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SECTION I

SUMMARY

An anak• tical investigation was conducted to determine the effects of having a 'Thermal
Harrier Ci)ating on F I W first stage turbine blades Heat transfer and elastic stress anaI%.e. wem
performed at two spanwise locations. IfY, and 50', span. Hoth out . 411 plane and in-plane (.1.1%I I(
shei4s analYses were conducted. %laximun ► strain ranges were calculated for the coating during a
► ypicvl FIW transient cycle. Results of the analyses show that the highest :train ranges in the
coatings occurred at the leading edges of both spanwise locations. The magnitudes of*these "!rain
ranges were then compared with that allowed for the coatings. Hased on the limited data
available. the coating would he expected to I'ail essentially over all areas of the airfoil. Because
this has not been observed in previously-tested blades, it is recommended that the blades he
examined to determine the Ix ►ssibility of micro-cracking, which could provide stress relief for the
ceramic while allowing it to remain attached to the blade. Further stud y is also recommended to
determine the effects of plastic defortnation (creep) and creep fatigue interaction on coating life
and to define thermal fatigue properties of the zirconin coating material.



SECTION II

INTRODUCTION

As part cif the Full-Scale Engine Research (FSER) test program being conducted at NASA-
Lewis, thermal harrier coat inp for turbine Mules are being evaluated in an F IM engine. The
blade% are covered by it 111 mil vttrin-stabilized rirconia (Zro,-N',O,) protective coating over a 3-
ind NiCrAIY bond coat. The blades were coated by NASA wing the plasma sprit * process. To
date the thermal harrier coated blades have accumulated approximately 10 hours ruts time
without visible damage.

A design anal ysis was required to determine if engine results .ire predictable and to acquire
a more comprehensive understanding of the coating performance during actual operating
Condit ion%. The purimme of I his stud 'v was to provide I he result, of heat transfer and
anal }• se% of two spanwise I(x • ations un the blade. These results will then he compared with I^ S'Elt
test data when it becomes available.



50% Span

10% Span

SECTION III

DESCRIPTION OF ANALYSIS

MODEL DESCRIPTION

The fill III ^,, described in this report wits conducted on Ilm VIINI !Irs! Idades coaled Iry
`:ASA under the Full Scale Engine Research (FSF:k) program with fill yttria-stabilized zirconia
thermal harrier coaling! ('1 BC). The FI(NI blade is it tionally-solidified MARAI-2W (11WA
1 .1'22) casting. The blade is cashed In. i[III)inge ►nent/convection Iechnieaues with I-, it IititI d is( Imrgf-
Ihrough it pedestal trail:ng edge (Figure 11. beading edge impingement and midchord convection
is implemented by a tip inserted, cast cooling tube That is pinned at the r(sd. Rent transfer and
elastic stress analyses were performed at twospanwise 1-.ations, 10', find rdl', span. Previously

tested '1 BC blades showed t hat t he 10' , span -c ct Ion %%fis undamaged while t he 50 1 , sect ion

showed considerable distress. 'thus, fill 	 was made to predict I his difference analyI.Y.icaII 
The 2-1) finite element breakups used in the analyses 	 tare shown in Figures 2 and :i, including
breakups of the 3-mil NiCrAIY and 10-mil '11W layer.:.

F 100(3)
(Impingement LE)

Flt 127,070

Figure 1. Bill-u/-Malcrial First-Sfagv Turbine
Blade Showing actions Analyzed
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ANALYSIS

1'ransient and steady-state heat transfer and elastic stress anal .vses were performed on the
10`(' and 50', span cross-sect inns of n thermal harrier coaled tint blade for a t\ l)ielll FI I NI engine
cycle as defined in Figure 4. 'These spanwasa' Ineatl(lls %%vre se•la•a'led far rewims: 1 I I haled r,al

Observations of prev iously- tested TIM) 7 coaled blades. the 111, and 50', span I,tat lolls

represented areas of unfailed and failed coating respectively, and 12) amilytical studies of these
sections without the rmal harrier coaling were mailable far comparison.

External heat transfer coefficient: and adiabatic wall temperatums %►rre determined using
a i'&WA - developed computer program which simultaneousl;' accounts for the behavior of hoth
the velocit%- and temperature boundary In 'vers nn an airfoil. ^condarn' flow effects were
accounted for in the determinatico of adiabatic wall temperature. 1'oolant side heat transte•r
coefficients and temperatures were calculated using a compressible flow program which accimms
for pressure drop and temperature change due to rotation, friction, heat transfer. and sudden
changes in cross-sectional area.
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After application of it cerarnic thermal harrier coating over a NiCrAIY coated rncial airfoil,
residual stresses exist in the ceramic coaling and airfoil because of' the differences in thermal
expansion. The metal shrinks more than the ceramic as both cool dawn from the application
temperature of'several hundred degrees to room temperature, thus inducing compressive stresses
in the coating. The effects of these residual stresses were accounted for in the anal ysis by the use
of a stress-free temperature 1T,J as the reference temperature instead of norm '.,mperattire.
which is normally used. For the stress analysis an effective coefficient of linear expansion was
defined as follows:

, rr — 701 -- o, rr,,.	 70)

1T TJ

where it and a, are the coefficients based on rain temperature and evaluated at T and
Hased on testing previously conducted at P&«'A the stress free (emperature was calculated to he
7(X)°F. This value was used in the analys e ..ewrihed in this report.

A generalized heat transfer and elastic stress anal ysis program was used to determine the
airfoil transient and steady

 -

 
s tate metal temperature distributions ;rod strain ranges for coating

life evaluation. Both in-plane art(] out -ol'- plane :utalysesw ere performed. The in-plane and out-
of-plane strains were combined to determine an effective out-ol'-plane strain using the following
equation:

I— 
I	

(7. — v G, + a y )	 l
H;

6



wham

effective oul-of plane strain

F:	 elastic 1114 1dulus

r	 t ► olKae ►n's ratio

o,	 Oresses from in-plane . and oul-of-plane
anall•aes.

These effective strains were used tej determine the rnaxinmin strain range in this coming
during t ho engine cN rte

'Phis inaxitnum strain range it 	 asstoceated temperature . %% crc .hen timed to 1 ► mdict cqueting
lailnirv. !Material vnipurties toed in thi, anal}-sis are	 in Figures A I thriut;h A-r) in the
Ap ► p undix.



SECTION IV

RESULTS AND DISCUSSION OF RESULTS

	The calculated external houndtim conditions ladiabat 	 wall temperatures and heat

	

transfer coefficients) are shown in Figure.	 through K for ICI	 span and f►11', -pan sections,

resl ►ec• t ively.

Figures 9 and 10 show the calculated airfoil coating surface 'emperature distributions.
Comparisons of average metal temperature are also shown for coated and uncoated blade-,
showing reductions of 9ti° and 124°, resl ►ec•tivel y , for the 10', and r4Y, span sections. Mier
accounting for the additional centrifugal pull stress of the added coating, these reduction% could
he converted to it savings of approximately 1.2, in first blade cooling air and Mill maintain
i lrrrent average meal temperatures.

Figures 11 acrd li show the calculated elastic strain range histories for the leading edge and
pressure surface, where distress hied been observed previously, and the location of rneeximum heat
flux on the suction side of the 10', and .rill' , span sect ions. The minimum strain occurs at
2.0 seconds into acceleration and the rnaxitnum strain occurs at seconds into deceleration.
These values are shown in the table below along with the associated coating temperatures.
Maximum strain ra:,cce is defined as the difference hetHeen minimum and maximurn strain.
'These are shown gr( ► ohic•ally as a function of temperature in Figures 1:1 anal 1 .1 for the'wo spans

analyzed. At these tempo rt0ures and strain ranges Bill -ot- Material iduminide coatings would he

expected to fail.

F LASTIC S'I'HAiNS FOR 10 1 , AND NY, SPAN SECTIONS
AT SEA LEVEL TAKEOFF (S'I'FAIIN' STATE).

ACCELF RATION. AND DECELF RA'HON

10 Percent .spun Scctim ►►
Suction Side Leading Pressure Side
Mid-Chord	 Edge	 7'ruiling 1':dgc

`IA'O (S.S.)	 C 1	 0.1 M;	 0.:16	 0,221;

	Temp (°F)	 176.1	 18.19	 171.1

DECEL (111,4 n 	 1'1) 0.48.1 0.5:1 11.:196

CT	 1:1.F► sec) 'Temp (°F) 1254 1135 1:121

A('CEL (,, , „ n 	 1''	 1 0.107 0.20 0.036

11'	 2.5 sec) Temp (°F1 1:192 1r)91 125.1

50 Percent ~pun Sv(tion

(S.S.) e,,,,, n 	 ('	 I 0.11 O.1:1 0.:129
'emp (°F) 2011 22151 178:1

1)F.CEL (111H,	 (' ( ) 0.:198 0.60 0.415)

''1'	 1:1.5	 sec) Temp (°F) 1451 ► 1346 14,48

A('CEL	 e rim n ( ` O	 0.218	 0.29	 0.072

IT 1.5 sec)	 Temp (°F ► 	 1576	 1911	 1266

8



)nveX

in
Ln

Mr

o1U)

Steady State

Sea Level Takeoff

v
r:

w
O o

-r
I ^T

G1
14
a
AJ u'i
M M
N O)
y -4
a
E
0
F oM
r1 Q1

Ri

;S

u Ln

H N
4)

M r.^
.Q

M

.14

ro C.
n^

r-1

Ln
-1

Q1
r-1

G

r-i

m
r--I

Ln
0
- 
0.00 0.30	 0.60	 0.90	 1.20	 1.50	 1.80

Surface Distance from Leading Edge - Inches

Figurr a.	 Thermal harrier Coated First-Stage Made
10 1 i Span Section, Adiabatic Wull Tentperattire

!)istrihution

2.10

9



r
v
N

O

r
v
N

it)

kD
V'
N

O

^D

O N

I

1-i	 Lr)

^ N
M
N

va. o
E: u-i
G1 v'
E" N

ro ►r,
^r

U C-1

^ o

'u Na

U,
M

C^J

U
M

ITN

it
N

.ni . 0 0

cave

Convex

0.30	 0.60	 0.90	 1.20	 1.50	 1.80	 2.10

Surface Distance from I.eadinq Edge - Inches

Figure 6. F1(X)(3) Thermal Farrier Coated F'irst•Stugc Blade —
lNidspan, Adiabatic Wall Tcniprrattirc , Mstrihution

10



0.30	 0.60	 0.90	 1.20	 1.50	 1.80	 2.10

Surface Distance from Leadinq Edge - Inches

Figure 7. FI(K)(a) Thermal liarrier Coated First -S,agv Blade —
10' , .Span .Section. F..r; crnal /lent 7'misfcr Coef/ic•ivilt
Mst ri hutiun

CDf
o l_
`n 0.00

Convex

0
0
0

44
0
N oC)
44 a)

Nx̂aa
E^ m
CA

I

^ o
C)

U
.14
4.a
44
0 0
O o
U `D

La
Ql
44
In O
O

rd U-)

Y4
E-+

rd oQ) o
x ".



00
N

O
O

0
O
O
1-1

O

N O
LJw O

Hx O
O
m

U O„A O
4-+	 r
W
GJ
O
U o

CD

Q) `O
4-,
U)

ro ^
^4 oF ,i,

ro

x o
0̂
r

00M

00N
0.00

Figure H. F100(3) Thermal Barrier ('oated First-Stage Blade —
Midspan, External Heat Trarmfer Coefficient Dis-
tribution

Convex

— I

0.30	 0.60	 0.90	 1.20	 1.50	 1.8 0 	 2.10

Surface Distance from Leading Edge - Inches

12



^,
o

Qa
s

w
^0

^
^

G
^
	

~

H
	

^

6
J

u
a

E

^
^

Uo
6!

v
	

E
N

N
E-H
	

G

HG

uw
	

u
C

~

G6

^
^

I
^

L3

^cn
N

vtr

N
u

I

O
r
CW

N^^:

r
o
	

I

O

I
,
^

uV
p

CTC
N

•ri

r--1
l
uro

^
I

a
I

II
oc
r

c

I
m

o
`
'

°
vU

b
o

G
.

vw
I

N
I

NG
oN

t+
^

C
)

0N1
0
0
1
Z
	

0
0
6
1
	

O
O
L
T
	

O
O
S
T
	

0
a

d
o

-
	

a
.z

n
-4

v
a
a
d

u
l
a
L
	

It?-4
a
l.1

bd
 
^

Zv
 
y

t
i
 
1

d
 
J

L
 
`
.

p
 
O

x^
 
E

;c;^
 
rr^

I

L
Z

1
3



0QV
)
mP
4

wOUtoa^wvaEvFv0
0

^•

dyNnr--

c
o
cuMOUvNivp
q

.
.E rG+OHLO)

a.i

S
 
I

u4
•O
uMNva.Ev
FvuwV
)0
0

Ga.+0U

G
O
C•,ruOUaNNC"

MN.
0

f
-
^

u3

r
o
 
^

0b
 
O

n
 I,

y
 ~tl

o
 
^

a
r
 
r

r
, 

n4

^
 
I

C

a
o

"
^
 
o
c

^
v

^ W
 I

va
1

N

O
	

,r~
C
	

U1
r

N
 
H

I

-
4
 v

N
 
^

Ou
 

CT
u7
 
r
i

O
	

^ra

O
	

^0

o
	

p

C)̂, 	
UL:

O
	

fli
6
1
 
^

b
 
N

,4	
•,

C
n
 
Q

v
O

 
S

a
N
 
Ov44
a

^i

0
0
Z
Z
	

O
O
O
Z
	

0
0
8
1

0
-
 
aan

jezad
tu

ay
 1

-eg
aW

C)0N
0
0
9
1

1
4



N
 ^

M

.. 
b

O
 
G

-
,
4
 
OU

c
^
 v

{
a
 
^

C
J
 
V
)

O
1
 ^

4
u

 ,^
v
 
^

^
 
N

.
a
 
v
 
w
 
M

G
 
+
^
 
n

o
 
m
 
(
n

v
 
•

4	o
a
 c

,

O
 w

 c
p

G
 O

 ^
 C

1

a
 
G
 
^

pc
	

^

0
0

r
'
)
 
Q
'

O0

O
 l P

 i1
 r,M

-w
-

OO0
0

N0C
)

GcGaw7a.+ac

111
a

M
N

Q
1

r
+
1

N
N

rl
(V

Q
)

v
v

ro
7

`U
-H

W
u
l

•14
v

ro
s4

ti
0

a
-W

.^
•4

w
to

•[J
11

!Jl
ro

U
Q

)
X

^4
a

c
n

fro".

r1
N

M
^?

0•

N

tl

O
 
N
 

r

p
 `

L
J

O
 
O
U
	

;
y
 
E
_

N

C
^	

C

O
 

Q
)
	

i-

^
 
y

b
 
t
lf

C)	
o
 
t

S
P

U
O

Ja
s Z

I il.' 	
O
	

4
3
3
O
a
l
,
I
e
s
 
j
a
n
a
Z
 
v
a
s
	

N

z'

0
1
0
1
0

v

	

0
	

0

	

O
 
G
	

O
•,4 o
L
 
U

tC
 c

i

v^
 
n

C
J

	

U
 
N
	

O

	

¢
 o
	

a
T

P
I

0
9
0
0

1
0
	

Z
0
0
.
0
	

0
 
Z
0
0
'
0
-
	

9
0
0
'
0
-
	

T
0
0

. 0
-

1
4
3

U
T

/
S

c
O

l
;
O

U
i
 —

 U
T

U
.1

-
4

S

15



1
6

0
[0

'0

0ONrte
'

CON00N

M
 
V
r

a
T
P
I

.4COvC-
4

aO1

O

r
-

f
V

O
C

P
_

(
T

V
O

O
^

rl
N

N
r-1

N
0J

41
`[J

'L7
•'^

V
l

G
W

^
•,^

1~
O

U
^
I

.1
4

.11
N

`
U

J
J

In

id
U

N
k

a
U Ui

a

.
^

N
f
^

`T

ab00̂rf4v^_
 
y

L

[ t
i
 
J

yV^L,C
d
 
~

[
.
 
d

^
 

C
•

b

NCiti

LZ

Nb

G
 
G

o.4 
u

u
 
v

r
 
t
n

H
L
n

4

U
 
1

U
 
C
I

M
0

OOO
 
r
n

N
 
.
VOU

C
)
 
N

0(
O
	

I
r
-
-
1

iy

O
 
H

(
7

3
p
u
0
j
a
s
 
Z
I
 
]
e

J
 J

 O
a
x

e
,L

 j a
n

a
l e

a
S

-0O
J

G
 
G

C
	

M
	

.4
•.1
	

td
	

.;

G
 C

 
L

 0
0

O
	

IS!	
C

A
U
 
.
4
	

G
R+

E
	

G
	

It
O

 '-.	
cd

Ei	
O
 
^
+
	
v

•.1	
1	

w
	

o0
X

 u
 1
	

G

O
 
GO

y
 
v

y—4
L
r
)

J
 
C

U
	

1

1	
!1 /	

1
` t: O

1
J

9
0
0
'
0
	

2
0
0
'
0
	

0
	
Z
0
0
'
0
-

_

9
0
0
'
0
-

q
O

U
T

/S
ay

3
u

i - u
?eJg

S

OCOCOOOO
a
r
p
I
	

o

0
1
0
 
0
-



^o
c
O

4
U C
I;

N
^ N
^ d
u ^

H c^

I
^ c

^^ NO
1a O

En p
I

W ~
O
O
O

1

O
r1
O

° 800.

Maximum Strain Node is 239 (Leading Edge)

c
H
C
0

5)

SLTO Combined Out-of-Plane
and In-Plane Strain

0.0080	 Maximum Combined Out-of-Plane

\ Wut-of-Plane;	 and In-Plane Strain Range = 0.73%

w

W

0

CJ

..1L

F
.--4
v
v

..7

rV

1200.	 1600.	 2000.	 2400.	 2800.

Temperature - °F

Fissure 13. F100(3) Thermal liurrier Coated First-Stage Mode
— 10', Spun, Strain cs 7empowiture

17



Maximum Combined Out-of-Plane

and In-Plane Strain Range - 0.89%
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It is inure difficult to make a si ill iIar judgment relaIi%e (o I ' M' ,iir• i%a1)iIiiN, or failure.'I'his
is primarily the result of insufficient life data 14)r the therrna l harrier coating systetn. The only
infortnation currently available is the failure strain data shown in Figure A-5. 'These data are
based on flexure specimens, and represent tensile failures. If' these data are used as allowable
strains, the predicted %clues of strain will indicate coating failure essentiall y all over the airfoil.
even when only the tensile portion of the total strain range k used. Obviously thi s approach is too
conservative, since previww. cx; •erienve shows that thermal harrier coatings do sur v ive for short
periods of tithe, and it is mainly the leading edge and pressure side tip-trailing; edge quadrant
areas that deteriorate in long-term operation. If the coating does fail all over the airfoil, the cracks
are not visible to the naked eye. Possibl> the stresses in the coating are relieved by micro-
cracking, giving the appearance (if' no damage. Periodic microscopic inspection of the blades
would he required to determine the existence and extent of this type of cracking. The design data
that is required to make a valid assessment of the calculated results consists of thertnal f ttigue
data (including the effects ol'stead y stress superimposed on alternut ing stress) for hoth the elastic
and plastic regions of the coating system.
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SECTION V

CONCLUSIONS AND RECOMMENDATIONS

1. The addition of it 	 lull thermal barrn u r coatint	 the I• IINI first	 i ge turbua , Iclade restillml
in it decrease in average metal temperature of I I'm midspan. I i is could hr cc:ncerted into
a re'ditetimi ill first-stage blade cimiling air reii wd front 3.59 1 , 141 2.40', engine airflow Iii
maintain the Hanle average metal 11'111peratUr

Maximum surface strain rime is increased sign - :icantlp with the addition of it therimil
harrier coating because of the higher thermal gradients across the conted airloil Hall.

Haled on the failure strain data itvailahle. the predicted value, of strain would indicate
coating failure essenlialiv all over the airb-d. This condition has not been observed on
previousl y -tested parts. It is possible that micro cracking occurs tit ceramic. Ih,w
providing stress relief for the coating while maintain ng adhesion to the metal subslrale. It is
recommended that engine test blades he periodically examined microscopically to determine
the existence and extent of this cracking.

a. It is not 1wossible to Formulate menningful conclusions relative to Hit- survivability or failure
of the thermal harrier coating without additional material data. It is recommended that a 10•
mil thermal barrier coated specimen simulating the FSER blade, hr lab tested at engine
transient conditions to generate applicable coatim; life data. Thu specimen should he
stibJected to the same 0wrrno-mechanical cyclic loading as experienced in the engine
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4
APPENDIX

MATERIAL PROPERTIES

This appendix shows the properties of the various materials used in this analysis for the
F'11K ► engine first-stage turbine blades.

• Thermal conductivit y vs temperature
• Specific heat vs ternl ►erature, density table
• Elastic modulus vs temferattire
• Thermal coefficient of linear expansion vs temperature
• C'er;,.'nic coating fracture strain vs temperature
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