AIRCRAFT ATTITUDE MEASUREMENT USING
 A VECTOR MAGNETOMETER

Research Report

R. Peitila \& W. R. Dunn, Jr.

December 1, 1977
NASA Grant NGR 05-017-031

AIRCRAFF ATTITUDE MEASUREMENT USING A VECTOR MAGNETOMETEER

Preface

The following report is based on work performed as a part of NASA Grant 05-017-031 by the University of Santa Clara, Department of Electrical Engineering and Computer Science.

Inquiries regarding this work can be directed to:

Dr. W. R. Dunn

c/O Department of Electrical Engineering \& Cormputer Science University of Santa Clara Santa Clara, California 95053

Acknowledgment iii
Abstract iv
I A VECTOR AUTOPILOT SYSTEM
1-1 Introduction 1
1-2 Attitude Determination 2
1-3 Attitude Determination Employing Magnetic Field Components 6
1-4 A Possible System Configuration 8
l-5 Other Considerations 15
I-6 Conclusions. 19
II AN ATTITUDE INDEPENDENT REMOTE MAGNETIC INDICATOR
2-1 Introduction 20
2-2 An Algorithm to Compute Aircraft Heading 21
2-3 Mechanization of the Heading Algorithm 27
2-4 Conclusions 28
III DESIGN OF A MICRORROCESSOR BASED HEADING INSTRUMENT
3-1 Introduction 30
3-2 Hardware Design Considerations 31
3-3 Software Design Considerations 37
3-4 Design of Subroutines 39
3-5 Conclusions 50
IV HEADING INSTRUMENT ERROR ANALYSIS
4-1 Introduction 54
4-2 Sensor Errors 55
4-3 Analog Subsystem Error Analysis 74
4-4 Processing Errors 90
4-5 Measurement Error Summary 97
4-6 Sample Error Analysis 99
4-7 Conclusions 102

Table of Contents (Continued)

V LABORATORY EVALUATION OF THE ATTITUDE INDEPENDENT REMOTE MAGNETIC INDICATOR AND HEADING INSTRUMENT
5-1 Introduction 104
5-2 Test Apparatus 105
5-3 Heading Measurements With No Offset Correction 109
5-4 Heading Measurements to investigate Orthogon- ality Error 113
5-5 Conclusions 114
Appendix A: Instruction Set of the Signetics 2650 microprocessor chip 127
Appendix B: Assembly Language Program 130
Appendix C: Table Generating Programs 156

CHAPTER I

A VECTOR AUTOPILOT SYSTEM

1-1 INTRODUCTION

An essential requirement of an aircraft attitude control system is that deviation of the body axes relative to a reference axes frame must be sensed. In addition, to overcome the ever-present possibility of errors or failure of the sensors, various configurations of redundant sensors are usually employed to assist in detection and correction of errors. To this end, there has been a continuing effort to improve existing sensors, to develop new sensor configurations, and to develop new sensor devices.

This chapter discusses the role of a vector magnetometer ${ }^{1}$ as a new instrument for aircraft attitude determination. Although magnetometers have played a role in the attitude measurement of missiles and satellites [Ref. l-1], there is an apparent lack of application in aircraft systems. By providing independent measures of attitude, the solid state vector magetometer sensor system can not only assist in improving accuracy and reliability of existing systems but can also reduce component count with obvious benefits in weight and cost. Additionally, since a large number of aircraft heading reference systems depend on measurement of the Earth's magnetic field, it can be shown that by substituting a three-axis magnetometer for the remote sensing unit; both heading and attitude measurement functions can be derived using common elements, thereby further reducing the component count.

[^0]- *

To investigate the feasibility of the above system, this chapter will proceed by developing a technique to determine attitude given magnetic field components. Sample calculations are then made using the Earth's magnetic field data acquired during actual flight conditions. Results of these calculations are compared graphically with measured attitude data acquired simultaneously with the magnetic data. The role and possible implementation of various reference angles are discussed along with other pertinent considerations. Finally, it is concluded that the Earth's magnetic field as measured by modern vector magnetometers can play a significant role in attitude control systems.

1-2 ATTITUDE DETERMINATION

Coordinate systems are usually defined by orthogonal right-handed sets of three unit vectors. An example of such a set is illustrated in Fig. l-l where the orientation of the body fixed frame used in this paper is delineated. Angular rotations are conventionally defined as rotations in the plane normal to a unit vector with the positive sense of rotation defined by the right-hand rule [Ref. l-2].

To derive relationships of attitude variations as a function of magnetic vector component variation, we can proceed by considering matrix representations of an orthogonal transformation. If Hx, Hy, and Hz are the magnetic components measured at a desired airframe attitude and Hx', Hy', and Hz' are the components measured after any rotation of the body, vector $H^{\prime}=[H x ' H y ' H z ']^{T}$ can be related to vector $H=[H x H y H z]^{T}$ by an orthogonal linear transformation $H^{\prime}=A H$. Here A must satisfy the orthogonality condition $A A^{T}=I$, where A^{T} is the transpose of A; additionally, the determinant of A must be unity [Ref. 1-3, 1-4].

Fig. 1-1 AXIS ORIENTATION

Rotations about the z axis in Fig. l-l result in yaw deviations (ψ) and in new components (H^{\prime}), as shown by

$$
\left[\begin{array}{c}
H x^{\prime} \tag{1-1}\\
H y^{\prime} \\
H z^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
\cos \psi & \sin \psi & 0 \\
-\sin \psi & \cos \psi & 0 \\
0 & & 0 & \\
1
\end{array}\right]\left[\begin{array}{l}
H x \\
H y \\
H z
\end{array}\right]
$$

Similarly, independent rotations about the y axis and the x axis result in pitch (θ) and roll (ϕ) dependent variations in the measured H components, as shown by

$$
\begin{align*}
& {\left[\begin{array}{l}
\mathrm{H} x^{\prime} \\
\mathrm{Hy} \\
\mathrm{~Hz}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right]\left[\begin{array}{l}
\mathrm{Hx} \\
\mathrm{Hy} \\
\mathrm{~Hz}
\end{array}\right]} \tag{1-2}\\
& {\left[\begin{array}{l}
\mathrm{Hz} \\
\mathrm{H} \mathrm{y}^{\prime} \\
\mathrm{Hz}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{l}
\mathrm{Hx} \\
\mathrm{Hy} \\
\mathrm{~Hz}
\end{array}\right]} \tag{1-3}
\end{align*}
$$

The effect of a combined rotation can be expressed by using the product of the transformation matrices. In addition, if the rotations are small, the total rotation experienced by applying sequential rotations is independent of the order in which the rotations are performed [Ref. 1-3,1-4].

$$
\left[\begin{array}{l}
H x^{\prime} \\
H y^{\prime} \\
H z^{\prime}
\end{array}\right]=\left[\begin{array}{ccccc}
\cos \psi & \sin \psi & 0 \\
-\sin & \psi & \cos & \psi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
\cos & \theta & 0 & -\sin \theta \\
0 & 1 & 0 . \\
\sin \theta & 0 & \cos \theta
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \tag{I-4a}\\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{l}
\mathrm{Hx} \\
\mathrm{Hy} \\
\mathrm{~Hz}
\end{array}\right]
$$

$\left[\begin{array}{l}H x^{\prime} \\ H y^{\prime} \\ H z^{\prime}\end{array}\right]=\left[\begin{array}{rrrr}\cos \psi \cos \theta & \sin \psi \cos \phi+\sin \theta \cos \psi \sin \theta \\ -\sin \psi \cos \theta & \cos \psi \cos \phi-\sin \phi \sin \psi \sin \theta \\ \sin \theta & -\cos \theta \sin \phi\end{array}\right.$

$$
\left.\begin{array}{l}
\sin \phi \sin \psi-\sin \theta \cos \psi \cos \phi \tag{1-4b}\\
\cos \psi \sin \phi+\sin \psi \sin \theta \cos \phi \\
\cos \phi \cos \theta
\end{array}\right]\left[\begin{array}{l}
\mathrm{Hz} \\
\mathrm{H} y \\
\mathrm{H} z
\end{array}\right]
$$

Assume that the angular variations θ, ψ, and ϕ are small enough so that the small angle approximations

$$
\begin{aligned}
& \sin \theta \simeq \theta, \sin \psi \simeq \psi, \sin \phi \simeq \phi, \\
& \cos \theta \simeq \cos \psi \simeq \cos \phi \simeq 1
\end{aligned}
$$

can be made. Then, if the products of small angles (in radians) can be assumed to be much smaller than the angles alone, the expression reduces to

$$
\left[\begin{array}{c}
H x^{\prime} \tag{1-5}\\
\dot{H} y^{\prime} \\
H z^{\prime}
\end{array}\right]=\left[\begin{array}{rrr}
1 & \psi & -\theta \\
-\psi & 1 & \phi \\
\theta & -\phi & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{Hx} \\
\mathrm{Hy} \\
\mathrm{~Hz}
\end{array}\right]
$$

Further modifications in the form of the matrices result in

$$
\left[\begin{array}{c}
H x^{\prime} \tag{1-6}\\
H y^{\prime} \\
H z^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
-\mathrm{Hz} & \mathrm{Hy} & 0 \\
0 & -\mathrm{Hx} & \mathrm{~Hz} \\
\mathrm{Hx} & 0 & -\mathrm{Hy}
\end{array}\right]\left[\begin{array}{l}
\theta \\
\psi \\
\phi
\end{array}\right]+\left[\begin{array}{l}
\mathrm{Hx} \\
\mathrm{Hy} \\
\mathrm{~Hz}
\end{array}\right]
$$

By subtracting, we arrive at an expression for the difference in H components as functions of angular deviation.

$$
\left[\begin{array}{l}
\mathrm{Hx} \tag{1-7}\\
\mathrm{Hy} \\
\mathrm{~Hz}^{\prime}
\end{array}\right]-\left[\begin{array}{l}
\mathrm{Hz} \\
\mathrm{Hy} \\
\mathrm{~Hz}
\end{array}\right]=\left[\begin{array}{c}
\Delta \mathrm{Hx} \\
\Delta \mathrm{Hy} \\
\Delta \mathrm{~Hz}
\end{array}\right]=\left[\begin{array}{rrr}
-\mathrm{Hz} & \mathrm{Hy} & 0 \\
0 & -\mathrm{Hx} & \mathrm{~Hz} \\
\mathrm{Hx} & 0 & -\mathrm{Hy}
\end{array}\right]\left[\begin{array}{l}
\theta \\
\psi \\
\phi
\end{array}\right]
$$

It is significant to note at this point that the transformation matrix is singular implying that solutions for θ, ψ, and• ϕ are not independently available.

1-3 ATTITUDE DETERMINATION EMPLOYING MAGNETIC

 FIELD COMPONENTSA given orthogonal set of three unit vectors can be displaced in Euclidean space by rotating the system through any angle δ about a directed rotation axis. It is also customary to represent this rotation vectorially as a directed line segment whose length is proportional to the rotation angle. This rotation is analogous to the rotation experienced by the body fixed frame of $F i g . \quad 1-1$ as the aircraft experiences combined pitch, yaw, and roll variation. During flight the body fixed set rotates about this rotation axis assuming new (possibly erroneous) attitudes in space. The task of the attitude sensing system is to provide measures of compounded pitch, yaw, and roll that would result in the same attitude assuming that the rotations occurred sequentially about the x, y and z axes rather than the actual rotation axis.

It was shown in the previous section that a compounded rotation of an orthogonal set can be described by a product of respective transformation matrices. Additionally it was noted that for small angular rotations the order of multiplication is unimportant. Using the relationships of (1-7), expressions for the angular deviations in terms of measured magnetic vector components can be derived.

$$
\begin{equation*}
\Delta H x=-H z \theta+H y \psi \tag{1-8a}
\end{equation*}
$$

yields

$$
\begin{align*}
& \theta=(H y \psi-\Delta H x) / H z \tag{1-8b}\\
& \psi=(\Delta H x+H z \theta) / H y \tag{1-8c}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\Delta H y=-H x \psi+H z \phi \tag{1-9a}
\end{equation*}
$$

yields

$$
\begin{align*}
& \psi=(H z \phi-\Delta H y) / H x \tag{1-9b}\\
& \theta=(\Delta H y+H x \psi) / H z \tag{1-9c}
\end{align*}
$$

and

$$
\begin{equation*}
\Delta H z=H x \theta-H y \phi \tag{1-10a}
\end{equation*}
$$

yields

$$
\begin{align*}
\theta & =(\Delta H z+H y \phi) / H x \tag{1-10b}\\
\phi & =(H x \theta-\Delta H z) / H y \tag{1-10c}
\end{align*}
$$

Assuming that Hx, Hy and Hz are nominal vector components as measured in a reference attitude and that Hx', Hy' and Hz^{\prime} are new field components at the new attitude, then $\Delta H x=H x '-H x, \Delta H y=H y^{\prime}-H y, \Delta H z=H z^{\prime}-H z$ are expressions of the incremental changes in field components. Additionally, before using (1-8), (1-9) or (1-10) to solve for attitude variations (pitch, yaw, or roll), one additional angle from an auxiliary sensor ${ }^{2}$ must be supplied. Using one additional angle of rotation (about any one axis) the remaining two rotations can then be calculated.

To illustrate this point, flight data acquired during the flight of a NASA flown Convair 900 instrumented with a three-axis magnetometer and a Litton inertial navigation system were used to calculate roll, pitch, and yaw.

[^1]Attitude variation about each of the three axes was calculated using measured magnetic field components supported by one angle from the inertial system. The results of these calculations are plotted in Figs. 1-2 through 1-4.

It is significant to note that the rotations shown occurred simultaneously (i.e., time base is the same for all three figures). The flight was at an altitude of approximately 5000 ft at an airspeed of approximately $250 \mathrm{nmi} / \mathrm{h}$.

Although the data used to plot the attitudes shown in Figs. l-2 through l-4 were not acquired specifically for this purpose, the correlations in measured and calculated attitude clearly show that; within the limits of instrument accuracy, signals proportional to attitude variation can be derived using flight data.

1-4 A POSSIBLE SYSTEM CONFIGURATION

Since the intent of this chapter is to introduce the notion that magnetometer technology has advanced to the point where three-axis magnetometers can be incorporated in aircraft attitude sensing systems on a cost effective basis, the system discussion will be limited in scope to describing a possible combined heading and attitude measurement method.

Heading references fall into three classes; 1) those that depend on the Earth's magnetic field, 2) those that depend on the use of low-drift gyroscope to retain a preset azimuth, and 3) those (gyrocompasses) that depend on sensing the Earth's rotation [Ref.1-5]. By far the greatest number of aircraft heading systems depend on the Earth's magnetic field, although many of these include gyroscopes to improve the performance characteristics.

A popular system combination (with no gyro) is to combine a pendulous remote magnetic sensor and a synchro receiver in a null seeking circuit. The philosophy being to attempt to measure only the horizontal component of the Earth's magnetic field and to swing the receiver into alignment with it. Under acceleration, departures of the sensor unit from the horizontal result in angular heading errors ε [Ref. l-5].

$$
\varepsilon=(\mathrm{aH} / \mathrm{g}) \tan \gamma \sin \theta
$$

where $a H$ is the horizontal acceleration, g is the acceleration due to gravity, θ is the angle between the acceleration vector and magnetic north, and γ is the magnetic field dip angle; arctan (vertical field/horizontal field).

Accuracy of this system can be improved by incorporating a strapped-down solid state magnetic sensing unit (free of acceleration errors) that measures and displays the angle of the Earth's horizontal magnetic component relative to the aircraft. This system can be implemented as follows:

1) Determine the direction of the magnetic vector F relative to the sensors (and the airframe), by measuring the x, y and z components (Figs. $1-1$ and $1-5$). The direction cosines $\cos \alpha, \cos \beta, \cos \gamma$ are the cosines of the angles α, β, γ between the magnetic vector and the positive x, y and z axes. Additionally,

$$
\begin{aligned}
& \cos \alpha=x /\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}} \\
& \cos \beta=y /\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}} \\
& \cos \gamma=z /\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

2) Using either a vertical reference ${ }^{3}$ or knowledge of aircraft attitude, we can effectively rotate the body axes such that the $x-y$ plane is horizontal (see Chapter II).
3) Simple application of direction cosines will yield the direction of magnetic north in the aircraft's $x-y$ plane.

Fig. 1-5 FIELD VECTORS AND DIRECTION COSINES

Although the preceding discussion implies that heading can be determined by using a strapped-down magnetometer, there remains the problem of attitude determination. Another widely used system for obtaining a heading reference

[^2]is to combine the relatively excellent short term stability of a directional gyroscope with the long term stability of magnetic field measurements. By slaving the directional gyroscope to the magnetic field [Ref. 1-5, sec. 10.4.7], gyroscopes with relatively large free drift error can be used to provide an excellent heading reference.

Replacement of the pendulous remote sensing unit of this type of system with a strapped-down vector magnetometer would result in both heading and attitude information on a continuous basis. This combination would operate as follows:
l) The system is initialized by determining a reference attitude (perhaps by using a primary inertial attitude system) .
2) The angular position of the horizontal magnetic field component is computed as above and used to slave the directional gyroscope.
3) The directional gyroscope, with relatively good short term stability (devices with free drift of less than 0.5 deg/h have been designed), is used to determine yaw (ψ) errors.
4) For small angle deviations, (1-8), and (1-9), and (1-10) can be employed to recalculate aircraft attitude. The process loops back to step 2) closing the loop on a combined attitude and heading reference system.

The sampling frequency required to maintain an acceptable level of error is of course determined by the aircraft performance expected (angular rates) and by the gyro error (drift rate plus errors due to additional sources such as
gyroscope tilt from vertical). The overall system"is such that heading can be determined as before with errors due to sensor departures from horizontal substituted for long term accumulation of attitude uncertainty (this can be corrected by looping to step 1) at a frequency dependent on error rates). Additionally one gains measurements of attitude with minimal computation and replacement of a mechanical remote sensing unit with a solid state strapped-down magnetometer sensor.

1-5 OTHER CONSIDERATIONS

The characteristics of the Earth's magnetic field and its variations have long been established [Ref. 1-6-1-10]. Since the field is to be used as a reference in the attitude measurement scheme, there is a need here to discuss its adverse characteristics. Although the field does experience variation, most of the variation is either in amplitude (ionospheric contributions) or has time constants that make the variation negligible (secular variation).

In traversing local anomalies, there will, however, be deflections in the ambient field due to the adaitive effect of local dipoles or monopoles. The effect of local terrain caused anomalies can be visualized by picturing the main field vector oriented in space with a second modulating vector rotating at its tip. Maximum angular error would occur when this modulating vector has maximum magnitude and is positioned at right angles to the main vector.

To illustrate the effect of local anomalies one can calculate the level of anomaly required to cause an error. Since the Earth's main field is typically in the order of 0.50 G it is readily apparent that a local anomaly of approximately 0.01 G at right angles to the local field is
required to cause an error of 1 deg. Furthermore, the local anomaly would have to be aligned with one of the aircraft body axes to result in one degree of attitude error in any one axis. Fortunately, anomalies with components of this magnitude positioned at right angles to the main field are extremely rare. In addition, the anomalies are localized over ore bodies or other geophysical irregularities, have magnitudes that diminish as the cube of altitude, and tend to average to zero over relatively short distances. In summary, the probability of encountering an anomaly that would cause as much as a 1 degree error is relatively small. The error, if introduced, will be short lived and, unlike drift error, will average to zero.

Fundamental to a magnetic field referenced system is the ability to measure orthogonal components of the field vector. Precision and accuracy of measurement of the components is of course specified by the desired control specifications.

Since the Earth's magnetic field varies in magnitude on a global basis between 0.3 G and $0.6 \mathrm{G}(30,000$ gamma to 60,000 gamma), it is apparent that full scale measurements of 0.6 G can be expected. Sensors mounted at right angles to the field will monitor no measureable field and thus define the lower limit of measurement to be zero. For the continental United States the declination varies between 60 and 80 deg, resulting in a range in horizontal component of 0.15 to 0.25 G with vertical component in the range of 0.4 to 0.55 G. Heading variations (yaw) result in changes of the horizontally sensed field components and would specify the maximum precision required. In addition, flight at 45 deg \pm (n $x 90$ deg) (where n is any whole number) with respect to magnetic north results in minimum sensitivity of the x and y
axes measurements. In this case sensor inputs would range between 0.106 and 0.177 G with minimum field at the north. Assuming the preceding ambient measurements, variations in component magnitude of approximately 0.0180 to $0.0305 \mathrm{G} / \mathrm{deg}$ for small angle variations can be expected.

A brief survey of commercial magnetometer manufacturers reveals that triaxial magnetometers that measure from zero to 0.6 G with linearities of 0.5 percent, noise less than ± 1 mG and sensitivies of at least 2.5 V per 600 mG are currently available. In addition, these devices have a bandwidth of direct current to at least 500 Hz and are rated to have less than 1 deg error in orthogonality.

From a precision standpoint, it is apparent that variations in yaw for this worst case situation can be sensed to better than 0.1 deg with currently available magnetometer technology. The sensor technology required to implement an attitude sensing system of reasonable specifications is available (more detailed analysis is presented in Chapter III).

Although the preceding calculations indicate that for small angular variations attitude can be calculated using measured magnetic data, there is a need to consider the effects of larger finite rotations. In this case the small angle assumptions would not be valid and an Euler transformation would have to be made. Measurement of three axes of field components could be used to develop the direction cosines required to determine the orientation of the axis of rotation, the angular rotation about it, and the three angular rotations of pitch; roll, and yaw.

For the special case where the axis of rotation aligns with the magnetic vector, there would of course be no
measured component changes. ${ }^{4}$ By measuring the attitude of a second vector (not in alignment with the magnetic vector), we could resolve the ambiguous situation cited above and provide additional redundancy.

The optimum auxiliary vector would be one that could be sensed without using inertial devices. The Earth's electric field can be considered. The main reason for considering this field as a means of providing an auxiliary angular reference is that the resultant system has the potential of being completely solid state. The electric field vector can be used to determine attitude variation in a manner analogous to the magnetic vector system. Inherent limitations of each single vector system can be obviated if the vectors are not coincident.

Although Hill [Ref. l-ll] reported success in controlling pitch and roll using the electrostatic field alone, comments by Markson [Ref. 1-12]. indicate that the electrostatic field is not always a reliable vertical reference. Employment of the electrostatic field for this attitude measurement system is limited to augmenting the magnetic field measurements by eliminating ambiguity of motion around the magnetic vector. The requirement of vertical electrostatic field is thus removed and replaced by a requirement that the field direction is relatively stable.

By using two independently derived vectors we have sufficient data to obviate the ambiguity just cited and we have the potential of providing redundancy as well.

[^3]This chapter has identified a novel method of measuring aircraft attitude using relatively inexpensive, well developed instrumentation. It has recognized that magnetic field sensing systems have been used to some extent in attitude sensing and control of space vehicles; it has also suggested, however, that with appropriate support, magnetometers can find increased application in aircraft attitude measurement systems.

This claim is corroborated by actual flight test data. Magnetometers have evolved to a point where three axis measurements of the Earth's magnetic field can be made with sufficient precision and accuracy to enable measurement of small angle attitude variations.

This chapter has also discussed a possible system configuration combining heading determination and attitude measurement functions. By replacing the conventional remote sensing unit with a three-axis magnetometer, it has been suggested that both functions can be obtained with the hardware required previously for heading measurement alone.

As with any system, there are limitations imposed. The main limitation for a vector magnetometer system seems to be the inability to sense rotations around the magnetic vector itself. This problem is not unlike the ambiguity experienced by magnetic heading systems at high latitudes. By judiciously incorporating auxiliary instruments, not only can the ambiguities be removed but a degree of redundancy can be added while still maintaining a cost and weight advantage over comparable systems.

AN ATTITUDE INDEPENDENT REMOTE MAGNETIC INDICATOR

2-1 INTRODUCTION

Preliminary investigation [Ref.2-1] revealed that aircraft attitude can be calculated using measurements of earth's magnetic field vector and a single auxiliary rotation angle. An algorithm to compute the two remaining aircraft rotational angles was developed. Using flight data, it was demonstrated that an excellent correlation in computed versus actual aircraft attitude could be achieved. In addition to providing measurements of the magnetic field for redundant attitude computations (to improve accuracy and reliability of existing autopilot systems), it was noted that the vector magnetometer could substitute for the remote magnetic sensing unit. In this manner both heading and attitude measurements could be derived using common elements with obvious benefits in weight and cost.

This chapter discusses the mechanization of a microprocessor based computer system that uses a three axis magnetometer plus gyro data to compute heading. The magnetometer is a three axis solid state device that can be mounted in a strapped down configuration resulting in an attitude independent remote magnetic indicator. Gyro measurements of pitch and roll angle plus three axis magnetic measurements are used by the algorithm to compute aircraft heading. The system can function independently to compute heading or by simply increasing the stored program could implement the attitude computing algorithm of [Ref. 2-l] as well.

The chapter proceeds by developing an algorithm to compute aircraft heading using the strapped down magnetometer
and two gyro measured angles. Practical aspects of designing the system including both hardware and software are then presented. In addition, the limitations in instrument accuracy and operation as determined by sensor errors, signal processing errors, arithmetic precision and computation speed are discussed. Considerable computational capability inherent in the system enables minimization of systematic errors. It is demonstrated that inexpensive sensors can be employed with offset and orthogonality errors compensated by microprocessor programming. Finally, it is concluded that a microprocessor based computer with a solid state magnetometer can play a significant role in aircraft instrumentation.

2-2 AN ALGORITHM TO COMPUTE AIRCRAFT HEADING

Coordinate frames are usually defined by orthogonal right-hand sets of three unit vectors. An example of such a set is illustrated in Fig. l-1 where the orientation of the body fixed frame used in this chapter is delineated. The reference coordinate frame referred to in this chapter is oriented with axes x and y in the horizontal plane and axis z vertical (z down is positive). Pitch attitude angle (θ) of an aircraft is defined [Ref. 2-2] as the angle between some preferred longitudinal axis and the horizontal reference. In this chapter, pitch angle is the angle between the x axis of the aircraft and the $x-y$ plane of the reference axis set. Since angular rotations are conventionally defined as rotations in the plane normal to a unit vector with the positive sense of rotation defined by the right-hand rule [Ref. l-2], we will define positive pitch angle (θ) as the "nose up" or positive rotation about the y axis when the y axis is horizontal. The roll and yaw angles (Φ and ψ) will then simply be rotations about the x and y axes respectively.
$\rightarrow *$
By aligning the three magnetometer axes with the respective x, y and z axes of the aircraft, we can measure magnetic field components of the aircraft at any attitude. For the trivial case where pitch (θ) and roll (Φ) are both zero degrees, Hx and Hy are the horizontal field components and we can compute yaw from the horizontal vectors as follows:

$$
\begin{equation*}
\Psi_{1}=\cos ^{-1}\left(\mathrm{Hx} /\left(\mathrm{Hx}^{2}+\mathrm{Hy}^{2}\right)^{\frac{1}{2}}\right. \tag{2-1a}
\end{equation*}
$$

or

$$
\begin{equation*}
w_{1}=\sin ^{-1}\left(\mathrm{Hy} /\left(H x^{2}+H y^{2}\right)^{\frac{1}{2}}\right. \tag{2-1b}
\end{equation*}
$$

We select either $(2-1 a)$ or ($2-1 b$) based on the relative magnitudes of $H x$ and Hy. By minimizing the numerator of the argument we guarantee that the inverse trigonometric operation results in an angle between zero and forty-five degrees with maximum sensitivity ensured. Heading is then computed using the signs of $H x$ and $H y$ to select the appropriate equation from Table 2-1.

	NEGATIVE	POSITIVE
Negative	$\Psi=180-\Psi_{1}$	$\Psi=\Psi_{1}$
Positive	$\Psi=\Psi_{1}+180$	$\Psi=360-\Psi_{1}$

Table 2-1. Formulae to Compute Heading

For most cases, the pitch and roll angles are not zero and inverse rotations are required to determine the actual horizontal field components $H x$ and $H y$. Since any aircraft attitude can be represented as a sequence of rotations about each axis beginning at some reference attitude, we can
determine the reference $H x$ and $H y$ field components by performing an inverse roll followed by an inverse pitch computation ${ }^{1}$.

The inverse roll computation can be developed by considring vector components of an arbitrary vector $\overline{\mathrm{H}}$ in Fig. 2-1. The first set $\left(x_{2}, y_{2}, z_{2}\right)$ represents the vector components measured in a reference orientation. The second set has common origin and aligns with common x axis component. It is rotated (rolled) about the x axis resulting in new y and z values. We can describe vector $\overline{\mathrm{H}}$ in both coordinate frames as

$$
\begin{equation*}
\overline{\mathrm{H}}=\mathrm{x}_{2} \cdot \hat{\mathrm{i}}_{2}+\mathrm{y}_{2} \cdot \hat{\mathrm{j}}_{2}+z_{2} \cdot \hat{\mathrm{k}}_{2} \tag{2-2}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{H}=x_{3} \cdot \hat{i}_{3}+y_{3} \cdot \hat{j}_{3}+z_{3} \cdot \hat{k}_{3} \tag{2-3}
\end{equation*}
$$

Since the vector \vec{H} is unique, we note that equations (2-2) and $(2-3)$ are equal. Furthermore if we form dot products we solve for the horizontal components x_{2}, y_{2}, and z_{2} in terms of the rotated values and the roll angle (Φ).

From (2-2) we obtain

$$
\begin{gather*}
\bar{H} \cdot \hat{i}_{2}=x_{2}\left(\hat{i}_{2} \cdot \hat{i}_{2}\right)+y_{2}\left(\hat{j}_{2} \cdot \hat{i}_{2}\right)+z_{2}\left(\hat{k}_{2} \cdot \hat{i}_{2}\right) \tag{2-4a}\\
\bar{H} \cdot \hat{i}_{2}=x_{2} \tag{2-4b}
\end{gather*}
$$

and from $(2-3)$ we obtain

$$
\begin{gather*}
\bar{H} \cdot \hat{i}_{2}=x_{3}\left(\hat{i}_{3} \cdot \hat{i}_{2}\right)+Y_{3}\left(\hat{j}_{3} \cdot \hat{i}_{2}\right)+z_{3}\left(\hat{k}_{3} \cdot \hat{i}_{2}\right) \tag{2-5a}\\
\bar{H} \cdot \hat{i}_{2}=x_{3} \tag{2-5b}
\end{gather*}
$$

${ }^{1}$ Since pitch is defined as the angle between the x axis and the horizontal plane we can assume that at any heading, aircraft attitude results due to a pitch followed by a roll.
then

$$
\begin{equation*}
x_{2}=x_{3} \tag{2-6}
\end{equation*}
$$

Similarly,

$$
\begin{gather*}
\bar{H} \cdot \hat{j}_{2}=y_{2}=x_{3}\left(\hat{i}_{3} \cdot \hat{j}_{2}\right)+y_{3}\left(\hat{j}_{3} \cdot \hat{j}_{2}\right)+z_{3}\left(\hat{k}_{3} \cdot \hat{j}_{2}\right) \\
(2-7 a) \tag{2-7b}\\
y_{2}=y_{3} \cos \Phi-z_{3} \sin \Phi
\end{gather*}
$$

and

$$
\begin{gather*}
\overline{\mathrm{H}} \cdot \hat{\mathrm{k}}_{2}=z_{2}=\mathrm{x}_{3}\left(\hat{\mathrm{i}}_{3} \cdot \hat{\mathrm{k}}_{2}\right)+y_{3}\left(\hat{j}_{3} \cdot \hat{\mathrm{k}}_{2}\right)+z_{3}\left(\hat{\mathrm{k}}_{3} \cdot \hat{\mathrm{k}}_{2}\right) \\
z_{2}=y_{3} \sin \Phi+z_{3} \cos \Phi \tag{2-8a}
\end{gather*}
$$

These expressions can be summarized as

$$
\left[\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & -\sin \phi \\
0 & \sin \phi & \cos \Phi
\end{array}\right] \cdot\left[\begin{array}{l}
x_{3} \\
y_{3} \\
z_{3}
\end{array}\right]
$$

Fig. 2-1 AXES ROTATED IN ROLL

Similarly, considering an axis set rotated in pitch as shown in Fig. 2-2, we can express the reference set x_{1}, Y_{1}, z_{1} in terms of the rotated set $\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}$ as follows

$$
\left[\begin{array}{l}
x_{1} \tag{2-10}\\
y_{1} \\
z_{1}
\end{array}\right]=\left[\begin{array}{ccc}
\cos & \theta & 0 \\
\sin \theta \\
0 & 1 & 0 \\
-\sin & \theta & 0 \\
\cos \theta
\end{array}\right] \cdot\left[\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right]
$$

Fig. 2-2 AXES ROTATED IN PITCH

Finally, if we assume that the axis set subscripted with ${ }^{3}$ represents components of Earth's magnetic vector measured at an arbitrary aircraft attitude, we can derive the magnetic components (Huh, Hyh, Hzh) in the horizontal plane for a given heading

$$
\begin{aligned}
& {\left[\begin{array}{l}
\mathrm{Hxh} \\
\mathrm{Hyh} \\
\mathrm{Hzh}
\end{array}\right]=\left[\begin{array}{ccc}
\cos & \theta & 0 \\
\sin \theta \\
0 & 1 & 0 \\
-\sin & \theta & 0
\end{array} \cos \theta\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \Phi & -\sin \Phi \\
0 & \sin \Phi & \cos \Phi
\end{array}\right] \cdot\left[\begin{array}{l}
\mathrm{H} x_{3} \\
\dot{H} Y_{3} \\
\mathrm{~Hz}
\end{array}\right]} \\
& \text { (2-1la) } \\
& {\left[\begin{array}{l}
\mathrm{Hxh} \\
\mathrm{Hyh} \\
\mathrm{Hzh}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & (\sin \theta \sin \Phi) & \sin \theta \cos \Phi \\
0 & \cos \Phi & -\sin \Phi \\
-\sin \theta & (\cos \theta \sin \Phi) & \cos \Phi \cos \theta
\end{array}\right] \cdot\left[\begin{array}{l}
\mathrm{H}_{3} \\
\mathrm{H}_{3} \\
\mathrm{~Hz}_{3}
\end{array}\right]}
\end{aligned}
$$

The algorithm to be implemented with the microprocessor would therefore require operations as outlined in Fig. 2-3. Details of programming method, modifications to the above equations to facilitate programming and computation speed versus accuracy tradeoffs are discussed in following sections.

DO FOREVER

Measure, Digitize and Store $\mathrm{Hx}, \mathrm{Hy}, \mathrm{Hz}, \theta$ and Φ

Correct Sensor Errors

Compute the Horizontal Field Components Using Equation 2-11

Compute Heading Using Equation 2-1

Display Heading

Fig. 2-3 LOGICAI OPERATIONS REQUIRED TO COMPUTE HEADING

2-3 MECHANIZATION OF THE HEADING ALGORITHM

A. General Considerations

To evaluate the performance of an integrated system experimentally, an instrument was designed to implement the algorithm developed above. Several approaches were considered to implement the heading instrument for experimentation:

1) A minicomputer implementation incorporating an HP-2100 minicomputer supported by peripheral interface and analog circuitry. Programming of the $H P-2100$ would have enabled the computer to. control multiplexing and processing of sensor data as suggested by Parish and Lee [Ref. 2-3].
2) A hybrid system composed of a remote data acquisition system to collect data from sensors for subsequent processing by a computer (possibly an HP-2100).
3) A digital/analog electronic implementation incorporating the design of a special purpose computer to perform the required functions of a heading instrument.

The first two approaches were abandoned since it was desirable to perform the experiments at various locations remote from a computer facility and to have data available immediately without having to rely on off-line computations at a later date. The design task then evolved to the design of a special purpose computer system to implement the algorithm, provide a means for evaluating the performance of the proposed algorithm and to allow modifications to the system if required.
B. Design Criteria

Having decided on the general approach to implementing
the algorithm it became necessary to consider the performance criteria desired of the instrument.

1) Accuracy

As a design goal, an absolute accuracy of $\pm 1.0^{\circ}$ in heading uncertainty was selected for the laboratory implementation. This accuracy is compatible with commercially available heading systems.
2) Computation Speed

The bandwidth of the system is determined mainly by the computation speed of the computer ${ }^{2}$. As a design goal, complete heading updates once per second was established.
3) Flexibility

A desirable feature of the laboratiory evaluation instrument was considered to be flexibility. Revisions or additions to the algorithm as predicted by experimental data should be incorporated with minimal redesign of the instrument.

2-4 CONCIUSIONS

An instrument designed to implement the heading algorithm developed above uses a three axis magnetometer to measure magnetic field data in the vicinity of an aircraft. Since the magnetometer proposed is a solid state three axis fluxgate device and is permanently mounted in a strapped down configuration, the implementation results in an attitude independent

[^4]remote magnetic indicator ${ }^{3}$.

Several factors will contribute to system inaccuracy. Although the major error sources can be evaluated mathematically (Chapter IV), there is a need to evaluate the implementation experimentally. Systematic errors that arise can be reduced by instrument computation. This capability (inherent with a computer based system) enables incorporation of less expensive sensors in the heading instrument with less concern with factors such as temperature regulation, sensor orthogonality and sensor offset ${ }^{4}$.

Since the algorithm can be implemented using a microprocessor as the major computer element, the resulting instrument will have inherent computation capability, be small in size and consume relatively little power. These factors make the instrument an ideal device for aircraft application where the need for redundant distributed processing capability is invaluable.

[^5]DESIGN OF A MICROPROCESSOR BASED HEADING INSTRUMENT

3-1 INTRODUCTION

Progress in device and component technologies during the 1970's has led to an assortment of sophisticated integrated circuits (IC) devices [Ref. 3-1] which enable the design of instruments with a high degree of sophistication and accuracy. Of these devices, the microprocessor has to date been the most exploited component in industrial control and instrumentation applications [Ref. 3-2 through 3-7]. There have been many papers presented addressing the general application and feasibility of applying microcomputers to particular design tasks [Ref. 3-8 through 3-21].

Although much of the literature to date on microprocessors has addressed the design of commercial products (usually the final result of a carefully orchestrated effort beginning with a market survey), the design of a laboratory instrument for algorithm evaluation differs in design philosophy. In particular, the laboratory instrument is designed to evaluate a proposed algorithm under laboratory conditions. The traditional benchmark evaluations and attempts to match the microprocessor to the application is not only difficult but unnecessary. If the processor is much more powerful than necessary, the "overkill" is little noticed; but if an insufficiently endowed microprocessor is selected, the effects can be devastating. Not only will the program be difficult to write and voracious of memory, it would be difficult to change to a more powerful microprocessor part way through the project. With these considerations in mind, a general purpose, flexible microprocessor with powerful architecture and instruction set the Signetics 2650 microprocessor $\{$ Ref. 3-22\} was selected.

3-2 HARDWARE DESIGN CONSIDERATIONS

The design of a microprocessor based system begins by considering the total system level block diagram to be implemented (Fig. 3-1). Inputs from five sensors including x, y and z axis magnetic data plus pitch and roll angles (Hx, Hy, Hz, θ and Φ) are to be multiplexed, sequentially sampled and converted to a digital representation prior to processing (executing the algorithm developed above). The main subsystem of Fig. 3-1, the central processing unit (CPU), operates under control of instructions stored in the system memory and interfaces with the input and output subsystems via data ports.

At this early stage in the design, it is significant to note that the block diagram of Fig. 3-1 differs slightly from that of a classical discrete hardware solution. The input subsystem (composed of analog multiplexer, sample and hold, and analog to digital converter) differs from a conventional data acquisition in that it is devoid of a control section. The microprocessor will control the data acquisition sampling and conversion in addition to performing the arithmetic function associated with the algorithm.

Having established a tentative block diagram of the instrument, the design continues by addressing relevant characteristics and limitations of each subsystem. These characteristics will then in term be considered in configuring the final system and program to be executed.

1) The Analog Subsystem

Composed of the analog multiplexer, sample/hold and analog to digital converter, the analog subsystem of Fig. 3-1 affects both system accuracy and throughput rate. The

Fig. 3-1. SYSTEM BLOCK DIAGRAM
well-known Shannon theorem [Ref. 3-23, 3-24] on sampling theory defines one of the basic limits on throughput rate stating that the minimum frequency for sampling must be double the highest significant frequency of the signal, including the noise on the signal. This minimum frequency is necessary, the theorem states, if the sampled signal is to contain all of the information needed for undistorted reconstruction. At a lower sampling frequency ailiasing can occur ${ }^{1}$. The minimum sampling rate for data to be used in this heading instrument (based on the design goal of Chapter II) then results in a system bandwidth of 30 hertz. The analog signals from each sensor are low pass filtered to reduce frequency content above 60 hertz. A survey of commercially available multiplexers, sample and hold modules and analog to digital convert modules (ADC) [Ref. 3-25 to 3-28] reveals that subsystems with throughput characteristics exceeding the requirements of a system sampled at one second intervals are readily available (pertinent specifications are discussed in more detail in Chapter IV). The limiting parameter determining total system speed performance will, then be the execution time of the algorithm (a programming consideration). A further system consideration is the ability to adjust analog system offset and gain. These adjustments are made using variable resistors (trim pots) connected to appropriate leads on the sample and hold and analog to digital converter modules.
2) The Central Processing Unit (CPU)

The central processing unit (Fig. 3-2) is composed of the microprocessor (Signetics 2650) supported by peripheral logic elements (Fig. 3-2). Design of this subsystem involved medium

[^6]
Fig. 3-2. THE CPU SUBSYSTEM
and small scale integrated circuits using well-known [Ref. 3-29 through 3-31] design techniques. To facilitate system development several features were included in the design of the CPU subsystem (features that would not necessarily be required in a production instrument). These include:
a) System reset, single step and normal run mode operation controlled by switches and logic elements.
b) An RS-232 teletype interface is included to enable manual intervention and development capability during program development. The program was developed by loading and executing instructions into the random access memory (RAM) under control of the PIPBUG ${ }^{2}$ program.
3) The Memory Subsystem

The memory subsystem (Fig. 3-3) was organized onto cards each with two thousand byte capability. In this manner system memory could easily be expanded (or reduced) in increments of 2 K bytes. The memory chips selected were organized as 256 four bit words and feature pin for pin compatibility with commercially available random access (RAM) and programmable read only memory (PROM) chips. Program segments could then be developed in RAM and finally "burned" into PROM chips for a permanent, nonvolatile operation. In this manner the system development begins with 1 K bytes of memory devoted to the resident PIPBUG program (in ROM chips) with the remainder of memory allocated as RAM for both program and scratch pad usage.

[^7]
MEMORY SUBSYSTEM (l Card)
Fig. 3-3.

As the program is developed, additional memory is added in increments of 2 K bytes per card or 256 bytes on the card. Modifications to the program can be easily made using the PIPBUG program and teletype.
4) The Output Subsystem

For laboratory development the output subsystem of Fig. 3-4 was designed to provide seven segment visual output of the aircraft heading with three significant digits displayed. To expediate the design cycle and to enhance system throughput rate, the outputs were designed as ports with latches and decoder driver functions provided by hardware. In other applications a hardware/software tradeoff could be made with the data decoding and driving implemented using table lookup and multiplexing controlled by the CPU.

3-3 SOFTWARE DESIGN CONSIDERATIONS

The general purpose processor selected to implement the CPU was designed to implement programmed logic and to perform conventional computer operations. This heading instrument takes advantage of both areas. Since the instrument is actually a special purpose computer under control of a stored program, the functional specialization resides in the program rather than the hardware logic. Modifications can be made relatively easily, satisfying the flexibility design goal of Chapter II.

Having decided on the tentative hardware structure described in Section $3-2$ above, the program development leading to the final listing in Appendix B proceeded as follows:

1) Structured flow charts were developed depicting the total system operation as an ordered sequence of operations. Each

operation is identified as a separate subroutine which in turn can have "nested" subroutines of its own (Fig. 3-5).
2) System accuracy requirements were next investigated (discussed in detail in Chapter IV) to ascertain the precision requirements ${ }^{3}$ of the various subroutines.
3) The respective subroutines outlined in 1) above were developed and implemented using a cross assembler program [Ref. 3-32]. Each subroutine was then loaded into the development hardware and "debugged" prior to total program intergration. The above program development depicts a top down strategy of program development [Ref. 3-33] and leads to an expedient system development with subroutines being individwally developed to yield a modular program construction.

3-4 DESIGN OF SUBROUTINES
The total program consists of an overall system program composed of nested subroutines. The discussion in this section is limited in scope to the design of the more complex subroutines required to implement the solid state remote magmetic heading algorithm.
I) Subroutine "SAMP" (Fig. 3-6a)

The first portion of this subroutine is dedicated to the control function of selecting an analog channel via the multiplexer, sampling and holding the data, resetting and reading data from the analog to digital converter ($A D C$). Prior to or during the programming of this section, data fields in
${ }^{3}$ This step is vital to determine whether the operations out-- lIned in 1) above are to be carried out in a single or multiprecision manner.

Power on reset of all registers and subsystems

Compute the aircraft heading

Fig. 3-5a. SYSTEM PROGRAM

Sample all analog channels

Compute the horizontal Hi field

Compute the horizontal By field

Compute the horizontal field vector

Compute heading

Output the data

Fig. 3-5b. SUBROUTINE "MAIN"

	DO 5 TIMES
	SELECT AN ANALOG CHANNEL
	SAMPLE AND HOLD DATA
	CONVERT ANALOG TO DIGITAL
	DO TWICE
	$\text { STORE } 8 \text { BITS }$ OF DATA
CONVERT UNIPOLAR BINARY DATA TO SIGN MAGNITUDE FORMAT	
CHANGE THE SIGN OF Hx AND Hy SENSOR DATA	
DO 3 TIMES	
RETURN	

Fig. 3-6a. SUBROUTINE "SAMP"

PRELOAD VARIABLES REQUIRED TO CORRECT FOR OFFSET ERROR

```
SADD
```

PERFORM A DOUBLE PRECISION ADD OR SUBTRACT

PESTORE CORRECTED DATA TO TABLE

RETURN

Fig. 3-6b. SUBROUTINE "OFST"

Fig. 3-6c. SUBROUTINE "SADD"
input ports 1 and 2 and output port 1 of Fig. 3-1 are allocated. Control information is then passed to the peripheral module by writing control words to output port 1 . Analog to digital converter status and the 12 bit data field are sampled by reading input ports 1 and 2 .

Sensor outputs were biased at +2.5 Volts with transfer characteristics as depicted in Fig. 3-7a [Ref. 3-34]. The ADC selected for this laboratory instrument had a binary output data format related to analog input as shown in Fig. 3.7b [Ref. 3-35]. The second function of the sampling subroutine "SAMP" was to convert data from a unipolar binary format to a sign magnitude format. Since the total transfer function from sensor input to ADC output (Fig. 3-7a and b) indicates an offset of 2.5 Volts or $1 / 2$ the ADC output range, the sign magnitude format can be generated as shown in Fig. 3-8.

Fig. 3-7a. SENSOR TRANSFER CHARACTERISTIC

Fig. 3-7b. VDC TRANSFER CHARACTERISTICS

Fig. 3-8 CONVERSION OF DATA

The third function of the "SAMP" subroutine was to reverse the sign of the $H x$ and Hy data (to correct a test. fixture problem) and to correct for sensor offsets. Although analog subsystem offsets are corrected by adjusting either the sample and hold module or the ADC, the independent sensors themselves have offsets ${ }^{4}$. Offset errors for the laboratory instrument were compensated by determining the offset correction term for each sensor (method described in detail in Chapter V) and then either adding or subtracting the term to the respective data during the sample subroutine. By characterizing the sensor errors ${ }^{5}$, actual datum could be improved further during this step.

The final function of the "SAMP" subroutine was to correct for sensor orthogonality error (subroutine "ORTH"). Although the sensors were physically aligned and specified to have orthogonality characteristic [Ref. 3-34] less than ± 1 degree relative to the base coordinates, this nonorthogonality contributes appreciably to total system error (see error analysis in Chapter IV). The physical misalignment of the sensors was determined experimentally (Chapter V) and determined to be mainly a misalignment of sensor x in the $x-y$ plane as illustrated in Fig. 3-9.

The actual data measured with the x axis sensor is then related to the true $H x$ and $H y$ values as

$$
H x^{1}=H x \operatorname{Cos} \varepsilon-H y \operatorname{Sin} \varepsilon .
$$

[^8]

Fig. 3-9 X AXIS NONORTHOGONALITY

Using small angle approximations, we can solve for the desired true value of $H x$

$$
\begin{aligned}
& H x^{1} \simeq H x-H y \operatorname{Sin} \varepsilon \\
& H x=H x^{1}+H y \operatorname{Sin} \varepsilon
\end{aligned}
$$

By measuring ε (Chapter V) and storing the angle as a constank, the x axis data was then restored using equation 3-1b above in subroutine "ORTH".
2) Subroutines ROTX and ROTY

These subroutines compute arithmetic values for $H x h$ and Hyp of equation 2 -lb using sign magnitude quantities and table lookup to determine solutions for the transcendental functions. Subroutines "SADD" and "SMPY" are nested and used to perform double precision add and multiply as required.
3) Subroutine HVEC

Following computation of the horizontal X and Y axis magnetic vector, the subroutine "MAIN" calls subroutine "HVEC" to compute the square of the horizontal vector. Vectors Hx and Hy are squared by calling subroutine "SQU" then added, yielding $\mathrm{H}(\mathrm{HORIZONTAL})^{2}$.
4) Subroutine WICH

To compute heading, equation $2-1$ (or a similar form) must be solved using the horizontal magnetic field vector and either the x or y axis horizontal field component. Although the square root operation implied in equation $2-1$ could be implemented using a numerical technique [Ref. 3-37, 3-38], the computation time is decreased by using a table lookup method. Subroutine "WICH" (Fig. 3-10) compares the absolute magnitude of the two horizontal field vectors $H x$ and $H y$ to determine the relative heading of the aircraft ${ }^{6}$ with respect to the northsouth and east-west axes (Fig. 3-1I).

Fig. 3-10. SUBROUTINE "WICH"

[^9]

Fig. 3-11. MAGNITUDES OF Hx AND Hy RELATED AIRCRAFT HEADING
5) Subroutines COSY and SINY (Fig. 3-12, 3-13)

Depending on the relative absolute magnitudes of $H x$ and Hy, either "COSY" or "SINY" is called to compute aircraft heading. These subroutines invoke subroutine "DIVI" to form the quotient of the axis vector squared and the horizontal field vector squared (a double precision operation). Subroutine "ANGL" is then called to perform an associative table lookup operation using successive approximation and interpolation to complete the inverse cos squared operation. The double precision binary quantity is then converted to three digit binary coded decimal format ($B C D$) prior to computation of aircraft heading (subroutine "HDG").

The subroutine "SINY" of Fig. 3-12 includes a subtraction of the computed angle from 90 degrees following conversion to $B C D$ format. This operation ensures that the angle passed to

Fig. 3-12. SUBROUTINE "COSY"

Ro, $\mathrm{RI}=\mathrm{Hy}^{2}$	
DIVI	$A=H y^{2} / H h^{2}$
ANGL	$B=\operatorname{arcos}^{2}(A)$
BCDA	Convert B to BCD Format
	$B=90-B$
HDG	Compute Heading
	RETURN

Fig. 3-13. SUBROUTINE "SINY"
the calling subroutine upon exiting either "SINY" or "COSY" is an aircraft heading angle relating sensor x to the north-south axis.
6) Subroutine HDG (Fig. 3-14)

The function of this subroutine is to compute aircraft heading having established the angle between the x axis sensor and the north-south geodetic axis. Determination of the actual heading is accomplished by comparing the signs of both the x and y axis horizontal vectors prior to computing heading (Fig. 3-15). It should be noted that all of the preceding computations leading to horizontal vector data were on sign magnitude quantities preserving the correct horizontal vector polarities ${ }^{7}$.

3-5 CONCLUSIONS

This chapter has outlined the practical aspects of designing an instrument to evaluate both the heading algorithms and solid state magnetic indicator proposed in previous chapters. The chapter outlined a design approach that can be used to implement a microprocessor based instrument. In particular, the need to consider the total system hardware requirements while simultaneously considering the programming requirements was identified. Design proceeded by outlining a system block diagram (Fig. 3-1) with major subsystems considered. The instrument required a special purpose computer with an analog subsystem to sample and digitize five sensor signals. Timing and control of the analog subsystem plus digital processing of data was controlled by a microprocessor based central processing unit (CPU). Memory for permanent storage of

[^10]

Fig. 3-14. SUBROUTINE "HDG"

S

Fig. 3-15. POLARITIES OF HORIZONTAL VECTORS RELATED TO AIRCRAFT HEADING
instructions and temporary storage of data was implemented using memory chips organized on cards with 2048 byte capacity. The particular memory chips selected feature pin compatibility ${ }^{8}$ with both read only and volatile random access versions. System inputs consisted of sensor signals from a three axis solid state fluxgate magnetometer plus two analog signals simulating gyroscope outputs. System outputs consist of visual seven segment readout displaying computed heading. In addition, an RS-232 teletype interface was provided to facilitate system development and experimentation.

By identifying the total system in block diagram form at the very beginning, the role and requirements of each subsystem as well as the supporting software were identified. The design then evolved on a modular basis with each subsystem and its supporting program developed in parallel. In this manner pin assignments for input/output ports and critical timing requirements that involved both hardware and software consideration were handled efficiently. By outlining the program requirements in flow chart form (analagous to the block diagram of the hardware subsystem), subroutines were identified facilitating a modular program development. Where possible, subroutines were shared in a nested manner avoiding replication of programing and waste of memory.

Details of error analysis and calculation of overall system throughput rate were deferred to Chapter IV. It was pointed out however, that errors induced by imprecision of data plus truncation and roundoff during processing of the algorithm were to be considered early in the design phase. These data were required to select the sensors and the analog to digital

[^11]converter as well as to design the supportive software for the analog subsystem. In addition, the data precision requirements were necessary prior to programming the algorithm ${ }^{9}$.

By incorporating a microprocessor as the main CPU element, considerable sophistication in both control and computing performance was achieved. The overall system was designed relatively quickly, provided a convenient laboratory instrument for evaluation of the proposed algorithms and featured inherent flexibility.

[^12]
HEADING INSTRUMENT ERROR ANALYSIS

4-1 INTRODUCTION

The heading instrument designed to evaluate the heading and solid state remote magnetic indicator algorithms is prone to error from many sources. These errors will accumulate and degrade the accuracy of aircraft heading or yaw angle computations. This chapter addresses the various error sources to determine their relative magnitudes and effects on the overall computation.

Prior to beginning the hardware design of the microprocessor based instrument many of these potential error sources were considered. Their effects were considered in establishing parameters such as word lengths, A / D converter precision, computation speeds, sampling rates, magnetometer sensor accuracies; system noise tolerance, etc. As the design of the microprocessor based system evolved, the error analysis refined. Ultimately, important limitations in instrument design and operation were identified by combined error analysis and empirical data. By carefully analyzing the source and extent of the limiting parameters (such as sensor offset and nonorthogonality), the magnitude of errors unique to this laboratory sensor array were identified. Specialized software was then added (with empiracally derived constants) to correct for the otherwise limiting sensor irregularities improving the total system performance.

In this manner, it is apparent that error analysis is an integral part of instrument design. Not only are important parameters identified early in the design cycle (prior to system block diagram development), but shortcomings in conventional
sensors can be improved by judicial application of error correcting algorithms. In this case, data constants were determined after the final instrument became operational. The sensor peculiarities were analyzed empirically using the instrument itself.

The chapter begins by first identifying and carefully analyzing potential error sources in the sensors. This analysis is followed by a similar consideration of errors originating in the analog subsystem. Processing errors that originate due to the finite word length and precision of the microprocessor along with the effects of simplifications made to the algorithms are finally analyzed. The chapter then concludes with a summary of measurement errors, a sample error analysis, a comparison of predicted to measured error and a summary.

4-2 SENSOR ERRORS

The heading computation algorithm employing the remote magnetic indicator (Chapter II) is prone to error proportional to both fluxgate magnetometer sensor and gyroscope measurement errors. Errors inherent in the fluxgate magnetometer are summarized on the data sheet [Ref. 3-34]. Since the experimentation employed simulated gyroscope sensors with voltage levels accurately represented, the analysis of sensor errors will assume ideal gyroscope sensors to predict experimental data.

A) Sensor Offset Error

Magnetometer sensors exhibit error caused by both electronic and magnetic phenomena. Errors in the Develco sensors were outlined by Workentine [Ref. 4-1]. These offset errors are induced in the Develco sensors by both electronic offset voltages and currents in the respective sensor electronics and
by residual magnetic fields in the magnetic mass of the sensor assemblies. Although the physical and electronic design attempts to reduce offset error, a finite non-zero output can exist when a zero input is applied.

Offset error for each sensor in the Develco model 9200C three axis magnetometer assembly is specified [Ref. 3-34I as "Zero Field Bias +2.5 Volts $\pm 1.0 \% "$. This offset translates into a worst case maximum error voltage of

$$
\text { EOFFSET }= \pm(2.5 \mathrm{~V} \times 0.01)= \pm 25 \mathrm{mV}
$$

Since the offset error is sensor dependent, correction cannot be made at a single physical point (as for analog subsystem offsets described in Section 4-3). Corrections can however be made to the measured data by simply adding or subtracting a constant equal to the offset magnitude following each data measurement ${ }^{1}$.

Offset values for each sensor used in the experiment were obtained by rotating the sensor into alignment with earth's magnetic field vector to measure both positive and negative maximum values. The difference in magnetic measurement (assuming negligible analog subsystem error) is related to system offset error composed of sensor electronic and sensor plus test fixture induced magnetic offset error. The actual offset error can be calculated using these two measurements

[^13]\[

$$
\begin{gathered}
|E \max |=E f+E O \\
|E \min |=E f-E O \\
|E m a x|-|E m i n|=(E f+E O)-(E f-E O)=2 E O \\
E O=(1 / 2) \quad(|E \max |-|E m i n|)
\end{gathered}
$$
\]

where

$$
\begin{aligned}
\text { Emax }= & \text { The maximum positive voltage recorded when the } \\
& \text { sensor aligns with earth's field vector. }
\end{aligned}
$$

Emin $=$ The maximum negative voltage recorded when the sensor aligns 180° with earth's field vector.

$$
\begin{aligned}
E f= & \text { The magnitude of earth's magnetic vector repre- } \\
& \text { sented in volts. } \\
\text { Eo }= & \text { The sensor offset voltage due to both electronic } \\
& \text { and magnetic phenomena. }
\end{aligned}
$$

Data recorded during x, y and z axis offset measurements as described above are recorded in Table 4-1. Since the offset error is a function of sensor magnetic permeability, the actual offset value will vary with time depending on induced magnetic fields ${ }^{2}$.

Final offset correction values were determined by rotating two sensors in the horizontal plane around the third vertical axis and measuring offsets in two sensors at a time. Recorded data for each sensor was previously corrected for orthogonality error by the sample subroutine "SAMP" (discussion

[^14]

Table 4-1 OFFSET DATA DERIVED BY MEASURING EARTH'S FIELD

- *

of this correction follows in Section 4-2B). Data recorded in this manner appears in Tables 4-2 and 4-3. Final correction . terms for correcting sensor offset error were calculated using these data. Offset terms to be added or subtracted from respective data channels are tabulated in Table 4-4.

By correcting system offset errors in this manner, the effective error contribution can be reduced appreciably (see final data discussion Chapter V). For a flight instrument, sensor offset characteristics as a function of temperature variation and supply voltage can be derived empirically and appropriate offset corrections made by computing the value of the correction term variable. Magnetically induced offsets can be reduced by degaussing the sensor assembly periodically.
B) Axis Alignment Errors

The error specification of [Ref. 3-34] indicates that the maximum axis alignment error is ± 1 degree relative to base referenced coordinates. This error results in sensor directional uncertainty as illustrated in Fig. 4-1. Each sensor is located within a right circular cone with axis along the true sensor axis and vertex at the common sensor origin. Although this alignment uncertainty contributes no error in determining the total magnetic vector

$$
\overline{\mathrm{H}}=\left(\overline{\mathrm{H}} \mathrm{X}^{2}+\overline{\mathrm{H}} y^{2}+\overline{\mathrm{H}} z^{2}\right)^{\frac{1}{2}},
$$

there is considerable uncertainty in attempting to resolve the true magnetic field component along any axis of the reference coordinate system. This alignment uncertainty of magnetic sensors limits system performance of conventional field direction measuring apparatus [Ref. 4-1].

Table 4-2 X AND Y AXIS ERROR MEASURED BY ROTATING X, Y AROUND Z IN THE HORIZONTAL PLANE

Protractor Heading Measurement (Degrees)	Hz Data Measured Units)	Protractor Meading Measurement (Degrees)	Hz Data Measured (Units)	Offset Erior (Units)
0.5	0	180.5	-56	-56
315.5	-527	135.5	469	-58
270.5	-763	-571	90.5	707

Table 4-3 2 AXIS OFFSET ERROR MEASURED BY ROTATING THE Z AXIS AROUND THE VERTICAI X AXIS

Sensor Axis	Total Average Offset (Units)	Required Correction	Amount of Correction Decimal Binary	Hex	
X	88.9	Subtraction	45	00101101	0200
Z	43.4	Adaition	22	00010110	0160

Table 4-4 OFFSET CORRECTION VALUES

Fig. 4-1 SENSOR ALIGNMENT UNCERTAINTY

Although this error source can be reduced by physically aligning the sensors more accurately during assembly, cost of the sensors increases. Ultimately, directionality of the magnetic sensors becomes a function of the physical sensor itself and more accurate sensors are required as pointed out by bise [Ref. 4-2]. A heading system that tolerates sensor misalignment is therefore a very desirable alternative to requiring precise alignment or more elaborate sensors.

During assembly of the Develco fluxgate magnetometer sensor array, sensor misalignment is determined by using earth's magnetic field and a precision mechanical rotation assembly. A sensor (assume the X axis) is aligned with earth's magnetic

* *

vector by positioning the sensor to maximize electrical output ${ }^{3}$. One of the other sensors (assume the y axis) is aligned with the rotation axis of the precision calibration assembly (Fig. 4-2) and perpendicular to the first by rotating the sensor array around the second sensor axis (y axis in this case) and adjust-. ing its relative position until a null output is achieved at all rotation angles. Mechanical orthogonality of the sensors is then limited only by the mechanical imprecision of the calibration device (orthogonality within ± 0.01 degrees can be easily achieved in the calibration tool) and by the directional characteristics of the physical sensors.

$\begin{array}{ll}\text { Fig. 4-2 } & \begin{array}{ll}\text { MECHANICAL ORIENTATION OF THE MAGNETOMETER } \\ & \text { SENSORS DURING CALIBRATION }\end{array}\end{array}$

In addition to functioning as an alignment apparatus, the calibration device described above provides a convenient means

[^15]to characterize sensor assemblies after final assembly adjustments are made. Any misalignment of the second sensor relative to the first results in a coning of the second sensor around the rotation axis ${ }^{4}$ with a sinusoidal output voltage that is a function of total earth's magnetic field and axis alignment error. The peak to peak voltage resulting from sensor coning is recorded during the final alignment test and made available to sensor purchasers. Coning voltages developed for the sensor assembly used with this experiment were obtained from Develco [Ref. 4-3] and are recorded in Table 4-5. Sensor misalignment for each axis can be derived using additional data provided by Develco along with additional empirical data derived by experimentation.

The total ambient magnetic field at the Develco laboratory is measured using the three sensors (applying equation 4-1) and is supplied as digital data. In our case, the total field measured was 1573 units or
$\frac{1573 \text { units }}{2048 \text { units }} \times 60,000$ gamma F.S. $=46,084$ gamma (γ)
Full Scale (F.S.)

Sensitivity of the sensor $=\frac{2.5 \text { Volts.E.S. }}{60,000 \mathrm{YF.S.}}=42 \mu \mathrm{Volts} / \mathrm{\gamma}$
Considering the X axis sensor, coning resulted in a signal of 38 mV peak to peak (or 19 mV peak). Misalignment of the X axis sensor from the $Y-Z$ plane can then be calculated as

[^16]SENSOR ASSEMBLY NO. S/N 1043-013

Rotation Axis	Coning Voltage (Peak-Peak mV)	Orthogonality Error (Degrees)
Y	38	0.57
Y	8	$\simeq 0$

Table 4-5 MAGNETOMETER ORTHOGONALITY MEASUREMENTS

Peak Signal $=19 \mathrm{mV}$ or 456 gamma angular misalignment

$$
\begin{aligned}
& \varepsilon_{x}=\sin ^{-1} \frac{456}{46,084} \\
& \varepsilon_{x}=0.57 \text { degrees }
\end{aligned}
$$

Similarly, the Y and Z axis have misalignment errors of $\varepsilon Y \simeq 0$ and $\varepsilon z=0.76$ degrees with respect to the $X-Z$ and $X-Y$ planes respectively (sensor orthogonality errors are tabulated in Table 4-5).

Having established that sensor orthogonality errors exist, the remaining task is to identify the direction that the sensor axis points relative to the other two sensor axes. Since the Y axis has relatively little orthogonality error, it will be assumed to be perpendicular to the $X-Z$ plane. In addition, since the Hz data enters into the algorithm in a second order manner relative to the $H x$ and Hy measured data, correction and characterization of the $H x$ sensor was considered to be of primary concern. Orientation of the X axis sensor relative to the Y and Z axes was determined empirically.

Angular position of the X axis sensor can be described using the error angles $\varepsilon x y$ and $\varepsilon x z$ as delineated in Fig. 4-3. Characterization of sensor orthogonality exror in terms of these two angles would enable algorithmic corrections of measured data.

Fig. 4-3 X AXIS SENSOR ORIENTATION

1) Empirical Determination of $\varepsilon x z$

The angle $\varepsilon x z$ (angle between the x axis sensor and the z axis of the geodetic coordinate system) was determined in sevaral steps using the test apparatus described in Chapter V.
i) The x and y sensors were oriented in the horizontal plane with the z axis sensor vertical downward.
ii) The x and y sensors were rotated around the z axis with magnetic data measurements (corrected for sensor offset error as described in Section 4-2A) recorded in Table 4-6 for incremental rotation angles.
iii) The total horizontal field at each angular position was calculated

$$
\text { Hit }=\left(H x^{2}+H y^{2}\right)^{\frac{1}{2}}
$$

iv) Average horizontal field Have was computed by averageing the results of iii) above.
v) The horizontal field deviation Hd was computed for each angular position; tabulated in Table $4-6$ and plotted on Fig. 4-4.

$$
\text { Hd }=(\text { Lav }- \text { Hit })
$$

The horizontal field deviation or error las shown on Fig. 4-4) was now examined. An angular error $\varepsilon x z$ should cause the horizontal field error curve to peak at 90 and 180 degrees. Since this obviously was not the case, it was concluded that major error in x axis orthogonality was due to the component EXP.

Physical* Heading (Degrees)	Displayed** Heading (Degrees)	Measured Data (Units)		Total Computed Horizontal Field (Hht) (Units)	$\begin{gathered} \text { Hd } \\ \text { (Hav-Hht) } \\ \text { (Units) } \end{gathered}$
		Hx	Hy		
355	90	12	-727		
335	70	258	-727	727	-3
315	50	258	-682	729	-1
295	30	477	-555	732	2
275	10	637	-362	733	3
255	10	720	-127	731	1
235	350	718	127	729	
235	330	628	36	725	-
215	310	464		725	-5
195	290	242	569	734	4
175	270		687	728	-2
155	270	-10	731	731	1
	250	-258	686.	733	3
135	230	-476	557	733	
115	210	-635	36		3
95	190	-721	36	731	1
75	170	-	123	731	1
55	150	-718	-133	730	0
5	150	-628	-371	729	
35	130	-460	-565	729	-1

Total Hht $=12415$

Average $(\mathrm{Hav})=730$
*Measured using a protractor on the test apparatus. **Computed and displayed digitally by the instrument.

Table 4-6 MEASUREMENT OF HORIZONTAL FIELD

[^17]
Fig. 4-5 DEVIATION OF H'x AND Hy DATA FROM THE COMPUTED

2) Empirical Determination of $\varepsilon x y$

The angle $\varepsilon x y$ representing x axis sensor misalignment relative to axis y was measured as follows:

Steps i) and ii) above were repeated with the exception that the calculated values for $H x$ and $H y$ (Hxc and Nyc respectively) were recorded with measured $H x$ and $H y$ data (Hmm and Hym respectively) in Table 4-7. The calculated values were obtained by assuming that the angle $\varepsilon x z$ as determined above was negligible and that the y axis sensor was perpendicular to the $x-z$ plane. With these assumptions, we note that at the heading of zero degrees (extrapolated between display of 10 and 350 degrees of Table 4-7 and Fig. 4-5), there is no error in yaw due to either $H x$ or $H y$. By physically rotating the sensors in fixed intervals from yaw $=0$ degrees and noting that the horizontal field Ho $=730$ units, we can then compute expected $H x$ and $H y$ data at respective yaw orientations.

Physical orientation of the x axis sensor is easily determined by considering orientation at the maximum error excursions. These observations are illustrated in Fig. 4-6. We note that the only possible orientation of the x axis sensor satisflying the data in Fig. $4-5$ is that of Fig. 4-6.

(a)

(b)

Fig. $4-6$ (a) SENSORS ORIENTED AT YAW $=+90$ degrees
(b) SENSORS ORIENTED AT YAW $=+270$ degrees

Physical* Heading (Degrees)	```Displayed** Heading (Degrees)```	Measured Data (Units)		Computed Data (Units		$\begin{aligned} & \text { Deviation } \\ & \text { (Hxm-Hxc) } \end{aligned}$	(Units) (Hym-Hyc)
		Hxm	Hym	HxC	Hyc		
355	90	12	-727	0	-730	$+12$	$+3$
335	70	258	-682	250	-686	+ 8	+ 4
315	50	477	-555	469	-559	+ 8	+ 4
295	30	637	-362	632	-365	+ 5	+3
275	10	720	- -127	719	-127	+1	0
255	350	718	127	719	$+127$	- 1	0
235	330	628	363	632	365	- 4	- 2
215	310	464	569	469	559	- 5	10
195	290	242	687	250	686	- 8	1
175	270	. -10	731	0	730	-10	1
155	250	-258	686	-250	686	- 8	0
135	230	-476	557	-469	559	- 7	- 2
11.5	210	-635	362	-632	365	- 3	- 3
95	190	-721	123	-719	+127	- 2	- 4
75	170	-718	-1.33	-719	-127	1	- 6
55	150	-628	-371	-632	-365	4	- 6
35	130	-460	-565	-489	-559	9	-6

Magnitude of the angle $\varepsilon x y$ can be computed as follows using data from Fig. 4-5

$$
\begin{aligned}
& \text { Max. delta from Fig. } 4-5=10 \text { units } \\
& \text { Average horizontal field }=730 \text { units } \\
& \qquad \begin{aligned}
\text { } x y \max & =\sin ^{-1} \frac{10}{730} \\
& =0.79 \text { degrees }
\end{aligned}
\end{aligned}
$$

We note that the angle of 0.79 degrees is approximately the same as determined by Develco during manufacture of the sensors (Table 4-5). The added error is due to test set inaccuracy.
C) Fluxgate Sensor Noise Induced Error

The analog output from the fluxgate sensors can exhibit an error due to signal uncertainty resulting from noise. Although the data sheet [Ref. 3-34] indicates that 5 mV peak to peak of ripple can exist on the output, the frequency content centers in the 550 kHz range (driver frequency of the fluxgate magnetometer) and no appreciable ripple ${ }^{5}$ exists below 60 Hz (especially when the sensor output is filtered prior to data sampling). The noise specification of less than 1 gamma peak to peak in the 1 Hz bandwidth region is also negligible. In summary, no appreciable error due to noise on the magnetometer signal lines is evident.
D) Magnetometer Gain Error

The magnetometer is specified to have gain (sensitivity) of 2.5 Volts/600 milligauss, $+1 \%$ which translates into a maximum signal uncertainty of

[^18]$$
\pm(2.5 \mathrm{~V} \times 0.01)= \pm 25 \mathrm{mV}
$$

Chis represents a sensor transfer function of 4.16 Volts/gauss or 0.24 gauss per volt. The uncertainty then can be expressed as

$$
\begin{aligned}
\pm(0.24 \text { gauss } \times 0.01) & = \pm 2.4 \text { milligauss } \\
& = \pm\left(2.4 \times 10^{2}\right) \text { gamma }
\end{aligned}
$$

Since this error is not corrected in the laboratory instrument it will be considered in total in the final error analysis. It is worth noting however, that should the magnetometer gain uncertainty be characterized, gain corrections for each sensor could be made during computation by the computer. In addition the error term is proportional to actual signal level applied.
E) Magnetometer Linearity Error
D.C. linearity of the magnetometer is specified to be $\pm 0.5 \%$ of signal level. This uncertainty at full scale can be expressed as $\pm(2.5$ Volts $x 0.005)= \pm 12.5 \mathrm{mV}$. Alternately, linearity error can cause a signal uncertainty of ± 1.2 milligauss or $\pm\left(1.2 \times 10^{2}\right)$ gamma. Linearity error is also not corrected during computation and is considered in the final error analysis. By simply characterizing and correcting the linearity characteristics of each sensor, considerable improvement in system accuracy could be achieved.

4-3 ANALOG SUBSYSTEM ERROR ANALYSIS

The analog subsystem of the instrument is outlined in block diagram form in Fig. 4-7. This subsystem accepts analog signals from magnetometer and gyroscope transducers,performs a time division multiplexing between the signals and digitizes

Fig. 4-7 THE ANALOG SUBSYSTEM
the respective signals prior to subsequent processing by the computer. During this data acquisition and conversion process, errors are introduced into each of the signals. This section addresses the potential error sources and computes the respective error contributions to be expected during operation of the instrument.

Although the multiplexer and sample and hold blocks of Fig. 4-7 could be eliminated (eliminating possible error sources) by digitizing each signal with a unique analog to digital converter, it can be shown that such a system would be expensive and diffficult to implement. The analog to digital converter (A / D) quantizes an analog signal in a finite amount of time. Speed of conversion is predicted in a finite amount of time by both the resolution of the converter and the frequency of the signal to be converted. Time required to perform a conversion is generally called the "aperature time".

Fig. 4-8 APERATURE TIME AND AMPLITUDE UNCERTAINTY

As illustrated in Fig. 4-8; aperature time and amplitude uncertainty are related by the time rate of change of the analog signal. For the particular case of a sinusoidal signal to
be converted, the maximum rate of change occurs at the zero crossing of the waveform and the amplitude change is:

$$
\begin{gather*}
\Delta V=\frac{d}{d t}(V \sin w t)_{t}=0 \mathrm{x} \text { ta } \tag{4-1a}\\
\Delta V=V \mathrm{w} \text { ta } \tag{4-1b}\\
\text { giving } \frac{\Delta V}{V}=w \text { ta }=2 \pi f \text { ta. } \tag{4-2}
\end{gather*}
$$

From this result we can determine the aperature time required to digitize a 30 Hz signal to 12 bits resolution (a resolution of 1 part in 4096 or 0.0244%).

$$
\text { ta }=\frac{V}{V} \times \frac{1}{2 E}=\frac{.000244}{6.28 \times 30}=1.3 \times 10^{-6}
$$

This result indicates that to remain within 1 bit of resolution (0.0244%) we require an aperature time of 1.3 microseconds to process analog signals varying at a rate of 30 Hertz. It can be seen that the system would require fast A / D converters plus extremely fast computational capability to accommodate this configuration of sensors and analog subsystem. By using multiplexing and sample and hold circuitry we can however reduce the number of A / D converters required to one and alleviate the aperature and processing requirements imposed above.

The operation of sampling to be used by the instrument is illustrated in Fig. 4-9 which shows an analog signal and a train of sampling pulses. The pulses are provided by the central processing unit. A switch connects the analog signal for a very short period of time to the hold circuitry charging a capacitor and storing the sampled voltage until the next sample is required. This type of sampler is called sample and hold.

Fig. 4-9 SIGNAL SAMPLING PROCESS
A) Sampling Rate Errors

The process of uniformly sampling a function of continuous time can yield a significant source of error if the sampling period T is selected too large [Ref. 4-4, 4-5]. This error can be illustrated by considering an analog signal xa(t) that has the Fourier representation [Ref. 4-6]

$$
\begin{align*}
& x a(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x a(j \Omega) e^{j \Omega t} d \Omega \tag{4-3a}\\
& x a(j \Omega)=\int-\infty x a(t) e^{-j \Omega t} d t \tag{4-3b}
\end{align*}
$$

The sequence $x(n)$ with values $x(n)=x a(n T)$ is said to be derived from xa(t) by periodic sampling and T is the sampling period. The reciprocal of T is called the sampling frequency or sampling rate. In order to determine the sense in which $x(n)$ represents the original signal $x a(t)$, it is convenient to relate $\mathrm{Xa}(\mathrm{j} \Omega)$, the continuous-time Fourier transform of $x a(t)$, to $X\left(e^{j \Omega}\right)$, the discrete-time Fourier transform of the sequence $x(n)$. From (4-3a) we note that

$$
\begin{equation*}
x(n)=x a(n t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x a(j \Omega) e^{j \Omega n t} d \Omega \tag{4-4}
\end{equation*}
$$

From the discrete-time Fourier transform we also obtain the representation [Ref. 4-4]

$$
\begin{equation*}
x(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x\left(e^{j \omega}\right) e^{j \omega n} d \omega \tag{4-5}
\end{equation*}
$$

To relate the equations (4-4) and (4-5) we can express (4-4) as a sum of integrals over intervals of length $2 \pi / T$, as in

$$
x(n)=\frac{1}{2 \pi} \sum_{r=-\infty}^{\infty} \int_{(2 r-1) \pi / T}^{(2 r+1) \pi / T} \begin{align*}
& X a(j \Omega) e^{j \Omega n T} d \Omega \tag{4-6}
\end{align*}
$$

sh term in the sum can be reduced to an integral over the nge $-\pi / T$ to $+\pi / T$ by a change of variables to obtain

$$
\begin{equation*}
x(n)=\frac{1}{2 \pi} \sum_{r=-\infty}^{\infty} \int_{-\pi / T}^{\pi / T} X a\left[j\left(\Omega+\frac{2 \pi r}{T}\right)\right] e^{j\left(\Omega+\frac{2 \pi r}{T}\right) n T} d \Omega \tag{4-7a}
\end{equation*}
$$

$$
\begin{equation*}
x(n)=\frac{1}{2 \pi} \sum_{r=-\infty}^{\infty} \int_{-\pi / T}^{\pi / T} x a\left(j \Omega+j \frac{2 \pi r}{T}\right) e^{j \Omega n T} e^{j 2 \pi r n} d \Omega \tag{4-7b}
\end{equation*}
$$

: we now change the order of integration and summation and te that $e^{j 2 \pi r n}=I$ for all integer values of r and n, we obเin

$$
\begin{equation*}
x(n)=\frac{1}{2 \pi} \iint_{-\pi / T}^{\pi / T}\left[\sum_{r=-\infty}^{\infty} x a\left(j \Omega+j \frac{2 \pi r}{T}\right)\right] e^{j \Omega n T} d \Omega \tag{4-8}
\end{equation*}
$$

, substituting $\Omega=\omega / T$ we get

$$
\begin{equation*}
x(n)=\frac{1}{2 \pi} \iint_{-\pi}^{\pi}\left[\frac{1}{T} \sum_{r=-\infty}^{\infty} \operatorname{Xa}\left(\frac{j \omega}{T}+j \frac{2 \pi r}{T}\right)\right] e^{j \omega n} d \omega \tag{4-9}
\end{equation*}
$$

dich is identical in form to equation (4-5). We can therefore ike the identification (equating like terms of (4-5) and (4-9)

$$
\begin{equation*}
x\left(e^{j \omega}\right)=\frac{1}{T} \sum_{r=-\infty}^{\infty} x a\left(\frac{j \omega}{T}+j \frac{2 \pi r}{T}\right) \tag{4-10}
\end{equation*}
$$

\geq can also express (4-10) in terms of the analog frequency varible Ω (where $\Omega=\omega / T$) as

$$
\begin{equation*}
x\left(e^{j \omega T}\right)=\frac{1}{T} \sum_{r=-\infty}^{\infty} X a\left(j \Omega+j \frac{2 \pi r}{T}\right) \tag{4-11}
\end{equation*}
$$

The last two equations clearly reveal the relationship between the continuous-time Fourier transform and the Fourier transform of a sequence derived by sampling. For example, if $\mathrm{Xa}(j \Omega)$ is as depicted in Fig. 4-10a then $X\left(e^{j \omega}\right)$ will be as shown in Fig. 4-10b when the sampling period T is too long and as shown in Fig. 4-10C if T is short enough.

From Fig. 4-10c it is obvious that if $\frac{\Omega O T}{2}<\pi$, i.e., we sample at a rate at least twice the highest frequency of $\mathrm{Xa}(\mathrm{j} \Omega)$, then $X\left(e^{j \omega}\right)$ is identical to $X a(\omega / T)$ in the interval $-\pi \leq \omega \leq \pi$ and can be recovered from the samples $x a(n T)$ by an appropriate interpolation formula.

For the remote magnetic indicator instrument designed in previous chapters, the analog signals are filtered with a low pass section reducing frequency content above $30 \cdot \mathrm{~Hz}$. The sampling rate must therefore exceed 60 Hz ($\mathrm{T}<16.67 \mathrm{~m} .5$. .) to enable accurate dynamic operation of the system.

Laboratory measurements of sampling rates on the functional microprocessor based instrument revealed that the analog subsystem operated at a sampling rate of 62.5 Hz (16 m.s.) indicating that the algorithm execution rate supported a system bandwidth of 31.25 Hz . If frequency content of the analog signals is less than 31.25 Hz there is no error due to sampling.
B) Analog Multiplexer Induced Error

The analog multiplexer of Fig. 4-7 selectively connects one analog transducer output at a time to the input of the sample and hold subsystem. The Datel Systems, Inc., multiplexer [Ref. 4-7] selected for the remote magnetic indicator experiment features eight MOS-EET switches with associated driver circuits,

(a) Fourier transform as a continuous-time signal

ω
(b) Fourier transform of the discrete-time signal obtained by periodic sampling (T is too large)

(c) Same as (b) except T is short enough
$\begin{array}{cl}\text { Fig. 4-10 FOURIER TRANSFORMS OF CONTINUOUS AND } \\ & \text { DISCRETE-TIME SIGNALS }\end{array}$

FET pull-up to reduce propogation delays and all of the necessary decoding logic to enable random channel addressing with a four bit parallel binary input.

Several important parameters are used to characterize analog multiplexers and can contribute error.

1) Transfer Accuracy

Transfer accuracy is a function of the source impedance, switch resistance, load impedance (if the multiplexer is not buffered) and the signal frequency. It expresses the input to output error as a percentage of the input. In our case the system configuration predicates a maximum error due to transfer accuracy of ($\pm 0.01 \%$) yielding an error term of

$$
\pm 0.0001 \times 2.5 \text { Volts }= \pm 25 \mathrm{mV}
$$

2) Settling Time

This parameter defines the time elapsed from the application of a full scale step input to the time when the output has entered and remained within a specified error band around its final value. In our case the selected multiplexer has a maximum settling time of 1 microsecond to $\pm 0.01 \%$ full scale (F.S.) Since the control system selecting channels is implemented using a microprocessor, the minimum time between analog subsystem commands will always be greater than 3.0 microsecond ${ }^{6}$. The multiplexer will therefore always have settled to the final value before the sample and hold circuit (following this subsystem) can be activated with no error due to the settling time parameter.

[^19]3) Throughput Rate

The highest rate at which the multiplexer can switch from channel to channel at its specified accuracy is in this case 500 kHz . Since this rate is more than four orders of magnitude greater than the operational rate of the subsystem there is no error due to throughput rate limitations.
4) Input Leakage Current

The amount of signal coupled to the output as a percentage of input signal applied to all OFF channels together can be calculated by considering the maximum leakage current specified from OFF channels to the ON channel. In our case the maximum error signal can be calculated

$$
\begin{aligned}
& \text { Error }=[4\left.(8 \text { na } \times 2000 \text { ohms source imped. })^{2}\right]^{\frac{1}{2}} \\
& \text { Error }=32 \text { microvolts }
\end{aligned}
$$

Note that in this case the voltage levels are statistically independent allowing an R.S.S. of error sources to calculate total error [Ref. 4-8, 4-9].
C) Sample and Hold Circuit Induced Errors

The sample and hold subsystem consists of a switch and capacitor arrangement as shown in Fig. 4-ll. The Datel Systems, Inc., model SHM-IC-l integrated circuit sample and hold device [Ref. 4-10] features a self-contained high gain differential input amplifier, a digitally controlled electronic switch and a high input impedance buffer amplifier. The external components used with the sample and hold circuit in the solid state remote magnetic indicator instrument consisted of the $0.001 \mu f$ holding capacitor and a look offset trimpot. By connecting
the output back to the negative input of the input amplifier (Fig. 4-1l), the sample and hold subsystem operated in a unity gain, noninverting mode. When the switch is closed, the unit is in the sampling or tracking mode (Digital Control $=0$ Volts), and will follow a changing input signal.

Figure 4-11 SAMPLE AND HOLD SUBSYSTEM

When the switch opens the unit is in the hold mode and retains a voltage on the capacitor for some period of time depending on capacitor and switch leakage. Sample and hold devices are characterized by a number of important parameters that must be considered in the design of a data acquisition subsystem.

1) Acquisition Time

The time lapse between the time that the sample command is given to the point where the output enters and remains within a specified error band around the input value is specified to be less than 4 microseconds time to transit from 0 to 0.1% of 10 Volts with $C=0.001$ $\mu \mathrm{f}$ [Ref. 4-10]. This implies that the control signals emanating from the central processor should allow at least 4 us acquisition time prior to entering the hold mode. We note that the sample and hold subroutine (Appendix B) executes the instruction

IORI, R3 H'80' READY TO HOLD,
a two machine cycle instruction prior to sending the hold control signal. This instruction delays control signal transmission by $(2 \times 3 \mu s)=6 \mu s$ allowing the sample and hold circuit ample time to settle with no appreciable error due to the acquisition time parameter.
2) Hold Mode Voltage Droop

The maximum change in output voltage as a function of time is specified to be $50 \mathrm{mv} / \mathrm{sec}$ maximum using a $0.001 \mu \mathrm{f}$ polystyrene capacitor. Since the maximum total accumulated time to completion of the analog to digital conversion can be calculated as

5 Instructions (11 machine cycles) $=33 \mu s$
1 Analog to Digital Conversion $=20 \mu s$
3 Instructions if Conversion not synchronized with instructions (7 machine cycles)

$$
=\frac{21}{74} \mu \mathrm{~s}
$$

we can then compute droop error to be $50 \mathrm{mv} / \mathrm{sec} \times\left(74 \times 10^{-6}\right.$) $\mathrm{sec}=3.73 \mathrm{mv}$.
3) Aperature Delay

The maximum time lapse between the time of hold signal receipt to opening of the switch is specified to be 50 nsec , an insignificant length of time in the instrument. There is therefore no error due to aperature delay.
4) Offset Error

Although the maximum offset error is specified to be 20 mv maximum [Ref. 4-10], the error was eliminated using the look trimpot offset adjustment. There was no appreciable offset error contribution due to the sample and hold circuit.
5) Gain Error

The gain error of a sample and hold circuit is apparent during the sample mode when the transfer function of the total amplifier deviates from the ideal unity slope condition (Fig. 4-12). In the noninverting unity gain mode, the specified gain error is $\pm 0.05 \%$ maximum yielding a signal error of

$$
(\pm 0.0005) \times 5.0 \mathrm{~V}=250 \mathrm{mV}
$$

This error can, however, be eliminated with the gain

Fig. 4-12 GAIN, OFFSET AND LINEARITY ERRORS
adjustment available at the analog to digital converter. There will therefore be no appreciable net gain error due to the analog subsystem.
6) Nonlinearity Error

Nonlinearity error is apparent in the sample and hold circuit if the transfer function departs from a linear curve (Fig. 4-12). In the noninverting unity gain mode with a $0.001 \mu \mathrm{f}$ holding capacitor the maximum nonlinearity is 0.01% resulting in a worst case signal uncertainty of (.0001) x 2.5 Volts $=25 \mathrm{mV}$.
7). Hold Mode Feedthrough

This error appears due to input signal appearing at the output when the unit is in the hold mode. Although the
feedthrough varies with signal frequency and the expected signal frequencies are substantially lower than the upper frequency limits of the sample and hold device (30 Hz max. versus several kiloHertz), we consider the worst case feedthrough of 0.01% [Ref. 4-10] or 25 mv .
D) Analog to Digital Converter Induced Errors

The A / D Converter selected for the solid state magnetic indicator instrument (Datel ADC-MA12B1B) [Ref. 4-11] uses the successive approximation technique to achieve excellent linearity and speed. Important parameters that potentially contribute errors are addressed below.

1) Resolution Error

The smallest analog change that can be distinguished by the A / D converter is

$$
\text { Least Significant Bit }(\text { ISB })=\frac{\text { Full scale }}{2^{n}}
$$

$$
L S B=\frac{5}{2^{12}}=1.22 \mathrm{mV}
$$

this uncertainty manifests itself as an error in computing by limiting the precision of any calculation.
2) Linearity Error

The maximum deviation from a straight line drawn between the end points of the converter transfer function are specified in [Ref. 4-ll] to be $\pm 1 / 2$ LSB (in our case $\pm 1.22 \mathrm{mV}$ of analog signal).

3) Accuracy Error

The input to output error of the A / D converter is specified in [Ref. 4-1l] to be $\pm 0: 012 \%$ F.S. $\pm 1 / 2 \mathrm{LSB}$ or

$$
\pm(0.00012) \times 5.00 \mathrm{~V} \pm 1.22 \mathrm{mV}= \pm 1.82 \mathrm{mV} \text { Worst Case }
$$

In reality, the two error terms are unrelated and the

$$
\text { Rss Error }= \pm\left[(.00012 \times 5 \mathrm{~V})^{2}+(1.22 \mathrm{mV})^{2}\right]^{\frac{1}{2}}
$$

RSS Error $= \pm 1.36 \mathrm{mV}$
4) Offset Error and Gain Error

Both the offset error and gain error were adjusted to zero using the trimming potentiometers (Fig. 4-7) and the calibration procedure outlined in Ref. 4-11. A reference signal of plus $1 / 2$ LSB (1.22 mV) was applied to the converter and the offset trimming potentiometer adjusted until the output flickered equally between logic "0" and logic "1". The gain was then adjusted by setting the converter input to full scale minus l-1/2 LSB (4.99817 Volts) and the gain trimming potentiometer was adjusted until the output flickered between logic "lll...ll0" and logic "lll...lll". The above steps were repeated until no appreciable error in gain or offset was evident.

4-4 PROCESSING ERRORS

Errors in processing data accrue due to several sources including imprecision and truncation. Since the microprocessor selected for the instrument is inherently an eight bit device, single precision calculations are conducted with eight bits and double precision calculations are conducted with a total
of sixteen bits. This section addresses the effects of computational precision and truncation in the various subroutines and relates these to overall computational accuracy. The various subroutines are analyzed in chronological order as they appear in the main program.
A) Subroutine "SAMP"

The sample subroutine (delineated in Fig. 3-6a) selects and digitizes analog signals by controlling respective analog subsystem modules. During the first portion of this subroutine, A / D converter data bits are stored in two consecutive bytes ${ }^{7}$ in the computer memory. The A / D conversion precision of 12 bits is thereby preserved.

The second, third and fourth operations of the sample subroutine convert the unipolar binary format of the data to sign magnitude format, adds offset quantities and merely changes the signs of the Hx and Hy data. The operations are conducted in a double precision manner and precision of the data remains unaltered.

Correction of x axis orthogonality error is the final operation of the sample subroutine. Equation (3-1) is implemented at this point using a table lookup (for the sin function), multiplication and addition. The final result can be expressed as

$$
H x=H x^{\prime}+H y \operatorname{Sin} \varepsilon
$$

[^20]where the respective quantities have the following forms
\[

$$
\begin{aligned}
H x^{1} & =x_{1}+\sum_{i=1}^{11} a_{i} 2^{i} \\
H y & =x_{2}+\sum_{j=1}^{11} a_{j} 2^{j} \\
\operatorname{Sin} \varepsilon & =\sum_{k=1} a_{k} 2^{-k}
\end{aligned}
$$
\]

and
$\mathrm{x}_{1}, \mathrm{x}_{2}$ are sign bits
$a_{i, j, k}$ equal 0 or 1 depending on whether the respective term is to exist or not

We can analyze the effects of imprecision and truncation by noting that the sin function has eight significant binary bits resulting in a resolution of $1 / 256$ or $90^{\circ} / 256=0.352^{\circ}$.

The relative error in $\sin \varepsilon$ is computed by Dahlquist [Ref. 4-12] as follows

$$
\text { let } \begin{aligned}
\tilde{a} & =\text { the approximate value of } \sin \varepsilon \\
a & =\text { the exact value of } \sin \varepsilon
\end{aligned}
$$

then the relative error in \tilde{a} is

$$
(\tilde{a}-a) / a \text { if } a \neq 0
$$

Since data in the sin table has been truncated, maximum relative error can be as large as $\pm\left(1 / 2^{12}\right)$ or $\pm 0.02 \%$.

From the definition of relative error we obtain the following relationships between exact, estimate and estimated
relative error

$$
\tilde{a}=a+a r=a(1+r)
$$

If a_{1}, and a_{2} have relative errors of $\pm 0.39 \%$ and $+0.02 \%$, respectively, then

$$
\begin{aligned}
\tilde{a}_{1} \tilde{a}_{2} & =a_{1}(1 \pm 0.0039) \text { a }(1 \pm 0.00024) \\
& =a_{1} a_{2}(1 \pm 0.0039)(1 \pm 0.00024)
\end{aligned}
$$

Thus, the relative error in $\tilde{a}_{1} \tilde{a}_{2}$ is

$$
\begin{gathered}
(1 \pm 0.0039)(1 \pm 0.00024)-1= \\
\pm(0.0039) \pm(0.0039)(0.00024) \pm(0.00024) \\
\cong \pm(0.0041)
\end{gathered}
$$

Since the maximum value of $\operatorname{Sin} \varepsilon$ to be encountered occurs when the orthogonality error (ε) is 1 degree, $\sin \varepsilon=0.017$ maximum. The maximum value for Hy can be 0.6 gauss or 2048 units. Maximum error due to imprecision in the product Hysine is then

$$
\begin{aligned}
\text { Er Max } & =(2048 \times 0.017)(1+.0041)-(2048 \times 0.017) \\
& =0.1427 \text { units }
\end{aligned}
$$

Since only the integer portion is retained in the final product, insignificant error can be attributed to imprecision of the $\sin \varepsilon$ term in this case. Orthogonality error will be adequately corrected.
B) Subroutines ROTX and ROTY

These subroutines were developed in Chapter III and implement the equation of $2-11$ required to compute horizontal
x and y magnetic field components. Equations to be implemented by the respective subroutines are

$$
\begin{gather*}
H x=H x m \cos (p i t c h)+\text { Hym Sin (pitch) Sin (roll) } \\
+H z m \text { Sin (pitch) Cos (roll) } \tag{4-12}
\end{gather*}
$$

and

$$
\begin{equation*}
\text { Hy }=\operatorname{Hym} \operatorname{Cos}(r o l i)-H z m \sin (r o l i) \tag{4-13}
\end{equation*}
$$

where Hxm, Hym and Hzm are measured field components made available from the magnetometer via the analog subsystem.

Since the transcendental functions are implemented using. table lookup and are limited in precision to 8 bits, imprecision in these variables will dominate in generating error. In particular, the $\sin / c o s$ terms will have relative error in the order of $\pm 1 / 256$ or $\pm 0.39 \%$ while the measured field data has relative uncertainty of on $1 y \pm 1 / 4096$ or $\pm 0.02 \%$. Multiplications will result in addition of the bounds for the relative error as illustrated in section $4-4 A$ above.

The transcendental terms above are limited in magnitude to 1.0 maximum while the field measurements can be 0.60 gauss max. In this case the individual product texms of (4-12) and (4-13) can have maximum errors of
$E x=(2048)(1+0.0041)-(2048)=8.4$ units

Errors in $H y$ and $H x$ (4-12 and 4-13) will be maximum when roll and pitch are at 45 degrees and the fields are equal. In this case the error in Hy will be

$$
\begin{aligned}
E H y= & {[(0.707)(2048)(1+0.0041)-(0.707)(2048)] } \\
& {[(0.707)(2048)(1-0.0041)-(0.707)(2048)] } \\
E H y= & 4.94-5.94=11.87 \text { units }
\end{aligned}
$$

Similarly, maximum error in $H x$ can be calculated as

$$
\begin{aligned}
& \mathrm{EHX} \tilde{=}[(0.707)(2048)(1.0041)-(0.707)(2048)] \times 3 \\
& E H x=17.8 \text { units maximum }
\end{aligned}
$$

It should be noted that these error terms are worst case and peak at multiples of 45 degrees in yaw.
C) Subroutines COSY and SINY

These two subroutines compute the angle between the x axis sensor (when projected onto the horizontal plane) and the north-south horizontal vector of earth' first two opeations of these cision multiplication and involved are 12 bits in length preserving 16 bits, no error is ind the computations performed

The "ANGL" subroutine called by the above two subroutines computes the desired (x axis to horizontal vector) angle by completing an associative table look up procedure. The task required is to match a given data quantity either ($\mathrm{Hx} / \mathrm{Hh}^{2}$ or $H y^{2} / \mathrm{Hh}^{2}$) with the contents of a memory cell. The address of this cell is then the required angle.

Since the table is limited in precision to 16 bits there are obviously cases where an interpolation is required to
ascertain the true address ${ }^{9}$. The function stored in tabular form is $\cos ^{2} \theta$ where θ varies from 45 to 90 degrees. Maximum error will therefore be induced while attempting to locate solutions (angles near 90 degrees if inadequate precision is provided. Error in this region due to resolution of tabular data can be examined by noting the entries in Table 4-8

θ	$\cos ^{2} \theta$	Most Significant Binary Bit $\left(2^{-x}\right)$
90	0	-
89	0.000305	12
88	0.001218	9
87	0.00274	8

Table 4-8 $\operatorname{Cos}^{2} \theta$ AND MOST SIGNIFICANT BINARY DIGITS
provided to indicate the relative magnitudes of $\cos ^{2} \theta$ in the region of $\theta=90$ degrees. We observe that the most significant binary digit affected at 89 degrees is binary decimal digit 12 implying that the resolution of $\mathrm{Hx}^{2} / \mathrm{Hh}^{2}$ or $\mathrm{Hy}^{2} / \mathrm{Hh}^{2}$ (the argument of $\cos ^{2} \theta$) must be accurate to at least $1 / 2^{12}$ or 0.024%.

Considering the horizontal field of earth's magnetic vector as observed in laboratory experimentation at this latitude, we note that Hh is 730 units. At a heading of $89 \mathrm{deg}-$ rees, $\mathrm{Hx}=730 \operatorname{Cos} 89=12.7$ units. The argument would therefore be

$$
\mathrm{ARG}=\mathrm{Hx}^{2} / \mathrm{Hh}^{2}=\frac{(12.7)^{2}}{(730)^{2}}=0.000305
$$

[^21]Since, the squaring and division operations are conducted in double precision, precision is preserved and the algorithm should be able to resolve heading to at least one degree over all portions of the compass.
D) Errors Due to the Remaining Subroutines

Since all of the remaining subroutines work with data that has been rounded to a precision representing 1 degree or better and the computations involve addition or subtraction in double precision binary or binary coded decimal (BCD) format, we note that there will be no further appreciable error due to truncation or rounding.

4-5 MEASUREMENT ERROR SUMMARY

Errors due to sensors and measurement of their respective outputs were discussed in sections 4-2 and 4-3 above. Before proceeding with the analysis of errors, the total signal inaccuracy due to contribution from the many sources above will be summarized in Table 4-10. Total instrument error can then be computed by considering the propagation and enhancement of these errors during the computation process.

Since the errors in Table 4-9 are stochastically independent, we can compute error for any given signal level by finding the RSS of respective error sources. In this manner, the instrument error can be evaluated by considering all input signals with errors superimposed to produce an erroneous computation of heading.

rable 4-9 SENSOR AND ANALOG SUBSYSTEM ERROR SUMMARY

4-6 SAMPLE ERROR ANALYSIS

Orthogonality correction using the algorithmic method can be verified by computing expected error prior to correction and comparing measured system output with the error predicition. Assuming that the angle between the x and y sensors exceeds 90 degrees as in Fig. 4-13, we can proceed to compute error by noting the following relationships

$$
\begin{aligned}
H x & =H h \operatorname{Cos}(+\psi) \\
H y & =H h \operatorname{Sin}(\psi) \\
H x_{1} & =H x \operatorname{Cos} \varepsilon-H y \operatorname{Sin} \varepsilon \\
\text { True Yaw } & =\psi T=\operatorname{Cos}^{-1}\left(\frac{H x}{\left(H x^{2}+H y^{2}\right)^{\frac{1}{2}}}\right)
\end{aligned}
$$

Computed yaw

$$
\begin{aligned}
\psi \mathrm{m} & =\operatorname{Cos}^{-1}\left[\frac{H x \operatorname{Cos} \varepsilon-H y \operatorname{Sin} \varepsilon}{\left.(H x \operatorname{Cos} \varepsilon-H y \operatorname{Sin} \varepsilon)^{2}+H y^{2}\right)^{\frac{1}{2}}}\right] \\
& =\operatorname{Cos}^{-1}\left[\frac{H h \operatorname{Cos} \psi \operatorname{Cos} \varepsilon-H h \operatorname{Sin} \psi \operatorname{Sin} \varepsilon}{\left[(H h \operatorname{Cos} \psi \operatorname{Cos} \varepsilon-H h \operatorname{Sin} \psi \operatorname{Sin} \varepsilon)^{2}+H^{2} h \operatorname{Sin}^{2} \psi\right]^{\frac{1}{2}}}\right]
\end{aligned}
$$

Using small angle approximations with $\varepsilon \tilde{=} 0.79^{\circ}$

$$
\cos \varepsilon \simeq 1 \text { and } \sin \varepsilon \simeq 0.014
$$

then

$$
\psi m=\cos ^{-1}\left[\frac{\operatorname{Hh~} \cos \psi-0.014 \sin \psi}{\left[H h^{2}(\operatorname{Cos} \psi-0.014 \operatorname{Sin} \psi)^{2}+\mathrm{Hh}^{2} \operatorname{Sin}^{2} \psi\right]^{\frac{1}{2}}}\right]
$$

Computed error

$$
\text { Error }=\psi \mathrm{m}-\psi
$$

Fig. 4-13 ANGLE (X - Y) $>90^{\circ}$

We can now evaluate computed yaw angle ($\psi \mathrm{m}$) given a particular yaw (ψ) and the horizontal field vector (Hh). Heading error for horizontal field vector of 730 units at various yaw angles with pitch and roll angles of zero degrees is tabulated in Table 4-10 and plotted along with actual measured yaw error (data taken during experimentation of Chapter V) in Fig. 4-14.

Heading (Degrees)	Computed Error (Degrees)	Heading (Degrees)	Computed Error (Degrees)
70	0.8	290	0.7
70	0.7	270	0.8
50	0.5	250	0.7
30	0.2	230	0.5
10	0.0	210	0.2
350	0.0	190	0.0
330	0.2	170	0.0
310	0.5	150	0.2
		130	0.5

Table 4-10 COMPUTED HEADING ERROR WITH Hh $=730$ UNITS

4-7 CONCLUSIONS

The preceeding error analysis has identified potential error sources along with relative magnitudes of error to be expected. Magnetometer sensor and analog subsystem errors were identified and analyzed individually. During this analysis it became apparent that errors due to sensor offset and nonorthogonality dominated and would severely limit total instrument performance. The relative magnitudes of these errors and their mode of contribution would have degraded system capacity.

By carefully characterizing the offset and orthogonality error it was determined that these systemmatic errors could be reduced by appropriate programming. A need to identify the extent of each error unique to the laboratory instrument imposed a need to evaluate the instrument empirically. Using earth's magnetic field and the laboratory test fixture (described in Chapter V) to provide control inputs each of the parameters was identified and measured. An algorithm with the empirically determined correction coefficients was included in the final system to reduce the error and to improve final system performance. The remaining potential error sources were tabulated and relative magnitudes noted.

Processing errors due to register precision and truncation were analyzed by considering pertinent subroutines individually. It was noted that the relative error bounds add when multiplying variables with relative error. In addition, it was noted that error accrued during processing is proportional to sensor signal levels involved. The final uncertainty is then proportional to actual aircraft attitude with error increasing as displacement from level flight occurs. Computational error is also noted to increase at particular headings causing the error function to peak at specific yaw angles.

The sample error analysis clearly shows that \dot{a} correlation between sensor nonorthogonality induced error and measured (uncorrected) data exists. By predicting and computing an error function prior to experimentally verifying the result we gain confidence that the sensor characteristics derived empirically in previous sections are correct.

CHAPTER V

> LABORATORY EVALUATION OF THE ATTITUDE INDEPENDENT REMOTE MAGNETIC INDICATOR AND HEADING INSTRUMENT

5-1 INTRODUCTION

- This chapter addresses laboratory evaluation of the microprocessor based computer designed to implement the heading measurement instrument. An integral part of this instrument was the three axis fluxgate magnetometer used to implement the attitude independent remote magnetic indicator of Chapter. II. The laboratory evaluation was designed to investigate empirically the effects of physical parameters that would otherwise be impossible to assess.

Although phenomena such as noise, magnetic field gradient, sensor orthogonality errors and offset errors can be predicated, combined effects on the proposed instrument and remote magnetic indicator are best evaluated in the laboratory. In addition, it was noted that errors due to sensor offset and nonorthogonality could be corrected by software included with the sample subroutine. Determination of the effectiveness of this correction technique necessitated laboratory measurements of the errors (to determine correction constants) and comparison of data prior to and following corrections.

The chapter begins by discussing laboratory test apparatus designed to evaluate the instrument. Actual data measured and recorded during experimentation is then presented in both tabular and graphic form to facilitate comparison and evaluation. Finally, the laboratory data is discussed and it is concluded that the remote magnetic indicator used with the heading measurement instrument results in a viable alternative to conventional heading measurement systems. The microprocessor based
computer implentation of the instrument has added unique sensor measurement correction ability that enhances performance of otherwise marginal sensors. In this manner limitations in systems performance that now exist due to sensor inadequacy can be minimized without incurring the burden of using more expensive sensors.

5-2 TEST APPARATUS
A) Electronic Subsystem

The microprocessor based computer (illustrated in photos 5-1 and 5-2) was constructed on printed circuit boards consisting of a central processing card, two memory cards (2K bytes capacity each) and an output board. A separate analog subsystem card contained the multiplexer, sample and hold, analog to digital converter and trimming potentiometers. The circuit cards were all organized with edge connectors and mounted vertically into a hand wired backplane assembly as shown in photos 5-1 and 5-2.

The card in the left foreground of photo 5-l served as the output display with three seven-segment displays displaying significant figures of system heading. A small printed circuit in the right foreground of photo 5-1 contained potentiometers used to generate analog signals proportional to roll and pitch signals (simulating gyroscope outputs). Cards shown vertically mounted in photo 5-2 can be identified from right to left as the analog subsystem, two memory cards and the central processing card. The large integrated circuit shown on the CPU card is the Signetics 2640 microprocessor.
B) Sensor Assembly

To evaluate the effects of combined aircraft pitch, roll

Photo 5-1 MICROPROCESSOR BASED HEADING COMPUTER

Photo 5-2 CENTRAL PROCESSOR, MEMORY AND
ANALOG SUBSYSTEM
and yaw a three axis gimbal apparatus was required. In addition, since angular measurements were required, a means of measuring angular rotation in each of the three exes was provided. The gimbal apparatus as illustrated in photos 5-3 and $5-4$ was fitted with large protractors centered on the rotation axes. Pointers were provided to enable angular rotation measurements on the respective protractor scales. Since the angular precision on each protractor scale resolved angular position to 0.5 degrees, angular measurements to a resolution of at least 0.5 degrees were possible. Angular position was measured by estimating the decimal place of each measurement with accuracy to ± 0.5 degrees ensured.

Since the three axis magnetometer (housed in the rectangular block of photos 5-3 and 5-4) measured ambient magnetic fields the test apparatus was constructed of nonferrous material. This ensured that local fields due to residual magnetic fields in the test apparatus would be minimized. In addition, since the material had low permeability, there would be little deformation of the local field causing error due to changing field gradient.

The sensor package shown in photos $5-3$ and $5-4$ was physically mounted such that the sensors were centered as close to the center of the gimbal as possible. This precaution ensured that measurement error due to sensor translation was minimized ${ }^{1}$. During instrument evaluation, the entire gimbal assembly and sensor were leveled and mounted in a Helmholtz coil assembly as illustrated in photo 5-5. Although the coils were not activated during experimentation, the rotations in heading were

[^22]

Photo 5-3 MAGNETOMETER SENSOR MOUNTED ON GIMBALLED TEST FIXTURE

SENSOR AND GIMBAI ASSEMBIY WITH PROTRACTORS
carefully controlled since the gimbal assembly was an integral part of the Helmholtz coil fixture with the vertical rotation axis serving as the system yaw axis.

Photo 5-5 TEST FIXTURE MOUNTED IN HELMHOLTZ COIL ASSEMBLY

5-3 HEADING MEASUREMENTS WITH NO OFFSET CORRECTION

By-maintaining heading of the text fixture constant (no rotation about the vertical axis) and varying both pitch and roll angle, the instrument display was observed to vary. This variation gave a direct measure of instrument error since a constant heading was maintained and a constant display was to be expected.

Data variations were recorded in Tables 5-1 and 5-2 and plotted on Figures 5-1 and 5-2. With only ± 10 degree variation in pitch combined with +30 degree variation in roll we note that the heading display varies 14 degrees. Obviously,

RoIl Angle (Degrees)	$\theta=0^{\circ}$	$\theta=10^{\circ}$	$0 .=-10^{\circ}$
-30	000	353	4
-20	000	354	2
-10	359	357	0
0	359	359	358
10	359	000	355
20	358	002	354
30	358	004	353

Table 5-1 HEADING COMPUTED AT A FIXED YAW ANGLE WITH NO OEFSET CORRECTION

Roll Angle (Degrees)	$\theta=0^{\circ}$ -30	$\theta=10^{\circ}$ -20	θ -10
0	45	49	47
10	45	45	41
20	45	43	43
30	44	42	43
	44	41	47

Table 5-2 HEADING COMPUTED AT A FIXED YAW ANGLE WITH NO OFFSET CORRECTION

instrument operation indicated excessive error requiring more elaborate sensors or correction of a sensor inadequacy.

5-4 HEADING MEASUREMENTS TO INVESTIGATE ORTHOGONALITY ERROR

System performance was evaluated by initially aligning the sensors with zero pitch and roll angle. Sensor Z was positioned vertically with positive direction downwards. By observing the Z axis output ${ }^{2}$ as the test fixture was rotated about the vertical axis, adjustments were made in pitch and roll angle to minimize coning of the Z axis. Angular measurements on the respective roll and pitch axis protractors were then made to establish the initial reference attitude angles.

Heading measurement accuracy was evaluated by rotating the test fixture in the horizontal plane until the display fiickered between ($\mathrm{XX9}$) and $(X X 9+1$). The rotation was then continued a very small amount until a steady display (multiple of 10 degrees) was observed ${ }^{3}$. Measurements ranging. from 0 to 350 degrees wexe made by recording angular position required to produce specific heading data displays. Sets of data were recorded at various combinations of pitch and roll then tabulated in Tables 5-3 through 5-8. Relative error was computed by determining angular position expected at each display value and then computing the difference in angular positions. Errors at the roll extremes of ± 44 degrees are plotted for pitch angles of plus and minus 20 degrees on Fig. 5-3 through 5-6 inclusive.

[^23]
Data in Tables 5-5, 5-6 and Fig. 5-3, 5-4 were recorded with no sensor orthogonality error correction implemented. Data in Tables 5-7, 5-8 and Fig. 5-5, 5-6 was recorded with the sensor orthogonality correction implemented. Comparison of these data indicate that considerable improvement in accuracy is achieved by correcting sensor orthogonality error.

5-5 CONCLUSIONS

Laboratory evaluation of the heading measurement instrument has shown that the algorithms developed in previous chapters are viable. Operation of the device in a laboratory environment has enabled empirical evaluation of the system under adverse combinations of noise, field gradient and sensor plus instrument error sources.

Test apparatus described in section 5-2 served to enable controlled simulation of roll, pitch and yaw rotations. The apparatus was nonmagnetic in nature and contributed insignificant error due to field pertebation. Mounting of protractors and pointers on the test apparatus made angular measurements possible to a precision of at least ± 0.5 degrees.

Effects of sensor offsets were evaluated in section $5-3$ by recording system heading computations when only roll and pitch varied. Since the variations in Figures 5-1 and 5-2 prior to offset correction exceed the maximum excursions of Figures 5-3 and 5-4 by at least a factor of two (angular excursions in first set also less than in the record) and we note that offset errors were corrected prior to recording data in the second set of data, we conclude that offset in magnetometers can be a

PITCH ANGLE 0 DEGREES ROLL ANGLE 0 DEGREES

Heading Displayed (Degrees)	Angular Rosition (Degrees)	Relative Error (Degrees)
10	275.3	0.3
30	295.2	0.2
50	315.4	0.4
70	335.5	0.5
90	355.5	0.5
130	34.8	-0.2
150	54.3	-0.7
170	74.0	-1.0
190	94.0	-1.0
210	114.4	-0.6
230	135.0	0.0
250	155.5	0.5
270	174.7	-0.3
290	195.5	0.5
310	215.2	0.2
330	235.2	0.2
350	254.7	-0.3

Table 5-3 REFERENCE DATA MEASUREMENTS OF HEADING TAKEN WITH NO ORTHOGONALITY CORRECTION

PITCH ANGLE 0 DEGREES
 ROLL ANGLE 0 DEGREES

Heading Displayed (Degrees)	Angular Position (Degrees)	Relative Error (Degrees)
10	276.6	-0.4
30	296.6	-0.4
40	306.7	-0.3
50	316.7	-0.3
60	327.2	+0.2
70	337.0	0.0
90	355.9	-1.1
130	37.0	0.0
160	67.2	0.2
190	96.8	-0.2
220	126.9	-0.1
250	157.0	0.0
280	186.9	-0.1
310	216.6	-0.4
340	246.9	-0.1
350	256.4	-0.6

Table 5-4 HEADING MEASUREMENTS WITH OFFSET AND ORTHOGONALITY CORRECTIONS MADE

Heading Displayed (Degrees)	$\begin{aligned} & \text { Roll }=44^{\circ} \\ & \text { Angular } \\ & \text { Position Error } \end{aligned}$		$\begin{aligned} & \text { Roll }=20^{\circ} \\ & \text { Angular } \\ & \text { Position Error } \end{aligned}$		$\begin{aligned} & \quad \text { Roll }=-20^{\circ} \\ & \text { Angular } \\ & \text { Position Error } \end{aligned}$		$\begin{aligned} & \text { Roll }=-44^{\circ} \\ & \text { Angular } \\ & \text { Position Error } \end{aligned}$	
10	276.3	1.3	276.5	1.5	275.0	0.0	274.0	-1.0
30	296.3	1.3					293.6	-1.4
40			306.1	1.1	304.0	-1.0		
50							313.8	-1.2
60	325.8	0.8						
70			335.6	1.6	334.3	-0.7	333.8	-1.2
90	355.0	0.0	354.0	-1.0	353.1	-1.9	353.0	-2.0
130	34.3	0.7	34.3	-0.7	34.6	-0.4	34.4	-0.6
160	64.5	-0.5	64.0	-1.0	65.0	0.0	65.0	0.0
190	94.3	-0.7	94.6	-0.4	95.0	0.0	95.5	0.5
220	125.2	0.2	125.3	0.3	126.0	1.0	126.5	1.5
250	156.6	1.6	156.2	1. 2	156.7	1.7	157.0	2.0
280	186.6	1.6	186.8	1.8	186.5	1.5		
31.0	216.8	1.8	216.8	1.8	215.9	0.9	215.9	0.9
340	246.0	1.0	246.8	1.8	245.0	0.0		
350							224.9	-0.1

$$
\begin{gathered}
\begin{array}{c}
\text { Heading } \\
\text { Displayed } \\
\text { (Degrees) }
\end{array} \\
\hline 10 \\
30 \\
50 \\
70 \\
90 \\
130 \\
150 \\
170 \\
190 \\
210 \\
220 \\
230 \\
250 \\
270 \\
290 \\
310 \\
330 \\
350
\end{gathered}
$$

$$
\begin{array}{cc}
\begin{array}{c}
\text { Roll }=
\end{array} & 44^{\circ} \\
\begin{array}{c}
\text { Angular } \\
\text { Position }
\end{array} & \text { Error } \\
\hline 276.1 & 1.1 \\
296.2 & 1.2 \\
316.4 & 1.4 \\
336.5 & 1.5 \\
355.5 & 0.5 \\
36.0 & 1.0 \\
55.3 & 0.3 \\
74.5 & -0.5 \\
94.9 & -0.1 \\
115.0 & 0.0 \\
& \\
135.0 & 0.0 \\
155.6 & 0.6 \\
174.8 & -0.2 \\
195.6 & 0.6 \\
215.5 & 0.5 \\
235.7 & 0.7 \\
255.6 & 0.6
\end{array}
$$

$$
\begin{array}{cc}
\begin{array}{c}
\text { Roll }= \\
\text { Angular } \\
\text { Position }
\end{array} & \text { Error } \\
\hline 274.2 & -0.8 \\
& \\
335.5 & 0.5 \\
355.0 & 0.0 \\
135.7 & 0.7 \\
& \\
95.5 & 0.5 \\
125.5 & 0.5 \\
155.5 & 0.5 \\
& \\
214.6 & -0.4
\end{array}
$$

$$
\begin{aligned}
& \text { HEADING MEASUREMENTS AT PITCH }=-20^{\circ} \\
& \text { WITH NO ORTHOGONALITY CORRECTION }
\end{aligned}
$$

REYGUDUULAL PAGE IS POOR
ORIGNAL PA

Fig. 5-4 HEADING MEASUREMEIVT ERROR AT PITCH $=-20^{\circ}$
(NO ORTHOGONALITY CORRECTION)

Table 5-7 HEADING MEASUREMENTS AT PITCH $=20^{\circ}$ WITH OFFSET AND ORTHOGONALITY CORRECTION MADE

Heading Displayed (Degrees)	Roll $=44^{\circ}$ Angular Position	Error	Roll $=-44^{\circ}$ Angular Position	Error
20	287.0	-0.4	286.5	-0.3
40	307.0	-0.4	306.7	-0.1
60	327.0	-0.4	326.8	0.0
80	347.0	-0.4	346.8	0.0
90	356.7	-0.7	355.6	-0.2
140	47.8	0.4	48.0	1.2
160	67.7	0.3	68.0	1.2
180	87.0	-0.4	87.8	1.0
200	107.6	0.2	108.0	1.2
220	127.7	0.3	128.0	1.2
240	147.8	0.4	147.4	0.6
260	167.6	0.2	167.2	0.4
280	187.6	0.2	187.0	0.2
300	207.1	-0.3	206.5	-0.3
320	227.1	-0.3	226.6	-0.2
340	247.1	-0.3	246.9	0.1
0	266.3	-0.9	266.0	-0.8

TABLE 5-8 HEADING MEASUREMENTS AT PITCH $=-20^{\circ} \mathrm{WITH}$ OFFSET AND ORTHOGONALITY ERROR CORRECTED

major error source ${ }^{4}$. Additionally, we note that the correction of offset error in sensors has been successful. Experimental results have verified that not only can offset errors be determinded (Chapter IV), but a suitable algorithm can be implemented in the computer to improve system operation. It is postulated that offset error correction can be extended to include correction of varying offset values (functions of temperature and supply voltage) by monitoring error causing variables (example temperature) and computing correction constants prior to offset correction as above.

Errors induced by sensor nonorthogonality were predicted in Chapter IVsection 4-2 and verified by plotting expected error along with measured error in Fig. 4-14. The curves of Fig. 4-l4 were plotted for heading rotations with no pitch or roll angle. To evaluate system performance and the effect of orthogonality error with combined angular rotations, measurements of heading error were plotted in Fig. 5-3 thorugh 5-6 inclusive.

Comparison of these data indicate that maximum excursions of error as a function of heading are significantly less when orthogonality corrections are made. It is also postulated that data could be improved further by similarly correcting orthogonality error in te Z axis sensor ${ }^{5}$.

In summary, the experimental evaluation has provided insight into the operation of an attitude independent remote magnetic indicator and heading computer in the "real world"

[^24]environment complete with all contributing error sources. The error analysis evolved during development of the system has proven adequate in that an operational system was developed. Major error sources were measurable as predicted and the means of reducing their effects were successfully implemented. Correction of sensor offset and orthogonality error required an empirical evaluation of the respective sensor. These evaluations were performed, the errors characterized, correction coefficients determined, and correction algoritms implemented.

Successful implementation of these corrections was evidenced by significant reductions in system error. The correction methods presented can be extended in future with the net result that less demand is required of physical sensors if the sensor parameters can be established empirically prior to completion of instrument design. Utilization of a microprocessor in the instrument has added the computational flexibility required to facilitate accomodation of sensors with varying error magnitudes.

APPENDIX A

This appendix lists the instruction set of the signetics 2650 microprocessor chip used to implement the heading instrument.

AOSTORE INSTRUCTIONS			Length (bytes)
LOADISTOR	Re instmuctiol	促	1
LODZ	r l	I. oad kegister Zero	2
Loctr	v d	L.vad Immedtate	2
LODK,r	(*)a	Luad Relative	3
LOUAs	(asis, X)	Woad Absolute	1
S'rRZ	r r	Store Register Zero	2
STRR,	(*) ${ }^{\text {a }}$	Store Relative	3
STRA,	(*)al, X)	Store Absolute	
APITHMETIC INSIRUCTIONS			1
ADD)	r	Add to Register Zero	1
ADDI.	v	Add immediate	2
ADCRT	(*) ${ }^{\text {a }}$	add ketative	3
ADOA,	(*)at, X)	Add Absolute Repiser Zaro	1
subl.	r	Subtrat from Register Zero	2
subi.r	v	Subtract lamediate	2
SUBR.s	(*) ${ }^{\text {a }}$	Subrrace Relative	3
SUBA,	(+1al, C)	Subtract Absolute	
- logical instructions			
AND?	5	And to Kegister Zero	2
ANDİ,	v	And lmmediate	2
ANDR,r	(*)a	And Relative	3
ANDA.r	(+)at, X)	And Absolute	1
60kz	r	loclusive or to Register Zero	2
toriar	v	Inclusive or fmmedrave	2
lorker	(1) ${ }^{\text {a }}$	Inclusive or Retative	3
lorsir	(*)al, X)	Inclusive or Absolute	1
まokz	c	Exclusive ar to Regstor zero	2
EORI.r	v	Exclusive or immediaze	2
EORK,	(*):4	Exclustve or Refative	3
EOHA,	(*)act, X)	Exclusive or Absolute	
COMPARISON INSTRUCTIONS			
coulz	r	Conapare w Repister 'ero	$\underline{2}$
commic	\checkmark	Compare fanmediate	2
comsk,	I $1+15$	Comprate telative	3
comar	$r(-1301 . X)$	Comprae Absolute	
ROTATE INSTRUCYIONS			Length (bytes)
HRK, r		Rotate Regrister kight	1
HRL,		Rotale Register Left	
BRANCH INSTRUCTIONS			
BCTRK,	$v 1^{* j a}$	Branth on Condmon True Retacive	$\underline{2}$
BCFR,	v (*):	Brameh on Condtuen Fase kelicole	3
BC:TA,	v (*) ${ }^{\text {a }}$	Brameh on Conditioar rue disolute	3
BCFSV	v (*)	Branch on Condtuon Fase Absotate	2
BRNK,	, $1 \times 1 \mathrm{a}$	Brateh onl Register Nom. Zero Absolute	3
BRNA, BiRR,	$\begin{array}{ll} i+j ; \\ i+j a \end{array}$	Branch on Regiser Non' Register Relative Branch on lacrementing	c

REPRODUCBBILITY OF THE ORIGINAL PAGE IS POOR

This appendix contains alisting of the assembly language program used to implement the remote magnetic indicator heading algorithm. The program was assembled on, the A2650 cross assembler program operational on the $H P 2100$ computer at the University of Santa Clara.

REPRODUCBMTITY OF THE

ジ

Rerroductrany Cs mite
ORIGINAL PAGE IS POOR
PIP ASSFmALER versitio scu leivet I meading instr.ibent assemly phugram 1976 dage

REPRODUCIBILTTY OF THE ORIGINAL PAGE ${ }^{\text {wis POOR }}$

REPRODUCLBILIYY OR THE
ORGGNAL PAGE IS POOR

SET MUDE
CLEAR RE SULT
CLEAK MESUL． 1
LUAO COUNI
LLT MULTIFLIFL
abis．

8
4
4

$\underset{\mathrm{KI}_{1}}{\mathrm{MUL}_{\mathrm{L}} \mathrm{rIPLIFH}}$
LaC4
K
KLY
UDR ？
HCL．
LOC

EIHR，
SIRA，KU
STHA．
STRO
THA，HU

效
hBL，RII
mISH，KOO

Finisit the afin

ご式
：

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

HIF ASSFMALFR VFBSIIN SCU LFVEI I TEAUING INSTR,IMFNY ASSEMLY PRUGRAM IV7H PAGE
audr lanil lit up is yh frgur source

REPRODUCIBILITY OF THE ORIGINAL PAGE YSOR

(ABL HI BP IS GL FHRUK GOIHCE
barx

CLEAAR TEMP STORAGE
CUUNIER
RUTATE MULIIPLIER
GET LS EII INTO RO
NU AOU IF C=O

$\stackrel{\rightharpoonup}{\dot{*}}$
$\stackrel{\rightharpoonup}{\vec{v}}$
$\underset{y}{\mid}$

H1 BP MS ia fartor sothce

STKA, KO
RETC,UN
3
$\frac{4}{3}$
0
$\frac{8}{2}$
$\frac{1}{3}$
4
$=$
$0=$

~
u
$\underset{c}{c}$
$\underset{c}{c}$
0

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

REPRODUCIBILITY OF THE ORIGINAL PAGE is POOR

MIF ASSHMTEER VFRLISN SCU LFVEI I HEAOING INSTHIMFNT ASSEMLY PRUGRAM $1 \rightarrow 76$ DAGF.
AUQR AIL Ul is ma Ha Fighur SOURCE

REPRODUCBILITY OF THE ORIGINAL PAGE IS POOR

REPRODUCTBLITI OR TYE ORIGINAL PAGE IS POOR

64.1				-0**	*******		****aaevon*
642				- A	ubroutine	to compuie	eading man *
64.3				-	/-1135 <	$1{ }^{\text {く }}$ (1)/-)4	UEGREES
044							
645	U628	048	as uc	SINy	LOUH,R1	2	Index
646	0620	940	110645	Lup	LOUA, \%o	ny2-1.R1	LOAD OPEL 1 , OPR1
647	ve30		CD b4 78		Stra,ko	ODS $1-1, \mathrm{R}_{1}$	
648	- 0.33		¢9 7ヵ		BORR.HI	LuP	
649	UH 35		20		EOR1	Hn	
bso	UH 36		3 Fad 4 u		msta.ind	bivi	FURM HYZ/nhe
nt	UB. 19		3 F im		usia.un	angl	FURM ARCOS (hyz/ntis)
652	Un3C		3 F ofe 64		HSta,un	bicua	cunvert to her
65.3	043 F		0490		Lool,no	H 90 O	calc. yumangla
054	Jb4		7704		ppst.	C+6C	
655	vica 3		$n 1$		Suts	k_{1}	
${ }^{56}$	0644		44		bak, ru		
657	UB45		C1		Stizz	R1	
65 \%	UH46		3 F uc ic		bsta,un	mog	
68 600	ט¢4.		17		yetc.un		

REPRODUCibILITY OF THE ORIGINAL PAGE IS POOR

PIF ASBFMALER VENCIUN SCU LFVEA 1 MEAIJING INSTRUMEINT NSGEMLY WRUGKAM $1 \rightarrow 76$ DAGE IV

RITRODUCEBALITY OF THE - * ORIGINAL PAGE iS POOR

出 15
07.43
0,45

KFIC．1Sy
LuDt．2el

安
に
～

$\underset{2}{2}$
4 rarur

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

$$
\text { PIH ASSFPNLFH VCHSIIN SCU LFVEI I MEAUING INSTRUMENT ASSEMLY PRUGHAM } 1 \text { IGTG PAGF. } 24
$$

Bembebility or tia ORIGNAL PAGE ES POOR.

```
N
```


REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

APPENDIX C

The transcendental functions used throughout the heading computation algorithm were implemented using a table look up procedure. To generate the respective look up tables in computer memory data was first gerierated using algol programs. This technique expedited modifications to tabular data and provided output data in a convenient (hexadecimal) format.

Programs that calculated $\operatorname{Cos}(\theta)$ and $\operatorname{Cos}^{2}(0)$ to eight bit and sixteen bit resolution respectively are included.

RuRGU UUBELTY OF THE ORIGINAL PAGE IS POOR

REPRODUCIBILTTY OF THE ORIGINAL PAGE 15 POOR

$\stackrel{4}{4}$	「HETA	$\cos \cdot \cos$	HINARY	Htx
（AUOR．）	（HEG）		OATA	
45	45.00000	． 500000	0111111111111111	$7 F F F$
45	$4 \mathrm{4c} 00000$.482550	0111101110001000	7888
47	47.00000	.465122	0111011100010010	7712
48	48.00000	． 447736	0111001010011110	12 y
44	$4 \mathrm{H.49999}$.430413	0110111000101111	$\bigcirc \mathcal{E} 2$
30	50.00000	.41 .1176	0110100111040101	69 C
bl	51．00000	． 396044	0110010101100011	85503
St	5\％．00001	.379039	0110000100001000	6108
51	37.00000	． 7621 al	0101110010110111	$\begin{array}{llll}5 & C & 8 & 7\end{array}$
b4	34.00000	． 345491	0101100002110010	$\begin{array}{llll}5 & 8 & 7 \\ 5 & \end{array}$
b	55.001100	． 328990	0101010000111000	5438
S6	5 Sa .00000	． 312697	0101000000001100	5000
57	b7．00000	－ 290032	0100101111110000	4850
54	58.00000	－280814	0100011111100011	4783
ל	SH． 49999	． 2.65244	010n001111101000	$43 E 8$
60	60.00001	－ 250000	0011111111111111	3 F 5
01	61.00000	． 235040	0011110000101011	3 C 28
7．	bs．00000	.220403	0011100001101100	3866
63	$\bigcirc 7.00000$	－206107	0011010011000011	3.463
64	04．00000	． 192189	0011000100110010	3132
65	85.00000	． 178606	0010110110111001	2089
60	6h． 00000	． 165435	0010101001011001	2 A 59
67	6A．4999H	． 152671	0010011100010101	$\begin{array}{llll}2 & 7 & 1\end{array}$
ny	OR＋ 00000	.140330	00118001111101100	$23 E C$
04	OU． 00000	－128427	0010000011100000	20 E O
10	10.00000	． 116978	0001110111110010	10 F2
71	11.00000	． 105995	0001101100100010	1322
12	？ 7.00000	－09ちくal	U001100001110010	1872
15	17．00200	－ 085491	9001010111100010	15 ¢ 2
14	77.49498	－07らゾ 76	00n1001101110011	1373
15	15.00000	． 1106987	0001000100100110	1126
16	14．00000	－ 054520	ounn111011111011	0 ¢ F \％
11	17．00007	.050803	0000110011110100	U．C F 4
15	19．nOv00	． 0432 27	0000101100010000	0 B 10
14	7：2， 10000	－136408	Uun0100101010010	（1） 9 ？
So	819．90000	－ $0.3 \cup 154$	U000011110111000	078 y
o！	81.00000	－ 76.4475	00n0011001000011	0643
H2	87.00000	． 014344	000n010011110101	1） 475
83	＊7．00000	．01485c	0000001111001161	03 C 0
${ }^{4} 4$	－4C．0000？	．010926	0000001011001100	02 Cc
db	W4．99498	． 001500	Uuna000111110001	$\checkmark 181$
46	－ 40.0000	－0948860	60n9000104：1116	013%
$\bigcirc 7$	a 7.00000	． 002734	0Unionoolullonll	0 O A 3
ง8	UH．00000	．001210	0000000001001111	004 F
84	d4．00000	． 000305	0000000000010011	0×123
צ0	411．00000	． 000000	UU000000000000000	0000

REPRODUCTBILITY OF THE ORIGINAL PAGE 15 POOR

AGE 001

```
001 00000 HOAI & %"RDM
002 00000 HFGIN
```



```
04 000U1 & A PHORRAM TI GENENATE A COS TABLE FOR A
OUS 00001 & MICOOOONCESSOR HASED SYSTEM
0UG 000U1 & AUISRESS. AIIGLE , COS(ANGIE). AND DATA IN
007 00001 & OOTY HINARY ANO HEX FORMAT IS TAGULATFO
```



```
00Y 000O1 TNTFGFK A,Q,C.D,E,F;
01000010 RFA, THETA,STHETA,AR,HSTHI
011 00020 RFAI \triangleRNAY ANT0:2S6.0:I'OJf
```



```
013 21102 "G","7","8","Q","a",
014 21107 "8","C","O","E",㫙";
```



```
016 2!124 taIFtiFH ARQar HEX!0:25.6,0:31%
017 2נ13b WQITE (A,##(1H1))!
```



```
019 23C40 (1)1
```



```
021 23277 FON A:= 45 10 90 vo
0.2 23305 *&CI'1
023 23J05 nK:=A1
0<4 2331L TH&TAt= A&NG!/180%
O25 23317 EI:EETA:= COS(THEYA):
026 2J323 N:=0:
0<7 23325 RSTHt=STHETA:
028 23331 WHFLF B<O DO
024 23334 जE゙GIN
030 23335 - -STH:= 20日¢TM1
03! 23343 [F RSTMS! THEN
0うて Z3350 :4EIFN
0.33 23350 AN:A.C1:=1F
33 23360 AN:A.N1:#1:
23310 FNIJ H:GE AN&A,H1:=0
036 23443 H:=8+1:
0$7 2.140b SN,H
038 23407 M:=0:
039 23411 50W C:=0 T \ 3 nol
(44) 23417 EETIF
041 23417 - \t=4*C:
042 2345u &:=0:
043 23452 504::0 50 7 110
044<3460 HE%IV
046 <33400
045 23400 F:=F+MILI[FIOAN(A,H1&EI.
046 23S1j HEXIA+CJ:= VAL(F)|
041 <3S<0 FNM:
04N 23532 rNu;
044 23S30 T坛TA:= THETAO1月O/NI:
050 2.3546 WHTT& (0,*(5x, [5,2(3x,FR,6),3x,8F1,0,5x,242), A, THETA.STMETA,
```



```
05< 23b46 EN|!
053 23652 ENUG
```

PHOGRAM $=02.7056$ FREOHS $=000$

\rightarrow

0

A	YHETA	COS(THFTA)	DINAKY	HEX
ADUR. $)$	(DESO)		OATA	
			*	
45	45.00000	. $707 \ln 7$	1.11.1.1	85
46	44.10000	. 644659	1.11...1	
47	47.00000	. 481998	1.1.111.	A E
48	4R.00000	. 669131	1.1.1.11	- 8
49	49.49949	. 656099	1.1.0.111	A 7
לo	50.0000n	. 842788	1.1.1.	A 4
b1	51.00000	-6293?	1.1....1	A
52	b, 00001	.615682	1.0111,1	90
53	53.00000	. 601815	1.211 .1 .	9
34	54.00000	- 587785	1.1.11.	9
5	55.00000	. 573576	1.1..1.	9
50	bt. 700000	. 559193	1...1111	8
57	57.00000	-544ヶ39	1...1.11	\checkmark ¢
38	54.00008	- 529919	1....111	y
59	58.49499	. 515038	1.....11	
60	00.00001	. 500000	.1111111	7
61	61.00000	.484810	.11111.0	76
${ }^{\circ} \mathrm{C}$	0.7100000	.469471	.1111...	78
03	07.00000	. 45.3991	.111.1..	74
04	64.00004	-438371	.111....	70
b	65.001100	. 422618	.11.11..	60
b6	64.00000	.406737	.11.1...	68
67	66. 99498	- 190731	*! ...l.	64
6\%	b2.00100	- 374607	.1.11111	$5 F$
カy	54.100000	- 1583 ¢	.1.11.11	48
74	10.00000	. 142020	.1.1.111	57
71	71.00000	- 3255 n 8	.1.1..11	53
12	7>.00500	. 304017	.1.1111	45
73	19.19000n	. 292372	.1..1.1.	4 4
14	17.99994	. 275637	.1...11.	46
75	19.0000:1	. 258819	.1...l.	42
76	76.00000	1241972	. 1111.1	30
77	77.00002	. 224951	. 111..1	39
\%	7a.00000	.207912	.11 .1 .1	35
74	70.10000	. 190808	..1]....	30
50	40.00000.	.173640	..1.11..	2 C
61	+1.00non	. 1564	. 1.1..	28
02	8\%.100000	-174173	. .)...11	23
33	87.00000	-121989	...11111	1 F
84	84.00002	. 10452^{8}	..11.1.	1 A
85	84.9999 H	.087156	...1.11.	16
66	84.0000n	. 064757	...1...1	11
87	87.00000	. 11523.3611.1	00
8방	88.00000	.0349001...	
84	80.00000	. 0174521.*	04
40	40.00000	-.000000	00

BIBLIOGRAPHY

[1-1] C. C. Kalweit, "The ESRO l attitude measurement system," IEEE Trans. Aerosp. Electron. Syst., vol. AES-7, pp. 132-141, Jan. 1971.
[1-2] G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers. New York: McGraw-Hill, 1961, sec. 14.10-2.
[1-3] E.V. Condon and H. Odishaw, Handbook of Physics, 2nd ed., 1967, ch. 2-3.
[1-4] S. H. Crandall, Dynamics of Mechanical and Electromechanical Systems. New York: McGraw-Hill, 1968, pp. 42-152.
[1-5] M. Kayton and W. Fried, Avionics Mavigation Systems. New York: Wiley, 1969.
[1-6] S. Chapman and J. Bartel, Geomagnetism, vol. II, New York: Oxford Univ. Press, 1940.
[1-7] Vestine et al., "The geomagnetic field, its description and analysis," Dept. Terrestrial Magnetism, Carnegie Inst. Technol., Pittsburgh, PA., publ. 580, ch. 2, 1947.
[1-8] E. Irving, Paleomagnetism and Its Application to Geology and Geophysical Problems. New York: Wiley, 1964, ch. 3.
[1-9] F. D. Stacey, Physics of the Earth. New York: Wiley, 1969, ch. 5.
[1-10] D. R. Hartman, D. J. Tskey, and G. L. Friedberg, "A system for digital aeromagnetic interpretation," Geophysics, vol. 36, pp. 891-918, Oct. 1971.
[1-11] M. L. Hill, "Introducing the electrostatic autopilot", Astronaut. Aeronaut., pp. 24-31, Nov. 1972.
[1-12] R. Markson, "Practical aspects of electrostatic stabilization," Astronaut. Aeronaut., pp. 44-49, Apr. 1974.
[2-1] R. Pietila and W. R. Dunn, Jr., "A Vector Autopilot System," IEEE Transactions on Aerospace and Electronic systems," vol. AES-12, No. 3, May, 1976.
[2-2] G. A. Korn and T. M. Korn, Electronic Analog Computer, McGraw-Hil1, 2nd ed., 1956.
[2-3] E. A. Parrish, Jr., and Y. C. Lee, "A microcomputer preprocessor/postprocessor for analog signals," IEEE Trans. on Industrial Electronics and Control Instrumentation, vol. IECI-21, No. I, Feb. 1974, pp. 3841.
[3-1] R. Allan, "Components: Microprocessors Galore," IEEE Spectrum, vol. 13, no. 1, Jan. 1976, pp. 50-56.
[3-2] G. Kaplon, "Industrial Electronics to Boost Productivity," IEEE Spectrum, vol. 13, no. 1, Jan. 1976, pp. 87-90.
[3-3] H. Falk, "Computers: Poised for Progress", IEEE Spectrum, vol. 13, no. 1, Jan. 1976, pp 44-49.
[3-4] D. Christianson, "Technology '76", IEEE Spectrum, vol. 13, no. 1, Jan. 1976, pp 42-43.
[3-5] W. Myers, "Key Developments in Computer Technology: A Survey", Computer, IEEE Computer Society, vol 9, no. 11, Nov. 1976, pp 48-77.
[3-6] E. A. Terrero, "Focus on Microprocessors", Electronic Design 7, March 29, 1976, pp 58-64.
[3-7] R. Noyce, "From Relays to MPU's", Computer, IEEE Computer Society, vol. 9, no. 12, Dec. 1976, pp 26-29.
[3-8] E. R. Garren, "Applying Microprocessors and Microcomputers", Modern Data, Feb. 1975, pp. 54-57.
[3-9] D. N. Kaye, "How to Pick a Microprocessor, a Mini or Anything in Between", Electronic Design 16, Aug. 1975, pp. 26-30.
[3-10] T. A. Seim, "Microprocessors Aid Experimentation in Scientific Laboratory", Computer Design, Sept. 1976, pp. 83-89.
[3-11] M. Teener and W. Liles, "Microcomputers, where the Action Really is", Modern Data, Feb. 1975, pp. 4953.
[3-12] H. D. Scott and R. A. Smoak, "A Microcomputer Controller for a Nuclear Pool Reactor", IEEE Trans. on Industrial Electronics and Control Instrumentation, vol. IECI-22, no. 1, Feb. 1975, pp. 15-18.
[3-13] A. Osbourne and Associates, "An Introduction to Microcomputers", Adam Osbourne and Associates, Inc., Berkeley, CA. 1975.
[3-14] M. H. Lewin, "Integrated Microprocessors", IEEE Trans. on Circuits and Systems", Vol. CAS-22, no. 7, July 1975, pp. 577-585.
[3-15] R. K. Jurgen, "The Microprocessor: In the Driver's Seat", IEEE Spectrum, vol. 12, no. 6, June 1975, pp. 73-77.
[3-16] C. Newcombe, "How to Evaluate Microprocessor Instruments", IEEE Spectrum, vol. 13, no. 4, April 1976, pp. 38-55.
[3-17] S. Sheikh, "A Programmable Digital Control System for Copying Machines", IEEE Trans. on Industrial Electronics and Control Instrumentation, vol. IECI21, no. l. Feb. 1974, pp. 25-33.
[3-18] D. L. Smith, "The Problem with Programable Controllers", IEEE Trans. on Industrial Electronics and Control Instrumentation, vol. IECI-21, no. 2, May 1974. pp. 50-52.
[3-19] H. Falk, "Self Contained Microcomputers Ease System Implementation", Computer, IEEE Spectrum, vol. Il, no. 12, Dec. 1974, pp. 53-54.
[3-20] A. R. Ward, "LSI Microprocessors and Microcomputers: A Bibliography", Computer, IEEE Computer Society, vol. 7, no. 7, July 1974.

[3-21]	A. R. Ward "LSI Microprocessors and Microcomputers: A Bibliography Continued", Computer, IEEE Computer Society, vol. 9, no. 1, Jan. 1976, pp. 42-53.
[3-22]	Signetics 2650 Microprocessor Manual, Signetics Corporation, Sunnyvale, CA. 1975.
[3-23]	A.V.Oppenheim and R.W.Schafer, Digital Signal Processing, Prentice Hall, N.J., 1975.
[3-24]	C.E.Shannon, "Communication in the Presence of Noise", Proc. IRE, vol. 37, No. 1 (Jan. 1949), pp 10-21.
[3-25]	Engineering Product Handbook (A / D and D / A Converters), Datel Systems Incorporated, 2nd Printing. Canton, Massachusetts.
[3-26]	Analog-Digital Converter Data Sheets, Analog Devices, Inc., Norwood, Massachusetts.
[3-27]	Analog-Digital Converter Data Sheets, Burr-Brown Research Corp., Tucson, AZ.
[3-28]	User's Guide to A/D Converters. Electronic Products, Dec. 1976.
[3-29]	T.R.Blakeslee, Digital Design with Standard MSI and LSI, Wiley=Interscience Pub., John Wiley \& Sons,1975.
[3-30]	J. B. Peatman, The Design of Digital Systems, McGrawHill, 1972.
[3-31]	H. W. Gschwind, Design of Digital Computers, SpringerVerlag, N.Y., 1967.
[3-32]	The Signetics 2650 Assembler Version SCU Level 1 (Signetics part number 2650 ASI000/1100) operational on the HP2100 computer at the University of Santa Clara.
[3-33]	C.McGowan "Structured Programming:A Review of Some Practical Concepts", IEEE Computer, Vo1 8,No.6,June,1975
[3-34]	Three Axis Fluxgate Magnetometer Specification, Model 9200C. Develco, Inc., Mountain View, CA.
[3-35]	Analog to Digital Converter Specification, Model ADC-MA12B2B. Datel Systems, Inc., Canton, Mass.

BIBLIOGRAPHY (Continued)

[3-36] Telephone conversations with or. Opher of. Develco Inc., during summer of 1976 .
[3-37] G. Dahlquist and A.Bjorck, Numerical Methods, Prentice Hall, 1974.
[3-38] C.V.Ramamoorthy, J.R.Goodman and K.H.Kim, "Some Properties of Iterative Square-Rooting Methods Using High Speed.
[4-l] Telephone conversation with Develco magnetometer project engineer, Ronald Warkentine, November 3, 1976.
[4-2] P.E. Gise, "A Cylindrical Thin-Film Magnetometer Sensor", PhD Thesis, University of Santa Clara, 1976.
[4-3] Telephone Conversation with Ronald Warkentine (project engineer) at Develco, November 24, 1976.
[4-4] J.A. Cadzow, Discrete Time Systems, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1973.
[4-5] A.V.Oppenheim, R.W.Schafer, Digital Signal Processing, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975.
[4-6] S.Mason and H.J. Zimmerman, Electronic Circuits, Signals and Systems, John Wiley \& Sons, Inc., New York, 1960.
[4-7] Model MM-8, 8 Channel Analog Multiplexer Data Sheets, Datel Systems, Inc., Canton, Mass., 1975
[4-8] B.A.Barry, Engineering Measurements, J. Wiley, \& Sons, Inc., N.Y., 1964.
[4-9] M.B.Stout, Basic Electrical Measurements, PrenticeHall, Inc., N.J., 1960.
[4-10] Model SHM-IC-I, Sample and Hold Integrated Cirouit, Datel Systems, Inc., Canton, Mass., 1975.
[4-11] Model ADC-MA12B1B, Analog to Digital Converter Data Sheets, Datel Systems, Inc., Canton, Mass., 1974.
[4-12] G.Dahlquist, Numerical Methods, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974.

[^0]: ${ }^{1}$ Aviation use to date has been essentially scalar magnetometry.

[^1]: ${ }^{2}$ It was noted following ($1-7$) that a unique solution for attitude variation is not possible using magnetic field data alone.

[^2]: ${ }^{3}$ Not necessarily derived inertially [Ref. 1-11].

[^3]: ${ }^{4}$ An example of this would be yaw rotation while flying straight and level over the magnetic poles or roll rotation while flying towards a pole at the magnetic equator.

[^4]: ${ }^{2}$ The response times of the various sensors and analog circuitry are orders of magnitude greater than the desired one second sample interval.

[^5]: ${ }^{3}$ Current remote magnetic indicators are pendulous and rely on gravity to enable measurements of the horizontal magnetic vector (not attitude independent).
 ${ }^{4}$ Assuming that the sensors have repeatable or measurable characteristics, algorithms can be developed to correct previously measured erroneous data.

[^6]: ${ }^{1}$ That is, the sampled data derived from a sine wave of frequency f sampled at a frequency less than $2 f$ can be fitted with sine waves of a frequency other than f.

[^7]: ${ }^{2}$ Signetics tradename for the 2650 resident. loader and monitor program.

[^8]: ${ }^{4}$ With zero stimulus applied the sensors have a finite nonzero output. This exror in the fluxgate magnetometer is a function of temperature, voltage and magnetic remanence in the sensor magnetics [Ref. 3-36].
 ${ }^{5}$ Sensor characteristics relating the temperature and power supply coefficients of offset error and nonlinearity can be derived empirically.

[^9]: ${ }^{6}$ If $|\mathrm{Hx}|<|\mathrm{Hy}|$, then an equation similar in form to 2-la must be used.

[^10]: ${ }^{7}$ It is possible at certain attitudes to require sign reversals when computing horizontal vectors.

[^11]: ${ }^{8}$ Memory integrated circuit (IC) devices of both types can be used in the same mechanical sockets with actual chip type being used transparent to the remainder of the system.

[^12]: ${ }^{9}$ Some of the subroutines required double precision manipulations to maintain overall system accuracy.

[^13]: loffset corrections were made in the sample subroutine "SAMP" illustrated in Fig. 3-6a.

[^14]: ${ }^{2}$ For example, magnetized screwdrivers or other tools used near the sensor will alter the residual magnetic field.

[^15]: ${ }^{3}$ By maximizing or nulling a measurement, the mechanical positioning is a function of only the field and the resolution of the voltage measuring device obviating errors due to physical position measurement.

[^16]: ${ }^{4}$ Assume that the first axis is initially adjusted for maximum output to align it with earth's field and the rotation axis is perpendicular to the field.

[^17]: Fig. 4-4 DEVIATIONS OF THE HORIZONTAL FIELD MEASUREMENT

[^18]: ${ }^{5}$ Verbally confirmed by Workentine of Develco [Ref. 4-1].

[^19]: ${ }^{6}$ One machine cycle time for the 2650 microprocessor with 1 mHz clock frequency.

[^20]: ${ }^{7}$ A byte is accepted terminology for an eight bit data quantity.

[^21]: ${ }^{9}$ The procedure determines the relative address by linear interpolation, then selects the closest address as the required angle for the solution.

[^22]: ${ }^{1}$ Since the local magnetic field has a nonzero gradient, field measurements include a component due to translation of the sensor axes. This component of measurement produces unacceptable error in a system designed to measure field components that change due to rotation.

[^23]: ${ }^{2}$ A special subroutine was used to display Z axis data directly in BCD format on the seven bar output display.
 ${ }^{3}$ This measurement technique ensured that all heading measurements were made identically. In addition, error due to system imprecision was reduced.

[^24]: ${ }^{4}$ This corroborates the observations predicted during error analysis in Chapter IV.
 ${ }^{5}$ We note that the error excursions are functions of pitch and roll and that Z axis data is used in the rotation algorithm.

