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GRAVITATION

I. INTRODUCTION

During the period .June (i to August 19, 1977, investigations were conducted
by the author in the Cryogenic: Physics 13mich of the Space Physics Division of
the Space Sciences Laboratory, Marshall Space Flight Center. This branch is
involved in preparing the Stanford gyroscope experiment to detect the gravita-
tional induction fields generated by rotating bodies [ 11 . Tlwse. investigations
were, therefore, in the genersd area of consideration of gravitational fields
predicted by various currently viable, or proposed, theories of gravitation.

The question of the existence of black holds was treated Nksth the aid of
the symbolic manipulation language ATACSYAiA in collaboration with Dr. Richard
Pavelle of Logicon Inc., a consultant to Ilanseomb Fields's Air Force Cambridge
Research Laboratories and to the Redstone Arsenal. 1'se of the term "black
hole" will be reserved for later discussion, but trapped-surfaces [ 21 , photon
capture orbits, and photon capture impact parameters [ 31 were indeed found to
exist in the gravihtion theories of Einstein [ 31 , Brans-Dicke 1 4 1, Rosen [ 51 ,

Lightnian-Lee [61, and Yang 1%1. 'These properties strongly imply the existence
of black holes in any gravitation theory with a Riemannian geometry.

A two-tensor theory of Yilinaz [ K -lu1 with Scalar field was completely
and exhaustively studied. it w+ is doterrnitx;d to be inconsistent, noncovariant,
and completely devoid of gravitational effects. An earlier argument of
Kraichnan (11 1 indie;ites t1mt the result should be true for a wide class of
gravitation dicorics.

.lnisotropic cosmological models were investigated in Rosen's theory
[ ] 2,131 of gravitation. It was found that the simple cosmologies become iso-
tropic, much more rapidly than in Einstein's theory. The nine Bianchi classifica-
tions have been extended to Rosen's theory for computations in the spatially
homogeneous models.

Inhomogencrous cosmological models were investigated in the Einstein
theory. The approach was to generalize spatially homogeneous models by
raising the dimension of the invariance group by one parameter in the reverse
of Inonu-Wigner's contraction [ 1 .11 . Throe cases are considered-
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a. The introduction of n pceuliar velocity into self-simil ar cosmologies
1 151 to see what the major changes in observations would Ix- (the generalization

j	 of lli;tnchi-Type VIII to the inhornogcneous case) .

b. The generalization of Class III locally rotationally symmetric
universes 1161 to inhomogeneous spaces ;liter a method suggested by Nk'Mnwright
1171.

e. The exten s ion of spatially homogeneous universes to inhomogenotnts
ones by adding an inhomogerwo us nonsync •hronous term to the metric.

The Bianchi groups operate on observer rest spaces which dice through the
inhomogencous space sections. This is a continuation of ea r lier work by the
author 11S I  and is a view of cosmologies which has been discussed in a
different form by Spero and Baivrlvin 11511.

A solution has been found for cosmological models in Yang's theory of
gravitation which is not an Einstein space. The observatiowil consequences are
straightforward to investigate since the metric is similar to that of the stemly-
stahr spatially homoguncous cosmological models.

The NcN7nan-l'enrosc formalism (201 for Riemanni;m geometries allows
one to investigate space times characterued by the prescnev or ;absence of one
property or another. The use of the fornuaism to find solutions to any virnble
gravitation theory is tiring investigated. The relevant property is that the
gravitational field prop;ugate on heisting mull rays. 'Thus, it is hoped th;ut the
means may be found for obtaining solutions appropriate to the exterior of a
rotating star and to universes containing circula rly polari7cd gravitation;d waves.
Progress in these are;us is outlined it, Ibis rep(irt.

11. EXISTENCE OF BLACK HOLES IN

GRAVITATION THEORIES

]tlaek holes have been :in ;uceepted fcatur y of general relativity for
several years, but !)nly within the last 10 years have they lxrcome of widespread
interest in gravitation and astrophysics 131. Because they contain a singularity
of 7Pro volume and in;mite matter density and, Ihereforc, represent regions
from which light cannot escape, they are a pathology of the theory. lndcxrd,
many relativists have come to regard their existence as an indication of a flaw
in general relativity. They tx • licve that black holes have become a symptom of
an intrinsic disease in general relativity itself for which there is no cuuuti•.
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'Phis situation has led, in some cases, to attempts to find alternative
theories of gravity which will not predict the existence of black holes [5,61 . It
has also sparked the hope that a proper marriage of general relativity with
quantum field theory would prevent black-hole formation in an evaporative
mass-loss process 1211. The mass-loss rate would conceivably match the
collapse rate in such a way as to avoid the formation of the black hole.

This section will show that the same situation exists in Al presently
known vi,d)le gravitation theories. The criteria for the existence of black holes
will be presented and then applied to these gravity theories. Examination of
the two-dimensional collapse scenario with scalar quantum field theory leads
finally to the eonclu:;iun that black-hole evaporation will IK' predicted by all
these theories, implying no distinction between them ;end general relativity.

IA-t a gravitation theory define matter trajectories by the geodesic
equation

b _

Fallh 0
	 U

where II indicates covariant differentiation and 6 .c is tangent to the trajectory.
Thcer, a congruence of trajectories will obey the geodesic deviation equation

relating the connecting vector n`l to the Itiemann tensor It :
 I bed s

a	 c^

(n
	 f 

f
it`cbcd 

e b nc `cl

Let these trajectories be embedded in a It icmannian manifold or which the
Bianchi identities hold. Then the effects of the deviation equation will be
contained in the Newman-Penrose equations 1201. 'These equations connect the
evolution of the geometrical spin coefficients to each other. The spin coefficients,
in turn, contain the information about the physical behavior of the matter
trajectories' congruencces.

The spin coefficient of interest is p , the complex expansion of the
congruence, (lest: ibing the expansirm
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r a II a

nnrl the rotation

I^rlll'l	 I/2
 )

w -	
r Ia^1 ► ))r

of the rays (the bracket, I I, donows :In f i wtvictri /,ition)

p = n+i i

Let O a he tangent to an outgoing mill goodesir mid n ► tnncmtd to :in 1114 1 0inl; 111111

t►eodesie. I,et '(he voniplex vector n	 sp:111 Ilse eels yti,il tclhe ► ti

AP
m a = e y

 + ic'a

where e 2 and e 3 are unit vector~ and the eelt-stial splio r is tie:iti-rl :is ;u ►
almost-complex two-diriwnsionll numil'old. The wt of Nvetor" Itwnus :r romhlex
null tetrad from «hi gh the metric I' 	 is roml-iosorl:

2
1'ab	

20 
(anh)	

m 
( a te► I c ► 	 '

rna - nr
: c 	 ;r	 -	 a

-m m	 -m m	 -
a	 a	 a	 a

011 other inner products vanish; the parenthesis, ( ), de11r4e; S)mnu tri^ntion
:cncl the overhar is complex eonjugAv) . 'Then
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P II 
a P ' ` 	 -1)2	 !i 71- It

la`h

R is the shear;

(T	
Fa II bra nih

For ro:d 1 ), this indicates that dolds 	 -A 2 - a 2 - It where K is proper time

along the geodesic, implying that onev n < 0 it is always so. For a 14tntir
metric, the region "-fiervin n < 0 if; hounded by a "traplx!d surfave" within
,Ahich all (geodesic congruen(vs converge to a sinE , ularity of zero volume,
infinite matter density, ;end infinite tidal foray s (2 J . 'Phis is a h1ack hole.

Ike eonsider the static spherically symmetric metrics , n isotropic form

ds = -a ^'dt r + e ' OIC + It (10 + It ` nin odo	 (11

where

0 = 0 0o

and

4' - g1t)	 .
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v. t , use dic isot ropic form rsinve mot:-' vlosed -form solutions for various gravity
theories are given the izotropic form. We transInto tc) a luminosity (retarded-
tinw) coordinate via

c Oclu = cod) - u IIt

to find

ds 2 = -e 20slu 2 - 2cO+q dudit + e 24 It 2 (1St 2 	(2)

where

`2
	 2	 2

dSi - do + sin Odo
k

From the preceding discussion we find

where #, l = 04. /Pit . Since there is no rotation, p - I► and 0 < u if 1 + #"I( < 0,
where 0 = 0 at the tripped-surface radius it . This is clearly so if 0 can he

represented as an inverse power series in It,

0 = ^ an (1/11) n ,

for integer n and non-negative constants ate.

rxamining geodesics, we must See if particles in orbit or incident from
a Brent distance: are captured by the hole, twemise a black hale must consume
anything that comes too close. For metric ( I ) the geodesic equations with
motion in the equatorial plane give

1.

i
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•6	 1

4

i	 F: I^ ,I	

:f =
	 h

f

P

and

0
uo^ 

= F

i
two constants of the motion def ► ning the impact parameter A = E /h . We can
then arrive at the equation

d /CIO _ f (lcx) I it 2 d2(4-0) - A 2 + (c2A`024It2)/h211/2	 (l)

whore #	 0 .-1 f(w null and t ► nu c liko I
a . 

l k-cause material particles usually

luivr a more difficult time of it thin the photons, we need only look at E = 0 .
I'hen,

dit /dill 	i (RA) I It2e2(4-0) _ A2 1 1/2	 (')

nrbitR sro stable dawn to n rritienl ridiu g Itr, 
Bound by solving (I111d+ 0.

The capture impact parameter is Ac . found from d/dlt(dlt/d l l ,) = 0. For It C!
and Ac thin gives

and

A
c -
	 It	 exp) ^210(It

^ 	 ^^.) - 	 ( it )I r 	.
c 

17KIGTN: 
11, E Alrl Y
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The rescllts are given in 'fable 1. The rosuits for the y Rejamne+r-Niirdstrom
metric in Finste• in's theory sree Presented first. Listed across the hble tiro the

theory designations c ` ^'h , e'
!4

, It t , rnnd rt , the trapped-surface radii in isotropic

and schwarzmehild coordinAeM

(119 2 	-efdt2 + e9dr 2 f. rdSt2

the two capture radii It  (isotropic,) and r e (Schwnrzrhild), and the

coordinate-in(k!pendent h .c

This obviously disproves the previous claims th; ► t black holes dc, not exist
in !tosen's theory [ 51 or are not a}l})ruaeh;ihic by a geodesic 1221 in the l.i};htm;nn-
I,ee theory [6). Itlack holes arc, indccd, lotind to exist in the Kilrnihtel•-Tan;;
theory ) 7) . In another Solution fen • that theory 1211,

c
.0 - 024	

(1 - m/it)2

a nd

1, - 11/01  - hi)	 ,

which is an impenetrahle barrier at R At or r - u. The brans-Dicke [41
black-hole surface has imaginary radius unless w < 0, which is a viable form

S

	 of the theory [ 241. This disproves Al prior clai ms that Brans -Dicke black holes
are like those of general relativity, "Schwarzschild" ['' :, 1. Clearly, all these
theories predict static Flack holes, whetbor or not their proponents have
claimed so.

For black-hole ^vaporation we follow the discussions of Davies, Fulling,
and t'nruh [ 26). We choose the scalar field in a two-dimcrnsion;el space time
(of signature zero) because the quantum field theory is solvable. The metric of
such a space time may always be written in a conformally flat form

8
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ds2 = C (u, v) dudv

where

u = It - f e 4'__^ dR ,

V = t + fe , -1' dlt ,

and

C(u,v) = e20

Using a geodesic point-splitting renormalization procedure, the proponents find
a Satisfactory form for the stress -energy tensor. 'There are several coordinate/
rek-ularization-clependent parts of

rah	 gabIt CIOde
/487r + gab

/H7rE2 + 0 a

which represent vacuum polarization contributions, where 
Rde(IC 

is the

curvature and c is tho point-t;pl fitting parameter. The first two terms may be
regarckrd as hydrodynamic and cosmological constant contributions;

1271) -1 
C 1/2 "2 ( C -1/2 ) 

/a X,

is Me vacuum-polarization/ig calar particle-creation contribution.

The appx, arance of radi;ition depends on the boundary conditions imposed
on the coordinate system at infinity 127, 2`+x I. For the coll;ipse situation, this
means that the surface at asymptotically flat infinity must accelcr;ity from the
surfmx! of a thin shell of matter which provides the mass Al in the metric
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C'(tu,v) (equivalent to the shell accelerating awa y from that surface as it
collapses). 'Phis in, I)h, - a coordinate tr:u ► sform:ttion

11	 Kfn(;1 - Cl)

where K and A are constants depending on the mass :ind the particular
cc► ll:ipse dynamics. Ne then u.se

2
(Is . C ( u, v) dudv

in the T A computation. Because such boundary conditions may Ix- found for

: ► ny time-like 2-surf:ice 12 6 1, the collapse Tat ► can lx- d<-termined b3 the same

formula for Al the gravity theories previously discussed. We have computed

0all :md found a constant Hawking flux term of the form	 i 'K ` for Al the

nietries discussed. It extracts mass from the hlack hole as p:u'ticles are
radiated to infinity [271. 'Thus, black-Dole evaporation is very likely a common
I.o:itu ►1,1 of all gravitation theories.

This establishes that black holes are a normal, not pathological, feature
of a vial,lc gravitation theory. Also, when gravit., thermodN , namics, mid
(tirmlitin field theory are prolx,rly niari-wd (menage a trois?), static hlack

N%

	

	 holes evaporate-, radiating particles. Such a process may even prevent their
lorm:,tion [211. 'Thus, it is useless to use the existence and ev :iporation of
blade holes as a test to determine the rel:itive vinbilit y of gravitation theories.

11. NONV I A B I L I TY OF THE TWO JEN SOR PLUS SCALAR
3	

GRAVI FY THEORY OF YILMAZ

A numlxwr of sc:lar-tvnsor 1 2 11 and two-tensor 130,311 gravitation
theories are currently viable. In certain of the two-tensor theories, the tract;
of one of the tensors pl:tN , s the role of a scal:m , field. Alternatively, one could
heat the scalar field of a scalar-tensor theory as the trace of a second tensor
and generalize the theory to include the second tensor. One such theory [nJ
end its generalizations 19,101 are analyzed in this section. The results of such

ORIGWAL PAGE IS
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generalizations are shown to pose Hevei
covariance, and coupling of gravitatiomd fields to matter so that gravitaton.tl
effects exist. 'Thus, unfortunately, we find that this theory and its gener,diza-
tions are not viable.

The 195'+ theory 181 leads to the static metric

2	 2111/r	 2	 2 2	 -2AI/r 2
ds = e	 (^ Ir• + r 4 ) - e	 (it

It is essentially a scalar-tensor theory. The results satisfy the three classical
tests. flake and 'I'uplx,r corrected a Langr • angian error for the theory and
showed that the corrected theory possesses non-unique field equations and that
the static metric liven previously is not the unique spherically symmet r ic static
solution. A similar theory of Papapet •ou has f,ecn shown nonviable. Ni has
shown that it also is in violent conflict with a few experiments, including the
perihelion shift. The subsequent development of the theory to a two-tensor
theory has failed to correct these problems.

The second tensor 
hat, 

generated from the scalar as its trace is brought

into the theory [9,10) via a local Lorentz invariance arg'Unient and related to
the stress energy tensor via the equation

11 
I ^ah II a	

_ 4nTab

where II is the covariant derivative. The metric g ab is then found from the
relation

dg ,	--2 
(i'nh

clh-t
'.ti

dh,
lib

A kind of Einstein field equation is then given by

Gab	
Sr, (Tal, + tab/477)

12



where t,ab is the energy tA-nsor for the gravitational field h ► I ► . 'rho.-se terms

are as given in the references which report the development (it the theory I!), I o 1.

A gauge condition

►b l a	
hbl b

h 
	 0

leads to

t	 -	 '> h `	 h i1	 - 1 	 h	 h" lie + h h- 1 {; h h le
ab	 dla L . 	 ah cdle	 In 11) 1 nh Ic

The geo&sic equations are imported to describe mAter trajectories, ns is usual
in Atempts to formulMe ; ► gravitation theory emixrdded in a lieimannimi n ► ani-
fc ► ld. One finds

du. /ds	 ► 	 u u 
	

U.	 d," 'ds
J	 j	 k	 ► 	 J	 J

The metric K is related to the 1. avntz met r ic ti and s e cond tensor h by

g = n • exl ► I2(h l - 211) 1

The metric g to third order in h is then
j

^] 	 ;t	 1
g ., = -	 h :3 

n., - Gh`h	
► 	 ;t ,l	 t	 ;11,.. + 12th. h 	- sh, h	 h	 + n.. + 2(hn., - 2h )

ij	 3	 tJ	 ► J	 ^J	 tJ	 I 

+ 2h	
i

	

2 11	 - 111 h + 4h' ► h
rj	 tJ 	 aj
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Questions of uniqueness, self-consistency, and :actual predicted effects 	 I
are examined in this theory. First, the field equations involving the F. insW in
tensor differ in third order front the previously cited expansion. In fact, we
find on substituting it into the field equation that the field equations do not imply
the relation between E+, n, and h given previously to third order. 'Therefore,
the theory's consistency ends there.

Second, in looking for useful approximations, attempts have been made-
to iterate the field enuation to third and higher order to prove integrability of
the field equation. For parameter A << 1 , wY! substitute

gij 	 nij + Np i j + X
2k ij + A i11

i 
j + 0 A l)

into the field e quations and find

g - - n ij ( 1 + 2h + 2h 2) - 4h i j - 
Shh i j + I'tlal)h .: 1.

up to second order consistently for p
11

.. anti k 
jj
., . But we also find

It n,. - Gh l̂ h ij + 12hiti`th,1j - "a (h "h hdh:lh)

showing th;tt the equations :trc: not integr:ihle to third order. I I us, the equations
enn only be consistent and integrable to second order in 

hab' 
However, one

can go further by rewriting the fi-Ad equations

(n ij	 ij I) ally - 
o t	 ;i .l	

Fijla +- (l(11)	 u

I:
.1	

-y t1 
h ,^	

+ It
af, 

I;	 ha	 hb	 - 11	 ha

ii	 (ilj)	 l,(tlj)	 bl (i j)	 (i jllh^

14
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To verify, the gauge conditions must be used frequently. 
Caijla 

does not

vanish; therefore, the field equations are themselves inconsistent to second
order.

Considering t ,1h and using the g;iuge conditions, we find a large portion

of tab v;finishes. Therefore, it is not the energy density of a spin-two field and

t^ I t u ; consequently, roether's theory is violated. At this st ige it is cleari
that this is at bast second order theory. Continuing, we use the 

hab 
field

equation to write the geodesics as

k	 -1)	 i	 k11ap du i/ds	 }) ^ i 1 ^ ( it 11(47r)	
; f:	 ltj (I a

	

I	 l

where p is the matter density. The Christoffol symbol to first order is

; A	
2 
(,a h	 - n h la -  2h la -  a h ai	 j	 -	 li	 Ij)	 ij	 ij	 (iIj)

Insertion of this into the geodesic equation, jmrtial integration, and use of the
gauge conditions consistently leaves

J j	 I u u 
Ic	

uI'	 k 	 )	 '

and the equation of motion is

d 2x./ds 2 = 0
I

Thus, there are no gravitational effects; in the y theory to all orders. All motion
is simple inertial motion in the theory; therefore, there are no gravitational

15



effects. We conclude: that one must he very careful in gerwralizing a scalar
theory to a tensor theory. In particular, gauge conditions must be kept an
auxiliary ( not essential) part of tho theory.

IV. HOMOGENEOUS AN I SOTRO PI C COSMOLOGICAL MODEL

N RO SEN'S GRAVITATION THEORY

Posen's theory is a two-metric theory with prior geometry 151. We shrill
consider one of the metrics to be the Lorentz metric y	 ri	 The field
equations in Roson's theory for 1;	 are	 o	 o /;

E1 v

N - 1 NK	 _ - tsnk 'C
I t 1 ' ►'	 {1v

whe re

1	 v1^
NµV _ 	 l;	 f;^,. a. I n	 I ,

and

I
k _. ()1!'

'rhe slash ( I ) indicates the covariant derivative H ith respoct to y , and 'I'
is the stress density tensor.	 11 v

	
01)

Since I;	 is a Riemannian metric, "r adopt the Bianchi classification
µU

scheme to the homogencous three spaces [321. We also Nish to express the
field equations in terms of the irreducible parts of the stress tensor \hich
possess invariant ph% ,sieal significance. Ilence, one desires to have equations

for 'I'	
k	 i	 1	 i k

oo' roi' ,hk rind f. - 3 b I'k (the L ;ct ► n inrlicc+s rlmnini; 1-3).

	

J	 J

I^

i



If the metric is expressed in terms of a basis tetrad

i'µv = Eµ E A 1)

than the affine connection coefficients become

N	 _ µ	 A 13
r Qr	 FA I B ^ E

e 
T

and we have

+ru
i	 Iii v I a	 pa	 1)n

I

Then Rosen's tensor N µ ,, may be constructed in terms of the affine connection,

	

N'' 	 1 g 
	 I a	 + rµ	

- 1 (r' 
 + 

rµ	
I.v	

+ r'

	

µ	 2	 Pa la 	 AaI a	 2	 µn	 Aa	 M,	 vN

and the field equations written in terms of the connection coefficients implied by
a particular set of symmetries chosen for the spacetime. The Bianchi classi-
fication, may then be used.

A suitable metric would be given by the lire element

ds 2 = e 12 dt
2 - e"e e 2 f E  

E  
dx `N dxB

1

where Q, a , and 13 
i 

are functions of the time. The metric is similar to a

form widely used now in Einstein's theory (321.

P
Na, In

ORI 
IN QL t

'
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The Bianchi case

FA = bA

will now be considered. The dynamical field equations art- then

- 2 'cf - 6a2 - 213ikjiki = -K7fT00

I	 and

I—.16
r

ji. + Rev (3 + 4 %3. ,j	 ij	 ij	 3	 ij
;

where rr„ are the trace-free stmsses. For q diagonal [Ijj . thr fluid shear is

R ij = Rij

The Awar field equation

rr. j = -Ao ji	 i

where A= viscosity is then

d(T ij /dt+ 4 
cT ik°kj - g b ij a 2 	= -87rA(T.. -	 eij

i	 and for small shear (Q 2 « 1) we find

t.
18
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W

0 (µ ty )	 1\9li i,

4

-Ntrx(t-t) -A(ry-rr )
0	 0

^r	 7- (const. I e	 c
ij

Anisotropy damping is much more rapid in Rosen's theory than in EAnstein's
theory.

For a dust source, the hydrodynamic conservation l:i%k gives the energy
density as

-3o
P	 Poe

as in Einstein's theory. 'Chen. we have

0 + r)ry 2
 + 2 o e

- 1 En 
_ - Sri) e

-	
,

and from the '1'h equation n may be eliminated to find a Friedmann-like

equation. The Bianchi classifications are being investigated in this contoxt.
The most interesting aspect of this is the iso>tropization question: \1 ill Hosen's
theory provide a better key to the isotropy of (lie universe?

V. I NHOMOGENEOU S COSMOLOG I CAL MODELS

IN EINSTEIN'S THEORY

A. Tilted Self-Sinlllar Cosmoloyies

Self-similar costnologies are models that admit a group of similarity
transformations; i.e., an invariance under changes of length scald 1 151. 'There
is defined a hotnothetic vector by the relation

♦4

19
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4

where A is :i scalar and V is u covariant derivative. 'Tilted models are
p

those in which the fluid flaw vector is tilted away from the time-like vecto?
normal to the space-liku hypersurfaces it by an hyper}x)lic angle g 1331.

P
We combine the two formalisms in search of interesting models. The particular
question is: Are there tilted universes with submanifolds, invariant under the
Bianchi 1 group (translations), with those manifolds suhmanifolded to ones
invariant under a similar group and with the fluid flaw shear free? Eardley has
mapped out tlic self -similar forma lism I151, and King : ind Ellis describe the
methods needed for tilted modals 133  J .

The equations of Eardley were modified to include a tilted flew vector and
specitdized to the case with Bianchi I submani fold. The undefined quantities
:ire those liven in I:ardley's paper. The metric is

(is2 - C 1 [_(Izl + 
g ,th ( z) 

(T a b

where z labels invariant suhman ► folds and (:,	 b a . (b is a vector related
l	 Sl

to the structure functions of the similarity group 11 3 ). The cep generate a G2

subgroup characterized by the Bianchi classification, and

2n 2(3
9: :^1,(z	 = c	

e:1h

a = N(L)

Pab - Pab ( z ) .

and

a
= 0

a
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i

For Bianchi I submanifolds invariant under 
C2 (the field with shear-free

flow), the field equations are:

-3rr2 + b2 = •1^° a-2#

I- _

	

iv 	 2 + 3b	 I• k e -2 d

and

_ 2	 2	 -24
2b

ib 0 	 :3 b io b	 7T C

where

x - dx/dz

	Reducing '['	 to its irreducible parts, a perfect fluid source.

Tµ ►, - (P + P) ►  a 
10 + pi;µ

is obtained. Nvith further speci alization. the field equation s and fluid conserva-
tion laws (shecir free -- I?A - n) are:

2 + e -2ry b bi	 'l	 -24
1	 1 ► ) U 

ORI('=1^'AI. L^^Ll,l^l
OF PUOR '
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I

l	 _

i
-2e -0 bkn = -e -2^ l (1) - I)) u h ue 1

-69 - 9r; 2 + 3ca-1n btb ^ .ipc'Z '	 •

-2t

bibo - 3 bia 
b l )	

cc
-'ln	

2	
(p + P) u^u^ ' 3 b i0 u k u k	•

l^ + 3(P + p) 4 = 0

k
(P + P) uo - uku plo

and

0
( p + p) it. _ -uktt P I o

The equation of state is p yp and the equation for flow normalization is

U
N

For the hydrod y namic equations,

P = p0 expl-3(1+Y)o'I

and

—o
u	 u cxp I - 3 ' n ja	 ;t

and for the trade-free stress equations

22



bi -	 u ( 1 + Y) 
P./?]1/2o/']1/2 0 -4 C -3(1  + 3y) a/2	 •

The Friedman -like equation for d is solved after the substitution a - In a
to Rive

2:1(
3y + 1) /2 a

(3y+ l)
0

z

-ix e dz
0•

z
0

I	 .

The density, p, can loo m-bitrarily slx-cified as a function ()t the space coordinates

at time zO , Po = PO 
(x). Si nee these are sell -similar mo(It is 134 1  , z = t n 

x 
m ,

where n and m are recd numbers and x is any space cmi-dinaw. The function
V is fixca! by the cond ition <d^ 7z> = 0 11 r, I .

Since

a	 a
dry = h a = h (1

a	 ,^

suppose we choose 1) 3 t U ; then "t do, indeed, have the solution

:3•1 (3Y+ 1)/2 / (3y+ 1)	 x c
-x 3 

tnx nio 

4

B. Universes with Nonsynchronous Time

Now, let the metric tx! of the form

ds 2	- it . u :1 z a 2 + b zi71	 OltIGINAT, PAGE 1^ij
	OF Pooh QUAl.l1y

i
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ery e P
(T	 •

i

and H W re

i

is a function of time and the space coordinates.

In this system, the velocity form is

A
-6

0
UU = -z -►
a	 a

and the "time" coordinate is

dxo - dt - u 7a
a

This makes a very convenient system for computations; i.e., the projection
j	 operator is simply

Ir y = 6 +80t..V
N	 u	 p o

The convective derivative, a ^V	 is given as V anti, in the case of scalars,o
is given as Z) /b xo . The kinematical gradients of the fluid velocity are also

t

24



@ t

easy to compute since the C j k (purely spatial) rotation coefficients Rio not

aI>hear in the computations when u = -b°
a	 a

in terms of :acceleration a i , expansion SmI, , rotation NV nir , reference

frame spin tnir , and group structure functions C i f , we full

i
117

m
1 ro ^mr + µmr

r
rem	 -trill,

F
i
i- 

C ki + tikuj

'Intl

,j	 1	 J	 k	 i

k i	 2 
(1 

ik	 j j	
I )

for the rotation coefficients. In terms of the metric functions, these kinematical
quantities ;ire:

Smr	
ryb

mr + a
mr

+u(mIr) +u (
 

III ur
(1RI , VAI, PAGE L^
Uh' ""At QUAIATY',

W	 = u	 + u u + u.t.	 u + u (,k
mr	 Inilrl	 Im r]	 11 1m r 	 k till'

25

mob.	 Air-

W

i
s



where

a v

1)
i

a  = 6  +S 
ij 

u,
)

and

"mr - Bk (niB r)	 ( ) k ( m (e-;) r) k

-1
tmr - 13 kImB rj k	 (, ) k(III	 )rJk

and

1

-1	 p	 -!l
tmr B  ( mRr 1 

k = (e % ni	 )  k

If we write the shear tensor ^, 	 is
inn

1

^n Smn 3 amn 0

and the expansion scalar n as

m
0 = 5

m

then the field equations for ;ubni;inifolds of Bianchi I are:

CC,

3n - 2 Jfi^n 111111+ 2 r = ^

26
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i

I

() + 4m uktPm + tlmum = yr

_0-`)o2-2 Z0 ^
)^ 

ml 
1

2 r - 3p

and

)^	 4M	 ^ [ Ate	 r	 - 1 ^ r	 rr
^-htk	 4k	 ' nk	 nk 3 nk	 nk

where y = (I y/a x ; the spatial curvature r is caused by the t i .
J
uk term in the

rotation coefficients; q  and Tr nkare the momentum-density flux and trace-free

stresses. 'rhe hydrodymnlic equations arc

p+(p +p) 0 = 0

and

(P + P) u	 - -11n p
m	 m In

The reader may have realized by now th a t the purpose of this discussion
is to demonstrate the triviality of finding inhomogeneous solutions. 'Therefore,
we immediately specialize to the seemingly most unpleawint case Perfect fluid
('rnk _ cif - 0) , diagon a l I?nin , and dust ( p - 0) . 'Then, the acceleration

equations read

am	um + u 0 (^ b `m } 
apm)	

0

ORIGINAL PAGE' IS
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___A

C	 t

ft

0 R 
-[v -flnl

um	 m= u (x) e

n
where um(x) is a function of the space coordinates. Now, a and (f m ;ire

functions of x°, n (x°) and Qm (x°) . Let a = Ina and the Friedman-like
equation is

2	 1/2

da/dx°	 3+ o,	 a- u m I m e ma	 2a

Since a = a(r °) . we are free to finu a solution with um I m 0 • Then

0
u = v mm	 in

where

:md an is a constant determined by the boundary conditions inserted into the

usual Fourier-Bessel integrals

,in = rf(X) On (x) dx

and On (x) is any set of orthogonal functions consistent with a chosen symmetry

for the flat-space Laplacian implied by

v m u ° - v20	 0
m

.	 .



dft

An implicit integral is easily found for a(x o). The oxplieit dependence of

/t (x) is found from the shear egwit ions.
m

•	 C. Extended Locally Rotationally Symmetric

Class I I I Cosmologies

Wainwright and Szafron 1 17, 3:,, a6 J have extended the locally rotationally
symmetric (ImS) universes (161 to inhomogeneous models of the sekeres 1371
type. 'They suggest a general adaptation of these techniques to study large
classes of solutions to Einstein's equations with a (lust source (17,36). Bather
than concentrate on a hacl,-type duplication of Class I1 results for Class III IMS
(although we shall do so eventually), refer to Paragraphs V.A and V.13.

I inding outrageous, inhomogeneotim solutions is not a very formidable
task, as previously i-evealcct in Paragraphs V. A and V.B. The ;u hitrarimss
allows ;Lnv density's spati;tl delxmdence to presume spatial hypersurfaces.
Therefore, inhomogencous ;md single solutions are neither very challenging
nor vory informative.

Szafron, NV:dnvright, loud Fardley h:m , suggested ;i solution to thc pre-
viously mentioned problem. Mather than groping solution-by-solution through
Einstein's equations, group structures should instead be used to give an elegant

T,	 classification to families of solutions and relate those families to each other
m:c.inly as each other's subsets in the group parameter sp;cce.

It seems that these inhomogeneow. models are of little use individually.
Also, the solutions seem too easy to obtain. An "casy" %k , ay out would be to
compute the ohserv.itional calculations in each case. "Then, )ne would test for
the allowed inhomogeneous comolo g ical models by comparison with observations.
However, this procedure seems tedious and unrewarding.

i	 It sc;ems bolter to study the Structure of various getx1ralizations from the	 a
homogeneous cases to tlx, inhomogeneous cases. t ►nc then can treat the problem	 i
as the cons We r: it ion of successively larger classes of solutions. The main con-
siderntion is the alteration of the group structure of the subilimi fold isometric
under the lower dimensional group. one wants to know what physics there is
corresponding to the choice of the higher dimensional group of which the addi-
tional free parameters will allo« characterization of the enveloping inhomogeneous
model~. The only available method would he the inverse of the Inonti-Wi},mer
contraction ( 141.

i
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i

In outline, if we have a group of generators I 1 with a particular
algebra

[I lv' I10
	 C A

lv,lu Ilk

and the group is not compact, it may be possible to find a larger-dimension group
to which the I lv group is a continuous subgroup. We seek a group of generators

,I lv which are found from I tv by a singular transformation

P

J	 = I + cV I µlv	 lv	 µl1

and

i 2 
fl 

2P

where V
l

is a matrix representation of the group and as c — 0 ,
µ

j 1 I 1

'Then the larger algebra is

^Jlv'J1 = Llh,l^i .11k+ c_1 Llk , >p el %'k	 lllv,llµ l

+c v	 b	 4 b
vv' µNQ	 vv' 

V 
µNQ 

+ EV 
i'v' 

v 
VN

1
 I llv'I1N

34
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t►

: ► nd as c -• 0 we recover the subalgebra. 'There is as yet no elegant way of
performing this reverse process. Possibly, examination of the group parameters
rather than guessing at the representation V v of the higher dimensional group
might work. For this method	 µ

a lv	 blv + CV IIII

► nd

a2i^ - cb2v

These parameters are directly related to certain relative tensors which define

the structure constants C 	 of the algebra 1:321. At the same time they
11c

directly specify the vector fields in the manifold which generate the algebra.

Spero and Baierlain ( 191 have suggested a variational :ippro;i . which
may lead to techniques for Solving this problem. They treat the inhomogeneous
metric as possessing an :approximate symmetry. However, the following
question should be considered «Ixn applying this solution: Under what conditions
is this a "subsymmetry" of -.I higher-dimensional symmetry characterizing the
inhomogencous model ?

The Class Ill IMS mo&Is offer the most challenging test Ing ground :end
shall be considered in a future publication.

V 1. HOMOGENEOU S COSMOLOG I CAL MODEL I N YANG'S

THEOR Y OF G RAV I TATI ON

Yang 1 7 1 has presented a gauge gravitation theory which is a rederivation
of Kilmister 13s l. In this section, a cosmologic:il solution is investigated.

A metric is chosen in the form

OI?IGI'NTA L P

2	 2	 2L 2	 2 2 2	 ONE !'UUI{	
AGF 1:,

cis = dt - Adx - Ax dy - Ax sin ydz 	41LALITy

and implemented in the AiACSYAiA symbolic manipulation system as the matrix

31
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i

t
k

-A	 8	 8	 8

8	 -AX2	 8	 8

H	 8	 -AX2 SIN 2 (Y)	 8

8	 8	 8	 1

where A is a function of t and x .

The Kilmister-Yang equations 
Rill 

J1 k] - 0 then have the following

surviving four components ( ()A/(It = A T , 3A/aX = AX)

(D5) 2A 2A,lAXxX 2 - 2A 2 A 17X A"X 2 + 2A4ATTTX2 - 2A3ATATTX2

+ 6A 2 A T AX X - 4A3ATXX

4A4A3 - 14A 3AX A X 3 + 9A 2A ; X 3 + 4A 4A A X3 - 4A 5A	 X3
XXXX 	 XX	 X	 TT X	 TTX

+ 8A 4 AXXX 2 - 16A
3AX2X 2

 - 8A4AXX

7	 r

6A 3A A X2 - 9A 2A A 2 + 8A A A X2 + 4A ^A, , ,X 2 - 4A 4 A ,A
T XX	 T X	 TX X	 I11	 1 TTX

- 4A4ATXXX2 + 18A 3A, i,A XX - 4A 
iA,rXX, 

2A
4

ATTX X 2 - 2A3ATTAXX2

2A 3CX - 4AA X + 3Ax	 i,1X + 6A 2 A, X - SAAXX	 X

2A X

I
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I

Assuming C	 is the constant scalar cumiture, .N(t, x )	 is separ;ible,	 ,ind
A = P (X) Q (t), the equations take the farm

([)t•)
. T,^^^:3^

(":1('QTTT' -
	

I.(?.i'Tx +
XX(d.I,X - P 2Q. l .x + 1'Px(4'1.

1' :`Q \ I }^"P	 x 2 - 14 PP 1' x 2 + 9p xx
:1 

2 + KP 2P x - 161 ,1 1 ,xx - 8P2 P	 ,xxx	 x xx	 X	 xx	 x	 x

P 3
0

4 x .1 1 ► 3(m. I . I.Z.x - 11 , t<1.I.t^.t. I ,X + 2PPxxc1. I .X - 1'x(),I,	 1

	

x + GPI, Q, 1. 	 K .

W, 30.I.. I,X + 21C'P 3QX - 4P1'xXX 
f 3 P 2x - KI'l,

_	 ZP13`^X	 _--

The second of the equations involves only the function P (X) . A solution is

P X

Upon substitution, the following e quations for t1 survive

2c? 
3 

( t1(?.	 - Q, t ?.	 )1..1..1, 

i	 Xls

4Q'i(Q(?L.1..1. - (1,1.(?.1.,1.)	 3(,t.t..1. +rQ

X`

each component separAely equ,jl to zero.

The equation involving; the curvature sc.dar is

ORIGINAL PAGE, 1^
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1'tx ►n differentiation, we find

COT

'rTT	 :3

t

which J&ntically satisfies the rem: ► ining field equations. Thus, we find

Q - 00 c
xp[ti^t I .

'rhe metric is then

2	 ''	 ti , t -h 2
ds = dt ` - Q e	 X (dX { t dit`)u

which can }x! easily transformed to

d 's = dt ` - (^ expo Nr C 3 t	 dr `, + r`^dSt
0

A similar metric has been found as a cosmolligical solution in a modified version
of Yilmaz' theory (:391. it is also simil:u• to the metric in the stc"ady-state
theory 1 :31 . Therefore, we refer to the solution :is the Yank-Yilmaz universe.

The value of the seal: ► r curvature C determines the large-scale behavior
}	 of the solution. For C > 1) the universe is an oscillating; one, and for C < 0 it

expands forever. This is a solution which is not an Einstein space.

The observations in the Yang,-Umaz universe for C < t ► would be very
similar to those in the steady-stater universe 131. For C ^ 0 we have a curious
mixture of flat spatial sections with a closed universe. For real solutions we can
arrange so that

^o cos ht

3.1
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Then the universe oscillates in volume with the evolutionary period

2 a/K = 2 rr 'f 3 / tir:Z^_

Present observational evidence seems to indicate an open universe (the C > tt
case) I4UJ. Nevertheless, observations would Seem to lie inconsistent with
either choice of C ; and, of course, for C - u we have only Minkowski space.

VII. TOWARD FINDING THE ROTATING SOLUTIONS

FOR GRAVITATION THEORIES

The gyroscope experiment 141 was proposed to test wh(Ativr an indue-
c or. field (caused by rotating sources) exists in gravitation. This experiment
is considered the "Faraday" exWriment of relit svistic gravitation theories. In
the weak-field limit, this test of the existence of such fields is essential. The
existence of the binary pulsar allows extension of the gyroscolx- experiment's
results to strong gravity fields; therefore, it may he of use in testing gravitation
theories. To do this the fields exterior to rotating stars must 1w found for cacti
viable gravitation theory. This may he posed as the problem of determining the
axially symmetric, stationary asymptotically flat solutions for empty space for
these gravity theories. Since most of these theories possess a ltiem:snnsan
geometry, one possible technique would involve use of the Newman-Penrose

i	 identities in finding the solutions in which the gravitational field's directions of
propagation are expanding and twisting. They maN not lie shear free, and,

r	 therefore, there may he no analogue of the Kerr 131 solution in Einstein's
theory. An alternative and more meaningful approach might involve the use of
the "Killing" vectors of the static spherically symmetric solution to extend to
the "killing" vectors of the statior,:ry axially symmetric case as has been done
in F; snstein's theory 1 ,12 ) . Relying on that, one may make use of the tetrad
vectors E	 from ,%hich a metric g ib is composed,

r
i.
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9.

qnd try  to exterxi il ► t-w.

the mt , li ► tiony for tl ►e ht! ► hc , nphe rivAly hymmetric curie in the viable
gravitation theories ; ► ro in the, form

dr'"	 -0 - IN ► C . ' ' (It: - + e	 It do	
1 ,`. 

1: sin ndm

Whom

and

^ = ^(It)

The al,l ► r ► yr ► ate 1), ► 5iti of differential forms 
wig 

a ► rx

E -%

da l = n w.µw^ ► ) w 0 - e0cit

w  = o^dlt ,

LO 2 = e'^Rd^

and

w 3 = eitItSinnd,,1

36
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We c:m immediately extend t wse forms to the starionary axially symmetric case
by writing 1.131

•	 w°	 eA Idt + f(n)(P.11

w	 ci((It	 ,

w	 e41 It 	 ,

tnd

I w 
3	 e

= e Itsinncl,.,

"I'hc contravariant basin dual to these forms is

µ	 N
	
-O a /at, e	 - b	 , ^^	 e a /8t

+nd

e,3 - lc It 5innl	 ;I	 - -+(n) le" It sinnl - J e w' ,	 .'t	 .

ORIGINAL P AGE ?S

The composition of the metric is
	 Ok, Ylxilt (,WA 1.1.1'1'
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11 = (o^R sine

and
Amu

,1 	 - -f(A) /1e 4 1t Sinn I

It is this vector decomposition that should be inserted directly into the field
equations of the particular gravity theory and the solutions found for the functions

EP and J 1 . The Newman-Penrose identities can then he used to investigate
µ

the properties of the volutions. ]n view of the fact that for Al the alternative
theories of gravity It 	 t u , it may not he lc)ssible to find the solution with

plo

sheer-free expanding and twisting rays; hence, there is no analol ruc to the
Kerr 1 ,141 or Newman-Taniburino-Unti (•151 solutions in Eins tein's theories.
These solutions are presently being; worked out, and it is expected that they
will he obtained systematically coke N ith facility.

The equiv,dent in ►► utter-filled spaces would be shearing; universes with
twisting; rays. 'These solutions also will be investigated using; the algorithm
previously mentioned.
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