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OBSERVATIONS OF SOLAR ACTIVE REGIONS AND SOLAR FLARES BY OSO-7:

W. M. Neupert

Laboratory for Astronomy and Solar Physics

NASA-Goddard Space Flight Center

Abstract. This review paper discusses contributions made to the physics

' of coronal active regions and flares by the GSFC Extreme Ultraviolet and

Soft X-Ray Spectrohellograph on OSO-7. Coronal structures above active

regions are discussed from the point of view of their morphology and

physical properties, including their relationship to photospheric and

coronal magnetic fields. OSO-7 also recorded flares with sufficient

spatial (20 arc sac) and temporal resolution (one minute) to record, in

some instances for the first time, the extreme ultraviolet and soft X-ray

emission associated with such chromospheric phenomena as filament acti-

vation and the emergence of satellite sunspots. Flare phenomena are

reviewed in terms of the several stages of evolution typically associated

with the event - the pre-flare buildup, the impulsive phase and the post-

maximum phase.

I. INTRODUCTION

The versatility of the sun's extreme ultraviolet and soft X-ray spectrum

as a tool for coronal research is by now well appreciated, with many con-

tributions being made by this OSO series of satellites, the ATM Skylab

mission and NASA's ongoing rocket program. In this paper I would like

to discuss some of the observations and results obtained with the OSO-7

extreme ultraviolet (EUV) and soft X-ray spectroheliograph to the topics

of solar activity and solar flares. The wavelength range that was covered -

1.8_ - 15_, 120_ - 400_ and H_ at 6563_ cover emission lines produced

over a wide range of electron temperature in the solar transition region

and corona. Spatial resolution was 20 arc sac. The instrument _as de-

signed to provide four simultaneous spectroheliograms - two in the soft

X-ray region and two in the EUV (with a limited substitution of H_possible).

Further automatic operational sequences through six X-ray channels and/or

four EUV channels were possible so that a wide range of plasma temperatures

could be obtained at the expense of temporal resolutions.

II. OBSERVATIONS OF ACTIVE REGIONS

Observations made from rockets and satellites at soft X-ray and EUV

wavelengths have clearly shown the magnetically confined systems of

. coronal Xoops which connect regions of opposite magnetic polarity, either :_

in the 3ame active region or in neighboring regions (Vaiana et al. 1968, i

Krieger eta]. 1971, Tousey et al. 1973). From spectroscopic _bservations _i°

made even earlier both from the ground (see Billings, 1966 for a review
of the observational material) and from space (Widing and Sandlin, 1968,

FNoyes et al. 1970) it was evident that the enhanced em/ssion associated

with active regions could be attributed to increases in both electron

temperature and density as compared to the "quiet" corona. ,o
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As the phototype of coronal active regions observed by OSO-7 I

would like to consider a magnetically bipolar region far removed from

other regions of activity. Observations of this region were made over

a two week period as it crossed the Ctsk in January 1972 (Neupert,

Nakagawa and Rust, 1975). During this period, it was the site of flare

activity (to be addressed later) and ultimately evolved into a magneti-

cally complex region as it approached the west limb of the sun. Its
location and appearance at central meridian passage is shown, both in

H_ and two EUV observations on January 19, 1972 in Fig. i. The magnetic
neutral line of zero longitudinal field runs generally in an east-west

direction and separates magnetic fields of opposite polarity° While the _

regions of greatest emission at 304_ (He II) correspond well to the H_

plage, emission from lines at transition region temperatures (500,000K -

1.0 x 106K) such as those of Mg VIII is more extended, showing outlying

bright patches that may represent the footpoints of high loop systems.

At high electron temperatures, e_g_, 2.3 x 106K at which the contribution

function for Fe XVI peaks, the emitting region is markedly simpler and

is localized in one region lying between areas of opposite magnetic

polarity. The simplest geometry which satifies these high temperature

observations is in fact a set of rather flat magnetic arches, hottest _

at their tops and with their footpoints in the brightest chromospheric

plage. Such a simple picture becomes immediately more complex when we

examine spectroheliograms representing plasma at intermediate temperatures *

i.e. io0 - 2.0 x 106K (Fig. 2). From these we find that the orientation

of the apparent arches of emission crossing the neutral line depends upon *

the ion being observed. A possible model, based on the data and on com-

puter-generated force-free magnetic fields (Nakada and Raadu, 1972), is

a set of nested arched defined by force-free magnetic fields whose

orientations, relative to magnetic neutral line, change with increasing

electron temperature° From Fig. 2 we infer that both positive and nega-

tive values of the current-proportional parameter _ may be present,

implying that opposing currents may be possible in neighboring coronal

loops or arches. A similar conclusion has been obtained by Levine (1976)

from an examination of ATM data. A present limitation in such analyses

is that the calculation of the coronal field must be performed with a

constant value of _ for the entire region. This si _lication obviously

does not correspond to reality°
¢

Recognizin9 that ambiguities and uncertainties _xist because of the

limited spatial resolution that was available, we can still present some

qualitative conclusions concerning the rather flat-arch high temperature
coronal features:

io Active region structures occur as arches or loops between

regions of opposite magnetic polarity generally in a geometry

that is consistent with the presence of electric currents.

There is some evidence in the OSO-7 data that the top of an

arch or loop is its hottest point. Any single loop or arch is /

978009034-005
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nearly isothermal except at its foot[_ints. Typical character-

istics for two cases that have been analyzed dre given in Table 1

(Neupert ec al_, 1975; Levine and Withbroe, 1976).

2. Radiative losses are greater than conductive losses to the

chromosphere in the one case we have examined in detail. Such

losses must be balanced by a energy input to maintain the tem-

perature of the coronal structure. If this is to be injected

through the footpoints, then about 1.5 x i0 erg cm -2 s-I are

required to maintain the hottest loops. Alternatively, dissi-

pation of magnetic fields, if it occurs rather uniformly through-

out the length of the arch, is another possible energy source

(Tucker, 1973). In any event, the lifetime of the system, if

the energy input is removed, is of the order of an hour or two

Such an occurrence has been reported by Levine and Withbroe (1976).

TABLE I. Typical Properties of Active Re@ion Coronal Arches

OSO- 7 ATM

(Neupert et al., 1975) (Levine and Withbroe, 1972)

Ion Fe XV, Fe XVI Mg X

Height 20-40 x 103 km _ 30 x 103 km

Diameter 20 x 103 km 14 x 103 km

T max 2.6 x 103K 1.4 x 106Ke

-3 -3
n 6.7 x 109 cm 1.8 x 109 cme

Pressure (3n kT) 7.2 dyn cm -2 0.8 dyn cm -2e

Energy dissipation 2.3 x 10-3 erg cm-3 s-I 2_4 x 10-4 erg cm-3 s-I

Tcooling 3.5 x 103 s 1 x 103 s

' (radiative loss)
• .+

III. OBSERVATIONS OF SOLAR FLARES

_i_" Let us start by addressing the question of the location of the

_.ez%_ initial phase of a typical active region flare - in the corona? - or in
_,_ the chromosphere? - or somewhere in between, recognizing that our standard

concepts of these terms may not be appropriate in most highly structured

i_ centers of activity. Our answer from the 0SO-7 data must be a guarded

one because of the limited spatial resolution. It appears however, that

the flare does not begin in the bright coronal features of active re_ionso

If the event begins in the corona Joe. in regions with Te > I.5 x lO"K,

ORIGINALPAGB 1B
p00RQu*u
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that location ,_ust be of very low inltial b, 9htness and of low contrast

with its surroundings. As an illustration of this statement, Fig. 3

shows the coronal (and chromospheric) emission ir several lines prior to

an event on August 2, 1972 and the subsequent appearance of a flare.

Note that the flare does not coincide with any definite coronal feature

prior to the event. Furthermore, there appears no way i _hich the pre-

flare emission Fe XIV line emission (5% of the flare maximum) at the site

of the eventual flare could account for the eventual flare emission.

A compression of the Fe XIV emitting region could in fact produce the

emission measure we record at higher temperature during the flare, but

then the Fe XIV emission would have to vanish. In fact, we recorded

enhanced emission measures (above that inferred for Fe XIV6at the flare
site prior to the flare) at all temperatures up to 30 x I0 K. Generally,

we can state that the high temperature coronal emission of Fe XV and

Fe XVI associated with active region loops is enhanced after the beginning

of a flare - primarily after the impulsive phase is ended - but does not

give evidence of enhanced emission during the impulsive phase of a flare_

If we do not see the flare beginning in the high-temperature

corona, then where does it first radiate in the extreme ultraviolet?

Our evidence, based on those instances for which our spatial resolution is

adequate to draw conclusions, is that the EUV emission from transition

region lines He II up through those emission lines formed at 1 x I06K
(or somewhat above) is enhanced at the same time and at the same location

where an H_ point brightening signals the beginning of the impulsive

phase of a flare event. Such emission is very transitory and can be

associated with the impulsive phase of the flares evolution as originally

pointed out by Kane and Donnelly (1971). An impulsive EUV component

appears to be present for a wide range of time scales of flare phenomena,

i.e., not only in very rapidly developing events but also in slowly

evolving flares. As an example of the former case, Fig° 4 _how_ th_

_mpulsive development of a flare on August 2, 1972. In this case, the

low-temperature EUV component reached maximum in about one minute

(coincident w_th the hard X-ray emission recorded by the UCSD instrument),

followed one minute later bY6maximum emission in the highest temperature

thermal plasma (_ 20-30 x i0 K recorded in emission of Fe XXV and Fe XXVI)
and two minutes later by a maximum of _ i0 x I0 K plasma (Fe XVII). Even

with such a rapid evolution, the emission occurs in a well defined loop

system bridging the neutral line of the photosphere longitudinal magnetic

field with the highest temperature plasma apparently radiating from a
different loop than the lower (but still I0 x IO-K) temperature component.

A second example of the impulsive component is shown in Fig. 5

where it is recorded in an emission line of Fe XI at 180.5A (Thomas, 1975).

Note that no impulsive component is recorded in H_ simultaneously by the

instrument although the initial Fe XI emission seems to be located close

, tO the initial site of HG emission (Fig. 6). This site must also be the

location of an explosive phenomenon for we record ejecta in Fe XI

I originating there and moving toward the center of the lower margin of

t i t _ ; ,, , J j
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the fleld of view at a rate of about 600 _n/s normal to the line of

; sight.

Finally we consider a slow-rise flare, on January 19, 1972 which

was sufficiently extended spatially that we could record the temporal

i and spatial sequence of events occurring in the initial phase of the
flare's development. This flare, recorded simultaneously by OSO-7 and

' Sacramento Peak Observatory by David Rust (Rust et _!. 1975) was pre- ;

ceded by the activation (an apparent untwistin_ of a dark filament

located along the magnetic neutral line (Fig. 7). The flare itself began
with the appearance near the center of the filament of a bright H_ knot [

at about 1634 UTo This was identified as the trigger phase (located at

point "A") and was accompanied by a burst in the EUV lines of Mg VIII and

Mg IX at 315_ and 368_ respectively (Fig. 8). As this first bright EUV

point faded, a second, labeled "B" at the southern footpoint of the

erupting filament and on the opposite side of the neutral line appeared,

followed eventually by a third "C" near the northern footpoint. The

concurrent soft X-ray (Fig. 9) observations showed no similar impulsive

event with the first H_ brightening but did show a momentary peak, super- _
imposed on a gradually rising level, associated with the second H_

brightening. The soft X-ray emission distributed along a line connecting i

"A", "B", and "C" continued to increase monotonically as the filament

erupted. The velocity of eruption observed off-band at H_ at the center

of the filament was at least i00 km/s outward while the ends of the fila-

ment displayed a downward motion. Similar outward velocities (as well as

turbulent components) have been recorded in the Fe XXIV emission line at

244_ by the NRL _TM 5082A instrument on Skylab so there is strong evidence

that the matter that eventually forms the hot X-ray emitting flare plasma

is identical to or is at least closely associated with the activated

filament.

An examination of sunspot photograph_ and magnetograms taken during

the event revealed that two sunspots emerged during the event and that,

in fact, new flux was emerging through the photosphere and chromosphere

immediately adjacent to the eruptive filament and at the point where the _-

flare started. Force-free field modeling (Nakagawa a_ Raadu, 1972) of
the region indicated that sufficient energy, about I0-- ergs, was avail-

able in the magnetic field to power a IB flare. While many questions

concerning the actual source of energy required to drive this event go _

unanswered, _he close spatial coincidence of new emerging magnetic flux
(1019MX Hz- ) with initial H_ and transition region brightenings lends

support to the theory of Priest and Heyvaerts (1974) in which a plasma

instability could start where emergent flux intersects overlying fields.

It is worthwhile t emphasize t_at impulsive brightenings in

transition region and lower temperature coronal lines are present in all

three events and others that we have recorded, so they appear to be a :_

;_ very common characteristic of active region flares. Furthermore, when

more than one bright point is distinguished in an event, the brightenlngs

_ are sequential an@ not coincident,

.... 4 i 1
l
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! We now go on to discuss the maximum and post-maximum phases of

typical events. OSO-7 observed, as did also the ATM instruments with

i much better spatial resolution (Cheng and Widing, 1975; Kahler, Krieger
and Vaiana, 1975; Brueckner, 1976), the formation of a high temperature

(2 - 20 x 106K) plasma in magnetically struct_Led arches crossing the

neutral line. Such arches have remarkable stability in time, although

observations of line broadening imply that the material contained within

them in a turbulent state (ion velocities of 60-120 km s-1) (Brueckner,

1976) _ OSO-7 observations suggest that these flare arches, confined by

coronal magnetic fields which are probably already present prior to the

flare, have a nested configuration, with cooler (2 - i0 x I06K) arches

nested within hotter (i - 2 x I07K) arches. Data from the August 2

event (Fig. 9) show such a spatial separation oi the cooler (Mg XI)

and hotter (Fe XXV) components. On the other hand, the January 19, 1972

event occurred near the meridian and no spatial separation was detected.

A more striking example of the loop-like structure of X-ray emission

was observed during the post-maximum phase of a limb flare on Feb. 9,

1972. Fig. I0 begins with observations taken at 0855 UT as a bright

area in the lower right corner of the He II data frame was fading. This

area corresponded to the location of an unconfirmed H= subflare

(importance-F) which had begun at 0820 and ended at 0850 (as observed

at Carnarvon, Australia). We observed a low (maximum height of 8800 km)

T arch in Fe XVI and an even higher arch (maximum height of 40,000 km) in

soft X-rayso The rate of decrease of this soft X-ray emission agrees

with that recorded by the Solrad satellite during this event. Later in

time a second He II bright point (not reported as a flare) appeared at

distant footpoint of these hig5 temperature arches and, even later, at

the end of the daylit portion of -.he OSO orbit, a third region near the

original flare began to brighten. Inasmuch as the Fe XVI emission originates

in a temperature range intermediate to that of the soft X-ray emission

and that of the chromospheric emission, we would expect to see the Fe XVI

defining the legs of the arch whose top is a copious emitter of soft

X-rays. This may be the case on the right hand side where the Fe XVI

emission is the greatest. However on the left hand side, no evident

relation exists between the Fe XVI and soft X-ray emission. Possibly

some restriction or pinching of the high temperature arch is present

near this one footpoint.

The complex spatial relations of flare emissions are again demonstrated

in a dramatic way through observations of this same general region on

February 9 following a flare behind the east limb of the sum which pro-

I duced a system of large post-flare loops (Fig. ii). O_O-7 observed these
loops in the transition lines of Mg VIII and Mg IX in which they were com-

parable to grom,dbased H_ data (although the observations were not exactly

! coincident in time)(Chapman, 1977) . Such features are usually attributed

to an arcade of arches seen end-on. However, at higher coronal tempera-

ii tures (recorded in Fe XVI and soft X-ray emission) the spatial distribution

• of the radiation changed dramatically, hecomlng much more triangular in
T• general outline with increasing _ and having a region of enhanced

emission at the apex of the triable. It seems clear that the apex of

] 978009034-009
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the X-ray emission extends higher above the limb than does the EUV emission.

If, in fact, the structures that we recorded at the_e three wavelengths

(and temperatures) are spatially related, it may be that the high lying

X-ray emission represents hot plasma which, as it cools, condenses into _
the tops of the loops recorded in Mg VIII and drains downward through

them to the chromosphere. Such a scenario had alzeady been proposed _see

. Billings, 1966 for a review of this topic) on the basis of Ca XV (yellow _ _
line) observations of knots of hot material at the tops of the post- •

flare loops. The spatial distribution of Fe XVI is consistent with this
interpretation. Furthermore, the observations demonstrate that there
exists an even hotter, higher region emitting in Y-rays. This region _

is evidently also contained by a magnetic field, and its shape reminds _

one of the Y shaoed neutral point and neutral sheet concepts of solar I
flares discussed by Sweet (1958), Sturrock (1968) and others. We can i

find no evidence that the hot plasma originates there_ However, R. IChapman (1971), who has analyzed this event, finds that energy must be

continually supplied in order to mail_tain the X-ray emisslon over a

period of nearly 2 days_ Vorpahl (1975) has analyzed a similar event

recorded by ATM and also finds that energy and possibly new material

must be added to the X-ray loop system as it evolves. Two analyses of

flare loop structures (Rust et. al., 1975; Chenq, 1977) are given in

Table If.

Table II. Typical Properties of Flare Loops

OSO-7 ATM

(Rust et al., 1975) (Cheng, 1977)

Ion Fe XXV Fe XXIV, Fe XXIII

Height 35 x 103 km _ 7 x 103 km

Diameter _ 3.5 x 103 km 1.5 x 103 km

T max 30 x 106 K 14 x 106 K
e

-3 1011 -3n > 1.5 x I0 I0 cm _ i x cm
e

Pressure (3n kT) _ 180 dyn cm-2 _ 580 dyn cm -2
e

-3 -i -3 -i
Energy dissipation I-2 erg cm s 7 erg cm sec

Tcooling _ I00 sec i0-I00 sec

(conduction)

ORIGINALPAGE m
OF POOR QUALEE
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The preceding discussion of active region flares recorded by OSO-7

can be summarized in a number of main points:

i. No evidence has been found that material at coronal temperature

residing in the low corona prior to an event is the source of matter f3_

the hot thermal plasma produced during the event. Material at lower

i.e. chromospheric temperature, such as a filament in the low corona, _

a strong candidate for the eventual flare plasma, however. Activation

of such a filament prior to the flare may be accompanied by a low level

of soft X-ray emissiono

2. An impulsive spike of emission at transition region temperatures,

possibly up to 1.5 x 106K, is a common occurrence and can be spatially

related to the first H_ brlghtenings of the flare o We associate this

first flare brightening with the trigger of the flare phenomenon o In

one event this brightening is located near a rapidly emerging region of

magnetic flux beneath an existing filament. Instabilities during magnetic

field line reconnection, as discussed by Splcer (1976), can lead to a

release of magnetic energy residing in any force-free magnetic field

configurations. As a result, electrons are accelerated to high evergies.

Thei_ energy losses, produced through interactions with the solar plasma

and magnetic fields, produce hard X-ray bursts, microwave emission and,

sometimes, white light photospheric emission coincident with the impulsive

EUV emission. Subsequent to the Inltlal EUV brightening, one or more

other locations in the flarlng region may dlep!ay short-lived brightenings.

However, no instances of simultaneou_ brightening of two spatlally sepa-

rated points have been recorded. Such simultaneous effects would De

expected if the initiation of the flare occurred at the top of a coronal

loop system and traveled concurrently to the chromospheric footpcints of

the coronal loop (Sturrock, I_68).

3. The impulsive phase is accompanied by a rapid rise in the soft

X-ray emission as a high temperatture plasma is formed. Its apparent

electron temperature, derived either from observations of the thermal

continuum (Datlowe, 1974) or line em/sslon of Fe XXV (Phillips, Neupert

and Thomas, 1974), reaches a maximma as th.Q impulsive phase terminates.

In one event recorded this emission can be attributed to ionization of

material in a dark filament. Similar instances of X-ray emission

originating in disappearing filmlntm have been recorded by ATH (Webb,

Krleger and Rust, 1976! Sheeley st. el., 1977). Thus, the heating and

ionization of material originally at chromospheric or near-chromospherlc

temperatures does appear to explain the appearance of the hot flare plasma

_ (Neupert, 1968, Hiryama, 1974). Such ion£_atlon .1o_4urs over an extended
: ,J region of the filament (in contrast to the point like location of the

: _ initial trigger phenomenon) and suggests that a second type of energy
; -":_ conversion, again possibly a plasma instability but in this case assoclated

i _] with turbulent magnetic fields, rather than the ordered fields present

t ._::j when the flare is triggered, in present (8plcer 1976). The hot plasma,

_:i]_ although exhibiting turbulent velocLti.., is localized in .t,blo coronal

1978009034-011
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loop systems. Further brightenings in transition _Pgi_n llr_e_ may occur

during the build-up of the hot thermal plasma and may be the co,_sequence

of heat conduction from that plasma into the chromosphere (Somov and

Syrovatskii, 1974; Somov, 1975). In some instances, mass ejections

originating from the corona - chromosphere interface are observed in !

emission lines emitted by the same ions which radiate during the impul-

' sive phase, Joe. at T < 1.5 x I06K. This mass loss may represent a

portion of an eruptin_ _ilament or may represent chromospheric material, i

ejected into an open magnetic configuration. This ejection originates at

or near chromosphere heights, not at the tops of coron_l loops, impl_ nq

that an explosive heating of plasma originat£s in the high chromosphere !
or transition region°

I

ii
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FIGURE CAPTIONS

Fig. 1. Observations of an active region on January 19, 1972, showing

(a) the location of the active region on the solar disk, _

(b) isogauss contours of the longitudinal photospheric magnetic
field as measured at Sacramento Peak Observatory at 1619 UT $

superimposed on H_, (c) the corona in the radiation

• of Fe XVI(335.4_) at 1614 UT and _d) the high transition region
in the radiation of Mg VIII(315.0A) (at the same time as (c)).

Frames (b), (c), and (d) are all to the same spatial scale and

' cover that portion of the solar disk surrounded by the black

rectangle in Frame (a). In (b), the solid and dashed contours

represent areas of opposite polarity. The neutral line generally

coincides with the dark filament through the region. The EUV

isophotes in (c) and (d) are scaled in increments of 5% of the

peak intensity recorded in each spectroheliogram.

Fig. 2. Comparison of calculated constant _ force-free coronal magnetic

fields, derived from the observed photospheric (longitudinal)

field shown in Figure i, with EUV emission from OSO-7. An arch

of E_ emission crossing the neutral line is observed in each

stage of ionization but the orientation of the emission (angle

relative to the neutral line) as indicated by the dashed lines

changes from one stage of ionization to the next. To match these

orientations in the calculated magnetic field requires a change

in the current-proportional parameter _, thus implying currents

of differing magnitude and direction as a function of height in

the lower corona.

Fig° 3. Spectroheliograms of solar emission prior to and during the

impulsive phase of a flare° Intensity levels have been normalized

so that the increment between two isophotes represents one-eighth

of the maximum count (shown in the upper right cornez found in

that spectroheliogram. Note that only weak EUV and no measurable

soft X-ray emission emanated from the site of the flare before

the event began at 1838 UT.

Fig. 4. The intensity of the brightest point in the EUV flare of

August 2, 1972, at two wavelengths: 2190_ and 294.9_o Note the w

impulsive phase between 1838 and 1842 UT and the gradual phase

after i842 UT seen at both wavelengths.

_iI Fig. 5. Time history of the peak intensity of a flare on 1972,

February 13 observed by OSO-7 at three wavelengths in the visible

(H_), soft X-rays (Mg XI, XII), and EUV (Fe XX).

Fig. 6. Time sequence from left to right of OS0-7 spatial maps in a

grey-scale representation for the flare shown in Figure 5.

From top to bottom are maps 5' square in H_, Fe XI, Mg XI-XII

• and Si XIII-XIV. The sequence on the left covers the impulsive

phase at roughly one-minute intervals. The set _,, the right

were all made at the peak of the gradual component. Dark markings

in the center of some Fe XI maps are due to computer overflow and

actually represent the very brightest location.
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Fig. 7. Comparison of H_, Mg VIII and soft X-ray observations prior to

and during the flare cf January 19. Points A, B, and C, the

sites of successive EUV brightenings are indicated. Weak soft

X-ray emission was observed in the region of the activating

filament before the beginning of the event.

Fig. 8o EUV (Mg VIII at 315.0_) (above), and soft X-ray (Mg XI, Mg XII

and continuum at 7.95-9.51_) (below), emission as a function i

of time for three locations (points A, B, and C on the previous

figure). Maxima of Mg VIII emission _re associated with the

trigger phase of the flare (point A), with one end of the dis-

rupting filament (point B), and with the rapid expansion of H_

emission (point C). Soft X-ray emission displayed a gradual

rise throughout this interval of time except for a small

additional enhancement at point B at 1638-1639 UT.

Fig. 9. Comparison of XUV spatial distribution during the post-impulsive

phase of the flare with an off-band (H_ + 0.6_) photograph_made

at the Lockheed Solar Observatory. The radiation at 294.9_

attributed to chromospheric emission coincides with the H_

brightening present at nearly the same time. Soft X-ray

emission from Mg XI and Mg XII (b) and highly ionized iron

(primarily Fe XXV) (c) localized in loop-like features extending

across the neutral line of the longitudinal photospheric magnetic

field (marked by a diagonal break in the H_ flare filament).

Fig. I0. Spectroheliograms made in the emission lines of He II, Fe XVI, and

primarily) Si XIII and Si XIV during the post-maximum phase of

a limb flare° The soft X-ray emission is situated in one or

perhaps several loops extending to a maximum height of 40,000 km

above the photospheric limb (indicated by th_ dashed lines).

Fig. ii. Spectroheliograms made in the emission lines of Mg XIII, Fe XVII

and (primarily) Mg XI and Mg XII in the region of observed H_

loop prominences on the east limb of the sun on February 9, 1972.

Enhanced X-ray emission is attributed to a long-lived event first

recorded by Solrad 9 on February 8, 1972. No H_ flare was

reported although pressed present behind the solar limb.
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