NASA Contractor Report 145344

MINIMUM INDUCED DRAG CONFIGURATIONS WITH JET INTERACTION

Jon Louh Mao and C. Edward Lan

THE UNIVERSITY OF KANSAS CENTER FOR RESEARCH, INC.
Lawrence, KA 66045

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23665
Minimum Induced Drag Configurationswith Jet Interaction
by
Jenn Louh Pao
and
C. Edward Lan
Technical Report CRINC-FRL-281-2
February 1978The Flight Research LaboratoryThe University of Kansas Center for Research, Inc.Lawrence, Kansas 66045
Prepared under NASA Grant NSG 1139
for
Langley Research CenterNational Aeronautics and Space Administration
Page
Summary 1

1. List of Symbols 2
2. Introduction 5
3. Theoretical Development 7
3.1 Boundary Conditions and Interpolation Matrix 7
3.2 Sectional Aerodynamic Coefficients 9
3.3 Overall Aerodynamic Characteristics 15
3.4 Optimization Equations 17
3.5 The Determination of Camber Ordinates 24
3.6 Summary of Solution Procedures 27
4. Numerical Results and Discussions 30
5. Conclusions and Recommendations 48
6. References 49
Appendix A Gradient Projection Method with Linear Constraints 51
Appendix B Description of the Computer Program 56
Appendix C Computer Program Listing 70

Summary

A theoretical method is presented here for determining the optimum camber shape and twist distribution for the minimum induced drag in the wing-alone case without prescribing the span loading shape. The same method was applied to find the corresponding minimum induced drag configuration with the upper-surface-blowing jet. Lan's Quasi-VortexLattice Method and his wing-jet interaction theory has been used. Comparison of the predicted results with another theoretical method shows good agreement for configurations without the blowing jet. More applicable experimental data with blowing jets are needed to establish the accuracy of the theory.

1. LIST OF SYMBOLS
[A] matrix $\left[N_{W W}\right]$ after transformation
$\mathbf{a}_{j} \quad$ Fourier series coefficient
$a_{k j} \quad$ the element of the transformation matrix [A]
AR aspect ratio
[B] matrix $\left[N_{W J}\right]$ after transformation
b
$b_{k n} \quad$ the element of the transformation matrix [B]
c
chord length
\bar{c} reference chord length
c_{a}
average chord length
c_{d}
c
c
sectional induced drag coefficient
$c_{\ell} \quad$ sectional lift coefficient
c_{m} sectional pitching moment coefficient
$C_{L} \quad$ total lift coefficient
$\overline{\mathrm{C}}_{\mathrm{L}} \quad$ lift constraint
$\mathrm{C}_{\mathrm{m}} \quad$ total pitching moment coefficient
$\overline{\mathrm{C}}_{\mathrm{m}} \quad$ pitching moment constraint
$\Delta C_{p} \quad$ pressure coefficient
$C_{\mu} \quad$ jet-momentum coefficient
$d_{i} \quad$ local induced drag
$\vec{e} \quad$ unit vector tangent to jet path
$E_{k} \quad$ step direction vector defined by Eq. (42)
f_{1}, f_{2}, f_{3} the length of each section in the spanwise direction
g_{n}
h_{1}, h_{2}
[I]
a scalar defined by Eq. (26.a)
the length of each section in the chordwise direction interpolation matrix

ℓ	local lift
M	Mach number
M_{1}, M_{2}, M_{3}	the numbers of spanwise strips plus one in each section
$\overrightarrow{\mathrm{n}}$	unit vector normal to jet surface
n, s	jet axis system
[N]	normal velocity influence-coefficient matrix
$\mathrm{N}_{1}, \mathrm{~N}_{2}$	numbers of vortices in each section along the chordwise direction
N_{c}	$=\mathrm{N}_{1}+\mathrm{N}_{2}$
N_{j}	total number of jet vortices in the outer flow
N_{t}	total number of wing vortices over the semi-span
q	dynamic pressure
[s]	tangential velocity influence-coefficient matrix
S_{w}	wing area
T	$=\rho_{0} / \rho_{j}$
t_{j}	jet thickness
v	velocity
$\overrightarrow{\mathrm{V}}$	unperturbed velocity vector
$\overrightarrow{\mathrm{v}}$	perturbed velocity vector
$\overrightarrow{\mathrm{v}}_{j e}$	jet-entrained-flow velocity vector
x, y, z	wing-fixed rectangular coordinates with positive X-axis along axis of symmetry pointing downstream, positive Y-axis pointing to right, and positive z -axis pointing upward
${ }^{2}$	coordinate of camber surface
a	angle of attack
α_{t}	local angle of attack
γ	```nondimensional vortex density \partialz```
$\delta(x, y)$	$=\frac{c}{\partial x}$ (see Fig.1) ${ }_{3}$

δ_{j}	jet-deflection angle
$\Delta \sigma$	step length defined by Eq.(41)
θ	angular coordinate (see Eq.(22))
Λ	sweep angle
λ	taper ratio
λ_{1}, λ_{2}	Lagrange multipliers (see Eq. (31))
μ	$=V_{0} / V_{j}$
μ^{\prime}	$=\vec{V}_{0} \cdot \vec{e}^{e} / \vec{V}_{j} \cdot \vec{e}^{2}$
ρ	density
ϕ	angular coordinate (see Eq. (29))
$\bar{\phi}$	nondimensional perturbation velocity potential
Subscripts	
a	additional
c	control point (see Eq. (1))
j	jet flow
jj	jet flow perturbation due to jet vortices
JJ	jet control points being influenced by jet vortices
JW	jet control points being influenced by wing vortices
0	outer flow
oj	external flow perturbation due to jet vortices
w	wing
v	vortex point (see Eq.(3))
wa	additional wing vortices
wj	perturbation due to wing in jet flow
wo	perturbation due to wing in outer flow
Wo	wing alone vortices
∞	free stream

2. INTRODUCTION

It is well known that the induced drag of the conventional wing is minimized if the span loading is elliptical. In the early of this century, Munk (Ref. 1) developed a theory for minimizing the induced drag of arbitrary lifting configurations. According to the Munk theory, all loadings are assumed light so that the velocity perturbations are small and the wake in the Trefftz plane may be assumed undistorted. Later, Mangler (Ref. 2) studied the relationship of the circulation distribution over the wing and of the lift to the height of end plate. In his theory, an infinitely thin flat plate was assumed. The theoretical elliptical loading was obtained when the end plate has zero height. For the same problem, Cone (Ref. 3) experimentally determined the optimum spatial distribution of vorticity, corresponding to the minimum induced drag for a specified lift and a given configuration. He used the analogy of a velocity potential and an electrical potential in a medium of uniform conductivity. Lundry (Ref. 4) developed a procedure for accurate computation of the minimum induced drag of nonplanar wings with pylon-like panels. This method was restricted to a twodimensional Trefftz plane so that the Schwartz-Christoffel transformation can be used. Stevens (Ref. 5) investigated the suitability of planar lifting surface theory to high lift wing design. In his theory the optimal camber surface of the wing is obtained by constraining the spanWise lift distribution to be elliptic. Loth (Ref. 6) determined the optimal span loading on bent lifting lines in the Trefftz plane. Lamar (Ref. 7) used the Vortex-Lattice Method to determine the optimal span loading for minimum drag for interacting surfaces, and to solve the mean camber surface of the wing which will provide the required loading.

In the above references, it was seen that different methods were used to find the minimum induced drag configuration for the conventional wings. They include the lifting line theory, the vortex lattice method, the Kernel function method (Ref. 8), etc: However, one common feature of these methods is that the span loading shape must be prescribed in advance. For the present investigation of configurations with jet interaction, this is not possible.

The main purposes of this investigation are therefore as follows: (1) to develop a new method to determine the optimum camber surface and twist distribution for the minimum induced drag in the wing-alone case without prescribing the span loading shape; (2) and to use the same method to find the corresponding minimum induced drag configuration with the upper-surface-blowing jet. In both cases, the optimum configurations are computed under constraints of specified lift and pitching moment. Lan's method (Ref. 9) and his formulation for the upper-surface-blowing problem will be used in the investigation.

3. THEORETICAL DEVELOPMENT

In the present analysis, the thin wing in the linear inviscid subsonic compressible flow will be assumed. Therefore, the assumption of small angle of attack, flap deflection, thickness ratio, and camber is applicable. The expressions of induced drag, lift and pitching moment coefficients can therefore be simplified. The near-field method is used here to predict the aerodynamic characteristics of wings under jet-off and jet-on conditions. In section 3.1 the boundary conditions in wing-alone and jet-on cases will be described. In section 3.2 the simplified formula of the sectional aerodynamic coefficients will be derived. In section 3.3 the overall aerodynamic characteristics are determined by spanwise integration of the sectional characteristics. In section 3.4 a method is presented to find the optimum wing-alone and jet-on vortex strengths. In section 3.5 the camber ordinates and local angle of attack are determined by integrating the camber slope in the chordwise direction. The detailed procedures of iteration are summarized in section 3.6.

3.1 Boundary Conditions and Interpolation Matrix

In the wing-jet interaction theory described in Refs. 10 and ll, the solution is obtained by solving the wing-alone case first and then the additional effect due to jet interaction. To set up all the influence coefficient matrices, the Quasi-Vortex-Lattice method (Ref. 9) is used in the computation. In the wing-alone case, there is only one boundary condition - wing flow tangency condition, to be satisfied. It can be written as :

$$
\begin{equation*}
\left[N_{W W}\right]\left\{\gamma_{w_{0}}\right\}=\left\{\frac{\partial z_{c}}{\partial x}-\alpha\right\}_{c} \tag{1}
\end{equation*}
$$

where $\left\{\frac{\partial z_{c}}{\partial x}-\alpha\right\}_{c}$ are the camber slopes at the control points. Since the camber slopes at the vortex points are needed in the computation of the induced drag coefficient, it is necessary to interpolate the values at the control points. The trigonometric interpolation formula derived in Ref. 12 is suitable for this purpose.

$$
\begin{equation*}
\left(\frac{\partial z_{c}}{\partial x_{i}}-\alpha\right)=\sum_{k=1}^{N}\left(\frac{\partial z_{c}}{\partial x_{k}}-\alpha\right)\left(\frac{(-1)^{i+k} \sin \theta_{k}}{\cos \theta_{k}-\cos \theta_{i}}\right) \tag{2}
\end{equation*}
$$

where the indices k and i represent the corresponding vortex and control points respectively. In matrix form, Eq. (2) becomes:

$$
\begin{equation*}
\left\{\frac{\partial z_{c}}{\partial x}-\alpha\right\}_{c}=[I]\left\{\frac{\partial z_{c}}{\partial x}-\alpha\right\}_{v} \tag{3}
\end{equation*}
$$

where $[I]$ is the interpolation matrix. Thus,

$$
\begin{equation*}
\left\{\frac{\partial z_{c}}{\partial x}-\alpha\right\}_{V}=[I]^{-1}\left\{\frac{\partial z_{c}}{\partial x}-\alpha\right\}_{c} \tag{4}
\end{equation*}
$$

or,

$$
\begin{align*}
\left\{\frac{\partial z_{c}}{\partial x}-\alpha\right\}_{v} & =[I]^{-1}\left[N_{W W}\right]\left\{\gamma_{W_{0}}\right\} \\
& =[A]\left\{\begin{array}{l}
\gamma_{W_{0}}
\end{array}\right\} \tag{5}
\end{align*}
$$

In the jet-on case, there are three boundary conditions to be satisfied:

1) Pressure continuity on the jet surface

$$
\left[s_{J J}\right]_{(j)}\left\{\gamma_{j J}\right\}-T\left(\mu^{\prime}\right)^{2}\left[s_{J J}\right]_{(0)}\left\{\gamma_{0 j}\right\}-T\left(\mu^{\prime}\right)^{2}\left[s_{J W}\right](0)\left\{\gamma_{w a}\right\}
$$

$$
\begin{equation*}
=\left\{-\frac{\partial \bar{\phi}_{W j}}{\partial s}+T\left(\mu^{\prime}\right)^{2} \frac{\partial \bar{\phi}_{w o}}{\partial s}\right\} \tag{6}
\end{equation*}
$$

2) Flow tangency on the jet surface

$$
\begin{align*}
& -\left[N_{J J}\right]_{(j)}\left\{r_{j j}\right\}+\left[N_{J J}\right]_{(0)}\left\{r_{0 j}\right\}+\left[N_{J W}\right]_{(0)}\left\{r_{w a}\right\} \\
& =\left\{-\frac{\vec{v}_{0} \cdot \vec{n}\left(1-\mu^{\prime}\right)}{\left.\vec{v}_{0} \cdot \vec{e}+\frac{\partial \bar{\phi}_{\dot{w} j}}{\partial n}\left(M_{j}\right)-\frac{\partial \bar{\phi}_{w o}}{\partial n}\left(M_{0}\right)\right\}}\right. \tag{7}
\end{align*}
$$

3) Flow tangency on the wing surface

Equations (6), (7) and (8) have been combined into an augmented matrix equation to determine $\gamma_{j j}, \gamma_{o j}$ and $\gamma_{w a}$. Once $\gamma_{w a}$ is obtained, the total wing vortex strength is then,

$$
\begin{equation*}
\gamma_{w}=\gamma_{w_{0}}+\gamma_{w a} \tag{9}
\end{equation*}
$$

where $\gamma_{w_{0}}$ is the wing-alone vortex strength and $\gamma_{w a}$ is the additional wing vortex strength.

3.2 Sectional Aerodynamic Coefficients

From the geometry of the mean camber line (Fig. 1), the relation of the local camber slope, twist, lift and induced drag have the following relations with the wing vortex strength. . Since,

$$
\begin{equation*}
\frac{\partial z_{c}}{\partial x}=\tan \delta(x, y) \simeq \delta(x, y) \tag{10}
\end{equation*}
$$

the local lift and induced drag components due to the vortex strength are seen to be

$$
\begin{align*}
& \ell(x)=\gamma_{w}(x) \cos (\alpha-\delta(x, y)) \tag{11}\\
& d_{i}(x)=\gamma_{w}(x) \sin (\alpha-\delta(x, y)) \tag{12}
\end{align*}
$$

where $\gamma_{w}(x)$ is the vortex strength and is proportional to the pressure loading acting normal to the camber surface.

Figure 1. Decomposition of Pressure Loading on the Camber Surface

The effect of the leading-edge suction on the lift and pitching moment is assumed small enough to be ignored. It is assumed that the wing camber will be designed in such a way that the leading-edge suction is zero.

To find the sectional characteristics, it is assumed that the wing vortices are situated along the camber surface. Since the resulting pressure force is normal to the camber surface, the sectional characteristics can be determined by integrating Eqs. (11) and (12) across the local chord. Thus,

$$
\begin{align*}
c_{d, i} & =\frac{1}{q_{0} c} \int_{0}^{1} \rho_{0} V_{0}\left(\vec{V}_{0} \cdot \vec{e}^{\prime}\right) d_{i}(x) d x \\
& =\frac{2 \cos \alpha}{c} \int_{0}^{1} \gamma_{w}(x) \sin (\alpha-\delta(x, y)) d x \\
& \simeq \frac{2}{c}\left(\int_{0}^{x_{1}}+\int_{x_{1}}^{1}\right) \gamma_{w}(x) \sin (\alpha-\delta(x, y)) d x \tag{13}
\end{align*}
$$

where $\cos \alpha \simeq 1$. The integration in Eq. (13) will first be transformed to an angular coordinate $\theta(0 \leq \theta \leq \pi)$ and then reduced to a finite sum by using the conventional trapezoidal rule. Then, Eq. (13) becomes

$$
\begin{align*}
c_{d, i} & =\frac{2}{c}\left(\frac{x_{1} \pi}{2 N_{1}} \sum_{k=1}^{N_{1}} Y_{w_{k}} \sin (\alpha-\delta(x, y)) \sin \theta_{k}+\right. \\
& \left.\frac{\left(1-x_{1}\right) \pi}{2 N_{2}} \sum_{k=1}^{N_{2}} \gamma_{w_{k}} \sin (\alpha-\delta(x, y)) \sin \theta_{k}\right) \tag{14}
\end{align*}
$$

Similarly,

$$
\begin{align*}
c_{l}= & \frac{1}{q_{0} c} \int_{0}^{1} \rho_{0} v_{0}\left(\overrightarrow{v_{0}} \cdot \vec{e}\right) l(x) d x \\
= & \frac{2}{c} \int_{0}^{1} \gamma_{w}(x) \cos (\alpha-\delta(x, y)) d x \\
= & \frac{2}{c}\left(\int_{0}^{x_{1}}+\int_{x_{1}}^{1}\right) \gamma_{w}(x) \cos (\alpha-\delta(x, y)) d x \\
= & \frac{2}{c}\left(\frac{x_{1} \pi}{2 N_{1}} \sum_{k=1}^{N_{1}} \gamma_{w_{k}} \cos (\alpha-\delta(x, y)) \sin \theta_{k}+\right. \\
& \left.\frac{\left(1-x_{1}\right) \pi}{2 N_{2}} \sum_{k=1}^{N_{2}} \gamma_{w_{k}} \cos (\alpha-\delta(x, y)) \sin \theta_{k}\right) \tag{15}
\end{align*}
$$

and,

$$
\begin{align*}
c_{m}= & \frac{1}{q_{0} c \bar{c}} \int_{0}^{1} \rho_{0} V_{0}\left(\vec{v}_{0} \cdot \vec{e}\right) \ell(x) x d x \\
= & \frac{2}{c \bar{c}}\left(\int_{0}^{x_{1}}+\int_{x_{1}}^{1}\right) \gamma_{w}(x) \cos (\alpha-\delta(x, y)) x d x \\
= & \frac{2}{c \bar{c}}\left(\frac{x_{1} \pi}{2 N_{1}} \sum_{k=1}^{N_{1}} \gamma_{w_{k}} \cos (\alpha-\delta(x, y)) x_{k} \sin \theta_{k}+\right. \\
& \left.\frac{\left(1-x_{1}\right) \pi}{2 N_{2}} \sum_{k=1}^{N_{2}} \gamma_{w_{k}} \cos (\alpha-\delta(x, y)) x_{k} \sin \theta_{k}\right) \tag{16}
\end{align*}
$$

From thin wing theory, $(\alpha-\delta(x, y))$ is assumed to be sufficiently small, so that,

$$
\begin{align*}
\cos (\alpha-\delta(x, y)) & \simeq 1 \tag{17}\\
\sin (\alpha-\delta(x, y)) & \simeq(\alpha-\delta(x, y)) \\
& \simeq\left(\alpha-\frac{\partial z c}{\partial x}\right) \\
& =-\left(\frac{\partial z c}{\partial x}-\alpha\right) \tag{18}
\end{align*}
$$

Therefore, from Eqs. (17) and (18), the Eqs. (14), (15), and (16) may be recast into the following simple expressions,

$$
\begin{align*}
c_{d, i} & =-\frac{\pi}{c}\left(\frac{x_{1}}{N_{1}} \sum_{k=1}^{N_{1}} \gamma_{w_{k}}\left(\frac{\partial z_{c}}{\partial x}-\alpha\right)_{k} \sin \theta_{k}+\right. \\
& \left.\frac{\left(1-x_{1}\right)}{N_{2}} \sum_{k=1}^{N_{2}} \gamma_{w_{k}}\left(\frac{\partial z_{c}}{\partial x}-\alpha\right)_{k} \sin \theta_{k}\right) \\
& =-\frac{\pi}{c} \sum_{L=1}^{2} \frac{h_{L}}{N_{L}} \sum_{k=1}^{N_{L}} \gamma_{w_{k}}\left(\frac{\partial z_{c}}{\partial x}-\alpha\right)_{k} \sin \theta_{k} \tag{19}\\
c_{\ell} & =\frac{\pi}{c} \sum_{L=1}^{2} \frac{h_{L}}{N_{L}} \sum_{k=1}^{N_{L}} \gamma_{w_{k}} \sin \theta_{k} \tag{20}\\
c_{m} & =\frac{\pi}{c \bar{c}} \sum_{L=1}^{2} \frac{h_{L}}{N_{L}} \sum_{k=1}^{N_{L}} \gamma_{w_{k}} x_{k} \sin \theta_{k} \tag{21}
\end{align*}
$$

where $h_{1}=x_{1}$ and $h_{2}=1-x_{1}$, and N_{1} and N_{2} are the numbers of vortex points in each section along the chordwise direction. The control and vortex points are defined as follows, (see Fig. 2a)

Figure 2a. Location of Control and Vortex Points in the chordwise direction.

$$
\begin{align*}
& x_{k}=x_{L-1}+\frac{h_{L}}{2}\left(1-\cos \theta_{k}\right), L=1,2 \tag{22}\\
& \theta_{k}=\frac{(2 k-1) \pi}{2 N_{L}}, \quad k=1,2, \cdots, N_{L} \tag{23}
\end{align*}
$$

and,

$$
\begin{align*}
& x_{i}=x_{L-1}+\frac{h_{L}}{2}\left(1-\cos \theta_{i}\right), \quad L=1,2 \tag{24}\\
& \theta_{i}=\frac{i \pi}{N_{L}}, i=1, \cdots, N_{L} \tag{25}
\end{align*}
$$

Note that $x_{0}=0$ in Eqs. (22) and (24).

3.3 Overall Aerodynamic Characteristics

The total induced drag, lift and pitching moment coefficients of the wing are determined by spanwise integration of the sectional characteristics. Again, the integration is first transformed to an angular coordinate $\phi(0 \leq \phi \leq \pi)$, and then reduced to finite sums by the conventional trapezoidal rule. Therefore, the total induced drag coefficient has the following expression,

$$
\begin{aligned}
C_{D, i} & =\frac{1}{S_{w}} \int_{-b / 2}^{b / 2} c_{d, i} c d y \\
& =\frac{2}{S_{w}} \int_{0}^{b / 2} c_{d, i} c d y \\
& =\frac{-2 \pi}{S_{w}} \int_{0}^{b / 2}\left(\sum_{L=1}^{2} \frac{h_{L}}{N_{L}} \sum_{k=1}^{N_{L}} \gamma_{w_{k}}\left(\frac{\partial z_{c}}{\partial x}-\alpha\right)_{k} \sin \theta_{k}\right) d y
\end{aligned}
$$

$$
\begin{align*}
& c_{D, i}=\frac{-2 \pi}{S_{w}}\left(\int_{0}^{y_{1}}+\int_{y_{1}}^{y_{2}} \int_{y_{2}}^{1}\right)\left(\sum_{L=1}^{2} \frac{h_{L}}{N_{L}} \sum_{k=1}^{N_{L}} \gamma_{w_{k}}\left(\frac{\partial z c}{\partial x}-\alpha\right)_{k} \sin \theta_{k}\right) d y \\
& \simeq \frac{-2 \pi}{S_{w}}\left\{\left[\frac{y_{1} \pi}{2 M_{1}} \sum_{i=1}^{M_{1}-1}\left(\sum_{L=1}^{2} \frac{h_{L}}{N_{L}} \sum_{k=1}^{N_{L}} \gamma_{w_{k}}\left(\frac{\partial z_{c}}{\partial x}-\alpha\right)_{k} \sin \theta_{k}\right) \sin \phi_{i}\right]+\right. \\
& {\left[\frac{\left(y_{2}-y_{1}\right) \pi}{2 M_{2}} \sum_{i=1}^{M_{2}-1}\left(\sum_{L=1}^{2} \frac{h_{L}}{N_{L}} \sum_{k=1}^{N_{L}} \gamma_{w_{k}}\left(\frac{\partial z_{c}}{\partial x}-\alpha\right)_{k} \sin \theta_{k}\right) \sin \phi_{i}\right]+} \\
& \left.\left[\frac{\left(b / 2-y_{2}\right) \pi}{2 M_{3}} \sum_{i=1}^{M_{3}-1}\left(\sum_{L=1}^{2} \frac{h_{L}}{N_{L}} \sum_{k=1}^{N_{L}} \gamma_{w_{k}}\left(\frac{\partial z_{c}}{\partial x}-\alpha\right)_{k} \sin \theta_{k}\right) \sin \phi_{i}\right]\right\} \\
& =\frac{-\pi^{2}}{S_{w}}\left\{\sum_{p=1}^{3} \frac{f_{p}}{M_{p}} \sum_{i=1}^{M_{p}-1}\left(\sum_{L=1}^{2} \frac{h_{L}}{N_{L}} \sum_{k=1}^{N_{L}} \gamma_{w_{k}}\left(\frac{\partial z_{c}}{\partial x}-\alpha\right)_{k} \sin \theta_{k}\right) \sin \phi_{i}\right\} \\
& =\frac{-\pi^{2}}{S_{w}}\left\{\sum_{p=1}^{3} \sum_{i=1}^{M_{p}-1} \sum_{L=1}^{2} \sum_{k=1}^{N_{L}}\left[\left(\frac{f_{p} h_{L}}{M_{P} N_{L}}\right) \sin \theta_{k} \sin \phi_{i}\right]\left(\frac{\partial z_{c}}{\partial x}-\alpha\right)_{k} \gamma_{w_{k}}\right\} \\
& =-\frac{\pi^{2}}{S_{w}}\left(\sum_{n=1}^{N_{t}} g_{n}\left(\frac{\partial z_{c}}{\partial x}-\alpha\right)_{n} \gamma_{w_{n}}\right) \tag{26}
\end{align*}
$$

where,

$$
\begin{equation*}
g_{n}=\frac{f_{p} h_{L}}{M_{p} N_{L}} \sin \theta_{n} \sin \phi_{i} \tag{26.a}
\end{equation*}
$$

and it is understood that the indices p , i and L will take proper values at the appropriate spanwise sections and chordwise locations, respectively.

In Eq. (26), N_{t} is total number of wing vortices over the semi-span, and the width of each spanwise section is :

$$
\begin{align*}
& f_{1}=y_{1} \tag{26.b}\\
& f_{2}=y_{2}-y_{1} \tag{26.c}\\
& f_{3}=b / 2-y_{2} \tag{26.d}
\end{align*}
$$

Similarly, the lift and pitching moment coefficients have the following expressions,

$$
\begin{align*}
& c_{L}=\frac{\pi^{2}}{S_{w}}\left(\sum_{n=1}^{N_{t}} g_{n} \gamma_{w_{n}}\right) \tag{27}\\
& c_{m}=\frac{\pi^{2}}{S_{w}}\left(\sum_{n=1}^{N_{t}} g_{n} x_{n} \gamma_{w_{n}}\right) \tag{28}
\end{align*}
$$

where the index n indicates the corresponding vortex point over the wing. Each spanwise section is divided into vortex strips by the semi-circle method. The vortex strips in each interval are obtained through the following relation:

$$
\begin{align*}
& y_{j}=y_{p-1}+\frac{f_{p}}{2}\left(1-\cos \phi_{j}\right), p=1,2,3 \tag{29.a}\\
& \phi_{j}=(2 j-1) \pi /\left(2 M_{p}\right), j=1, \cdots, M_{p} \tag{29.b}
\end{align*}
$$

and y-control points are given by:

$$
\begin{align*}
& y_{i}=y_{p-1}+\frac{f_{p}}{2}\left(1-\cos \phi_{i}\right), p=1,2,3 \tag{30.a}\\
& \phi_{i}=i \pi / M_{p}, i=1, \cdots, M_{p}-1 \tag{30.b}
\end{align*}
$$

Note that $y_{0}=0$ in Eqs. (29.a) and (30.a) M_{1}, M_{2}, and M_{3} are the numbers of spanwise strips plus one in each section. (see Fig. 2b)

3.4 Optimization Equations

From section 3.3, the expressions of induced drag, lift and pitching moment coefficients have been derived. Next, the method to find the opti-

Figure 2b. Scheme of Spanwise Vortex Strip Distribution
mum solution of wing-alone loading such that the induced drag is minimized with the lift and pitching moment constraints will be described. To start the iteration, the wing vortex strengths are at first assumed zero. Then as shown in Appendix A, based on the Method of Gradients (ref. 13), the increment of the wing-alone vortex strength can be determined from the following equations,

$$
\begin{align*}
& \Delta \gamma_{w_{k}}+\lambda_{1} \frac{\partial C_{L}}{\partial \gamma_{w_{k}}} \Delta \sigma+\lambda_{2} \frac{\partial C_{m}}{\partial \gamma_{w_{k}}} \Delta \sigma=-\frac{\partial C_{D, 1}}{\partial \gamma_{w_{k}}} \Delta \sigma, \tag{31}\\
& \sum_{k=1}^{N_{t}} \frac{\partial C_{L}}{\partial \gamma_{w_{k}}} \Delta \gamma_{w_{k}}=\bar{C}_{L}-C_{L}^{(n)} \quad k=1, \cdots, N_{t} \\
& N_{k=1}^{N} \frac{\partial C_{m}}{\partial \gamma_{w_{k}}} \Delta \gamma_{w_{k}}=\bar{C}_{m}-C_{m}^{(n)} \tag{32}\\
& \sum_{k=1} \tag{33}
\end{align*}
$$

where \bar{C}_{L} and \bar{C}_{m} are the specified constraints, $C_{L}(n)$ and $C_{m}(n)$ are the computed values in the n-th iteration. Therefore, the new vortex density will be given by:

$$
\begin{equation*}
\gamma_{w_{k}}(n)=\gamma_{w_{k}}(n-1)+\Delta \gamma_{w_{k}}(n) \tag{34}
\end{equation*}
$$

The optimum solution is obtained as $C_{D, i}$ becomes'minimum, or the camber shapes do not change further by any significant amount.

In the wing-alone case, the step size $\Delta \sigma$ can be computed in each iteration by using one-dimensional optimization technique. Differentiating Eqs. (26), (27), and (28) with respect to $\gamma_{w_{k}}$ gives the relations,

$$
\begin{equation*}
\frac{\partial C_{L}}{\partial Y_{W_{k}}}=\frac{\pi^{2}}{S_{W}} g_{k} \quad, \quad k=1, \cdots, N_{t} \tag{35}
\end{equation*}
$$

and,

$$
\begin{equation*}
\frac{\partial C_{m}}{\partial \gamma_{w_{k}}}=\frac{\pi^{2}}{S_{w}} g_{k} \cdot x_{k} \quad, \quad k=1, \cdots, N_{t} \tag{36}
\end{equation*}
$$

From Eq. (5), the camber slope at vortex point k can be expressed as

$$
\begin{equation*}
\left(\frac{\partial z_{c}}{\partial x}-\alpha\right)_{k}=\sum_{n=1}^{N_{t}} a_{k n} \gamma_{w_{n}} \tag{37}
\end{equation*}
$$

where $a_{k n}$ is the element of matrix [A]. It follows that Eq. (26) becomes

$$
\begin{equation*}
C_{D, i}=-\frac{\pi^{2}}{S_{w}}\left(\sum_{k=1}^{N_{t}} g_{k} \gamma_{w_{k}}\left(\sum_{n=1}^{N_{t}} a_{k n} \gamma_{w_{n}}\right)\right) \tag{38}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
\frac{\partial C_{D, i}}{\partial \gamma_{w_{k}}} & =-\frac{\pi^{2}}{S_{w}}\left(g_{k} \sum_{n=1}^{N_{t}} a_{k n} \gamma_{w_{n}}+\sum_{i=1}^{N_{t}} g_{i} a_{i k} \gamma_{w_{i}}\right) \\
& =-\frac{\pi^{2}}{S_{w}}\left(\sum_{n=1}^{N_{t}}\left(g_{k} a_{k n}+g_{n} a_{n k}\right) \gamma_{w_{n}}\right) \tag{39}
\end{align*}
$$

The objective is to find the best step size such that $C_{D, i}$ will decrease in the steepest descent direction. It can be shown by the chain rule that :

$$
\begin{equation*}
\frac{\partial C_{D, i}}{\partial(\Delta \sigma)}=\sum_{k=1}^{N_{t}}\left(\frac{\partial C_{D, i}}{\partial \gamma_{w_{k}}}\right)\left(\frac{d \gamma_{w_{k}}}{d(\Delta \sigma)}\right) \tag{40}
\end{equation*}
$$

Since the new vortex strength and the old vortex strength may be assumed to be :

$$
\begin{equation*}
\gamma_{w_{k}}^{(n+1)}=\gamma_{w_{k}}^{(n)}+E_{k}^{(n)} \Delta \sigma \tag{41}
\end{equation*}
$$

where the step direction vector E_{k} can be obtained from Eq. (31) to be :

$$
\begin{align*}
E_{k}=-\left(\frac{\partial C_{D, i}}{\partial \gamma_{w_{k}}}+\lambda_{1} \frac{\partial C_{L}}{\partial \gamma_{w_{k}}}+\lambda_{2} \frac{\partial C_{m}}{\partial \gamma_{w_{k}}}\right) & \tag{42}\\
& \\
& k=1, \cdots, N_{t}
\end{align*}
$$

Substituting Eqs. (39), (41) and (42) into (40) gives:

$$
\begin{equation*}
\frac{\partial C_{D, i}}{\partial(\Delta \sigma)}=-\frac{\pi^{2}}{S_{w}} \sum_{k=1}^{N_{t}}\left(\sum_{n=1}^{N_{t}}\left(g_{k} a_{k n}+g_{n} a_{n k}\right)\left(\gamma_{w_{n}}+E_{n} \Delta \sigma\right)\right) E_{k} \tag{43}
\end{equation*}
$$

The optimum step size $\Delta \sigma$ can be obtained by setting $\frac{\partial C_{D, i}}{\partial(\Delta \sigma)}$ to zero. It follows that

$$
\begin{equation*}
\Delta \sigma=-\frac{\sum_{k=1}^{N_{t}}\left(\sum_{n=1}^{N_{t}}\left(g_{k} a_{k n}+g_{n} a_{n k}\right) E_{n}\right) \gamma_{w_{k}}}{\sum_{k=1}^{N_{t}}\left(\sum_{n=1}^{N_{t}}\left(g_{k} a_{k n}+g_{n} a_{n k}\right) E_{n}\right) E_{k}} \tag{44}
\end{equation*}
$$

In the jet-on case, the total wing vortex strength is equal to the sum of the wing-alone vortex strength $\gamma_{w_{0}}$ and the additional wing vortex strength $\gamma_{\text {wa }}$. Therefore, from Eqs. (9), (26), (27) and (28),

$$
\begin{equation*}
C_{D, i}=-\frac{\pi^{2}}{S_{w}} \sum_{k=1}^{N_{t}} g_{k}\left(\frac{\partial z_{c}}{\partial x}-\alpha\right)_{k}\left(\gamma_{w_{0}}+\gamma_{w a}\right)_{k} \tag{45}
\end{equation*}
$$

$$
\begin{align*}
& C_{L}=\frac{\pi^{2}}{S_{w}} \sum_{k=1}^{N_{t}} g_{k}\left(\gamma_{w_{0}}+\gamma_{w a}\right)_{k} \tag{46}\\
& C_{m}=\frac{\pi^{2}}{S_{w}} \sum_{k=1}^{N_{t}} g_{k}\left(\gamma_{w_{0}}+\gamma_{w a}\right)_{k} x_{k} \tag{47}
\end{align*}
$$

In the optimization iteration, $\gamma_{W_{0}}$ is regarded as the independent varia${ }_{\partial \mathrm{C}_{\mathrm{m}}}$ In the optimization Eqs. (31) - (33), the derivatives $\frac{\partial C_{L}}{\partial \gamma_{W_{0}}}$, $\frac{\partial C_{m}}{\partial \gamma_{W_{0}}}$ and $\frac{\partial C_{D, i}}{\partial \gamma}$ are needed. They can be obtained by differentiating Eqs. (45) - (47 $)^{W^{\circ}}{ }_{\text {with }}$ respect to $\gamma_{W_{o}}$. Hence,

$$
\begin{align*}
& \frac{\partial C_{L}}{\partial \gamma_{w_{o}}}=\frac{\pi^{2}}{S_{w}}\left(g_{k}+\sum_{i=1}^{N_{t}} g_{i}\left(\frac{\partial \gamma_{w a}}{\partial \gamma_{w_{o_{k}}}}\right)_{i}\right) \tag{48}\\
& \frac{\partial C_{m}}{\partial \gamma_{w_{o_{k}}}}=\frac{\pi^{2}}{S_{w}}\left(g_{k} x_{k}+\sum_{i=1}^{N_{t}} g_{i} x_{i}\left(\frac{\partial \gamma_{w a}}{\partial \gamma_{w_{o}}}\right)_{i}\right) \tag{49}
\end{align*}
$$

From Eqs. (1) and (8), and the interpolation matrix [I], the camber slope at the vortex point k is given by :

$$
\begin{equation*}
\left(\frac{\partial z_{c}}{\partial x}-a\right)_{k}=\sum_{j=1}^{N_{t}} a_{k j}\left(\gamma_{w_{0}}+\gamma_{w a}\right)_{j}+\sum_{n=1}^{N} b_{k n} \gamma_{o j_{n}} \tag{50}
\end{equation*}
$$

where N_{j} is the total number of jet vortices in the outer flow, and $a_{k j} \quad$ and $b_{k n}$ are the elements of the transformation matrices $[A$] and $[B]$ respectively. From Eqs. (4) and (8), $[A]$ and $[B]$ are defined as

$$
\begin{align*}
& {[A]=[I]^{-1}\left[{ }^{N} W W\right.} \tag{50.a}\\
& {[B]=[I]^{-1}\left[N_{W J}\right]_{(0)}} \tag{50.b}
\end{align*}
$$

Differentiate Eq. (50) with respect to $\gamma_{W_{o_{i}}}$ gives:

$$
\begin{align*}
& \frac{\partial}{\partial \gamma_{W_{0}}}\left(\frac{\partial z_{c}}{\partial x}-\alpha\right)_{k} \\
& =a_{k i}+\sum_{m=1}^{N_{t}} a_{k m}\left(\frac{\partial \gamma_{w a}}{\partial \gamma_{w_{o}}}\right)_{m}+\sum_{n=1}^{N_{j}} b_{k n}\left(\frac{\partial \gamma_{o j}}{\partial \gamma_{w_{o}}}\right)_{n} \tag{51}
\end{align*}
$$

With Eqs. (50) and (51), Eq. (45) gives:

$$
\begin{align*}
& \frac{\partial C_{D, i}}{\partial \gamma_{W_{o_{i}}}}=-\frac{\pi^{2}}{S_{w}}\left\{g_{i}\left[\sum_{j=1}^{N} a_{i j}\left(\gamma_{w_{0}}+\gamma_{w a}\right)_{j}+\sum_{n=1}^{N} b_{i n} \gamma_{o j_{n}}\right]+\right. \\
& \sum_{k=1}^{N_{t}} g_{k}\left(\frac{\partial \gamma_{w a}}{\partial \gamma_{w_{o_{i}}}}\right)_{k}\left[\sum_{j=1}^{N_{t}} a_{k j}\left(\gamma_{w_{0}}+\gamma_{w a}\right)_{j}+\sum_{n=1}^{N_{j}} b_{k n} \gamma_{o j_{n}}\right]+ \\
& \left.\sum_{n=1}^{N_{t}} g_{n}\left(\gamma_{w_{0}}+\gamma_{w a}\right)_{n}\left[a_{n i}+\sum_{m=1}^{N_{t}} a_{n m}\left(\frac{\partial \gamma_{w a}}{\partial \gamma_{w_{o_{i}}}}\right)_{m}+\sum_{p=1}^{N_{i}} b_{n p}\left(\frac{\partial \gamma_{o j}}{\partial \gamma_{w_{o}}}\right)_{p}\right]\right\} \tag{52}
\end{align*}
$$

Eqs. (48), (49), (51) and (52) will be evaluated in each iteration, because the needed derivatives depend on the values of $\gamma_{w_{0}}, \gamma_{w a}$ and $Y_{0 j}$ in the preceeding step.

The derivatives $\frac{\partial \gamma_{w a}}{\partial \gamma_{w o}}, \frac{\partial \gamma_{0 j}}{\partial \gamma_{w o}}$ can be obtained by differentiating Eqs. (6), (7) and (8) with respect to $\gamma_{\text {wo }}$ and solving the differentiated simultaneous equations.

From numerical experimentation, it was found that the one-dimensional optimization technique in finding the best step size used previously for the wing alone case did not produce consistently converging solutions in the jet-on case. In fact, the rate of convergence depends very much on the jet strength, or on μ. According to the author's experience, the following relation of step size and μ may be used:

$$
\begin{equation*}
\Delta \sigma=3.0864 \mu-0.39506 \tag{53}
\end{equation*}
$$

The above computed step size is assumed unchanged during iteration for the jet-on case.

3.5 The Determination of Camber Ordinates

Once the optimum solution of the wing vortices has been determined from section 3.4 , the camber slope at vortex points over the wing may be found from Eq. (5). This section will describe the method used in finding the camber ordinates from the given camber slope. Let the wing camber slope be developed into Fourier cosine series. Then in each spanwise vortex strip over the wing, the camber slope functions have the following expression,

$$
\begin{equation*}
\left(\frac{\partial z_{c}}{\partial x}-\alpha\right)_{k}=\sum_{j=1}^{N_{c}} a_{j} \cos (j-1) \theta_{k} \tag{54}
\end{equation*}
$$

and the Fourier coefficients are given by,

$$
\begin{align*}
a_{1} & =\frac{1}{\pi}-\int_{0}^{\pi}\left(\frac{\partial z_{c}}{\partial x}-\alpha\right) d \theta \\
& \simeq \frac{1}{N_{c}} \sum_{k=1}^{N}\left(\frac{\partial z c}{\partial x}-\alpha\right)_{k} \tag{55}
\end{align*}
$$

and for $j>1$,

$$
a_{j}=\frac{2}{\pi} \int_{0}^{\pi}\left(\frac{\partial z_{c}}{\partial x}-\alpha\right) \cos (j-1) \theta d \theta
$$

$$
\begin{equation*}
=\frac{2}{N_{c}} \sum_{k=1}^{N_{c}}\left(\frac{\partial z_{c}}{\partial x}-\alpha\right)_{k} \cos (j-1) \theta_{k} \tag{56}
\end{equation*}
$$

where $\quad \theta_{k}=\frac{(2 k-1) \pi}{2 N_{c}}, k=1, \cdots, N_{c}$

Once the Fourier coefficients are determined, the camber ordinates can be obtained by direct integration. For each vortex strip, Eq. (54) is :

$$
\begin{equation*}
\left(\frac{\partial z_{c}}{\partial x}-\alpha\right)=a_{1}+a_{2} \cos \theta+\cdots+a_{N_{c}} \cos \left(N_{c}-1\right) \theta \tag{58}
\end{equation*}
$$

where N_{c} is the total number of chordwise vortex elements. By integrating Eq. (58) with respect to \mathbf{x}, the camber ordinates along each spanwise vortex strip over the wing can be obtained. Thus,

$$
\begin{align*}
& z_{c}(x)=\left(\alpha+a_{1}\right) x+\int_{0}^{x}\left(a_{2} \cos \theta+\cdots+a_{N_{c}} \cos \left(N_{c}-1\right) \theta\right) d x \tag{59}\\
& \text { Since } x=(1-\cos \theta) / 2 \quad, \text { Eq. (59) becomes } \\
& z_{c}(\theta)=\left(\alpha+a_{1}\right)(1-\cos \theta) / 2+\int_{0}^{\theta}\left(a_{2} \cos \theta+\cdots+a_{N} \cos \left(N_{c}-1\right) \theta\right) \sin \theta d \theta / 2 \tag{60}
\end{align*}
$$

From the mathematics handbook (Ref. 15),

$$
\begin{equation*}
\int \sin x \cos N x d x=-\frac{1}{2}\left(\frac{\cos (1-N) x}{1-N}+\frac{\cos (1+N) x}{1+N}\right) \tag{61}
\end{equation*}
$$

$$
\mathrm{N}>1
$$

It follows that Eq. (60) becomes:

$$
\begin{align*}
z_{c}(\theta)= & \left(\alpha+a_{1}\right)(1-\cos \theta) / 2-a_{2} \cos 2 \theta / 8- \\
& \frac{1}{4} \sum_{n=2}^{N_{c}-1}\left(\frac{\cos (1+n) \theta}{1+n}+\frac{\cos (1-n) \theta}{1-n}\right)+C_{1} \tag{62}
\end{align*}
$$

where α and C_{1} are the local angle of attack and integration constant respectively. They are determined by ends condition. Since $z_{c}(0)=$ $z_{c}(\pi)=0$, from the leading-edge end condition,

$$
z_{c}(0)=-\frac{a_{2}}{8}-\frac{1}{4} \sum_{n=2}^{N_{c}^{-1}} a_{n+1}\left(\frac{1}{1+n}+\frac{1}{1-n}\right)+c_{1}=0
$$

Hence;

$$
\begin{equation*}
\ddot{c}_{1}=\frac{a_{2}}{8}+\frac{1}{4} \sum_{n=2}^{N_{c}^{-1}} a_{n+1}\left(\frac{1}{1+n}+\frac{1}{1-n}\right) \tag{63}
\end{equation*}
$$

From the trailing-edge end condition,

$$
z_{c}(\pi)=\left(a+a_{1}\right)-\frac{a_{2}}{8}-\frac{1}{4} \sum_{n=2}^{N_{c}^{-1}} a_{n+1}\left(\frac{\cos (1-n) \pi}{1-n}+\frac{\cos (1+n) \pi}{1+n}\right)+c_{1}=0
$$

Hence, the local angle of attack is given by :

$$
\begin{equation*}
\alpha=\frac{1}{4} \sum_{n=2}^{N_{c}^{-1}} a_{n+1}\left(\frac{\cos (1-n) \pi-1}{1-n}+\frac{\cos (1+n) \pi-1}{1+n}\right)-a_{1} \tag{64}
\end{equation*}
$$

Finally, the camber ordinates along each spanwise vortex strip are determined by,

$$
\begin{align*}
z_{c}(\theta)= & {\left[-\frac{1}{4} \sum_{n=2}^{N_{c}^{-1}} a_{n+1}\left(\frac{\cos (1-n) \pi-1}{1-n}+\frac{\cos (1+n) \pi-1}{1+n}\right)\right]\left(\frac{1-\cos \theta}{2}\right)-} \\
& \frac{a_{2}}{8} \cos 2 \theta-\frac{1}{4} \sum_{n=2}^{N_{c}-1}\left(\frac{\cos (1-n) \theta}{1-n}+\frac{\cos (1+n) \theta}{1+n}\right)+ \\
& \frac{a_{2}}{8}+\frac{1}{4} \sum_{n=2}^{N_{c}^{-1}} a_{n+1}\left(\frac{1}{1-n}+\frac{1}{1+n}\right) \tag{65}
\end{align*}
$$

3.6 Summary of Solution Procedures

In the jet-off case, the basic unknowns to be determined are the wingalone vortex strengths. The problem is solved by the iterative process described below :

1. Assume all the initial wing-alone vortex strengths are zero and the initial step size has some value, typically 50 .
2. By solving the optimization equations, i.e., Eqs. (31) - (33), the new wing-alone vortex strengths are determined.
3. Calculate the camber slope at the vortex points from Eq. (5) and compute the aerodynamic characteristics.
4. Check the convergence of the induced drag coefficient and adjust the computed step size if necessary.
5. Compute the new. step size by using one-dimensional optimization technique.
6. Repeat steps 2 through 5 until a converged solution is obtained.
7. Calculate the camber ordinates, local angles of attack and the optimum loading.

In the jet-on case, the value of additional wing vortex strengths depend on the value of wing-alone vortex strengths in each iteration. Therefore, the approach to find the optimum solution is described below;

1. Invert the augmented matrix of the boundary conditions, i.e., Eqs. (6) - (8).
2. Calculate the derivatives of the jet vortex strength in the outer flow and the additional wing vortex strength with respect to wing-alone vortex strength from the differentiated equations of Eq. (6), (7) and (8).
3. Set up the transformation matrices from Eqs. (50.a) and (50.b).
4. Compute the derivatives of the camber slopes at the vortex points with respect to the wing-alone vortex strength, i.e., Eq. (51).
5. Assume the initial wing-alone vortex strengths equal to the optimum loading which were found in the jet-off case.
6. By solving the optimization equations and varying the initial computed lift and pitching moment coefficients to the constrained values gradually, the new wing-alone vortex strengths can be obtained.
7. Calculate the camber slopes at vortex points from Eq. (50).
8. Use the new wing-alone vortex strengths to determine the right hand sides of Eqs. (6) - (8).
9. Calculate the jet vortex strengths in the outer flow and the additional wing vortex strengths by the results of steps 1 and 8 .
10. Compute the total wing vortex strengths and the aerodynamic characteristịcs.
11. Once the computed lift and pitching moment coefficients achieve the constrained values, check the induced drag coefficient and adjust the assumed step size if necessary. Finally, calculate the camber ordinates, local angles of attack and the corresponding loading.
12. Check the changes in camber ordinates in consecutive iterations.
13. Assume a constant step size for each iteration, the step size being determined by the empirical formula of Eq. (53).
14. Repeat steps 6 through 13 until the desired solution is obtained.

It should be noted that in the first iteration, steps 6 and 7 are to be omitted. From the assumed wing-alone vortex strengths, the initial computed lift and pitching moment coefficients are determined. To have a smooth transition in the entire iterative process, the initial computed lift and pitching moment coefficients will be varying through several intermediate cycles, and each cycle includes two or three iterations. Since the solution is very sensitive to the variation of the step size, the computed step size by one-dimensional optimization technique is not used. A reasonable step size in the entire iterative process should be such that the induced drag coefficient keeps decreasing as the specified constraints were reached.
4. NUMERICAL RESULTS AND DISCUSSIONS

A highly swept back tapered wing (NACA 64A010 uncambered) has been selected for analysis to check out the program and illustrate its application. The basic geometries of the planform are: (1) aspect ratio of 5.5 ; taper ratio of 0.532 ; (3) sweep back angle at quarter chord of 45°. In the wing-alone case, all the results have been calculated by using six chordwise vortex elements and ten spanwise vortex strips over the semi-span of the wing. The geometry is shown in Fig. 3. In the jet-on case, the semi-span of the wing is divided into three sections, and there are three vortex strips inside the jet region. The length of trailing jet c_{j} used in the analysis was one local chord length and four trailing vortices in the computation. The jet exit is at the leading-edge.

The computed induced drag coefficient in the jet-off case approaches the theoretical minimum induced drag coefficient in about 10 iterations, as shown in Fig. 4. The speed of convergence depends on the absolute value of the computed step size. The solution is assumed to have converged if the difference between the computed induced drag coefficient and the theoretical minimum induced drag coefficient is less than five percent. With the wing design lift coefficient being 0.6 and the design pitching moment coefficient being -0.036 , an iterative process is then used to derive the optinum camber and the local angle of attack distributions. Calculated mean camber ordinates and pressure distributions are compared with Stevens' (Ref. 5) theoretical results by the Kernel function method (Ref. 8) for three spanwise stations in Figs. 5-6. The agreement is seen to be reasonably good. It should be noted that to make the comparison at the same spanwise locations with Stevans' results, Lagrange interpolation technique is used here to find:

Figure 3. Geometry of Wing Planform in the jet-off case.

Figure 4. Convergence of Induced Drag Coefficient vs number of iterations in the jet-off case.

(1) the calculated mean camber ordinates at spanwise stations of 0.15 , 0.5 and 0.85 ; and (2) the computed pressure distribution at spanwise stations of $0.383,0.707$ and 0.924 . The comparison of the local angles of attack (or twist) is shown in Fig.7. The agreement is again good. Near the root chord, the computed twist by the present method is seen to be quite nonlinear. This result is consistent with the swept wing design by Williams and Ross in Ref. 16. It is probably due to the planform kink effect . This kink effect seems to appear also in the calculated span loading by the present method, as shown in Fig. 8. Having established the accuracy for the present method in the wing-alone case, it is of interest to see the minimum induced drag configuration with upper-surface-blowing jet. The geometry is shown in Fig. 9. To show the jet effects, two areas of interest will be investigated. First, how the wing-alone results will be modified by the blowing jet with given μ and δ_{j}. Second, what the effects of μ and δ_{j} would have on the camber ordinates, span loading, twist and pressure distribution. All the results are indicated in Figs.10-16. In the jet-on case, the design circulation lift coefficient is 1.2 and the design pitching moment coefficient is -0.075 . The calculated camber ordinates at two spanwise stations outside the jet region are shown in Fig.10. It is seen that the mean camber lines are changed significantly in the jet-on case. How they are changed depends on whether they are inside or outside the jet region. The results in Fig. 10 are for $\mu=0.1288$ and hence are for low speed and high thrust conditions. Also, as indicated in Fig. 10 , the δ_{j} effect on the mean camber is very small. Inside the jet region the camber ordinates at two spanwise stations are shown in Fig. 11. It is seen that under high thrust conditions, the camber in the jet

Figure 8. Span Loading in the jet-off case. ($A R=5.5, \overline{\mathrm{C}}_{\mathrm{L}}=0.6, \overline{\mathrm{C}}_{\mathrm{m}}=-0.036, \alpha=0^{\circ}$)

Figure 9. Geometry of Wing Planform and Jet location in the Jet-on case.

region must be largely reduced from the wing-alone configuration. In the example shown, the camber ordinates become negative in the inboard vortex strip and the flat smooth camber in the outboard vortex strip. When μ is increased to 0.2576 and δ_{j} is 10°, the aerodynamic jet interaction is either to shift the maximum camber ordinate backward ($y=0.21014$) or to increase the camber ordinates near the trailing-edge $(y=0.25944)$. Also, in Fig. 11 when δ_{j} is increased from 0° to 10°, the mean camber is decreased positively, especially, near the trailing-edge. From the results of Figs. 10 - 11, the trend is seen to be that the distribution of the final mean camber shape after the optimization process should be such that the loading are decreased inside the jet region and increased outside the jet region. Figs. 12-14 illustrate the pressure distributions at four spanwise stations. In Fig. 12 the μ effect on the pressure distribution outside the jet region are as follows. In the figure, the so-called initial pressure distribution is obtained by applying the jet on the wing-alone optimized configuration. It is seen that at a given μ, the final pressure distributions are increased after the optimization process. Also, the final pressure distributions are increased as μ is increased from 0.1288 to 0.2576 . The effect of δ_{j} is so small that its effect on the difference in pressure distribution is not shown in Fig. 12. Figs. $13-14$ show the pressure distribution inside the jet region at two spanwise stations. It is seen that there is a high peak in the initial pressure distribution with strong jet strength. After the optimization process, the final pressure distributions become flat. As μ is increased from 0.1288 to 0.2576 , it seems that the final pressure loading becomes smoother, and the difference between initial and final pressure distribution is small. At the same μ, when δ_{j} is increased from 0° to

10°, the pressure distribution is again changed only slightiy. .Fig. 15 indicates that the final loading is seen to be still concentrated in the jet region. This is probably because of the jet spreading effect has not been accounted for. From the above results, it is seen that the smaller the μ is, the higher the span loading will be inside the jet region. The initial and final pressure distributions for $\mu=0.1288$ and $\mu=0.2576$ are also shown in Fig. 15. The distributions of local angle of attack in the spanwise direction over the semi-span are shown in Fig. 16. It is seen that to reduce the loading inside the jet region negative local angle of attack are needed. As μ is decreased, the local angle of attack is increased negatively inside the $j e t$ region. And the decrease of δ_{j} would increase the local angle of attack inside the jet region. The large variation in the local angle of attack inside and outside the jet region would be smoothed out if the jet spreading effect is accounted for.

5. CONCLUSIONS AND RECOMMENDATIONS

By using Lan's QVLM (Ref. 9) and his wing-jet interaction theory (Ref. 10 and 11), an optimization method for calculating the mean camber surface and twist distribution for the minimum induced drag configuration with the upper-surface-blowing jet has been developed. The predicted results show good agreement with Stevens' (Ref.5) theoretical method for configurations without the jet effect. Because of lack of data for comparison, the accuracy of the theory with the blowing jet effect cannot be established. However, the trend of jet effect on camber ordinates, span loading, twist and pressure distribution has been investigated. The investigation made so far has been for a swept, tapered wing with zero leading-edge suction and the jet exit at the leading-edge in the incompressible flow only. The present method can be extended to handle jet exit away from the leading-edge. Further study for different planforms at some Mach numbers and higher free stream to jet velocity ratio is recommended.
6. REFERENCES

1. Munk,M.M., "The Minimum Induced Drag of Aerofoils", NACA TR 121, 1921.
2. Mangler, W., "The Lift Distribution of Wings with End Plates", NACA TM 856, 1938.
3. Cone, C.D.,Jr., "The Theory of Induced Lift and Minimum Induced Drag of Nonplanar Lifting System", NASA TR R-139, 1962.
4. Lundry,J.L. and Lissaman,P.B.S., "A Numerical Solution for the Minimum Induced Drag of Nonplanar Wings", Journal of Aircraft, Vol. 5, No. 1, Jan.-Feb. 1968, pp. 17-21.
5. Stevens,J.R. and McDonald,J.W., "Subsonic Lifting Surface Design and Analysis Procedure", NOR-64-195, 1965,Northrop Corp., Aircraft Div., Hawthorne, Calif.
6. Loth,J.L. and Boyle,R.E., "Optimum Loading on Nonplanar Wings at Minimum Induced Drag", Aerospace Eng. TR-19 (Contract N00014-68-A-1512), West Virginia Univ., Aug. 1969.
7. Lamar,J.E., "A Vortex-Lattice Method for The Mean Camber Shapes of Trimmed Noncoplanar Planforms with Minimum Vortex Drag", NASA TN D-8090, JUNE 1976.
8. Watkins., C.E., Woolston,D.S., and Cunningham,H.J., "A Systematic Kernel Function Procedure for Determining Aerodynamic Forces on Oscillating or Steady Finite Wings at Subsonic Speed", NASA TR R-48, 1958.
9. Lan, C.E., "A Quasi-Vortex-Lattice Method in Thin Wing Theory", Journal of Aircraft, Vol. 11, No. 9, Sept. 1974, pp. 518-527 .
10. Lan, C.E., and Campbell,J.F., "Theoretical Aerodynamics of Upper-Surface-Blowing Jet-Wing Interaction", NASA TN D-7936, Nov. 1975.
11. Lan,C.E., and Campbell,J.F., "A Wing-Jet Interaction Theory for USB Configurations", Journal of Aircraft, Vol. 13, No. 9, Sept. 1976, pp. 718-726.
12. Lan, C.E., "A Trigonometric Interpolation Formula", Appendix B of The Induced Drag of Oscillating Airfoils in Linear Subsonic Compressible Flow, KU-FRL-400, June 1975.
13. Kelly,H.J., "Method of Gradients", Ch. 6 of Optimization Techniques with Applications to Aerospace Systems, ed. G.Leitmann, Academic Press, New York. 1962
14. Woodward,F.A.,Tinoco,E.N., and Larsen,J.W., "Analysis and Design of Supersonic Wing-Body Combinations, Including Flow Properties in the Near Field. Part I - Theory and Application", D6-15044-1, Aug. 1967, The Boeing Company, Commercial Airplane Division, Renton, Washington. pp. 81-86. (NASA CR-73106)
15. Selby,S.M., "Handbook of Tables for Mathematics", 3rd Edition,CRC, 1967.
16. Williams,J., and Ross,A.J., "Some Airframe Aerodynamic Problems at Low Speed", in "International Congress on Subsonic Aeronautics", Annals of the New York Academy of Science, Vol. 154, Art. 2, Nov. 1968.
17. Lan,C.E., Fillman, G.L. and Fox,C.H.Jr., "Computer Program for Calculating Aerodynamic Characteristics of Upper-SurfaceBlowing and Over-Surface-Blowing Configurations", NASA TM X-73987, Feb. 1977.

Appendix A

Gradient Projection Method with Linear Constraints (Ref.13)

Consider the objective function $C_{D, i}$ of N variables $\gamma_{w 1}, \cdots, \gamma_{w n}$, which possesses continuous partial derivatives with respect to these variables. Starting at some point $\gamma_{w k}=\bar{\gamma}_{w k}, k=1, \cdots, n$, moving with a small distance ds defined in the Euclidean sense:

$$
\begin{equation*}
d s^{2}=\sum_{k=1}^{N}\left(d \gamma_{w k}\right)^{2} \tag{A.1}
\end{equation*}
$$

Then,

$$
\begin{equation*}
1-\sum_{k=1}^{N}\left(\frac{d \gamma_{W k}}{d s}\right)^{2}=0 \tag{A.2}
\end{equation*}
$$

Since the steepest descent direction of $C_{D, i}$ is the direction of the most negative $\frac{\mathrm{dC}_{\mathrm{D}, i}}{\mathrm{ds}}$, thus,

$$
\begin{align*}
\frac{d C_{D, i}}{d s} & =\sum_{k=1}^{N} \frac{\partial C_{D, i}}{\partial \gamma_{w k}} \frac{d \gamma_{w k}}{d s} \\
& =\nabla C_{D, i} \cdot \frac{d \gamma_{w}}{d s}<0 \tag{A.3}
\end{align*}
$$

The method described below is to find the direction of steepest descent among the directions which make Eq.(A.3) stationary subject to Eq. (A.1). By using Lagrange multiplier λ_{0}, the following functional can be formed:

$$
\begin{equation*}
\sum_{k=1}^{N} \frac{\partial C_{D, i}}{\partial \gamma_{w k}} \frac{d \gamma_{w k}}{d s}+\lambda_{0}\left[1-\sum_{m=1}^{N}\left(\frac{d \gamma_{w m}}{d s}\right)^{2}\right] \tag{A.4}
\end{equation*}
$$

Differentiating Eq. (A.4) with respect to $\left(\frac{d \gamma_{w k}}{d s}\right)$ and setting the result to zero, it is found that :

$$
\begin{equation*}
\frac{\partial C_{D, i}}{\partial \gamma_{w k}}+\lambda_{0}\left(-2 \frac{d \gamma_{w k}}{d s}\right)=0, \quad k=1, \cdots, N \tag{A.5}
\end{equation*}
$$

or,

$$
\begin{equation*}
\frac{d \gamma_{w k}}{d s}=\frac{1}{2 \lambda_{0}} \frac{\partial C_{D, i}}{\partial \gamma_{w k}} \tag{A.6}
\end{equation*}
$$

Substitution of Eq.(A.6) into Eq.(A.2) gives:

$$
\begin{equation*}
1-\sum_{k=1}^{N}\left(\frac{1}{2 \lambda_{0}} \frac{\partial C_{D, i}}{\partial \gamma_{w k}}\right)^{2}=0 \tag{A.7}
\end{equation*}
$$

from which λ_{0} can be found :

$$
\begin{equation*}
\lambda_{0}= \pm \frac{1}{2}\left[\sum_{k=1}^{N}\left(\frac{\partial C_{D, i}}{\partial \gamma_{w k}}\right)^{2}\right]^{1 / 2} \tag{A.8}
\end{equation*}
$$

Provided the partial derivatives $\frac{\partial C_{D, i}}{\partial \gamma_{w k}}$ are not all zero, there are two distinct sets of directional numbers which make $\frac{\partial \gamma_{D, i}}{d s}$ stationary. From Eqs.(A.5) and (A.8), it is easily seen that :

$$
\begin{array}{r}
\frac{d \gamma_{w k}}{d s}= \pm \frac{\partial C_{D, i}}{\partial \gamma_{w k}}\left[\sum_{m=1}^{N}\left(\frac{\partial C_{D, i}}{\partial \gamma_{w m}}\right)^{2}\right]^{-1 / 2} \tag{A.9}\\
\quad k=1, \cdots, N
\end{array}
$$

From Eq. (A.3) the directional derivative can be shown to be :

$$
\begin{equation*}
\frac{d C_{D, i}}{d s}= \pm\left[\sum_{m=1}^{N}\left(\frac{\partial C_{D, i}}{\partial \gamma_{w m}}\right)^{2}\right]^{1 / 2} \tag{A.10}
\end{equation*}
$$

Let σ be a time parameter. Consider the motion along the negative gradient direction as a continuous process. Then Eq. (A.1) becomes :

$$
\begin{equation*}
\frac{\mathrm{ds}}{\mathrm{~d} \sigma}=\left[\sum_{\mathrm{m}=1}^{\mathrm{N}}\left(\frac{\mathrm{~d} \gamma_{\mathrm{wm}}}{\mathrm{~d} \sigma}\right)^{2}\right]^{1 / 2}=v \tag{A.11}
\end{equation*}
$$

From Eqs.(A.9) and (A.11), it can be seen that :

$$
\begin{gather*}
\frac{d \gamma_{w k}}{d \sigma}=-\left[\sum_{n=1}^{N}\left(\frac{d \gamma_{w n}}{d \sigma}\right)^{2}\right]^{1 / 2}\left[\sum_{m=1}^{N}\left(\frac{\partial C_{D, i}}{\partial \gamma_{w m}}\right)^{2}\right]^{-1 / 2} \frac{\partial C_{D, i}}{\partial \gamma_{w k}}, \\
k=1, \cdots, N \tag{A.12}\\
\text { Let } \quad V=K\left[\sum_{m=1}^{N}\left(\frac{\partial C_{D, i}}{\partial \gamma_{w m}}\right)^{2}\right]^{1 / 2}, K>0
\end{gather*}
$$

Then,

$$
\begin{equation*}
\frac{d \gamma_{w m}}{d \sigma}=-K \frac{\partial C_{D, i}}{\partial \gamma_{w m}}, m=1, \cdots, N \tag{A.14}
\end{equation*}
$$

Eq. (A.14) shows that the motion in the negative gradient direction is assured by setting the time derivatives of the coordinates γ_{w} proportional to the partial derivatives of $C_{D, i}$.

If the stepwise version is considered, then Eq.(A.14) becomes :

$$
\begin{equation*}
\gamma_{w m}(p+1)=\gamma_{w m}(p)-k \frac{\partial C_{D, i}}{\partial \gamma_{w m}} \Delta \sigma, \quad m=1, \cdots, N \tag{A.15}
\end{equation*}
$$

where the constant K may be absorbed in the step size $\Delta \sigma$. Hence :

$$
\begin{equation*}
\gamma_{w I I}(p+1)=\gamma_{w I I}(p)-\frac{\partial C_{D, i}}{\partial \gamma_{w m}} \Delta \sigma, \quad m=1, \cdots, N \tag{A.16}
\end{equation*}
$$

If the objective function $C_{D, i}$ is subject to the two linear equality constraints,

$$
\begin{align*}
& c_{L}\left(\gamma_{w 1}, \cdots \cdots, \gamma_{w n}\right)=\bar{c}_{L} \tag{A.17}\\
& c_{m}\left(\gamma_{w l}, \cdots \cdots, \gamma_{w n}\right)=\bar{c}_{m} \tag{A.18}
\end{align*}
$$

the relation appropriate to a stepwise process analogous to that given by Eq. (A.16) are :

$$
\begin{gather*}
\gamma_{w k}(p+1)=\gamma_{w k}(p)-\left(\frac{\partial C_{D, i}}{\partial \gamma_{w k}}+\lambda_{1} \frac{\partial C_{L}}{\partial \gamma_{w k}}+\lambda_{2} \frac{\partial C_{m}}{\partial \gamma_{w k}}\right) \Delta \sigma \\
k=1, \cdots, N \tag{A.19}
\end{gather*}
$$

or,

$$
\begin{equation*}
\Delta \gamma_{w k}+\lambda_{1} \frac{\partial C_{L}}{\partial \gamma_{w k}} \Delta \sigma+\lambda_{2} \frac{\partial C_{m}}{\partial \gamma_{w k}} \Delta \sigma=-\frac{\partial C_{D, i}}{\partial \gamma_{w k}} \Delta \sigma \tag{A.20}
\end{equation*}
$$

By Taylor's series expansion, Eqs.(A.17) and (A.18) become :

$$
\begin{align*}
c_{L}\left(\gamma_{w 1}, \cdots \cdots, \gamma_{w n}\right) \approx & c_{L}\left(\bar{\gamma}_{w 1}, \cdots \cdots, \bar{\gamma}_{w n}\right)+ \\
& \sum_{k=1}^{N} \frac{\partial c_{L}}{\partial \gamma_{w k}}\left(\bar{\gamma}_{w 1}, \cdots \cdots, \bar{\gamma}_{w n}\right)\left(\gamma_{w k}-\bar{\gamma}_{w k}\right) \tag{A.21}
\end{align*}
$$

$$
c_{m}\left(\gamma_{w l}, \cdots \cdots, \gamma_{w n}\right) \simeq c_{m}\left(\bar{\gamma}_{w 1}, \cdots \cdots, \bar{\gamma}_{w n}\right)+
$$

$$
\begin{equation*}
\sum_{k=1}^{N} \frac{\partial C_{m}}{\partial \gamma_{w k}}\left(\bar{\gamma}_{w 1}, \cdots \cdot, \bar{\gamma}_{w n}\right)\left(\gamma_{w k}-\bar{\gamma}_{w k}\right) \tag{A.22}
\end{equation*}
$$

Assume that the constraints are satisfied at the point $\gamma_{w k}=\bar{\gamma}_{w k}$. Then Eqs.(A.21) and (A.22) become:

$$
\begin{align*}
& \sum_{i=1}^{N} \frac{\partial C_{L}}{\partial \gamma_{w i}} \Delta \gamma_{w i}=0 \tag{A.23}\\
& \sum_{i=1}^{N} \frac{\partial C_{m}}{\partial \gamma_{w i}} \Delta \gamma_{w i}=0 \tag{A.24}
\end{align*}
$$

In the present method, since the initially computed C_{L} and C_{m} values approach the constrained values gradually, Eqs.(A.23) and (A.24) become the following modified form which are actually applied in the iterative process :

$$
\begin{equation*}
\sum_{i=1}^{N} \frac{\partial C_{L}}{\partial \gamma_{w i}} \Delta \gamma_{w i}=\bar{C}_{L}-C_{L}(p) \tag{A.25}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=1}^{N} \frac{\partial C_{m}}{\partial \gamma_{w i}} \Delta \gamma_{w i}=\bar{C}_{m}-C_{m}^{(p)} \tag{A.26}
\end{equation*}
$$

where $C_{L}(p)$ and $C_{m}{ }^{(p)}$ are the computed values at the $p-t h$ iteration. The optimization equations include Eqs.(A.20), (A.25) and (A.26). They are to restore the linear equality constraints and adjust the variables $\gamma_{w k}$. The optimal solution of $\gamma_{w k}$ can be found as the objective function $C_{D, i}$ reaches the minimum.

Appendix B Description of the Computer Program

This computer program provides a theoretical method for determining the minimum induced drag configurations in the wing-alone and jet-on (USB) cases. The first part of the program is used to set up the influence coefficient matrices of the boundary conditions (the detailed explanation is in Ref. 17). The calling routines of this part include " GEOMTY ", " JETOFF " and " JETON ". The optimum camber shape and twist distribution for the minimum induced drag can be determined by using the second part of the program. The calling routines of this part include " WALNOL "," INVMTX "," COMJET " and " JETNOL ". In the wing-alone case, the optimum solution can be found from the subroutine " WALNOL ". In the jet-on case, the subroutines " INVMTX ", " COMJET " and " JETNOL " should be used. The initial wing-alone vortex strengths used in the jet-on case are obtained by Lagrange interpolation from the optimum results in the wing-alone case.

Before running the computer program, the following checklist should be completed:
(1) To use the adjustable dimensions in the program, the three constants of IPANEL, ICW and JPANEE should be declared as input parameters in the following subroutines:

IPANEL and JPANEE --------- Subroutines $\left\{\begin{array}{l}" \text { WALNOL " } \\ \text { " INVMTX " }\end{array}\right.$

IPANEL, ICW and JPANEE ---_-- Subroutines $\left\{\begin{array}{l}\text { " COMJET " } \\ " \text { JETNOL " }\end{array}\right.$ The constants IPANEL, ICW and JPANEE are defined as follows: IPANEL Total number of wing vortices (LPANEL).

ICW Total number of chordwise vortices along each vortex strip.

JPANEE Total number of jet vortices in the outer or inner flow (JPANEL).
(2) For IPANEL $=60, \mathrm{ICW}=6$, JPANEE $=80$, the minimum memory needed is 74 K (decimal).
(3) If ITAPE $=0$, the subroutines " INVMTX " and "COMJET " are executed and all the matrices are calculated and stored on tape. If ITAPE $=1$, the subroutines " INVMTX " and "COMJET " are bypassed and the calculation proceeds using the matrices already computed (and available on tape).
(4) Nine temporary files and one tape must be provided. The detailed explanation of each file is given below:

File 01 ...The influence coefficient matrix $\left[{ }_{N W W}\right]$ for the wing-alone case.

File 02 The tangential velocities on the trailing jet surface to be used to satisfy the jet flap effect.

File 03 All the influence coefficient matrices of the boundary conditions for the jet-on case.

File 04 The influence coefficient matrix after being interpolated for the wing-alone case ([A]).
File 08 The coefficient matrix of the optimization equations and the right hand side of those equations.

File 09 The inverted augmented matrix of the boundary conditions.

File 10 The derivatives of camber slope with respect to wing-alone vortex strength.

File 11 The influence coefficient matrices after being interpolated for the jet-on case ($[A],[B]$).
File 12 The derivatives of the jet vortex strength in the outer flow and of the additional wing vortex strength - both taken with respect to the wing-alone vortex strength.
(5) Check input data.

Input Data Format

Group 1. Format $13 A 6 \quad 1$ card
Any title identifying the case to be run.
Group 2. Format 4(6X,I4) 1 card
ICASE Number of cases to be run.
NG $\quad=0$ if all cases have the same geometry other than the angle of attack.
$=1$ if new configurations or different freestreamjet velocity ratios are to be treated.

ISYM $\quad=0$ for a centered jet.
= 1 , otherwise.
ITAPE $=0$ if all matrices are to be calculated and stored on tape.
$=1$ if all matrices on tape are to be used.
Group 3. Format 8F10.5 1 card
AM1 Mach number of the freestream.
AM2 Mach number of the jet flow.
VMU Freestream velocity divided by jet velocity.
TEMP Jet static temperature divided by freestream static temperature. Assumed to be the same as ratio of freestream density and jet density.

ALP Angle of attack in degrees.
XEL $\quad X$-coordinate of the wing L.E. at the jet centerline.
XET $\quad \mathrm{X}$-coordinate of the wing T.E. at the jet centerline.

Group 4.	Format	$2(6 \mathrm{X}, 14) 5 \mathrm{Fl0.5} \quad 1$ card
	NFP	Number of flap sections, including the jet span,
		A maximum of five flap sections may be input.
	NJP	Numerical order of the jet span among the NFP
		sections.
	DF (I)	Flap deflection angles in degrees for the flap
	$\mathrm{I}=1, \mathrm{NFP}$	sections.
Group 5.	Format	8F10.5 1 card
	HALFSW	One half of the reference wing area.
	TWIST	Difference in angle of attack at the tip and the
		root in degrees. Negative for washout.
	TWISTR	Incidence angle of the root chord in degrees.
	XJ	X, Y, and Z -coordinates of the midpoint of the jet
	YJ $\}$	cross section at the exit.
	2J	
	RJ	Jet radius.
	CREF	Reference chord length.
Group 6.	Format	3F10.5 1 card
	TEANGL	Trailing-edge half angle of the airfoil at the jet
		centerline in degrees. For USB applications, it may
		be arbitrary.
	PTIAL	$=0$. for clean or full-span flap configuration.
		$=1$. for partial-span flap deflection.
	USB	$=0$. for OWB applications.
		= 1. for USB applications.

Group 7. Format 3F10.5 1 card
CMU Jet thrust coefficient.
DFJ Jet deflection angle in degrees at the trailing edge relative to the chord line. At small flap angles, it may be taken as the sum of flap angle and the airfoil trailing edge half angle. At large flap angles, experimental values should be used.

TNJ. = 0. if the entrainment is not to be accounted for. Usually this is the case if the jet is on the wing surface. $=1$. if the entrainment due to an equivalent round jet is to be accounted for when a rectangular jet is not on the wing surface.

Group 8. Format 8(6X,I4) 1 card
NC Number of spanwise sections. A natural way of dividing a planform into sections is to follow lines of discontinuity, such as edges of partial-span flap, jet boundary, wing edge discontinuities,etc.

M1 (I) Number of vortex strips in each spanwise section, $\mathrm{I}=1, \mathrm{NC}$ plus one.

Group 9.	Format	5 (6x, I4) 1 card
	NJW (I)	The numerical order of the flap and jet spans
	$\mathrm{I}=1, \mathrm{NFP}$	among the spanwise sections. .
Group 10.	Format	3(6X, I4) 1 card
	NW(I)	Number of chordwise vortex elements in each
	$\mathrm{I}=1,2,3$	chordwise section. The planform is divided into
		chordwise sections according to such lines of
		discontinuity as jet exit, flap hinge, etc.
Group 11.	Format	6F10.5 1 card
	XXL (1)	x-coordinate of the leading edge of the inboard
		boundary chord of a given spanwise section.
	XxT (1)	x-coordinate of the trailing edge of the inboard
		boundary chord of the same spanwise section.
	YL (1)	y-coordinate of the inboard boundary chord.
	XXL (2)	x-coordinate of the leading edge of the outboard
		boundary chord of the same spanwise section.
	XXT (2)	x-coordinate of the trailing edge of the outboard
		boundary chord.
	YL(2)	y-coordinate of the outboard boundary chord.
Group 12.	Format	6(6X, I4) 1 card
	NNJ	Number of jet sections.
	NSJ	$=$ Number of jet circumferential strips minus one
		for a noncentered jet (always use odd numbers).
		$=$ Number of jet circumferential strips on the half
,		jet plus one for centered jet (always use even
		numbers).

NCJ(I) Number of streamwise vortex elements in each section. For those jet sections above the wing; these numbers should agree with the corresponding numbers of wing vortices.

Group 13. Format 4 F10.5 ($4 \times \mathrm{xNJ}$) cards
XXL (I) $\operatorname{xxT}(I)$ YL (I) They are the x-coordinates of the leading and trailing edges, the y-coordinate and the z $I=1, \cdots, 4$ coordinate of the bounding line. There are 4 cards for each jet section. The jet section behind the trailing edge should be at least one local chord in length.

Group 14. Format (4F10.5,110) 1 card
CDBAR Theoretical minimum induced drag coefficient in the wing alone case.

CLBAR Lift constraint in the wing alone case.
CMBAR Pitching moment constraint in the wing alone case.

DELTA . Initial step size in the wing alone case.
MAXP Maximum number of iterations in the wing alone case.

Group 15: Format (3F10.5,110) 1 card
CLBAR Lift constraint in the jet-on case.
CMBAR Pitching moment constraint in the jet-on case.
DELTO Initial step size in the jet-on case.
MAXP Maximum number of iterations in the jet-on case.

Group 16: Format (I10,F10.5) 1 card
NUMB Number of intermediate cycles for the initial computed lift and pitching moment coefficients to reach the constrained values. There are two or three iterations in each cycle.

SIZE The constant step size is to be used in the jet-on case.

Note: The read statements for the input data in groups 3-13 can be seen in subroutine " GEOMTY ", the input data of group 14 is in subroutine " WALNOL ", the input data in groups 15-16 are in subroutine " JETNOi ". The input data for groups 1 and 2 can be seen in the main program.

Sample Input Data for the Wing-alone and Jet-on cases

Card	* * *	WING ALONE	CASE *	*				
2		1.	1.	1	1			
3	0.	0.	0.2576	1.	0.	-0.29391	0.12318	
4		1	10.					
5	0.36364	0.	0.	-0.29391	0.25945	0.05	1.	0.37495
6	0.	1.	1.					
7	1.676	10.	0.					
8		$1 \quad 1$	11					
9		1						
10		6	0	0				
11	-0.56776	-0.09304	0.	0.48778	0.74033	1.		
12		1	7	6				
13	-0.56776	-0.09304	0.	0.				
14	-0.56776	-0.09304	0.	0.1				
15	0.48778	0.74033	1.	0.1				
16	0.48778	0.74033	1.	0.				
17	0.02084	0.6	-0.036	50.	15			
18	* * *	JET On Cas	E WITH UP	ER SURFACE	BLOWING	* * *		
19	0.	0.	0.2576	1.	0 .	-0.29391	0.12318	
20		1	10.					
21	0.36364	0.	0.	-0.29391	0.25945	0.05	1.	0.37495
22	0.	1.	1.					
23	1.676	10.	0.					
24		3	3		6			
25		2						
26		6	0	0				
27	-0.56776	-0.09304	0.	-0.3675	0.06507	0.18972		
28	-0.3675	0.06507	0.18972	-0.22031	0.18128	0.32917		
29	-0.22031	0.18128	0.32917	0.48778	0.74033	1.		
30		2	7	6	4			
31	-0.3675	0.06507	0.18972	0.				
32	-0.3675	0.06507	0.18972	0.1				
33	0.22031	0.18128	0.32917	0.1				
34	0.22031	0.18128	0.32917	0.		\because		
35	0.06507	0.49764	0.18972	$0 . \quad$.				
36	0.06507	0.49764	0.18972	0.1				.
37	0.18128	0.58287	0.32917	0.1				
38	0.18128	0.58287	0.32917	0.				
39	1.2	-0.075	0.1	2	0			!
40		50.4						

Output Data Format

The title of the job and the input data will be printed in the same format as it was input. For the upper-surface-blowing configuration, the following output data will be printed :

HALFSW The reference half-wing area.
CREF The reference chord length.
LPANEL Total number of wing vortices.
JPANEL Total number of jet vortices in the outer or inner flow.

LAST The number of wing vortices plus the number of outer jet vortices.

LAST $=$ LPANEL + JPANEL
LTOTAL The total number of vortices which is the sum of wing vortices, outer jet vortices and inner jet vortices. LTOTAL $=$ LAST + JPANEL
$=$ LPANEL +2 (JPANEL)

Vortex Element Endpoint Coordinates

X_{1}, Y_{1}, Z_{1} Coordinates for the inboard endpoint of a bound vortex element.
$\mathrm{X}_{2}, \mathrm{Y}_{2}, \mathrm{Z}_{2}$ Coordinates for the outboard endpoint (corresponding to ($\left.X_{1}, Y_{1}, Z_{i}\right)$) of a bound vortex element.

Note: Wing elements are listed first and then jet elements. The number of elements listed should equal (LAST).

Two column of control point coordinates, one point for each vortex element.
ZCP
Note: Control points on the wing are listed first and then control points on the jet surface. The number of points listed should equal (LAST).

Overall Aerodynamic Coefficients

DELTA The step size which is used in the N-th iteration. CDII The computed induced drag coefficient in the N-iteration.

CLII The computed lift coefficient in the N-th iteration.
CMII The computed pitching moment coefficient in the N-th iteration.

Camber Shape and Twist Distribution
ALPAO Local angle of attack (twist) along each vortex strip.
CAMZC Camber ordinates along each vortex strip.

Sectional Pressure and Force Data

XV Fraction of local chord.
YV Spanwise fraction of semispan.
CP The total ΔC_{p} at the given ($X V, Y V$) point due to both wing and jet induced circulation.
$C P W$ The ΔC_{p} that would occur at that same point for the wing alone case.

Y/SP The y-coordinate of the chord divided by the half span.
CL The sectional lift coefficient due to circulation (jet on), nondimensionalized with $\mathrm{q}_{\infty} \mathrm{c}$.
$C M$ The sectional pitching moment coefficient about the Y-axis, nondimensionalized with $q_{\infty} c^{2}$.

CT. The sectional leading edge thrust coefficient, nondimensionalized with $\mathrm{q}_{\infty} \mathrm{c}$.

CDI The sectional induced drag coefficient, nondimensionalized with $q_{\infty} c$.
CLW The sectional lift coefficient for the wing alone case.
CMW The sectional pitching moment coefficient (about Y-axis) for the wing alone case.

CDW The sectional induced drag coefficient for the wing alone case.

Span Loading Computation
Jet-Off Span Loading
$\cdots=\frac{(\text { CLW } \times \mathrm{CH})}{\text { CREF }}$
(where CH is local chord length)

Jet-On Span Loading

$$
=\frac{(C L X, C H)}{C R E F} \text { (where } C H \text { is local chord length) }
$$

The Lift Coefficient

The total circulation lift coefficient due to the wing, wing-jet interaction and entrainment (if any).

Total Induced Drag Coefficient
Total induced drag coefficient for the jet on case.
Induced Drag Parameter
$=\frac{C_{D, i}}{C_{L}^{2}}$ or $\frac{1}{\pi e A R}$

Total Pitching Moment Coefficient
Pitching moment coefficient due to all circulation forces, about the Y-axis. Nondimensionalized with CREF.

Coanda Effect
Coanda Lift Coefficient

The lift coefficient due to the lift component of the jet reaction force.

Coanda Drag Coefficient
The drag coefficient due to the drag component of the jet reaction force.

Coanda Moment Coefficient
Pitching moment coefficient due to the pitching moment caused by the jet reaction force (about Y-axis).

The last four coefficients printed are due to aerodynamic forces and moments generated solely by the wing without any jet effect (jet off).

Appendix C
 Computer Program Listing

(This program is operational on Honeywell 66/60 computer.)

DIMENSION AW(300) TITLE(13)
COMMON / SCHEME/ $C(2), X(10.41) ; Y(10,41), S L O P E(15), X L(2,15), X T T(41)$.
1 XLL(41)
COMMON /GEOM/ HALFSW,XCP(200),YCP(200), ZCP(200),XLE(SO),YLE(50) -XT $1 E(50), P S I(20), C H(95), X V(200), Y V(100), S N(8,8), X N(200,2), Y N(200,2)$, 2 2N(200, 2) ,WIDTH(8) , YCON(25), SWEEP(50),HALFB,SJ(21,8),EX(95,2), TX($395,2), S C(160,5), S I(160,5), L C(3)$
COMMON /AERO/ AM1, AM2.E1, 82,CL(30),CT(30),CD(30),GAM(2.100)
COMMON /COST/ LTOTAL/LPAN1,NJW(5),LPANEL,IENTN,LPANZ,EXIT,PTIAL,TW
1IST,DF(S),NFP
COMMON /CONST/ NCS,NCW•M1(8),NSJONCJ(S),LAST,MJW1 (3,5) OMJW2(3;5),J
1PANEL,MJJ(5),NW(3),NNJ,NJP
COMMON /PARAM/ ALPT, ALFC,ALPS,CDF,SDF,TH,TDF
COMMON /JET/ PK1,XC,XJT(31),A(31),B(31)
COMMON /ADO/ CP(100), CN(30), BREAK (8), SWP (8.15), GAL (30), ISYM,VMU,VU
1, TEMP,FCR,CAMLER,CAMLET,CAMTER,CAMTET,XJ,YJ,ZJ,RJ,ALP,CREF,TWISTR
COMMON /CLOPE/ DZDXK(100), ALPAO(15),GCB(100),GCBX(100), THETAK(10)

1. CCX (100), OZDXK (100), GAN(2,100)

COMMON /LING/ GLBAR,GMBAR,FCLII,FCMII
COMMON /WLONE/ DZDXKW(100),GAMW(100), CAMZCW(100), ALPAOW(20)
COMMON./IDENT/ DZDXK1(100),GAM1(100), CAMZC1(100),ALPAO1(20),YLE1(2
10)

2 FORMAT (5F10.5)
3 FORMAT (7(6X,I4))
19 FORMAT (13A6)
406 FORMAT (40H**) ()
$P I=3.14159265$
READ (5.19) (TITLE(I), I=1.13)
'NRITE (6.406)
WRITE (6.19) (TITLE(I), I=1,13)
WRITE (6.406)
$\mathrm{NCON}=1$
** ${ }^{\text {NUMBER OF CASES TO BE RUN. GEOMETRY CODE }}$ (=1. IF GEOMETRY VARIES. IN THIS CASE, ALPHA MAY ALSO BE DIFFERENT. =O FOR THE SAME GEOMETRY BUT. DIFFERENT ALPHA'S) , AND SYMMETRY CODE (=O FOR A CENTERED JET, AND = 1 OTHERWISE); ITAPE=1 FOR MATRICES ON TAPE ARE TO BE USED ITAPE=0 , THEN CCMPUTE ALL MATRICES ***

READ (5,3) ICASE, NGOISYM,ITAPE
WRITE (6,3) ICASE,NG,ISYM,ITAPE

```
02-18-78 02.177
    20 cONTINUE
            CALL LLINK(6HLINK11)
    CALL GEOMTY(KCODE)
    CALL LLINK(6HLINK22)
    CALL JETOFF
    CALL LLINK(GHLINK33)
    CALL WALNOL
98 CONTINUE
    READ (5,19) (TITLE(1),I=1,13)
    WRITE (6.4C6)
    WRITE (6.19) (TITLE(I),I=1,13)
    WRITE (6.406)
    CALL LLINK(6HLINK11)
    CALL GEOMTY(KCODE)
    L1=LPANEL+1
    JT=LPANEL +JPANEL.
    IF (ITAPE .EQ. 1) GO TC 40
            CALL LLINK(6HLINK22)
    CALL JETOFF
    CALL JETON(KCODE)
        CALL LLINK(6HLINK44)
    CALL INVMTX
    CALL LLINK(6HLINK55)
    CALL COMJET (KCODE)
10 CONTINUE
    REWIND D!
    REWINO OS
    REWINO O4
    REWIND OS
    REWIND 10
    REWIND 1.1
    REWIND 12
    REWIND 13
    DO 41 I=1.LPANEL
    READ (01) (AW(J),J=1.L1)
41 'NRITE (13) (AW(J) OJ=1,L1)
    DO 42 I=1.LTOTAL
    READ (03) (AW(J),J=1,LTOTAL)
42 WRITE (13)(AW(J),J=1,LTOTAL)
    DO44 I=1.LTOTAL
    READ (O9) (AW(J),J=1.LTOTAL)
44 WFITE (13)(AW(J).J=1.LTOTAL)
    DO45 I=1.LPANEL
    REAO (10). (AW(J),J=1,LFANEL)
45 WRITE (13) (AW(J),J=1,LPANEL)
    DO 46 I =1.LPANEL
    R.EAD (11) (AW(J),J=1,J7)
46 WRITE (13) (AW(J),J=1,J7)
    DO47 I=1,LPANEL
    READ (12) (AW(J),J=1,J7)
47.WRITE (13)(AW(J),J=1,J7)
```

```
02-18-78 02.177
```

 OTO 100
 40 REWINO (13)
 REWINO O1
 REWIND 03
 REWIND 04
 REWIND 09
 REWIND. 10
 REWINO 11
 REWINO 12
 \(0051 . I=1\), LPANEL
 READ (13) (AW (J) \(\mathrm{C}=1 / \mathrm{L} 1\))
 51 WRITE (01) (AW(J),J=1,L1)
 DO \(52 I=1\) LTOTAL
 READ (13) (AW(J) \(J=1\), LTOTAL)
 52 WRITE (O3) (AW (J) .J=1.LTOTAL)
 DO \(54 I=1\). LTOTAL
 REAO (13) (AW(J).J=1.LTOTAL)
 54 WRITE (O9) (AW(J),J=1,LTOTAL)
 \(0055 I=1\) L LPANEL
 READ (13) (AW (J), J=1,LPANEL)
 55 ARITE (10) (AW(J),J=1,LPANEL)
 DO \(561=1\) LPANEL
 READ (13) (AW(J),J=1, J7)
 56 WRITE (11) (AW(J),J=1,J7)
 OC \(57 I=1\) ! LPANEL
 READ (13) (AW(J),J=1,J.7)
 S7 WRITE (12) (AW(J), J=1;J7)
 100 CCNTINUE
 REWIND 04
 REWIND 11
 OO.25 I=1.LPANEL
 READ (11) (AW(K), K=1,J7)
 NRITE (04) (AW (K),K=JPANEL+1,J7)
 25 CONTINUE
 CALL LLINK (GHLINKE6)
 CALL JETNOL (KCODE)
 NCON=NCON+1
 IF (NCON .LE. ICASE) GO TO 9.8
 IF (NCON.GT. ICASE) GCTO 5
 IF (NG.EQ. 1) GO TO 2C
 5 CCNTINUE
 STOP
 END
 FORTY
 LIMITS -27K
 INCODE IBMF
 SUBROUTINE STREAM(ALPHA,VMU,I,IPHI/LPANEL,TEMP,LPAN1,LPANZ,ISYM,
 1KCODE,EXIT,MJ,INDEX,BA)
 TO COMPUTE THE RIGHT HAND SIDE Of THE SIMULTANEOUS EQUATIONS
 DIMENSION PHIN(3CO), ZA(1)
 COMIAON /AERO/ AM1, AM2,E1,B2,CL(30),CT(30),CD(30),GAM(2,100)
 COMMON /CONST/ NCS,NCW-M1 (8),NSJ,NCJ(5) LLAST,MJW1 (3,5),MJW2(3,5),J 1PANEL,MJJ (5) ONW (3) ONNJONJP
COMA ON /PARAM/ ALPT,ALPC,ALPS,CDF,SDF,TH,TDF
CCMMON /GEOM/ HALFSW,XCP(200) YYCP (200), ZCP(200) -XLE(50),YLE(SO) OXT
1E(50),PSI(20), CH(95),XV(200),YV(100),SN(8,8),XN(200,2),YN(200,2), 2 2N(200,2),WIDTH(8),YCCN(25),SWEEP(50),HALFB,SJ(21,8),EX(95,2),TX($395,2), S C(160.5), S I(160.5), L C(3)$
COMMON /SCHEME/ C(2),X(10.41),Y(10.41),SLOPE(15),XL(2.15),XTT(4!). 1×LL(41)
EQUIVALENCE (X(1.1),PHIN(1))
P1=3.14159265
IUSB=YCON(24)
ZJET=YCON(25)
N1=NNJ-1
$\mathrm{N} 2=\mathrm{NNJ}-2$
N3 $=$ NNJ- 3
1F (NNJ.EQ.1) N1=1
$\mathrm{NJH}=(\mathrm{NS} J+1) / 2+1$
IF (ISYM.EQ. O) NJH=NSJ/2
NP=NJH-1
IF (ISYM.EQ. O) NP=NJH
$A L P H A=0$.
IF (I GT. LPANEL) GO TO 1
GOTO 5
1 IF (I .GT. LAST) GO TO 10
IF (EXIT .LE. C.OO1) GC TO 2
IF (NAJ.EQ. 1) GO TO 2
IF (I .LE. MJJ(1).AND. I .NE. MJ) GO TO 5
? CCNTINUE
$A L P H A=A L P T * Y(3, I P H I) *(1 .-V M U)$
If (TH .LE. O.001) GO TO 3
IF (IPHI .EQ. NJH) GO TO 3
IF (ISYM. NE. O .AND. IPHI .EQ. 1) GO TO 3
IF (NNJ.EQ. 1 . AND. I.GT.LPANEL) ALPHA=ALPHA+CDF*(1.-VMU)
IF (NNJ.NE.1. AND. I.GT.MJJ(N1)) ALPHA=ALPHA+CDF*(1.-VMU)
3 continue
IF (ABS (31-B2) . LE. O.CO1) GO TO 28
CALL NORSPD (I, ALPH,LPANEL,IPHI,LPAN1,LPAN2,INDEX,BA)
$A L P H A=A L P H A+A L P H$
28 IF (KCODE.EQ. O) GO TO 5
IF (EXIT .LE. 0.001) GC TO 29
IF (NNJ.EQ.1) GOTO 29
If (I .LE. MJJ(1) AND. I .EQ. MJ) ALPHA=ALPHA/Z.
29 IF (IPHI .EQ. NJH) GO TO S
IF (ISYM.NE. O .AND. IPHI .EQ. 1) GO TO 5
IF (IUSB .EQ: 1 :AND. ZJET.GT. O.O1) GO TO 5
IF (CDF.LT. O.OCO1) GO TO 5
IF (NNJ.EQ. 1) GO TO 12
IF (I .LE. MJJ(N1)) GOTO 5
12 IF (IPHI .LT. NJH) IL=IPHI+ISYM
IF (IPHI.GT. NJH) IL=IPHI-NJH+ISYM

```
        02-18-78 02.177
    IF (NNJ.EQ.1) MJN1=LPANEL
    If (NNJ.NE.1) MJN1=MJJ(N1)
    MF=I-MJN1-(IPHI-1) +NCJ(NNJ)
    FNNJ=NCJ(NNJ)
    OISTJ=SOF
    DLX=DISTJ*C.S*PI/FiNNJ
    S 2X=-(1.-VMU)
    IQ=(IL-1)*NCJ(NNJ)
    If (NNJ EQ.E.1) IP=LPANEL+IQ+1
    IF (NNJ.NE. 1) IP=MJJ (N1)+IQ+1
    DO 6 JJ=1,MF
    IF (JJ .EQ. MF) GO TO 7
    DXTH=DLX*PSI(JJ)*TEMP*VMU*VMU/TH
    GOTO 3
    7 OXTH=DLX*OSI(JJ)*TEMP*S.5*VMU*VMU/TH
    8 JK1=IP+JJ
    JK2=JK1-1
    PROD=S ZX*DXTH
    JK3=JK2 +NP*NCJ(NNJ)
    ALPHA=ALPHA +PROD*(PHIN(JK2)-PHIN(JK3))
    6 CONTINUE
    GO TO S
    10 CONTINUE
    IF (INDEX.EQ.1) GO TO G2
    GO TO 63
62 DO 64 M=1.LPANEL
    BA(M)=0.0
64 CONTINUE
63 CONTINUE
    I J=I-JPANEL
    IF (KCODE .EQ. O) GO TO 30
    IF (EXIT .LE. 0.01) GOTO 4
    IF (NNJ.EQ. 1) GO TO 4
    IF (IJ.GT. LPANEL .ANO. IJ.LE. MJJ(1)) GO TO 5
    4 CONTINUE
    IF (IUSU.EQ. 1 .AND. ZJET.GT.O.01) GO TO 30
    IF (NNJ.EQ. 1) GO TO S_C
    IF (IJ.GT. MJJ(N1)) EC TO 30
    IF (IPHI .LE. NJH) GO TO 30
    LI=NJH
    IF (ISYM . EQ. O) LY=NJH+1
    IF (NW(2) .EQ. 0) GO.TC 70
    IF (NW(3) EQ. O) GO TO 71
    1F(IJ.GT.MJJ(N2))GOTO 32
    IF..(IJ.GT.MJJ(N3)) GOTO 34
    IF (NNJ.EG. 4) GO TO 33
    IF (NNJ.EQ. S.AND. IJ.GT. MJJ(NNJ-4)).GOTO 33
    GO TO 30
    71. IF(IJ.GT.MJJ(N2)).GCTO 34
    IF (NNJ.EQ. 3) GO TO 23
    IF (NNJ.EQ.4.AND. IJ.GT.MJJ(N3)) GO TO 33
```

```
                02-18-78 02.177
            GO TO 30
    70 IF (NNJ.EQ. 2) GOTO 33
        IF (NNJ.EQ. 3.AND.IJ.GT.MJJ(N2)) GOTO 33
    GC TO 30
33K1=MJW1(1,NJP)+(IPHI-L1-ISYM)*NW(1)-1
    K2=LC(1)+IPHI-L1-ISYM
    KNW=NW(1)
    GO TO 35
    34 K1=MJW1(2,NJP)+(IPHI-L1-ISYM)*NW(2)-1
    K2=LC(2)+IPHI-LI-ISYM
    KNW=NW(2)
    GO TO 35
    32K1=MJW1(3,NJP)+(IPHI-L1-ISYM)*NW(3)-1
    K2=LC(3)+IPHI-L!-ISYM
    KNW=NW(3)
    35 CONTINUE
    ALPHA1=0.
    ALPHAZ=0.
    DO 40 KK=1,KNW
    KL=K1+KK
    A A=1.
    DO 42 L=1,KNW
    LL=K 1+L
    IF (L .EQ. KK) GO TO 42
    AA=AA* (XCP(IJ)-XV(LL))/(XV(KL)-XV(LL))
    42 CONTINUE
    IF. (INDEX.EQ.1) GO TO 65
    ALPHA1=ALPHA1+AA*GAM(1,KL)
    IF (ABS(B1-B2) .LE. O.CO1) G0 TO 40
    ALPHAZ=ALPHAZ + AA*GAM(2,KL)
    GO TO 40
    65 BA(KL)=AA* (1.-TEMP*VMU*VMU)*0.5
    4O CONTINUE
        IF (ABS(B1-B2) .LE.0.CO1) ALPHA2=ALPHA1
    ALPHA=(ALPHAZ-TEMP*VMU*VMU*ALPHA1)*0.5
    GOTO 5
    3O CONTINUE
        CALL SPEED (VMU,I,ALPHA/LPANEL,TEMP,LPAN1,LPANZ,PHIS,IPHI,ISYM,
        1INDEX,BA)
            IF (KCODE -EQ. O) GO TC 5
            IF (CDF.LT. O.DOO1) GC TO S
            IF (NNJ .EQ. 1) GO TO 39
            IF (IJ.LE. MJJ(N1)) GCTO 5
    39 PHIN(IJ)=PHIS
    5 CONTINUE
    50 FORMAT (6(6X,I4))
            RETURN
            ENO
$. FORTY
$ LIMITS , 27K
        INCODE I &MF
```

SUBROUTINE SPEED(VMU.I,ALPHA,LPANEL,TEMP,LPAN1,LPAN2,PHIS,IPHI. 1ISYM, INDEX,BA)
TO COMPUTE THE INDUCED TANGENTIAL VELOCITIES dUE TO WING ALONE VORTICES
DIMENSION SU(100),BA(1)
CCMMON /AERO/ AM1, AM2, E1.B2,CL(30),CT(30),CD(30),GAM(2.100)

- -1PANEL,MJJ(5),NW(3) ,NNJ /NJP
 1E(50), PSI (20), $C H(95), X V(200), Y V(100), S N(8,8), X N(200,2), Y N(200,2)$, 2 ZN(200,2),WIDTH(8),YCON(25),SWEEP(50) คHALFB,SJ(21,8),EX(95,2),TX($395,2), S C(160,5), S 1(160,5), L C(3)$

COMMON /SCHEME/ $C(2), X(10,41), Y(10,41), S L O P E(15), X L(2,15), X T T(41)$.
$1 \times \mathrm{L}$ (41)
N1=NNJ-1
N $2=N N J-2$
N? $=N N J-3$
ZJET=YCON(25)
II=I-JPANEL
$B E=B 1$
I $C=1$
10 CONTINUE
$I Z=1$
$M M=0$
I $S N=1$
$N L=N W(1)$
$N N=N W(1)$
$B=0$.
DO $1 \mathrm{~J}=1$-LPANEL
IF (INDEX.EQ.1) $B A(J)=C .0$
JJ=J-MM
$F N=N L$
IF(J.GT. LPAN1 AND. J.LE. LPAN2) ISN=2
IF (J.GT. LPAN2 AND. J LLE. LPANEL) ISN=3
IF (J .GE. LPAN1.AND.J.LT. LPANEL) GO TO 20
GOTO. 21
20 NL=NW(2)
IF (J.GE. LPAN2.AND. J •LT. LPANEL) NL=NW(3)
21 CONTINUE
X1=XN(J,1)-XCP(II)
$x 2=x N(J, 2)=x C P(I I)$
X12=XN(J,2)-XN(J,1)
$Y 12=Y N(J, 2)-Y N(J, 1)$
$Z 1=-Z(P(I I)$
$22=-2 C P(I I)$
$212=0$.
$\times 2 J=-21 * \times 12$
$002 k=1.2$
IF (K.EQ. 1) GOTO 3
$N=1$
GOTO 4

$$
02-18-78 \quad 02.177
$$

```
    3N=2
    4 ~ C O N T I N U E
    YC=(-1.)**N*YCP(II)
    Y1=YN(J,1)-YC
    YZ=YN(J,Z)-YC
    XYK=X1*Y12-Y1*X12
    YZI=-Z1*Y12
    ALB1=XYK*XYK+XZJ*XZJ+BE*YZI*YZI
    R1B1=SQRT(X1*X1+BB*Y1*Y1 +BB*Z1*Z1)
    R2B1=SQRT(X2*X2+BB*Y2*Y2+BB*Z2*Z2)
    UUB1=(X2*X12+8B*Y2*Y12+BB*Z2*212)/R2B1-(X1*X12+BB*Y1*Y12+BB*21*212
    1)/R1日1
    F1=UUB1*YZI/ALB1
    SUM=F1*CH(IZ)*SN(JJ,ISN)*GAM(IC,J)/FN
    IF (K .EQ. 1) SU(J)=F1*CH(IZ)*SN(JJ,ISN)/FN
    IF (INDEX.EQ.1) GO TO 54
    GO TO 56
54 BA(J)=BA(J)+F1*CH(IZ)*SN(JJ,ISN)/FN
    GO TO 2
56 B=B+SUM
2 CONTINUE
    IF (J.LT. NM) GO TO 1
    IZ=IZ+1
    MM=NM
    NN=NM+NL
    1 CONTINUE
    NJH=(NSJ+1)/2+1
    IF (ISY:M .EQ. O) NJH=NSJ/2
    IF (IPHI EQ. NJH) GO TO 30
    IF (ISYM.NE. C.AND. IPHI.EQ. 1) GO TO 30
    IF (NNJ .EQ. 1) GO TO 30
    IF (II.GT. MJJ(N1)) GO TO 30
    IF (IPHI.GT.NJH.AND. LJET.LE. O.O1) GO TO 30
    IF (IPHI.GT. NJH) LI=NJH
    IF (ISYM.EQ. O.AND. IPHI .GT.NJH) L{=NJH+1
    IF (IPHI .LE. NJH) L1=1
    NZ=1
    IF (NW(2) NE. O . AND.NW(3) , EQ. O) NZ=2
    IF (NW(3) ,NE. O) NZ=3
    If (NNJ.LE. 3 .AND.NW(2) .NE. O) IR=N2
    IF (NNJ.LE. 3.AND.NW(2).EQ.O) IR=N1
    IF (NNJ.GE. 4 .AND.NW(3) .NE. O) IR=N3
    IF (NNJ.EQ. 4 .AND.NW(3).EQ. O) IR=N2
    DO 41 MP=1,N2
    K\=MJW1(MP,NJP)+(IPHI-L1-ISYM)*NW(MP)-1
    K2=LC(MP)+IPHI-LI-ISYM
    KNW=NW(MP)
35 CONTINUE
    K1=K1-KNW
    K 2=K 2-1
    MR=3
```

```
        02-18-78 02.177
    IF (K1 .GE. O) GC TO 4C
    K1=K1+KNW
    K2=K2+1
    MR=2
    40 DO 42 NR=1,MR
        S UM=0.
        00 36 KK=9,KNW
        KL=K 1+KK
    36 SUM=SUM+SU(KL)
        CALL INTEG (RES,KNW,K1,K2,II,BB,IR)
    CORN=0.
    DO 37 KK=1,KNW
    KL=K1+KK
    A A=1.
    DO 33L=1.KNW
    LL=K 1+L
    IF (L .EQ. KK) GO TO 38
    AA=AA* (XCP(II)-XV(LL))/(XV(KL)-XV(LL))
    38 CONTINUE
    IF (INDEX.EQ.1) GO TO 58
    GO TO 59
58 BA(KL)=3A(KL)-AA*SUM+AA*RES*8.
    GO TO 37
    59 CORN=CORN+AA*GAM(ICOKL)
    37 CONTINUE
        B=E-CORN*SUM+CORN*RES*&.
        K1=K1+KNW
        K2=k2+1
    42 CONTINUE
    IR=IR+1
    41 CONTINUE
    30 CONTINUE
    IF (INDEX .EQ. 1) GO.TCC }6
    GO TO 68
65 CONTINUE
    DO 60 M=1.LPANEL
    SA(M)=BA(M)*(1.-TEMP*VMU*VMU)/8.
60 CONTINUE
68 CCNTINUE
    IF.(IC.EQ. 2) GC TO ठ
    ALPHA1=B/8.
    IC=IC+1
    BE=B2
    IF (ABS(B1-B2).LE. 0.CO1) GOTO 7
    GO TO 10
    8 ALPHAL=B/8.
        GO TO 6
    7 ALPHAZ =ALPHA1
    6 ALPHA=ALPHAZ-TEMP*VMU*VMU*ALPHA1
        PHIS=ALPHAL
    100 FORMAT (G(F11.5))
```

02-i8-78 02.177

```
110 FORMAT (6 (5X,I5))
    RETURN
    END
                FORTY
            INCODE IBMF
        SUBROUTINE NORSPD (I,ALPH,LPANEL,IPHI,LPAN1,LPAN2,INDEX,BA)
        TO COMPUTE THE INDUCED NORMAL VELOCITIES DUE TO WING ALONE
        VORTICES
        DIMENSION BA(1)
        COMMON /AERO/ AM1.AM2,E1. B2,CL(30),CT(30),CD(30),GAM(2,100)
```



```
        1PANEL,MJJ(5),NW(3), NNJ,NJP
```



```
    1E(50), PSI (20), \(C H(95), X V(200), Y V(100), S N(8,8), X N(200,2), Y N(200,2)\),
    2 ZN(200,2),WIDTH(8),YCCN(25),SWEEP(50),HALFB,SJ(21,8),EX(95,2),TX(
    \(395,2) \cdot S C(160.5), S I(160.5) \cdot L C(3)\)
        COMMON /SCHEME/ C(2),X(10.41),Y(10,41),SLOPE(15),XL(2,15),XTT(41),
    1XLL(41)
    \(N J H=(N S J-1) / 2\)
    I \(L=1\)
    \(M M=0\)
    \(\mathrm{N} M=\mathrm{NW}\) (1)
    I \(S N=1\)
    NL三NW(1)
    A \(1=0\) 。
    \(A \geq=0\).
    DO \(1 \mathrm{~J}=1\) - LPANEL
    IF (INDEX:EQ.1) BA(J) \(=C\).
    \(J J=J-M M\)
    \(F N=N L\)
    IF (J.GT. LPAN1.AND. J .LE. LPAN2) ISN=2
    IF (J .GT. LPAN2.AND. J.LE. LPANEL) ISN=3
    IF (J.GE. LPANY •AND. J.LT. LPANEL) GO TO 10
    GO TO 11
\(10 \mathrm{NL}=\mathrm{N} \boldsymbol{N}(2)\)
    IF (J.GE. LPAN2.AND. J.LT. LPANEL) NL=NW (3)
11 CONTINUE
    \(x^{\prime} 1=X N(J, 1)-X C P(I)\)
    \(x 2=x\) (J, 2 ) - \(x(P(I)\)
    \(X 12=X N(J, 2)-X N(J, 1)\)
    Y12 \(=Y N(J, 2)-Y N(J, 1)\)
    212=0.
    218-2CP(I)
    Z2=-2CP(I)
    x2J=x1*212-21*x12
    \(002 K=1.2\)
    IF (K EQ. 1) GOTO 3
    \(\mathrm{N}=1\)
    GO TO 4
\(3 \mathrm{~N}=2\)
4 CONTINUE
```

$Y C=(-1.) \star \star N * Y C P(1)$
$Y \uparrow=Y N(J, 1)-Y C$
$Y Z=Y N(J, Z)-Y C$
$X Y K=X 1 * Y 12-Y 1 * X 12$
YZI=Y1*212-21*Y12
$A L B 1=X Y K * X Y K+X Z J * X Z J+B 1 * Y Z I * Y Z I$
$R 1 B 1=S Q R T(X 1 * X 1+B 1 * Y 1 * Y 1+B 1 * 21 * 21)$
R2日1=SQRT (X2*X2+81*Y2*Y2+B1*22*22)
UUB1 $=(X 2 * \times 12+81 * Y 2 * Y 12+81 * 22 * 212) / R 2 B 1-(X 1 * \times 12+B 1 * Y 1 * Y 12+B 1 * 21 * 212$

1) /R131

G1=(1.-Xi/R1B1)/(Y1*Y1+Z1*Z1)
G2=(1.-XZ/RZB1)/(YZ*YZ+ZZ*Z2)
$A L B Z=X Y K * X Y K+X Z J * X Z J+B Z * Y Z I * Y Z I$
R1B2=SQRT $(X 1 * X 1+B 2 * Y 1 * Y 1+B 2 * 21 * 21)$
$R 2 B 2=S Q R T(X 2 * X 2+B 2 * Y 2 * Y Z+B 2 * 22 * 22)$
U Н B $=(x 2 * \times 12+B 2 * y 2 * y 12+82 * 22 * 212) / R 2 B 2-(x 1 * \times 12+B 2 * y 1 * Y 12+82 * 21 * 212$

1) /R132
$G 3=(1 .-X 1 / R 182) /(Y 1 * Y 1+Z 1 * Z 1)$
$G 4=(1 .-X Z / R 2 B 2) /(Y Z * Y Z+Z 2 * Z 2)$
F13=UUB1*XZJ/ALB1
F $12=U \cup \forall 1 * X Y K / A L B 1$
G13=22*G2-21*G1
G12=-Y2*G2+Y1*G1
F23=UUB2*XZJ/ALB2
F22=UUBZ*XYK/ALB2
G $23=22 * G 6-21 * G 3$
G22=-Y2*G4+Y1*G3
F1=-F13*Y(4.IPHI)*(-1.)**N+F12*Y(3*IPHI)
$F 2=613 * Y(4, I P H I) *(-1) * * N+.G 12 * Y(3, I P H I)$
F3 $=-F 23 * Y(4, I P H I) *(-1) * * N+.F 2 Z * Y(3, I P H I)$
F4=G23*Y(4,IPHI)* (-1.) **N+G2Z*Y(3,IPHI)
7 CONTINUE
IF (INDEX.EQ.1) GO TO \&
$A 1=A 1+(F 1+F 2) * C H(I Z) * S N(J J, I S N) * G A M(1, J) / F N$ $A Z=A Z+(F 3+F 4) * C H(I Z) * S A(J J, I S N) * G A M(2, J) / F N$
GOTO 2
$8 \quad B A(J)=B A(J)+(F 1+F 2-F 3-F 4) * C H(I Z) * S N(J J-I S N) /(F N * 8$.
2 CONTINUE
If (J.LT. NM) GO TO 1
$1 z=1 z+9$
$M N=N M$
$\mathrm{NN}=\mathrm{NM}+\mathrm{NL}$
1 continue
$A L P H=(A 1-A Z) / 8$.
RETURN
END
FORTY
INCODE IBMF
SUBROUTINE VMSEQN (NC1,K,AA,A, (A)
DIMENSION AA(1),CA(1),A(1)
$N C=K * N C 1$

$$
02-18-78 \quad 02.177
$$

```
    SUM1=0.
    K1 = K-1
    J J = 1
    DO 3 J=1.,K1
    SU:N1 = SUI\1 + AA(J) * A(J.J)
3 JJ=JJ+NC1+1
    SUM1 = SUM1 + AA(K)
    DO 5 I=1,NC1
    S UM2 =0.
    J J = I +1
    DO 4 J=1,K1
    SUMZ = SUM 2 + AA(J)*A(JJ)
4 JJ=JJ N C1+1
    KK=K+1
    S UiN2 = SUM 2+AA(KK)
5 CA(I) =-SUM2/SUM1
    H=1
    L=0
    KNC=(K-1)*NC1
    DO 8 I=1,NC
    IF (I.GT.KNC) GO TO 7
    MN=(M-1)*NC1+1
    IF (I.EQ.MM) GO TO.9
6 KK=KK+1
    IL=I+L
    A(I)=CA(KK)*BASE+A(IL)
    GO TO B
7 II=I-KNC
    A(I)=CA(II)
8 CONTINUE
    GC TO 10
9 II I= AM M M-1
    BASE=A(II)
    KK=0
    L=L+1
    H=M+1
    GO TO 6
1J CONTINUE
    RETURN
    END
        FORTY
        INCODE IBMF
    SUBROUTINE INTEG (F,NN,LJ,IZ,IJ.B.IR)
    COMMON /GEOM/ HALFSW,XCP(200) YCP(200) ,ZCP(200),XLE(5O),YLE(50),XT
    1E(50),PSI(20),CH(95),XV(200),YV(100),SN( 8, 8),XN(200,2),YN(200,2),
= 2 2N(200, 2),WIDTH(8),YCON(25),SWEEP(5O),HALFB,SJ(21,8),EX(95,2),TX(
    395,2),SC(160,5),SI(160,5),LC(3)
    PI=3.14159265
    J=LJ+9
    JJ=NN*16
    IF (NN.GT. 6) JJ=NN*8
```

$$
02-18-78 \quad C 2.177
$$

```
    FJ=JJ
    C1=T\times(IZ,1)-EX(IZ,1)
    C2=TX(IZ,Z)-EX(IZ,Z)
    SUM=0.
    00 1 K=1.JJ
    X X 1 = Ex(IZ:1) +C1*SC(K,IR)
    x 人2=Ex(IZ,2)+C2*SC(K,IR)
    x1=x x1-xCP(IJ)
    x 2=x X 2-x(P(IJ)
    Y1=YN(J,1) - YCP(IJ)
    Y 2=YN(J, 2) - YCP(IJ)
    Z1=ZN(J,1)-ZCP(IJ)
    22=2N(J,2)-2CP(1J)
    X12=XX2-XX1
    Y12=YN(J,2)-YN(J,1)
    Z12=ZN(J,2)-ZN(J,1)
    YZI=Y1*Z12-Z1*Y12
    XYK=X1* Y 12-Y1*X12
    XZJ=X1*Z12-Z1*X12
    ALB=XYK*XYK+XZJ*XZJ+B*YZI*YZI
    R1=SQRT(X1*X1+E*Y1*Y1+E* Z1*Z1)
    R2=SQRT(XZ*XZ + E*YZ*YZ + E* Z Z* Z2)
    UU=(X2* X 12+3*Y2*Y12+B*Z2*Z12)/R2-(X1* X12+B*Y1*Y12+B*Z1*212)/R1
1 SUM=SUM+UU*YZI/ALB*SI(K,IR)
    F=SUM* CH(IZ)/(8.*F.J)
    RETURN
    ENO
        FORTY
        INCODE IQMF
    SUBROUTINE INVRCX (THETAI,BONDN,AA,IPANEL,BIGCX,AK,ICW,CX)
    FINO THE INVERSE TRANSFORMATION MATRIX
    DIMENSION THETAI(1),BONDN(1),AA(1),BIGCX(IPANEL;1)
    DIMENSION AK(1),CX(ICH,1)
    COMHON /ADD/ CP(100),CN(30),BREAK(8),SWP(3,15),GAL(30),ISYM/VMU,VU
1,TEMP,FCR,CAMLER,CAMLET,CAMTER,CAMTET,XJ,YJ,ZJ,RJ,ALP,CREF,TWISTR
    COMMON /CLOPE/ DZDXK(100),ALPAO(15),GCB(100),GCBX(100),THETAK(10)
1, CCX(100),OZDXK(100),GAN(2,100)
    CCMAON/CONST/ NCS,NCW,M1(8),NSJ,NCJ(S)/LAST,MJW1(3,5),MJW2(3,5),J
1PANEL,MJJ(5),NW(3),NNJ,NJP
    COMMON /GEOM/ HALFSW.XCP(200),YCP(200),ZCP(200),XLE(50),YLE(50),XT
1E(50),PSI(20);CH(95),XV(200),YV(100), SN(8,8, ),XN(200,2),YN(200,2),
2 2N(200,2),WIDTH(3),YCCN(2S),SWEEP(SO),HALFB,SJ(21,8),EX(95,2),TX(
395,2),SC(160.5),SI(160.5),LC(3)
    COMMON/ICOST/ LTOTAL,LFAN1,NJW(5),LPANEL,IENTN,LPAN2,EXIT,PTIAL,TW
1IST,D.F(5),NFP
    PI =3.14159265
    1=9
    I SM=1
    I SN=1
    IFF=1
    MJ=1
```

02-18-78 02.177
$N N=N W(I S N)$
$M A X=(M 1(I S M)-1) * N W(I S N)$
DO $15 \mathrm{~J}=1$, LPANEL
$M I=J-I F F+1$
$M L=M 1(I S M)$
$N L=N W(I S N)$
$F M L=M L$
$F N L=N L$
$\therefore G(B X(J)=-C H(I) \star W I D T H(I S M) * X V(J) /(F N L * F M L * C R E F) * S N(M I \neq I S N) * S J(M J, I S$
1M)
GCB(J)=CH(I)*WIDTH(ISM)/(FNL*FML)*SN(MI,ISN)*SJ(MJ,ISM)
IF (J.LT. NN.OR.J.EQ. LPANEL) GO TO 15
$I=I+1$
$I F F=N N+1$
IF (J - EQ. LPAN1 -OR. J.EQ. LPAN2) ISN=ISN+1
$N N=N N+N W$ (ISN)
$M J=M J+1$
IF (MJ.EQ.M1 (ISM)) MJ=1
IF (J.LT.MAX) GO TO 15
$I S M=I S M+1$
IF (J.EQ. LPAN1.OR.J.EQ. LPAN2) ISM=1
$M A X=M A X+(M 1(I S M)-1) * N W(I S N)$
15 CONTINUE
$N W 2=N W(1)+N W(2)$
IF (NW (2).EQ.O) GO TO E2
$I I=1+N C S$
IF (NW (3) = NE=O) GO TO 69
CHORD=CH(1)+CH(II)
$\times \times 1=\mathrm{CH}(1) / \mathrm{CHORD}$
THETA1 = ARCOS (1. - 2.* $* \times 1$)
THETAZ=PI
GOTO 63
69 III =II +NCS
CHORD $=\mathrm{CH}(1)+\mathrm{CH}(I I)+\mathrm{CH}(I I I)$
$\times \times 1=C H(1) / C H O R D$
THETA1 $=A R C O S(1 .-2 . * X \times 1)$
$\times \times 2=(C H(1)+C H(I I)) / C H O F D$
THETA2 $=4 R C O S(1 .-2 . * \times 2)$
GO TO 63
62 CHORD $=\mathrm{CH}$ (1)
63 CUNTINUE
$0061 \mathrm{~J}=1$, NCW
IF (NW(2).EQ.O) GO TO 64
IF (J.LE.NW(1)) GO TO 64
IF (J.GT.NW?) GOTO 59
$L L=L P A N 1+J-N W(1)$
GO TO 65
$59 \quad L L=L P A N 2+J-N W 2$
GOTO 65
$64 \quad L L=J$
65 CONTINUE
02-13-78 02.177
$X C K=(X V(L L)-X L E(1)) / C H O R D$
$X C I=(X C P(L L)-X L E(1)) / C H O R D$
THETAI (J) = ARCOS (1. - 2.*XCI)
THETAK (J) =ARCOS (1..-2.*XCK)
61 CONTINUE
DO $13 \mathrm{~K}=1 \cdot \mathrm{NCW}$
DO $13 \mathrm{~J}=1$, NCW
FM=NCW
$C X(K, J)=1 . / F M *(-1.) \star \star(K+J) * S I N(T H E T A K(J)) /(C O S(T H E T A K(J))-C O S(T H E T$
1AI(K)))
13 CONTINUE
I $C A=I C W$
CALL SETDIM (CX,ICA,ICA)
CALL HEMINV (CX,ICA.BONDN)
STORE THE INTERPOLATION MATRIX IN THE COMMON BLOCK CCX(I)
DC $181=1$. NCW
DO $18 \mathrm{~J}=1$, NCW
$I K=(I-1) * N C W+J$
$18 \quad C C X(I K)=C X(I, J)$
RETURN
END
LINK LINK11
FORTY
LIMITS •31K
INCODE IEIF
SUEROUTINE GEOMTY(KCODE)
TC SET UP THE GEOMETRY OF THE VORTEX ELEMENTS AND CONTROL POINTS
DIMENSION XXL(S),YL(5) $\times X X T(5), Z L(5), C P C W L(31), C P S W L(31)$
COMMON /AERO/ AM1,AM2.E1,B2,CL(30),CT(30), CD(30),GAM(2,100)
COMMON /ADO/ CP(100), CM(30), $8 R E A K(8), S W P(8,15)$, GAL. (30) , ISYM,VMU,VU 1, TEMP,FCR,CAMLER,CAMLET,CAMTER,CAMTET,XJ,YJ,ZJ,RJ,ALP,CREF,TWISTR COMMON /CONST/ NCS,NCN,M1 (8) NNSJ,NCJ (5),LAST,MJW1 (3,5) ,MJW2 (3,5), J 1PANEL,MJJ(S) NW (3) , NNJ,NJP

COMMON /COST/ LTCTAL,LFAN1,NJW(5),LPANEL,IENTN,LPAN2,EXIT,PTIAL,TW
11ST-DF(S) NFP
COMMON /PARAM/ ALPT,ALPC,ALPS,CDF,SDF,TH,TDF
CCMMON /GECM/ HALFSW, XCP(200) YY(P (200), ZCP(200) -XLE(SO),YLE(50),XT 1E(50),PSI(20), CH(95),XV(200),YV(100),SN(8,8),XN(200,2),YN(200,2), 2. $2 N(200,2), W I O T H(8), Y C C N(25), S W E E P(50), H A L F B ; S J(21,8), E X(95,2), T X($ $395.2), S C(160.5), S I(160.5), L C(3)$
COMMON /SCHEME/ C(2), X (10.41),Y(10,41),SLOPE(1.5),XL(2,15),XTT(41), 1XLL(41)
1 FORMAT (3(I4.6X))
2 FORMAT (8(F10.5))
3 FORMAT (8 ($6 \times .14$))
4 FORMAT (10X,8HHALF SW=,E12.5.10X,5HCREF=,E12.S)
5 FORMAT (6(F10.5))
6 FORMAT (2(6X.I4).7F10.5)
8 FORMAT (13HCASE NUMBER =-12)
400 FORMAT ($1 H D .10 H I N P U T: D A T A)$

$$
\text { 02-18-78 } 02.177
$$

1. I 3)

403 FORIMAT (1HO, 3 SHVORTEX ELEMENT ENDPOINT COORDINATES =)

404 FORMAT (1 HO, $26 H C O N T R O L$ POINT. COORDINATES=)

1IT HAS BEEN SET TO 0.9 IN THE COMPUTATION)
29 FORMAT (1HO.46HTHE EQUIVALENT JET PROPERTIES ARE EVALUATED AT•F10. * 5)

30 FORMAT (1H0,28HTHE EQUIVALENT. JET RADIUS IS,F10.5)

32 FORMAT (1H0,49HTHE VELCCITY RATIO OF THE EQUIVALENT JET,VO/VJ.IS,F * 1 C. S)

37 FORMAT (/ 20×46 HTHE JET HAS NOT WASHED THE WING. AN EQUIVALENT/2OX. 148 HCIRCULAR JET IS USED FOR INTERACTION COMPUTATION)
38 FCRMAT (/ $20 X, 51$ HTHE JET HAS WASHED. THE WING. A RECTANGULAR JET WITH 1/20X.42HLATERAL EXTENT EQUAL TO THE EQUIVALENT JET/20X-44HDIAMETER 2 IS USED FOR INTERACTION COMPUTATION)
39 FORMAT (/ 20×51 HNOTE. CHECK WHETHER THE WING IS IMMERSED IN THE JET 1)

WRITE (6.400)
PI=3.14159265
NCS $=0$
$K L=0$
I PANEL=1
RT=0.0
DO 28 I=? 5
23 DF(I)=0.
MACH NUABERS OF FREESTREAM AND JET FLOW, FREESTREAM/JET VELOCITY RATIO.JET/FREESTREAM TEMPERATURE RATIO,ANGLE OF ATTACK IN DEGREE., WING L.E. AND T.E. X-COORDINATES AT THE JET AXIS LOCATION
READ (5,2) AM1, A:M2,VMU,TEMP, ALP, XEL,XET
WRITE (6,2) AM1, AMZ,VMU,TEMP,ALP,XEL,XET
***NUMGER OF FLAP SECTIONS (INCLUDING THE JET SPAN). THE NUMERICAL ORDER OF JET SPAN AND THE CORRESPONDING FLAP DEFLECTION ANGLES IN DEGREES ***
READ (5,6) NFP,NJP, (DF (I), $I=1$, NFP)
WRITE (6,6) NFP,NJP,(DF(I),I=1,NFP)
***REFERENCE HALF WING AREA, DISTANCE OF FLAP HINGE FROM LOCAL L.E. REFERRED TO LOCAL CHORD. TWIST IN DEG. INCIDENCE OF ROOT CHORD. IN DEG., X - Y- AND Z- COORDINATES OF JET ĊENTER AT EXIT, AND JET RADIUS ***
NOTE FOR USE APPLICATIONS. YJ, ZJ AND RJ MAY BE:ANY NON-ZERO VALUES. - UNLESS THE RECTANGULAF JET IS NOT ON THE SURFACE ANO THE ENTRAINMENT EFFECT IS TO BE ACCOUNTED FOR.
CREF - MEAN AERODYANMIC CHORD
READ (S,2) HALFSW,TWIST,TWISTR,XJ,YJ,ZJ,RJ,CREF
WRITE (6,2) HALFSW,TWIST,TWISTR,XJ,YJ,ZJ,RJ,CREF
C ***TRAILINF-EDGE ANGLE. IN DEG.. PARTIAL-SPAN FLAP INDICATOR (=0. FOR
(NO OR FULL-SPAN FLAP, AND =1. OTHERWISE), CONFIGURATION INDICATOR
C ($=1$. FOR USE, AND $=0$. FOR OWE)
C. NOTE FOR USB AFPLICATICNS. TEANGL MAY BE ANY VALUE *
READ (5.2) TEANGL,PTIAL,USB
WRITE (ó 2) TEANGL,PTIAL,USB
CAMLER=0.
CAMLET=0.
C $A M T E R=0$.
CAMTET=O.
c
IUSB=USB
$D F J=0$.
CMU=0.

* THE FOLLOWING DATA ARE NOT NEEDED FOR OWB APPLICATIONS *
IF (IUSB.NE. 1) GO TO 198
c
C *** thrust coefficient. jet deflection angle in deg. and entrainment
C CODE IF the rectangular jet is not on the wing surface $(=1$. if the
C ENTRAINMENT DUE TO AN EQUIVALENT ROUND JET IS TO BE INCLUDED. $=0$.
c OTHERWISE)
PEAD (5,2) CMU-DFJ.TNJ
WRITE (6,2) CMU,DFJ,TNJ
198 CONTINUE
DFJ=DFJ*PI/980.
DO $251=1.5$
$25 \mathrm{DF}(\mathrm{I})=\mathrm{DF}(\mathrm{I}) \star \mathrm{PI} / 180$.
$T D F=D F(N J P)$
$A L P=A L P * P I / 180$.
$A L P S=S I N(A L P)$
$A L P C=\operatorname{COS}(A L P)$
$A L P T=A L P S / A L P C$
$D E=T E A N G L * P I / 180 .+T D F$
If (IUSB.EG. 1) CDF=OFJ
EXIT=0.
IF (XJ.GT. XEL) EXIT=1.
$X E L=(X E L-X J) / R J$
$X E T=(X E T-X J) / R J$
Z $=2 \mathrm{~J} / \mathrm{RJ}$
$\mathrm{T} H=0$.
$M 9(4)=0$
ITN=TNJ
$Y \operatorname{CON}(23)=T N J$
I-F (IUSB.EQ. 1.AND. ITN.EQ. 0) GO TO 199
CALL ENTRN (VMU,AMZ,TEMP,XM,CU,RT-XEL,XET,Z,KCODE,XJC)
XEQUI $=X, M * R J+X J$
REQUI=RT*RJ
RT=REQUI
If (IUSZ.EQ. 1) GOTO 199

```
        02-18-78 02.177
        IF.(XEL .LT. O. .AND. ZJ.GE. (2.*RJ)) KCODE=O
        IF (ZJ .GE. (3.*RJ)) KCODE=0
        F1=-27.5428*CU*CU+33.7371*CU-8.9148
        IF.(CU.GT.0.6339) F1=0.6+0.4*(CU-0.6339)/0.3661
        IF (F1 .LT. 0. .AND. ZJ.GE. (1.9*RJ)) KCODE=0
        IF (KCODE GQ. O) GO TC 199
        ZR=PI*RT/2.
        TH=ZR
    199 CONTINUE
        IF (IUSB:EQ.'1) KCODE=1
        IF (IUSB .NE. 1 .AND. KCODE.EQ. 1) GOTO 197
        GO T0.196
    197 AX=XEL*RJ
        D JX=2.*RJ
    If (F1.LT. O.) F1=0.
    IF (ZJ.LT. (2.*RJ).AND. ZJ.GE. (1.S*RJ)) F{=F1+(1.-F1)*(2.*RJ-
        1ZJ)/(0.S*RJ)
            IF(ZJ.LT.(1.5*RJ)) F1=1.
    IF (F1 .GT. 1.) F1=1.
    FACT=F1
    CDF=DE*FACT
    196 CONTINUE
C
C ** TOTAL VUMGER OF SPANWISE SECTIONS, AND THE NUMBER OF VORTEX
    STRIPS IN EACH SECTION PLUS 1 ***
    * THE NUHBER OF VORTEX STRIPS IN THE JET REGION SHOULD BE CONSISTENT
    WITH THAT OF JET VORTEX STRIPS *
    READ (5,3) NC,(M{(I),I={,NC)
    WRITE (6,3) NC,(M1(I),I=1,NC)
C
C **THE NUMERICAL ORDER OF FLAP AND JET SPANS AMONG THE SPANWISE
C SECTIONS***
    READ (5,3) (NJW(I),I=1,NFP)
    WRITE (G,3) (NJN(I),I=1,NFP)
C
C *** NUMBER OF CHORDWISE VCRTEX ELEMENTS IN CHORDWISE SECTIONS ***
    READ (S,3) (NW(I),I=1,3)
    NRITE (5,3) (NW(I),I=1,3)
C
    NCN=NW(1)
    L=1
    105 CONTINUE
    LL=1
    FN=NCW
    DO 100 I=1,NCW
    FI=I
    CPCWL(I)=0.5*(1.-COS((2.*FI-1.)*PI/(2:*FN)))
    SN(I,L)=2.*SQRT(CPCWL(I)*(1.-CPCNL(I)))
    100 CPCWL(I) = CPCWL(I)*100.
    0010 KK=1 -NC
C
```

```
                02-18-78 02.177
    ** COORDINATES OF GREAK CHORDS BOUNDING SPANWISE SECTIONS ***
    RFAD (5,2) (XXL(I);XXT(I),YL(I),I=1,2)
    NRITE (3,2) (XXL(I),XXT(I),YL(I),I=1,2)
    IF (IUSB.EQ. 1) GO.TO 113
    IF (ISY\,EQ. O .AND. KK.EG. 1) GO TO.99
    IF (KK .EQ. (NJW(NJP)+1)) GO.TO 103
    IF (ISYM .NE. O .AND. KK .EQ. (NJW(NJP)-1)) GO TO 102
    IF (ISYM .NE. O .AND. KK .EQ.NJW(NJP)) GOTO 99
    GO TO 113
    99 XXL(2)=XXL(1)+(XXL(2)-XXL(1))*(YL(2)-YL(1)+RT-RJ)/(YL(2)-YL(1))
    XXT(2)=XXT(1)+(XXT(2)-XXT(1))* (YL(2)-YL(1)+RT-RJ)/(YL(2)-YL(1))
    IF (ISYM.EQ. O) GOTO 104
103 XXL(1)=XLL2
    XXT(1) = XT2
    GO TO .104
102 XXL(2)=XXL(1)+(XXL(2)-XXL(1))*(YL(2)-YL(1)-RT+RJ)/(YL(2)-YL(1))
    XXT(2)=XXT(1)+(XXT(2)-XXT(1))*(YL(2)-YL(1)-RT+RJ)/(YL(2)-YL(1))
104 xL2=XXL(2)
    XTZ=XXT(2)
    IF (ISYIA EG.O,AND.KK EEQ. 1) GOTO.112
    IF (ISYM.NE:O.AND. KK.EQ. (NJW(NJP)-1)) GO TO 112
    YL(1)=YL2
112 IF (ISYM:EQ. O) GO TO 101
    IF (KK.EQ. (NJW(NJP)+1)) GO TO.113
    IF (KK .EQ.NJW(NJP)) YL(Z)=YL(2)+RT-RJ
    IF.(KK EQ. (NJW(NJP)-1)) YL(2) =YL(2)-RT+RJ
    GO TO 111
101 IF (KK .EQ. 1) YL(2)=YL(2)+RT-RJ
111 YLZ=YL(2)
113 CONTINUE
    FM=M1(KK)
    NSW=M1(KK)
    DO 120 J=1 NSW
    F J=J
    CPSWL(J)=0.5*(1.-COS((2.*FJ-1.)*PI/(2.*F信)))*100.
    Y CON(J)=0.5*(1.- COS(FJ*PI/FM))
    SJ(J*KK)=SIN(FJ*PI/FM)
120 CONTINUE
    IF (KK.EQ.NC) GO TO 130
    CPSWL(T)=0.
    CPSWL(NSW)=100.
    GOTO 135
130 CPSWL(1)=0.
135 IF (KK EQQ.NJW(LL)) MJW1(L,LL)=1PANEL
    IF_(KK_EO.NJW(NJP)).LC(L)=KL+1
    LR=(L-1)*NC+KK
    CALL PANEL(XXL,YL,XXT,CPCWL,CPSWL,NSW,IPANEL,LPANEL,KLOLR,SWP)
    IPANEL =LPANEL+1
    NCS=NCS+NSW-1
    WIDTH(KK)=YL(2)-YL(1)
```

$$
02-19-78 \quad 02.177
$$

BREAK(KK)=YL(1)

IF (KK .EQ. NJW(LL)) MJWZ(L,LL) =LPANEL
IF (KK . NE. NC) GO TO 10
HALFB=YL(2)
10 IF (KK.EQ. NJW(LL)) LL=LL+1
IF (L.EQ. 3) GO TO 1.07
IF (L .EG. 1) LPANT=LPANEL
IF (L .EG. 2) LPAN2=LPANEL
IF (NW(2) .EQ. O) GOTO 106
$\mathrm{L}=\mathrm{L}+1$
NCW=NN(L)
IF (L .EQ. 3 .AND. NW(3) .EQ. O) GO TO 108
GC TO 105
106 .00 $23 \mathrm{I}=2.3$
$0023 \mathrm{~J}=1$, NFP
MJW1 (I,J) $=0$
23 MJW2 $(I, J)=0$
LPANZ = LPANEL
NCS=NCS*3
GO TO 107
108 DO $24 \mathrm{I}=1$, NFP
MJw $1(3,1)=0$
24 : Jw2 (3.1) $=0$
$\mathrm{L}=\mathrm{L}-1$
NCS=NCStinCS/2
107 continue
NCS=NCS/3
$N C W=N W(1)+N W(2)+N W(3)$
$v u=v i v u$
IF (IUSB .EQ. 1) CU=VMU
v vu=cu
$R T J=R J$
ZJT $=2 \mathrm{~J}$
IF (RT, GT. ZJ .AND. KCODE -EQ. O) ZJT=RT
IF (IUSB.EQ. 1) GO TO 109
$A M 2=A M 1 /(V M U * S Q R T(T E M P))$
IF (A.Y2 .GT. 0.9) WRITE (6.405) AM2
IF (Ain2 .GT. O.9) AM2 $=0.9$
109 codtinue
LAST=LPANEL
C *** TOTAL NUMEER OF STREANWISE JET SECTIONS, NUMBER OF JET CIRCUM-
C FERENTIAL STRIPS PLUS ONE USE ODD NUMBERS FOR A NON-CENTERED JET
C AND EVEN NUMBERS FOR A (ENTERED JET). AND NUMBERS Of JET VORTEX
ELEMENTS ON EACH JET SECTION ***
READ (5,3) NNJ,NSJ, (NCJ(I), I=1, NNJ)
WRITE (6,3) NNJ,NSJ, (NCJ(I),I=1,NNJ)
C

```
    IF (KCODE .EQ. O).CALL CIRCJ(ISYM,NSJ,Y)
    IF (ISY:M .EQ. O) NSJJ=NSJ/2
    IF (ISY:1.NE. O) NSJJ=(NSJ+1)/2
```

```
            02-18-78 02.177
    N SYM=1-I SYM
    NSJ?=NSJJ-?
    FNJ=NSJJ
    CPSWL(T):=0.
    CPSWL(NSJJ)=1.
    YCON(1)=0. 5*(1.-COS(PI/FNJ))
    DO 33 I=2,NSJ1
    FI=I
    CPSWL(I)=0.5*(1.-COS((2.*FI-1.)*PI/(2.*FNJ)))
33 YCON(I)=0.5*(1.-COS(FI*PI/FNJ))
    IENTN=NC
    JC=NCS*L
    NJ I=NNJ-1
    DO 11 JJ=1.NNJ
    IF(IUSB.EQ. 1) GOTU 122
C
C
** COORDINATES OF BOUNDING LINES OF JET SECTIONS PROJECTED ON X-Y
    PLANE ***
    READ (S,2) (XXL(I),XXT(I),YL(I),I=1,2)
    WRITE (S,2) (XXL(I),XXT(I),YL(I),I=1,2)
    IF (ISYM.EQ. O) GO TO 98
    XL1=XXL(1)-(XXL(2)-XXL(1))*(RT-RTJ)/(YL(2)-YL(1))
    XT1=XXT(1)-(XXT(2)-XXT (1))*(RT-RTJ)/(YL(2)-YL(1))
98 XLZ=XXL(1) +(XXL(2)-XXL(1))*(RT+RTJ)/(YL(2)-YL(1))
    XTZ = XXT(1) +(XXT(2)-XXT(1))*(RT+RTJ)/(YL(2)-YL(1))
    IF (ISYM .EG. O) GOTO 97
    XXL(1)=XL1
    XXT(1) = X T1
97 XXL(2)=XL2
    XXT(2)=XTL
    IF (ISY:A EQ. O) GO TO 96
    YL(1)=YL(1)-RT+RTJ
76 YL(2)=YL(2)+RT-RTJ
    IF (KCODE.ER.O) GOTC.13
    XXL(4)=XXL(2)
    XXT(4)=XXT(2)
    YL(L)=YL(?)
    XXL(2)=XXL(1)
    XXT(2)=XXT (1)
    YL(2)=YL(1)
    XXL(3)=XXL(4)
    XXT(3)=XXT(4)
    YL(3)=YL(4)
    ZL(1)=0.
    ZL(2)=ZR
    ZL(3)=ZR
    2L(4)=0.
13 CONTINUE
    GOTO.121
C
```

```
                02-18-73 02.177
C ***COORDINATES OF BREAK PCINTS DEFINING RECTANGULAR JET SECTIONS FOR
C USB CONFIGURATIONS***
C
    122 DO 123 I=1.4
        REAO (S,2) XXL(I),XXT(I),YL(I),ZL(I)
    123 WRITE (6,2) XXL(I),XXT(I),YL(I)OZL(I)
    121. CONTINUE
        II= J J
        JJ1= JJ +L
        FNCJ=NCJ(JJ)
        NJ=NCJ(JJ)
        NMJ=NJ*16
        IF(NJ.GT.6) NMJ=NJ*8
        FNJ = NMJ
        DO 1000 J=9,NMJ
        FJ=J
        S((J,JJ)=0.5*(1.-COS((2.*FJ-1.)*PI/(2.*FNJ)))
1000 SI(J.JJ)=SIN((2.*FJ-1.)*PI/(2.*FNJ))
    DO 12 J=1.NJ
    FJ=J
    CPCWL(J)=0.5*(1.-COS((2.*FJ-1.)*PI/(2.*FNCJ)))
    12SN(J.JJ1)=2.*SQRT(CPCWL(J)*(1.-CPCWL(J)))
    IF (KCODE .EQ. O) CALL JSHAPE(XXL,XXT,YL,YJ,ZJT,RT,CPCWL,IPANEL,NJ
    1,JC,ISYM)
    IF (KCODE EQ. 1) CALL RESHAP(XXL,XXT,YL,ZL,CPCWL,CPSWL,IPANEL,NJ.
    1JC,II,NSYM)
    MJJ(JJ)=LAST
    11 IPANEL=LAST+1
    21 CONTINUE
    SDF=XXT(1)-XXL(1)
    IF(IUS3 -EQ. 1) TH=ZL(3)-ZL(4)
    YCON(25)=ZL(4)
    YCON(24)=USB
    C (1) = CMU
    IF (KCOOE .EQ. O) YCON(25)=1.
    IF (KCODE .EQ. 1) CALL RECTJ(ISYM,NSJ,Y)
    WRITE (6,4) HALFSW,CREF
    JPANEL=LAST-LPANEL
    LTOTAL=LAST+.IPANEL
    WRITE (6.402) LPANEL,JPANEL,LAST,LTOTAL
    IF (IUSB.EQ. 1) GO TO 124
    WRITE (6,36)
    IF (KCODE EQ. O) WRITE (6,37)
    IF (KCODE EQ. 1) WRITE (6,38)
    IF (KCODE .EQ. 1) WRITE (6,39)
    WRITE (6.36)
    WRITE (6.29) XEQUI
    WRITE (5,30) REQUI
    WRITE (6,32) VMU
    124 CONTINUE
    WRITE (6.403)
```

WRITE (ó.610)
WRITE (6,5) (XN(I,1),XN(I,2),YN(I,1),YN(I,2), ZN(I,1),ZN(I,2),I=1,L 1AST)
WRITE (6.404)
WRITE (6.620)
WRITE (6,5) (XCP(I),YCP(I), ZCP(I),I=1,LAST)
IF (KCODE EQ. 1) GO TC 2022
IF (ISYM EQQ. O) GO TO. 2021
$F N 2=(N S J-1) / 2+1$
$N J H=(N S J-1) / 2+2$
ANG=PI/(2.*FN2)
$F A C=(S I N(3 . * A N G)-S I N(A N G) / C O S(A N G)) /(1 .-\operatorname{COS}(3 . * A N G))$
PHI=PI/2.-ATAN(FAC)
NJH1=NJH-1
$N J H 2=N J H+1$
$Y(3,2)=S I N(P H I)$
$Y(4,2)=-\operatorname{COS}(P H I)$
$Y(3, N J H 1)=Y(3,2)$
$Y(4$, iNJHi) $=-Y(4,2)$
$Y(3, N J H 2)=-Y(3,2)$
$Y(4, N J H 2)=Y(4,2)$
$Y(3, N S J 1)=-Y(3,2)$
$Y(4, N S J 1)=-Y(4,2)$
GO TO 2022
2021 FN2=iNSJ/2
NJH=NSJ/2
ANG1 $=1 .-0.5 *(1 .-\cos (P I /(2 . * F N 2)))$
ANG3 $=1 .-0.5 *(1 .-\operatorname{COS}(3 . * P I /(2 . * F N 2)))$
ANG1 = ATAN(SQRT(1.-ANG1*ANG1)/ANG1)
ANG3=ATAN(SQRT (1.-ANG3*ANG3)/ANG3)
$F A C=(S I N(A N G 3)-S I N(A N G 1) / C O S(A N G 1)) /(1 .-C O S(A N G 3))$
PHI=PI/2.-ATAN(FAC)
NJH1=NJH-1
NJHZ =NSJ 1
$Y(3, N J H 1)=S I N(P H I)$
$Y(4, N J H 1)=\operatorname{COS}(P H I)$
$Y(3, N J H 2)=-Y(3, N J H 1)$
$Y(4, N J H 2)=Y(4, N J H 1)$
2022 CONTINUE
$F N J=N C J(N i J)$
NPJ=NCJ (NNJ)
$00777 \mathrm{~J}=1$ NP」
FJ=J
777 PSI(J) =SIN(FJ*PI/FNJ)
22 CONTINUE
BETA1=SQRT(1.-AM1*AM1)
${ }^{-}$BETA $\left.{ }^{-}=S Q R T^{-1}-1-A M 2 *-A M 2\right)$
B1=BETA1*BETA1.
$B 2=B E T A 2 * B E T A Z$
DO. $951 \mathrm{KK}=1$.NCS
$X L L(K K)=A L P+(T W I S T R+T W I S T * Y L E(K K) / H A L F B) * P I / 180$.

```
        \(T=X L L(K K)\)
\(951 \times T T(K K)=S I N(T) / C O S(T)\)
        RETURN
        END
            FORTY
            INCODE IEMF
        SUBROUTINE RESHAP (XXL, XXT,YL,ZL,CPCWL,CPSWL,IPANEL,NJ,JC,JJ,NSYM)
    TO DEFINE THE LOCATIONS OF VORTEX AND CONTROL POINTS ON RECT. JETS
    DIMENSION XXL(1),YL(1),XXT(1), ZL(1),CPCWL(1),CPSWL(1)
    COMMON /CONST/ NCS,NCW,M1 (8),NSJ,NCJ(5),LAST,MJW1 (3,5),MJW2 (3,5),J
    1PANEL,MJJ(5),NW(3),NNJ,NJP
    CCMMON /GEOM/ HALFSW,XCP(200), YCP (200), ZCP(200),XLE(50),YLE(50),XT
    1E(50), PSI (20), \(\mathrm{CH}(95), X V(200), Y V(100), S N(8,8), X N(200,2), Y N(200,2)\),
    2 ZN(200,2),WIDTH(8),YCCN(25),SWEEP(50),HALFB,SJ(21,8),EX(95,2),TX(
    \(395.2), S C(160,5), S I(160,5), L C(3)\)
    COMMON /SCHEME/ C(2), X (10, 41),Y(10,41),SLOPE(15),XL(2,15),XTT(41),
    \(1 \times L L(41)\)
    \(P I=3.14159265\)
    IF (NSYi1.EQ. O) NSJJ=(NSJ+1)/2
    IF (NSYM, NE. O) NSJJ=NSJ/2
    NSJ1=NSJJ-1
    DO \(1 J=1, N J\)
    F J = J
    F NJ \(=\mathrm{NJ}\)
    1 PSI(J)=0.5*(1.-COS(FJ*PI/FNJ))
    002 I \(S=1.4\)
    IF (NSYM.EQ. 1 .AND. IS.EQ. 1) GOTO 2
    IF (IS -EQ. 4 ) GO TO 6C
    \(K 1=I S\)
    \(K 2=I S+1\)
    GO TO 61
\(60 \mathrm{~K} 1=1\)
    \(K 2=4\)
61 CONTINUE
    \(S P A N=Y L(K 2)-Y L(K 1)\)
    \(X D I F=X X L(K 2)-X X L(K 1)\)
    DO \(3 \quad I=1,2\)
    \(I I=I+K 1-1\)
    IF (IS.EQ. \(\&\).AND. I .EQ. 2) \(I I=4\)
    \(C(I)=X X T(I I)-X X L(I I)\)
    \(003 \mathrm{~J}=1, \mathrm{NJ}\)
    \(3 \times L(I, J)=X X L(I I)+C P C W L(J) * C(I)\)
    IF (ABS (SPAN) .LE. D. OC1) GO TO 10
    \(D 025 \mathrm{~J}=1, \mathrm{NJ}\)
\(25 \operatorname{SLOPE}(J)=(X L(2, J)-X L(1, J)) / S P A N\)
    DO \(30 K=1\), NSJJ
    \(Y K=C P S W L(K) * S P A N\)
    \(0030 \mathrm{~J}=1\), NJ
    \(Y(J, K)=Y K+Y L(X 1)\)
    \(X(J, K)=X L(1, J)+S L O P E(J) *(Y(J, K)-Y L(K 1))\)
    CONTINUE
```

$$
02-18-78 . \quad 02.177
$$

NS =NS J 1
10 IF (ABS(SPAN) -LE. O.001) NS = 1
DC $35 K=1$,NS
$Y C=Y \operatorname{CON}(K)$
IF (ABS (SPAN) .LE. 0.001) YC=0.5
$K K=J C+K$
$C H(K K)=C(1)-(C(1)-C(2)) \star Y C$
IF (ABS(SPAN) .LE. O.OC1) GOTO 70
YC1 = CPSNL (K)
$Y C 2=C P S W L(K+1)$
GOTO 71
70 YC1 = 0.
$Y C Z=1$.
71 CONTINUE
$E X(K K, 1)=X X L(K 1)+X D I F * Y \subset 1$
$E X(K K, 2)=X X L(K 1)+X D I F * Y C 2$
$T X(K K, 1)=X X T(K 1)+(X X T(X 2)-X X T(K 1)) * Y C 1$
$T X(K K, Z)=X X Y(K 1)+(X X T(K 2)-X X T(K 1)) * Y C 2$
DO $35 \mathrm{~J}=1$, NJ
NPANEL $=(K-1) * N J+J-1+I P A N E L$
$\operatorname{VPAN} 1=$ NPANEL-1
$0040 \quad 1=1,2$
$K I 1=K+I-1$
IF (ABS (SPAN) .LE. 0.001) GOTO42
$X 1=X(J, K I 1)$
Y $1=Y(J, K I 1)$
IF (J -NE. 1) GO TO 44
$Z Z=Z L(K 1)+(Z L(K 2)-Z L(K 1)) \star(Y 1-Y L(K 1)) / S P A N$
$X X=X D I F *(Y 1-Y L(K 1)) / S P A N+X X L(K 1)$
GO TO 46
42 I2N=K1
If (I EQ. 2) $I Z N=K 2$
$X\}=X L(I, J)$
Y $1=Y L(K 1)$
IF (J.NE. 1) GOTO.44
$Z Z=Z L(I 2 N)$
$X X=X X L(I Z N)$
GO TO 46
$44 \quad 22=Z N(N P A N 1 . I)$
$X X=X N(N P A N 1, I)$
$46 \times N(N P A N E L, I)=X 1$
$Y N(N P A N E L, I)=Y 1$
$Z N(N P A N E L, I)=Z Z$
40 CONTINUE
$X D=X D I F * Y C+X X L(K 1)$
$-X C P(N P A N E L) \equiv X D+C H(K K) * F S I(J)$
$Y(P(N P A N E L)=Y(* S P A N+Y L(K 1)$
IF (ABS(SPAN) LEE O.OO1) GO.TO 50
$Z C=Z N(N P A N E L-1)+(Z N(N P A N E L, 1)-Z N(N P A N E L, 2)) *(Y C P(N P A N E L)-Y N(N P A N E L$
1,1))/(YN(NPANEL,1)-YN(NPANEL,2))
$X C=X N(N P A N E L, 1)+S L O P E(J) *(Y(P(N P A N E L)-Y N(N P A N E L, 1))$

$$
\text { 02-18-78 } 02.177
$$

GOTO 55
$502 C=0.5 *(Z N(N P A N E L, 1)+2 N(N P A N E L, 2))$
$X C=0.5 \star(X N(N P A N E L, 1)+X N(N P A N E L, 2))$
55 ZCP(NPANEL) $=2 C$
$X \cup(N P A N E L)=X C$
35 CONTINUE
IPANEL = NPANEL+1
LAST = NPANEL
JC=KK
2 CONTINUE
RETURN
END
FORTY
INCODE IEMF
SU日ROUTINE PANEL (XXL,YL,XXT,CPCWL,CPSWL,NSW,IPANEL’LPANEL, KK,LR. 1 SWP)
TO DEFINE THE LOCATIONS OF VORTEX AND CONTROL POINTS ON THE WING DIMENSION XXL(1) YYL(1) $\times X X T(1)$, CPCWL(1) ○CPSWL (1)
DIMENSION SWP $(8,15)$
CONMON /CONST/ NCS,NCW•M1 (8),NSJ;NCJ(5) LLAST,MJW1 (3.5) MMW2(3.5).J 1PANEL,MJJ (S) , NW (3) ONNJ,NJP
COMMON /GEOM/ HALFSW,XCP(200), YCP(200), ZCP(200),XLE(50),YLE(50),XT 1E(50), PSI(20), $C H(95), X V(200), Y V(100), S N(8,8), X N(200,2), Y N(200,2)$,
 $395.2), S C(160,5), S I(160.5), L C(3)$
 $1 \times \mathrm{LL}(41)$
PI = 3.14159265
NSW1 = NS N-1
00 $1 \quad I=1,2$
$C(I)=X X T(I)-X X L(I)$
DO $1 \mathrm{~J}=1$, NCW
$1 \times L(I, J)=X X L(I)+C P C W L(J) * C(I) / 100$.
$S F A N=Y L(2)-Y L(1)$
$002 \mathrm{~J}=1$. NCW
PSI(J) $=0.5 *(1 .-\operatorname{COS}(F L O A T(J) * P I / F L O A T(N C W)))$
SLOPE (J) $=(X L(2, J)-X L(1, J)) / S P A N$
$2 \operatorname{Sin}(J, L R)=A T A N(S L O P E(J))$
DO. $3 \mathrm{~K}=1$, NSW
$Y K=C P S W L(X) * S P A N / 100$.
DO $3 \mathrm{~J}=1$, NCW
$Y(J, K)=Y K+Y L(1)$
$X(J, K)=X L(1, J)+S L O P E(J) *(Y(J, K)-Y L(1))$
3 CONTINUE
$X L L(1)=X X L(1)$
$\times T T(1)=X \times T(1)$
DO $15 I=2$. NSW
$X L L(I)=X L L(I-1)+(X X L(2)-X X L(1)) *(Y(1, I)-Y(1, I-1)) / S P A N$
$15 \times T T(I)=X T T(I-1)+(X X T(2)-X X T(1)) *(Y(1, I)-Y(1, I-1)) / S P A N$
DO $6 K=1$, NSW1
$K K=N C S+K$

```
    YLE (KK)=YCON(K)*SPAN+YL(1)
```

 \(X L E(K K)=X L L(K)+(X L L(K+1)-X L L(K)) *(Y L E(K K)-Y(1, K)) /(Y(1, K+1)-Y(1, K)\)
 1)
 \(X T E(K K)=X T T(K)+(X T T(K+1)-X T T(K)) \star(Y L E(K K)-Y(1, K)) /(Y(1, K+1)-Y(1, K)\)
 1)
 \(C H(K K)=X T E(K K)-X L E(K K)\)
 \(E x(X K, 1)=X X L(1)+(X X L(2)-X X L(1)) * C P S W L(K) / 100\).
 \(E X(K K, 2)=X X L(1)+(X X L(2)-X X L(1)) * C P S W L(K+1) / 100\).
 \(T X(K K, 1)=X X T(1)+(X X T(2)-X X T(1)) \star C P S W L(K) / 100\).
 \(T X(K K, 2)=x \times T(1)+(X X T(2)-X X T(1)) \star C P S W L(K+1) / 100\).
 TANG \(=(X X L(2)-X X L(1)) / S F A N\)
 \(S W E E P(K K)=A T A N(T A N G)\)
 DO \(6 J=1, N C W\)
 NPANEL \(=(K-1)\) \&NCW \(+J-1+\) IPANEL
 DO \(5 I=1,2\)
 \(K I I=K+I-1\)
 \(4 X N(N P A N E L, I)=X(J, K I 1)\)
 \(Y N(N P A N E L, I)=Y(J, K I 1)\)
 ZN(NPANEL,I)=0.
 5 CONTINUE
 \(X C P(N P A N E L)=X L E(K K)+P S I(J) * C H(K K)\)
 \(Y(P(N P A N E L)=Y L E(K K)\)
 \(2(P(N P A N E L)=0\).
 \(X V(N P A N E L)=X L E(K K)+C P(W L(J) * C H(K K) / 100\).
 \(Y V(N P A N E L)=Y L E(K K)\)
 6 CONTINUE
 LPANEL =NPANEL
 RETURN
 ENO
 FORTY
 LIMITS . 28K
 INCODE I 日MF
 SUZROUTINE ENTRN (U,AMJ,T,XM,CMU,RT,XEL,XET, Z, KCODE,XJC)
 TO COMPUTE THE JET ENTRAINMENT FUNCTION
 OIMENSION CSJ (7O), SSJ (70)
 DIMENSION PU1 (31),FU2 (31), FU1 (31), FU2 (31),FU3(31),RR2(31)
 CCMMON /JET/ PK1,XC,X(Z1), A(31), B(31)
 55 FORMAT (8F10.5)
$P I=3.14159265$
$I K=1$
REJ=T
$P K 1=0.0185+0.011 * U$
$K C O D E=0$
$X: \Lambda I D=0.5 *(X E L+X E T)$
$X M \equiv X M I D$
$X 0=0$ 。
R $0=1$ 。
$F=2 . * P K 1 * S Q R T((1 .-U) * R E J)$
$X C=0.35 / F$
$x J C=x C$

AG2=ALOG((1.+Z. \quad U/AK2)/(1.+U/AK2))
DSX1=2**PK1/0.72*SQRT(REJ*(1.-U)*AK2*AG2/U)
$D X=X(I)-X H$
$S=S+D X * D S X 1$
$M=M+1$
GOTO 10
5 IF (I .NE. 1) $S H=2 . * P K 1 * S Q R T(R E J) * X(I)-0.35$
IF (I .NE. 1) $P 9=(1,-U) *(1 .-E X P(-1 . /(2 . * S H)))$
DSX=2.*PK1*SQRT(REJ)
If (ABS (T-1.) LE. O.01) GOTO 20
$S=2 . * P K 1 / 0.72 * S Q R T(R E J) * X(I)-0.35$
15 If (I.EQ. 1 . ANO. U.GT. O. 01) DSX=2.*PKi*SQRT(REJ*ALOG(UA)/U) * 1(.1.-U)
$H O=1 .-E X P(-1 . /(2 . \star S))$
$H O P=-2 . * H O * * 2 / 0.72$
$P 2=(T-1 .+0.2 *(1 .-U * U) \star A M J * A M J * T) * H O-0.2 * P 1 * A M J * A M J * T *(P 1+2 . * U)$
$P 2 P=(T-1 *+D .2 *(1 .-U * U) * A M J * A M J * T) * H O P-0.2 * P 1 P * A M J * A M J * T *(P 1+2 * * U)$
1-0.2*P1*AMJ*AMJ*T*P1P
$F 1 P=-P 2 P * 0.8907 *(0.08901-0.04005 * P 2+0.01792 * P 2 * * 2-0.00646 * P 2 * * 3) /($
11.+1.05001*P2)
$F 2 P=-P 2 P * 0.79335 *(0.0527-0.02886 * P 2+0.01478 * P 2 * * 2-0.00589 * P 2 * * 3) /$
1(1.+1.03869*P2)
$F 3 P=-P 2 P *(C .12857-0.04 \in 53 * P 2+0.01820 * P 2 * * 2-0.00599 * P 2 * * 3) /(1$.
$1+1.02272 * P 2)$
GO 1025
20 P2=0.
$P 2 P=0$.
$F 1 P=0$.
$F 2 P=0$.
$F 3 P=0$.
IF (I EQ. 1 . AND. U. ©T. O.O1) OSX=2.*PK1*SQRT(REJ*ALOG(UA)/U)* 1(1.-U)
$25 P 1 P=-2 . * P 1 * P 1 /(1 .-U)$
$F 1=0.8907 *(0.12857+0.01617 * P 2-0.00607 * P 2 * * 2+0.00192 * P 2 * * 3) /(1$. $1+0.81817 * P 2)$
$F 2=0.79335 *(0.06676+0 . \operatorname{C0} 453 * P 2-0.00204 * P 2 * * 2+0.00075 * P 2 * * 3) /(1$. $1+0.85716 * 22)$
$F 3=(0.21429+0.04061 * P 2-0.01249 * P 2 * * 2+0.00351 * P 2 * * 3) /(1 .+0.78948 *$ 1P2)
$F U=U * P 1 * F 1+P 1 * P 1 * F 2$
DMC1 = (P1P*F1+P1*F1P-U*F2P*F3-U*P2*F3P)/FU
D MC2 $=(P 1 * F 1-U * P 2 * F 3) *(U * P 1 P * F 1+U * P 1 * F 1 P+2 * * P 1 * P 1 P * F 2+P 1 * P 1 * F 2 P)$
$1 /(F U * F U)$
$D M X=2 . *(1 .-U) *(D M C 1-D M C 2) * D S X / S Q R T(R E J)$
$R J 2=0.5 *(1 .-U) / F U$
RJ1=SQRT(RJ2)
HRITE (6,55) X(I),RJ1, DMX
IF (IK.GT. 1) GO TO 28
IF (X(I) ,GE. XEL) GO TO 26
601028
26 IF (RJI LT. 2) GOTO 28
"Page missing from available version" page 99

```
        02-18-78 02.177
    Pi=1.-U
    UA=(1.+2.**U/(1.-U))/(1.+U/(1.- -U))
    X(1) = X C
    DXX=(3.*XET-XEL)/30.
    IOX=0Nx
    OXX=IDX
    IF (OXX .GT. 3.) GOTO 11
        IF (DXX .GE. 1. .AND. DXX .LE. 3.) DXX=2.5
    IF (DXX .LT. 1.) DXX=1.S
    11 CONTINUE
    x(2)=x(1)+DXX/2.
    DC 1 I =2,30
    1 X(I+1) = X(I)+DXX
    00 2 I=1,70
    FI=1
    CSJ(I)=COS((2.*FI-1.)*FI/140.)
    2 SSJ(I)=SIN((2.*FI-1.)*FI/140.)
    DO 3 I=1.31
    IF (U.LE. 0.01) GO TO 5
    IF(I.EQ. 1.AND. ABS (T-1.).LE. 0.01) GO TO. 20
    IF (I .EG. 1). S=(2.*PKY*SQRT(REJ* (1.-U))*XC/0.72-0.35)*SQRT((1. -U)
    1/U*ALOG(UA))
    IF (I .EQ. 2) S=DSX*(X(2)-XC)
    IF (I .GT. 2) S=SH+DSX*DXX.
    M=1
    IF(I .EQ. 1) M=2
    10 CONTINUE
    SUM=0.
    00 4 J=1,70
    S B=0.5* S*(1.-CSJ(J))
    AP1=(1.-U)*(1.- EXP(-1./(2.*SB)))
    AG=ALOG((1.+2.*U/AP1)//(1. +U/AP1))
    4 SLM=SUM+(1./SQRT(AP1*AG)-SQRT(2.*SE/((1.-U)*0.69314718)))*SSJ(J)
    RES=SUM*PI/70.*0.5*S*SQRT(U)+SQRT(2.*U/(1.-U))*S**1.5/1.0397208
    X1=RES +0.35
    IF (M -NE. 1) GO TO 30
    XT = X 1/(2.*PK **SQRT ((1.-U)*REJ))
    P1=(1.-U)* (1.-EXP(-1./(2.*S)))
    G1=ALOG((1..+2.*U/P1)/(1.+U/P1))
    DSX=2.*PK1*SQRT(REJ*(1.-U)*P1*G1/U)
    SH=S
    IF (4.3S(X(I)-XT) .LE. C.O1) GO TO 35
    DX=X(I)-XT
    S=S +DX*DSX
    SH=S
    GO_TO 10
    3 5 P 1 = ( 1 . - U ) * ( 1 . - E X P ( - 1 . . / ( 2 . * S H ) ) )
    30IF (ABS(T-1.) LE. 0.01) GO TO 20
    XH=X1*D.72/(2.*PK1*SQRT((1.-U)*REJ))
    If (ABS(X(I)-XH) .LE. C.O1) GO.TO 15
    AK2=(1.-U)*(1.-EXP(-1./(2.*S)))
```

```
        02-18-78.02.177
    XMJ=XO+(Z-RO)* (X(I)-XO)/(RJ1-RO)
    IF (XEL .LT. O) GO TO 29
    IF (XiHJ .LT. XET) KCODE=1
    IK=IK+1
    GO TO 28
29 XM=0.5* XET
    IF (XMJ .LE. XM) KCODE=1
    IK=IK+1
28 CONTINUE
    RC=RJ1
    x0=X(I)
    PU1(I)=P1
    PU2(I)=P2
    FU1(I)=F1
    FUZ(I)=F2
    FU3(1)=F3
    RR2(I)=RJ2
    IF (I E.EQ. 1) GO TO 40
    B(I) = (DMX-DMXO)/(X(I+1)-X(I))
    A(I) =DM\timesO-B(I)* X(I)
    GO TO 3
40 A(I) =0.145*DMX/0.32
    B(I) = (DMX-A(I))/XC
    3DMXO=DMX
    K=1
50 IF (K.GT. 30) GO TO 65
    IF (XM.GE. O. .ANO. XN.LT. XC) GO TO 60
    IF (XM .GE. X(K).AND. XM .LT. X(K+1)) GOTO 60
    K=K+1
    GO TO 50
60 F11=RR2(K)* (PU1 (K)*U*FU1(K)+PU1(K)**2*FU2(K))/(U*U)
    F12=RR2(K+1)*(PU1(K+1)*U*FU1(K+1)+PU1(K+1)**2*FU2(K+1))/(U*U)
    F21=RR2(K)* (PU1(K)*FU1(K)-U*PU2(K)*FU3(K))/U
    F22=RR2(K+1)*(PU1(K+1)*FU1(K+1)-U*PU2(K+1)*FU3(K+1))/U
    IF (ABS(T-1.) .LE. 0.OC1) GO TO 61
    F \1=RR2(K)* (9.*PU1(K)/70.-PU1 (K)*FU1(K)+U*PU2(K)*FU3(K))/U
    F32=RR2(K+1)* (9.*PU1(K+1)/70.-PU1(K+1)*FU1(K+1)+U*PU2(K+1)*FU3(K+1
    1))/U
    x11=F11/(F21+F31)
    x12=F12/(F22+F32)
    GO TO 62
61F31=0.
    F32=0.
62 CONTINUE
    x 1=x(K)
    x 2=x (K+1)
    x 21=F11/(F21+F31)+F31*(F11/(F21+F31)-1.)/F21
    x 22=F12/(F22+F32)+F32*(F12/(F22+F32)-1.)/F22
    x 31=2.*F21*(F21+F31)/(F11-F21-F31)
    x \1=SORT(x3!)
    x 32=2.*F22*(F22+F32)/(F12-F22-F32)
```

$$
02-18-78 \quad 02.177
$$

$\times 32=$ SQRT ($\times 32$)
IF (XM.GE. O. AND. XM .LT. XC) GOTO 70
GOTO 75
$70 \times 1=0$.
$\times 2=\times 6$
$x 22=x 21$
$x 32=x 31$
$\times 21=1 . / 4$
$\times 12=\times 11$
$\times 31=1$.
IF (ABS (T-1.) .LE. 0.001) GOTO 75
$\times 11=1 . /(T * U)$
$75 C M U=X 21+(X M-X 1) *(X 22-X 21) /(\times 2-X 1)$
$R T=x 31+(x M-x 1) *(x 32-x 31) /(x 2-x 1)$
$C M U=1 . / C N U$
IF (ABS (T-1.) .LE. 0.OC1) GO TO. 63
$R U=X 11+(X M-X 1) *(X 12-X 11) /(X 2-X 1)$
$T=1 . /(C M U * R U)$
WRITE (6.55) T, CMU,RU,XM
63 CONTINUE
65 CONTINUE
RETURN
END FORTY
INCODE I BMF
SUBROUTINE RECTJ (ISYM,NSJ,Y)
TO DEFINE THE UNIT NORNAL VECTORS TO THE SURFACE OF RECTANGULAR
JETS
DIMENSION Y(10.41)
IF (ISYM.EQ. O) GO.TO1
NSJ1 $1=$ NS J +1
$N J H=(N S J-1) / 2+2$
GOTO 5
1 NSJ१=NSJ-1
NJH=NSJ/2
5 DO $10 \mathrm{I}=1$, NSJ 1
IF (I EQ. 1.AND. ISYM .NE. O) GO TO 15
IF (I EG: NJH) GO TO 20
$Y(3, I)=1$.
$Y(4,1)=0$.
GOTO 10
$15 Y(3,1)=0$.
$Y(4, I)=-1$.
GOTO 10
$20 \quad Y(3,1)=0$.
$Y(4, I)=1$.
10 EONTINUE
RETURN
ENO
FORTY
INCODE IBMF

```
02-18-78 02.177
    SUGROUTINE CIRCJ(ISYM,NSJ,Y)
C TC DEFINE THE UNIT NORNAL VECTOR TO THE SURFACE OF CIRCULAR JETS
    DIMENSION Y(10.41)
    PI=3.141.59265
    IF(ISYM.EQ. O) GO TO 2014
    NSJ1=NSJ+?
    NN=(NSJ-1)/2+1
    FN2=NN
    NJH=NN+1
    Y(1,1)=-SIN(PI/(2.*FN2))
    Y(2,1)=-\operatorname{Cos}(PI/(2.*FN2))
    GO TO 2013
2014 Y (1,1)=1.
    Y(2,1)=0.
    NSJ1=NSJ-1
    FNZ=NSJ/2
    NJH=NSJ/2
2013 CONTINUE
    00 13 I=1,NSJ1
    K=I
    KI=I
    IF (I .GT. NJH.AND. ISYM.NE. O) K=I-NJH+1
    IF(I.GT.NJH.AND.ISYM .EQ. O) K=I-NJH
    FI=K
    IF (ISYM NE. O) ANGZ=(FI-1.)*PI/FNZ
    IF (ISYM.EQ. O) ANGZ=FI*PI/FNZ
    YP=0.5*(1.-COS (ANG?))
    IF(ISYM.EQ. O) ANGZ=FI-ATAN(SQRT(i.-YP*YP)/YF)
    I I= I +1
    KK=I
    KII=II
    IF (I .GT. NJH) KK=II-P.JH
    FII=KK
    IF (I .LE. NJH.AND. ISYM .EQ. O) FII=KK+I.
    ANG1=(2.*FII-1.)*PI/(2.*FN2)
    YP=0.5*(1.-COS (ANG1))
    IF (ANG1 -GT. PI) YP=-YP
    IF (ISYM.EQ. O) ANG1=PI-ATAN(SQRT(1.-YP*YP)/YP)
    IF (I .GT. NJH) GO TO 2015
    GO TO 2016
2015 ANG1=-ANG1
    ANG2=-ANG2
2016 CONTINUE
    Y(1,KII)=SIN(ANG1)
    Y(2,KII) =- COS(ANG1)
    Y(3,KI) =SIN(ANG2)
    Y(4,KI)=-COS(ANG2)
    13 CONTINUE
    RETURN
    ENO
$
    FORTY
```


INCODE I BMF

SUBROUTINE JSHAPE (XXL, XXT,YL,YJ,ZJ,RJ,CPCWL,IPANEL,NJ,JC,ISYM)
C TO DEFINE THE LOCATIOIS OF VORTEX AND CONTROL POINTS ON CIRCULAR
JETS
DIMENSION CPCWL(1), XXL(1), XXT (1) ;YL(1)
COMMON / CONST/ NCS,NCW,M1 (8), NSJ,NCJ(5),LAST,MJW1 (3,5),MJW2(3,5) J J
1PANEL,MJJ(5),NW(3),NNJ,NJP

1E(50), PSI(20), CH(95), XV(200),YV(100),SN(8,8),XN(200,2),YN(200,2),

$395,2) \cdot S C(160.5) \cdot S I(160.5) \cdot L C(3)$
COMMON /SCHEME/ $C(2), X(10.41), Y(10,41), S L O P E(15), X L(2,15), X T T(41)$.
$1 \times \operatorname{LL}(4)$
PI=3.14159265
N1=NSJ+1
IF (ISYM EQ. O) N1=NSJ-1
$N 2=N 1+1$
IF (ISYM EQ. O) N $2=N S J$
N12=N1/2+2
IF (ISYM.EQ. O) N12=NSJ/2+1
DO $1 \quad I=1.2$
$C(I)=X X T(I)-X X L(I)$
DO $1 \mathrm{~J}=1$. N.J
$1 \times L(I, J)=X X L(I)+C P C W L(J) * C(I)$
DO 2.J $=1$, NJ
F J $=\mathrm{J}$
FNCJ=NJ
PSI(J) $=0.5 *(1 .-C O S(F J * P I / F N C J))$
$2 \operatorname{SLOPE}(J)=(X L(2, J)-X L(1, J)) /(2, * R J)$
$003 K=1, N 2$
$Y Y=Y(2, K)$
IF (ISY: . NE. O.AND. K •EQ. 1) YY=-1.
IF (ISYM.NE. 0 .AND.K.EQ. 2) $Y Y=-1$.
IF (K EQ. (N12-1) OR. K E EQ. N12) YY=1.
IF (K .EQ. NZ) $Y Y=1$.
$X T T(K)=Y J+R J * Y Y$
DO $3 \mathrm{~J}=1 \mathrm{NJ}$
$3 X(J, K)=X L(1, J)+S L O P E(J) *(X T T(K)-Y L(1))$
00.6K=1.N1
$K K=J C+K$
L=K
IF (K EQ. N12) $L=1$
$E X(K K, 1)=X X L(1)+(X X L(2)-X X L(1)) *(X T T(L)-Y L(1)) /(2 . * R J)$
$E X(K K, 2)=X X L(1)+(X X L(2)-X X L(1)) *(X T T(K+1)-Y L(1)) /(2 . * R J)$
$T X(K K, 1)=X X T(1)+(X X T(2)-X X T(1)) *(X T T(L)-Y L(1)) /(2, * R J)$
$T X(K K, 2)=X X T(1)+(X X T(2)-X X T(1)) *(X T T(K+1)-Y L(1)) /(2 . * R J)$
$C H(K K)=C(1)-(C(1)-C(2)) * 0.5 *(1 .+Y(4, K))$
DO $6 \mathrm{~J}=1$, NJ
NPANEL $=(K-1) * N J+J-1+I$ PANEL
$005 I=1,2$
$K I 1=K+I-1$

$$
02-18-78 \quad 02.177
$$

```
    SIGN=1.
    IF*(K .EG. N12 .AND. I .EQ. 1) KI1=1
    IF (ISYM :EQ. O) GO TO 21
    IF (KI1.EQ. 1 OOR.KI1.EQ. 2) GO TO 20.
    GOTO 22
    21 IF (K .EQ. IN12 .AND. KI1.EQ. 1) SIGN=%1.
22 CONTINUE
    IF (KI1 .EQ. (N12-1).OR.KI1.EQ. N12).GO TO 25
    IF (KI1 EEQ.N2) GOTO 25
    YY\equivY(2,KI1)
    ZZ=Y(1,KI9)*SIGN
    GO TO 30
    20 YY =-1.
    ZZ=-Y(1,KI1)/Y(2,KI1)
    GO TO 30
    25 YY=1.
    LZ=Y(1,KI1)/Y(Z,KI1)
    30 CONTINUE
    XN(NPANEL,I)=X(J:KI1)
    YN(NPANEL;I)=YJ+RJ*YY
    5. ZN(NPANEL*I)=ZJ+RJ* LZ
    YK=0.5*(1.+Y(4,K))
    IF (ISYM . EQ. O) YK=2.*YK-1.
    XCP(NPANEL)=XXL(1)+(XXL(2)-XXL(1))*YK+PSI(J)*CH(KK)
    IF (ABS(YN(NPANEL,2)-YN(NPANEL,1)).LE. D.0001) GO TO 10
    YCP(NPANEL)=YL(1)+YK*(YL(2)-YL(1))
    ZCP(NPANEL)= ZN(NPANEL,1) + (ZN(NPANEL,2)-ZN(NPANEL,1))*(YCP(NPANEL)-
    1YN(NPANEL,1))/(YN(NPANEL,2)-YN(NPANEL,1))
    GO TO IS
10 Z (P(NPANEL) =ZJ
    YCP(NPANEL)=YN(NPANEL,1)
15 CCNTINUE
    XV(NPANEL) =XXL(1)+(XXL(2)-XXL(1))*YK+CPC'NL(J)*CH(KK)
    6 CONTINUE
    JC=JC+N1
    LAST=NPANEL
    RETURN
    END
    LINK LINK22.LINK11
        FORTY
        LIMITS , 27K
        INCODE IBMF
    SUEROUTINE JETOFF
    TO SET UP THE JET OFF INFLUENCE COEFFICIENT MATRIX AND COMPUTE THE
    CAMBER TERMS
    DIIAENSION AW(101)
    COMMON /AERO/ AM1,AM2,E1,B2,CL(30),CT(30),CD(30),GAM(2,100)
    COMMON /ADO/ CP(100),CN(30),BREAK(8),SWP(8,15),GAL(30),ISYM,VMU,VU
    1,TEMP,FCR,CAMLER,CAMLET,CAMTER,CAMTET,XJ,YJ,ZJ,RJ,ALP,CREF,TWISTR
    COMMON /GEOM/ HALFSW,XCP(2OO),YCP(2OO),ZCP(2OO),XLE(SO),YLE(SO),XT
    IE(50),PSI(20),CH(95),XV(200),YV(100),SN( 8, 8),XN(200, 2),YN(200,2),
```

"Page missing from available version"

$$
105-106
$$

```
    MG=NW(1)
    IF (ABS(B1-B2).LE. 0.001).GO TO. 208
    IF (IC.LE. 2) GO TO 2C9
208 CONTINUE
    RETURN
    END
        FORTY
        INCODE ISMF
    SUBROUTINE JETON(KCODE)
    TO SET UP THE JET ON INFLUENCE COEFFICIENT MATRIX
    DIMENSION AW(300)
    COMMON /GEOM/ HALFSW,XCP(200),YCP(200),ZCP(200),XLE(50),YLE(SO).,XT
    1E(50),PSI(20),CH(95),XV(200),YV(100),SN( 8, 8),XN(200,2),YN(200,2),
    2 2N(200, 2),WIDTH(8),YCCN(25),SWEEP(50),HALFB,SJ(21,8),EX(95,2),TX(
    395,2),SC(160,5),SI(160,5),LC(3)
    COMMON /AERO/ AM1,AM2,E1,B2,CL(30),CT(30),CD(30),GAM(2.100)
    COMMON /CONST/ NCS,NCW,M1(8),NSJ,NCJ(5),LAST,MJW1(3,5),MJW2(3,5).J
    1PANEL.MJJ(5).NW(3) ^NNJ,NJP
    COMMON /PARAM/ ALPT,ALFC,ALPS,CDF,SDF,TH,TDF
    CCMMON /ADO/ CP(100), CN(30),BREAK(8),SWP(8.15),GAL(30),ISYM,VMU,VU
    1.TEMP,FCR,CAMLER,CAMLET,CAMTER,CAMTET,XJ,YJ,ZJ,RJ,ALP,CREF,TWISTR
    COMMON /COST/ LTOTAL,LFAN1,NJW(S).LPANEL.IENTN.LPAN2.EXIT,PTIAL,TW
    1IST,DF(5),NFP
    REWI:ND.O3
    LP1=LTOTAL+1
    MJ=LPANEL+NCJ(1)
    MCON=LAST+NCJ(1)
    I PHI=1
    JL=LAST+1
    INN=1
    LN=1
    LN1=1
    JNN=1
    VMUC=VMU*ALPC
    MK=1
    I=LAST+1
    19=I-JPANEL
    CALL MATRIX (AW,LTOTAL,LPANEL,VMUC,I,MCON,MJ,IPHIOINN,LN,LN1,TEMP.
    1LPAN1,ISYM,KCODE,EXIT,LPAN2)
    WRITE (O3) (AW(K);K=1,LTOTAL)
    KI=2
    NI=LTOTAL-1
    LI=LAST+2
    VMP=VMUC
310 KJ=LI
    IF-(LI-.GT-LAST)-KJ=LI-JPANEL
301 CONTINUE
    CALL MATRIX(AW,LTOTAL,LPANEL,VMP ,LI,MCON,MJ,IPHI.INN,LN.LNI,TEMP,
    1LPAN1,ISYM,KCODE,EXIT,LPAN2)
    WRITE (O3).(AW(K),K=1,LTOTAL)
350 IF (KJ.LT.MJ.OR.KJ.EQ.LAST) GO TO. 351
```

```
        02-18-78 C2.177
    IPHI=IPHI+I
    MJ=MJ+NCJ(INN)
    351 CONTINUE
    MJI=MJJ(INN)-1
    IF (KJ.EG.MJI) GO TO 312
    GO TO 313
    312 JNN=INN
    INN=INN+1
    313 IF (KJ,EQ. MJJ(JNN)) IPHI=1
    IF (LI.EG. LTOTAL) GO TO 355
    GOTO 356
    355 CONTINUE
    IPHI=1
    MJ=LPANEL+NCJ(1)
    JNN=1
    INN=1
    356 CONTINUE
    KI=KI+1
    NI=NI-1
    IF (LI EEQ.LTOTAL) GOTO 361
    IF (LI .EQ. LAST) GO TO 364
    LI=LI+1
    GO TO 362
    361 LI=LPANEL+1
    GOTO 362
    364 LI=1
    362 CONTINUE
    JF=LI-LAST+LPANEL
    JP1=JP-1
    IF (JP.EQ. MJJ(LN1)) LNT=LN1+1
    IF.(JPY .EQ. MJJ(LN)) LN=LN+1
    IF (KI .LE. LTOTAL) GO TO 310
    RETURN
    END
        FORTY
        LIMITS . 31K
        INCODE IBMF
        SUBROUTINE MATRIX(AW,LTOTAL/LPANEL/VMU,I,MCON,MJ.IPHI,INN,LN,LN1,T
        1EMP,LPAN1,ISYM,KCODE,EXIT,LPANZ)
C TC COMPUTE THE JET ON INFLUENCE COEFFICIENT MATRIX
    DIMENSION SV(3OC),W(4),AW(1)
    COMMON/AERO/ AM1,AM2,E1,B2,CL(30),CT(30),CD(30),GAM(2,100).
    COMMON /CONST/ NCS,NCW,M1(8).NSJ,NCJ(5),LAST,MJW1(3,5),MJW2(3,5),J
    1PANEL.MJJ(5),NW(3),NNJっNJP
    COMMON /GEOM/ HALFSW,XCP(200),YCP(200),ZCP(200),XLE(50),YLE(50),XT
    1E(50),PSI(20),CH(95),XV(200),YV(100),SN( 8, 8),XN(200, 2),YN(200.2).,
    * 2 ZN(200,2),WIDTH(8),YCON(25),SWEEP(50),HALFB,SJ(21,8),EX(95,2),TX(
    395,2),SC(160,5),SI(160,5),LC(3)
    CONMON /PARAM/ ALPT,ALFC,ALPS,CDF,SDF,TH,TDF
    COMMON /SCHEME/ C(2),X(10,41),Y(10,41),SLOPE(15),XL(2,15),XTT(41),
    1XLL(41)
```

```
    EQUIVALENCE (X(1,1),SV(1))
    PI=3.14159265
    ZJET=YCON(25)
    IUSB=YCON(24)
    DFJ=CDF
    VUT = VMU
    TEM=TEMP
    NN2=NNJ-1
    N1=NNJ-1
    N2=NNJ-2
    N3=NNJ-3
    NJH=(NSJ+1)/2+1
    IF (ISYM .EQ. D) NJH=NSJ/2
    IF (ISYM - EQ. O) NP=NSJ-1
    IF (ISYM -NE: O) NP=NSJ+1
    NJT=NJH-1
    IZ=1
    I FF=1
    MM=NW(1)
    NN=NW(1)
    IND=1
    I SN=1
    L. 1=LPANEL+1
    LAST1=LAST-1
    IF (I .GT. LAST) GO TO 26
    I J=I
    GO TO 27.
    26 IJ=I-JPANEL
    27 CONTINUE
    DO 16 J=1.LAST
    MI=J-IFF+1
    FN=NN
    IF (J .GT. LPAN1.AND.J -LE. LPAN2).ISN=2
    IF (J GGT. LPANZ .ANO.J..LE. LPANEL) ISN=3
    IF (J .GE. LPAN1.AND.J .LT. LPANEL) GO TO 24
    GO TO 25
    24 NN=NW(2)
    IF (J.GE. LPANZ.AND.J.LT. LPANEL) NN=NW(3)
    25 CONTINUE
    IF (J.GE. LPANEL.AND.J.LT. MJJ(IND)) NN=NCJ(IND)
    CHORD=CH(IL)
    IF (J.EQ. L1) GOTO 3.3
    GOTO 34
    33 ISN=ISN+1
    L1=MJJ(IND)+1
    34. NLEMJJ_(IND)-1
    IF (NL EG. LASTI) GO TO 90
    If(J.EQ. INL) IND=IND+1
    90 CONTINUE
    X1=XN(J,1)-XCP(IJ)
    x 2=xN(J.2)-xCP(IJ)
```

```
        02-18-78 02.177
    X12= XN(J,2)-XN(J,1)
    Y12=YN(J,2)-YN(J,1)
    Z12=ZN(J,2)-ZN(J,1)
    Z1=ZN(J,1)-ZCP(IJ)
    22=2N(J,2)-2CP(IJ)
    xZJ=x1*212-21*x12
    DO 201 II=1,2
    IF (II .EQ. 1) GOTO 2
    N=1
    GO TO 3
    2 N=2
    3 CONTINUE
    YC=(-q.)**N*Y(P(IJ)
    Y1=YN(J,1)-YC
    Y2=YN(J,2)-YC
    XYK=X1*Y12-Y1* X12
    YZI=Y1*Z12-Z1*Y12
    ALB1=XYK* XYK+XZJ*XZJ+B1* YZI*YZI
    R1B1=SQRT(X1*X1+E1*Y1*Y1 +B1*Z1*Z1)
    R2B1=SQRT(XZ*X2+E1*YZ*YZ +B1*ZZ*Z2)
```



```
    1)/R1B1
    G1日1=(1. - X 1/R1E1)/(Y1* Y1 +Z1*Z1)
    G281=(1.-X2/R2日1)/(Y2*Y2+Z2*Z2)
    IF (I -GT. LPANEL) GO TO 20
    F1=UUB1*XYK/ALB1
    F2=-Y2*G2B1+Y1*G1B1
    IF (J GT. LPANEL) GO TO 190
    GO TO 1S
110 F3=0.
    FL=0.
    F1=2.*F1
    F2=2.*F2
    GOTO 15
    20 CONTINUE
    IF (J .LE. LPANEL) GO TO 117
    IF (ABS(B1-B2) .LE. 0.C01) GO TO 116
    ALGZ=XYK*XYK+XZJ*XZJ+BZ*YZI*YZI
    R1B2=SQRT( }\because1*\times1+B2*Y1*Y1 +B2*Z1*Z1
    R2:32=SQRT(XZ* X Z + E2*YZ* Y 2+B2* Z2*Z2)
```



```
    1)/R182
    G1B2=(1.-X1/R1B2)/(Y1* Y1 + Z1*Z1)
    G2B2=(1.-X2/R2B2)/(YZ*Y2+Z2*22)
    GO TO 117
116 ALB2=AL31
    UUBZ=UUB1
    G2B2=G231
    G1B2=G1B1
117 CONTINUE
    IF(I .GT. LAST) GOTO40
```

```
    F13=UUB1*X2J/ALB1
    F{2=UUB1*XYK/ALB!
    G13=22*G2B1-21*G1B1
    G12=-Y2*G2B1+Y1*G1B1
    IF (J.LE. LPANEL) GO TO 122
    F23=UUB2*XZJ/ALZZ
    F22=UUBZ*XYK/ALB2
    G23=22*G232-21*G182
    G22=-Y2*G2B2+Y1*G182
    GO TO 125
    122
    F22=0.
    G22=0.
    F23=0.
    G23=0.
125 F1=-F13*Y(4,IPHI)*(-1.)**N+F12*Y(3,IPHI)
    F2=G13*Y(4.IPHI)*(-1.)**N+G12* Y(3.1PHI)
    F 3=-F23*Y(4,IPHI)*(-1.)***N+F2 2*Y(3,IPHI)
    F4=G23*Y(4,IPHI)*(-1.)**N+G22*Y(3,IPHI)
    IF (J.LE. LPANEL) GO TO 17
    F1=F1*2.
    F2=2.*F2
    F4=2.*F4
    F3=2.*F3
    GO TO 1.7
    40 F1=UUS1*YZI/ALB1
    IF (EXIT LE. O.OO1) GO TO 4.1
    IF (NNJ .EQ. 1) GO TO 41
    IF (IJ..GT. LPANEL .ANC. IJ..LE.MJJ(1)) VMU=1.
    IF (IJ.GT.LPANEL .ANC.IJ.LE.MJJ(1)) TEMP=1.
    41. CONTINUE
    F2=0.
    IF (J LE. LPANEL) GO TO 22
    F3=UUB2*YZI/ALB2
    F 4=0.
    F 3=-F3*2.
    F1=-F1*VMU*VMU*2.*TEMP
    GO TO 17
    22 F9=-F1*VMU*VMU*TE:\P
    17 CONTINUE
    15W(II)=(F1+F2)*CHORO*SN(MI.ISN)/(8.*FN)
        IF (J .LE. LPANEL) GO TO. }20
    IF(II .EQ. 2) GO TO 2CO
    K2=1 I +2
    w(K2)=(F3+F4)*CHORD*SN(MI*ISN)/(8.*FN)
200 CONTINUE
201-CONTINUE
    IF (J.LT.MM) GOTO 32
    IZ=IZ+1
    IFF=MM+1
    MN=MM+NN
3 2
CONTINUE
```

```
        02-18-78 02.177
    IF (J .LE. LPANEL) JA=J+ Z*JPANEL
    IF (J .GT. LPANEL) JA=J-LPANEL+JPANEL
    AW(JA) =W(%)+W(2)
    SV(JA)=W(1)
    IF (J .LE. LPANEL) GO TO 16
    J1=J-LPANEL
    AW(J1)=W(3)
    VMU=VUT
    TEMP=TE欴
16 CONTINUE
    IF (KCODE .EQ. O) GO TO 28
    IF (IUSB .EQ. 1 .AND. ZJET .GT. O.01) GO TO 60
    IF (DFJ.LE. O.OCO1) GC TO 60
    IF (NNJ.EQ. 1 .AND. I .LE. LPANEL) GO TO 60
    IF (NNJ.EQ. 1 .AND. I .GT. LPANEL) GO TO 66
    IF (I .LE. MJJ(N1) OR. I .GT. LAST) GO TO 60
66 CONTINUE
    IF (I .GT. LAST) GO TO 60
    IF (IPHI ,EQ. NJH) GO TO 60
    IF (ISY计 .NE. O .AND. IPHI .EQ. 1) GO TO 60
    IF (IPHI .LT. NJH) IL=IPHI-ISYM
    IF (IPHI GT. NJH) IL=IPHI-NJH
    REWIND (O2)
    IF (NNJ.EQ.1) MJN1=LPANEL
    IF (NNJ.NE.1) MJN1=MJJ(N1)
    MF=IJ-MJN1-(IPHI-1)*NCJ(NNJ)
    FNNJ:=NCJ(NNJ)
    DISTJ=SDF
    DLX=OISTJ*0.5*PI/FNNJ
    S ZX=-(1.-VMU)
    IQ=(IL-1)*NCJ(NNJ)
    CALL SKIP(IG&JPANEL)
    DO 61 JJ=1.MF
    READ (O2) (SV(K),K=1,JPANEL)
    IF (JJ.EQ.MF) GO TO 65
    OXTH=OLX*PSI(JJ)/TH
    GO TO 67
65 DXTH=DLX*PSI(JJ)*0.5/TH
6 7 \text { CONTINUE}
    PROD=SZX*DXTH
    DO 62 K1=1,JPANEL
    KK=K1+JP ANEL
    62 Ah(KK)=AW(KK)+PROD*SV(K{)
    61 CONTINUE
    IQ=NCJ(NNJ)-MF+((NP-1-ISYM)/2-1)*NCJ(NNJ)
    CALL SKIP(IQ.JPANEL)
    DO63 JJ=1,MF
    READ (02) (SV (K),K=1,JPANEL)
    IF (JJ .EQ.MF) GO TO 68
    OXTH=DLX*?SI(JJ)/TH
    GO TO 69
```

02-18-78 C2.177

```
    68 DXTH=DLX*PSI(JJ)*0.5/TH
    69 PROD=S ZX*DXTH
    DO 64 K1=1,JPANEL
    KK=K1+JPANEL
    64 AW(KK)=AW(KK)-PROD*SV(K1)
    63 CONTINUE
    60 CONTINUE
    IF (EXIT .LE. O.CO1) GO TO 29
    IF (NNJ .EQ. 1) GO TO 29
    IF (IJ.GT.LPANEL .AND. IJ.LE.MJJ(1)) VMU=1.
    IF (IJ.GT.LPANEL.AND. IJ.LE.MJJ(1)) TEMP=1.
    29 CONTINUE
    28 IF (I .LE. LAST) GO TO 70
    IF (IPHI EQ.NJH) GO TO 300
    IF (ISYM .NE: O .AND. IPHI .EQ. 1) GO TO 300
    IF (NNJ.EQ. 1) GO TO 202
    IF(IJ.GT.MJJ(N1)) GC TO 302
    IF (IPHI.GT.NJH.AND. ZJET.LE. O.01) GO TO 302
    IF (IPHI .GT. NJH) LI=NJH
    IF (ISYM, EQ. O .AND. IPHI .GT.NJH) L{=NJH+1
    IF (IPHI .LE. NJH) L1=1
    NZ=1
    IF (NW(2).NE. O . ANO.NW(3),EQ.O) NZ=2
    IF (NW(3),NE. C) NZ=3
    IF (NNJ .LE. 3 .AND.NW(2) .NE. O) IR=N2
    IF (NNJ .LE. 3,AND.NW(2) ,EQ.O) IR=N1
    IF (NNJ -GE. 4 .AND.Nh(3) .NE. O) IR=N3
    IF (NNJ .EQ. 4 .AND.NH(3) EEG. O) IR=N2
    DO 311 NR=1,NZ
    K1=MJW1(NR,NJP) + (IPHI-L1-ISYM)*NW(NR)-1
    K?=LC(NR)+IPHI-LI-ISYM
    KNh=NW(NR)
    Ki=K1-KiNW
    K2=K2-1
    MR=3
    IF (K1.,GE. O) GO TO 4CO
    K1=K1+KiN:i
    K2=K2+1
    MR=2
400 DO 420 NQ=1,MR
    SUM=0.
    DO 310 KK=1,KNW
    KL=K1+KK
    JA=KL+2*JPANEL
310 SUM=SUM+SV(JA)
    CALE-INTEG(RES-KNW,K-I-K2-IJ.BI-IR)
    DO 315 KK=1,KNW
    KL=K1+KK
    JA=KL+2*JPANEL
    A A =1.
    DO 320L=1,KNW
```

```
        02-13-78 02.177
    LL=K 1 + L
    IF (L .EQ. KK) GO TO 320
    AA=AA*(XCP(IJ)-XV(LL))/(XV (KL) -XV(LL))
    320 CONTINUE
    AW(JA)=AW(JA) - SUN*AA-RES*AA*VMU*VMU*TEMP
315 CONTINUE
    K1=K1+KNW
    K2=K2+1
420 CONTINUE
    IR=IR+1
311 CONTINUE
302 CONTINUE
    IF (KCODE .EQ. O) GO TC 300
    IF (NW(2) EEQ. 0) NSTRIP=NCS
    IF (NW(2) .NE. O .AND.NW(3) . EQ. C) NSTRIP=NCS*2
    IF (NW(3) -NE. O) NSTRIP=NCS*3
    IF (IPHI LT. NJH) IP=NJH+1
    IF (IPHI GT. NJH) IP=ISYM+1
    IF (NNJ :EQ. 1) GO TO 325
    IF (IJ.GT. MJJ(N1)) GOTO 325
    IF (NNJ,EQ. 2).GO TO 330
    IF (IJ.GT.MJJ(N2)) GCTO 330
    IF (NNJ.EQ. 3) GO TO 381
    IF (IJ.GT.MJJ(N3)) G(TO 383
    IF (NNJ .EQ. 4) GJ TO 385
    IF (NNJ.EQ. 5 .AND. IJ.GT. MJJ(NNJ-4)) GO TO 386
    LI=NNJ-4
    IZ=NSTRIP
    GOTO 335
386 L1=N3
    IZ =NSTRIP+NP
    GO TO 335
385 L1=N3
    IZ=NSTRIP
    GO TO 335
383 L1=N2
    IZ=NSTRIP+(NNJ-3)*NP
    GO TO 335
381 CONTINUE
    LI=N2
    IZ=NSTRIP
    GO TO 335
325 L1=NNJ
    IZ=NSTRIP+(NNJ-1)*NP
    GO TO 335
330 LI=N1
    IZ=NSTRIP+(NNJ-2)*NP
335 CCNTINUE
    IZ=IZ +IP
    NT=NJT
    IF (ISYM .NE. O) NT=NJT-1
```

02-18-78 02.177
$K N W=N C J(L 1)$
OO $341 \mathrm{KP}=1$, NT
SUM1=0.
SUM $2=0$.
$K 1=M J J(L 1)-N P * N C J(L 1)+(K P-1) * N C J(L 1)+(I P-1) * N C J(L 1)$
$00340 \mathrm{KK}=1$, KNW
$K L=K 1+K K$
$K J=K L+J P A N E L$
$I A=K L-L P A N E L+J P A N E L$
$I B=K J-L A S T$
SUM1 = SUM 1 + SV (I A)
340 SUM2 = SUM 2+AW (IB)
CALL INTEG(RES,KNW,K1,IZ,IJ,B1,L1)
IF (ABS (51-32) .LE. O.CO1) GO TO 350
CALL INTEG (REF,KNW,K1,I2.IJ,B2,L1)
GO TO 355
350 REF=RES
355 DO $360 \mathrm{KK}=1$, KNW
$K L=K 1+K K$
$K J=K L+J P A N E L$
$I A=K L-L P A N E L+J P A N E L$
$I B=K J-L A S T$
$A A=1$.
DO $365 \mathrm{~L}=1$. KNW
$L L=K 1+L$
IF (L.EQ. KK) GO TO 365
$A A=A A *(X C P(I J)-X V(L L)) /(X V(K L)-X V(L L))$
365 CONTINUE
$A W(I A)=A W(I A)-S U M 1 * A A-R E S * A A * V M U * V M U * T E M P * 2$.
$A W(I B)=A W(I B)-S U M 2 * A A-R E F * A A * 2$.
360 CONTINUE
342 I 2 = I 2 + 1
341 CCNTINUE
300 CONTINUE
$S K=1$.
IF (IPHI GT. NJH) SK=-1.
JI=I-LAST+LPANEL
$K=M C O N-L A S T-N C J(L N)+L P A N E L$
JNJ=NCJ(LN)
DO $52 K K=1, J N J$
$K L=K+K K$
$K J=K L+J P A N E L$
IA $=K L-L P A N E L+J P A N E L$
$I B=K J-L A S T$
$A A=1$.
DO $53 \mathrm{~L}=1$. JNJ
$L L=K+L$
IF (L EQ. KK) GO TO 53
$A A=A A *(X C P(J I)-X V(L L)) /(X V(K L)-X V(L L))$
53 CONTINUE
$A W(18)=A W(I 8)+A A * S K$

$$
02-18-78 \quad 02.177
$$

$52 A W(I A)=A W(I A)-A A * V M U * V M U * T E M P * S K$
IF (I EQ. MCON.AND. I .LT. LTOTAL) MCON=MCON+NCJ(LN1)
IF (KCODE EQ. O) GOTC 71
IF (IUSB.EQ. 1 . ANO. ZJET.GT. O.01).GOTO 71
IF (NNJ •EQ. 1) GO TO 71
IF (IJ.GT. MJJ (N1)) GO TO 71
IF (IPHI LE. NJH) GO TO 71
$L 1=\mathrm{NJH}$
IF (ISYM - EQ. O) L1=NJH+1
IF (NW(2) EQ. O) GO TC 170
IF (NW(3) EQQ. O) GO TO 171
IF (IJ.GT. MJJ (N2)) GO TO 82
IF (IJ.GT.MJJ(N3)) GCTO 72
IF (NNJ EQ. 4) GO TO 77
IF (NNJ.EQ. 5.AND. IJ.GT. MJJ(NNJ-4)) GOTO 77
GOTO 71
171 IF (IJ.GT.MJJ(N2)) GCTO 72
IF (NNJ .EQ. 3) GO TO 77
IF (NNJ.EQ. 4 •AND. IJ.GT. MJJ(N3)) GOTO 77
GOTO 71
170 IF (NNJ.EQ. 2) GO TO 77
IF (NNJ.EQ. 3 .AND. IJ.GT. MJJ(N2)) GO TO 77
GOTO 71
$77 K 1=M J W 1(1, N J P)+(I P H I-L 1-I S Y M) * N W(1)-1$
$K N W=N W(1)$
GOTOT3
$72 K 1=M J W 1(2$ NJP) + (IPHI-L1-ISYM)*NW(2)-1
$K N W=N W(2)$
GO TO 73
$82 K 1=M J W 1(3, N J P)+(I P H I-L 1-I S Y M) * N W(3)-1$
$K N W=N W(3)$
73 DO $74 K K=1$, KNW
$K L=K 1+K K$
$J A=K L+2 \star J P A N E L$
$A A=1$.
DO $75 L=1$, KNW
$L L=K 1+L$
IF (L.EQ. KK) GOTO 75
$A A=A A *(X C P / I J)-X V(L L)) /(X V(K L)-X V(L L))$
75 CONTINUE
74 AN (JA) $=A W(J A)-A A * V M U * V N U * T E M P * 0.5$
71 CONTINUE
IF (KCODE .EQ. O) GO TO 70
IF (ZJET.GT. 0.01) GC TO 70
IF (DFJ.LE. D.CCO1) GOTO 70
IF (NNJ.EQ. 1) GO TO 76
IF (IJ.LE. MJJ (N1)) GOTO 70
76 CONTINUE
IF (IPHI .EQ. NJH) GO TO 70
IF (ISYM.NE. O AND. IPHI EQ. 1) GO TO 70
DO $79 \mathrm{~J}=1$, JPANEL

```
        02-18-78 02.177
        JJ=J +JPANEL
    79 SV(J)=-AW(JJ)
        WRITE (O2) (SV(J),J=1,JPANEL)
    70 CONTINUE
        VMU=VUT
        TEMP=TEM
    101 FORMAT (10(F11.5))
    100 FORMAT (6(5X,I3))
        RETURN
        END
            FORTY
        INCODE IBMF
        SUBROUTINE SKIP (I,JPANEL)
        DIMENSION DUMMY(200)
        IF (I .EQ. O) GOTO 1
        002 J=1.I
        READ (O2) (DUMMY(K),K=1,JPANEL)
        2 CONTINUE
        1 RETURN
        END
            FORTY
        INCOOE IBMF
    SUBROUTINE WING (AW,LPANEL,I,BB,LPAN1,LPANZ)
    TO COMPUTE THE JET OFF INFLUENCE COEFFICIENT MATRIX
    DIMENSION AW(1),W(2)
    COMMON /AERO/ AM1,AM2,E1,B2,CL(30),CT(30),CD(30),GAM(2.100)
    CONMON /GEOM/ HALFSW,XCP(200),YCP(200),ZCP(200),XLE(50),YLE(SO),XT
    1E(50),PSI(20),CH(95),XV(200),YV(100),SN( 8, 8),XN(200, 2),YN(200,2).
    2 ZN(200, 2),WIDTH(8),YCON(25),SWEEP(50),HALFB,SJ(21,8),EX(9S,2),TX(
    395,2),SC(160.5),SI(160.5).,LC(3)
    COMMON /CONST/.NCS,NCW,M1(8),NSJ,NCJ(5),LAST,MJW1(3,5),MJW2(3,5),J
    1PANEL,MJJ(5),NW(3),NNJ.NJP
        IZ=1
        IFF=1
        ISN=1
    NL=NW(1)
    NN=NW(1)
    OO16 J=1,LPANEL
    MI=J-IFF+1
    FN=NL
    IF (J.GT.LPAN1.AND.J.LE. LPAN2) ISN=2
    IF (J.GT. LPAN2.AND.J.LE. LPANEL) ISN=3
    IF (J.GE. LPAN1.AND.J.LT. LPANEL) GO.TO 20
    GO TO 21
    20 NL=NW(2)
    21 CONTINUE
    X1=XN(J,1)-XCP(I)
    x 2=xN(J, 2)-XCP(I)
    X12=XN(J,2)-XN(J,1)
    Y12=YN(J,2)-YN(J,1).
```

02-18-78 02.1?7

0015 II =1,2
IF (II.EQ.1) GOTO 2
$N=1$
GOTO 3
$2 N=2$
3 CONTINUE
$Y C=(-1) * * N * Y C P.(I)$
$Y 1=Y N(J, 1)-Y C$
$Y 2=Y N(J, 2)-Y C$
$X Y K=X 1 * Y 12-Y 1 * X 12$
R1=SQRT $(X 1 * X 1+88 * Y 1 * Y 1)$
$R 2=S$ QRT $(X 2 * X 2+B B * Y 2 * Y 2)$
$U 1=(X 12 * X 2+B B * Y 1.2 * Y 2) / R 2-(X 12 * X 1+B B * Y 12 * Y 1) / R 1$
$\mathrm{UT}=\mathrm{U} 1 / \mathrm{XYK}$
$U 2=(1 .-X 1 / R 1) / Y 1$
$U 3=(1 .-X 2 / R 2) / Y 2$
$15 W(I I)=(U 1+U 2-U 3) * C H(I Z) * S N(M I$.ISN)/(8.*FN)
$A W(J)=W(1)+W(2)$
IF (J.LT. NN.OR.J.EQ. LPANEL). GO TO 16
$I Z=I Z+1$
I $F F=N N+1$
$N N=N N+N L$
16 CONTINUE
RETURN
END
LINK LINK33.LINK22
FORTY
INCODE IBMF
SUBROUTINE WALNOL
THIS PROGRAM DETERMINE THE OPTIMUM CAMBER SHAPE AND TWIST
DISTRIBUTION WITH SPECIFIED LIFT AND PITCHING MOMENT CONSTRAINTS
IN THE WING-ALONE CASE WITH ZERO. LEADING EDGE SUCTION.
PARAMETER IPANEL $=60$. IC $W=6$
PARAMETER LLO=IPANEL**2.LL $1=(I P A N E L+3) * * 2 / 4+1$
EQUIVALENCE (BIGCX(1,1),AIJ(1,1),FNWW(1,1))
DIMENSION COGW(IPANEL) CLGW(IPANEL), (MGW (IPANEL)
DIMENSION AW(2CO), CA(2CO), CDII (2O),PAMBDA(2),BA(200)
DIMENSION GAMMA(LLI), BCNDN(ICW),VKSTO(IPANEL), THETAI(ICW)
DIMENSION तA(10), FNWW(IPANEL,IPANEL), BIGCX(IPANEL,IPANEL)
DIMENSION AK (IPANEL), CONST (IPANEL) C (AMZC (IPANEL)
DIMENSION DN'W (ICW,IPANEL), CX(ICW,ICW),AIJ(IPANEL,IPANEL)
COMMON /AERO/ AM1,AM2, E1, B2,CL(30),CT(30),CD(30),GAM(2,100)
CONMON /PARAM/ ALPT,ALFC,ALPS,CDF,SDF,TH,TDF
CCMMON /CLOPE/ DZDXK(1CO),ALPAO(15),GCB(100), GCBX(100), THETAK(10)

1. CCX (100), OZDXK (100), GAN(2,100)

COMMON / ADD/ CP(100), CM(30), BREAK (8), SWP (8, 15), GAL (30), ISYM,VMU,VU
1, TEMP,FCR,CAMLER,CAMLET,CAMTER,CAMTET,XJ,YJ,ZJ,RJ,ALP,CREF,TWISTR COMMON / CONST/ NCS,NCW,M1 (8), NSJ,NCJ (5) LLAST, MJW1 (3,5) AMJW2 (3, S), J
1PANEL,i1JJ(5), NW(3), NNJ,NJP
CONMON /COST/ LTOTAL-LFAN1,NJW(5) LLPANELOIENTN,LPANZ,EXIT,PTIAL,TW
1IST,DF(5).NFP

COMMON /GEOMI HALFSW,XCP(200),YCP(200), $2 C P(200)$,XLE (50),YLE(50) OXT 1E(50),PSI(20),CH(95),XV(200),YV(100),SN(8,8),XN(200,2),YN(200.2), 2 ZN(200.2),WIDTH(8);YCCN(25),SWEEP(50),HALFB,SJ(21,8),EX(95,2),TX(395.2).SC(160.5).SI(160.5),LC(3)

COMMON /IDENT/ DZDXK1(100),GAM1(100),CAMZC1(100),ALPAO1(20),YLE1(2 10)
13. FORMAT (4F10.5,I10)

14 FORMAT (1.4.'CDBAR,CLSAR,CMBAR,DELTA,MAXP')
CALL INVRCX (THETAI,BONDN,AA,IPANEL,BIGCX,AK,ICW,CX)
CALL WALNO2 (AIJ,AW,FNWW,IPANEL,BA,DNWWOICW,CX)
***THEORETICAL MINIMUM INDUCED DRAG COEFFICIENT,LIFT CONSTRAINT,
PITCHING MOMENT CONSTRAINT,INITIAL STEP SIZEのMAXIMUM NUMBER OF
ITERATIONS
WRITE (6.14)
READ (5.13) CDBAR-CLBAR,CMBAR,DELTA MMAXP
WRITE (6.13) CDAAR,CLBAR,CMBAR,DELTA,MAXP
DO $91 \mathrm{~J}=1$. LPANEL
$\operatorname{GAMMA}(J)=0.0$
91 CONTINUE
$N=0$
c
$33 \quad N=N+1$
WRITE (6,200) DELTA,N
200 FORMAT (1H, 'THE COMPUTED STEP SIZE, DELTA=',F10.3.5X,'AT',I3, 'TH
1 ITERATION ')
DO $311=1$ LPANEL
GAM(1,I)=GAMA (I)
GAM(2.I) =GAMMA(I)
31 CONTINUE
CALL WALNO 3 (GANMA,DELTA,AW,CAOCDII,CLBAR,CMBAR-PAMBDA,N,IPANEL.
1AIJ)
IF (N.EQ.1) GO TO 79
IF (CDII(N).LT.CDBAR) GO TO 29
IF (ABS ((CDII(N)-CDBAR)/CDBAR) .LT. 0.05) GO TO 60
IF (CDII(N) .GT. CDII(N-1)) GO TO 39
GO TO 79
$29 \operatorname{CDII}(N)=\operatorname{CDII}(N-1)$
39 CONTINUE
DELTA=0.5*DELTA
DC $49 \mathrm{I}=\mathrm{I}$ - LPANEL
$\operatorname{GAMMA}(I)=G A M(1, I)$
$\operatorname{GAMMA}(I)=G A M(2, I)$
49 CONTINUE
-GO-TC-68
79 CONTINUE
CALL WALNOG (GAMMA,DELTA, PAMBDA,CA,VKSTD,CDGW,CLGWOCMGW,IPANEL
1.AIJ)
68 CONTINUE
IF (N.LT.MAXP) GO TO 38
02-18-78 C2.177
c
60 Continue
DO $81 \mathrm{I}=1$. LPANEL
$\operatorname{GAM}(1, I):=\operatorname{GAMMA}(1)$
$\operatorname{GAM}(2.1)=\operatorname{GAMMA}(1)$
81 CONTINUE
CALL WALNOS (AK,CAMZC, CONST,GAMMA,BA)
DO $71 \mathrm{I}=1$-LPANEL
$C P(I)=2 . * G A M M A(I) * A L P C$
71 CONTINUE
WRITE (6.9)
9 FORMAT (1H , 'OPTIMUM PRESSURE LOADING IN THE WING ALONE (ASE') WRITE (6,8) (CP(I).I=1,LPANEL)
8 FORMAT ($1 \mathrm{H}, 6 \mathrm{~F} 10.5$)
RETURN
END
FORTY
INCODE IBMF
SUBROUTINE WALNOZ (AIJ,AW,FNWW,IPANEL,BA,DNWW,ICW,CX)
C SET UP THE TRANSFORMATION MATRIX 'A(I,J)'
DIMENSION AIJ(IPANEL,1).AW(1),FNWW(IPANEL,1),BA(1), DNWW(ICW,1)
DINENSION CX(ICW,1)
COMMON /CLOPE/ DZDXK(1C0),ALPAO(15),GCB(100).GCEX(100).THETAK(10) 1. CCX(100),OZDXK(100),GAN(2.100)

COMMON / CONST/ NCS,NCWOM1(8),NSJ,NCJ(5),LAST,MJW1 (3,5),MJW2(3,5),J 1PANEL,MJJ(5) NW (3) NNJONJP
COMMON /COST/ LTOTALALFAN1,NJW(S) ILPANEL.IENTNOLPANZEEXIT,PTIALOTW
1IST,DF(5),NFP
LI = LPANEL+1
IF (NW(2).EQ.O) GO TO 5
REWIND 01
DO $1 \mathrm{I}=1$ - LPANEL
READ (01) (AW (K), K=1,L1)
DO $1 \mathrm{~J}=1$ - LPANEL
FNWW(I,J) $=A W(J)$
1 CONTINuE
REWIND 03
DO $21=1$ LPANEL
WRITE (O3) (FNWW(J.I).J=1,LPANEL)
CONTINUE
REWIND 04
DO $3 \mathrm{I}=1$ L PANEL
REWIND 08
READ (04) (AW(L),L=1.LFANEL)
DO $4 \mathrm{~J}=1$ /LPANEL
AIJ(I.J) $=0.0$
READ (08) (BA(L) LL=1/LFANEL)
DC $4 K=1$ LPANEL
$A I J(I, J)=A I J(I, J)+A W(K) * B A(K)$
continue
GOTO 10

$$
02-18-78 \quad 02.177
$$

17 CONTINUE
DO 6 IK=1,NCW
D0 $6 \mathrm{JJ}=1$.LPANEL
$I I=(I-1) \star N C W+I K$
AIJ(II.JJ) $=0.0$
DO 7 L=1,NCW
7 AIJ(IIfJJ) $=A I J(I I, J J)+C X(I K, L) \star D N W W(L, J J)$
6 CONTINUE
16 CONTINUE
10 continue
RETURN
END
FORTY
INCODE IBinf
SUBROUTINE WALNO3 (GAMNA, DELTA,AW,CA,CDII,CLBAR,CMBAR,PAMBDA,N。 1IPANEL,AIJ)
find the wing alone vortex strength at the n-th iteration
DIMENSION AW(1), CA(1),GAMMA(1),CDII(1),PAMBDA(1),AIJ(IPANEL,1)
COMMON /AERO/ AM1,AM2,E1,B2,CL(30),CT(30),CD(30)OGAM(2,100)
COMMON /CLOPE/ DZDXK(1C0),ALPAO(15),GCB(100),GC3X(100) -THETAK(10)

1. CCX (100). OZDXK (100), GAN (2.100)

COMMON /CONST/ NCS,NCW,M1(8),NSJ.NCJ(5),LAST,MJW1(3,5),MJW2(3,5),J
1PANELOMJJ(5),NW(3) NNJ,NJP

$1 E(50)$, PSI (20), $C H(95), X V(200), Y V(100), S N(8,8), X N(200,2), Y N(200,2)$,
2 ZN(200, 2),WIDTH(8),YCCN(25),SWEEP(50),HALFB,SJ(21,8),EX(95,2),TX (395.2).SC(160.5),SI(160.5) eLC(3)

COMMON /COST/ LTOTAL,LFAN1, NJW(S) /LPANEL.IENTN,LPAN2,EXIT,PTIAL,TW 1IST-DF(5) NFP
PI=3.14159265
$L 1=L P A N E L+1$
$L 2=L P A N E L+2$
$L 3=\angle$ PANEL +3
REWIND OB
DO $71 \mathrm{I}=1$-LPANEL
DO $72 \mathrm{~J}=1$, LPANEL
IF (J.EQ. I) GO TO 73
$C A(J)=0.0$
GOTO-72-
73 CA(J) $=1.0$
72 CONTINUE
$C A(L 1)=P I * * 2 * G C B(I) /(H A L F S W * 2) * D E L T$.
$C A(L 2)=P I * * 2 * G C E X(I) /(H A L F S W * 2) * D E L T$.
$A D G W=0$.
02-18-78 02.177

DO $74 \mathrm{~K}=1$, LPANEL
ADGW =ADG'N-(GCB(I)*AIJ(I。K)+GCB(K)*AIJ(K,I))*GAM(1/K)
74 CONTINUE
$C A(L 3)=A D G W \quad * P I * * 2 * D E L T A /(H A L F S W * 2$.
WRITE (O8) (CA(KK) , KK = 1,L3)
71 CONTINUE
DO $75 K=1$ - LPANEL
$C A(K)=G C B(K) * P I * P I /(H A L F S W * 2$.
75 CONTINUE
$C A(L 1)=0.0$
$C A(L 2)=0.0$
$C A(L 3)=C L I I-C L E A R$
WRITE (O8) (CA(J),J=1,L3)
0076 L=1,LPANEL
$C A(L)=G C B \times(L) * P I * P I /(H A L F S W * 2$.
76 CONTINUE
$C A(L 1)=0.0$
$C A(L 2)=0.0$
CA(L3) $=C M I I-C M E A R$
WRITE (O8) (CA(J), J=1,L3)
C
REWIND 08
READ (08) (AW(I),I=1,L3)
DO $77 \mathrm{I}=1$ - L 2
$G A M M A(I)=-A W(I+1) / A W(1)$
77 CONTINUE
$\mathrm{NJ}=\mathrm{L}$ 2-1
0078 IJ $=2 \cdot L 2$
READ (O8) (AW(I) $I=1 / L$)
$I K=I J$
CALL VMSEQN (NJ,IK,AW,GAMMA, (A)
$\mathrm{NJ}=\mathrm{NJ}-1$
78 CONTINUE
PAMBDA(1)=GAMMA(L1)
PAMBDA(2) =GAMMA(L2)
$0036 I=1 . L P A N E L$
GAMMA(I)=GAM(1.I)+GAMMA(I)
36 CONTINUE
$0021 I=1$-LPANEL
D $20 \times K(I)=0.0$
DO $22 \mathrm{~J}=1$ - LPANEL
$D 2 D X K(I)=D 2 D X K(I)+A I J(I, J) * G A M M A(J)$
22 CONTINUE
21 CONTINUE
$C L I I=0.0$
$C M I I=0.0$
CDII $(N)=0.0$
$0050 \quad 1=1$. LPANEL
$C O I I(N)=C O I I(N)+G C B(I) * D Z D X K(I) * G A M M A(I)$
$C L I I=C L I I+G C B(I) * G A M M A(I)$
$C M I I=C M I I+G C B X(I) * G A M$ iA A (I)

$$
02-18-78 \quad 02.177
$$

50 CONTINUE
CDII (N) =-PI**2*CDII(N)/(HALFSW*2.)
CLII=PI*PI*CLII/(HALFSW*2.)
CMII=PI*PI*CMII/(HALFSW*2.)
WRITE (6.134) CDII(N)
134 FORMAT (1H..'INDUCED DRAG COEFFICIENT: CDII='-F15.5)
WRITE (6.135) CLII
135 FORMAT (1H -'LIFT COEFFICIENT, CLII=',F15.5)
WRITE (6.136) CMII
136 FORMAT (1H , 'PITCHING MOMENT COEFFICIENT,CMII=',F15.5)
RETURN
END
FORTY
INCODE IBMF
SUBROUTINE WALNO4 (GAMMA,DELTA PPAMBDA,CA,VKSTD,CDGW,CLGW,CMGW,
1 IPANEL,AIJ)
CALCULATE THE Step Size by one dimensional optimization
technique
DIMENSION CA(1),VKSTD(1)-CDGW(1)-CLGW(1)-CMGW(1)-GAMMA(1)
DIMENSION PAMBDA(1), AIJ(IPANEL, 1)
COMMON /CLOPE/ DZDXK(100),ALPAO(15),GCE(100).GCBX(100),THETAK(10)

1. $C C \times(100)$. OZDXK (100), $\operatorname{GAN}(2.100)$

COMMON /GEOM/ HALFSW, XCP(200) OYCP (200) , ZCP(200) OXLE(S0),YLE(SO), XT
1E(50),PSI(20), CH(95),XV(200),YV(100),SN(8,8),XN(200,2),YN(200,2),
2 ZN(200,2),WIDTH(8),YCCN(25),SWEEP(50),HALFB,SJ(21,8),EX(95,2),TX(
395.2),SC(160.5),SI(150.5),LC(3)

COMMON /COST/ LTOTAL.LPAN1,NJW(5), LPANEL. IENTN.LPAN2,EXIT,PTIAL,TW
1IST,DF(5),NFP
$P I=3.14159265$
DO 12 $1=1$ LIPANEL
$C A(I)=0.0$
DO $13 \mathrm{~J}=1$-LPANEL
$C A(I)=C A(I)+(G C E(I) * A I J(I, J)+G C B(J) * A I J(J, I)) * G A M M A(J)$
13. CONTINUE

CDGW(I) $=-P I * P I * C A(I) /(H A L F S W * 2$.
12 CONTINUE
DO $15 \mathrm{I}=1$ - LPANEL
CLGW(1)=PI*PI*GCB(1)/(HALFSW*2.)
15 continue
DO $16 \mathrm{I}=1$. LPANEL
CMGW(I)=PI*PI*GCBX(I)/(HALFSW*2.)
16 CONTINUE
DO $90 I=1$. LPANEL
VKSTD(I) $=0.0$
VKSTD(I) $=\operatorname{VKSTD}(I)-(C D G W(I)+P A M B D A(1) * C L G W(I)+P A M B D A(2) * C M G W(I))$
90
CONTINUE
CDGW1=0.0
$\operatorname{CDGW2} 2=0.0$
DO $92 \mathrm{~J}=1$ LPANEL
$00 G W=0.0$
DO 93 I=1-LPANEL

```
            02-18-78 02.177
        DDGN:=DDGW+(GCB(I)*AIJ(I,J)+GCB(J)*AIJ(J,I))*VKSTD(I)
    93-CNTINUE
        CDGW1=CDGW1+DDGW*GAMMA(J)
        CDGW2=CDGW2+DDGW*VKSTD(J)
    92 CONTINUE
        BOR=CDGW1
        DOR=CDGW2
        DELTA=ABS(BOR/DOR)
        RETURN
        END
        FORTY
        INCODE IBMF
        SUBROUTINE WALNOS (AK,CAMZC,CONST,GAMMA,BA)
        FIND THE CAMBER ORDINATES AND LOCAL ANGLE OF ATTACK
        DIMENSION ALPA(15)
        DIMENSION AK(1),CAMZC(1),CONST(1),GAMMA(1),BA(1)
        COMMON./CLOPE/ DZDXK(1OO),ALPAO(15),GCB(100),GCBX(100),THETAK(10)
        1.CCX(100),O2DXK(100).GAN(2,100)
    COMMON /CONST/ NCS,NCW,M1(8),NSJ,NCJ(5),LAST,MJW1(3,5),MJW2(3,5),J
    1PANEL,MJJ(5),NW(3),NNJ,NJP
    COMMON /COST/ LTOTAL,LPAN1,NJW(5),LPANEL,IENTN,LPAN2,EXIT,PTIAL,TW
    1IST,DF(S),NFP
        CONMON /GEOM/ HALFSW,XCP(200) ,YCP(200),ZCP(200),XLE(50),YLE(50),XT
    1E(50),PSI(20),CH(95),XV(200),YV(100),SN( 8, 8),XN(200,2),YN(200, 2),
    2 2N(200, 2),WIDTH(8),YCON(25),SWEEP(50),HALFB,SJ(21,8),EX(95,2),TX(
    395.2),SC(160.5),SI(160.5),LC(3)
        COMMON /IDENT! DZDXK1(100),GAM1(100), (AMZC1(100),ALPAO1(20),YLE!(2
    10)
        PI=3.14159265
        NW2=NW(1)+NW(2)
        If (N:N(2) , EQ. O) GO TO 48
        II=NCS+1
        If (NW(3) .NE. O) GO TC 50
        CHORD=CH(1)+CH(II)
        X X1=CH(1)/CHORO
        THETA1=ARCOS(1.- 2.*XX1)
        THETAZ=PI
        GO TO S1
50 III=II+NCS
        CHORD=CH(1)+CH(II)+CH(III)
        X X1=CH(1)/CHORD
        THETA1=ARCOS(1.-2.* *X1)
        X X2 = (CH(1) +CH(II))/CHORD
        THETAZ=ARCOS(1.-2.* XX2)
51 CONTINUE
    GOTO49
4 THETA1=PI
4 9 ~ C O N T I N U E ~
    NRITE (6.102)
102 FORMAT (1H,'THE TWIST DISTRIBUTION IN THE SPANWISE DIRECTION')
    K1=1
```

```
                02-18-78 02.177
    K 2=2
    DO 23 KI=1 NNCS
    DO 25 N=1.NCW
    NA= (KI-1)*NCW+N
    AK(NA)=0.0
    FN=N-1
    DO 27. L=1,NCW
    IF (L.LE.NW(1))KB=(KI-1)*NW(1)+L
    IF (L.GT.NW(1).AND.L.LE.NW2)KB=LPAN1+(KI-1)*NW(2)+L-NW(1)
    IF (L.GT.NWZ) KB=LPANZ+(KI-1)*NW(3)+L-NW2
    IF (L .LE.NW(1)) GO TC 100
    IF (L.GT.NW(1).ANO.L.LE.NW2) GOTO 200
    IF (L.GT.NW2) GO TO 300
    100 FNW=NW(1)
    THETA=THETA1
    GO TO 400
    200 FNW=NW(2)
    THETA=THETA2-THETA1
    GO TO 400
    300 FN:N=NW(3)
    THETA=PI-THETAZ
    4OO CONTINUE
    AK(NA)=AK(NA) +THETA*DLDXK(KB)*COS(FN*THETAK(L))/(FNW*PI)
    27 CONTINUE
    IF (N.GT.1) AK(NA)=2.*AK(NA)
    25 CCNTINUE
    CONSTT=0.0
    CONST2=0.0
    DO 88 J=3,NCW
    GK=J-1
    KG=(KI-1)*NCW+J
    CONST1=CONST1+0.25*AK(KG)*(1./(1.-GK) +1./(1.+GK))
    CONST2=CONST2+0.25*AK(KG)*(1./(1.-GK)* COS((1.-GK)*PI) +1./(1. +GK)*C
    10S((1.+GK)*PI))
    88 CONTINUE
        CONST3=0.125*AK(K2)
        CONST(KI)= CONST1+CONST3
        ALPAO(KI)= CONST2-CONST1-AK(K1)
        ALPA(KI) =ALPAO(KI)*180./PI
        DO 29 M=1,NCW
        MN=(KI-1)*NCW+M
        CAMZC(MM)=0.O
        DO 30 K=3,NCW
        FK=K-1
        KO=(KI-q)*NCW+K
        CAMZC(MM)=CAMZC(MM)-0. 25*AK(KD)*(1./(1.-FK)*COS((1.-FK)*THETAK(M))
        1+1./(1.+FK)*COS((1.+FK)*THETAK(M)))
    30 CONTINUE
        CONST4=-CONST3*COS(2.*THETAK(M))
        CAMLC(MM)=CAMZC(MM)+(ALPAO(KI) + AK(K\))*0.S*(1:-COS(THETAK(M)))+CON
    1ST4+CONST(KI)
```

```
    29 CONTINUE
        K1=K1+NCW
        K2=K2+NCW
        WRITE (6,126) KI,YLE(KI),KI,ALPA(KI)
    126 FORMAT (1H ('YLE(',I2,')=',F15.5,5X,'ALPAO(',I2,')=',F1S.5)
    23 CONTINUE
    WRITE (6.1 29.)
    129 FORMAT (1H,'THE CAMBER ORDINATES IN THE WING ALONE (ASE')
    WRITE (6,127) (CAi^ZC(JJ),JJ=1,LPANEL)
    127 FORMAT (1H -6F10.5)
    DO60 I=1,NCS
    YLE1(I)=YLE(I)
    ALPAO1(I)=ALPAO(I)
GO CONTINUE
    DO 65 J=1,LPANEL
    CAMZC1(J)=CAMZC(J)
    D2DXK1(J)= D2DXK(J)
    GAM1(J)=GAMMA(J)
65 CONTINUE
    RETURN
    ENO
        LINK LINK44/LINK33
        FORTY
        INCODE IBMF;
        SUBROUTINE INVMTX
        INVERT THE AUGNENTEO MATRIX OF THE EOUNDARY CONDITIONS
        PARAMETER JPANEE=80.I PANEL=60
        PARAMETER ITOTAL =2*JPANEE+IPANEL
        DIMENSION BIGTRX(ITOTAL,ITOTAL),CONDN(ITOTAL),AW(3OO)
        COMMON /COST/ LTOTAL,LFAN1,NJW(5),LPANEL,IENTN,LPAN2,EXIT,PTIAL,TW
    1IST,DF(5),NFP
    COMMON /CONST/ NCS.NCW,M1(8),NSJ,NCJ(5),LAST,MJ:N1(3,5),MJ:N2(3,5),J
    1PANEL,MJJ(5),NW(3),NNJ,NJP
    CALL JETNO3 (ITOTAL,AW,CONDN,BIGTRX)
    RETURN
    END
        FCRTY
        INCODE IBIMF
    SUBROUTINE JETNOS (ITOTAL,AW, CONDN,BIGTRX)
    INVERT THE AUGMENTED MATRIX BY H.E.M.P. SUBROUTINE
    DIMENSION AW(1),CONON(1),BIGTRX(ITOTAL,1)
    COMMON /COST/ LTOTAL,LPAN1,NJW(S).LPANEL,IENTN,LPANZ.EXIT,PTIAL,TW
    1IST,DF(S),NFP
        COMMON/CONST/ NCS,NCN,M1(8),NSJ,NCJ(5)/LAST,MJW1(3,S),MJW2(3,5),J
    1PANEL,MJJ(5),NW(3),NNJ,NJP
        REWIND O3
        DO 5 I=1-LTOTAL
        READ (03) (AW(K),K=1,LTOTAL)
        DO 6 J=1 -LTOTAL
        BIGTRX(I,J)=AW(J)
        CCNTINUE
```

CONTINUE
LTO=LTOTAL
CALL SETDIM (BIGTRX,LTCOLTO)
CALL HEAINV (BIGTRX,LTO, CONDN)
REWIND $0 ?$
DO $9 . I=1$ LTOTAL
WRITE (OG) (BIGTRX(I,J),J=? LITOTAL)
CCNTINUE
RETURN
END
LINK LINKSSILINK44
FORTY
INCODE IBMF
SUBROUTINE COMJET (KCODE)
FIND ALL MATRICES ARE NEEDED AND STORE THOSE MATRICES ON FILES
PARAMETER IPANEL $=60$. IC $W=6$, JPANEE $=80$
PARAMETER $J 1=2 * J P A N E E, J 7=J P A N E E+I P A N E L$
EQUIVALENCE (BIGCX(1,1),AIJ(1,1))
EQUIVALENCE (RHSIDE(1,1), BIJ $(1,1))$
OIMENSION AIJ (IPANEL,IFANEL), BIJ (IPANEL,JPANEE)
DIMENSIOA FNWW (IPANEL, IPANEL) FNWJ (IPANEL JPANEE)
DIMENSION AW (300), BA(3CO), CA(300), THETAI (10), DA(3OO), AK (IPANEL)
DIMENSION GIGCX (IPANELIIPANEL), BONDN(ICW),AA(1O),CX(ICW,ICW)
OIMENSION RHSIDE(JPANEEOIPANEL)
COMMON /AERO/ AM1.AM2.E1.B2.CL(30),CT(30),CD(30),GAM(2.100)
COMMON /ADD/ CP(100), CN(30), BREAK (8), SWP (8,15), GAL(30), ISYM,VMU,VU

1. TEMP,FCR, CAMLER,CAMLET,CAMTER,CAMTET,XJ,YJ,ZJ,RJ,ALP,CREF,TWISTR

COAMON /CONST/ NCS,NCW,M1 (8), NSJ,NCJ (S) LLAST, MJW1 (3, 5) , MJW2 (3, 5) , J
1PANEL,MJJ(5),NW(3), NNJ,NJP
COMMON /CLOPE/ DZDXK(1CO).ALPAO(15),GCB(100), GCBX(100), THETAK(10) 1. CCX(100), OZ OXK (100),GAN (2.100)
 1E(50), PSI (20), CH(95), XV(200),YV(100), SN(8, 8), XN(200,2),YN(200,2), 2 ZN(200,2) ,WIDTH(8),YCON(2S),SWEEP(50),HALFB,SJ(21,8),EX(95,2),TX($395,2), S C(160,5), S I(160,5), L C(3)$
COMMON /PARAM/ ALPT,ALFC,ALPS,CDF,SOF,TH,TDF
COMMDN/COST/ LTOTAL,LPAN1,NJW(S), LPANEL,IENTN,LPAN2,EXIT,PTIAL,TW 1IST.OF(S),NFP
CALL JETNO 4 (BA,RHSIDE,JPANEE,KCODE)
CALL JETNOS (JT, AW, CA,RHSIDE,JPANEE)
CALL JETNOG (AW,EA,CA,AIJ,BIJ,FNWW,FNWJ,IPANEL,JI,JT,CX,ICW)
RETURN
ENC
FORTY
INCODE I.3MF
SUBROUTINE JET-NO L (BA,RHSTDEOJPANEE-OKCODE-) ——
SET UP THE RIGHT HAND SIDE MATRIX OF THE BOUNDARY CONDITIONS FOR
I NDEX=1
DIMENSION BA(1), RHSIDE (JPANEE, 1)
COMMON /AERO/ AM1, AM2.E1.B2,CL(30),CT(30),CD(30),GAM(2,100)
COMAON /ADD/ CP(100), CN(30),BREAK (8), SWP (8,15),GAL(30),ISYM,VMU,VU

$$
02-18-78 \quad 02.177
$$

1. TEMP,FCR,CAMLER,CAMLET,CAMTER,CAMTET,XJ,YJ,ZJ,RJ,ALP,CREF,TWISTR COMMON /CONST/ NCS,NCW,M1 (8), NSJ,NCJ(5),LAST,MJW1(3.5), MJW2(3,5),J 1PANEL, MJJ(5), NW(3),NNJ,NJP COMHON /COST/ LTOTAL,LPAN1,NJW(5),LPANEL,IENTN,LPAN2,EXIT,PTIAL,TW 1IST,DF(5), NFP COMMON /GEOM/ HALFSW,XCP(200) ,YCP(200),ZCP(200),XLE(50),YLE(SO),XT 1E(50), PSI (20), CH(95), XV(200),YV(100), SN(8, 8), XN(200,2),YN(200,2), $22 N(200,2), W I D T H(8), Y C C N(25), S W E E P(50), H A L F B, S J(21,8), E X(95,2), T X($ $395.2), S C(160,5), S I(160.5), L C(3)$
COMMON /PARAM/ ALPT,ALPC,ALPS,CDF,SDF,TH,TDF
COMMON /SCHEME/ $C(2), X(10,41), Y(10,41), S L O P E(15), X L(2,15), X T Y(41)$, 1XLL(41)
$V M \cup C=V M U * A L P C$
IPHI=1
MJ=LPANEL+NCJ(1)
I $N N=1$
$J N N=1$
OO $1 \mathrm{KI=1}$, JPANEL
$L I=L A S T+K I$
$K J=L I$
IF (LI GT. LAST) KJ=LI-JPANEL
CALL STREAM (ALPHA, VMUCノLI,IPHIノLPANEL,TEMP,LPAN1,LPAN2,ISYM,
1KCODE,EXIT,MJ, 1, BA)
IF (KJ.LT. MJ.OR.KJ.EQ.LAST) GO TO 50
$I P H I=I P H I+1$
$M J=M J+N C J(I N N)$
50 CONTINUE
MJI = MJJ (INN)-1
IF (KJ.EQ. MJI) GO TO 55
GCTO 60
$55 \mathrm{JNN}=\mathrm{INN}$
$I N N=I N N+1$
60 IF (KJ . EQ. MJJ (JNN)) IPHI=1
DO $2 I=1$ LPANEL
2 RHSIDE(KI,I) 2 -BA(I)
1 CONTINUE
RETURN
END
FORTY
INCODE IBMF
SUEROUTINE JETNOS (JT, AW, (A,RHSIDE,JPANEE)
FIND THE DERIVATIVES OF (DGOJ/DGWO) AND (DGWA/DGWO) AND STORE
THOSE DERIVATIVES ON FILE (12)
DIMENSION.AW(1), RHSIDE(JPANEE,1), CA(1)
COMMON /CONST/ NCS,NCW,M1 (8),NSJ,NCJ(5),LAST,MJW1 (3,5), HJWZ (3,5), J 1PANEL,MJJ(5),NW(3), NNJ,NJP
COMMON /COST/ LTOTAL,LPAN1,NJW(S), LPANEL,IENTN,LPAN2,EXIT,PTIAL,TW 1IST,DF(5),NFP
REWIND 12
DO $1 \quad I=1$ L L PANEL
REWIND 09
```
                02-13-78 02.177
            DO }3\mathrm{ L=1,JPANEL
            READ (09) (AW(M),M=1,LTOTAL)
    3 CONTINUE
        DO 2 J=1,J7
        READ (09) (AW(M),M=1,LTOTAL)
        CA(J)=0.0
        DO 2 K=1,JPANEL
    2 CA(J)=CA(J)+AW(K)*RHSIDE(K,I)
    1 WRITE (12) (CA(M),M=1,J7)
    RETURN
    END
        FORTY
    INCODE IBMF
        SUBROUTINE JETNOG(AW,BA,CA,AIJ,BIJ,FNWW,FNWJ,IPANEL,J1,J7,CX,ICW)
        FIND THE MATRICES (A) AND (B) AND STORE THOSE MATRICES
C ON FILE (11), ALSO COMPUTE THE DERIVATIVES OF CAMBER SLOPES AND
C
    STORE IT ON FILE (10)
    DIMENSION AW(1), EA(1),CA(1),AIJ(IPANEL,1), EIJ(IPANEL,1)
    DIMENSION FNWW(IPANEL,1),FNWJ(IPANEL,1),CX(ICW,1)
    COMMON /CONST/ NCS,NCW&M1(8),NSJ,NCJ(5),LAST,MJW1(3,5), inJN2(3,5),J
    1PANEL,MJJ(5),NW(3),NNJ,NJP
    COMMON /CLOPE/ DZDXK(1CO),ALPAO(1S),GCB(100),GCBX(100),THETAK(10)
    1.CCX(100), O2DXK(100),GAN(2,100)
        COMMON /COST/ LTOTAL/LFAN1,NJW(5),LPANEL,IENTN,LPANZ,EXIT,PTIAL,TW
    1IST,DF(S),NFP
        DO 19 I=1.NCW
        DO 19 J=1.NCW
        IK=(I-1)*NCw+J
    19CX(I,J)=CCX(IK)
        REWIND O3
        DO 20 J=1.J1
        READ (O3) (AW(K),K=1/LTOTAL)
20 CONTINUE
    DO 2 I=1,LPANEL
    READ (O3) (AW (K),K=1,LTOTAL)
    DO 3 J=1,JPANEL
    JJ=JPANEL+J
    FNWJ(I;J)=AW(JJ)
    OO 4 K=1.LPANEL
    KK=J1+K
    FNWW(I,K)=AW(KK)
    CONTINUE
    REWIND 11
    DO 13 I= 1,NCS
    DO 13 IK=1,NCW
    I_I=(I-1)*NCW+IK
    0014 J=1.LPANEL
    AIJ(II,J.)=0.
    0014 L=1.NCW
    LL=(I-1)*NCW+L
14 AIJ(II,J)=AIJ(IIOJ) +CX(IK,L)*FNWW(LL,J)
```

$$
02=18-78 \quad 02.177
$$

DO $15 \mathrm{JK}=1$, JPANEL
BIJ $(I \dot{I} ; J K)=0$.
DO 15 LK=1.NCW
$L N=(I-1) * N C W+L K$
$15 B I J(I I, J K)=B I J(I I, J K)+C X(I K, L K) * F N W J(L N, J K)$
13 CONTINUE
29 CONTINUE
DO $16 I=1$ LPANEL
DO 11 IK =1 , JPANEL
$11 . C A(I K)=B I J(I, I K)$
DO 12 」K=1.LPANEL
$M K=J P A N E L+J K$
$12 C A(M K)=A I J(I, J K)$
WRITE (11) (CA(LK) $L K=1, J 7$)
16 CONTINUE
REWIND 12
REWIND 10
DO $8 \mathrm{I}=1$ LPANEL
REWIND 11
READ (12) (AW (L) L=1,J7)
DO $10 \mathrm{~J}=1$ - LPANEL
READ (11) (CA(L) $L=1, J 7)$
$B A(J)=0.0$
$009 K=1 . J 7$
$9 B A(J)=B A(J)+C A(K) * A W(K)$
$10 B A(J)=A I J(J, I)+B A(J)$
WRITE (10) (BA(M), M=1, LPANEL)
8 CCNTINUE
RETURN
END
LINK LINK66.LINKSS
FORTY
INCODE I BMF
SUEROUTINE JETNOL (KCODE)
THIS SUBROUTINE DETERMINE THE OPTIMUM CAMBER SHAPE AND TWIST DISTRIBUTION WITH SPECIFIED LIFT AND PITCHING MOMENT CONSTRAINTS IN THE JET ON CASE WITH UPPER-SURFACE-BLOWING AND ZERO LEADING
EDGE SUCTION
PARAMETER JPANEL $=60.1 C W=6 . J P A N E E=80$
PARAMETER J7=JPANEE+IPANEL,J1=2*JPANEE/LL1=(IPANEL+3)**2/4+1
DIMENSION GAMMA(LL1). CDII (20), OAMZC(IPANEL)
DINENSION AW (300), BA (3CO), CA (300) DA (300), THETAI (10), PAMBDA(2)
DIMENSION GAMMT (IPANEL), GAMAA (IPANEL) GAMOJ (JPANEE),GAT(IPANEL)
DIMENSION CAMZC(IPANEL),CONST (IPANEL), AK (IPANEL),RHS (300)
DIMENSION GONDN(ICW) /WA(10), BIGCX(IPANEL,IPANEL), CX(ICW,ICW)
COMMON /ADO/ CP(100), CN(30), BREAK (8), SWP (8.15), GAL (30), ISYM,VMU•VU

1. TEMP,FCR, CAMLER,CAMLET,CAMTER,CAMTET,XJ,YJ, ZJ,RJ,ALP,CREF,TWISTR-

COMMON /AERO/ AM1, AM2, B1. 日2,CL(30),CT(30),CD(30),GAM(2.100)
COMMON /CLOPE/ DZDXK(100), ALPAO(15), GCB(100),GCBX(100), THETAK(10)

1. $C C X(100) \cdot 020 X K(100) \cdot G A N(2,100)$

COMMON /LING/ GLEAR,GHEAR,FCLII,FCMII

COMMON /WLONE/ DZDXKW(100), GAMW(100), CAMZCW(100),ALPAOW(20)
 1PANEL,MJJ(5),NW(3),NNJ,NJP
COMMON /COST/ LTOTAL/LFAN1.NJW(5).LPANEL•IENTN,LPAN2,EXIT,PTIAL-TW
1IST,DF(S),NFP
COMMON /GEOM/ HALFSW,XCP(200) ,YCP(200), $2 C P(200), X L E(50), Y L E(50), X T$
1E(50), PSI (20), $C H(95), X V(200), Y V(100), S N(8,8), X N(200,2), Y N(200,2)$,
$2.2 N(200,2), W I D T H(8), Y(O N(25), S W E E P(50), H A L F B, S J(21,8), E X(95,2), T X($
$395.2), S C(160.5), S I(160.5), L C(3)$
COMMON /PARAM/ ALPT,ALFC,ALPS,CDF,SDF,TH,TDF
COMMON /IDENT/ DZDXK1(100),GAM1(100), CAMZC1(100),ALPAO1(20),YLE1(2
10)

CALL INVRCX (THETAI,BONDN,WA,IPANEL,BIGCX,AK,ICW,CX)
13 FORMAT (3F10.5.I10)
14 FORMAT (1H ${ }^{\prime}$, CLII,CMII-DELTA,MAXP')
15 FORMAT (1H, 'NUME,SIZE')
33 FORMAT (I10,F10.5)
DC $44 \quad I=1$, NCS
ALPAON (I) =0.
DO $46 \mathrm{~J}=1$-NCS
$A A=1$.
DO $47 \mathrm{~L}=1$, NCS
IF (L.EQ.J) GO TO 47
$A A=A A *(Y L E(I)-Y L E 1(L)) /(Y L E 1(J)-Y L E 1(L))$
47 CONTINUE
ALPAOW(I) =ALPAOW(I)+AA*ALPA01(J)
46 CONTINUE
44 CONTINUE
DO $4 \quad I=1$, NCS
DO 5 K O 1, NCW
$J J=(I-1) * N C W+K$
GAMiW (JJ) $=0$.
$C A M Z C W(J J)=0$.
DZDXKW(JJ)=0.
DO $6 \mathrm{~J}=1$, NCS
$I I=(J-1) * N C W+K$
$A A=1$.
DO 7 L=1,NCS
IF (L.EQ.J) GOTO 7
$A A=A A *(Y L E(I)-Y L E 1(L)) /(Y L E 1(J)-Y L E 1$ (L))
7 CONTINUE
$G A M W(J J)=G A M W(J J)+A A * G A M 1(I I)$
$D Z D X K W(J J)=D Z D X K W(J J)+A A * D Z D \times K 1(I I)$
CAMZCW(JJ) =CAMZCW(JJ) + AA*CAMZC1(II)
CONTINUE
CONTINUE
4 CONTINUE
DO $20 \mathrm{I}=1$. LPANEL
$0 Z 0 \times K(I)=D Z D \times K W(I)$
$\operatorname{GAM}(1, I)=G A M W(I)$
20

```
02=18-78 02.177
C
C** LIFT CONSTRAINT, PITCHING MOMENT:CONSTRAINT, INITIAL:STEP SIZE
C
    AND MÄXIMUM NUMEER OF ITERATIONS ***
    WRITE (6.14)
    REAO (5,13) CLBAR, CMBAR,DELTO,MAXP
    WRITE (6,13)CLBAR,CMBAR,DELTO,MAXP
C
C ** NUMBER OF INTERMEDIATE CYCLES WHICH ARE NEEDED TO REDUCE THE
C
C CONSTRAINTS. THE ASSUMED STEP SIZE IN THE JET ON CASE ***
    WRITE (6,15)
    READ (5,33) NUMB,SIZE
    WRITE (6,33) NUMB,SIZE
C
    N=0
    ITN=0
    NCOUNT=0
    38 CONTINUE
    IF (ABS(CLII-CLBAR).LT.0.00001) GO TO 508
    IF (ITN.GT.2) GOTO 502
    GO TO 590
508 CONTINUE
    NCOUNT=NCOUNT+1
    DO 560 I=1.LPANEL
    OAMZC(I) =C AMZC(I)
    560 CONTINUE
    WRITE (S.565) NCOUNT,DELTA
    565 FORMAT (1HO,'THE',I3,'TH ITERATION IN THE FINAL CYCLE, DELTA=*,
    1F10.3)
590 CONTINUE
    N=N+1
    502 CONTINUE
    DO 31I=1,LPANEL
    OCLII=CLII
    OCMII=CMII
    GAN(1,I)=GAM(1,I)
    GAN(2,1)=GAM(2,I)
    GAT(I)=GAMMT(I)
    OZOXK(I)=D?.DXK(I)
    31 CONTINUE
    IF (ABS(CLII-CLBAR).LT.0:00001) GO TO 505
    IF (ITN.GT.2) GO TO 19
    I.F (N.EQ.1) GO TO 32
SO5 CONTINUE
    IF (ABS(CLII-CLBAR).GT.0.00001) WRITE (6.200) DELTA&ITN&NUMB1
    200 FORMAT (1HO,'DELTA=',F10.3.5X,I2,'TH ITERATION OF',I2,'TH INTER
    IMEDIATE CYCLES')
    CALL JETNOT (GAMMA,BA,DELTA,AW,CA,CLII,CMII,PAMBDA,GAT,JT)
32 CONTINUE
    CALL JETNO8 (RHS.KCODE)
    CALL JETNO9 (GAMMT,GAMOJ,GAMAA,RHS,AW,BA,CA,J7,N,CDII,CLII,CMII,
```

```
        02-18-78 02.177
    1(LBAR,CMBAR,NUMB,ITN)
        IF (N.EQ.1) CALL CAMBER (AK,CAMZC,CONST,GAMMA,BA,N,MAXP)
        IF (N.EQ.1) CALL LOAD
    IF (ABS(CLII-CLBAR).LT.0.00001) GO TO. 555
    IF (N.EQ.1) GO TO 80
    IF (ITN.EQ.1) GOT0.89
555 CONTINUE
    IF (CDII(ITN).GT.CDII(ITN-1)) GO T0 29
89 ITN=ITN+1
    GO TO 79
19 CONTINUE
    FCLII=FCLII-GLBAR
    FCMII=FCMII-GMBAR
    NUMB1=NUMB1+1
    DELTA=DELTO
    I TN=1
    GO TO 68
29 CONTINUE
    DELTA=0.5* DELTA
    ITN=ITN+1
    DO49 I=1.LPANEL
    GAM(1,I)=GAN(1,I)
    GAM(2,I)=GAN(2,I)
    GAMMT(I)=GAT(I)
    OZOXK(I)=0ZOXK(I)
    CLII=OCLII
    CMII=OCMII
    49 CONTINUE
    GO TO 63
80 ITN=1
    OELTA=DELTO
    NUMB1=1
    GO TO 68
79 CONTINUE
    IF (ABS(CLII-CLBAR).LT.O.OOCO1) GO TO 540
    IF (ITN.GT.2) GO TO 68
540 DELTA=SIZE
68 CONTINUE
    IF (ABS(CLII-CLBAR).LT.O.000O1) CALL CAMBER (AK.CAMZC,CONST,GAMMA.
    1BA,N,MAXP)
    IF (NCOUNT.EQ.O) GO TO 561
    SUM=0.
    DO 562 I=1,LPANEL
    SUM=SUM+(CAMZC(I)-OAMZC(I))**2
S62 CONTINUE
    RMS=SQRT(SUM)/(FLOAT(LFANEL)*CREF)
    WRITE (6.563) RMS
563 FORMAT (1H 'THE ROOT MEAN SQUARE OF CAMEER ORDINATES=',F15.5)
561 CONTINUE
    IF (N.LT.MAXP) GO TO 3E
    CALL LOAD
```


RETURN

END
FORTY
INCODE IBMF
SUBROUTINE JETNOT (GAMMA,BA,DELTA,AW,CA,CLII,CMII,PAMBDA,GAT,J7)
CALCULATE THE NEW WING-ALONE VORTEX STRENGTH AND THE CAMBER SLOPE
DIMENSION AW(1), BA (1). CA (1),GAMMA (1), PAMBDA(1), GAT (1)
COMMON /AERO/ AM1, AM2,E1,B2,CL(30),CT(30),CD(30),GAM(2,100)
COMMON /CLOPE/ OZOXX(1CO), ALPAO(15),GCB(100),GCBX(100), THETAK(10)
1, CCX (100), O2DXK (100), GAN(2,100)
COMMON /CONST/ NCS,NCW•M1 (8), NSJ,NCJ(5),LAST, MJW1 (3, S), MJW2(3,5), J
1PANEL,MJJ(5),NW(3), NNJ•NJP

1E(50), PSI (20), CH(95), XV(200),YV(100),SN(8,8),XN(200,2),YN(200,2),
2 ZN(200, 2),WIDTH(8),YCON(25),SWEEP(50),HALFB,SJ(21,8),EX(95,2),TX(
$395,2), S C(160.5), S I(160.5), L C(3)$
COMMON /LING/ GLBAR,GMBAR,FCLII,FCMII
COMMON /COST/ LTOTAL/LPAN1,NJW(5) LLPANEL,IENTN,LPAN2,EXIT, PTIAL,TW
1IST-DF(5),NFP
$P I=3.14159265$
$L 1=L P A N E L+1$
$L 2=L P A N E L+2$
L $3=L P A N E L+3$
REWIND 12
REWIND 10
REWIND 08
DO $711=1$ LPANEL
DO $72 \mathrm{~J}=1$, LPANEL
IF (J •EQ. I) GOTO 73
$C A(J)=0.0$
GOTO 72
$73 \quad C A(J)=1.0$
72 CONTINUE
READ (12) (AW(L) $L=1, J 7$)
$C A(L 1)=0.0$
$C A(L 2)=0.0$
DO $60 \mathrm{~L}=1$. LPANEL
$L L=J P A N E L+L$
$C A(L 1)=C A(-1)+G C B(L) * A W(L L)$
$60 C A(L 2)=C A(L 2)+G C B \times(L) * A W(L L)$
$C A(L 1)=C A(L 1)+G C B(I)$
$C A(L 2)=C A(L 2)+G C B X(I)$
$C A(L 1)=P I * * 2 * C A(L 1) * D E L T A /(H A L F S W * 2$.
$C A(L 2)=P I * * 2 * C A(L 2) * D E L T A /(H A L F S W * 2$.
$B D G W=0.0$
DO $14 M=1$. LPANEL
$M N=J P A N E L+M$
$B D G W=B D G W+(G C B(M) * O Z D \times X(M) \star A W(M M))$
14 CONTINUE
$A D G W=0.0$
READ (10) (BA(L) -L=1,LFANEL)
02-18-78 02.177

DO $74 K=1$, LPANEL $A D G W=A D G W+(G C B(K) * B A(K) * G A T(K))$
74 CONTINUE ADGW = - (ADGW+BDGW+GCB(I)*OZDXK (I)) $C A(L 3)=A D G W * P I * * 2 * D E L T A /(H A L F S W * 2$. WRITE (OB) (CA(KK), KK=1,L3)
71 CONTINUE
REWIND 12
DO $75 \mathrm{~K}=1$, LPANEL
READ (12) (AW(J),J=1,J7)
$C A(K)=0.0$
DO $16 \quad I=1$ LPANEL
$I I=J P A N E L+I$
$C A(K)=C A(K)+G C B(I) * A W(I I)$
16 CONTINUE
$C A(K)=G C B(K)+C A(K)$
$C A(K)=C A(K) * P I * P I /(H A L F S W * 2$.
75 CONTINUE
$C A(L 1)=0.0$
$C A(L 2)=0.0$
$C A(L 3)=C L I I-F C L I I$
WRITE (Oठ) (CA(J),J=1,L3)
REWIND 12
$0076 \mathrm{~L}=1$, LPANEL
READ (12) (AW (I) , I=1, 」7)
$C A(L)=0.0$
DO $18 \mathrm{~J}=1$-LPANEL
$J J=J P A N E L+J$
$C A(L)=C A(L)+G C B X(J) * A W(J J)$
13 CCNTINUE
$C A(L)=G C B X(L)+C A(L)$
$C A(L)=C A(L) * P I * P I /(H A L F S W * 2$.
76 CONTINUE
$C A(L 1)=0.0$
$C A(L 2)=0.0$
$C A(L 3)=C M I I-F C M I I$
WRITE (O8) (CA(J)OJ=1,L3)
C
REWIND 08
READ (O3) (AW(I),I=9,L3)
DO $77 \mathrm{I}=1$, L2
GAMMA(I) =-AW(I+1)/AW(1)
77 CONTINUE
NJ=L 2-1
DO 78 IJ $=2$ L2
READ-(08) (AW(I) OI=1,L ?)
$I K=I J$
CALL VMSEQN (NJ,IK,AW, GAMMA, (A)
NJ=NJ-1
78 CONTINUE
PAMBDA(1) = GAMMA(L1)

$$
02-18-78 \quad 02.177
$$

```
        PAMBDA(2)=GAMMA(L2)
        DO 36 I=1,LPANEL
        GAM(1,I)=G AN(1,I)+GAMMA(I)
        GAM(2,I)=GAN(2,I)+GANMA(I)
    36 CONTINUE
        REWIND 04
        DO 21 I=1/LPANEL
        READ (O4) (AW(K),K=1.LFANEL)
        DZDXK(I)=0.
        DO 22 J=1,LPANEL
        DZDXK(I)=DLDXK(I)+AW(J)*GAM(1,J)
    22 CONTINUE
21 CONTINUE
        RETURN
        END
            FORTY
            INCCDE IBMF
        SUEROUTINE JETNO8 (RHS,KCODE)
        SET UP THE RIGHT HAND SIDE VECTORS OF THE BOUNDARY CONDITIONS
        FOR INDEX=2
        DIMENSION RHS(1)
        COMMON /AERO/ AM1,AM2, 日1,B2,CL(30),CT(30),CD(30),GAM(2.100)
        CONMON /ADO/ CP(100),CN(30),BREAK(8),SWP(8,15),GAL(30),ISYM,VMU,VU
        1,TEMP,FCR,CAMLER,CAMLET,CAMTER,CAMTET,XJ,YJ,ZJ,RJ,ALP,CREF,TWISTR
    COMMON /CONST/ NCS,NCW,M1(8),NSJ,NCJ(S),LAST,MJW1(3,5),隹W2(3,5),J
        1PANEL,MJJ(5),NW(3),NNJ,NJP
    COMMON /COST/ LTOTAL,LFAN1,NJW(5)/LPANEL,IENTNOLPAN2,EXIT:PTIALOTW
    1IST,DF(5),NFP
    COMMON /GEOM/ HALFSW&XCP(2OC),YCP(200),ZCP(200),XLE(50),YLE(5O),XT
    1E(50),PSI(20),CH(95),XV(200),YV(100),SN( 8, 8),XN(200,2),YN(200, 2).
    2 2N(200, 2),WIDTH(8),YCON(25),SWEEP(50),HALFB,SJ(21,8),EX(95,2),TX(
    395,2),SC(160,5),SI(160,5),LC(3)
    COMMON /PARAM/ ALPT,ALFC,ALPS,CDF,SDF,TH,TDF
    COMMON /SCHEME/ C(2),X(10,41),Y(10,41),SLOPE(15),XL(2,15),XTT(41).
    1XLL(41)
    NA=3
    IF (NW(2) .EQ. O) NA=1
    IF (NW(2).NE. O .ANU.NW(3),EQ. O) NA=2
    ZZ=YCON(25)
    DFJ=CDF
    VAUC=VMU*ALPC
    IPHI=1
    MJ=LPANEL+NCJ(1)
    I NN=?
    JNN=1
    KI=1
    LI=LAST+1
    IH=NW(NA)+MJW\(NA,NJP)-1
40 KJ=LI
    IF (LI -GT. LAST) KJ=LI-JPANEL
    CALL STREAM (ALPHA,VMUC,LI,IPHI/LPANEL,TEMP,LPAN1,LPAN2,ISYM.
```

$$
02-18-78 \quad 02.177
$$

1KCODE,EXIT,MJ:2,BA)
IF (KCODE EQ. O) GOTO 63
IF ($22 . G E \cdot 0.01)$ GO TC 63
c
ADDITIONAL EXTERNAL FLOW DEFLECTION IS ALLOWED IF THE JET ANGLE IS GREATER THAN THE FLAP ANGLE BECAUSE OFFTHE EFFECT OF FINITE TRAI-. LING-EDGE ANGLES. FOR THIN AIRFOILS. THIS CAN SE ELIMINATED BY INSERTING THE STATEMENT. IF (KCODE.EQ.1) GO TO 63

IF (LI.GE. MJW1 (NA,NJP) •AND. LI •LE. MJW2 (NA,NJP)) GOTO 62
GOTO 63
62 IF (LI NE. IH) GO TO 63
IF((DFJ-TDF) LT. O.) GOTO 63
$C Z T=C A M T E R-(C A M T E R-C A M T E T) \quad * Y C P(L I) / H A L F B$
$A P A=0.5 *(D F J-T D F+C Z T)$
IF (VMU .GT. 0.85) $A P A=A P A *(1 .-V M U) / 0.15$
IF (APA .LT. O.) APA=0.
$A L P H A=A L P H A+A P A$
$I H=I H+N W(N A)$
63 CONTINUE
RHS (KI) =-ALPHA
45 IF (KJ.LT. MJ •OR.KJ.EQ. LAST) GO TO 50
$I P H I=I P H I+1$
$M J=M J+N C J(I N N)$
SO GONTINUE
$M J I=1 \mathrm{M} J(I N N)-1$
IF (KJ.EQ. MJI) GO TO. 55
GO TO 60
$55 \mathrm{JNN}=\mathrm{IN} \mathrm{N}$
$I N N=I N N+1$
60 IF (KJ.EQ. MJJ(JNN)) IPHI=1
IF (LI .EQ. LTOTAL) GOTO 65
GOTO 70
65 CONTLNUE
$I P H I=1$
$. M J=L P A N E L+N C J(1)$
JNN=1
I $N: N=1$
70 CONTINUE
$K I=K I+1$
IF (LI.EQ. LTOTAL) GOTO 75
IF (LI EGQ. LAST) GOTO 80
$L I=L I+1$
GO TO 85
$75 \mathrm{LI}=\mathrm{LPANEL+1}$
$80 \mathrm{LI}=1$
85 CONTINUE
IF (KI .LE. LTOTAL) GO TO 40
RETURN
ENO

$$
02-18-78 \quad 02.177
$$

FORTY
INCODE IBMF
SUBROUTINE JETNO9 (GAMMT, GAMOJ,GAMAA,RHS,AW,BA,CA,J7,N,CDII,CLII, 1 CMII, (LBAR, CMBAR,NUMB, ITN)
FIND THE JET VORTICES IN THE OUTER FLOW AND THE WING ADDITIONAL VORTICES

DIMENSION AW(1), BA(1), RHS(1),GAMMT(1),GAMOJ(1),GAMAA(1)
DIMENSION CDII(1),CA(1)
COMMON /AERO/ AM1,AM2.E1,B2,CL(30),CT(30),CD(30),GAM(2,100)
COMMON /CLOPE/ OZDXK(1CO), ALPAO(15),GCB(100),GCBX(100), THETAK(10)

1. $C C X(100), O Z D X K(100), G A N(2,100)$

COMMON /LING/ GLEAR.GMEAR,FCLII,FCMII
COMMON /ADO/ CP(100), CN(30), BREAK(8),SWP(8.15), GAL(30),ISOM,VMU,VU 1. TEMP,FCR,CAMLER,CAMLET,CAMTER,CAMTET,XJ,YJ,ZJ,RJ,ALP,CREF,TWISTR COMMON./PARAM/ ALPT,ALFC,ALPS,CDF,SDF,TH,TDF
COMMON /GEOM/ HALFSW,XCP(200) ,YCP(200), ZCP(200),XLE(50),YLE(50),XT 1E(50), PSI(20), $\mathrm{CH}(95), X V(200), Y V(100), S N(8,8), X N(200,2), Y N(200,2)$, 2 ZN(200,2),WIDTH(8),YCON(25),SWEEP(50),HALFE,SJ(21,8),EX(95,2),TX($395,2), S C(160,5), S I(160,5), L C(3)$
COMMON /CONST/ NCS,NCW•M1 (8),NSJ,NCJ(5),LAST,MJW1(3,5),MJW2(3,5),J 1PANEL•MJJ(5) ©NW(3), NNJ•NJP

COMMON /COST/ LTOTAL,LFAN1,NJW(5), LPANEL,IENTN,LPAN2,EXIT,PTIAL,TW 1IST,DF(5), NFP
$P I=3.14159265$
REWIND 09
DO 9 I=1,JPANEL
READ (O9) (AW (K) , K=1,LTOTAL)
9 CONTINUE
001 I=1.J7
READ (09) (AW(K), K=1,LTOTAL)
$B A(I)=0.0$
DO $2 \mathrm{~J}=1 \cdot \mathrm{~L}$ TOTAL
$B A(I)=B A(I)+A W(J) * R H S(J)$
1 CONTINUE
OO 3. I=1,JPANEL
GAMOJ (I) =BA(I)
3 CONTINUE
DO $4 I=1$ LPANEL
II=JPANEL+I
GAMAA(I) $=8$ A (II)
4 CONTINUE
DO 5 I =1 LPANEL
GAMMT (I) =GAM(1-I)+GAMAA(I)
5. CONTINUE

DO $21 I=1$ LPANEL
$C P(I)=G A M M T(I) * 2 * * A L P C$
21 CONTINUE
CLII $=0.0$
$C M I I=0.0$
CDII (ITN) $=0.0$
DO $50 I=1$-LPANEL

CDII(ITN) = CDII(ITN) +GCB(I)*DZDXK(I)*GAMAT(I)
$C L I I=C L I I+G C B(I) * G A M M T(I)$
CMII = CMII +GCSX(I)*GAMiMT(I)
50 CONTINUE
CDII(ITN) $=-P I * * 2 * C D I I(I T N) /(H A L F S W * 2$.
CLII=PI*PI*CLII/(HALFSW*2.)
CMII $=P I * P I * C M I I /(H A L F S h * 2$.
WRITE (6,134) CDII(ITN)
134 FORMAT (1H, 'INDUCED ORAG COEFFICIENT, CDII=',F15.5)
WRITE (6.135) CLII
135 FORMAT (1H, 'LIFT COEFFICIENT, CLII=',F1S.5)
WRITE (6.136) CMII
136 FORMAT (1H, 'PITCHING MOMENT COEFFICIENT,CMII='•F1S.5)
IF (N.GT.1) GO TO 30
DLBAR=CLII-CLBAR
DMBAR=CHII-CMBAR
GLBAR $=$ DLBAR/NUMB
GMBAR = DMBAR/NUMB
FCLII=CLII-GLBAR
FCMII=CMII-GMBAR
30 CONTINUE
RETURN
END
FORTY
INCODE IBMF
SUBROUTINE CAMBER (AK, CAMZC,CONST, GAMMA, BA,NBC,MAXP)
COMPUTE THE CAMBER ORDINATES AND THE TWIST DISTRIBUTION
DIMENSION ALPA(15)
DIMENSION AK(1), CAMZC(1), CONST(1),GAMMA(1),BA(1)
COMMON/CLOPE/ DZDXK(1CO), ALPAO(15),GCB(100),GCBX(100), THETAK(10)

1. $C C X(100), O 2 D X K(100) \cdot \operatorname{GAN}(2,100)$

COMMON /GECM/ HALFSW, XCP(200),YCP(200), ZCP(200),XLE(SO),YLE(50),XT
1E(50), PSI(20), $C H(95), X V(200), Y V(100), S N(8,8), X N(200,2), Y N(200,2)$,
2 2N(200, 2), WIOTH(3),YCCN(25),SWEEP(SO),HALFB,SJ(21,8),EX(95,2),TX(
$395,2), S C(160,5), S I(160,5), L C(3)$
COMMON /CONST/ NCS,NCW,M1(8),NSJ,NCJ(5),LAST,MJW1 (3, S), MJW2(3,5),J 1PANEL,MJJ(5), NW(3), NNJ NNJP

COMMON /WLCNE/ DZDXKW(100),GAMW(1.00), CAMZCW(100),ALPAOW(20)
COMMON /COST/ LTOTAL,LFANT,NJW(5), LPANEL,IENTN.LPANZ,EXIT, PTIAL,TW
11ST, DF (5) NFP
102 FORMAT (1H ' 'THE TWIST OISTRIBUTION. IN THE SPANWISE DIRECTION')
$P . I=3.14159265$
$N W 2=N W(1)+N W(2)$
IF (NW(2).EQ.O) GOTO 48
$I I=N C S+1$
If (NW(3) NE O) GO TO 50
CHORD $=\mathbf{C H}(1)+C H(I I)$
$\times \times 1=C H(1) / C H O R D$
THETA1 =ARCOS(1.-2.* $x \times 1$)
THETAZ=PI
GOTO S1

$$
02=18-78 \quad 02.1 ? ?
$$

$50 \quad$ III=II+NCS
CHORO $=\mathrm{CH}(1)+\mathrm{CH}(I I)+\mathrm{CH}($ III $)$
$\times \times 1=\mathrm{CH}(1) /$ CHORD
THETA1 $=\operatorname{ARCOS}(1 .-2 . * X X 1)$
$\times \times 2=(C H(1)+C H(I I)) / C H O R D$
THETAZ=ARCOS (1.-2.*XX2)
si CONTINUE
GOTO 49
48 THETA1=PI
49 CONTINUE
K $1=1$
$K \bar{c}=2$
IF (NBC.EQ.1 .OR. NBC.EQ.MAXP) WRITE (6.102)
DO $23 \mathrm{KI}=1$.NCS
DO $25 \mathrm{~N}=1$. NCW
$N A=(K I-1) * N C W+N$
$A K(N A)=0.0$
FN=N-1
DO $27 \mathrm{~L}=1$.NCW
If (L.LE.NW(1))KB=(KI-1)*NW(1)+L
IF (L.GT.NW(1) .AND. L.LE.NW2)KB=LPAN1+(KI-1)*NW(2)+L-NW(1)
IF (L.GT.NW2) $K B=L P A N Z+(K 1-1) * N W(3)+L-N W 2$
If (L .LE. NW(1)) GOTC 100
IF (L .GT. NW (1) .AND. L .LE. NW2) GO TO 200
If (L GT. NW?) GO TO 300
$100 \mathrm{FNW}=\mathrm{NW}(1)$
THETA=THETA)
GO TO 400
$200 \mathrm{FHW}=\mathrm{NW}(2)$
THETA = THETAZ-THETA?
GO TO 400
300 FNW=NW(3)
THETA=PI-THETAZ
400 CONTINUE
$A K(N A)=A K(N A)+T H E T A * O Z D X K(K B) * C O S(F N * T H E T A K(L)) /(F N W * P I)$
27 Continue
IF (N .GT. 1) $A K(N A)=2 . * A K(N A)$
25 CONTINUE
CONST $1=0.0$
CONST2=0.0
DO $88 \mathrm{~J}=3$.NCW
GK=J-1
$K G=(K I-1) * N C W+J$
CONST1 $=$ CONST $1+0.25 * A K(K G) *(1.1(1 .-G K)+1 . /(1 .+G K))$
$\operatorname{CONST2}=\operatorname{CONST} 2+0.25 * A K(K G) *(1.1(1 .-G K) * \operatorname{COS}((1 .-G K) * P I)+1.1(1 .+G K) * C$
10S((1.+GK)*PI))
88 CONTINUE
CONST3=0.125*AK(K2)
CONST(KI) $=$ CONST $1+$ CONST 3
ALPAO(KI) $=$ CONST2-CONST1-AK (K1)
$A L P A(K I)=A L P A O(K I) * 180.1 P I$

$$
02-18-78 \quad 02.177
$$

DO $29 \mathrm{M}=9 \cdot \mathrm{NCW}$ $M i n=(K I-1) * N C W+M$ $C A M Z C(M M)=0.0$
$0030 K=3$, NCW
$F K=K-1$
$K D=(K I-1) * N C W+K$
$C A M Z C(M M)=C A M Z C(M M)-0.25 * A K(K D) *(1 . /(1 .-F K) * C O S((1 .-F K) * T H E T A K(M))$
$1+1 . /(1 .+F K) * \operatorname{COS}((1 .+F K) \star \operatorname{THETAK}(M)))$

1ST4+CONST(KI)
CONTINUE
$K 1=K 1+N C W$
$K 2=K 2+N C W$
IF (NBC.EQ.1 OR. NBC.EQ.MAXP) WRITE (6,126)KI,YLE(KI) OKI,ALPA(KI)

23 CONTINUE
IF (NBC.EQ. 1 . OR. NBC.EQ.MAXP) WRITE (6.129)
129 FORMAT (1H, 'CAMBER ORDINATES IN THE JET ON CASE')
IF (NBC.EQ.1. OR. NBC.EQ.MAXP)WRITE(6,127)(CAMZC(JJ),JJ=1,LPANEL)
127 FORMAT (1H , 6F10.5)
RETURN
END

C TO EVALUATE THE AERODYNAMIC CHARACTERISTICS
DIMENSION CA(30), CPSWL (30), AW (30)
COMMON /AERO/ AM1, AM2,E1.B2,CL(30),CT(30),CD(30), GAM(2.100)
COMHON / ADD/ CP(100), CN(30), BREAK (8), SWP(8,15),GAL(30),ISYM,VMU,VU
1, TEMP,FCR,CAMLER,CAMLET,CAMTER,CAMTET,XJ,YJ,ZJ,RJ,ALP,CREF,TWISTR
COMMON /CLOPE/ DZDXK(1CO), ALPAO(15), GCB(100), GCBX(100), THETAK(10)
1, $C(X(100), O Z D X K(100), G A N(2,100)$
COMMON /LING/ GLEAR,GMEAR,FCLII;FCMII
COMMON/WLONE/ OZDXKW(100), GAMW(100), CAMZCW(100),ALPAOW(20)

1PANEL,MJJ (5) NW (3) NNJ NJP
COMMON /GEOM/ HALFSW, XCP (200), YCP (200) , ZCP(200) -XLE(SO),YLE (50),XT 1E(50), PSI (20), $C H(95), X V(200), Y V(100), S N(8,8), X N(200,2), Y N(200,2)$, 2 2N(200, 2),WIDTH(8) , YCCN(25),SWEEP(50),HALFB,SJ(21,8),EX(95,2),TX($395.2), S C(160.5) \cdot S I(160.5) \cdot L C(3)$
COMHON /PARAM/ ALPT,ALPC,ALPS,CDF,SDF,TH,TDF
COMMON / COST/ LTOTAL/LPAN1,NJW(S),LPANEL,IENTN,LPAN2,EXIT,PTIAL,TW
1-IST,OF(-S), NFP
COMMON /SCHEME/ $C(2), X(10,41), Y(10.41), S L O P E(15), \overline{x L}(2,15), X T T(41)$.
1XLL(41)
1 FORMAT (1 HO, 26 X, THALPHA $=$, F10.3.3X, 7HOEGREES)
2 FORMAT (1 HO, $20 X, 40 H X)$
101 FCRMAT (1H1)

```
        02-18-73 C2.177
        PI=3.14159265
        DO 18 I=1,NCS
        CT(I)=0.
        XTE(I)=0.
        X(5,I)=0.
    18 CONTINUE
        ALPH=ALP*180./PI
        WRITE (6.101)
        WRITE (6,2)
        WRITE (6.1) ALPH
        WRITE (6,2)
        ZJET=YCON(25)
        IUSB=YCON(24)
        NC=IENTN
        DFJ=CDF
        CMU=C(1)
        CLT=0.
        CMT=0.
        CDT=0.
        CLW=0.
        CMWT=0.
        CDW=0.
        CLWW=0.
        CMWWT=0.
        CDWW=0.
        KC=1
        NCOL=M1(1)
        KLL=0
        MN=0
        IU=1
        IF (NW(2) ,NE. O) IU=2
        IF (NW(3) .NE. O) IU=3
        NWZ = NW(1) + NN(2)
        NW3=NW(2)+NW(3)
        NCW1=NCN+1
        NL=1
        DO 150 I=1,NCS
        IF (NW(2).EQ. 0) GO TO 160
        II=I+NCS
        IF (NW(3),NE.O) GOTC 144
        CHORD=CH(I)+CH(II)
        GOTO 161
    144 III I=II +NCS
        CHORD=CH(I)+CH(II)+CH(III)
        GO TO 161
    160 CHORD=CH(I)
    161 CONTINUE
        CML=C.
        CL(I)=0.
        CD(I)=0.
        CA(I)=0.
```

```
        02-18-78 02.177
    CMW=0.
    CPSWL(I)=0.
    CMww=0.
    X(4,I)=0.
    x(6,I)=0.
    x (7,1)=0.
    DO 155 J=1,NCW
    NN=J+MM
    IF (NW(2) EEQ: 0) GO TO 151
    IF (J .LE.NW(1)) GO TO 151
    IF (J.GT.NW2) GO TO 153
    LL=LPAN1+NW(2)*(I-1)+J-NW.(1)
    IL=II
    JLL=J-NW(1)
    L=2
    FN=NW(2)
    GO TO 152
153LL=LPAN2+NW(3)*(I-1)+J-NW2
    IL=III
    JLL=J-NW2
    L=3
    FN=NW(3)
    GO TO 1S2
151 LL=NN
    IL=I
    JLL=J
    L=1
    FN=NW(1)
152 CONTINUE
    XC=(XV(LL)-XLE(I))/CHORD
    x (1,J) =0.
    x(2,J)=0.
510 GBS=CP(LL)*SN(JLL/L)*CH(IL)/(2.*FN)
    WBS=GAMW(LL)*SN(JLLOL)*CH(IL)*ALPC/FN
    WAS=GAMN(LL)*SN(JLLOL)*CH(IL)*ALPC/FN
    IF (DF(NL) LLE. O.001) GO TO 521
    IF (PTIAL .LE. 0.1) GO.TO.520
    IF (NW(3),EQ. O) GO TC 524
    IF(LL.GE.MJWY(3,NL).AND.LL.LE.MJWZ(3,NL)) GOTO 523
521.CS=1.
    SS=-OZDXK(LL)
    SW=-DZDXKW(LL)
    GO TO 522
520IF (NW(2) .NE. O.AND.LL.LE.LPANT) GO TO 521
    IF (NW(3) .NE. O.AND.LL .LE.LPANZ) GO TO 521
523 CS =1.
    SS=-DZDXK(LL)
    SW=-D2DXKW(LL)
    GO TO 522
524 IF(LL GE.GJW1(2,NL).AND.LL.LE.MJW2(2,NL)) GOTO 523
        GO TO 521
```

$$
02-18-78 \quad 02.177
$$

```
S22 CONTINUE
    CL(I)=CL(I)+GBS*CS
    CML=CML-GBS*XV(LL)*CS
    CD(I)=CD(I)+G3S*SS
    CA(I)=CA(I)+WBS*CS
    CMW=CMW-mBS*XV(LL)*CS
    CPSWL(I) =CPSWL(I)+WBS*SS
    X(4,I)=X(4,I)+WAS*CS
    CMWW=CMNW-WAS*XV(LL)*CS
    X(6,I)=X(6,I)+WAS*SW
155 CONTINUE
    CAMLE=CAMLER-(CAMLER-CAMLET)*YLE(I)/HALFB
    EPHA=XLL(I)-ATAN(CAHLE)
    X(1,NCW1)=COS(EPHA)
    x(2,NCW1) =SIN(EPHA)
    CL(I)=CL(I)*PI/CHORD+CT(I)*X(2,NCW1)
    CM(I)=CML*PI/(CREF*CHORD)
    CD(I)=CD(I)*PI/CHORD-CT(I)* X(1/NCW1)
    CA(I)=CA(I)*PI/CHORD+XTE(I)*X(2,NCW1)
    AW(I) =CMW*PI/(CREF*CHORD)
    CPSWL(I) =CPSWL(I)*PI/CHORD-XTE(I)*X(1-NCW1)
    X(4,I)=X(4,I)*PI/CHORD+X(5,I)*X(2,NCW1)
    X(7,I) = CMWW*PI / (CREF* CHORD)
    X(6,I) =X(6,I)*PI/CHORD-X(5,I)*X(1,NCW1)
    IF (I .LT. NCOL) GO TO 210
    KLL=NCOL-1
    KC=KC+1
    NCOL=NCOL+M1(KC)-1
210 KL=I-KLL
    FM=M1(KC)
    AA=CHORD*SJ(KL,KC)*WIDTH(KC)/FM
    CLT=CLT+CL(I)*AA
    CMT=CMT+CM(I)*AA
    CDT=CDT+CD(I)*AA
    CLW=CLW+CA(I)*AA
    CMWT=CMWY+AW(I)*AA
    CDW=CDW+CPSWL(I)*AA
    CLWW=CL\WW+X(4,I)*AA
    CNWWT=CMWWi+X(7,I)*AA
    CDWW=CDWW+X(6,I)*AA
    MM=(NCW-NW3)*I
    IF (LL.EQ. MJWZ(IU.NL)) NL=NL+9
150 CONTINUE
    CLT=CLT*PI/(2.*HALFSW)
    CMT=CMT*PI/(2.*HALFSW)
    CDT=CDT*PI/(2.*HALFSW)
    CDCL2=CDT/(CLT*CLT)
    CLW=CLW*PI/(2.*HALFSW)
    CMWT=CHNT*PI/(2.*HALFSW)
    CDW=CDW*PI/(2.*HALFSW)
    CLWW=CLWW*PI/(2.*HALFSW)
```

```
        CMWWT=CMWWT*PI/(2.*HALFSW)
        CDWW=CDWW*PI/(2.*HALFSW)
        IF (CLWN.LE. 0.001) GC TO 67
        CDWL2 = CDWW/(CLWW*CLNW)
        GO TO 68
    67 CDWL2=0.
    6 8 \text { CONTINUE}
    WRITE (6.53)
    53 FORMAT (1H, 5X,'VORTEX', 3X,'XV', 8X,'YV', 8X, 'CP', 8X, 'CPW')
    K1=0
    J J 1 =0
    DO 60 I=1,NCS
    IF (NW(2),EQ. O).GOTO 62
    II =I +NCS
    IF (NW(3) .NE. O) GO 1O 69
    CHORD=CH(I)+C.H(II)
    GO TO 63
    69 III=II +NCS
    CHORD=CH(I)+CH(II)+CH(III)
    GOTO 63
    62 CHORD=CH(I)
    63 CONTINUE
    OO 61 J=1.NCW
    J J= J J ? + J
    KK=K1+J
    IF (NW(2),EQ. 0) GO TO 64
    IF (J .LE. NW(1)) GO TC 64
    IF (J.GT. NW2) GO TO 59
    LL=LPAN1+NW(2)* (1-1)+J-NW(1)
    GO TO 65
    59LL=LPAN2+NW(3)*(1-1)+J-NW2
    GO TO 65
    64 LL=JJ
    65 CONTINUE
        XI=(XV(LL)-XLE(I))/CHORD
    ETA=YV(LL)/HALFB
    CPW=2.*GAMN(LL)*ALPC
    61. WRITE (6,54) KK,XI,ETA,CP(LL),CPW
    JJ1=(NCW-NW3)*I
    K1=K1+NCW
    60 CONTINUE
54 FORMAT (7X,13,3X,4F10.5)
        WRITE (6.30)
    3O FORMAT(1HO,5X,4HY/SP; 7X,2HCL, 7X,2HCM, 7X,2HCT, 7X,3HCDI, 6X,
    * 3HCLW, 6X,3HCMW, 6X,3HCDW)
    O-0.31 I=1.NCS
        YE=YLE(I)/HALFB
    31 WRITE(6,32) YE,CL(I),CN(I),CT(I),CD(I),X(4,I),X(7,I),X(6,I)
    32 FORMAT (3X.8F9.5)
        DO 80 I =1,NCS
    AW(I)=X(4,I)*CH(I)/CREF
```

```
        02-18-78 02.177
        CA(I)=CL(I)*CH(I)/CREF
80 CONTINUE
    WRITE (5,81)
    81 FORMAT (1H,5X,'JET - OFF SPANLOADING',7X,'JET-GN S:USLOADIVG
    1')
    WRITE (6,82) (AW(I),CA(I),I=1,NCS)
82 FORMAT (TH , 2X,F10.5.10X,F20.5)
    WRITE (6.33) CLT
33 FORMAT (1H), THELIFT COEFFICIENT =',F10.5):
    WRITE (6.24) CDT
24 FORMAT (1H, 'TOTAL INDUCED DRAG COEFFICIENT =',:`.:
    WRITE (6.35) CDCL2
    35 FORMAT(1H, 'THE INDUCED DRAG PARAMETER=',F10.5:
    WRITE (6.42) CMT
    42 FORMAT(1H, 'TOTAL PITCHING MOMENT COEFFICIENT =:, : :.: :
    IF (IUSB .NE. 1).GO TO 157
    IF (DFJ.LE. 0.DO1) GOTO 157
    IF (ZJET -GT. O.01) GO TO 157
    SDFJ=SIN(DFJ)
    CDFJ=COS(DFJ)
    CLR=CMU*SIN(DFJ+ALP)
    CCR=CMU*(VMU-COS(DFJ+ALP))
    CF=COS(TDF)
    SF=SIN(TDF)
    IF (NNJ.EQ. 1) CDR=-CMU*COS(DFJ+ALP)
    I J=(NSJ+1)/2-1
    IF (ISYM - EQ. O) IJ=NSJ/2-1
    IF (Nd(3) .NE. C) GO TC 156
    IF (NW(2) .EQ. O) GO TC 154
    IZ=NCS+(MJN1(2,NJP)-LPAN1-1)/NW(2)+1
    KJ=#JW1(2,NJP)
    NN=NW(2)
    GC TO 159
156 [Z=NCS*2+(NJW1(3,NJP)-LPAN2-1)/NW(3)+1
    KJ=MJW1(3,NJP)
    NN=NW(3)
    GO TO 159
154 I 2=LC(1)
    KJ=MJW1(1-(.jP)
    NN=NW(1)
159 CONTINUE
    CM1=0.
    DO 958 I=1,1J
    YDIF=YN(KJ,2)-YN(KJ,1)
    CM{=CM1+YDIF/WIDTH(NJW(NJP))*((XLE(IZ)+CH(IZ)*CF)*SDFJ-CH(IZ)*SF*C
    10FJ)
    KJ=KJ+NN
158 I Z=I Z +1
    CMR=-Ci#1*CMU/CREF
    IF (NNJ .NE. 1) WRITE (6,43) CLR
4 3 \text { FORMAT (1H, 'THE COANDA LIFT COEFFICIENT, (LR=',F1O.5)}
```

```
        02-18-78 02.177
        IF. (NNJ .EQ. 1) WRITE (6.47) CLR
    47 FOPMAT (1HO,47HTHE LIFT COEFFICIENT DUE TO JET.REACTION, CLJ =.F10
        1.5)
        IF (NNJ .NE. 1) WRITE (6.44) CDR
44 FORMAT (1H, 'THE COANDA DRAG COEFFICIENT, CDR=',F10.5)
        IF (NNJ.EQ. 1) WRITE (6.48) CDR
    48 FCRMAT (1HO.47HTHE ORAG COEFFICIENT DUE TO JET REACTION. CDJ =,F1O
        1.5)
        IF (NNJ.NE. 1) WRITE (6.45) CMR
4S FORMAT (1H, 'THE COANDA MOMENT COEFFICIENT, CMR = 'F1O.5)
        IF (NNJ .EQ. 1) WRITE (6.49) CMR
    49 FCRMAT (1HO.5 SHTHE PITCHING MOMENT COEFFICIENT DUE TO JET REACTION
        1. CMJ =,F10.5)
157 CONTINUE
        IF (IUSA.EQ. 1) GO.TO 171
        WRITE (6.5) CLW
        \PITE (6,6) CDW
        WPITE (6,7) CMWT
171 CONTINUE
    S FORMATG1HO, 2X,49HTHE LIFT COEFFICIENT WITH JET ENTRAINMENT ALONE =
        1,F10.5)
    6 ~ F O R M A T ( 1 H O , ~ 2 X , 5 7 H T H E ~ I N D U C E D ~ D R A G ~ C O E F F I C I E N T ~ W I T H ~ J E T ~ E N T R A I N M E N T ~
        1 ALONE =,F10.5)
    7 FORMAT(1HO, 2X,GOHTHE PITCHING MOMENT COEFFICIENT WITH JET ENTRAINM
        1ENT ALONE =,F9O.S)
        NGITE (3,70) CLWW
    7O FORMAT(1H, 'THE LIFT COEFFICIENT FOR THE WING ALONE=',F1O.S)
        WFITE (5,71) CDWW
    7 1 ~ F O R M A T ( 1 H , ~ T H E ~ I N D L C E D ~ D R A G ~ C O E F F I C I E N T ~ F O R ~ T H E ~ A N G ~ A L O N E ~ = ' , ~
        1F10.5)
        NQITE (5,72) CMWWT
72 FORMAT (1H,'THE PITCHING MOMENT COEFFICIENT FOR THE WING ALONE'=
        1',F10.5)
        WRITE (6.73) CDWLZ
    73 FORMAT(1H, 'THE INDUCED DRAG PARAMETER FOR THE WING ALONE=',
        1F10.5)
        R\subseteqTURN
        END
```

WING ALONE CASE

HALF SW= $0.36364 E$ CO
CREF $=0.37495 E 00$
LPANEL $=60 \quad \mathrm{JPANEL}=48 \quad$ LAST $=108 \quad$ LTOTAL $=156$
VORTEX ELEMENT ENDPOINT COORDINATES =

$\times 1$	$\times 2$	Y 1	Y 2	21	22
-0.55967	-0.51215	0.	0.04518	0.	0.
-0.49824	-0.45202	0 .	0.04518	0.	0.
-0.39183	-0.34786	0.	0.04518	0.	0.
-0.26897	-0.22759	0.	0.04518	0.	0.
-0.16256	-0.12344	0.	0.04518	0.	0.
-0.10113	-0.06330	0.	0.04518	0.	0.
-0.51215	-0.43123	0.04518	0.12213	0.	0.
-0.45202	-0.37330	0.04518	0.12213	0.	0.
-0.34786	-0.27298	0.04518	0.12213	0.	0.
-0.22759	-0.15714	0.04518	0.12213	0.	0.
-0.12344	-0.05681	0.04518	0.12213	0.	0.
-0.06330	0.00111	0.04518	0.12213	0.	0.
-0.43123	-0.31811	0.12213	0.22968	0.	0.
-0.37330	-0.26328	0.12213	0.22968	0.	0.
-0. 27298	-0.16831	0.12213	0.22968	0.	0.
-0.15714	-0.05865	0.12213	0.22968	0.	0.
-0.05681	0.03632	0.12213	0.22968	0.	0.
-0.00111	-0.09115	0.12213	0.22968		0.
-0.31811	-0.18195	0.22968	0.35913	0.	0.
-0.26328	-0.13084	0.22968	0.35913	0.	0.
-0.16831	-0.04232	0.22968	0.35913	0.	0.
-0.05865	0.05989	0.22968	0.35913	0.	0.
0.03632	0.14841	0.22968	0.35913	0.	0.
0.09115	0.15952	0.22968	0.35913	0.	0.
-0.18195	-0.03379	0.35913	0.50000	0.	0.
-0.13084	0.01326	0.35913	0.50000	0 .	0.
-0.0.04232	0.08477	0.35913	0.50000	0.	0
0.05989	0.18889	0.35913	0.50000	0.	0.
0.14841	0.23039	0.35213	0.50000	0.	0.
0.19952	0.31745	0.35913	0.50000	0.	0.
-0.03379	0.11436	0.50000	0.64082	0	0.

-0.49824	-0.18248	0.	0.30866	0.	0.
-0.39183	-0.09145	0.	0.30866	0.	0.
-0.26897	0.01367	0.	0.30866	0.	0.
-0.16256	0.10471	0.	0.30866	0.	0.
-0.10113	0.15727	0.	0.30866	0.	0.
-0.23504	0.16745	0.30866	0.69134	0.	0.
-0.18248	0.20901	0.30866	0.69134	0.	0.
-0.09145	0.28098	0.30866	0.69134	0.	0.
0.01367	0.36410	0.30866	0.69134	0.	0.
0.10471	0.43608	0.30866	0.69134	0.	0.
0.15727	0.47763	0.30866	0.69134	0.	0.
0.16745	0.49208	0.69134	1.00000	0.	0.
0.20901	0.52477	0.69134	1.00000	0.	0.
0.28098	0.58137	0.69134	1.00000	0.	0.
0.36410	0.64674	0.69134	1.00000	0.	0.
0.43608	$0.7 c 334$	0.69134	1.00000	0.	0.
0.47763	0.73603	0.69134	1.00000	0.	0.

CONTROL POINT COORDINATES =

XCP	YCP	2CP	XCP	YCP	2 CP
-0.51488	0.02025	0.	-0.42883	0.02025	0.
-0.31127	0.02025	0.	-0.19372	0.02025	0.
-0.10766	0.02025	0.	-0.07616	0.02025	0.
-0.45336	0.07937	0 .	-0.36971	0.07937	0.
-0.25544	0.07937	0.	-0.14116	0.07937	0.
-0.05751	0.07937	0.	-0.0268.9	0.07937	0.
-0.35637	0.17257	0.	-0.27659	0.17257	0.
-0.16742	0.17257	0.	-0.05832	0.17257	0.
0.02154	0.17257	0.	0.05077	0.17257	0.
-0.23178	0.29229	0.	-0.15679	0.29229	0.
-0.05434	0.29229	0.	0.04810	0.29229	0.
0.12310	0.29229	0 .	0.15055	0.29229	0.
-0.08968	0.43884	0.	-0.02024	0.42884	0.
0.07462	0.42884	0 .	0.16948	0.42884	0.
0.23893	0.42834	0.	0.26434	0.42884	0.
0.05842	0.57116	0.	0.12208	0.57116	0.
0.20903	0.57116	0.	0.29599	0.57116	0.
0.35965	0.57116	0.	0.38295	0.57116	0.
0.20052	0.70771	0.	0.25863	0.70771	0.
0.33800	0.70771	0.	0.41737	0.70771	0.
0.47547	0.70771	0.	0.49674	0.70771	0.
0.32511	0.82743	0.	0.37835	0.82743	0.
0.45107	0.82743	0.	0.52379	0.82743	0.
0.57703	0.82743	0.	0.59652	0.82743	0.
0.42210	0.92063	0.	0.47154	0.92063	0.
0.53909	0.92063	0.	0.60664	0.92063	0.
0.65608	0.92063	0.	0.67418	0.92063	0.
0.48362	0.97975	0 .	0.53066	0.97975	0.
0.59493	0.27975	0.	0.65919	0.97975	0.
0.70623	0.97975	0.	0.72345	0.97975	0.
-0. 0.53596	0.	0.05000	-0.44908	0.	0.05000
-0.33040	0.	0.05000	-0.21172	0.	0.05000
-0.12486	0.	0.05060	-0.09304	0.	0.05000
-0.38356	0.14645	0.10000	-0.30263	0.14645	0.10000
-0.17208	0.14645	0.1000.1000	-0.08154	0.14645	0.10000
-0.00062	0.14645	0.1000	0.02900	0.14645	0.10000
-0.01563	0.50000	$0.100 c 0$	0.05092	0.50000	0.10000
0.14183	0.50000	0.10000	0.23274	0.50000	0.10000
-0.29929	0.50000	0.10060	0.32364	0.50000	0.10000

| 0.35230 | 0.85355 | $0.100 C 0$ | 0.40447 | 0.85355 | 0.10000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.47574 | 0.85355 | $0.100 C 0$ | 0.54701 | 0.85355 | 0.10000 |
| 0.59919 | 0.85355 | $0.100 C 0$ | 0.61829 | 0.85355 | 0.10000 |
| 0.50470 | 1.00000 | 0.05000 | 0.55092 | 1.00000 | 0.05000 |
| 0.61406 | 1.00000 | $0.050 C 0$ | 0.67719 | 1.00000 | 0.05000 |
| 0.72341 | $1.0 C 000$ | 0.05000 | 0.74033 | 1.00000 | 0.05000 |
| -0.38356 | 0.14645 | 0. | -0.30263 | 0.14645 | 0. |
| -0.19209 | 0.14645 | 0. | -0.08154 | 0.14645 | 0. |
| -0.00062 | 0.14645 | 0. | 0.02900 | 0.14645 | 0. |
| -0.01563 | $0.5 C 000$ | 0. | 0.05092 | 0.50000 | 0. |
| 0.14183 | 0.50000 | 0. | 0.23274 | 0.50000 | 0. |
| 0.29929 | $0.5 C 000$ | 0. | 0.32364 | 0.50000 | 0. |
| 0.35230 | 0.85355 | 0. | 0.40447 | 0.85355 | 0. |
| 0.47574 | 0.85355 | 0. | 0.54709 | 0.85355 | 0. |
| 0.59919 | 0.85355 | 0. | 0.61829 | 0.85355 | 0. |

COBAR, CLBAR, CMBAR, DELTA,MAXP
$0.02084 \quad 0.6 C 000-0.036 C 0 \quad 50.00000 \quad 15$

THE COMPUTED STEP SIZE DELTA= 1.670 AT 3TH ITERATION
INDUCED DRAG COEFFICIENT, CDII= $\quad 0.02420$
LIFT COEFFICIENT, CLII=
PITCHING MOMENT COEFFICIENT,CMII = -0.03600
THE COMPUTED STEP SIZE, DELTA= 10.489 AT $4 T H$ ITERATION
$\begin{array}{llll}\text { INDUCED DRAG COEFFICIENT, } & \text { CDII }= & 0.02326 \\ \text { LIFT COEFFICIENT. } & \text { CLII }= & 0.60000\end{array}$
PITCHING MOMENT COEFFICIENT,CMII= THE COMPUTED STEP SIZE, DELTA=
INDUCED DRAG COEFFICIENT. CDII= LIFT COEFFICIENT. CLII=
PITCHING MOMENT COEFFICIENT,CMII =

PITCHING MOMENT COEFFICIENT,CMII $=$
THE COMPUTED STEP SIZE, DELTA

INDUCED DRAG COEFFICIENT, CDII		0.02258
LIFT COEFFICIENT.	CLII $=$	0.60000

PITCHING MOMENT COEFFICIENT,CMII= -0.03600
THE COMPUTED STEP SIZE, DELTA= 4. 746 AT
INDUCED DRAG COEFFICIENT, CDII= 0.02252
LIFT COEFFICIENTE CLII= \quad ——...... 0.60000
PITCHING MOMENT COEFFICIENT,CMII= -0.03600
LHE COMPUTED STEP SIZE DELTA = 215.245 AT $9 T H$ ITERATION

YLE $(7)=$	0.70771	ALPAO $(7)=$	1.90836
Y YLE $(8)=$	0.82743	ALPAO $(8)=$	0.94083
$Y L E(9)=$	0.92063	ALPAO 9$)=$	0.24668
$Y L E(10)=$	0.97975	ALPAO 10$)=$	-0.78169

THE CAMBER ORDINATES IN THE WING ALONE CASE

$0.0 C 887$	$0 . C 6269$	0.09679	0.05172	0.00993	0.00003
0.00516	0.03465	0.06392	0.06067	0.02714	0.00328
0.00824	0.04995	0.06767	0.04448	0.01431	0.00140
0.00921	0.05673	0.07562	0.04872	0.01569	0.00139
0.00895	0.05666	0.07750	0.05047	0.01616	0.00137
0.00817	0.05342	0.07682	0.05268	0.01785	0.00162
0.00713	0.04825	0.07367	0.05439	0.02019	0.00202
0.00597	0.04197	0.06835	0.05490	0.02258	0.00248
0.00478	0.03515	0.06156	0.05456	0.02507	0.00296
0.00337	0.02655	0.05637	0.04884	0.02478	0.00313

OPTIMUM PRESSURE LOADING IN THE WING ALONE CASE

0.33925	0.95849	1.10169	0.64982	0.13565	-0.03151
0.30567	0.68236	0.90372	0.75224	0.33858	0.10925
0.49081	1.01350	0.95480	0.56554	0.17322	0.03985
0.52897	1.12571	0.98873	0.52540	0.13808	0.00525
0.49336	1.09702	0.99172	0.52162	0.12412	-0.00885
0.42952	0.99758	0.96347	0.54116	0.14645	0.00098
0.35511	0.86232	0.90144	0.56180	0.19145	0.02388
0.27805	0.70889	0.80697	0.55686	0.23455	0.04755
0.19747	0.53467	0.63793	0.48581	0.24292	0.05915
0.11020	0.30103	0.34792	0.28153	0.17088	0.04799

1.

JET ON CASE WITH UPPER SURFACE BLOWING

INPUT DATA

$0 .$	0.	0.25760	1.00000	0.	-0.29391	0.12318	
1	1	0.	-0.29391	0.35945	0.05000	1.00000	0.37495
0.36364	0.	0.					
0.	1.00000	1.0000					
1.67600	10.00000	0.					
3	3	4	6				
2							
6	0	0					
-0.56776	-0.09304	0.	-0.36750	0.06507	0.18972		
-0.36750	0.06507	0.18972	-0.22031	0.18128	0.32917		
-0.22031	0.18128	0.32917	0.48778	0.74033	1.00000		
2	7	6	4				
-0.36750	0.06507	0.18972	0.				
-0.36750	0.06507	0.18972	0.10000				
-0.22031	0.18128	0.32917	0.10000				
-0.22031	0.18128	0.32917	0.				
0.06507	0.49764	0.18972	0.				
0.06507	0.49764	0.18972	0.10000				
-0.18128	0.58287	0.32917	0.10000				
0.18128	0.58287	0.32917	0.				
	ALE $\mathrm{Sb}_{6}=0$	6364E CO	-	$E F=0.37$	$5 E 00$		

$\angle P A N E L=60 \quad$ JPANEL $=80 \quad \angle A S I=140 \quad \angle I O T A L=220$
WORTEX ELEMENT ENDPCINT COORDINATES=

$x 1$	$\times 2$	y_{1}	Y2	21	22
-0.55967	-0.45990	0	0.09486	0	0
-0.49824	-0.40120	0	0.09486	0	0.

$\begin{aligned} & -0.39183 \\ & -0.26897 \end{aligned}$	-0.29951 -0.18210	0.	0.09486 0.09486	0. 0.	$0 .$
-0.16256	-0.08042	0.	0.09486	0.	-0.
-0.10113	-0.02171	0.	0.09486	0.	0.
-0.45990	-0.36013	0.09486	0.18972	0.	0.
-0.401.20	-0.30415	0.09486	0.18972	0.	0.
-0.29951	-0.20719	0.09486	0.18972	0.	0.
-0.18210	-0.09524	0.09486	0.18972	0.	0.
-0.08042	0.00172	0.09486	0.18972	0.	0.
-0.02171	0.05770	0.09486	0.18972	0.	0.
-0.026013	-0.31486	0.18972	0.23276	0.	0.
-0.30415	-0.26012	0.18972	0.23276	0.	0.
-0.0.20719	-0.16531	0.18972	0.23276	0.	0.
-0.09524	-0.05582	0.18972	0.23276	0.	0.
0.00172	0.03899	0.18972	0.23276	0.	0.
0.05770	0.09373	0.18972	0.23276	0.	0.
-0.31486	-0.25874	0.23276	0.28613	0.	0.
-0.26012	-0.20553	0.23276	0.28613	0.	0.
-0.16531	-0.11337	0.23276	0.28613	0.	0.
-0.05582	-0.00696	0.23276	0.28613	0.	0.
0.03899	0.08520	0.23276	0.28613	0 .	0.
0.09373	0.13841	0.23276	0.28613	0.	0.
-0.25874	-0.21347	0.28613	0.32917	0 .	0.
-0.20553	-0.16150	0.28613	0.32917	0.	0.
-0.11337	-0.071.48	0.28613	0.32917	0.	0.
-0.00696	0.03245	0.28613	0.32917	0.	0.
0.08520	0.12247	0.28613	0.32917	0.	0 。
0.13841	0.17444	0.28613	0.32917	0.	0.
-0.21347	-0.11014	0.32917	0.42741	0	0.
-0.16150	-0.06100	0.32917	0.42741	0.	0.
-0.07148	0.02412	0.32917	0.42741	0.	0
0.03245	0.12241	0.32917	0.42741	0.	0.
0.12247	0.20754	0.32917	0.42741	0.	0.
0.17444	0.25668	0.32917	0.42741	0.	0.
-0.11014	0.04800	0.42741	0.57777	0.	0.
-0.06100	0.09282	0.42741	0.57777	0.	0.
0.02412	0.17046	0.42741	0.57777	0.	0.
0.12241	0.26010	0.42741	0.57777	0.	0.
0.20754	0.33774	0.42741	0.57777	0.	0.
0.25668	0.38256	0.42741	0.57777	0.	0.
0.048 CO	0.23061	0.57777	0.75140	0.	0.
0.09282	0.27044	0.57777	0.75140	0.	0.
0.17046	0.33943	0.57777	0.75140	0.	0.
0.26010	0.41909	0.57777	0.75140	0.	0.
0.33774	0.48808	0.57777	0.75140	0.	0.
0.38256	0.52791.	0.57777	0.75140	0.	0.
0.23061	0.38876	0.75140	0.90176	0.	0.
0.27044	0.42426	0.75140	0.90176	0.	0.
0.33943	0.48576	0.75140	0.90176	0.	0.
0.41909	0.55678	0.75140	0.90176	0.	0.
0.48808	0.61828	0.75140	0.90176	0.	0.
0.52791	0.65378	0.75140	0.90176	0.	0.
0.38876	0.48006	0.90176	0.98857	0.	0.
0.42426	0.51307	0.90176	0.98857	0.	0.
0.48576	0.57025	0.90176	0.98857	0 .	0.
0.55678	0.63627	0.90176	0.98857	0.	0.
0.61828	0.69345	0.90176	0.98857	0.	0.
0.65378	0.72646	0.90176	0.98857	0.	0.
-0.36013	-0.36013	0.18972	0.18972	0.	0.10000
-0.30415	-0.30415	0.18972	0.18972	0.	0.10000

$\begin{aligned} & -0.20719 \\ & -0.09524 \end{aligned}$	$\begin{array}{r} -0.20719 \\ -0.09524 \\ \hline \end{array}$	$\begin{aligned} & 0.18972 \\ & 0.18972 \end{aligned}$	$\begin{aligned} & 0.18972 \\ & 0.18972 \end{aligned}$	$\begin{aligned} & 0 . \\ & 0 . \end{aligned}$	$\begin{aligned} & 0.10000 \\ & 0.10000 \\ & \hline \end{aligned}$
0.00172	0.00172	0.18972	0.18972	0 .	0.10000
0.05770	0.05770	0.18972	0.18972	0.	0.10000
-0.36013	-0.31486	0.18972	0.23276	0.10000	0.10000
-0.30415	-0.26012	0.18972	0.23276	0.10000	0.10000
-0.20719	-0.16531	0.18972	0.23276	0.10000	0.10000
-0.09524	-0.05582	0.18972	0.23276	0.10000	0.10000
0.00172	0.03899	0.18972	0.23276	0.10000	0.10000
0.05770	0.09373	0.18972	0.23276	0.10000	0.10000
-0.31486	-0.25874	0.23276	0.28613	0.10000	0.10000
-0.26012	-0.20553	0.23276	0.28613	0.10000	0.10000
-0.16531	-0.11337	0.23276	0.28613	0.10000	0.10000
-0.05582	-0.00696	0.23276	0.28613	0.10000	0.10000
0.03899	0.08520	0.23276	0.28613	0.10000	0.10000
0.09373	0.13841	0.23276	0.28613	0.10000	0.10000
-0.25874	-0.21347	0.28613	0.32917	0.10000	0.10000
-0.20553	-0.16150	0.28613	0.32917	0.10000	0.10000
-0.11337	-0.07148	0.28613	0.32917	0.10000	0.10000
-0.00696	0.03245	0.28613	0.32917	0.10000	0.10000
0.08520	0.12247	0.28613	0.32917	0.10000	0.10000
0.13841	0.17444	0.28613	0.32917	0.10000	0.10000
-0.21347	-0.21347	0.32917	0.32917	0.10000	0.
-0.16150	-0.16150	0.32917	0.32917	0.10000	0.
-0.07148	-0.07148	0.32917	0.32917	0.10000	0.
0.03245	0.03245	0.32917	0.32917	0.10000	0.
0.12247	0.12247	0.32917	0.32917	0.10000	0.
0.17444	0.17444	0.32917	0.32917	0.10000	0.
-0.36013	-0.31486	0.18972	0.23276	0.	0.
-0.30415	-0.26012	0.18972	0.23276	0.	0.
-0.20719	-0.16531	0.18972	0.23276	0 .	0.
-0.0.09524	-0.05582	0.18972	0.23276	0.	0.
0.00172	0.03899	0.18972	0.23276	0 .	0.
0.05770	0.09373	0.18972	0.23276	0.	0.
-0.31486	-0.25874	0.23276	0.28613	0 .	0.
-0.26012	-0.20553	0.23276	0.28613	0.	0.
-0.16531	-0.11337	0.23276	0.28613	0.	0.
-0.05582	-0.00696	0.23276	0.28613	0.	0.
0.03899	0.08520	0.23276	0.28613	0 .	0.
0.09373	0.13841	0.23276	0.28613	0.	0.
-0.25874	-0.21347	0.28613	0.32917	0 .	0.
-0.20553	-0.16150	0.28613	0.32917	0	0.
-0.11337	-0.07148	0.28613	0.32917	0.	0.
-0.00696	0.03245	0.28613	0.32917	0.	0.
0.08520	0.12247	0.28613	0.32997	0.	0.
0.13841	0.17444	0.28613	0.32917	0.	0.
0.08153	0.08153	0.18972	0.18972	0.	0.10000
0.19859	0.19859	0.18972	0.18972	0.	0.10000
0.36412	0.36412	0.18972	0.18972	0.	0.10000
0.48118	0.48118	0.18972	0.18972	0	0.10000
0.08153	0.11704	0.18972	0.23276	0.10000	0.10000
0.19859	0.23150	0.18972	0.23276	0.10000	0.10000
0.36412	0.39338	0.18972	0.23276	0.10000	0.10000
0.48118	0.50785	0.18972	0.23276	0.10000	0.10000
0.11704	0.16106	0.23276	0.28613	0.10000	0.10000
0.23150	0.27232	0.23276	0.28613	0.10000	0.10000
0.39338	0.42966	0.23276	0.28613	0.10000	0.10000
-0.50785	0.54091	0.23276	0.28613	0.10000	0.10000
0.16106	0.19656	0.28613	0.32917	0.10000	0.10000
0.27232	0.30523	0.28613	0.32917	0.10000	0.10000

0.42966	0.45892	0.28613	0.32917	0.10000	0.10000
0.54091	0.56759	0.28813	0.32917	0.10000	0.10000
0.19656	0.19656	0.32917	0.32917	0.10000	0.
0.30523	0.30523	0.32917	0.32917	0.10000	0.
0.45892	0.45892	0.32917	0.32917	0.10000	0.
0.56759	0.56759	0.32917	0.32917	0.10000	0.
0.08153	0.11704	0.18972	0.23276	0.	0.
0.19859	0.23150	0.18972	0.23276	0.	0.
0.36412	0.39338	0.18972	0.23276	0.	0.
0.48118	0.50785	0.18972	0.23276	0.	0.
0.11704	0.16106	0.23276	0.28613	0.	0.
0.23150	0.27232	0.23276	0.28613	0.	0.
0.39338	0.42966	0.23276	0.28613	0.	0.
0.50785	0.54091	0.23276	0.28613	0.	0.
0.16106	0.19656	0.28613	0.32917	0.	0.
0.27232	0.36523	0.28613	0.32917	0.	0.
0.42966	0.45892	0.28613	0.32917	0.	0.
0.54091	0.56759	0.28613	0.32917	0.	0.

CONTROL POINT CCORDINATES=

$\times \subset$	YCP	2 CP	X C P	YCP	2 CP
-0.48660	0.04743	0.	-0.40165	0.04743	0.
-0.28560	0.04743	0.	-0.16956	0.04743	0.
-0.08461	0.04743	0.	-0.05351	0.04743	0.
-0.38788	0.14229	0.	-0.30679	0.14229	0.
-0.19601	0.14229	0.	-0.08523	0.14229	0.
-0.00414	0.14229	0.	0.02554	0.14229	0.
-0.31727	0.21014	0.	-0.23894	0.21014	0.
-0.13193	0.21014	0.	-0.02492	0.21014	0.
0.05342	0.21014	0.	0.08209	0.21014	0.
-0.2659?	0.25944	0.	-0.18964	0.25944	0.
-0.08537	0.25944	0 .	0.01890	0.25944	0.
0.09524	0.25944	0.	0.12317	0.25944	0.
-0.21466	0.30875	0 .	-0.14033	0.30875	0.
-0.03880	0.30875	0.	0.06273	0.30875	0.
0.13706	0.30875	0.	0.16426	0.30875	0.
-0.14664	0.37411	0.	-0.07498	0.37411	0.
0.02293	0.37411	0 .	0.12083	0.37411	0.
0.19250	0.37411	0.	0.21873	0.37411	0.
-0.01888	0.49688	0 .	0.04779	0.49688	0.
0.13888	0.49688	0.	0.22996	0.49688	0.
0.29664	0.49688	0.	0.32104	0.49688	0.
0.15564	0.66458	0.	0.21550	0.66458	0.
0.29727	0.66458	0 .	0.37904	0.66458	0.
0.43890	0.66458	0.	0.46080	0.66458	0.
0.33017	0.83229	0 。	0.38321	0.83229	0.
0.45566	0.83229	0.	0.52811	0.83229	0.
0.58115	0.83229	0.	0.60057	0.83229	0.
0.45793	0.95506	0.	0.50598	0.95506	0.
0.57161	0.95506	0.	0.63725	0.95506	0.
0.68529	0.95506	0.	0.70288	0.95506	0.
-0.33852	0.18972	0.05000	-0.25936	0.18972	0.05000
-0.15122	0.18972	0.05000	-0.04307	0.18972	0.05000
0.03609	0.18972	0.05000	0.06507	0.18972	0.05000
-0.31727	0.21014	0.10000	-0. 23894	0.21014	0.10000
-0.13193	0.21014	0.1000	-0.02492	0.21014	0.10000
0.05342	0.21014	0.10000	0.08209	0.21014	0.10000
-0.26597	0.25944	0.10000	-0.18964	0.25944	0.90000
-0.08537	0.25944	0.10000	0.01890	0.25944	0.10000

0.09524	0.25944	0.10000	0.12317	0.25944	0.10000
-0.21466	0.30875	0.10000	-0.14033	0.30875	0. 10000
-0.03880	0.30875	0.10000	0.06273	0.30875	0.10000
0.13706	0.30875	0.10000	0.16426	0.30875	0.10000
-0.19341	0.32917	0.05000	-0.11.991	0.32917	0.05000
-0.01952	0.32917	0.05000	0.08088	0.32917	0.05000
0.15438	0.32917	0.050 .0	0.18128	0.32917	0.05006
-0.31727	0.21014	0.	-0.23894	0.21014	0.
-0.13193	0.21014	0.	-0.02492	0.21014	0.
0.05342	0.21014	0.	0.08209	0.21014	0.
-0.26597	0.25944	0.	-0.18964	0.25944	0.
-0.08537	0.25944	0.	0.01890	0.25944	0.
0.09524	0.25944	0 。	0.12317	0.25944	0.
-0.21466	0.30875	0.	-0.14033	0.30875	0.
-0.03880	0.30875	0.	0.06273	0.30875	0.
0.13706	0.30875	0.	0.16426	0.30875	0.
0.12842	0.18972	0.05000	0.28135	0.18972	0.05005
0.43429	0.18972	0.05000	0.49764	0.18972	0.05000
0.14477	0.21014	0.1000	0.29611	0.21014	0.10000
0.44744	0.21014	0.10000	0.51012	0.21014	0.10005
0.18425	0.25944	0.10000	0.33171	0.25944	0.10000
0.47918	0.25944	0.10000	0.54026	0.25944	$0.1000 C$
0.22374	0.30875	0.1000	0.36732	0.30875	0.10000
0.51091	0.30875	$0.100 C 0$	0.57039	0.30875	0.10000
0.24009	0.32917	0.0500	0.38207	0.32917	0.05000
0.52406	0.32917	0.050 co	0.58287	0.32917	0.05000
0.14477	0.21014	0.	0.29611	0.21014	0.
0.44744	0.21014	0.	0.51012	0.21014	0.
0.98425	0.25944	0.	0.33171	0.25944	0.
0.47518	0.25944	0.	0.54026	0.25944	0.
0.22374	0.30875	0.	0.36732	0.30875	0.
0.51691	0.30875	0.	0.57039	0.30875	0.

CLII,CMII,DELTA,MAXP

PITCHING MOMENT COEFFICIENT,CMII= -0.07500
THE ROOT MEAN SQUARE OF CAMBER ORDINATES = 0.00053
THE 6TH ITERATION IN THE FINAL CYCLE, DELTA= 0.400
INDUCED DRAG COEFFICIENT. CDII= 0.02454
LIFT COEFFICIENT. CLII= 1.20000
PITCHING MOMENT COEFFICIENT,CMII = $\quad-0.07500$
THE ROOT MEAN SQUARE OF CAMRER ORDINATES = 0.00050
THE 7TH ITERATION IN THE FINAL CYCLE, DELTA= 0.400
INDUCED DRAG COEFFICIENT, CDII= 0.02018
LIFT COEFFICIENT. CLII= $\quad 1.20000$
PITCHING MOMENT COEFFICIENT,CMII = -0.07500
THE ROOT MEAN SQUARE OF CAMEER ORDINATES $=\quad 0.00046$

PITCHING MOMENT COEFFICIENT,CMII=
THE ROOT MEAN SQUARE CF CAMEER ORDINATES $=$

YLE (1)=	0.04743	ALPAO (1) =	8.58050
YLE (2) =	0.14229	ALPAO (2) =	18.26916
YLE (3) =	0.21014	ALPAO (3) =	-13.35170
YLE (4) =	0.25944	$\operatorname{ALPAO}(4)=$	4.09779
YLE (5) =	0.30875	ALPAO (5) =	-10.28359
YLE (6) $=$	0.37411	ALPAO (6) $=$	11.19529
YLE (7) =	0.49688	ALPAO (7) =	3.86014
YLE (8) =	0.66458	ALPAO (8) =	3.46656
YLE (9) =	0.83229	ALPAO (9) =	1.20347
YLE (10) =	0.95506	ALPAO(10) $=$	-1.35737

camber ordinates in the jet on case

0.00770	0.05095	0.08393	0.06981	0.02866	0.00332
0.01452	0.09007	0.12577	0.08447	0.02843	0.00302
0.00134	0.02399	$0.06 C 68$	0.07139	0.04191	0.00505
0.00597	0.05382	0.07719	0.04690	0.02129	0.00218
0.00105	0.02396	0.04597	0.05066	0.03258	0.00401
0.01422	0.08461	0.11489	0.08181	0.03076	0.00337
0.01141	0.07264	0.10550	0.08672	0.03636	0.00423
0.01090	0.07187	0.11509	0.09656	0.04255	0.00513
0.00882	0.06103	0.10409	0.09259	0.04315	0.00534
0.00572	0.04239	0.07835	0.07599	0.03840	0.00489
ROOT MEA:					

XX

		ALPHA $=$	0.	DEGREES
XX				
VORIEX	$x \vee$	YV	CP	CPW
1	0.01704	0.64743	0.47346	0.27324
2	0.14645	0.04743	1.00333	0.69602
3	0.37059	0.04743	1.31955	0.95547
4	0.62941	0.64743	1.10117	0.76591
5	0.85355	0.04743	0.53810	0.31755
6	0.98296	$0 . C 4743$	0.16716	0.08041
7	0.01704	0.14229	0.95024	0.44343
8	0.14645	0.14229	1.72062	0.91657
9	0.37059	0.14229	1.60856	0.93288
10	0.62941	0.14229	0.93595	0.61393
11	0.85355	0.14229	0.31193	0.21871
12	0.98296	0.14229	0.10460	0.06350
13	0.01704	0.21014	-1.85986	0.52313
14	0.14645	0.21014	2.19873	1.08728
15	0.37059	0.21014	4.36602	0.97367
16	0.62941	0.21014	3.36949	0.53386
17	0.85355	0.21014	2.39451	0.14443
18	0.98296	0.21014	1.00400	0.02075
19	0.01704	0.25944	-0.75528	0.53314
20	0.14645	0.25944	4.74276	1.12298
21	0.37059	0.25944	4.65973	0.98545
22	0.62941	0.25944	1.41030	0.52403
23	0.35355	0.25944	1.73256	0.13686
24	0.98296	0.25944	0.95776	0.00914
25	0.01704	0.30875	-1.59881	0.52548
26	0.14645	0.30875	2.74823	1.12427
27	0.37059	0.30875	3.97128	0.98979
28	0.62941	0.30875	2.64443	0.52630
29	0.85355	0.30875	2.67985	0.13835
20	0.28296	0.20875	1.15858	0.00357
31	0.01764	0.37411	0.70660	0.50901
32	0.14645	0.27411	1.61202	1.11257
33	0.37059	0.37411	1.47902	0.99236
34	0.62941	0.32411	1.02955	0.52534
35	0.85355	0.37411	0.48928	0.13237
36	0.98296	0.37411	0.14618	-0.00368
37	0.01704	0.49688	0.74190	0.46737
38	0.14645	0.49688	1.40284	1.06074
39	0.37059	0.49688	1.41070	0.98344
40	0.62941	0.49688	1.02394	0.52471
41	0.85355	0.49688	0.50286	0.12542
42	0.98296	0. 0.49688	0.15149	-0.00870
43	0.01704	0.66458	0.67556	0.37828
44	0.14645	0.66458	1.29936	0.90573
45	0.37059	0.66458	1.40971	0.92505
46	0.62941	0.66458	1.08597	0.55977
47	0.85355	0.66458	0.57263	0.17927
48	0.98296	0.66458	0.18311	0.171716
49	0.01704	0.83229	0.52237	0.27428
50	0.14645	0.83229	1.04290	0.70117
59	0.37059	0.83229	1.22420	0.79535
52	0.62941	0.83229	1.01504	0.55616

53	0.85355	0.83229	0.57032	0.23663
54	0.98296	0.83229	0.18453	0.04868
55	0.01704	0.95506	0.32196	0.15589
56	0.14645	0.95506	0.62419	0.42816
57	0.37059	0.95506	0.74849	0.50533
58	0.62941	0.95506	0.64621	0.39131
59	0.85355	0.95506	0.39385	0.20976
60	0.98296	0.95506	0.12604	0.05351

Y/SP	CL	CM	CT	CDI	CLW	CMW	COW
0.04743	0.94091	0.77565	0.	0.12627	0.64689	0.53890	0.05870
0.14229	1.09119	0.73819	0.	0.25540	0.63567	0.41331	0.03247
0.21014	2.74845	0.882 67	0.	-0.67459	0.64609	0.33297	0.04727
0.25944	2.74741	0.90059	0.	0.11828	0.65168	0.25603	0.03664
0.30875	2.64799	0.22817	0.	-0.48506	0.65297	0.17240	0.02297
0.37411	1.08114	0.04516	0.	0.15507	0.64850	0.06084	0.01286
0.49688	1.02899	-0.29282	0.	0.01429	0.63204	-0.14489	0.00759
0.66458	1.03835	-0.75872	0.	0.01472	0.60313	-0.41597	-0.00433
0.83229	0.91279	-1.07154	0 .	-0.01101	0.53726	-0.61765	-0.00805
0.95506	0.57151	-0.85388	0.	-0.02845	0.35902	-0.53237	-0.00783
$\begin{aligned} & \text { JET - } \\ & 0.8008 \end{aligned}$	$F F S P A N$	LOADINE		$\begin{aligned} & - \text { ON SPAN } \\ & 6483 \end{aligned}$	LOADING		
0.75122				8954			
0.73756				3756			
0.72490				5612			
0.70726				6817			
0.6773				2917			
0.61414				9984			
0.52611				0575			
0.41526				0553			
0.25138				0016			

THE LIFT COEFFICIENT $=1.20000$
TOTAL INDUCED DRAG COEFFICIENT =
0.01237

THE INDUCED DRAG PARAMETER $=0.00859$
TOTAL PITCHING MOMENT COEFFICIENT $=-0.07500$
THE COANDA LIFT COEFFICIENT, CLR= 0.29103
THE COANDA DRAG COEFFICIENT, CDR $=-1.21880$
THE COANDA MONENT COEFFICIENT, CMR $=-0.09561$
THE LIFT COEFFICIENT FOR THE WING ALONE = 0.57709
THE INDUCED DRAG COEFFICIENT FOR THE WING ALONE $=0.01552$
THE PITCHING MOMENT CCEFFICIENT FOR THE WING ALONE $=-0.04943$
THE INOUCED DRAG PARAMETER FOR THE WING ALONE $=0.04659$

