{2} \delta_{11}}-\frac{\left(F_{D}+F_{0}^{\prime}\right)}{M_{2}}-\frac{2 T_{B} \delta_{12}}{M_{2} \delta_{11}}-\frac{2 \delta_{1} \dot{x}_{2}}{\sqrt{M_{2} \delta_{11}}}-\ddot{X}_{1}
$$

$$
E Q 46 \quad \dot{x}_{2}=\dot{x}_{2}(0)+\int_{0}^{t} \ddot{x}_{2} d t
$$

$$
\text { EQN } 7 \quad x_{2}=X_{2}(0)+\int_{0}^{t} \dot{x}_{2} d t
$$

inItIAL COUDITIONS $\dot{X}_{2}(0)$ AND $X_{2}(0)$ are ZERO.

AxLE TORSIONAL DEFLECTION

figure 3 strut twist
the strut torsion moment equation is

$$
E Q N \& I_{5} \ddot{\theta}_{5}+c_{5} \dot{\theta}_{5}+K_{5} \theta_{5}=r_{5}\left(F_{D}-F_{D}^{\prime}\right)
$$

WHERE $\theta_{S}, \dot{\theta}_{S}, \ddot{\theta}_{S}$ AREAXCE ROTATIONAL Displacement, Velocity and Acceleration
$I_{5}=$ MOMENT OF INERTIA
$C_{5}=$ Rotational Damping Factor
$K_{5}=$ Rotational spring Factor
r_{5} = Distance From strut to tire

BRAKE TORQUE MODEL
Brake torque is Assumed to be the proovet OF TWO FUNCTIONS

EQNG $\quad T_{B}=f_{1}\left(\dot{\theta}_{3}\right) \times f_{2}\left(\bar{P}_{B}\right)$
WHERE
$f_{1}\left(\dot{\theta}_{3}\right)$ is an empirical function that
 introduces the effect of brake torque variation with brace rotational speed when Brake pressure ls Held Constant. a different function is used for Landings AND TAKEOFFS.

$f_{2}\left(\bar{P}_{B}\right)$ is An empirical function that introduces the Non linear Relationship Between Brace torque and Brake Pressure when Rotational speed, is Held Constant.
\bar{P}_{B} filtered Brake Pressure

To Account for a time Delay between brake torque change and brake pressure change, \bar{P}_{B} is Determined from the Relationsitid EQNIO

$$
\dot{\bar{P}}_{B}=\frac{1}{\tau_{B}}\left(P_{B}-\bar{P}_{B}\right)
$$

Where P_{b} is. the measured brake Pressure At the brake
$\tau_{B}=$ time Constant for brake
EON 11

$$
\overline{P_{B}}=\bar{P}_{B}(0)+\int_{0}^{T} \dot{P}_{B} d t
$$

Where the initial Condition $\bar{P}_{B}(0)$ is zero
TIRE AND WHEEL DYNAMICS

FIG 6 TIRE AND WHEEL
summing Moments Gives
EN IT $I_{B} \ddot{\theta}_{3}+T_{B}-r_{4} F_{D}=0$
WHERE

$$
I_{B}=I_{\text {NERTIA OF TIRE, w he BRAKE }}
$$

$r_{4}=A \times L E$ Height

EQNI3

$$
\ddot{\theta}_{3}=\frac{O R}{r_{4} F_{D}-T_{B}} \frac{I_{B}}{l}
$$

EON 14

$$
\dot{\theta}_{3}=\dot{\theta}_{3}(0)+\int^{T} \dot{\theta}_{3} d t
$$

WHERE $\dot{\theta}_{3}(0)$ IS THE INITIAL TIRE ROTATIONAL 3 PEED.

TIRE SLIP RATIO
the slip ratio of the primary tire
EQ 15

$$
V_{S B}=\frac{\left(\dot{x}_{1}+\dot{x}_{2}-r_{5} \dot{\theta}_{5}-r_{r} \dot{\theta}_{3}\right)}{\dot{x}_{1}+\dot{x}_{2}-r_{5} \dot{\theta}_{5}}
$$

Where $r_{r}=$ effective Rolling Radius

SECONDTIRE CORNERING ED RAG FORCES
the second tire forces are assumed to be lagged from the Primary forces by the relation

EQNi6 $\quad \dot{F}_{c}^{\prime}=\frac{1}{\tau_{c}}\left(F_{c}-F_{c}^{\prime}\right)$
EQN17

$$
\dot{F}_{D}^{\prime}=\frac{1}{\tau_{D}}\left(F_{D}-F_{D}^{\prime}\right)
$$

Where F_{C}^{\prime} and F_{0}^{\prime} are the secondary CORNERING and Drag forces Respectaikly

$$
\tau_{c}=\text { CORNEHNG TIME CONSTANT }
$$

$$
\tau_{0}=\text { DRAG TIME CONSTANT }
$$

EQ 18
EQ N 19

$$
\begin{aligned}
& F_{C}^{\prime}=F_{C}^{\prime}(0)+\int_{0}^{T} F_{C}^{\prime} d t \\
& F_{D}^{\prime}=F_{D}^{\prime}(0)+\int_{0}^{T} \dot{F}_{D}^{\prime} d t
\end{aligned}
$$

WM ERE $F_{c}^{\prime}(0)$ AND $F_{D}(0)$. ARE 1 NITIAC CONDITIONS

Section 3. PROGRAM

ANALOG PROGRAM

The analog computer program is shown in Figure C-4. The program was set up so that it could be used in either the stand alone or normal mode. This allowed the program to be developed independently of the total simulator.

INTERFACE AND PROGRAMMING CONSIDERATIONS

The simulation was interfaced with the digital simulation and hardware as illustrated in the Analog Antiskid Interface Description.

Analog computer to Hardware Interface - Wheel speed from the computer drove voltage controlled oscillators. The oscillator outputs were impressed on the antiskid control box to simulate the signal from each tire. The frequency corresponded to 40 pulses per wheel revolution.

The squat signal was 28 vdc when the nose gear was fully extended and zero when the gear compressed one and one half inches.

The PMV servos drove the PMV in response to brake pedal position.

Brake pressure was monitored by pressure transducers connected to amplifiers with appropriate gains for the analog circuit.

Digital Computer to Analog Computer Interface - The signal from the digital computer was processed by a Digital-to-Analog converter. To take advantage of the digital computer capabilities the product of normal load and maximum friction coefficient was formed in the digital computer. The unbraked cornering force and $f_{3 c}(\psi)$ were also calculated in the digital computer because of nature of the computations and the relatively slow changes experienced by these parameters. Aircraft axle velocities and aircraft acceleration were also input to the analog computer. Cornering and drag loads were impressed on analog-to-digital converters for communication with the digital computer.
FIGURE C-4 WIRING DIAGRAM -- ANALOG ANTISKID SIMULATOR

FIGURE C-4 WIRING DIAGRAM -- ANALOG ANTISKID SIMULATOR (CONCLUDED)

ANALOG ANTISKID SIMULATION INTERFACE DESCRIPTION

THE PHYSICAL BLOCK DIAGRAM FOR THE SIMULATION is
ShOWN ON THE NEXT PAGE. ITEMS WITH ARROWS TOWARD SIMULATION COME TO.THE SIMULATION FROM THE AIRFRAME SIMULATION WITH THE EXCEPTION OF THE MV CONTROLS WHICH COME FROM THE COCKPIT. ITEMS WITH Arrows Away from simulation go to the airframe simulation. the following table defines the variables.

Analog Anti skid Simulation

Section 4. HARDWARE

The hardware needed for this program is outlined in the Task Assignment Drawing Z7802765. Details of the hardware are given in Drawing Z7935344.

Equipment serial numbers used in the simulation were as follows:

LH A/S Valve	P/N 39-101	S/N 797C
RH A/S Valve	$P / N 39-101$	$S / N 799 C$
LH PMV	$P / N 7920966-5503$	$S / N 416309 A$
RH PMV	$P / N 7920966-5503$	$S / N 416308 A$
Control Box	$P / N 42-089-5$	$S / N 256$
LH Brake	$P / N 9560788$	S / N MAY66-8E
RH Brake	$P / N 9560788$	S / N NOV66-31

LTR	DESCRIPTION	DATE	APPROVED
4	$S E E E O$,	$E-6.77$	$K \cdot A S$
B	$S E E E O$.	$10-1477$	$K A 3$.

SCHEDULE INFORMATION		D.ate	$\begin{aligned} & \text { DOUGRAS, AIRCRAFT COMPANT } \\ & \text { LONO EEAEM, EALIFORNIA } \end{aligned}$						
TEST INITIATED									
FINAL REP	RT SUBMITTAL		TITLE	ANTISKID SIMULATION - RUNWAY DIRECTIONAL CONTROL SIMULATOR DC-9 SERIES 10					
DESIGN APPROVAL		DATE							
-AB TEST			TASK ASSIGNMENT DRAWING						
STRENGTH									
PR ENGR		3/2:7	$\begin{gathered} \text { SIZE } \\ \hline \end{gathered}$		7802765				
GR ENGR	GW.KIPREE	$3-287$							
PREP BY	R. A. Storley	$3-17-77$	Eพо	5.0.	SHEET 1				

INTRODUCTION

This Task Assignment Drawing details the requirements for an analog/hardware antiskid simulation to be interfaced with the motion-base flight simulator. Actual brake and antiskid system hardware will be used, operating in conjunction with an analog computer.

	DOUGLAS AIRCRAFT COMPANY	T ${ }^{\circ}$	SIZE A	星78		
164			EWO	5.0.	SHEET	3

PURPOSE

The purpose of these tests is to extend existing flight simulator capability for the study and solution of aircraft directional control problems on runways. A man-in-loop DC-9 aircraft ground handling simulator will be developed, correlated and then demonstrated to NASA personnel. A realistic simulation would be very useful in evaluating factors which influence aircraft ground handling performance up to and beyond the operational limits of the aircraft without risk to equipment and pilot.

1. Hydro-Aire DC-9 Hydraulic Brake System Simulator
2. Hydraulic Power Supply (Skydrol, 3000 psi, 15 GPM min.)
3. Brake Application Servo (two required)
4. Six Strain Gage Power Supplies
5. Six Channel Bridge Balance
6. Six Preston Model 8300 DO Amplifiers
7. Two Comcor Ci-175 Analog Computers
8. DC-9 Trans former/Rectifier
9. Two VCO's (HP 3310A or equivalent)
*10. Function Generator (HP 3300A), with "Offset" plug-in (HP 3304A)
*11. Electronic Counter (HP 5512A or equivalent)
*12. X-Y Plotter
10. Beckman Six Channel Recorder
*14. Scope
11. Two Pressure Gages ($0-5000$ psi)
12. Six Pressure Transducers ($0-5000$ psi)
13. Two Break-out Boards (Z7935344-13 and -15)
14. Connector Cables (Z7935344-17,-19, -21, -23)
15. Six Amplifier Pressure Monitoring Board (No identification) - Available on DC-10 Antiskid Simulator

A general layout of the required equipment is shown in Figure 1.
*Not required full time

TEST REQUIREMENTS

The following tests will be conducted:

1. A predemonstration evaluation of the simulator will be made, utilizing a FAA and a Douglas pilot. Corrective action will be taken to resolve any problem areas.
2. The complete simulation will be evaluated by both a FAA and a Douglas pilot. This demonstration program will be designed to qualitatively evaluate:
a. The benefits of using the antiskid simulation in conjunction with the aircraft simulator.
b. The degree of correlation between the simulator and the pilot's experience and available DC-9 flight test data.

F\&LD WORK ITEMS

1. Obtain ${ }^{*}$ and install Hydro-Aire DC-9 hydraulic brake system simulator.
2. Install hydraulic piping between hydraulic power supply and brake system simulator.
3. Develop and install brake application system.
4. Install pressure transducers and gages on brake system simulator (see Figure 2).
5. Operate hydraulic system as required.
6. Restore hydraulic brake system simulator to original condition and return to Hydro-Aire upon completion of test.
7. Obtain and install pressure instrumentation (strain gage power supplies, bridge balance, and Preston amplifiers) per drawing \# 27935344 (-501 rack assembly).
8. Fabricate two break-out boards per drawing \# 27935344 (-13 and -15 panel assemblies).
9. Fabricate and install connector cables. Fabricate per drawing \# 27935344-17, -19, -21, -23. Install per drawing \# 27935344.
10. Set up instrumentation rack per drawing \# 27935344 (-503 rack assembly).
11. Set up and maintain two Comcor Ci-175 computers and the Beckman recorder (setup in enclosed platform adjacent to motion-base).
12. Obtain VCO's, function generators, electronic counter, $X-Y$ plotter and scope. Place near Comcor computers.
13. Return all instruments to stockroom at completion of test.

Write consignment purchase order and provide transportation. Unit will be available from I May 1977 until 29 July 1977.

SCHEDULE

Set-up of the Comcor Ci-175 computers is required by 22 April 1977 so that programming can be started. Fabrication and/or installation of all other required equipment is to be complete by 6 May 1977. System integration (with the flight simulator), checkout and demonstration will continue through 29 July 1977.

	A	88277	Z7802765
DOUGLAS		88277	

NOTE:
WHERE LINE LENGTHS ARE NOT GIVEN,
LENGTH IS NOT CRITICAL. MAKE AS SHORT
AS PRACTICAL.

 WITH CLEAR ACRYLIC LACQLIER.
(G)=GREEN (O)=BLACK (B)=RED. (B)=BLUE. $O=$ BROMN

DETAIL - LETTERING G PARTS LOCATION (FRONT)
-13 PANEL ASSY

	$\begin{array}{\|c\|} 8 \\ \text { SHEET } \end{array}$	$z 7935344$ DRAWING NUMBER	
date	1	oraming changed	
date	2	advance dwg chg	
date	3	SERiAL EO	
Date	4	new/reviseo release	NEW
date	5	Reissue to revise	R

[^2]
$\sqrt{1000} \geq 7935344$
$\frac{\text { DETAIL }-5 \text {. PANEL }}{\text { (MATL: 6061-TG ALUM.) }}$
-

ENGINEERIINO ORDER

DAC 25 . 17098 (0.711

$27 \mid z 7935344$

m

h

Section 5. ANALOG ANTISKID SIMULATOR VALIDATION

The validation consisted of matching Langley test-track test data (NASA TN D-8332) on the antiskid simulator.

The test conditions (speed, vertical load, maximum coefficient of friction, tire yaw angle, and commanded brake pressure) were set up on the simulator and runs were made. The drag loads decelerating the aircraft were adjusted to give the same deceleration and the torque gain was adjusted to give the same skid pressure level as on the test data. The brake characteristics utilized are shown in Figure C-5.

Two of the Langley tests were selected for correlation. The time history for the first, in which the tire was unyawed, is shown in Figure C-6. The actual test conditions are denoted on the figure. Figure $\mathrm{C}-7$ presents the simulator run for the same conditions. The degree of correlation between the simulator and test data can be seen by comparing these two figures. Note the similarity in skid depth and in the levels of the brake pressure, brake torque and drag coefficient of friction just prior to the skids. The correlation between the simulator and test data is good, except that the pressure recovery immediately following a skid was quicker on the simulator. The time history of the second test, in which the tire was yawed 6°, is shown in Figure $\mathrm{C}-8$ and the corresponding simulator run is shown in Figure C-9. Here, particularly note how well μ_{s} correlates, both unbraked and with 2000 psi applied (slip ratio $=10 \%$). The comments made above about the degree of correlation for the other case apply here also for the initial skid. The subsequent shallow skids shown in the test data weren't duplicated on the simulator. These deep skids on the simulator are probably due to the adjustments made to achieve rougher cockpit motion.

Brake torque $=f_{1}$ (Speed) $\times f_{2}$ (Pressure)

FIGURE C-5 : BRAKE TORQUE/PRESSURE/SPEED RELATIONSHIP

....- Time histories for run 2; nominal carriage speed, 44 knots; vertical load, $59.6 \mathrm{kN}(13400 \mathrm{lbf})$; vaw anale, $.0^{\circ}$; surface condition, dry; tire condition, new; brake pressure, 14 MPa (2000 lbf/in ${ }^{2}$).

FIGURE C-6 TEST TIME HISTORY SELECTED FOR ANTISKID SIMULATOR VALIDATION -UNYAWED TIRE

μ_{s}

Alining torque, $\mathrm{kN}-\mathrm{m}$

Slip
ratio

\Rightarrow Time histories for run 36; nominal carriage speed, 46 knots; vertical load, 83.6 kN (18800 lbf); yaw angle, 6°; surface condition, dry; tire condition, new; brake pressure, 14 MPa (2000 lbf/in ${ }^{2}$).
FIGURE C-8 TEST TIME HISTORY SELECTED FOR ANTISKID SIMULATOR VALIDATION -YAWED TIRE

The cockpit mounted on the motion base platform is sized and configured as a DC-10. This appendix outlines those changes that were made to the cockpit to more closely represent the $\mathrm{DC}-9$ for the ground handling study.

Flight Instruments

DC-9 type instruments were installed on the Captain's side. These instruments were all types normally used in DC-9's except the vertical speed indicator which was a DC-10 type. The three DC-10 engine N_{1} indicators were replaced with two DC-9 type EPR indicators. See Table D1 for list of instruments used. The First Officer's side remained in the DC-10 configuration.

Pilot Controls

The only changes made to the pilot controls were changes in the force gradients and the removal of the number three engine control lever. Figures D1 through D4 show the force versus position curves of the column, wheel, rudder pedals and toe brakes.

The spring rates of the colum and wheel were changed to more closely match the DC-9. The force gradient of the rudder pedals was left the same as the DC-10. The force gradient of the toe brakes was adjusted using test pilot's comments. The curve shown is the gradient actually used.

As mentioned the number three (farthest right) engine control lever was removed leaving numbers one and two for independent twin engine control. A reverse thrust detent was added for the ground handling study. This addition is described in Appendix A Section 3 "Engine Model."

Pitch trim was provided through a thumb activated switch on the left hand side of the Captain's wheel and the right hand side of the First Officer's wheel.

Pilot Controls (Continued)

The speed brake and flap controls were DC-10 types but were active with the exception that the speed brake lever did not move with auto ground spoilers.

The nose wheel steering side controller "tiller" was not active for this study.

See Appendix A Section 2 "Aero and Control Systems" for additional descriptions of pilot controls.

Outside Visual Scene

The outside visual scene was provided by a Redifon Visual Flight Attachment (VFA). At the cockpit the VFA image is presented to the pilot by a T.V. monitor through large collimating lenses. The faces of the T.V. monitors are masked to provide the proper pilot eye cut off angle. For the $\mathrm{DC}-9$ this angle is about 15.5° down from horizontal and was obtained in the DC-10 cockpit by moving the masks on the monitors up to a point where the cut off angle is correct, provided the eye is in the designated position. (See Figure D5.)

NOTE: It is very important for those "flying" the simulator (and the aircraft for that matter) to have their eyes in the proper position!

TABLE D1
EQUTPMENT USED FOR DC-9

VENDOR PART NO.	SERIAL NO.
2067635-0701 TYPE 1NA-51A	7526
522-3907-001 TYPE 329B-7M	666
522-3875-002 TYPE 33/A-6K	E-5
A50D-10D KIT	4191
MS-45-1D KIT	8252
JG298H1	B-416
	B-432
2594468-902	2090895

NAME	VENDOR
RADIO ALTIMETER IND.	BENDIX
ALTITUDE INDICATOR	COLLINS
(FLT DIR. INDICATOR)	
HOR. SITUATION IND.	COLLINS
(COURSE INDICATOR)	
SIMULATED ALTIMETER	AEROSONIC
SIM. MACH/AIRSPD. IND.	MIDWAY
EPR INDICATOR	HONEYWELL
EPR INDICATOR	HONEYWELL
VERTICAL SPD. IND.	SPERRY

E者基

(1)

-

FIGURE DS

This appendix covers some considerations in programming a digital computer to form a real-time solution to the airframe model. The term "real-time" in this context means that vehicle command inputs must be received and "next" airframe state variables calculated fast enough so that the various pilot displays can be updated with no perceptable "steps."

The DC-9-10 airframe model was programed on the Systems Simulation Sigma V digital computer. An extended version of Fortran was used extensively as the programming language. All of the algorithms associated with the airframe simulation were solved at least once every 50 milli seconds. The single exception was a section of the strut routine (STRUTS) which was solved 7 times faster. The execution of the program took almost 100% of the 50 milli second frame.

When the simulation program was first assembled it took a few milli seconds longer than 50 to solve. This "overframing" condition was rectified by the following procedures:

1) All routines not specifically needed for RDC were taken out;
2) The beam noise was eliminated from the ILS model;
3) The turbulence filter parameters, which normally vary with speed and altitude, were calculated for a nominal speed and altitude and held constant during the real-time sequence. (See Sppendix A, Section 4 for description of the turbulence model);
4) The choice of 7 iterations per frame for a segment of the strut routine was due in part to timing considerations. (See Appendix A, Section 5);
5) Some other minor simplifications were made to the strut routine. (The statements preceded by an ' X ' in the Fortran listing of the STRUTS routine were left out).

The above five items were specific things done to the RDC program to make it "fit" in the frame time. Some general techniques used by the Douglas Systems Simulation group to effect time saving are described below:

- Simple Euler integration is used throughout the program with the only exception being some linear transfer funtions where finite difference equations are used.
- A special limited range arc tangent routine was implemented. This routine, which is good for resultant angles between ± 20 degrees, was used for solving angle of attack, side slip angle and the ILS deviations.
- No matrix arithmetic or general matrix subroutines are used for realtime calculations.
- An attempt is made to minimize subroutine CALL's. Fortran CALL statements invoke linkage routines which can be time consuming.
- A careful check is made to be sure that all calculations of constants are done "outside" the real-time loop.

Another point of interest to programmers is that in the solving of the X and Z axes moments of the aircraft a cross inertia term must be delt with. (See Appendix A, Section 1, Figure 1.2). For the RDC DC-9 model the P dot and $r \operatorname{dot}$ equations were solved using Cramer's rule to eliminate the "cross" terms. This technique seems to work quite weil. However, in previous airframe simulations this same situation was handled by sinply using the "past" value of one of the dot terms in the solution of current value of the other. This method also gave satisfactory results.

An important aspect of simulating an aircraft is providing the capability to place the simulated vehicle in different initial positions. A "trimning" process is necessary if it is desired to start the test run with the forces and monents balanced. A special trimming routine was implemented for this purpose. The desired aircraft configuration and position is input at the beginning of a series of runs. The calculations were made to trim the aircraft. These trim values were saved so each time the simulator was put in the reset mode they could be entered as initial conditions to the equations. A flow chart of the "trim" procedure is shown in Figure 1E.

1. Expansion of Flight Simulator Capability for Study and Solution of Aircraft Directional Control Problems on Rumways, Phase I, MDC Report A3304.
2. Expansion of Flight Simulator Capability for Study and Solution of Aircraft Directional Control Problems on Runways, Phase II, NASA CR-145044.
3. Russell V. Parrish, James E. Dieudonne, and Dennis J. Martin, Jr.,'Motion Software for a Synergistic Six-Degree-Of-Freedom Motion Base,"NASA TND-7350, 1973.
4. Harry Passmore and C. R. Korba,"DC-9 Landing Gear Math Model for Directional Control on Rumway Flight Simulation,'"MDC Report A4816, 1977.
5. Sandy M. Stubbs and John A. Tanner,"Behavior of Aircraft Antiskid Braking Systems on Dry and Wet Rumway Surfaces,"NASA TND-8332, 1976.
6. Douglas Report No. LB-31624, "Estimated Aerodynamics Data For Stability and Control Calculations, Model DC-9 Jet Transport, Series 10," dated December 31, 1964 with latest revision February 23, 1967.
7. N. M. Barr, D. Gangass and D. R. Schaeffer, 'Wind Models for Flight Simulation and Certification of Landing and Approach Guidance and Control Systems," Report No. FAA-RD-74-206 by Boeing Conmercial Airplane Co., for U.S. Dept. of Transportation, December, 1974.
8. R. E. McFarland: NASA-Ames Program Specification, titled 'Wind," Part No. NAPS-80, Computer Sciences Corporation NASA-Ames Site Operation.
9. R. V. Parrish, J. D. Rollins and Dennis J. Martin, Jr.: 'Visual/Motion Simulation of CTOL Flare and Touchdown Comparing Data Obtained from Two Model Board Display Systems," AIAA Paper No. 76-010, April 26-28, 1976.
10. Redifon Report No. SD/846/S. Issue 3, 'Requirements for the Compatibility of a McDonnell Douglas Corporation Flight Simulator to the Redifon Rigid Model Visual Flight Attachment," January 12, 1971.
11. E. A. Mechtly, "The International System of Units, Physical Constants and Conversion Factors," second revision, NASA Report No. SP-7012, 1973.

[^0]: * NOTE: Body axes cogrdinates are based on a longitudinal C.G. position at the quarter chord and on the aircraft center line.

[^1]: *. See Reference 10.

[^2]: ${ }_{\text {No. }}^{\text {wis. }} Z 7935344$

