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ALTERNATIVE AIRCRAFT FUELS 

by J. P. Longwell* and J. Grobman** 

National Aeronautics and Space Administration 
Lewis Research Center 
Cleveland, Ohio 44135 

ABSTRACT 

Tne efficient utilization of fossil fuels by future jet aircraft may necessitate the 

broadening of current aviation turbine fuel specifications. The most significant 

changes in specifications would he an increased aromatics content and a higher final 

boiling point in order to minimize refinery energy consumption and costs. These 

changes would increase the freezing point and might lower the thermal stability of 

the fuel, and codd cause increased pollutant emissions, increased combustor liner 

temperatures, and poorer ignition characteristics. This paper discusses the effects 

that broadened specification fuels may have on present-day jet aircraft and engine 

components and the technology required to use fuels with broadened specifications. 
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: 
INTRODUCTION 

While, on a worldwide basis, production of jet fuel can meet current require- 

ments without difticulty, major price increases in recent years and the impending 

shortage of liquid fuels relative to basic izmand is bringing about a serious examina- 

tion of the possible changes in jet fuel composition that will result from future shifts 

in the usage of liquid fuels and in the raw materials used in their manufacture, Esti- 

mates of worldwide petroleum resourcf:s and of future economic growth are, of 

course, uncertain; however, there is a high probability that even without major dis- 

ruptions or major ourput restrictions production of petroleum will go through a maxi- 

mum in the 1990 to 2000 psriod while demand for energy will continue to grow [ 11. 

Adjustimnt to the inability of world petroleum production to keep pace with basic 

world demand will force major substitution of other energy sources such as coal, 
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nuclear, gas and solar for  liquid fuels and will require production of liquid fuels from 

resources such as coal, oil, shale and vegetable matter, where such materials are 

available. 

Major substitution of other energy sources for  liquid hydrocarbons is expected 

to occur in the electric power generation, industrial heat and commercial and resi- 

dential heating sectors. In the United States substitution of oil for  gas is currently 

resulting in a rapid short term increase in fuel oil use in the power generation and 

industrial sectors; however, subsequent displacement of fuel oil by coal and nuclear 

heat are expected with fuel oil use dropping off af ter  1985 to  1990. Changes in oil  use 

for  residential heating are expected to be slower with use decreasing somewhat before 

the end of the century. 

The possibilities for displacement of liquid hydrocarbons for transportation fuel 

are quite limited during this century and growth in transportation fuel use is expected 

to the extent that supply will allow. Within the transportation sector growth of gaso- 

line use is expected to be slow compared with the projected rapid growth of diesel 

fuel use and substantial but less rapid growth of aviation turbine fuel use. Both of 

these growing areas, at present, demand high quality paraffinic fuels. In addition 

the use of petroleum paraffins for petrochemical feedstock is expected to grow rapidly 

a t  5 to 7 percent per year well into the next century with the result that this use is 

projected to be second only to transportation as a consumer of liquid hydrocarbons - 
much of which will be in the same boiling range as jet fuel, diesel fuel and heating 

oil (mi?-distillates). The net result of these trends will be a decrease in gasoline/ 

mid-distillate ratio from a current value of 1.5 to a value of about 1.2 in 1990 and 

quite possibly 1.0 in 2000. While production of an increased proportion of mid- 

distillate is qwtc feasible, the need to convert heavy fuel oil and gas oil to the mid- 

distillate boiling range and the increased use of heavy crude, tar and coal liquids 

will increase the aromatic content of the mid-dib?illate pool to the point where special 

processing would be required to produce the needed quantities of low- freezing-point, 

low-aromatic jet fuel called for by current specifications while also meeting diesel 

and other mid-distillate product demands. 
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This view of the future has stimulated a re-examination of the optimum fuel 

specificatiodaircmft system. The bulk of the work related to this re-examination 

has been supported by the U. S. Air Force, the U. S. Navy, and by NASA with the goal 

of assessing the suitability of jet fuels made from oil shale and coal and of developing 

a data base which will allow optimization of future fuel characteristics taking energy 

efficiency of manufacture and the trade-offs in aircraft and engine design into account. 

PROPERTIES OF FUTURE AVIATION FUELS 

Jet f : i d  has traditionally been manufactured by distillation from petroleum crude 

followed by mild hydrogen treatment to control sulfur, corrosivity or thermal stabil- 

ity as needed. As the distillate fuels become a larger fraction of the total crude 

petroleum, a point is reached when an insufficient quantity of the proper boiling range 

is found in the crude and higher boiling materials must then be converted to the 

proper boiling range. These cracked products are, in general, higher in aromatic 

content than the naturally occurring fractions. The boiling range of the major t'clean" 

fuels is shown in Fig. 1. Crude petroleum normzilly has a boiling range that extends 

to about 600' C and as jet fuel, diesel fuel, and No. 2 heating oil become a larger 

fraction of the total product, the need for conversion of fractions boiling above 300' C 

and the competition between these uses for the same material is clear. While in 

Europe there is no current difficulty in jet fuel production, in the U. S., there are 

local situations where the total product demand forces importation of jet fuel from 

other areas and/or hydrogenation processing to' meet current demand and specifica- 

tions. 

Note that in Fig. 1, commercial jet aircraft fuel, Jet A, has a relatively narrow 

boiling range specification. The initial boiling point, a minimum of about 170' C, is 

necessary to maintain the flash point above 40' C to reduce the probability of a f i re  

during fueling, or  following an emergency landing. The final boiling point for Jet A 

is usually below 270' C to comply with limits on freezing point. Figure 2 shows the 

increase in freezing point to be expected as the final boiling point is increased. The 

freezing point of a fuel blend is the temperature at which wax components in the fuel 

solidify, and Fig. 2 indicates that freczinp point is quite sensitive to final boiling 



point; however, an increased final boiling point would clearly allow increased flexi- 

bility in manufacturing the total mix of distillate products. 

A s  mentioned earlier, the cracking of higher boiling materials to produce a 

product within the jet fuel boiling range, increases the aromatic content which is  

currently linutcd to a maximum value of 20 to 25 percent by volume. The aromatic 

content of jet fuel i s  also increased by extending the distillation range to a higher 

f ind boiling point. As sliown in Fig. 3, increases in aromatic content reduce the 

hydrogen contwt of the f u e l  Since a decrease in hydrogen content increases flame 

radiation, hence combustion liner heating and can also reduce fuel thermal stability, 

possible changes in this fuel property require careful study. 

As shown in Fig. 4, coal and shale based hydrocarbons cont3in less hydrogen 

than petroleum and their use will further tend to reduce the hydrogen content of the 

fuel. Shalc oils tend to be in the 10.5 to 11.0 percent range compared to about 

11  percent hydrogen content in current jet fuels. Coal is very low and the hydrogen 

content of liquids produced from coal depends on the amount of hydrogen added. 

Coal syncrudcs typically fall in the 9.5 to 11.0 percent range. 

Another property problem introduced by shale oil and coal is  a high orbpnic 

nitroLvn content, typically 1.4 to 2 percent for shale and up to 1 percent for coal 

liquids, whcrctns petroleum is normally less than 0. 1 percent \\jth occasional crudes 

having contents up to 0.2 percent. Organic nitrogen introduces fuel stability prob 

lcnis and also increases nitric osidc cnii ssions formed during the combustion pro- 

CC’SS. 

I”ROPCX4EL~ SOLlTTIONS TO PROBLEhIS OF AiTERNATlVE F I T  I S  

Refining Jet Fuel to Currcnt Specifications 

(hic oh\ ious solution to the problcms addressed in  thc prcccding swtions \vc\rild 

1w !o p:iv ttic price for additional refining of altcinntivc jctt fucl to nicvt currcnt spvci- 

fications. lit-fining riqiiircnicnt s will dcpcnd on thc source of thc crudc :md thc- y c l d  

rcqui rcd. Ilcduction o f  boiling r,mgc, incrcasc in hgdrogcn contcnt, nit ragi-n- 

r ~ ~ i i i w  al : i n t i  i i i i p i * o \  c d  Uicrni;il st:ibility c:in bc ;iccompli.;iicd by the l i ~ ~ i i . ~ ~ g ~ i i ~ ; t t i ~ ) i i  

; ind In tli*t)t*i*;irl,ing proc(~sscs illust r:itrd i n  b’ig. 3. ’I’lic. ;‘ydrog:c*n coiisi inicd in  this 
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type of processing can be very laqp. Work done under U. S. Air Force and NASA 

contracts illustrates the extent of some of the hydroprocessing required in making 

jet fuels from syacmdes (21 to [4]. One of the considerations is the increased amount 

of hydrogen that will be required above that usually needed in petrdleum processing. 

Two examples of specific cases are shown in Fig. 6. In the first, from shale oil 

processing, the hydro- consumption is increased from 900 (160) to 1100 (209) 

standard f t3hm1 (m /m oil) in reducing the nitrogen level from about 0.2 to 

0.015 percent (2000 to 150 ppm). For coal syncrude processing, hydrogen content is 

the controlling factor and in this case, an increase in hydrogen consumption from 600 

(110) to 1100 (200) standard f t 3 h l  (m /m oil) is needed to increase hydrogen 

content from 12.5 to 13.5 percent. Since hydrogen manufacture is of low thermal 

efficiency, 50 to 65 percent, and since hydroen and the processes using it are very 

expensive, consideration of both cost and energy conservation encourage minimization 

of these types of refining. 

3 3  

3 3  

Control of Fuel Thermal Stability 

The upgrading of alternative fuels by improved refinery processing is one ap- 

proach to solving the problem of reduced thermal stability. Changes in fw 1 system 

design is another approach. For an understanding of these solutions, it is helpful to 

look at some basic studies of fuel t h e n 4  stability [5]. 

Aircraft turbine fuels must be stable at the temperatures they will encounter in 

the fuel system. Practically, this means there must be no gum or deposits built up 

on heated surfaces such as heat exchansr tubes, or fuel manifold piping and no 

cracking or particulate formation that might clog small passageways in the fuel sys- 

tem such as filters or fuel nozzles. 

The laboratory tests that have been developed to check on this particular fuel 

behavior subject the fuel to a thermal stress in a test rig such as that shown schemat- 

ically in Fig. 7. A small tube is heated electrically to the test temperature, The 

fuel flows up through an annulus surrounding this heated surface and out through a 

test filter. During this procedure, any tendency of the fuel to form particulates 

large enough to block this test filter can be noted by a build-up of a pressure drop 

ORIGINAL PAGE IS 
OF POOR QUALITY 
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across the filter. At the same time, deposits may also form on the heated tube. 

One would expect that any chemical changes bringing about the fuel instabilities 

would occur at an increased rate as the fuel temperature is increased. In general, 

either the pressure drop across this test filter builds up at a faster  rate, or the indi- 

catcd deposits on the tube build up at a faster rate, as the temperature of the test is 

increascd, Thus, one way of comparing the thermal stabilities of fuels is to deter- 

mine the maximum temperature that the fuel can be subjected to in this test before it 

fails to stay within certain specified limits of pressure drop or deposit level. This 

temperature is referred to as the "breakpoint temperature. 

required to have a breakpoint temperature of 260' C or greater. 

Currently, Jet A is 

Breakpoint temperatures for  a number of shale-an&coal- derived fuel samples 

were determined (51. The shale fuels which were hydrotreated to remove nitrogen 

down to only 0.1 to 0.2 weight percent had breakpoint temperatures below 230' C. 

The fuels hydrotreated more severely, to nitrogen contents of about 0.01 to 0.02 

wei& percent (100 to 200 ppm) had breakpoints in the 230' to 260' C range. For 

breakpoints of 260' C or more it appears that the fuel will have to be hydrogenated 

to achieve nitrogen contents below about 0.01 percent (100 ppm). Although it is 

known that fuel-bound nitrogen is a factor contributing to instability of fuels, it is not 

possible to determine if it i s  solely responsible for the stability difrereiices. In the 

preparation of these fuels, the nitrogen content of the product was monitcred in estab- 

lishing the severity of the hydrotreatment used. 

More severe hydrotreatment conditions were required for the coal- derived fuels 

than for the shale fuels. The fuel-bound nitrogen in all these coal fuels was  equal or 

less than 6 parts per  million after hydrotreating. The variation of hydrogen content 

of the fuel was monitored as the indication of the seventy of treatment. A general 

trend to higher breakpoint temperatures was observed as the w e i g h  percent of hydro- 

gen was increased; a 260' C breakpoint generally requi ring at least 1 3  percent hy- 

drogen. 

These results rcprescnt some of the early stability data available on turbine fuels 

from sjnthetic sources and indicate the general level of severity of refining pmccssing 
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that would be required to produce synthetic fuels of comparable stability to current 

jet fuels. Hydrotreatment, of course, is not the only possible approach to solving the 

thermal stability problem. It may be that modifications can be made to the fuel sys- 

tem design so that the fuel does not reach as high a temperature level. This would 

permit the use of fuels of lower thermal stability. 

Combustor Technology for  U s e  of Broad Specification Fuels 

Reducing hydrogen content of jet fuel has a pronounced effect on liner tempera- 

ture and on smoke formation. Figures 8 and 9 illustrate this effect for laboratory 

studies of a single-can JT8D combustor for  simulated takeoff and cruise conditions 

[SI. As hydrogen content is reduced below the currently typical value of 14 percent, 

there is a pronounced increase in liner temperatures caused by the formation of in- 

creased quantities of soot with a corresponding increase in flame emissivity. 

A higher l iner temperature markedly shortens liner life and increases mainten- 

ance costs. Increased liner and nozzle carbon deposits can cause turbine damage by 

changes in temperature distribution or by physical damage caused by flakes of carbon 

aeposits passing through the turbine. Smoke in the exhaust is also increased. Since 

soot formation i s  a strong function of combustor design as well as fuel composition 

there i s  p o d  reason to e.xpect that advances in combustor design could allow satis- 

factory combustion of fuels containing less hydrogen. 

Promising results have been obtained in combustors being studied in the NASA 

Experimental Clean Combustor Program 171 and [8]. Two of these, the Vorbix com- 

bustor for the P& W JT9D engine and the Double- Annular Combustor for the G. E. 

CF6-50 engiiie a r c  shown for reference in Fig. 10. 

combustion with J reiative 1 ich zone for idle operation and a Icancd-out main com- 

bustion zone for high-power operation. Some of the results obtained wilh t h e w  com- 

bustors a re  shown in Fig. 11. Since thc various data were not a11 obtained at the 

samc combustor-inlc4 conditions, thc data arc plotted as t h c a  diffcrrncc. bctwccn 

masimum lincr tcinpcraturc irnd combus to r  inlct tcmpcraturc. The two top curvcs, 

reprcscnting data obtained with a production-model G .  E. CT%- 50 full-nimular coni- 

bustor and II single-can P& W ,JTPII coiiil)iistor, cshibit thc slroiig dcpcndtbncy of 

Both combustors fcaturc staged 
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maximum liner temperature on hydrogen content of the fuel. The bottom curve, rep 

resenting data obtained with the experimental Vorbix and Double-Annular combustors, 

shows a relative insensitivity of maximum liner temperatures to the hydrogen content 

of the fuel. These data were obtained at combustor inlet pressures of 10 atmospheres 

or less. Further testing is required to evaluate their performance and durability at 

actual engine operating conditions. 

Another method of reducing liner temperatures consists of coating the inside of 

the combustor liner with a thermal-barrier coating. Shown in Fig. 12 is a JT8D 

combustor liner which was coated with a thermal-barrier coating developed at the 

NASA Lewis Research Center for application to turbine blades. The coating consists 

of a bond coat of a nickel-chromium-aluminum-yttrium alloy covered with a ceramic 

layer of 12 percent by weight yttria-stabilized zirconia. To apply the coatings, it was 

necessary to cut the combustor lengthwise to accommodate the coating apparatus and 

then to reweld the parts. Care was taken not to cover the cooling slots and holes. 

The results obtained with Jet A fuel [9] are shown in Fig. 13. Maximum liner 

temperatures are shown as a function of average exhaust-gas temperature. For both 

cruise and takeoff, substantial reductions in maximum liner temperatures were 

achieved. Although no endurance tests were made, no deterioration of the coating 

was observed after about 6 hours of cyclic operation including several startups and 

shutdowns. 

While these findings represent limited laboratory tests and their practicality re- 

quires demonstration in a full development program, they do indicate that important 

advances may be feasible in the ability of aircraft gas turbine engines to use low hy- 

drogen content fuels. 

Fuel System Technology for Use of High-Freezing- Point Fuels 

Fuel system modifications, rather than combustor modifications, are the sug- 

gested solution for high-freezing-point problems. A preliminary study of the effect 

of high-freezing point fuels on the design of commercial aircraft fuel systems w a s  

recently carried out by Roeing under NASA Contract [ 10). Figure 14 shows  several 

predicted curves of fuel temperatures on board an aircraft during a long-range flight. 
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The bottom curve, labeled zero heat input, represents an extreme case, expected 

1 day a year, with minimum fuel temperature of -43' C. The other two curves illus- 

trate the fuel temperatures in flight with the fuel heated at the rates indicated. It can 

be noted that the minimum fuel temperatures in flight may be increased to -29' C by 

heating the fuel at a rate of 3500 Btdmin (3700 kJ/min) for each engine-fuel tank 

combination. This minimum fuel temperature can be raised to  -18' C by a heat input 

of 6200 Btdmin (6500 kJ/min). 

An analysis of potential fuel heating systems has been performed for the B-747 

airplane [lo]. Figure 15 is a cutaway drawing showing several possible heat source 

systems mounted on the wing fuel tanks and engines of the P-747. Some existing com- 

ponents, with minor modifications, can be used as heat sources. Three examples a r e  

shown: the mbin air conditioning heat rejection, fuel recirculation from the fuel 

pump, and tiel recirculation from the engine lubricating oil heat exchanger. The 

latter two heating systems would be based on pumping fuel at a maximum rate at all 

times, and then recirculating, o r  returning the excess fuel flow back to the wing tank. 

The excess fuel would be heated by the pump work o r  lubricating oil heat rejection to 

warm tlie b d k  of the tank fuel. An additional three systems, each capable of higher 

heati ig rates, a r e  also shown. These involve major modifications. These systems 

inchde a tailpipe heat exchanger, engine compressor air bleed heat exchanger, and 

an electrical heater, powered by an engine-drive gwmitor .  Most likely, these sys- 

tems would heat the fuel indirectly through a second heat exchanger loop, using an 

inert fluid. 

Data on these fuel heating systems are  shown in Table I. The first  three systems 

a re  miqor modifications of existing aircraft components, using heat sources ranging 

from 2000 (2100) to 4300 (4500) Btu/min (kJ/min). These rates could be increased 

by use of combined systems at the risk of control complexity. Two columns in this 

table show predicted penalties for the heating systems in terms of increases in air- 

plane weight and increases in fuel consumption, expressed a s  percent of cruise fuel 

flow, The penalties would be low for the minor modifications, because these systems, 

for the most part, use existing heat rejection i n  the airplane and powcrplants. 

ORIGINAL PAGE IS 
OF POOR QUALITY 
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Table I also compares the major modifications, which involve greater weight and 

performance penalties but which promise future use with very high-freezing-point 

fuels. These systems are sized for 6200 Btu/min (6500 kJ/min), which can maintain 

fuel temperatures above - 18' C for all of the flight profiles studied. Estimated 

weight increases per  airplane for these systems a r e  shown a s  250 to 450 kg. Fudl 

consumption penalties for energy diverted to fuel heating are least for the tailpipe heat 

exchanger, 0.1 percent of the cruise fuel flow rate, and greatest for compressor air 

bleed, 3.9 percent. On the other hand, the tailpipe heat exchanger is peril .-p the 

furthest from the state-of-the-art in development. Table I includes two other items. 

Insulation, which holds great promise toward reducing heat requirements, has a seri- 

ous drawback in system weight and corresponding fuel consumption penalty. Reduc- 

tion in heating requirements, as shown in Fig. 16, would not be sufficient to compen- 

sate for the insulation weight. Future deslgns, however, with composite wing mate- 

rial could incorporate lightweight insulation in basic design. Finally, Table I shows 

the equivalent fuel consumption representing 6200 Btu/mir. (6500 kJ/min) of combus- 

tion energy, about 40 kg/hr, or 0.4 percent of the cruise fuel flow. Systems which 

use heat rejection otherwise unavailable in the engine thermodynamic cycle, such as 

the tailpipe heat exchanger o r  some minor modifications, can have lower fuel con- 

sumption penalties than this combustion equivalent. 

CONCLUDING REMARKS 

The advantages and disadvantages of the various solutions to tha proble ... s result- 

ing from the use of alternative fuels a re  summarized in Table IT. The first ~r-lution 

is to continue to develop the necessary technology at  the refinery to produce specifica- 

tion jet fuels regardless of the crude source. By this approach, the fuel properties 

may be optimized o r  tailored to the needs of future jet aircraft. Furthermorc, t h i s  

would eliminate the serious cost penalty of rctrofitting existing aircraft and engines. 

The disadvantagc of this approach would be increased cnergy consumption at the re- 

finery and thus increased fuel cost. The sensitivity of fuel costs i s  illustrated by the 

fact that a likely increase in hydrotreating cost of producing spccification jet fuel 

from alternative sources of 10 to 20 ccnts pcr gallon would cost thc 1'. S .  commcrcisl 
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airlines an additional 1 to 2 billion dollars per year. 

On the other hand, the second solution shown in Table 11 is to minimize energy 

consumption at the refinery and keep fuel costs down by relaxing specific;rtions. Tile 

disadvantage of this approach is that more complex component technology must be d e  

veloped to coye with the problems of increased pollutant emissions, increased com- 

bustor lint e cemperatures, poorer thermal stability, poorer ignition characteristics, 

and restricted fuel pumpability. Furthermore, the use of broadened-specification 

fuels may have adverse effects on engine life, thereby reducing the time between over- 

hauls. Ultimately, the solution to these problems will involve the determination of the 

most energy efficient and cost effective path for optimizing the combined refinery-air 

transportation systems. The most practical solution will probably require a com- 

promise between partially relaxing fuel specifications and a limited redesign of the 

aircraft md  engine. 

In order to carry out such an optimization program, it is helpful to have a targpt 

fuel for use in research programs on both fuel production and aircraft and cngine de- 

sign. A NASA sponsored workshop, June 1977, has recommended a fuel for experi- 

mental use with the following characteristics: 

Jet A Experimental fuel - 
Hydrogen, w t %  4 4  -1 3 

Aromatics, vol. % <25 -3 5 

Flash point, 'C A0 >40 

Freezing point, OC - 40 - 29 

Brezkpoint temperatme, OC >260 >240 

Such a fuel would allow use of cracked petroleum stocks, refined shale oil and 

limited amounts of coal liquids and also appears to represent a reasonable target for 

designing and developing new propulsion and aircraft systems, Efforts to reduce fuel 

costs mwt, of course, be integrated with other research efforts to reduce aircr.dt 

fuel consumption by means of improvements in aircraft energy efficiency such as the 

recently orbmized NASA program to minimize aircraft fuel usage by reducing specific 

fuel consumption, rcducing C A I ~ ~ I X ~  wight,  reducing aircraft weight, and improving 

aircraft aerodynamics [ 11 1. 
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TABLE 1. - COMPARBGH OF POSSIBLE FUEL HEAT SOURCES 
_ _ .  - - -  __ _____I--- - -. _- - -.- 

4 

Produce specification Optimized fuel properties 

I 
1 1 not required 

i --I__- _ - -  
! Air condition system 

Lube oil heat exchanger 
Fuel boost pump recirculation 

Engine-drive electric heater 
1 Compressor air bleed 
t 
I 
I Tailpipe heat exchanger 
1 Jnsulation -2.54 cm thick 

Increased refinery 

Increased fuel cost 

. .  

.4 ' ---- i I I 
Equivalent heating by combustion 6200 (6503) 

-._-_ ____.. - _._..._._ I--- 

Maxi mum heating 

rate per tank, 
gtdmin (trJ/min) 

2100 (2200) 

2000 (2100) 

- _____-- 

4300 (4500) 

6200 (6500) 
: 6200 (6500) 
' 6200 (6500) , 
1 ------ ---- 

Weight ! Fuel 
increase, 1 penalty, 

1 - - - .  
kg % 

140 0 I 

140 -.4 ! 

140 -. 4 
300 , 3.9 
4% i . 5  ' 
250 . 1  

5900 j 14.6 ' 

TABLE IL - ASSESSMENT OF POTENTIAL SOLUTIONS TO 

I Relax jet fuel 
1 specification 
i 

I Conservation of energy 1 Reduced fuel cost 
1 

' More complex com- 
' ponent technology 
; required 

Adverse effect on j engine life 

I 

. . -. - -I_ 
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content. 
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Figure 4. - Hydrogen content of 
alternative sources of jet fuel. 
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Figure 7. - Thermal stability test rig schematic. 
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Figure 8. - Effect of hydrogen con- 
tent of fuel on maximum com- 
bus tor liner temperature. 
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Figure 11. - Effect of hydrogen content of fuel 
on the maximum combustor liner temper- 
ature of several different combusbr designs. 
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Figure 12. - Thermal barrier ceramic coated combustor. 
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Figure 13. - Effect of ceramic coating on maximum combustor 
liner temperature. 
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