NASA Contractor Report 145301

Evaluation of a Large Capacity Heat Pump Concept for Active Cooling of Hypersonic Aircraft Structure

L.L. Pagel and R.L. Herring

McDonnell Douglas Corporation McDonnell Aircraft Company St. Louis, Missouri

Prepared for Langley Research Center under Contract NAS1-14981

NASA

National Aeronautics and Space Administration Scientific and Technical Information Office

1978

Page Intentionally Left Blank

· ·	Government Accession No.	3. Recipient's Catalog No.		
NASA CR- 145301 4. Title and Subtitle		5. Report Date		
EVALUATION OF A LARGE CAP	ACTOV HEAD DIMO CON	February 1978		
CEPT FOR ACTIVE COOLING O		6. Performing Organization Code		
STRUCTURE	T HIPERSONIC AIRCRAFT			
7. Author(s)		8. Performing Organization Report No.		
I I Dagol and D I How	mina			
L. L. Pagel and R. L. Her	ring	10. Work Unit No.		
9. Performing Organization Name and Address	S	1		
McDonnell Douglas Corpora	tion	11. Contract or Grant No.		
P.O. Box 516		NAS1-14981		
St. Louis, Missouri 6316	6	13. Type of Report and Period Covered		
12. Sponsoring Agency Name and Address		13. Type of Report and Ceriou covered		
		Contractor Report		
National Aeronautics & Sp	ace Administration	14. Sponsoring Agency Code		
Washington, D.C. 20546				
15. Supplementary Notes	·			
Langley technical monitor	: Pierce L. Lawing			
16. Abstract				
the conceptual feasibilit	results of engineering	lg analyses assessing		
ing active cooling of hyp	ersonic aircraft struc	neat pump for ennanc-		
considerable thermal ship	lding of the aircraft	s aluminum structure		
considerable thermal shielding of the aircraft's aluminum structure is required. That is, due to the low operating temperature of alum-				
inum, only a fraction of	the heat sink capacity	available in the		
hydrogen fuel can be util	ized, necessitating th	nermal shielding and a		
corresponding reduction i	n airframe cooling red	quirements. The pre-		
sent study identifies a u				
cooling the structure of				
without the aid of therma	l shielding. The sele	ected concept is com-		
patible with the use of c	onventional refrigerar	its, with Freon R-11		
selected as the preferred refrigerant for the conditions of this				
study. Condenser temperatures were limited to levels compatible with				
the use of conventional refrigerants by incorporating a unique multi- pass condenser design, which extracts mechanical energy from the				
hydrogen fuel prior to e	ach subsequent nass th	rough the condensor		
	hydrogen fuel, prior to each subsequent pass through the condenser. Program results show that it is technically feasible to use a large			
capacity heat pump in lie	u of external shieldir	g. Additional analy-		
ses are required to optima				
conclusions are discussed				
used are presented in the				
17. Key Words (Suggested by Author(s))	18. Distribution State			
Aluminum Actively Cooled	Panel Unclassified	- Unlimited		
Heat Shields				
Hypersonic Aircraft				
Heat Pump				
Power Turbines				
Hydrogen Fuel		Tot. No. of Bosses Too. Co.		
19. Security Classif (of this report) 2 Unclassified	O. Security Classif (of this page)	21. No. of Pages 22. Price 49		
Uniciassified	Unclassified	1 47		

	-	•	- 1		٠.	
FΟ	n	T.	TAT	\sim	T	7
Tr v s	т	r.	w	u	к	1,

This report was prepared-by McDe	onnell Aircraft-Company
(MCAIR), St. Louis, Missouri, for the	e Langley Research Center of
the National Aeronautics and Space A	
- .	- 1
of this program was to add to the ex	
active cooling of hypersonic aircraf	
large capacity heat pump concept, a	unique method of increasing
the amount of hydrogen heat sink ava-	i-lable-for-structural-cool¦ing
The program was conducted in accordan	nce with NASA RFP 1-05- 127,
3734.0128 and McDonnell's Technical	Proposal, MDC A4755. Custom-
ary units were used in performing the	
sed herein. Study results were conve	
System of Units (SI) for the final re	eport.
Mr. Ralph L. Herring was the MC	ATR-Program-Manager, with
Mr. LaVerne L. Pagel as Principal In	vestigator.
	<u> </u>
·	
· - · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · ·
• . • •	
	· · · · · · · · · · · · · · · · · · ·

TABLE OF CONTENTS

Section	Page
FOREWORD	iv
TABLE OF CONTENTS	v
LIST OF ILLUSTRATIONS AND TABLES	vi
SUMMARY	1
INTRODUCTION	5
LIST OF SYMBOLS	7
BASELINE AIRCRAFT CHARACTERISTICS	9
POWER EXTRACTION	13
HEAT PUMP ANALYSES	17
EFFECT OF IMPROVED AERODYNAMIC EFFICIENCY	27
IMPACT ON AIRCRAFT PERFORMANCE AT L/D = 4.66 AND 5.83	31
CONCLUSIONS	35
RECOMMENDATIONS	37
APPENDIX - METHODOLOGY	39
DEFERENCES .	49

LIST OF ILLUSTRATIONS

Figure	<u>Title</u>	Page
1	Baseline Aircraft	2
2	Heat Pump Enhances Active Cooling of Aircraft Structure	3
3	Schematic of Fuel/Coolant System for Mach 6 Baseline Aircraft (L/D = 4.66)	11
4	Power Turbine Output vs Hydrogen Fuel Pressure for Mach 6 Baseline Aircraft	14
5	Power Characteristics - Heat Pump with Multipass Condenser Cools Mach 6 Bare Aluminum Aircraft	22
6	Selected Heat Pump/Fuel System Arrangement for Mach 6 Bare Aluminum Aircraft (L/D = 4.66)	23
7	Schematic of Fuel/Coolant System for Mach 6 Bare Aluminum Aircraft with 25% Improvement in Cruise L/D	28
8	Heat Pump Performance	43
	LIST OF TABLES	
<u>Table</u>	<u>Title</u>	Page
1	Baseline Aircraft Characteristics	10
2	Characteristics of a 22.4 MW (30,000 HP) Hydrogen Power Turbine	15
3	Concept 1 Heat Pump/Fuel System Characteristics	18
4	Heat Pump with Multipass Condenser and Power Ex- traction Cools Mach 6 Bare Aluminum Aircraft	
	a. SI Units	20
	b. Customary Units	21
5	Component Mass and Volume Breakdown for Selected Heat Pump System	25
6	Heat Pump vs Shielding Increases Aircraft Mass	26
7	Aircraft Performance	32
8	Cruise Fuel Flow Sensitivity	33
9	Freon R-11 Refrigeration Cycle	45
10	Equations Defining the Mass of Active Cooling System Elements	47

SUMMARY

A detailed study was conducted to conceptually design and evaluate the use of a large capacity heat pump as a means of increasing the amount of hydrogen heat sink available for active cooling of hypersonic aircraft structure. Specific objectives of this program were:

- (a) Evaluate feasibility of using a heat pump concept to enhance active cooling,
- (b) Assess the advantages or disadvantages of using this system, relative to current active cooling concepts for aluminum aircraft (thermal shielding), and
- (c) Determine whether, by using the heat pump to increase the available fuel heat sink, a bare (unshielded) aluminum hypersonic transport can be actively cooled.

The baseline_aircraft_configuration_used_throughout_the_study was a Mach 6 actively cooled, liquid hydrogen fueled transport (reference 1) with a cooled structural area of 2980 m² (32,134 ft²) and 5.9 Mg (12,900 lbm) of external shielding. The aircraft (figure 1) carries 200 passengers with a mission_range_of_9200 km (4968 NM). Airframe and engine cooling requirements used throughout the study were obtained from references l_and_2_respectively.

The design philosophy for use of a heat pump to enhance active cooling of the aircraft structure is illustrated in figure 2. As shown, the airframe structure is cooled with a 60/40 mass solution of ethylene glycol and water. The airframe heat load Q_s is transported by the closed loop coolant system and rejected to the hydrogen fuel—via the hydrogen/glycol heat—ex—changer $(Q_{H/X})$ and the heat pump (Q_e) . Without a heat pump, external shielding—would be required to limit the airframe—heat load to a level consistent with the hydrogen heat sink available through direct—heat transfer in the heat exchanger. The heat pump rejects heat to the hydrogen at temperatures in excess of heat exchanger outlet temperature T_4 ,—thereby increasing—the available heat sink for structural cooling.

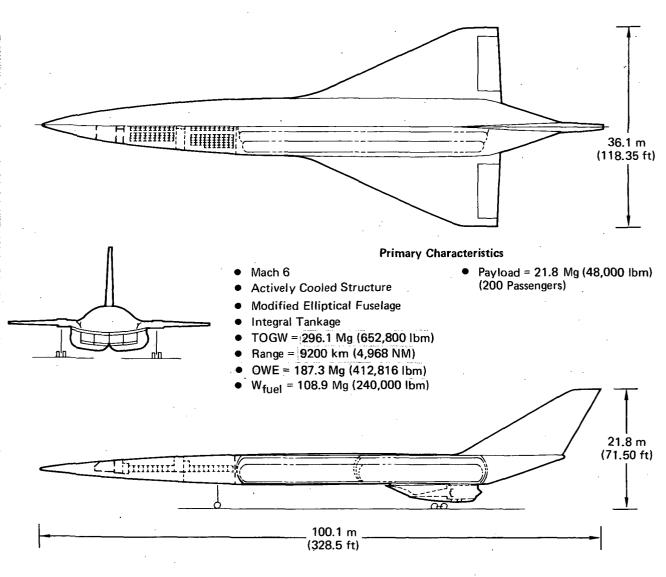
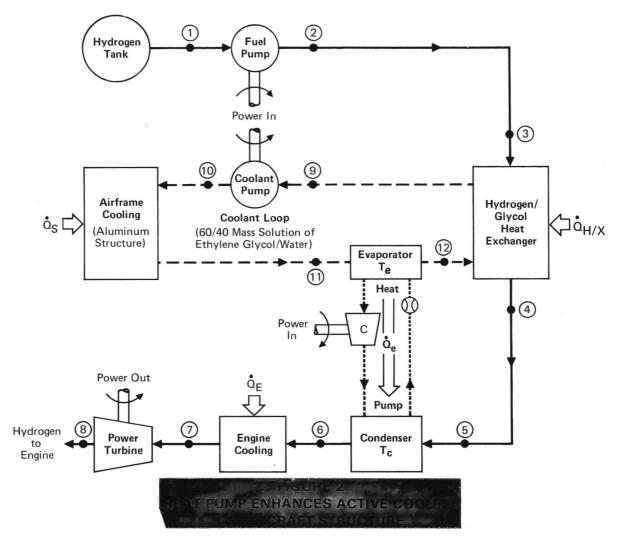



FIGURE 1
BASELINE AIRCRAFT

Study results show that sufficient power can be extracted from the hydrogen fuel to drive the heat pump and aircraft subsystems. An assessment of various heat pump/power extraction arrangements resulted in selection of a multi-pass condenser design, where power is extracted from the hydrogen fuel prior to a subsequent pass through the condenser. This design limits hydrogen outlet and hence the condenser temperature to a level consistent with efficient heat pump performance and permits the use of a conventional refrigerant such as Freon R-11. Study results demonstrate that with the aid of a heat pump it is technically feasible to cool to aluminum temperatures the airframe structure of an unshielded Mach 6 aircraft. Although the use of a heat pump (in lieu of external shielding) increases the mass of the baseline aircraft, spinoff benefits in specific impulse and drag

offset the mass gain such that a small net improvement in air-craft performance is realized.

INTRODUCTION

Numerous studies (references 1, 3, 4, and 5) conducted during the past several years have assessed the potential benefits of using the hydrogen fuel as a heat sink to cool Mach 6 aircraft Cooling to aluminum temperatures is of particular interest due to the materials availability, high structural efficiency, and known long-life fabrication characteristics. However, due to the low operating temperature of aluminum, the allowable-temperature-rise of the hydrogen-fuel - (and hence-its-capacity for structural cooling) is severely restricted. In the past, a portion of the aircraft was shielded to reduce structural cooling requirements to a level compatible with the achieveable hydrogen heat sink. A-potential alternate-solution, investigated during the present program, uses a large capacity heat pump to increase the amount of hydrogen heat-sink-available-for structural cooling. The design philosophy is illustrated by the heat pump/fuel-system-arrangement-presented-in-figure-2----As-shownthe airframe heat load is absorbed and transported by the glycol/ water coolant and rejected to the hydrogen fuel. A portion of the load is rejected directly, via the heat exchanger, raising the temperature of the hydrogen to the value of TA. Additional heat sink capacity for structural cooling is achieved by using a heat pump to reject heat at-higher fuel temperatures, achieving ahydrogen temperature of T₆.

This program was designed to establish concept feasibility, evaluate advantages for disadvantages relative to the baseline shielded aircraft, and determine the cooling capability of the heat pump concept relative to cooling needs of a bare aluminum aircraft. Three heat pump/fuel system arrangements were analyzed in selecting a preferred concept. Also, detailed schematics of the fuel/coolant system were derived for the baseline aircraft, a bare aluminum heat pump configured aircraft, and an advanced aircraft with a 25% improvement in lift-to-drag ratio. Power extraction, heat pump, fuel system, auxiliary power system, and

coolant system components were sized and the resultant mass of				
the heat pump configured aircraft	compared to the baseline. In			
addition to aircraft mass compari	sons, drag and specific impulse			
adjustments were determined and u	sed in computing aircraft per-			
formance.				
	s are discussed in the body of			
the report; analysis methods used				
the report, anarysis methods deed	are presented in the appendix.			
	· · · · · · · · · · · · · · · · · · ·			
·				
`				
<u> </u>	:			
· · · · · · · · · · · · · · · · · · ·				
•				
	· · · · · · · · · · · · · · · · · · ·			
·	· · · · · · · · · · · · · · · · · · ·			
e e e				

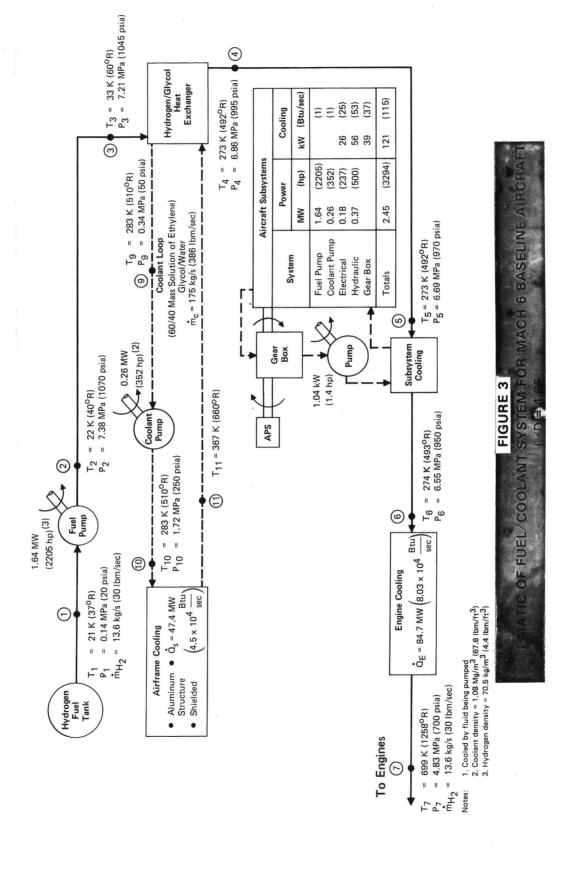
		LIST OF SYMBOLS
	ACS	Active cooling system
	APS	Auxiliary power system
	Btu	British thermal units
	С	Compressor
	$C_{\overline{D}}$	Drag coefficient
	c_{L}^{D}	Lift coefficient
	C _P	Material specific heat, J/kg.K (Btu/lbm oF)
	COP	Coefficient-of-performance
	D	Diameter
	D _S .	Specific diameter
	F	Pumping power conversion factor, g/kW.s (1bm fuel/HP-hr)
7,7	H	Adiabatic head, m (ft)
-2	HP or hp	Horsepower
7.1	. h	Enthalpy, J/g (Btu/lbm)
	Hr	Hour
	in	Inch
-: :	J	Mechanical equivalent of heat
- 7	.L	Length, cm (in.)
	L/D	Lift-to-drag ratio
***	lbf	Pound force
ř	1bm	Pound mass
	M	Mach
	MCAIR	McDonnell Aircraft Company
	m	Mass_flow_rate, kg/s (lbm/sec)
	N	Rotational speed
	··N	Specific-speed
	n _	Number of stages
	OWE	Operational weight empty. Mg (1bm)
	psi	Pounds force per square inch
	P	Pressure, -Pa (psi), Tube-pitch, cm (in.)
	PR	Pressure ratio
	Q	Volumetric flow, m ³ /s (ft ³ /sec)
	Q	Heating or cooling load, W (Btu/sec)

LIST OF SYMBOLS (Continued)

q	Dynamic pressure, Pa (lbf/ft ²)	·
• q	Heat flux, kW/m ² (Btu/ft ² sec)	
R	Universal_gas_constant	;
Re	Reynolds number	
T	Temperature, K_(°F)_	
TOGW	Takeoff gross weight, Mg (1bm)	 :
TPS	Thermal_protection_system	
V	Velocity, m/s (ft/sec)2	
W	Power, MW_(HP)	
α	Angle-of-attack, deg	
·γ ·	Ratio_of_specific_heats	
δ	Delta; difference 3	;
- ε	Heat-exchanger_effectiveness	
η	Adiabatic efficiency	
	Timed visco transport of the Park Park Park Park Park Park Park Park	 ;
μ	Fauid viscosity, Pars (1bm/ft sec)	
ρ	Density, $-kg/m^3$ (1/bm/ft ³)	
T	Turbine	
	SUBSCRIPTS	
1	Inlet	
2 -	Exit-	
c	Coolant, condenser, compressor	
е	Evaporator	!
E	Engine	
- F	Freon	
f	Fuel	
H/X	Heat-exchanger	
^H 2	Hydrogen	
P	Pump	<u>-</u>
S	Structure (Airframe)	
st	Stage	
T	Tip	
t	-Turbine	
MAX	Maximum	

BASELINE AIRCRAFT CHARACTERISTICS

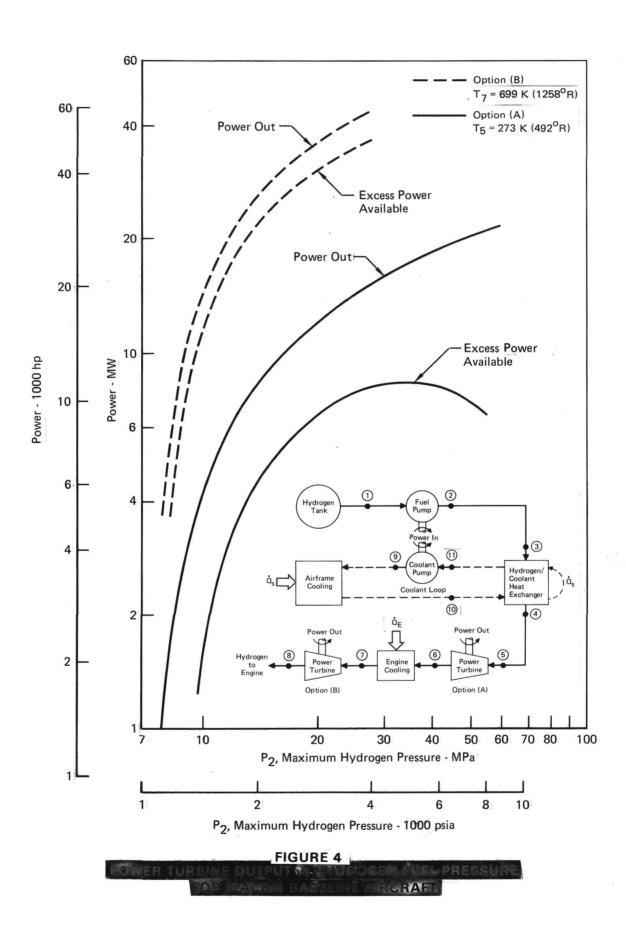
The reference 1 Mach 6 transport presented in figure 1 serves as the basis for conducting this program. As shown, the baseline aircraft is actively cooled, employing thermal shielding (external TPS) to reduce the aerodynamic heat load to a level that is compatible with the amount of hydrogen fuel heat sink available for structural cooling. The aircraft is sized to carry 200 passengers (21.77 Mg; 48,000 lbm payload) a distance of 9200 km (4968 NM).


Pertinent aerodynamic, thermodynamic, and propulsive characteristics for the baseline aircraft are summarized in table 1. As shown, the baseline airframe 3heat load (shielded aircraft) is approximately 52% of that experienced by a bare aluminum aircraft. Engine cooling requirements and fuel system pressures used throughout the study are for a Mach 6 Airframe=Integrated Scramjet as presented in references 2 and 6. The maximum allowable hydrogen fuel temperature (1144-K; 2060 °R) was selected based on results of the reference 3 study.

A schematic noting operating characteristics of the fuel/coolant system for the baseline saircraft is presented in figure 3. As shown, the hydrogen fuel is heated to 699 K (1258 °R) in satisfying airframe, subsystem, and engine cooling requirements. Since this represents only approximately 60% of the maximum allowable temperature rise of the hydrogen fuel, the potential for additional cooling and hence the possibility of reducing thermal shielding requirements is established. Power to drive aircraft subsystems is supplied by a liquid hydrogen/oxygen burning auxiliary power system (APS).

Study Elements	Characteristics
1. Baseline Aircraft	 Mach 6 Hydrogen Fueled Transport TOGW = 296.1 Mg (652,800 lbm) Range = 9,200 km (4,968 NM)
2. Design Point	 Mach 6 Cruise at 31.4 km (103,500 ft) Dynamic Pressure = 23.9 kPa (500 psf) Cruise L/D = 4.66
3. Airframe Cooling	 2,985 m² (32,134 ft²) of Actively Cooled Aluminum Structure at an Average Temperature of 367 K (200°F) 5.85 Mg (12,900 lbm) of Shielding (External TPS) *Airframe Heat Load, O_s = 47.4 MW (4.5 x 10⁴ Btu/sec) 52% of Airframe Heat Load Experienced by Bare Aluminum Aircraft
4. Engine Cooling	 O_E = 84.7 MW (8.03 x 10⁴ Btu/sec) Engine Fuel Flow Rate, m _f = 13.6 k g/s (30 lbm/sec)
5. Fuel System Pressures	 4.83 MPa (700 psia) Minimum at Engine Fuel Injectors Total Pressure Drop of 2.07 MPa (300 psi) 0.34 MPa (50 psi) Drop in Fuel System and 1.72 MPa (250 psi) Drop in Engine Cooling Circuit.
6. Hydrogen Fuel	 Tank Conditions T = 21 K (37°R) P = 0.14 MPa (20 psia) Maximum Allowable Temperature of 1,144 K (2,060°R)

^{*}Airframe heat load matched to hydrogen fuel available for structural cooling (see page 65 of Reference 1).



DOMED	EXTRACTION	
POWER	P.XTRAUTION	

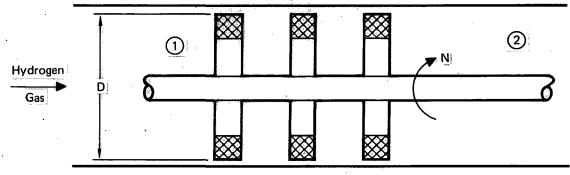

Analyses were performed to determine the amount of shaft power that could be extracted from the baseline_aircraft's hydrogen fuel system to be used in driving a large capacity heat pump. Analyses were performed assuming power extraction both upstream (Option A) and downstream (Option B) of the engine cooling circuit as illustrated in figure 4. At the upstream location (Option A) the hydrogen fuel is at a relatively lowenergy state $(T_5 = 273K; 492°R)$ and for a given power output requires a large pressure drop across the turbine, and high fuel pressures. The excess power (turbine output minus fuel and coolant pump requirements) available at this location increases with increasing fuel pressure up to a maximum of 8.4 MW (11,200) HP) at a fuel pressure of 34.5 MPa (5000 psia). At higher fuel pressures, the excess power available to drive a heat pump decreases because the increment in fuel pump requirements now exceeds the increment_in_power_turbine_output.

Figure 4 also shows that, for the same fuel pressure, four to six times as much excess power is available by extracting downstream (Option B) rather than upstream (Option A) of the engine cooling circuit. Extracting power downstream of the engine cooling circuit was therefore selected as the preferred option to ensure an adequate power supply for driving the heat pump, and to minimize fuel pressures.

Characteristics of a representative hydrogen turbine with a power output of 22.4 MW (30,000 HP) are presented in table 2. Turbine characteristics were determined (see Appendix) with the aid of references 7 through 9.

TABLE 2 TABLE 2 TABLE 2 TABLE 2 TABLE 2 TABLE 2

Flow Conditions

	mН ₂	=	13.6 kg/s (30 lbm/sec)
•	PR	=	2.43
•,	P ₁	=	11.72 MPa (1700 PSIA)
•	T ₁	=	722 K (1300 ^o R)
•	P2	=	4.83 MPa (700 PSIA)
. •	T2	=	610 K (1098 ⁰ R)

Turbine Characteristics

Turbine Type	Axial
No. of Stages	3
Power Output	22.4 MW (30,000 hp)
Wheel Diameter, D	48.5 cm (19.1 in.)
Turbine Speed, N	(24,000 rpm)
• Tip Speed, V _T	310 m/s (2000 ft/sec)
• Weight (Turbine Assembly)	
• Volume (Turbine Assembly)	0.15 m ³ (5.2 ft ³)

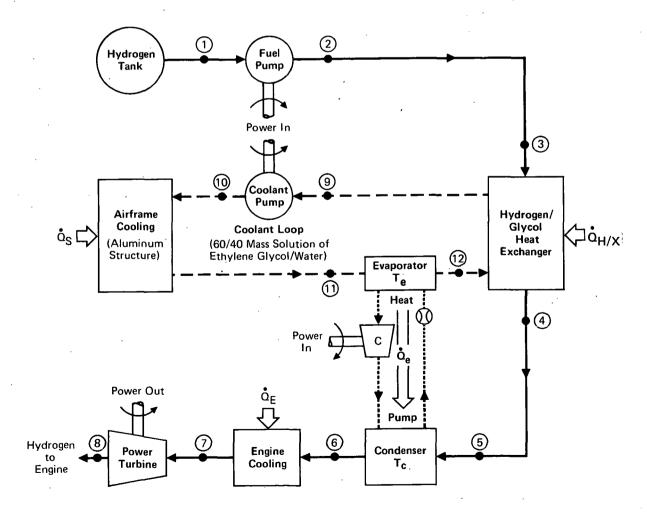
"Page missing from available version"

page 16

HEAT PUMP ANALYSES

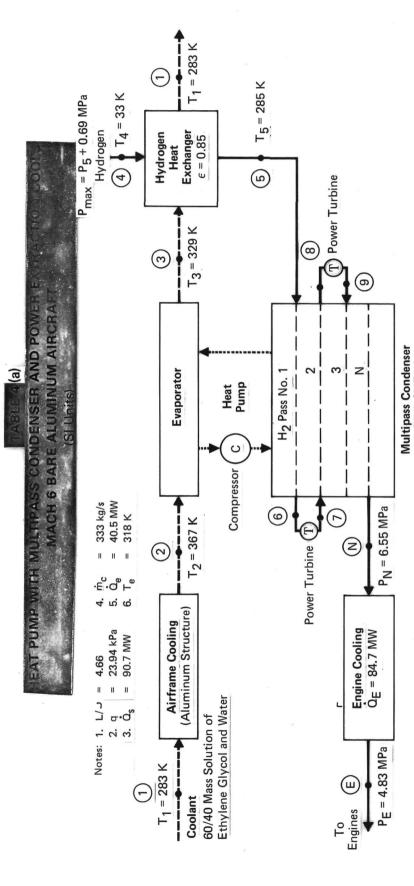
Three heat pump concepts were evaluated and are discussed in the following sections. Concept 1 - A schematic and analysis results for the Concept 1 heat pump/fuel system arrangement are presented in table 3. This concept employs a cascaded heat pump driven by a power turbine located downstream of the engine cooling circuit. As shown, the approach significantly enhances active cooling capability but is limited to an airframe heat load equal to approximately 85% of that experienced by a bare aluminum aircraft. Increasing the heat load beyond the 85% limit_would_exceed_the_maximum. allowable fuel temperature of 1144K (2060°R) and result in overheating_of_the_engine_(see_reference_3).__At_the_limiting_condi_ tion, nine stages of cascading are required to pump heat from an_evaporator_temperature_of_328K (590°R)_to_a_condenser_temp= erature of 731K (1315°R), a spread of some 403K (725°R). to the high refrigeration cycle temperatures, the last three stages require an exotic refrigerant such as mercury. Cascading requirements were based on the recommendations of reference 10, namely, a maximum evaporator to condenser temperature spread of 56K (100°R) per stage and a llK_(20°R) temperature_differ= ence for heat transfer between stages. The large increase in condenser temperature_with_increasing_heat_load_reduces_the_coefficient-of-performance (COP) and results in a dramatic increase in heat pump power requirements and condenser load.

Although it was recognized that maximum hydrogen fuel temperature could be lowered (extending—the—present—operating—limit) by extracting power upstream of the engine cooling circuit, this approach was not pursued. Concept—1—was—eliminated—from further consideration because of the extremely complex heat pump that would be required—(nine or more stages of cascading, exotic—refrigerants, and large power demands).

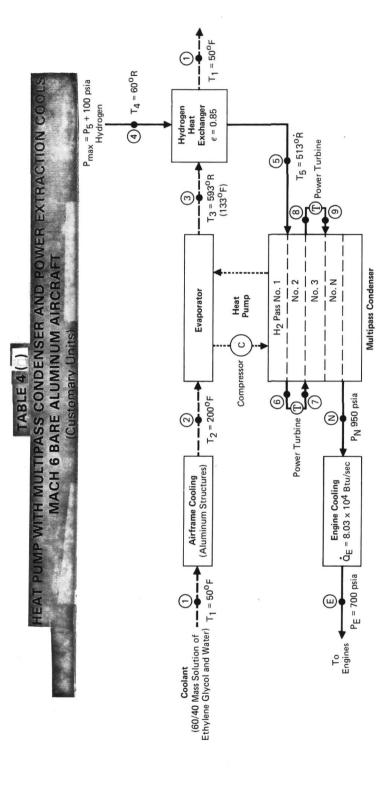

Concept 2—The—shortcomings of Concept 1—are—directly—trace—able to the large increase in the temperature of the hydrogen as it passes through the condenser, resulting in high—hydrogen

TARETONARIAM METROVARIAM SALAMINA TARETONARIA CHIARESTARIA

ė					leat Pui	mp Char	acteristics				T- 00	ximum
Ö _s Airframe	Coeff	Number		Tempe	ratures		Load - 9	% of $\dot{\mathbf{Q}}_{s}$	Po	wer	Hydi	rogen 1
Heat Load (% of Õ _{So})	of	of	Evapo	orator	Cond	enser	Evaporator	Condenser	MW	НР	Tempe	erature
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Perf	Stages	(K)	(^o R)	(K)	(OR)	Evaporator	Condenser	WW	nr	(K)	(^O R)
70	7.25	1	344	619	368	662	14	16	1.2	1,600	782	1,407
76	1.81	2	337	607	430	774	22	34	8.4	11,200	844	1,519
81	0.69	5	331	596	570	1,026	29	71	30.9	41,500	984	1,771
85	0.41	9	328	590	731	1,315	33	115	62.6	83,900	1,144	2,060


Notes:

- 1. Qs, airframe heat load
- 2. \dot{Q}_{s_0} , airframe heat load for bare aluminum aircraft equal to 90.7 MW (8.6 x 10^4 Btu/sec)
- Number of cascading stages based on an evaporator to condenser spread of 56 K (100°R) per stage and a 11 K (20°R) temperature difference for heat transfer between stages.
- 4. Concept limited by maximum allowable hydrogen temperature of 1144 K (2,060°R)



outlet temperatures and hence, high condenser temperatures (condenser temperature is equal to hydrogen outlet temperature plus 11K; 20°R). These shortcomings can be circumvented by a multi-pass condenser as illustrated in table 4. With this approach, power is extracted from the hydrogen fuel stream, lowering its temperature between passes through the condenser, thereby limiting hydrogen outlet and condenser temperatures.

Concept 2 heat pump/fuel system characteristics as a function of coefficient-of-performance are tabulated in table 4. Note that this concept can absorb 100% of the bare aluminum aircraft's airframe heat load. As shown in the table and in figure 5, the heat pump must be sized to operate at a coefficientof-performance of 1.17 (condenser temperature of 454K; 817°R), such that the power extracted equals the amount of power required to drive the heat pump, fuel pump, and aircraft subsystems. this condition some 43.6 MW (58,500 HP) of mechanical energy is extracted from the hydrogen fuel system (48% of airframe heat load), requiring a maximum fuel pressure of 35.6 MPa (5160 psia) to satisfy the design condition of a 4.8 MPa (700 psia) minimum pressure at the engine fuel injectors. As shown in table 4, a three stage cascaded heat pump is proposed to span the 136K (244°R) spread between evaporator and condenser temperatures. Selected Concept - As shown previously (table 4), Concept 2 is constrained to operate at a coefficient-of-performance of 1.17, as operation at a higher COP results in power extraction rates that are in excess of requirements. The selected concept (figure 6) permits operation at a higher coefficient-of-performance by utilizing the excess power to drive a hydrogen compressor downstream of the condenser. Operating at a higher coefficientof-performance lowers the condenser temperature and reduces the size, complexity (cascades), and power requirements of the heat Adding the hydrogen compressor reduces maximum fuel prespump. sures by approximately a factor of 2 which reduces fuel pump

	He	Heat Pump Characteristics	aracteristics			Hydroi	Hydrogen Conditions	itions			Power (Character	Power Characteristics - MW		
	Number	•0	H	F	T. T	_N	TE	Pmax		Required	pa		Extracted		
Cop	of Stages	(MM)	Passes	3 (X)	(X)	(K)	(K)	MPa	Heat Pump	Fuel	Aircraft Subsys	Total	No. of Turbines and PR	Total	Excess
2.865	1	54.8	4	374	56	363	788	39.4	14.1	8.3	1.5	23.9	3 at 1.81	39.1	15.2
10	_	56.9	4	382	64	371	962	38.6	16.2	8.2	_	25.9	3 at 1.80	39.6	13.7
0	2	61.2	က	398	79	387	812	40.3	20.3	8.5		30.3	2 at 2.46	40.5	10.2
0	2	61.2	4	398	79	387	812	37.3	20.3	7.9		29.7	3 at 1.78	40.5	10.8
1.5	7	67.5	က	424	106	413	838	37.8	27.0	8.0		36.5	2 at 2.38	41.9	5.4
1.17	 ო		(e	454	136		898	35.6					2 at 2.31	43.6	 o
	8	81.2	 က	478	159	467	892	34.2	40.5	7.2		49.2	2 at 2.26	44.8	4.4
0.5	7	121.3	2	637	318	979	1051	33.8	81.0	5.3	-	87.8	1 at 5.1	53.6	-34.2

4. $m_c = 735 \text{ lb/sec} (T_i = 50^0 \text{F}, T_c = 200^0 \text{F})$	5. $Q_p = 3.84 \times 10^4$ Btu/sec (11,520 tons)	$6. T_e = 573 ^{\circ} R (113 ^{\circ} F)$
otes: 1. L/D = 4.66	2. q = 500 psf	3. $\Delta_s = 8.6 \times 10^4 \text{ Btu/sec}$

		Í	eat Pump C	Heat Pump Characteristics	s				Hydr	Hydrogen Conditions	ions				Power	Power Characteristics - hp	tics - hp		
	Number	•0	:	T _c , Cond Temp	d Temp	,		TN	-	TE	ш	P _{max}		Required	ired		Extracted	ted	
d 00.	Stages	UC S (Btu/sec)	H2 Passes	(⁰ R)	(⁰ F)	(0R)	Power* (hp/Ton)	(⁰ R)	(⁰ F)	(⁰ R)	(⁰ F)	(psia)	Heat Pump	Fuel	Aircraft Subsystem	Total	No. of Turbines and PR	Total	Excess
2.865	1	5.2 × 10 ⁴	4	673	213	100	2.6	653	193	1,418	826	5,710	18,955	11,173	2,000	32,128	3 at 1.81	52,475	20,347
2.5	-	5.4 × 10 ⁴	4	889	228	115	2.8	899	208	1,433	973	5,594	21,727	10,945	_	34,672	3 at 1.80	53,069	18,397
2.0	2	5.8 × 10 ⁴	8	716	256	143	3.4	969	236	1,461	1,001	5,852	27,159			40,611	2 at 2.46	54,360	13,749
2.0	2	5.8×10^4	4	716	256	143	3.3	969	236	1,461	1,001	5,414	27,159		_	39,751	3 at 1.78	54,360	14,609
1.5	2	6.4 × 10 ⁴	က	764	304	191	4.1	744	284	1,509	1,049	5,482	36,212	10,726			2 at 2.38	56,218	7,280
1.17	3		က	817	357	244				1,563	1,103	5,160		 			2 at 2.31	58,500	0
1.0	8 7	7.7 × 10 ⁴	8 0	860	400	287	5.6	840	380	1,605	1,145	4,963	54,319	9,706	-	66,025	2 at 2.26	60,141	-5,884
3		2	4	0	000	2/0	5.0	1,120	999	100'	101	1,500	100,001	100'6	-	002,021	at 0.1	100'11	100,01
*Dose	of bosinson	*Dougle and Laborate Laborate and Laborate Laborate and Laborate L	11.11	Colinita and															

*Power required to drive heat pump and fuel pump divided by evaporator load.

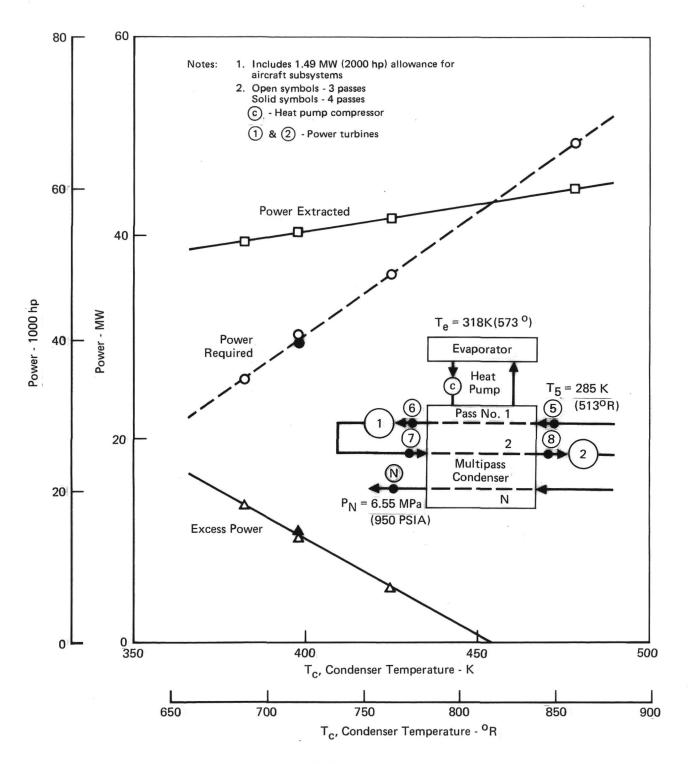
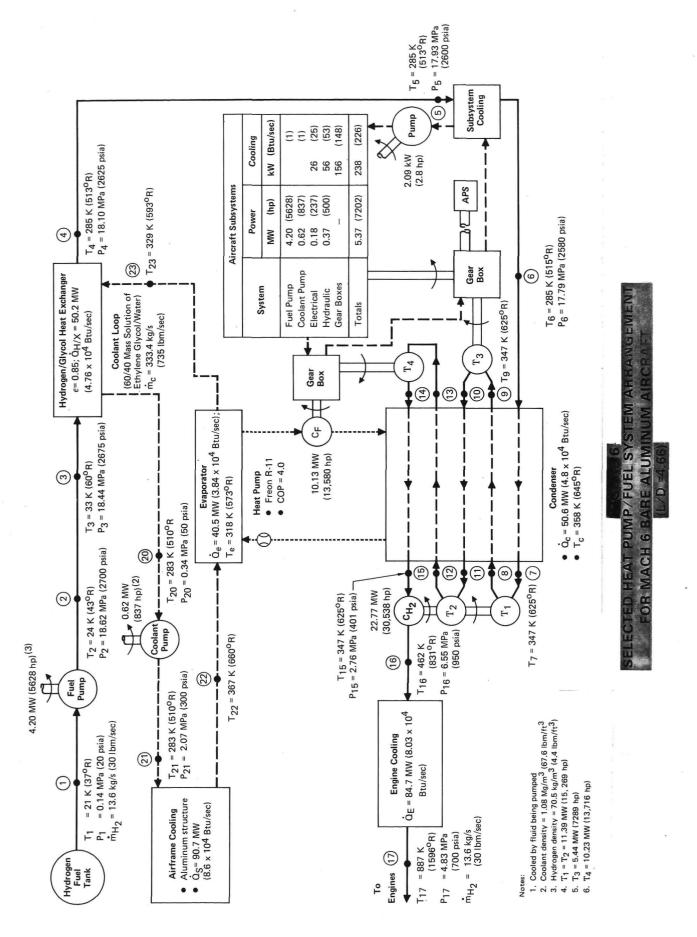



FIGURE 5
POUL CHA IS CS - HEAT PUW
WITH MULTIPASS CONDENSER COOLS MACH F
BARE ALUMINUM AIRCRA

requirements, and fuel system and heat exchanger mass. Since
the present system has no known upper limit on the COP, selection of an optimum value would require performing a detailed
trade study to identify a minimum mass or minimum cost system;
such a study was beyond the scope of the present program. For
the selected COP of 4, a single stage heat pump and a conventional refrigerant, Freon R-11, can be used. (This COP was
selected as a reasonable compromise between further decreasing
heat pump requirements and increasing the number of hydrogen
passes through the condenser.) As shown in figure 6, the selected concept requires five passes through the condenser and
four power turbines. Two turbines connected in tandem drive
the hydrogen compressor, another provides power for aircraft
subsystems, and the fourth drives the heat pump.

The results of figure 6 demonstrate the technical feasibility of using a large capacity heat pump to actively cool the aluminum structure of an unshielded Mach 6 transport. Results of a component sizing and mass analysis are presented in the section which follows. An assessment of the heat pump concept versus external shielding and the resultant impact on aircraft performance is discussed in a later section. Heat Pump Sizing - Following the procedure of reference 10 (see Appendix), cycle characteristics of the heat pump were determined, establishing system pressures and the refrigerant mass flow rate required to absorb the evaporator load. For the figure 6 heat pump which operates with Freon R-11 with a compression efficiency of 60%, a refrigerant mass flow rate of 285.5 kg/s (629.5 lbm/sec) is required to absorb the evaporator load of 40.5 MW (11,520 tons of cooling). The system operates between an evaporator temperature of 318K (573°R) and a condenser temperature of 358K (645°R), with corresponding pressures of 0.19 MPa (27.5 psia) and 0.59 MPa (85 psia), respectively.

nents were sized and mass and volume requirements were determined and are presented in table 5. As shown, the mass and volume of the heat pump system is 10.46 Mg (23,050 lbm) and 11.77 m^3 (416 ft³), respectively.

TABLE 5
COMPONENT MASS AND VOLUME BREAKDOWN FOR
SELECTED HEAT PUMP SYSTEM*

Observation 1	M	ass	Vol	ume
Component	Mg	lbm ;	m ³	ft ³
1. Evaporator (Dry)	2.90	6,400	3.57	126
2. Condenser (Dry)	3.36	7,400	5.86	207
3. Freon Compressor	0.89	1,950	1.27	45
4. Compressor Drive Turbine & Gear Box	.0.18	400	0.11	4
5. Freon	2.27	5,000		_
6. Lines & Controls (5% of 1-3)	0.36	800	0.54	19
Subtotal (Heat Pump)	9.96	21,950	11.35	401
7. Hydrogen Compressor & Drive Turbines (2)	0.50	1,100	0.42	15
Total Heat Pump System	10.46	23,050	11.77	416

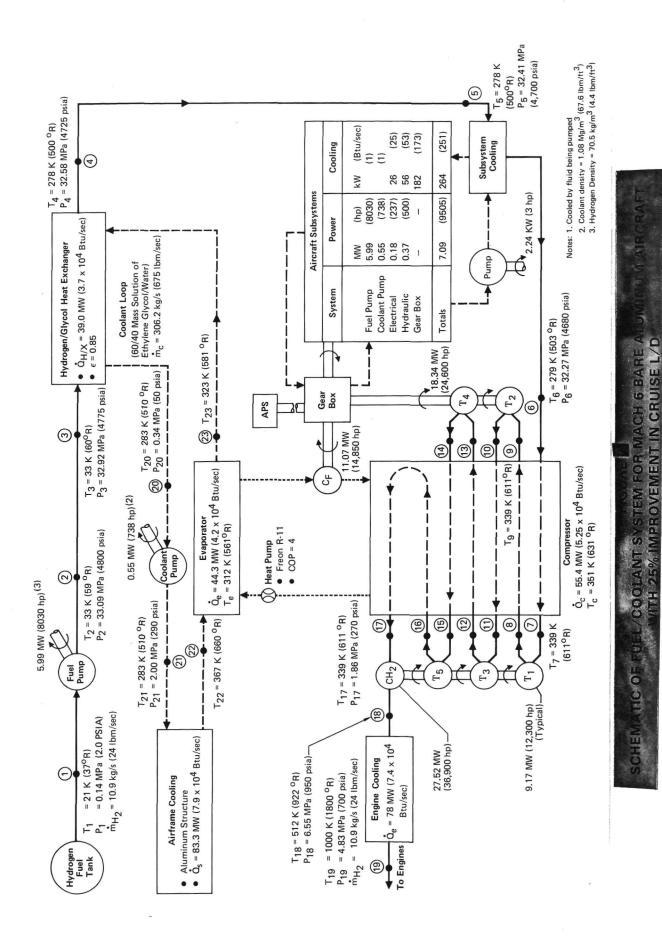
*See Figure 6

System Impact - The mass of the fuel/coolant system for the heat pump configured, bare aluminum aircraft (figure 6), and the baseline shielded aircraft (figure 3) have been determined and are compared in table 6. As shown, the bare aluminum aircraft realizes a mass reduction due to elimination of the external thermal protection system (TPS) and the savings in power generation propellant requirements. However, these mass savings are overpowered, primarily due to the mass of the heat pump system (10.46 Mg; 23,050 lbm), such that aircraft mass (relative to the baseline) is increased by 2.75 Mg (6050 lbm). The resultant impact on aircraft performance is discussed in a later section.

TABLE 6

	Base	eline	В	are Alumir	um Aircra	aft
Mass Element	Aire	craft	Ac	tual	Del	ta ⁽¹⁾ .
	(Mg)	(lbm)	(Mg)	(lbm)	(Mg)	(lbm)
Shielding (External TPS)	5.85	12,900	0	0	-5.85	-12,900
Active Cooling System	4.31	9,500	5.40	11,900	1.09	2,400
Hydrogen Fuel Pump	0.05	100	0.11	250	0.07	150
Aircraft Power Generation System (2)	3.13	6,900	0.11	250	-3.02	-6,650
Heat Pump System		_	10.46	23,050	10.46	23,050
Total	13.34	29,400	16.08	35,450	2.75	6,050

⁽¹⁾ Delta; change relative to baseline


Even though subsystem power requirements for the bare aluminum aircraft are more than double those of the baseline (see figures 3 and 6), the mass of its power generation system is 3.02 Mg (6650 lbm) lighter. As noted in table 6, this mass savings is attributable to the method used in providing power to drive aircraft subsystems during cruise. That is, the baseline aircraft uses an auxiliary power system (APS) which consumes 3.13 Mg (6900 lbm) of propellant in satisfying subsystem power requirements, whereas the bare aluminum aircraft extracts power from the hydrogen fuel system and is charged only with the mass of the power turbine and gear box (0.11 Mg; 250 lbm). Although the reference 1 aircraft was retained as the baseline for the purpose of this study, it should be noted that mass and performance characteristics of this aircraft would be improved if re-configured with a hydrogen power turbine.

⁽²⁾ Baseline aircraft: Mass of APS propellant consumed during cruise Bare aluminum aircraft: Mass of power turbine and gear box

EFFECT OF IMPROVED AERODYNAMIC EFFICIENCY

Earlier work (reference 3) has shown that as aerodynamic efficiency (L/D) improves, the potential for active cooling of the structure decreases. This is due to the fact that as L/D increases the fuel heat sink available for cooling decreases at a faster rate than the aerodynamic heat load. Furthermore, since the baseline aircraft is a conceptual design, improvements in aerodynamic efficiency may be expected. Analyses were therefore performed to determine the effectiveness of the selected heat pump concept for an aircraft with a 25% improvement in L/D over the baseline aircraft.

Assuming that the 25% improvement in L/D is due to equal improvements in lift coefficient ($\mathbf{C}_{\mathbf{L}}$) and drag coefficient ($\mathbf{C}_{\mathbf{D}}$), it can be shown that for a fixed size aircraft of equal cruise mass and specific impulse (I_{sp}) , the drag and hence the fuel flow rate, decreases by 20% whereas aerodynamic heat inputs decrease by only 8%. After adjusting the baseline fuel flow rate and engine and airframe cooling requirements, the selected heat pump concept was resized as summarized in figure 7. even though the fuel heat sink available for cooling $(\mathring{\mathfrak{m}}_{\mathrm{H}_2})$ has been reduced 20%, the heat pump concept has adequate capacity to cool the unshielded Mach 6 aircraft to aluminum temperatures. Comparing figures 6 and 7, it can be observed that the major effects of a 25% improvement in L/D are, (a) a 78% increase in fuel pressure, (b) a 43% increase in fuel pump power requirements, (c) a 113K (204°R) increase in the maximum fuel temperature, and (d) the need for 5 rather than 4 power extraction turbines (20% increase in the amount of power extracted). though increasing the L/D decreases airframe cooling requirements 8%, it can be noted from figures 6 and 7 that the heat pump evaporator load has increased by approximately 9%. paradox is due to the large decrease in fuel flow rate which produces a corresponding decrease in the amount of heat that can be transferred directly to the fuel system via the hydrogen/

glycol heat exchanger; the balance of the airframe heat load must be transferred by the heat pump.

For the purpose of this study it was assumed that the mass of the heat pump system would scale according to evaporator load. Hence, the mass of the heat pump for the aerodynamically improved aircraft was estimated to be $11.44 \, \text{Mg} \, (25,200 \, \text{lbm})$, which is 9% more than the previously presented heat pump mass for the aircraft with an L/D = 4.66 (see table 5).

29

"Page missing from available version"

page 30

IMPACT ON AIRCRAFT PERFORMANCE AT L/D=4.66_AND_5.83

Aircraft empty weight, payload, fuel requirements, and range for two heat pump configured bare aluminum aircraft are compared to the shielded baseline in table 7. As shown, the use of a heat pump in lieu of shielding increases aircraft empty weight (relative to the baseline) by 1.7% at an L/D of 4.66 and by 2.3% at an L/D of 5.83. The mass increase at an L/D = 5.83 would be reduced, relative to a shielded baseline operating at the same lift-to-drag ratio, as the present comparison does not account for the fact that additional shielding would be required at the higher L/D value to match airframe cooling requirements to the available hydrogen (fuel) heat sink.

Although the use of a heat pump (at L/D = 4.66) in lieu of shielding increases the mass of the baseline aircraft, spinoff benefits in drag and specific impulse (see table 8) offset the mass gain such that a small net improvement in performance is realized (see table 7). Note that these performance improvements occur singularly. That is, when the baseline range and fuel load are held constant, the payload is increased 2%. Likewise, by fixing the two remaining parameters, a 0.3% reduction in fuel requirements or a 0.4% increase in range can be achieved. In all cases aircraft take-off weight (TOGW) increases by approximately 1%.

Performance improvements (relative to the baseline) for the bare aluminum aircraft with an L/D of 5.83 range from an 8% fuelsavings to a 67% increase in payload capability. Although these improvements are directly attributable to a 25% improvement in the baseline lift-to-drag ratio, the results are of interest to the present study since such improvements in aerodynamic efficiency may be more readily achieved with a bare aluminum aircraft than with a shielded aircraft.

	A Secretaria de la composición del composición de la composición de la composición del composición de la composición del composición de la composición del c					
	Mass in Mg (Ibm)					
844T-7F1	D		Bare Aluminum Aircraft			
Mass Elements	Baseline Aircraft	L/D = 4.66		L/D = 5.83		
•	L/D = 4.66	Actual	Delta (1)	Actual	Delta(1)	
Aircraft Empty Weight ⁽²⁾	165.47 (364,800)	168.21 (370,850)	1.7%	169.24 (373,100)	2.3%	
Payload At Range = 9,200 km (4,968 NM) Fuel = 108.86 Mg	21.77 (48,000)	22.27 (49,100)	2%	36.42 ⁽⁴⁾ (80,300)	67%	
(240,000 lbm)	296.11 (652,800)	299.37 (660,000)	1%	314.52 (693,400)	6%	
Fuel At Range = 9,200 km (4,968 NM) Payload = 21.77 Mg	108.86 (240,000)	108.59 (239,400)	-0.3%	100.20 ⁽⁵⁾ (220,900)	8%	
(48,000 lbm) TOGW ⁽³⁾	296.11 (652,800)	298.60 (658,300)	1%	291.21 (642,000)	<u>-2%</u>	
Range - km (NM) At Payload = 21.77 Mg (48,000 lbm) Fuel = 108:86	9,200 (4,968)	9,238 (4,988)	0.4%	10,645 (5,748)	16%	
(240,000 lbm) TOGW ⁽³⁾	296.11 (652,800)	298.85 (658,850)	1.7%	299.87 (661,100)	1%	

Notes: (1) Delta; change relative to baseline aircraft value

(2) (3)

Aircraft weight excluding payload and fuel Aircraft take-off gross weight

Assumes a payload volume requirement equal to baseline

Excludes effect of decrease in fuel volume requirements

TABLE 8

- Mach 6
- q = 23.9 kPa (500 psf) at L/D = 4.66
 q = 21.5 kPa (450 psf) at L/D = 5.83

		Change	in Cruise	Fuel Flow F	Rates*	·
	Baseline Aircraft		Bare Aluminum Aircraft			
ltem			L/D = 4.66		L/D = 5.83	
	(kg/s)	(lbm/sec)	(kg/s)	(lbm/sec)	(kg/s)	(lbm/sec)
1. Drag ~ Cold Wall Effects (1.7% Increase in Skin Friction)	granular chira nazione a mojo	Automotive Control	0.062	0.137	nord Grandpark	-
2. Drag \sim Removal of External Shielding $(\Delta C_D = -0.0002)$	-	, -	- 0.152	- 0.335		
3. I _{SP} ~ Increase in Fuel Temperature	_		- 0.379	- 0.836	_	l –
4. 25% Increase in Cruise (L/D)	<u> </u>	+		-	-2.72	-6
Cruise Fuel Flow Rate	13.6	30	13.1	29	10.9	24
	Improv	ement*	3	.4%	2	0%

^{*}Relative to baseline

"Page missing from available version"

page 34

CONCLUS	SIONS
Conclusions drawn from the pr	esent study are as follows:
1. With the aid of a large of	apacity heat_pump_it_is_tech
•	to aluminum temperatures the
The second secon	unshielded_Mach_6_aircraft
using the hydrogen fuel a	
2. The use of a heat pump in	
TPS) results in a 1.7% in	crease in aircraft empty weight
However, spinoff_benefits	s-in-drag-and-specific-impulse-
offset the mass gain and	a small net improvement in air-
craft_performance_is_real	Lized.
3. Substantial improvement in	n L/D (25%) can be readily
accommodated-with-the-hea	t-pump concept. (Increasing
L/D reduces the amount of	fuel available for cooling).
	·
· · · · · · · · · · · · · · · · · · ·	
· · · · ·	
	and the second s
•	
	·
•	
•	

"Page missing from available version"

page 36

	RECOMMENDATIONS
It	is recommended that additional studies be performed to:
1.	Determine potential advantages of using a heat pump on
	other aircraft (including type, size, Mach number, and
	L/D).
2.	Converge system for one aircraft to better define penal-
	ties/benefits to aircraft performance.
3.	Determine optimum combination of shielding/heat pump
J•	requirements_as_a_function_of_Mach_number.
4	
4.	Assess impact of heat pump concept relative to descent/
	abort requirements.
5.	Determine minimum mass heat pump system. Trade studies
	should include, (a) COP versus_evaporator_and_condenser_
	mass, (b) refrigerant versus evaporator and condenser
/3	mass, (c) hydrogen/glycol heat_exchanger_effectiveness
	versus heat pump mass, and (d) tube-shell versus plate-
#	fin heat transfer devices.
·6 •	Determine if unused (23%) hydrogen heat sink capacity
-	can be effectively utilized.
•	
	and a second control of the control
	and the second of the second o
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·

APPENDIX

---METHODOLOGY

Governing relations and methods used during the present study are discussed in the sections which follow.

POWER

As shown in various engineering textbooks, the change in enthalpy for a steady flow process with trivial changes in kinetic and potential energies is equal to the heat added minus the useful work (e.g. shaft work) done by the system. Hence, when the process is also adiabatic the amount of power (useful work per unit time) that can be extracted from the flow is equal to the fluid mass flow rate m_f times the change in enthalpy (h₂-h₁), as shown in equation 1.

$$W = \dot{M}_{f} - (h_{2} - h_{1})$$
 (1)

Turbines - Solving for the change in enthalpy for an adiabatic expansion of a perfect gas with constant specific heat (and substituting in equation 1) defines turbine power output (equation 2) as a function of mass-flow rate, gas properties, fluid inlet temperature, and the pressure ratio across the turbine.

$$W_{t} = \dot{m}_{f} \left(\frac{R}{J}\right) \left(\frac{\gamma}{\gamma - 1}\right) T_{1} \left[1 - \frac{1}{PR(\gamma - 1)/\gamma}\right] \eta_{t}$$
 (2)

Turbine power output calculations performed during the present study were based on an adiabatic expansion efficiency of 85%.

Compressors - An expression analogous to equation 2 defines compressor power requirements and is presented as equation 3.

$$W_{C} = -\left(\frac{\dot{m}_{f}}{\eta_{c}}\right) - \left(\frac{\ddot{R}}{J}\right) - \left(\frac{\dot{\gamma}}{\dot{\gamma}-1}\right) T_{1} - \left[PR^{(\dot{\gamma}-1)/\dot{\gamma}} - 1\right]$$
(3)

Technically, as shown by equation 1 and 3, compressor power—is negative because it is added to rather than extracted from the flow process. During—this—study, however, the sign—convention—was omitted and compressor (also pump) power requirements are

presented as positive values in the body of the report. Hydrogen and Freon compressor power requirements were computed based on an adiabatic compression efficiency of 85% and 60%, respectively.

Pumps - For steady adiabatic flow of an incompressible fluid (liquid) the general expression for power (equation 1) takes the form of equation 4.

$$W_{p} = \frac{-\frac{m_{f} - (P_{2} - P_{1})}{\frac{n_{p}}{p}}}{\frac{-\frac{n_{p}}{p}}{p}}$$
 (4.)

Pump power requirements were computed based on a pump efficiency of 85%.

The mass of the fuel pump was determined using the J-2 rocket's liquid hydrogen fuel pump as a data base (J-2 pump mass = 0.027 kg/kW; 0.045 lbm/HP). Methods used in computing the mass and volume of turbines and compressors is discussed in the section that follows.

TURBOMACHINERY CHARACTERISTICS-

Turbines and compressors were sized (wheel diameter and rotational speed) based on the similarity concept discussed in references 7 through 9. Neglecting Mach and Reynolds number effects, similarity considerations show that the characteristics of turbomachines can be completely described by the parameters specific speed, N_S, and specific diameter, D_S, defined in equations 5 and 6, respectively.

$$N_{S} = \frac{NQ}{H} \frac{1/2}{3/4}$$

$$D_{S} = \frac{DH}{Q} \frac{1/4}{1/2}$$
(5)

where Q is the maximum volumetric flow and is therefore evaluated at the inlet for compressors and at the exit for turbines.

That is,

$$Q_{c} = \mathring{m}_{f} R T_{1}/P_{1} \text{ (for compressors)}$$
 (7)

$$Q_{t} = \frac{\mathring{m}_{f} R T_{1}}{P_{1}} \quad (PR)^{1/\gamma} \text{ (for turbines)}$$
 (8)

The adiabatic head (the isentropic enthalpy change of the process, Δh , times the mechanical equivalent of heat, J) can be expressed in terms of known conditions as presented in equations 9 and 10 for an adiabatic compression and expansion, respectively.

$$H_{C} = \frac{\gamma R T_{1}}{(\gamma - 1)} \left[PR^{(\gamma - 1)/\gamma} - 1 \right]$$
 (9)

$$H_{t} = \frac{\gamma R T_{1}}{(\gamma - 1)} \left[1 - 1/PR^{(\gamma - 1)/\gamma} \right]$$
 (10)

All turbomachines were sized as axial flow designs using the N_s - D_s diagrams of references 7 and 9. Multi-stage designs were selected when the overall pressure ratio was greater than the maximum desired pressure ratio per stage as defined by equation 11.

$$PR_{\text{max}} = \left[\frac{1}{1 - \frac{V_{\text{T}}^{2} (\gamma - 1)}{2g (V_{\text{T}}/C_{0})^{2} \gamma^{\dagger} R T_{1}}} \right]^{\gamma/(\gamma - 1)}$$
(11)

where,

$$V_{T}$$
 = wheel tip speed
 C_{O} = spouting velocity = (2g H_{st}) $^{1/2}$

To satisfy stress requirements, tip speeds were limited to 610 m/s (2000 ft/sec). The number of stages was determined from equation 12, where fractional parts were rounded to the next higher number.

$$n = \frac{\log PR}{\log PR_{\text{max}}}$$
 (12)

The mass of turbomachine assemblies was determined using the "single wheel" correlation of reference 7, presented herein as equation 13.

$$mass = C_1 D^2$$
 (13)

where,

$$C_1 = 0.028 \text{ kg/cm}^2 (0.4 \text{ lbm/in}^2)$$
 $D = \text{wheel diameter in cm (in.)}$

The mass of multi-stage assemblies was obtained by multiplying equation 13 by the number of stages.

Turbomachinery volume requirements were computed assuming a cylindrical assembly with dimensions as follows:

diameter = wheel diameter plus 2.54 cm (1.0 in.)
length =
$$L_1 + nL_2 + L_3$$

where,

 L_1 = allowance for bearings = 30.5 cm (12 in.) L_2 = allowance per stage = 11.4 cm (4.5 in.) n = number of stages L_3 = allowance for exhaust system = 7.6 cm (3 in.)

HEAT PUMP CHARACTERISTICS

Following the procedure of reference 10, cycle performance of the heat pump was determined using a pressure - enthalpy plot for the selected refrigerant as illustrated in figure 8. As shown, the heat pump (vapor cycle refrigeration system) fluid experiences an increase in enthalpy equal to $(h_2' - h_1')$ as it absorbs heat at constant pressure in the evaporator. Between state points 1 and 2, the fluid absorbs heat via an isothermal phase change from a liquid to a vapor. Between state points 2 and 2 , the vapor is superheated to ensure that no liquid enters the compressor. Area 2' - 3'' - 3' is the increase in enthalpy and entropy resulting from the fact that the compression process (2' - 3'') is nonisentropic and hence less than

100% efficient. The efficiency of the compression process is defined as follows:

$$\eta_{C} = \frac{h_{3}' - h_{2}'}{h_{3}'' - h_{2}''} \tag{14}$$

As suggested in reference 10, cycle performance for Freon R-11 refrigerant was determined based on a compression efficiency of 60%.

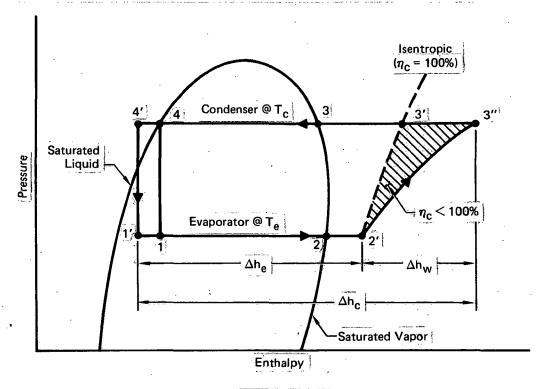


FIGURE 8 HEAT PUMP PERFORMANCE

Between 3 and 4 the refrigerant is cooled $(3^{"}-3)$, condensed to a liquid (3-4), and subcooled $(4-4^{"})$ as heat is rejected in the condenser. Subcooling from 4-4 is necessary to ensure no flashing of liquid to vapor upstream of the expansion (throttle) valve. As the fluid expands at constant enthalpy through the throttle valve $(4^{"}-1^{"})$, a portion of the liquid flashes to vapor and lowers the refrigerant temperature to the evaporation temperature T_e and completes the cycle.

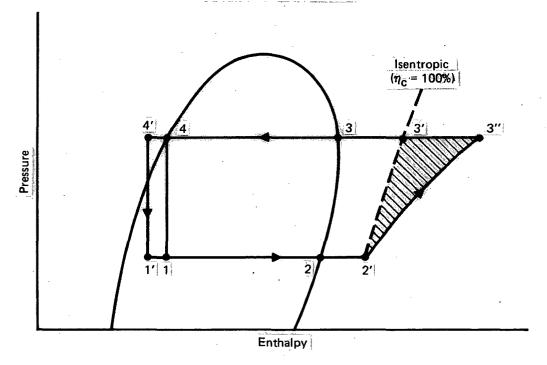
For a given evaporator load Q_e , the refrigerant mass flow rate m_R is determined knowing the change in enthalpy Δh_e across the evaporator, as illustrated in figure 8. That is

$$\dot{m}_{R} = \frac{\dot{Q}_{e}}{\Delta h_{e}} \tag{15}$$

The coefficient-of-performance (COP), a figure-of-merit used in assessing the relative efficiency of refrigeration cycles, is defined as the amount of refrigeration obtained per unit of work done on the system. The amount of refrigeration obtained is the evaporator load, \mathbf{m}_R $^\Delta\mathbf{h}_e$, and the amount of work done is \mathbf{m}_R $^\Delta\mathbf{h}_w$. Solving for $^\Delta\mathbf{h}_w$ from the compression efficiency expression (equation 14), the coefficient-of-performance can be expressed as follows:

$$COP = \eta_{C} \left[\frac{h_{2}' - h_{1}'}{h_{3}' - h_{2}'} \right]$$
 (16)

where the expression in brackets is the coefficient-of-performance of the cycle when the compression process is isentropic (see figure 8).


Refrigeration cycle state points for the Freon R-11 heat pump arrangement of figure 6 are presented in table 9.

Evaporator and condenser characteristics were determined by a computerized heat exchanger sizing program. Only tube - shell designs, with the refrigerant on the outside of finned tubes, were considered. Both aluminum and steel designs were assessed. In all cases, an aluminum design proved to be lighter in weight and was selected as the preferred concept.

The mass of Freon refrigerant in the system was determined assuming that the "free volume" in the evaporator and condenser was 25% liquid and 75% vapor.

TABLE 9 FREON R-11 REFRIGERATION CYCLE

- \bullet COP = 4
- = 60% = 318 K (573°R) = 358 K (645°R)

State Temperature			Pressure		Enthalpy	
Point	K	°R	MPa	psi	J/g	Btu/lbm
1′	318	573	0.19	27.5	107	46
2	318	573	0.19	27.5	244	105
. 2'	322	580	0.19	27.5	249	107
3"	386	695	0,59	85.0	284	122
3′	368	662	0.59	85.0	270	116
3	358	645	0.59	85.0	263	113
4	358	645	0.59	85.0	109	47
4′	356	641	0.59	85.0	107	46

GEAR BOXES

The mass and power loss attributable to gear boxes were computed based on the results of previous in-house studies, as follows:

mass =
$$0.0125 \text{ kg/kW} (0.0206 \text{ lbm/HP})$$
 (17)

Gear box cooling requirements were assumed equal to the power loss defined by equation 18.

ACTIVE COOLING SYSTEM

The mass of the active cooling system was determined using the correlations of table 10. These correlations were derived during a previous MCAIR study of active cooling systems. Although derived specifically for a 60/40 mass solution of ethylene glycol and water, the correlations are believed to be equally applicable to other coolants.

AIRCRAFT PERFORMANCE

Performance characteristics of the bare aluminum aircraft were determined assuming a fixed aircraft size and adjusting baseline performance values for changes in mass, drag, and specific impulse; neglecting the effects of changes in payload and fuel volume requirements. Volume requirements of the heat pump system were also neglected as it occupies less than 1/2% of the baseline fuselage volume.

TABLE 10 |
EQUATIONS DEFINING THE MASS OF ACTIVE COOLING SYSTEM ELEMENTS

	Mass Element	Equation ~ Mass/Area
1	Pumps (Dual/Wet)	$W_1 = C_1 (\dot{m}_c) (\Delta P_s)/\rho_c$
2	Heat Exchanger (Wet)	$W_2 = C_2 \dot{q}_{abs}$
3	Coolant in Lines	$W_3 = C_3 (\dot{m}_c)^{n_1} (\mu_c)^{n_2} (\rho_c)^{n_3} \Delta P_s)^{n_4}$
4	Distribution Lines (Dry)	$W_4 = C_4 (W_3) (P_s)/\rho_c$
(5)	Reservoir (Wet)	$W_5 = C_5 \Sigma$ Coolant Inventory
	•	• Coolant in Lines \sim W ₃
1		• Coolant in H/X \sim 0.4 W ₂
		• Coolant in Panel $\sim \frac{C'_5 (\rho_c) (D)^2}{P}$
		Σ Coolant Inventory
6	APS Propellant	$W_6 = C_6 (\dot{m}_c) (\Delta P_s) (\theta) / \rho_c$
@	F = 0.34 g/kW·s (2 lbm/hp·hr)	

Variables					
Symbol	mbol Definition		Units		
Symbol	Definition	SI	English		
w _i	Mass Element	kg/m ²	lbm/ft ²		
т́с	Coolant Mass Flow	kg/m ² ·s	lbm/ft ² sec		
P _s	System Pressure	kPa	lbf/in. ²		
ΔP_{s}	Pressure Drop	kPa	lbf/in. ²		
$\rho_{\mathbf{c}}$	Coolant Density	kg/m ³	lbm/ft ³		
ġ _{abs}	Absorbed Heat Flux	kW/m ²	Btu/ft ² sec		
μ_{c}	Coolant Viscosity	Pa∙s	lbm/ft sec		
θ	Time	hour	hour		
D	Dee Tube I.D.	cm	inch		
Р	Tube Pitch	cm	inch		

Constants				
Symbol	Value in:			
Symbol	SI	English		
C ₁	0.44	0.19		
c_2	0.0105	0.0244		
С ₃	2.49	3.9		
C ₄	0.116	0.05		
C ₅	0.06	0.06		
C′5	0.00467	0.0389		
С ₆	1.217	0.524		
n ₁	0.75	0.75		
n ₂	0.083	0.083		
n ₃	0.583	0.583		
n ₄	-0.417	0.417		

"Page missing from available version"

page 48

REFERENCES

- 1. Pirrello, C.J.; and Herring, R.L.: Study of a Fail-Safe Abort System for Actively Cooled Hypersonic Aircraft, NASA CR-2652, August 1976.
- Program Review of, Thermal-Structural Design Study of an Airframe - Integrated Scramjet, Presented by Airesearch Company at NASA Dryden FRC, April 6, 1977. Contract NAS1-13984.
- 3. Becker, J.V.: New Approaches to Hypersonic Aircraft. Presented at the Seventh Congress of the International Council of the Aeronautical Sciences (ICAS), Rome, Italy, September 14-18, 1970.
- 4. Helenbrook, R.G.; and Anthony, F.M.: Design of a Convective Cooling System for a Mach 6 Hypersonic Transport Airframe, NASA CR-1918, December 1971.
- 5. Anthony, F.M.; Dukes, W.H.; and Helenbrook, R.G.: Internal Convective Cooling Systems for Hypersonic Aircraft, NASA CR-2480, February 1975.
- 6. Wieting, A.R.; and Guy, R.W.: Thermal-Structural Design/
 Analysis of an Airframe-Integrated Hydrogen Cooled Scramjet,
 Journal of Aircraft, Volume 13, Number 3, March 1976, p. 192.
- 7. Dieckman, R.R.; Watson, A.C.; and Glover, S.F.: Development of Integrated Environment Control System Designs for Aircraft, AFFDL-TR-72-9, Vol. I, May 1972.
- 8. Shepherd, D.C.: Principles of Turbomachinery, the Mac-Millan Company, 1956.
- 9. Balje', O.E.: A Study on Design Criteria and Matching of Turbomachines, Part A and Part B: Journal of Engineering for Power, January 1962, pp. 83 through 114.
- 10. SAE Aerospace Applied Thermodynamics Manual, Second Edition, October 1969, Society of Automotive Engineers, Inc.