https://ntrs.nasa.gov/search.jsp?R=19780010031 2020-03-22T06:00:50+00:00Z

TABLE OF CONTENTS	PAGE
List of Figures	iv
List of Tables	v
Preface to Second Edition	1
Acknowledgements	3
General Mission Information	4
Sample Collection Tools and Containers	7
Sample Collection and Return	14
Early Processing History	15
Processing Laboratories	22
Vacuum Laboratory Biological Preparation Laboratory Physical-Chemical Test Laboratory Sample Packaging Laboratory Sample Storage and Processing Laboratory Returned Sample Processing Laboratory Thin Section Laboratory	22 22 25 25 25 25 25
Geologic Setting	26
Sample Surface Documentation	28
Petrology	29
Surface Features Basalts Breccias Soils Cores Mineralogy	29 30 32 35 35 35
Sample Degradation History	37

i

(cont'd next page)

.

· ·

Re-Examination	
Binocular Examination Procedure Breccia Clast Descriptions Thin Section Examination Procedure Typical Breccia in Thin Section Typical Basalt in Thin Section Sample Histories Chemical and Age Data	
Samples	
10001	

I

ii

. .

;

۰.

,

. . . }i a¶

ŧ

.

t

١.

PAGE

TABLE OF CONTENTS - page 3 PAGE 10049 221 10050 228 10054 236 10056 237 10057 245 10058 253 10059 261 10060 268 10061 276 10062 284 10063 292 10064 298 10065 304 10066 311 10067 316 10068 321 10069 328 10070 335 10071 341 10072 348 10073 356 10074 362 10075 367 10082 372 10084 376 10085 381 10086 415 10087 418 10089 419 420 10092 424 10093 428 10094 432 Appendix A - Definition of Terms and Acronyms ... 436 Appendix B - Photo Index 438 Bibliography 454

POOR QUALITY

iii

iv

12 - AD

:

``

ì

1

Ļ

1

٢

3

3

× 1

an ini **hakarar**if

1 ...

FIGURES

1 - USAF Lunar Reference Mosaic	<u>Page</u> 5
2 - Sample Location for AP-11 Landing Site	6
3 - Sample Return Container With Rocks	9
4 - Hammer	10
5 - Tongs	10
6 - Extension Handle	11
7 - Large Scoop	11
8 - Core Tubes	12
9 - Contingency Sampler	13
10 - F-201 System	23
11 - F-201 System	23
12 - Bio Prep Lab	24
13 - PCTL Lab	24
14 - Cumulative Weight Percent of some AP-11 Fines	33
15 - White Clast	44
16 - Basalt Clast	44
17 - Salt & Pepper Clast	45
18 - Grey Clast	45
19 - Grey & White Clast	46
20 - Green Clast	46
21 - Lithic Clast	47
22 - Brown & White Clast	47

۷

1.1

<u>م</u> ب

Ł

Antonia, i.e

いいのかろういま ちょうしょうしま いきままま かいどうろう

i

Page

ي. ياري (1.2

but human in the se

ļ

ſ

. .

ł .

.

1 - All Samples Listed by Generic Number	17
2 - All Samples Listed by Returned Container (ALSRC)	19
3 - Basalt Classifications	31
4 - Breccia Clasts	42

PREFACE TO THE SECOND EDITION

The rock and soil samples returned to earth by the crew of Apollo 11 are historically unique in two respects. Not only were they the first documented rock samples returned from an extra-terrestrial body, but they were also the subjects of the first concentrated effort by the world's scientific community to fully characterize a suite of rock samples.

S.

ł

With the return of the Apollo 11 samples, a team of scientists, the Preliminary Examination Team (PET)*, was formed and given the task of characterizing the rocks and soils. Their task was to sort, classify and describe the samples so that they could be allocated to an eager group of principal investigators prior to the return of Apollo 12. Five weeks after the samples were received in the LRL, the first Apollo 11 Sample Catalogue was compiled and published.

In June of 1975, the Apollo 11 Re-examination Team was formed to compile data for a revised Apollo 11 Sample Information Catalogue. The basic aim of this group was to re-examine the Apollo 11 samples applying the experience gained during five subsequent missions, document them, and publish this information along with historical, chemical and age data in a revised catalogue.

The first step in the re-examination process was a thorough search of all available documentation pertaining to the early processing of the samples. Because of the short time allotted to Preliminary Examination, this type of information was sketchy, at best, and for the most part, non-existent. What information could be obtained was summarized into a sample history for each generic sample. During this part of the re-examination process any contaminating conditions that were peculiar to a certain rock or group of rocks which had been documented or could be inferred, was compiled.

Next, a listing of the chemical and age data for each generic sample was compiled from analyses published as of June 1976. In instances where no chemical data was available, an allocation from the sample was scheduled so that major element analyses could be obtained.

Pristine samples were examined in a nitrogen processing cabinet where they were dusted, photographed (one to six views) and described with a binocular microscope. An attempt was made to reconstruct the original rock (or a part of it) from the remaining pristine pieces and existing documentation, and to locate these pieces on photographs taken by the PET before splitting.

In some cases this was successful; in other cases, the low percentage of remaining sample and the lack of rock subdivision photography made reconstruction of the rock pieces impossible. Because the photographs taken

*For definitions of terms and acronyms, see Appendix A.

1

ORIGINAL PAGE IS OF POOR QUALITY 17 %

during the PET examinations were of dusty rocks, few pieces could be "fitted" into the original rock photographs with any reasonable degree of confidence.

All rocks larger than 5gm. currently stored in the Returned Sample Laboratory were examined in the same manner as above. Before these samples were repackaged, they were viewed by the person who made the binocular description of the pristine samples to insure consistency.

Thin sections of the rocks were examined, described and photographed, and a modal analysis was performed.

This catalogue should serve as a reference and an aid in dealing with the Apollo 11 sample items within. It should provide the user with all of the information available as of June 1976. It is sincerely hoped that this revised edition of the Apollo 11 Sample Information Catalogue will prove to be useful until the passage of time and the advancement of science have made it obsolete.

Additional information concerning the Apollo 11 samples and their processing history may be found in the Curator's files. Especially useful are the sample data packs that include considerable photographic documentation.

ACKNOWLEDGMENTS

Frank E. Kramer, David B. Twedell and Wayne J.A. Walton, Jr. (NSI) comprise the Re-examination Team, which originated and compiled most of the information contained within this catalogue. Jill Geeslin, Carol Schwarz and Judy Mensing (NSI) processed and described the returned samples. Waltine Bourgeois (NSI) compiled the chemical, age and bibliographical data. Leila Smith (NSI) did most of the sample history research. Patrick Butler, Jr. (NASA) was the Curatorial Representative for the project and served as principal editor. Jeffrey L. Warner, Gary E. Lofgren, Charles Meyer, Jr., and David S. McKay (NASA) served as technical advisors and editors.

The following people comprised the Preliminary Examination Team: D.H. Anderson, E.E. Anderson, K. Bieman, P.R. Bell, D.D. Bogard, R. Brett, A.L. Burlingame, W.D. Carrier, E.C.T. Chao, N.C. Costes, D.H. Dahlem, G.B. Dairymple, R. Doell, J.S. Eldridge, M.S. Favaro, D.A. Flory, C. Frondel, R. Fryxell, J. Funkhouser, P.W. Gast, W.R. Greenwood, M. Grolier, S.C. Gromme, G.H. Heiken, W.N. Hess, P.H. Johnson, Richard Johnson, E.A. King, Jr., N. Mancusco, J.D. Menzies, J.K. Mitchell, D.A. Morrison, R. Murphy, G.D. O'Kelley, G.G. Schaber, A.A. Schaeffer, D. Schleicher, H.H. Schmitt, E. Schonfeld, J.W. Schopf, R.F. Scott, E.M. Shoemaker, B.R. Simoneit, D.H. Smith, R.L. Smith, R.L. Sutton, S.R. Taylor, F.C. Walls, J. Warner, Ray E. Wilcox, V.R. Wilmarth, and J. Zahringer.

Jean Alden, Pallie Buchtler, Polly McCamey, Alene Simmons, Billye Harris and Pamela Campbell typed the manuscript.

Special thanks go to Michael B. Duke, Curator, for his continuing advice and support.

1

يقدينهم و

GENERAL MISSION INFORMATION

4

The primary objectives of the Apollo 11 mission were to land men on the lunar surface, to collect lunar materials for study, and to return both crew and samples safely to earth. The crew of Apollo 11 consisted of Neil A. Armstrong, Commander; Michael Collins, Command Module Pilot; and Edwin E. Aldrin, Jr., Lunar Module Pilot. The following is a summary of the Apollo 11 mission. More detailed information may be found in the Apollo 11 Mission Report (NASA SP-238).

The space vehicle was launched from Kennedy Space Center, Florida, at 08:32:00 a.m.,e.s.t., July 16, 1969, and was inserted into lunar orbit approximately 76 hours later. After a rest period, Armstrong and Aldrin entered the lunar module to prepare for descent. The command and service modules were then separated from the lunar module (Eagle). Descrite rbit insertion was performed at approximately 1 1/2 hours after separation and power descent to the lunar surface began approximately 1 hour lat r.

The Eagle landed in the Sea of Tranquility at 3:17 p.m.,e.s.t., July 20 (Fig. 1). The landing site was on a gently sloping mare just west of a young ray crater approximately 200 meters in diameter (Fig. 2). During the first 2 hours on the surface, the astronauts performed a postlanding check-out of all lunar module systems, ate their first meal on the moon and elected to perform the surface operations earlier than planned. Armstrong egressed through the forward hatch and deployed the Modularized Equipment Stowage Assembly (MESA), located in the descent stage. A camera in the MESA provided live television coverage of Armstrong descending the ladder to the surface, with first contact made at 9:56 p.m.,e.s.t., July 20, 1969. Aldrin followed soon thereafter, and both crewmen used the initial period on the surface to become used to the reduced gravity conditions. The Contingency Sample was taken from the surface, and a television camera was deployed so that most of the lunar module was included in the field of view (Fig. 2). The crewmen took numerous photographs, erected the U.S. flag, and deployed the scientific experiments. which included a solar wind detector, a passive seismometer, and a laser reflector. Aldrin spent considerable time γ valuating his ability to operate and move about, and despite the limitations imposed by the pressurized suit, he was able to move rapidly and with confidence. Approximately 20 kilograms of rock and particulate material were collected to be returned to earth. The crew had spent a total of 2 hours and 14 minutes exploration time on the lunar surface.

The ascent preparation was conducted, and the ascent stage lifted off the surface at 1:02 p.m.,e.s.t., July 21. After a rendezvous sequence, the two spacecrafts were docked at 5:02 p.m.,e.s.t., July 21. Following transfer of the crewmen, the ascent stage was jettisoned, and the command and service module was prepared for trans-earth injection. The entry

ORIGINAL PAGE 4 OF POOR QUALITY

Fig.I: USAF lunar reference mosaic showing all Apollo, Luna, Surveyor and Lunokhod landing sites. Scale = 1:10,000,000 (S-76-25839)

2

ſ

ORIGINAL PAGE 18 OF POOR QUALITY

Fig-2 Sample location for Apollo 11 landing site

•

phase was normal, and the command module landed in the Pacific Ocean at 12:01 p.m.,e.s.t., July 24.

14 . K.I

「読むる」

1. 2. M. 1. 8

「「「「「「「「「「「「「「」」」」」

A STATE OF S

The samples were retrieved from the spacecraft after recovery on board the U.S.S. Hornet and were transferred into *c* e Mobile Quarantine Facility (MQF). Inside the MQF the sample container, were enclosed in plastic bags, to insure biological containment, and were passed to the outside of the MQF through a surface sterilization procedure and lock. The samples were flown to Jonston Island where they were transferred on board two separate jet aircrafts for transport to the Manned Spacecraft Center and the Lunar Receiving Laboratory (LRL). One of the sample return containers, the second box collected (documented sample) was on board the first aircraft to arrive at Ellington Air Force Base, Houston, Texas. The sample was carried to the Lunar Receiving Laboratory in a motor van, and was introduced into the Crew Reception Area of the LRL. The second aircraft arrived at Ellington Air Force Base a few hours later with the first sample return container filled on the lunar surface (buik sample) and with the contingency sample. These samples were also brought to the LRL by motor van and introduced into the Crew Reception Area.

SAMPLE COLLECTING TOOLS AND CONTAINERS

The Apollo 11 crewmembers used the following sample-collection tools and containers to obtain samples of the lunar surface. The tools were designed of material rugged enough to do the job, yet light enough to conform to the weight and space limitations of the lunar module stowage area. The limitations imposed on the movements of a crewman while wearing a pressurized space suit also had to be considered; therefore, the tools were designed with quick-disconnect fittings to enable the crewman to attach or detach components with a minimum of difficulty. Knurled or roughened areas were provided on many tools to improve the crewman's grasp. Prime consideration was given to the selection of the metals and lubricants used in the construction of the tools to avoid elements and isotopes that might contribute to serious geochemical contamination (such as lead, strontium, etc.).

The two Apollo lunar sample return containers (ALSRC, Fig. 3) were portable, sealable aluminum containers; each container weighed approximately 6.8 kilograms, measured 20.3x26.7x44.5 centimeters and had a capacity of 0.023 cubic meters. They were lined with York stainless steel mesh and Teflon. Prior to the lunar landing, these containers housed the core tubes and other related equipment. On the lunar surface, the astronauts opened, filled, and closed the containers. Three seals on the hinged lids (one of indium and two of Viton) preserved the samples in the vacuum environment during transportation back to the Lunar Receiving Laboratory. Upon return to the LRL, readings were taken to determine the atmospheric pressure inside the sample container. Both ALSRC's had

ORIGINAL PAGE IS

internal pressures of 170 microns; proof a substantial negative pressure was maintained during transfer of samples from the lunar surface back to earth.

The hammer (Fig. 4) was made of tool steel suitable for impact use. The head was coated with vacuum-deposited aluminum to minimize solar heating. The handle was offset slightly so that the astronaut could strike a square blow despite the encumbrance of his pressurized space suit. The end of the hammerhead opposite the striking surface was shaped for use as a pick or chisel; with the extension handle attached, it could be used solely for driving the core tubes into the surface by striking the end of the extension handle.

The tongs (Fig. 5) were made of anodized aluminum (No. 606 T6) and were used to retrieve samples of pebble size and larger. This tool consisted of a set of opposed, spring-loaded fingers attached to a 66-centimeter handle. The tongs were operated by squeezing the handles to actuate the cable that opened the fingers.

The extension handle (Fig. 6) was used to increase the astronaut's reach by adding 58.4 centimeters of handle length to various tools. The lower end of the extension handle had a quick-disconnect mount and lock for tool attachment. The upper end was fitted with a sliding tee handle to facilitate any torquing operations.

The large scoop (Fig. 7) was made of anodized aluminum (No. 6061 T6) and had an appearance similar to the bucket of a power shovel. The scoop and its handle measured 39.4 centimeters, and could be extended an additional 58.4 centimeters using the extension handle. The large scoop was used in the lunar extravehicular activity to collect the bulk sample.

Two core tubes (Fig. 8) were made of anodized aluminum (No. 6051 T6) and were used to obtain samples from the lunar surface in a manner such that any possible near-surface stratigraphy would be preserved. The core tubes are 41.3 centimeters long and would be attached to the extension handle. Two tubes, each containing a sample, were capped and placed in the documented sample return container.

The contingency sample container (Fig. 9) consisted of a small [eflon bag, resembling an oversized sandwich bag, and a jointed aluminum handle approximately 84.5 centimeters long in its fixed extended position. The bag measured 5.2x12.7x17.8 centimeters. The contingency sample container was used to obtain a lunar sample during the early stages of the extra-vehicular activity. This sample was intended to provide at least a small amount of lunar material for return to earth if it were necessary to terminate the surface portion of the mission early.

taken in the internet statement of the second of the secon

Fig. 3: Sample Return Container (ALSRC) with Rocks

•

ORIGINAL PAGE IS OF POOR QUALITY

· Ţ ` i

•.

.........

361 1

179 ere

1. _ .] _

1:22

ľ.

Fig. 8: Core Tubes

13

F

17

1

ORIGINAL PAGE IS OF POOR QUALITY

SAMPLE COLLECTION AND RETURN

1.7

•

14

÷

The contingency sample was taken in full view of the sequence camera just outside Quad IV of the lunar module (Fig. 2) and took about 3 minutes 35 seconds to collect. The sample bag was filled with two scoops for a total of approximately 1 kilogram. The areas scooped have been accurately located on a pre-extravehicular lunar module window photograph from study of the sequence film data. Both scoops included small rock fragments visible on the surface from the lunar module windows prior to sampling. The handle of the scoop apparatus was shoved by Armstrong 15 to 20 centimeters into the surface very near the area of the first contingency screp. The ease of penetration in this place may be, in part, a result of disturbance to the regolith by scooping. The contingency sample container was stowed in a Beta-cloth bag during the return trip and accompanied the astronauts to the Crew Reception Area of the LRL.

The bulk sample consisted of 15 kg of rock and soil, loaded into one of the ALSRC's. A total of 14 minutes was required by Armstrong to collect the bulk sample. Five minutes was spent sealing the box. Armstrong went out of the television field of view three times during bulk sampling, twice to the left for a total of 1 minute 11 seconds and once to the right for 35 seconds. Seventeen or 18 scoop motions were made in full view of the television camera, and at least five were made within the field view of the sequence camera. The total number of scoops was 22 or 23. Nine trips back to the MESA were made to empty the scoop. The average number of scoop motions to fill the scoop was two and one-half. The ALSRC was sealed on the lunar surface and accompanied the astronauts into the MQF aboard the U.S.S. Hornet. The bulk sample ALSRC was flown from the MQF to Hawaii where it was transferred to a range instrumentation aircraft for transfer to Houston.

The two core-tube samples were collected by Aldrin in 5 minutes 50 seconds Soth were taken in the vicinity of the Solar Wind Composition Experiment.

The documented sample consisted of approximately 20 selected, but unphotographed, grab samples (about 6 kilograms) collected by Armstrong in the final three and one-half minutes of the extra-vehicular activity. Collection of these specimens was made out to a distance of 10 to 15 meters in the area south of the +Z-axis footpod near the east rim of the large double crater. Armstrong was out of the television field of view to the west 25 percent of the time during this activity.

The two core tubes were single-layered in the Documented Sample ALSRC and the container was sealed on the lunar surface.

After splashdown the ALSRC was flown to Jonston Island where it and the mission films were placed aboard a C-141 aircraft and flown to Houston.

EARLY PROCESSING HISTORY

The Documented Sample ALSRC was transferred from the Crew Reception Area to the Sample Laboratory on July 25 and introduced into the atmospheric decontamination cabinetry system. The sealed documented sample box entered the F-201 vacuum system July 26, with the F-201 chamber pressure at approximately 7 x 10^{-6} torr. The box was opened after an unsuccessful attempt was made to analyze the atmosphere in the box by mass spectrometry through a probe inserted in the box end. The Lunar Sample Preliminary Examination Team made their initial inspection of the box contents after the Teflon bag containing the samples had been cut and peeled back. (Fig. 3) A few hours later, the first rock, sample 10003, was selected for gamma counting in the Radiation Counting Laboratory (RCL). See Table 2 for a description of the contents of the Documented Sample ALSRC.

The two core tubes and selected fines were next transferred to the Biological Preparation Laboratory. Later, one of the core tube samples, sample 10004, was opened and inspected and found to have a missing cap and the follower improperly inserted, but the sample was intact. More detailed information concerning the core samples may be found in the Lunar Core Catalogue (Duke and Nagle, 1974).

The Gas Reaction Cell (GRC) was intended to be used to determine whether violent reactions occurred when lunar material was exposed to various atmospheric gases. The cell was transferred to PCTL, but inspection of the cell in the PCTL indicated that the port cover had been broken during handling, exposing the sample to nitrogen. The remaining portion of the gas reaction tests (exposure to oxygen, carbon dioxide and water vapor) was performed, and there was no apparent change in the sample.

During subsequent sample description and splitting operations in F-201, a leak developed rapidly in one of the gloves, and the interstitial glove pressure went to atmospheric, but the pressure in F-201 is believed not to have risen above approximately 2 centimeters of mercury. Samples in F-201 at that time were 10017, 10018, 10019, and 10020. Some other samples, not yet numbered were in a vacuum beaker that had two bolts loose, and other samples were safely inside vacuum-sealed beakers that were properly sealed. It was necessary to sterilize the entire system with dry heat in order to replace the damaged gloves without violating the biological containment. After the gloves were replaced, the system was pumped down to operating pressures and processing of the samples from the documented box was continued. Sample 10020 was removed from the vacuum system after sterilization, placed in a glass vacuum jar, and

placed where it could be viewed by the Lunar Sample Analysis Planning

16

Team and visitors.

The Bulk Sample, ALSRC (#1003), contained most of the rocks and fines returned from the Apollo 11 mission. (See Table 2) This sample box was transferred into the first vacuum lock of the F-201 vacuum system, but after the glove accident (See p.15) it was decided to use the nitrogen cabinets in the Biological Preparation Laboratory for the opening and processing of the samples from the bulk box.

The bulk box was transferred into the nitrogen atmosphere cabinets in the Biological Preparation Laboratory on August 2. The bulk box samples were examined, described, photographed, and chipped in the Biological Preparation Laboratory, and chips were transferred to the PCTL for more detailed description. Most of the samples from the bulk box were maintained in the nitrogen cabinetry in the Biological Preparation Laboratory until the end of sample quarantine.

The contingency sample was transferred from the Crew Reception Area to the PCTL on July 27, where it was placed inside the nitrogen atmosphere cabinetry. The contingency sample was opened, and an initial inspection of the sample was made. The largest rock from the contingency sample, sample 10021, was transferred to the RCL. All rocks and fragments greater than 1 centimeter in size were removed from the contingency sample, and given sample numbers (See Table 2). Most of the contingency sample remained within the nitrogen atmosphere of the PCTL cabinetry until the end of sample quarantine. However, the contingency sample container was exposed to cabin atmosphere during storage and transportation back to earth. It was not opened, however.

.

Ĺ

17

11:14、11-11-1

TABLE I - APOLLO 11 Generic Sample Listings with Original Weights

V 1.7 m

1 1 1 A

1 × ;

- 3° 4° |

. 1

1*

· 1 F

1351.3

in the

1 1 A Da Bar - Co Ad Derricht - Antonia - Co

ч Э

いたいない、そのないない、いましいない、いいのというないのからいというないです。

1

€

1.4

:•

ł

¥

'1

Sample #	<u>Original Wt</u> .	Description	Returned Container
10001	181.9	Fines	ALSRC 1004
10002	5629.	Rocks & Fines	ALSRC 1003
10003	213.	Basalt	ALSRC 1004
10004	44.8	Core	ALSRC 1004
10005	53.4	Core	ALSRC 1004
10008	_ 89.	Fines	ALSRC 1004
10009	112.	Breccia	ALSRC 1004
10010	491.	Fines	Cont. Bag
10011	82.6	Fines	ALSRC 1004
10014	50.	Fines	ALSRC 1004
10015	. 396	Gas Reaction Cell	ALSRC 1004
10017	973.	Basalt	ALSRC 1004 ALSRC 1004
10018	213.	Breccia	ALSRC 1004 ALSRC 1004
10019	297. 425.	Breccia Basalt	ALSRC 1004 ALSRC 1004
10020 10021	250.	Breccia	Cont. Bag
10022	95.59	Basalt	Cont. Bag
10022	66.	Breccia	Cont. Bag
10024	68.12	Basalt	Cont. Bag
10025	8.59	Breccia	Cont. Bag
10026	9.3	Breccia	Cont. Bag
10027	8.87	Breccia	Cont. Bag
10028	3.53	Breccia	Cont. Bag
10029	5.53	Basalt	Cont. Bag
10030	1.81	Breccia	Cont. Bag
10031	2.70	Basalt	Cont. Bag
10032	3.13	Basalt	Cont, Bag
10033	1.12	Fines	Cont. Bag
10044	247.5	Basalt	ALSRC 1003
10045	185.5	Basalt	ALSRC 1003
10046	663.	Breccia	ALSRC 1003
10047	138.	Basalt	ALSRC 1003 ALSRC 1003
10048	579.	Breccia	ALSRC 1003
10049	193.	Basalt Basalt	ALSRC 1003
10050 10054	114.5 202.1	Fines	ALSRC 1003
10056	186.	Breccia	ALSRC 1003
10050	919.	Basalt	ALSRC 1003
10058	282.	Basalt	ALSRC 1003
10059	188.	Breccia	ALSRC 1003
10060	722.	Breccia	ALSRC 1004
	(cont'd nex		

ORIGINAL PAGE IS OF POOR QUALITY

1

tt

(TABLE I - cont'd)

(INDEL I - COM			Returned
<u>Sample #</u>	<u>Original Wt</u> .	Description	Container
10061	346.	Breccia	ALSRC 1004
10062	78.5	Basalt	ALSRC 1004
10063	148.	Breccia	ALSRC 1004
10064	65.	Breccia	ALSRC 1004
10065	347.	Breccia	ALSRC 1004
10066	40.	Breccia	ALSRC 1004
10067	69.3	Breccia	ALSRC 1004
10068	218.	Breccia	ALSRC 1004
10069	119.5	Basalt	ALSRC 1004
10070	64.	Breccia	ALSRC 1004
10071	189.5	Basalt	ALSRC 1004
10072	447.	Gabbro	ALSRC 1004
10073	124.5	Breccia	ALSRC 1004
10074	55.5	Breccia	ALSRC 1004
10075	53.	Breccia	ALSRC 1004
10082	50.5	Breccia	ALSRC 1004
10084	3830.0	Fines	ALSRC 1003
10085	569.0	Fines	ALSRC 1003
10086	823.0	Fines	ALSRC 1003
10087	17.4	Chips and Fines	ALSRC 1003
10089	50.	Fines	ALSRC 1003
10090	12.	Fines	ALSRC 1003
10091	23.9	Breccia	ALSRC 1003
10092	46.0	Basalt	ALSRC 1003
10093	26.0	Breccia	ALSRC 1004
10094	25.0	Breccia	ALSRC 1004

ł

r. Maria 1

TOTALS

1) 2)	Contingency Sample	1015.29 gm 14897.4 gm
3) 4)	ALSRC 1004 ALSRC 1004	5824.8 gm 98.596 gm
	TOTAL AP-11 SAMPLE RETURNED	21336.086 am

18

`

.

contentes of sample correction and needs a containers			
ALSRC 1004	Net Sample Wt.(gms)	Sample Numbers	
Core Tube #2 Core Tube #1 Gas Reaction Cell	44.8 52.4 0.396	10004 10005 10015	
Loose Fines	403.5 (Combined)	10001 10008 10011 10014	
Loose Rocks			
Basalt, coherent Breccia, friable Basalt, coherent Breccia, tough Breccia, tough Breccia, tough Breccia, tough Breccia, friable Gabbro, coherent Breccia, tough Breccia, tough Breccia, tough Breccia, tough Breccia, tough Breccia, tough Breccia, tough Basalt, friable Breccia, mod.friable Basalt, friable Breccia, friable Breccia, tough Breccia, coherent Breccia, coherent	213.0 112.0 973.0 213.0 297.0 425.0 722.0 346.0 78.5 148.0 65.0 347.0 40.0 69.3 218.0 119.5 64.0 189.5 447.0 124.5 55.5 53.0 50.5 26.0 25.0	10003 10009 10617 10018 10019 10020 10060 10061 10062 10063 10064 10065 10066 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10082 10093 10094	

TABLE 2

Contents of Sample Collection and Return Containers

TOTAL ALSRC 1004 5923.396 gms

, ÷

·

X

4

(TABLE 2 - cont'd)		
ALSRC 1003	Net Sample Wt.(gms)	Sample Numbers
Loose Fines	5629. 202.1 3830.0 569.0 823.0 17.4 50.0 12.0 23.9	10002 10054 10084 10085 10086 10087 10089 10090 10091
Loose Rocks		
Basalt, friable Basalt, coherent Breccia, Mod.friable Basalt, Mod.friable Breccia, coherent Basalt, friable Basalt, Mod.coherent Breccia, tough Basalt, coherent Basalt, friable Breccia, friable Basalt, tough TOTAL ALSRC 1003	247.5 185.5 663.0 138.0 579.0 193.0 114.5 186.0 919.0 282.0 188.0 46.0 14897.4	10044 10045 10046 10047 10048 10049 10050 156 10057 10058 10059 10092
Contingency Sample Bag		
Loose Fines	492.12 (Combined)	10010 10033
Breccia, tough Basalt, coherent Breccia, tough Basalt, friable Breccia, slightly friable Breccia, tougn Breccia, tough Breccia, Mod.tough Basalt, coherent	250.0 95.59 66.0 68.12 8.59 9.3 8.87 3.53 5.53	10021 10022 10023 10024 10025 10026 10027 10028 10029

(cont'd next page)

ORIGINAL PAGE IS OF POOR QUALITY Ţ.

ŧ.

1

K P P

۰,

٦

٠

Ł

• •

20

1 . 4

:

ł

ł

•

(TABLE 2 - cont'd)	Net Sample Wt.(gms)	Sample Numbers
(Loose Rocks, cont'd)		
Breccia, tough Basalt, coherent Basalt, coherent	1.81 2.70 3.13	10030 10031 10032
TOTAL CONTINGENCY SAMPL	.E 1015.29	
TOTAL MISSION	21836.086	

W.

Ç

·

Service State

ŀ.

, **•**.

PROCESSING LABORATORIES

VACUUM LABORATORY (F-201)

Figures 10 and 11 show detailed views of the vacuum system used in processing the samples returned in ALSRC #1004, the Documented Sample Container (see Table 2). The system was used for sample photography, microscopic examination, sample weight determinations (beam balance) and gas analysis. The cabinet was kept under hard $(0.133 \text{ mN/m}^2 \text{ or } 10^{-6} \text{ torr})$ vacuum.

Upon entering the atmospheric sterilization cabinets, the ALSRC was subjected to a nitrogen purge, then washed twice in a peracetic acid solution and rinsed twice with deionized water. This was repeated before the container was dried with hot nitrogen. This procedure was repeated for items leaving the system.

Upon removal from the ALSRC container, samples were weighed, brushed off, photographed, placed in vacuum containers and stored in the sample carousel. The carousel was kept closed off from the main chamber, to prevent contamination of all samples during a possible glove rupture. The sample carousel could be detached from the glove chamber, and was intended to be kept under its own vacuum indefinitely.

During the processing of the samples, a leak developed in one of the gloves causing the interstitial glove to go to atmospheric pressure. However, the pressure inside F-201 was believed not to have risen above 2 cm. of mercury. Samples in F-201 at the time were 10017, 10018, 10019, and 10020.

BIOLOGICAL PREPARATION LABORATORY (BIO-PREP)

The Bio-Prep Lab consisted of several glove cabinets, connected together and filled with nitrogen (Fig. 12).

The Bio-Prep Lab was not originally going to be used to process samples other than for biological experiments, but due to the glove rupture in F-201, the samples contained in ALSRC 1003, the Bulk Sample Container, were processed in the Bio-Prep Lab.

PHYSICAL CHEMICAL TESTING LABORATORY (PCTL)

PCTL was used for the petrographic study and chemical analyses of small subsamples. It consisted of six nitrogen atmosphere processing cabinets that housed an X-ray diffractometer, X-ray fluorescence analysis unit, an optical ommision spectrograph, and three petrographic microscopes. There was little control over extraneous materials, since only small samples were handled in this cabinet system and materials such as refractive index oils were kept inside the cabinets.

di

1 7 %

24

ŧ.

At first, sample splits removed from rocks in the F-201 and Bio-Prep Labs, were examined and analyzed in PCTL. Later in the mission processing, the Contingency Sample was transferred to PCTL for initial photography and description. Early principal investigator allocations were made in PCTL.

SAMPLE PACKAGING LABORATORY (SPL)

The Sample Packaging Laboratory was set up during Apollo 11 to process samples for distribution to Principal Investigators after the preliminary examination work was completed.

All chipping and other rock splitting operations (except sawing) were performed in nitrogen processing cabinets similar to the present SSPL. Rock sawing was accomplished on a wiresaw in open air. During sawing operations, samples were handled by stainless steel tongs, teflon overgloves, and bare hands*

SAMPLE STORAGE AND PREPARATION LABORATORY (SSPL)

SSPL is the present sample processing laboratory. All samples processed in this lab are done so in a nitrogen atmosphere. Any sample placed in storage or sent to a principal investigator must have three levels of protection. This usually constitutes a hard container, and two teflon bags, all three sealed in nitrogen.

Rock sawing is presently accomplished using a cleaned, nitrogen atmosphere bandsaw as opposed to an open-air wiresaw. This laboratory has been used to prepare all pristine Apollo II samples subsequent to the initial mission processing.

RETURNED SAMPLE PROCESSING LABORATORY (RSPL)

RSPL is set up to process samples that have been returned by principal investigators. Most samples are examined and repackaged in air on a laminar flow bench. All samples must have three levels of protection before storage.

Some samples in RSPL are processed in nitrogen glove cabinets. These are usually returned display samples, which are candidates for transfer to SSPL pristine storage.

THIN SECTION LABORATORY (TSL)

For Apollo 11 many of the thin sections were produced in the laboratories of principal investigators. The curator's office presently has facilities *Personal communication with J.E. Townsend

26

for producing thin sections for both the curator's library, and for principal investigators upon request.

Information concerning procedures and materials used in the Thin Section Laboratory may be obtained from the Curator.

GEOLOGIC SETTING (from LSPET, 1969)

Apollo 11 landed approximately 20 kilometers south-southwest of the crater Sabine D in the southwestern part of Mare Tranquillitatis. The landing site is 41.5 kilometers north-northeast of the eastern promontory of the Kant Plateau, the nearest highland region. Apollo 11 landed approximately 25 kilometers south-southeast of the Surveyor V Spacecraft landing site and 68 kilometers southwest of the crater formed by the Ranger VIII impact.

The southern part of Mare Tranquillitatis is crossed by relatively faint north-northwest trending rays, and prominent secondary craters associated with the crater Theophilus, 420 kilometers southeast of the landing site. About 15 kilometers west of the landing site is a fairly prominent north-northeast trending ray. The crater with which this ray is associated is not definitely known, but it may be Alfraganus, 160 kilometers to the southwest, or Tycho, about 1500 kilometers to the southwest. Neither the north-northeast nor any of the north-northwest trending rays cross the landing site. They are sufficiently close, however, that it is possible that some material from Theophilus, Alfraganus, or Tycho occurs in the vicinity of the lunar module. Other distant craters, especially the crater Moltke which lies 40 kilometers to the southeast, may also be the source of fragments lying near the lunar module. Some potential distant sources of fragments are in the highlands and some in the maria.

A hill of terra material protrudes above the mare surface 52 kilometers east-southeast of the landing site. This suggests that the mare material is very thin in this region, perhaps no more than a few hundred meters thick. Craters more than a kilometer across, such as Sabine D and Sabine E, may have been excavated partly in pre-mare rocks. Pre-mare rock fragments ejected from these craters may occur in the vicinity of the lunar module.

The major topographic features in the landing area are large craters a few hundred meters across, four of which are broad subdued features and the fifth is West Crater, located 400 meters east of the landing point. West Crater is a sharp-rimmed, rayed crater about 180 meters in diameter and 30 meters deep with a blocky-ejecta apron extending almost symetrically outward to a distance of about 250 meters. Rays of blocky ejecta extend further west, probably past the landing site. Near the lunar module, the surface is pock-marked by numerous small craters and strewn with fragmental debris, part of which may have been derived from West Crater. A boulder field north of the lunar module (described by the crew and shown in photographs taken by the crew) is probably part of a blocky ray.

All of the craters in the immediate vicinity of the lunar module have rims and floors of relatively fine-grained material and appear to be excavated entirely in the regolith. A pile of blocks and coarse rubble forms a peak on the floor of the 33-meter crater east of the lunar module but the walls and rim of this crater have the same texture as the regolith elsewhere. West Crater is about 30 meters deep and has a coarse blocky rim.

Among the smaller craters, both sharp raised-rim craters and relatively subdued craters are common. They range in size from a few centimeters to 20 meters. A slightly subdued, raised-rim crater (Armstrong's 70- to 80- foot crater) 33 meters in diameter and 4 meters deep occurs about 60 meters east of the lunar module, and a double crater (Armstrong's doublet), about 12 meters long and 6 meters wide, lies 10 meters southwest of the lunar module at 260° azimuth.

The walls and floors of most of the craters are smooth and uninterrupted by either outcrops or conspicuous stratification. There are rocks present in the 33-meter crater that are larger than any of those seen on the surface in the vicinity of the lunar module. With this exception, there is no apparent correlation between the location of blocks and the smaller craters near the lunar module.

The surface of the mare near the landing site is unusually rough. Television pictures show a greater abundance of coarse fragmental debris than at any of the four Surveyor landing sites on the maria except that of Surveyor I. It is likely that the observed fragments and the samples returned to earth have been derived from varying depths beneath the original mare surface and have had widely different histories of exposure on the lunar surface.

The lunar module footpads penetrated a maximum of 7 to 8 centimeters. The astronaut's boots left prints generally from 3 millimeters to 2 to 3 centimeters deep. As the astronauts walked, they noted that their boot tread was preserved in their footprints, and that angles of 70 degrees were main-

28

· · · · 1

•

tained in the print walls. The surface, where disturbed by walking, tended to break into slabs, cracking out as far as 12 to 15 centimeters from the edge of footprints.

The regolith is weak and relatively easily trenched to depths of several centimeters. Surface material was easily dislodged by kicking. Before the lunar module landed, at an altitude somewhat less than 30 meters, dust was observed moving away from the center of the descent-propulsion-system blast.

When the flagpole and drive tubes were pressed into the surface, they penetrated with ease to 10 to 12 centimeters. However, at that depth the regolith was not strong enough to hold the core tubes upright. A hammer was needed to drive them to depths of 15 to 20 centimeters.* At places, rocks were encountered by the scoop and by the various tubes and rods pressed into the subsurface.

Coarse fragments in the vicinity of the lunar module exhibited a wide variety of shapes and were embedded in varying degrees in the fine mat of the regolith (Armstrong, comment). Armstrong took time during the television panorama to point out several rocks west of the television camera, one of which was tabular and standing on edge, protruding 30 centimeters above the surface. During the postmission debriefing, Armstrong described another rock as resembling a distributor cap. When dislodged, the cap was found to be the exposed top of a much larger rock, the buried part of which was much larger and more angular in form. Strewn fields of angular blocks, many more than one-half meter long occur north and west of the lunar module. In general, the rocks collected tended to be rounded on top and flat or angular on the bottom.

The strength of rock fragments ranged from friable to hard, and was difficult for the crew in some cases to distinguish aggregates or clods of fine debris from rocks. Armstrong suggested that West Crater was the source for these boulder fields and may be the source for any of the rocks in the immediate vicinity of the lunar module.

SAMPLE SURFACE DOCUMENTATION

An attempt was made by PET members to locate and document Apollo 11 samples in EVA photographs. However, because of the time constraints placed on the astronauts, very few photographs were taken of samples as they lay on the lunar surface. Subsequently, tentative identification of some samples were made from photographs taken from the LEM viewports.

*It was subsequently determined that the design of the core bit led to the jamming of material in the core. The bits were subsequently redesigned for greater penetration. The Apollo 11 preliminary science report (NASA SP-214) documents what data and photographs were available, but offers little concrete proof of documented samples as they lay on the lunar surface.

PETROLOGY

A total of 48 rocks were returned along with fines material in the three sample return containers. Pieces smaller than 10mm are classified as fines.

SURFACE FEATURES

And the second second

いたい いっかい いたい いたい いんちん

うんち うちのちのかち ちょう

all with

5

ういかがない ちょうないない うちょう

S. 15.0.2.2.

a the second second

C

During preliminary examination one surface feature of the rocks that was most noticeable was the rounding of one or more edges and corners. Many of the rocks had one flat surface, with the remaining sides rounded. This rounding appeared to be more pronounced in the softer, more friable breccias than in the crystalline rocks (LSPET, 1969).

Two other types of surface features occur on the Apollo 11 rocks. These are glass-lined pits and glassy spatters not necessarily associated with pits.

Most glass-lined pits are less than one millimeter in diameter, but they have been found as large as 4mm (10063,1). Impacts that would produce the larger pits usually break the rocks apart and the pits are not preserved. The rocks generally show pitting in the rounded surfaces but not on the flat sides. The glass lining the pits is bright-reflecting and commonly uneven and botryoidal.

The pits are generally surrounded by whitish haloes which are at least partially attributable to intense microfracturing of minerals. This whitening does not appear to penetrate more than 1mm below the surface of the rock (LSPET, 1969) and tends to give the surfaces of the crystalline rocks a lighter color than the interiors.

In addition to glassy pits, thin glass crusts occur that appear to be the result of spattering. These crusts are generally less than lmm thick. Taken together, these features make up what is known as patina.

BASALTS

All of the basalts returned are volcanic in origin and probably represent surface or near surface lavas. The term "volcanic" carries no connotation regarding impact generated or triggered volcanism versus volcanism in the common terrestrial sense.

The rocks contain pyrogenic mineral assemblages and gas cavities suggesting that they crystallized from melts. The major minerals can be assigned

to known rock-forming mineral groups. The unique chemistry of the magmas has resulted in mineral ratios different from known terrestrial volcanic liquids, yet not significantly different (at least in the major elements) from some terrestrial cumulates (LSPET, 1969).

the spectra property we then the second states of the

The Preliminary Examination Team (LSPET, 1969) divided the crystalline rocks into fine-grained (Type A) and coarse-grained (Type B). Grain sizes of Type A rocks (fine-grained) range from 0.05 to 0.2 mm. A typical mode (10017) is pyroxene, 44%; plagioclase, 24%; opaques (mainly ilmenite), 24%; mesostasis, 8%. Grain sizes of Type B rocks (coarse-grained) vary from 0.2 to 0.3 mm. A typical mode (10044) is pyroxene, 47%; plagioclase, 34%; opaques, 12%; cristobalite, 3%; and, mesostasis, 4%.

James and Jackson (1970) and James and Wright (1972) have classified the crystalline rocks as ilmenite basalts following the rather loose definition of basalt by Holmes (1920). They divided these further, on the basis of texture, into three sub-groups. These are, 1) intersertal; 2) fine-grained ophitic; and, 3) medium-grained ophitic.

Basically, the intersertal basalts correspond to some of the LSPET (1969) fine-grained (Type A) rocks. The fine-grained ophitic basalts correspond to the remainder of the fine-grained rocks. The medium-grained ophitic basalts correspond to the coarse-grained (Type B) rocks.

Tera et al. (1970) and others have classified the crystalline rocks chemically on the basis of potassium content. Generally, the high-k (>0.20%K) rocks have intersertal textures and the low-k (<0.20%K) have ophitic textures.

The Apollo 11 Re-examination Team classified the crystalline rocks according to the following scheme: All crystalline rocks observed were called basalts. When the accessory materials olivine or cristobalite were found in the samples, respective modifiers were prefixed (i.e. cristobalite basalt, olivine basalt). If neither was observed, the presence of abundant vesicles was noted (vesicular basalt). If a particular sample was non-vesicular, the grain size (fine or medium) was used as a modifier.

A summary of the Apollo 11 crystalline rock classifications is shown in Table 3.

BRECCIAS

The breccia samples returned by Apollo 11 are mixtures of fragments, various kinds of rocks, minerals, and glass, and are grey to dark grey in color. Most breccias are fine-grained, with fragments smaller than 1 cm in diameter.

TABLE 3

٢.

1214 J

•

``

•

1

and the second

ł,

Apollo 11 Basalt Classification

Sample	Re-Examination Team	scn (1970)	PET	K-Content*
	Hand Speciman	Thin Section		
0003	Cristobalite Basalt	Med.Grained Ophitic Basalt	в	Low-K
2100	Vesicular Basalt	Intersertal Basalt	A	High-K
0020	Ves.Olivine Basalt	Fine Grained Ophitic Basalt	A	Low-K
10022	Vesicular Basalt	Intersertal Basalt	A	High-K
10024	Vesicular Basalt	Intersertal Basalt	A	High-K
10029	Med.Grained Basalt	Med.Grained Ophitic Basalt	8	
10031	Vesicular Basalt		A	
10032	Fine Grained Basalt		4	Low-K
10044	Cristobalite Basalt	Med.Grained Ophitic Basalt	8	Low-K
10045	Olivine Basalt	Fine Grained Ophitic Basalt	A	Low-K
10047	Cristobalite Basalt	Med.Grained Ophitic Basalt	മ	Low-K
10049	Fine Grained Basalt	Interser al Basalt	4	High-K
10050	Cristobalite Basalt	Med.Grained Ophitic Basalt	в	Low-K
10057	Vesicular Basalt	Intersertal Basalt	A	High-K
10058	Cristobalite Basalt	Med.Grained Ophitic Basalt	മ	Low-K
10062	Olivine Basalt	Fine Grained Ophitic Basalt	A	Low-K
10069	Vesicular Basalt	Intersertal Basalt	A	High-K
10071	Fine Grained Basalt	Intersertal Basalt	A	High-K
10072	Vesicular Basalt	Intersertal Basalt	A	High-K
10092	Olivine Basalt		1]

*After Tera et.al., (1970) and others

ORIGINAL PAGE IS OF POOR QUALITY The term "matrix" refers to material that is too fine-grained to be resolved by whatever optical means are employed, be it a petrographic microscope, a binocular microscope or the unaided eve — Clasts are those fragments that

binocular microscope or the unaided eye. Clasts are those fragments that can be resolved from the matrix through differences in color, texture or composition. The types and abundances of clasts found in the Apollo 11 breccias are summarized in Table 4. It can be seen from Table 4 that many clast types (white, brown, salt & pepper, brown & white) are dissimilar to the crystalline rocks collected at the Apollo 11 site and probably represent ejecta from distant impact sides. **

The matrix consists largely of glass particles and mineral fragments. Much of the glass has undergone some devitrification, which gives the matrix an overall turbid appearance in thin section.

Because the chemical composition of the soils and breccias are similar (but not identical) it was assumed by LSPET (1969) that the breccias were some sort of lithified soil, and lithification by shock was put forward as a mechanism. This mechanism was favored by King et al. (1970), Mason et al. (1970), Quaide and Bunch (1970), Shoemaker et al. (1970), Wood et al. (1970). Other investigations have proposed lithification by thermal welding [Smith et al. (1970); Duke et al. (1970); McKay et al. (1970); and McKay and Morrison (1971)]. A third hypothesis proposed by Chao et al. (1971) suggests that breccias are formed by low level shock compaction of soil located some distance from the point of impact and near the base of the regolith.

SOILS

Soil samples were obtained from the Contingency, Documented and Bulk Samples, all of which were taken within 30m of the lunar module (Fig. 2).

The Contingency Samples soils were collected along with the rocks using the special Contingency Sampler (Fig. 9), in which rocks and soils were collected simultaneously by scooping. Except for the drive tube samples, the only soil present in the Documented Sample was what adhered to the rocks. This soil was admixed with material produced by the crumbling and spalling of the rocks. The soils present in the Bulk Sample were collected by scooping into the regolith using the large scoop (Fig. 7).

During Preliminary Examination, fines samples from the Contingency, Documented, Bulk and Core samples were sieved and the results plotted as cumulative-weight percent curve (Fig. 14).

Since apparently a scoop was not used in collection of the documented samples, the fines (10011) with the rocks probably consist of a mixture of soil that adhered to the rocks with material abraided from the rocks in transit, especially from the friable breccias. On the other hand,

•

t.

34

1

4

the bulk and contingency fines were collected by scooping and probably contain only a small proportion of rock material abraided in transit.

Soils from Apollo 11 contain the following components, given in order of abundance:

- Igneous rock and mineral fragments. These occur as black to grey basalt fragments with densities of greater than 3.32 gm/cm² (Heiken, 1975). Mineralogically and to ture ally these fragments are similar to the basalts collected at the Apollo 11 landing site (LSPET, 1969). Most of the mineral fragments found in the soils are comminution products of the basalts: ilmenite, pyroxene, plagioclase, olivine and chrome spinel (Heiken, 1975). Small amounts of cristobalite and alkali feldspar have also been reported (Agrell et al., 1970; VonEngelhardt et al., 1970.)
- 2) Breccia fragments. These occur as tabular to equant, subrounded to subangular fragments with densities of 2.9-3.1 gm/cm³ (Heiken, 1975). The breccia fragments are composed of basalt, glass, mineral and previous breccia fragments (LSPET, 1969). It has been proposed by Agrell et al. (1970), Chao et al. (1971), and others that the breccia fragments are a result of soil lithification, but there is not a direct correspondence of soil modes to breccia modes (Duke et al., 1970). It has been postulated by Heiken (1975) that the breccias are most probably a mixture of freshly comminuted rock and soil from impact craters.
- 3) Glass spheres. 1-mm to 3-mm-diameter glass spheres make up a minor (1-5%) but thoroughly studied soil constituent. Most are spherical, but some occur in ovoid to dumbbell shapes. Various colors are exhibited with a predominance of pale amber (2.2-2.6 gm/cm³), dark amber (2.7-3.2 gm/cm³), red brown (3.0-3.32 gm/cm³), and pale yellow, pale green or colorless (2.2-2.6 gm/cm³) spheres (Duke et al., 1970; Agrell et al., 1970). Many spheres are devitrified; some of the larger spheres have the larger vesicles. Many spheres exhibit flare patterns. Some sphere surfaces are coated with imbedded particulate matter or spattered droplets of glass, Fe, Fe-Ni and troilite (McKay et al., 1970; Agrell et al., 1970) and come surfaces show evidence of micro-meteorite impacts (zap pits).
- 4) <u>Microanorthositic fragments</u>. Small, angular fragments of plagioclase (An₉₅) with small ilmenite and rutile inclusions are described by Agrell et al., (1970) and Wood et al., (1970).

The origin for these fragments may be the lunar highlands or mare regions with anorthite-rich basalt flows (Heiken, 19/5).

5) <u>Meteoritic material</u>. Only a trace of identifiable meteoritic material has been identified in the Apollo 11 soils. Rare metal grains, some with microcratered surfaces, are present. They are composed of some single-crystal kamacite and taenite and a hexahedrite with kamacite and zoned taenite (Agrell et.al., 1970; Guldstein et al., 1970).

There is agreement among investigators that the Apollo 11 soils were formed by meteorite comminution of fine-grained basalt and coherent breccia. Agglutinate grains and most glassy particles were formed by melting of rock and soil by impact processes. It is possible that some of the glass spheres have a pyroclastic origin, but they are very minor soil constituents (Heiken, 1975).

CORES (from LSPET, 1969)

35.0

Two core samples, each 2 centimeters in diameter, were returned: core tube 1 (10005) contained 10 centimeters, and core tube 2 (10004) contained 13.5 centimeters of material. The cores are composed predominantly of particles with diameters from 1 millimeter to 30 micrometers, with admixed angular rock fragments, crystal fragments, glass spherules, and aggregates of glass and lithic fragments in the coarser-sized fraction. Both the material in the tubes and the fines in general are medium to dark grey with a tinge of brown. When prodded with a small spatula, the material disintegrates particle by particle or forms extremely fragile ephemeral units of subangular blocky shapes.

Neither core sample shows obvious grain-size stratification. The core from tube 2 has a slightly lighter zone about 6 centimeters from the top surface which is 2 to 5 millimeters thick with a sharp upper boundary and a gradational lower boundary. This lighter zone is not megascopicall' different in grain size or texture from the dark material.

MINERALOGY

2.

<u>Clinopyroxene</u> - Clinopyroxene occurs in all of the rocks examined. The most widespread variety is cinnamon brown to resin brown in hand specimens and pale reddish brown to pinkish brown to nearly colorless in thin section. Little or no pleochroism is associated with the crystals. The habit of clinopyroxene in the crystalline rocks is generally stubby prismatic or anhedral, with some sheaf-like intergrowths with feldspar also being present. Some crystals are strongly zoned from the center outward as indicated in increasing positive optic angle from near 0° to near 50° together with increasing refractive index and intensity of color. 「「「「「「「」」」」、「「」」、「」」、「」」、「」、」、「」、」、」、

;

ŕĄ

;

Rare pale yellow crystals of pyroxferrite occur as overgrowths and interstitial crystals to the pyroxene crystals, and in cavities in several of the more coarsely crystalline rocks.

<u>Olivine</u> - Olivine from Fo_{65} to Fo_{75} is a subordinate phenocrysitic constituent of several of the finer crystalline rocks, and occurs sporadically as crystal fragments in the breccias and dust. It is clear pale greenish yellow in the crystalline rocks but may range in color from greenish yellow through honey yellow and orange yellow in the breccias and dust. Much of the olivine occurs as anhedral cores in pyroxene crystals.

<u>Plagioclase</u> - Plagioclase is likewise widespread but generally subordinate in amounts to the ferromagnesian minerals. It is calcic, mostly between An_{70} and An_{90} , with some compositional zoning in some rocks. The habit is commonly tabular and plate-shaped, with lamellar twinning parallel and transverse to the plates. Interstitial, anhedral, poorly twinned crystals also occur in many of the basaltic rocks.

<u>Ilmenite</u> - Ilmenite is present in relatively large amounts in the crystalline rocks. It occurs as lathes and well-formed skeletal crystals. Ilmenite is also common in the breccias and soil as a constituent of the lithic fragments and as isolated crystal fragments. Many of the larger crystals show exsolution of chromite, rutile and many have armalcolite cores or inclusions.

<u>Cristobalite</u> - Cristobalite is present as thin clear coatings, and occurs in cavities and fills interstices between plagioclase plates in some of the coarser crystalline rocks. Microscopically it is characterized by a crackly surface and complex twinning.

<u>Troilite</u> - Troilite occurs in small amounts as rounded masses in interstices between plagioclase, clinopyroxene, or ilmenite of some coarser crystalline rocks. Most masses contain small blebs of native iron.

Native iron - Native iron occurs as scattered blebs up to 10 microns diameter within the troilite masses. Occasional isolated masses of iron are also present.

<u>Other minerals</u> - Several other accessory minerals occur in crystalline rocks which include chromian ulvospinel, ulvospinel, apatite, K-feldspar, whitlockite, tranguillityite, zirconolite, and baddeleyite.

For further description and reference, see Frondel, J.W. <u>Lunar Mineralogy</u>. New York, (1975) 323 pp.

ORIGINAL PAGE 15 OF POOR QUALITY

Apollo 11 Sample Degradation History

1

Į

• ;

1 1

There are two basic areas of sample degradation to be considered in Apollo 11: 1) Sample contamination during collection and transportation of samples back to earth; and, 2) Laboratory contamination during original processing.

Tools used on the lunar surface for sample collection (hammer, tongs, etc.) were stored in two different configurations in the Modularized Equipment Storage Assembly (MESA). Core tubes, solar wind experiment, and teflon storage and collection bags, were cleaned to high standards (Apollo 11, 12 & 13 Organic Contamination Monitoring History) MSC-04350 and vacuum sealed in the ALSRC containers at the Lunar Receiving Laboratory. All other large tools (scoops, tongs, etc.) were cleaned to spacecraft cleaning levels. These levels were reported as being equivalent to laboratory cleaning levels used on LRL tools (personal conversation with W.A. Parkan). However, all tools not sealed in the ALSRC were hand checked in a clean room environment, prior to loading into the MESA. At this time it is possible that the hand tools could have been handled by someone without gloves.

On the lunar surface, the astronauts probably handled a few of the larger samples without using any tools. EVA suits worn by Armstrong and Aldrin were cleaned only to a visual cleaning requirement. This meant that they were probably the "dirtiest" item to come in contact with any samples at that point in the mission. Spacesuit out-gassing may have been another minor contributor to surface contamination. Lunar surface contamination from exhaust emissions of the lunar module may have occurred during landing.

Since all rocks and soils were collected in a small radius around the LEM, it is possible that residue from the descent engine contaminated certain surface samples. This possibility has been studied and documented, (Murphy et al., 1970). However, no direct conclusions were reached.

In the LRL, cabinets in which lunar samples were to be processed were cleaned with alcohol and flushed with freon. This was repeated several times to ensure no biological contamination of the samples. During the quarantine period, containers or tools transferred into any cabinet system in the LRL were flushed with peracitic acid and were put through a dry heat sterilization process. The amount of heating was not any different from the daytime temperatures on the moon. No cases were recorded of peracitic acid leaking through a container onto a sample. 1 -

Ø

The samples came in contact with teflon, aluminum and stainless steel, and were exposed to indium (used for sealing containers) and molybdenum disulfide (used as a lubricant). In addition to this, samples processed in PCTL were exposed to open Mettler balances, and immersion oils used in petrographic work. Samples in SPL were sawed in open air.

Many samples repackaged during re-examination had been packaged in Bel-Art products, (polyethylene and polystyrene) which were labeled with gummed labels, and written on with ball point pens. These products, if exposed to samples, could have added greatly to sample contamination.

In the present SSPL, samples only come in contact with stainless steel, teflon and aluminum. Xylan is used as a lubricant in the place of molybdenum disulfide.

During this re-examination, samples were re-packaged and old packaging was noted in the data packs.

All tools which touch samples, are cleaned to a CP-7* level. Most containers which samples are stored in, are also cleaned to a CP-7* level. All processing cabinets used for lunar samples, are cleaned to a CP-1* level.

SAMPLE RE-EXAMINATION

BINOCULAR DESCRIPTION PROCEDURE

1

In general, the largest remaining subsample was selected for the description of the lithology. Special emphasis was placed on the mineralic and clast components of the rock.

Breccia clasts were measured, classified and described (see Table 4) and abundances of the various clast types were visually estimated. The identification, abundances and grain sizes of the basalt components were coordinated with the thin section descriptions. The orientations used in the photographs and in the binocular descriptions are arbitrary and do not reflect the orientation on the moon.

*Contamination Control Procedures (MSC-03243)

For the most part, information contained in the binocular descriptions was generated during re-examination. However, sample descriptions generated during PET were reviewed and any information that conflicted with, or could not be observed during re-examination was annotated by placing a semi-colon (;) between the re-examined descriptive and the PET descriptive. For example: If the part of the rock restudied had no fractures, but a note in the Preliminary Examination stated that fractures were present parallel to an elongated face, it would be presented in the following manner in the binocular descriptions:

1.3-

· • • •

2

đ. -

Ð

. •.

Fracturing - Absent; Few fractures parallel to elongated face (PET). All terms used in the binocular descriptions are listed below:

CHARACTERISTIC	TERM	DEFINITION AND COMMENT
Cavities	vugs vesicles	Not to include merely surface related features such as clast molds.
	crystals	projecting or lining materials
Coherence		
Intergranular:	very friable	grain-to-grain coherence crumbles under manual pressure
	friable	crumbles under manual pressure
	coherent	must be struck to disaggregate grains
	tough	breaks across grains rather than around them
Fracturing:		terms combined as needed for a full description
	absent few numerous	
	non-penetrative	
	penetrative	visible on opposing sides
Component		igneous rocks, breccia and fines as applicable
	mafic silicate	all colored translucent minerals; mainly pyroxene and olivines
	plagioclase	light grey and white (if shocked)

ORIGINAL PAGE IS OF POOR QUALITY 39

5 m 1 mar - 4

. .

•

1

ł

÷

: •

ł

1

1 1

•

,

,

CHARACTERISTIC	TERM	DEFINITION AND COMMENT	
	ilmenite	black opaque submetallic	
	opaque	used when opaques other than ilmenite are present but quantitatively inseparable	٠
	pyroxene	amber to honey brown to dark brown	
	mafic	aphanitic material (under binocular microscope) <0.05 mm; sometimes referred to as mesostasis	•
	clast	see clast descriptions for details of various clast lithologies	
	glass	dark green to black noncrystalline silicate material	
Fabric	isotropic anisotropic laminated equigranular inequigranular porphyritic seriate	to include texture	
	microbreccia	<lmm average="" clast="" size<="" td=""><td></td></lmm>	
	fine breccia	l-5mm average clast size	
	breccia	>5mm average clast size	
Surface	irregular granulated	specific faces may be referenced by the laboratory orientation cube face designation	
	smooth hackly	generally a freshly broken surface	•
	•	e.g., glass 30% of E and 10% of T	•
	grooved	for slickenside-like surfaces	
Variability*	.	any difference in any characteristic from one part to another, e.g.,grain size, lithology, mineralogy	•

refers to no major variation between distribution and abundance of clast material or major components.

1

١

ţ

R

t

ł

CHARACTERISTIC

TERM

Zap Pit

none

few many

DEFINITION AND COMMENT

none seen in quick scan <10/cm² >10/cm²

ſ

; ;•

....

.

4

ł

```

ļ

-----

i :

•

•

|                    | α)<br>Grain Shape          | Euhedral to aphanitic                                                                                                                                                                           | <pre>4 Euhedral to subhedral-<br/>(pyroxene, plagioclase)<br/>Elongated platy (ilmen-<br/>ite)</pre>                                                          | Elongated platy (ilmen-<br>ite)<br>Crushed aphan'tic<br>(plagioclase)                                                                   | Euhedral to subhedral                                                           | Euhedral (pyroxene)<br>aphanitic (plagioclase)                | Crushed appearance                                                        | Euhedral to crushed | Aphanıtic       | Relic Clast         |
|--------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|---------------------|-----------------|---------------------|
|                    | Grain<br>Size(mm)          | <.13                                                                                                                                                                                            | .084                                                                                                                                                          | <l2< td=""><td>&lt;.l3</td><td>&lt;.13</td><td>۰.۱</td><td>&lt;.l4</td><td>&lt;.01</td><td>10.&gt;</td></l2<>                           | <.l3                                                                            | <.13                                                          | ۰.۱                                                                       | <.l4                | <.01            | 10.>                |
| LASTS              | Minerals<br>(app) %        | Plagioclase<br>100%                                                                                                                                                                             | Pyroxene 40%<br>Plagioclase<br>40%<br>Ilmenite 10%<br>Mesostasis 10%                                                                                          | Plagioclase<br>75%<br>Ilmenite 25%                                                                                                      | Pyroxene 60%<br>Plagioclase 40%                                                 | Pyroxene 50%<br>Plagioclase 50%                               | Honey Brown<br>Pyroxene 100                                               | 01ivine-100         | Aphanitic glass | Aphanitic           |
| -4- BRECCIA CLASTS | Clast<br>Size<br>Range(mm) | <. lmm-4mm                                                                                                                                                                                      | . 3-40<br>Avg=8                                                                                                                                               | .3-3<br>Avg=2                                                                                                                           | 2-3                                                                             | 2-3                                                           | <1-2                                                                      | <1-1.5              | <1-2            | 2                   |
| Table -            | Abundance(%)               | <1% - 20%                                                                                                                                                                                       | 01-1>                                                                                                                                                         | <1-5                                                                                                                                    | < <b>1-5</b>                                                                    | <1-8                                                          | <1-2                                                                      | 17                  | -               | Ţ                   |
|                    | Examples Found In          | 10009,10018,10019,10021,<br>10023,10025,10026,10027,<br>1^328,10046,10048,10056,<br>10059,10060,10061,10063,<br>10064,10065,10066,10067,<br>10068,10070,10073,10074,<br>10075,10082,10093,10094 | 10018,10019,10023,10023,<br>10026,10022,10030,10048,<br>10056,10060,10061,10063,<br>10064,10065,10066,10067,<br>10068,10070,10073,10075,<br>10082,10093,10094 | 10009,10018,10019,10021,<br>10023,10026,10027,10030,<br>10048,10056,10061,10064,<br>10065,10067,10068,10070,<br>10073,10075,10093,10094 | 10046,10060,10063,10064,<br>10065,10066,10067,10068,<br>10070,10075,10093,10094 | 10028,10030,10060,10061,<br>10065,10068,10074,10082,<br>10093 | 10019,10023,10027,10046,<br>10048,10060,10063,10067,<br>10070,10074,10075 | 10063,10068         | 10064,10067     | 10075               |
|                    | Clast Type                 | White<br>(Fig.15)                                                                                                                                                                               | Basalt<br>(Fig.16)                                                                                                                                            | Salt & Pepper<br>(Fig.l7)                                                                                                               | Grey<br>(Fig.18)                                                                | Grey & White<br>(Fig. B)                                      | Brown                                                                     | Green<br>(Fig20)    | Black           | Lithic<br>(Fig. 21) |

ORIGINAL PAGE IS OF POOR QUALITY

٢. .

1

| ł.        |                                                                           | 43 |
|-----------|---------------------------------------------------------------------------|----|
| •         | Grain Shape<br>Euhedral pyroxene<br>and plagioclase                       |    |
| *         | Grain<br>Size(mm)<br>.49                                                  |    |
|           | Minerals<br>(app) %<br>Honey Brown<br>Pyroxene (50%)<br>Plagioclase (50%) |    |
| C.        | Clast<br>Size<br>2.5x3.5<br>2.5x3.5                                       |    |
|           | Abundance( ۵)<br><ا                                                       |    |
| ۵.<br>انب | Examples Found In<br>10093                                                |    |
| •         | Clast Type<br>Brown & White<br>(Fig.22)                                   |    |

. 4

•

i.



Ţ

44



Fig. 15: White clast from 10060,5. Width of field 7.3 mm (S-76-25890)



Fig. 16: Basalt clast from 10048,0. Width of field 7.3 mm (S-76-25618)

ORIGINAL PAGE IS OF POOR QUALITY

ŧ.

•



1, 1

١

Fig. 17: Salt & Pepper Clast from 10048,0. Width of field 7.3 mm (S-76-25619)



Fig. 18: Grey clast from 10063,1. Width of field 14.8 mm (S-76-26838)



Fig. 19: Grey & White clast from 10063,1. Width of field 7.3 mm (S-76-26839)



Fig. 20: Green clast from 10063,1. Width of field 7.3 mm. (S-76-26837)

ORIGINAL PAGE IS OF POOR QUALITY

46

1.



۰.

Fig. 21: Lithic clast from 10060,5. Width of field 7.3 mm (S-76-25891)



Fig. 22: Brown & White clast from 10093,0. Width of field 7.3 mm (S-76-25991)

### THIN SECTION DESCRIPTION PROCEDURE

Each thin section description and modal analysis appearing in this catalogue is given for a specific section but the summary and comments are based on examination of all available sections. The modal analyses are based on 200-400 point counts, the number depending on the apparent heterogeneity of the sample. The modul analyses reported always represent void-free analyses owing to the variability in the number, size, and distribution of voids.

For the size characterization the maximum dimension of each crystal was used. Identification of the phases was solely by optical properties. No attempts were made to identify the specific pyroxene or plagioclase composition present. No oil immersion microscopy was done and no attempt was made to identify any of the very fine grained materials.

### GENERAL DESCRIPTION OF AN APOLLO 11 BRECCIA IN THIN SECTION

Since the overall characteristics of all the Apollo ll breccias are very similar, a generalized description and definition of terms is given below. For specific samples, only those characteristics that deviate from the general description will be noted.

Apollo 11 breccias are characterized by having a dark to light brown matrix which is rich in slightly to moderately devitrified glass. In most cases the material is very turbid and contains small crystallites, many too small to be resolved.

The following definitions will be used in describing all breccia samples:

Matrix - The matrix of the section is that material in which the glass-rich phases occurs along with small (<0.001mm) crystalline products. No attempts were made to resolve the phases present in the matrix.

<u>Mineral Clasts</u> - Those shards of crystalline material which contain one mineral phase plus or minus exsolution lamallae, zoning, etc. Grains with two or more phases are considered a crystalline lithic clast rather than a mineral clast.

Lithic Clasts - In order to simplify the designation of the various types of lithic clasts possible in any one section, they are divided into two groups. The first group is designated small (<lmm) and are not further defined. The second group is designated large (>lmm) and each has a few remarks to better define the clast components and any other pertinent information. The exact number of the large clasts is given,

whereas only a relative abundance is given for the small clasts.

1

Due to the heterogeneous nature of breccias, one or even several thin sections cannot give precise percentages of phases present. Therefore, in order not to stress unduly the measured values of the phases present in the sections, semi-quantitative values are used. These values are defined below:

| Relative Value | App coximate % of Type Present in Section |
|----------------|-------------------------------------------|
| Very abundant  | >50%                                      |
| Abundant       | 30-50%                                    |
| Moderate       | 20-30%                                    |
| Few            | 10-20%                                    |
| Present        | <10%                                      |

In the majority of the breccias, the matrix forms a more or less continuous array and hosts all other phases present. The matrix is a semiopaque glassrich phase that shows no flow structure but always shows some degree of devitrification. Included in the matrix are numerous rounded and irregular lithic clasts. These clasts are randomly located and isolated from one another. Many breccias have a wide variety of clasts while others have a very limited representation. Interdispersed with the lithic clasts are mineral clasts. The major phase represented is usually clinopyroxene. It occurs as irregular to blocky shards which usually show some degree of shock deformation. The crystals, for the most part, show only slight to no evidence of reaction with the enclosing matrix. Plagioclase and ilmenite also occur in most sections, but usually to a lesser degree. The third major phase is the glass shards which occur as spherical to irregular masses. Many contain bubbles, flow lines and fractures. The color usually is some shade of yellow or orange, but colorless, white and greenish-brown masses also occur. Some glass coatings on vesicle walls and near the outer surfaces also occur.

GENERAL DESCRIPTION OF AN APOLLO 11 BASALT IN THIN SECTION

The designations and classifications of the basalts follow the following scheme. Five major types of basalts are recognized. A generalized description is given in the table below along with the samples which fall under each of the groups:

| TYPE                                             | GENERAL DESCRIPTION                                                                                                                   | SAMPLES                          |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Intersertal-<br>one population<br>of plagioclase | Intergrown network of pyroxene and<br>ilmenite with plagioclase, mesostasis<br>interstitial to network. High mesos-<br>tasis content. | 10017<br>10049<br>10057<br>10069 |

ORIGINAL PAGE IS OF POOR QUALITY

### (Basalt description - cont'd)

| TYPE                                               | GENERAL DESCRIPTION                                                                                                                                                                                         | SAMPLES                                   |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Intersertal -<br>Two populations<br>of plagioclase | Network of pyroxene phenocrysts<br>intergrown with large anhedral ilmenite.<br>Interstially to the network are tablets<br>of plagioclase, anhedral plagioclase,<br>and mesostasis. High mesostasis content. | 10022<br>10024<br>10032<br>10071<br>10072 |
| Subophitic                                         | Plagioclase laths are interstitial to<br>and enclosed in the pyroxene host.                                                                                                                                 | 10029<br>10044<br>10047<br>10050<br>10058 |
| Ophitic                                            | Plagioclase laths occur enclosed in<br>the pyroxene host with minor plagioclase<br>as interstitial void fillings.                                                                                           | 10020<br>10045<br>10062                   |
| Intermediate<br>Ophitic/Subophitic                 | In part typical ophitic plus grading to subophitic.                                                                                                                                                         | 10003                                     |

Grain size and minor mineralogy can vary within each type, but the major characteristics remain the same. No attempts were made to determine any of the phases in the mesostasis.

### SAMPLE HISTORIES

A summary of the processing, laboratories and operation, special handling and any unusual contaminating conditions is presented for each generic sample. In addition, an abbreviated sequence of laboratory destinations is presented for each pristine subsample. This indicates which laboratory and hence type of potential contaminants could be associated with the existing sample. More detailed information may be found in the Curator's files.

### CHEMICAL DATA

These values were obtained by using all valid data available in the lunar data base.\* The data base was checked for accuracy and a number of errors were eliminated. Before averaging, redundant and suspect values were removed according to the general rules:

- 1. Preliminary examination data were removed.
- 2. Runs at temperatures other than ambient were removed.

3. Results after acid leaching were removed.

f

ų,

5

....

£.

ŝ

and he was the statistic of the state of the

.:

(

4. Analyses of individual mineral fractions or phenocrysts were removed.

51

ţ

Ż

- 5. Data for samples listed by the author as probably contaminated were removed.
- 6. Where the same data was repeated by the same author or other authors only the most recent value was retained.
- 7. Possible decimal errors were checked and corrected if sufficient information was available to make a valid change.
- 8. Element to oxide calculations were checked and corrected where this type of an error was indicated.

Unusual values that were not removed by at least one of these rules were kept. In some cases the range of two values was large, but there was no obvious reason for eliminating either of the values.

\*Compiled by and available from the Curator's Office. The data base contains published chemical, isotopic, modal, and age data for all lunar samples.

### 10001

• • 1

51

•**1** 

1. Marine Mar

1

\$

١.

<u>ب</u> ۰

Generic 10001 was assigned to the Documented Sample ALSRC(#1004). Most of the material in the Documented Sample consisted of rocks that were assigned new generic numbers (see Table 1).

The fines were generated as a result of the crumbling and spalling of the rocks. 10001,8 was sieved during re-examination for coarse fines material (larger than 4 mm) and these samples were described.

HISTORY AND PRESENT STATUS OF SAMPLES - 10-4-76

10001 was processed in the Vac Lab. It was later re-examined and sieved in SSPL. One rock was separated from 10001 during re-examination and was assigned the new generic number 10094.

PRISTINE SAMPLES (All samples VAC - SSPL)

| 6  | 0.45  | gm | >4 mm chips and fines.                                                                                   |
|----|-------|----|----------------------------------------------------------------------------------------------------------|
| 7  | 1.58  | gm | >4 mm chips and fines.                                                                                   |
| 3  | 45.22 | gm | >4 mm chips and fines.                                                                                   |
| 12 | 6.68  | gm | 3-4 mm chips split from 10C01,8 during sieving.<br>No pits or patina.                                    |
| 14 | 10.47 | gm | Fragment. No pits or patina. Large salt and pepper and basalt clasts.                                    |
| 15 | 2.14  | gm | Breccia chip with same description as ,14.                                                               |
| 16 | 0.30  | gm | Breccia chip with same description as ,14.                                                               |
| 18 | 10.04 | gm | Vesicular basalt piece. Few pits on 2 sur-<br>faces. Typical AP-11 basalt components and<br>percentages. |
| 19 | 6.83  | gm | Breccia chip. No pits or patina. Large<br>amount of brown clast material.                                |
| 20 | 6.20  | gm | Breccia chip. Many pits on 3 surfaces.<br>Small clast population.                                        |
| 21 | 3.29  | gm | Breccia chip. Many pits on 2 surfaces.<br>Clasts include white, brown and basalt.                        |

ORIGINAL PAGE

OF POUR QUALITY

The second se

The solution wells a

Le LA marte

4.2 - 14

ſ

۰.,

ž

Ľ

10001

| 22 | 4.14 gm | Breccia chip. Few pits on 1 surface. No<br>patina. Small clast population.               |
|----|---------|------------------------------------------------------------------------------------------|
| 23 | 4.46 gm | Breccia chip. No pits or patina. Friable with small percent of white and basalt clasts.  |
| 24 | 1.04 gm | Breccia chip. Few pits on one surface. One<br>large basalt clast present.                |
| 25 | 1.66 gm | Breccia chip. No pits or patina. Hackly<br>surface with small amount of vesicular glass. |
| 26 | 4.99 gm | 17 Breccia chips. 4-10 mm. No pits or<br>patina.<br>Large clast population.              |
| 27 | 1.66 gm | 4 Breccia chips. 4-10 mm. No pits or patina.<br>Large clast population.                  |
|    |         |                                                                                          |

\*\*\*\*\*

NO RETURNED SAMPLES >5 gm .

NO CHEMICAL ANALYSES OR AGE DATES.

53

### 10002

The the Carter Strate to the second states

10002 was the number assigned to the rocks and soils in the Bulk Sample (ALSRC #1003, 14897.4 gm). The rocks were removed from the container and given new generic numbers (see Table 2). A portion of the soils was sieved during PET and the sieve fractions were assigned new generic numbers. (Table 2).

At the onset of Re-examination, there were still some "soils" left in 10002. One of these (10002,26 - 750 gm) was sieved for material >4 mm. These coarse fines were described using a binocular microscope, for individual inclusion in the catalogue.

SIEVE ANALYSIS of Sample 10002,26 - Weight Sieved: 476.0 gm

<u>Sieve</u> <u>Wt. (gm)</u>

| >10 mm  | 18.48 |
|---------|-------|
| 4-10 mm | 7.63  |
| 2-4 mm  | 10.96 |
| 1-2 mm  | 14.65 |
| <1 mm   | 424.5 |

### HISTORY AND PRESENT STATUS OF SAMPLES - 10/13/76

10002 was originally processed in the Bio Prep Lab, and remaining pristine samples were re-examined in SSPL. Two rocks were split from 10002 during re-examination and were given the new generic numbers 10092 and 10093. There is no documented evidence that any pristine sample presently in 10002 was processed in any other laboratory.

### **PRISTINE SAMPLES:**

| 7  | 844.3  | gm | <li>1mm</li>   | Fines |
|----|--------|----|----------------|-------|
| 16 | 161.44 | gm | <1mm           | Fines |
| 21 | 39.73  | gm | 1 – 3mm        | Fines |
| 24 | 76.96  | gm | <1mm           | Fines |
| 25 | 25.65  | gm | <li>1 mm</li>  | Fines |
| 28 | 0.27   | gm | <1mm           | Fines |
| 29 | 4.47   | gm | 1 – 3mm        | Fines |
| 30 | 7.80   | gm | 1 - 3mm        | Fines |
| 31 | 15.04  | gm | <b>1 -</b> 3mm | Fines |
| 33 | 19.35  | gm | <li>1mm</li>   | Fines |

NAL PAGE IS

76

£ -

(

| 34  | 2.95   | gm | <lmm fines<="" td=""></lmm>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----|--------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 37  | 88.43  | gm | <lmm fines<="" td=""></lmm>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 39  | 25.40  | gm | <li>The state of the state of t</li> |
| 40  | 19.42  | gm | <lmm fines<="" td=""></lmm>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 41  | 4.35   | gm | <lmm fines<="" td=""></lmm>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 42  | 0.25   | gm | <lmm fines<="" td=""></lmm>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 45  | 0.50   | gm | <lmm fines<="" td=""></lmm>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 46  | 0.89   | gm | 1-3mm Fines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 54  | 15.58  | gm | 1-3mm Fines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 86  | 248.71 | gm | Unsieved Fines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 88  | 0.78   | gm | Glassy piece. Few pits present.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 89  | 10.96  | gm | 2-4mm Fines sieved from 10002,26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 90  | 14.65  | gm | 1-2mm Fines sieved from 10002,26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 91  | 240.5  | gm | <lmm 10002,26<="" fines.="" from="" td=""></lmm>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 92  | 184.0  | gm | <lmm fines.<="" td=""></lmm>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 93  | 0.15   | gm | Glass chip. Patina on all surfaces.<br>Some pits present.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 94  | 0.12   | gm | Breccia chip. Large white clast present.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 95  | 0.35   | gm | Fractured breccia chip. Glassy with few pits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 96  | 0.75   | gm | Two basalt chips. Few pits present on both chips.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 97  | 0.32   | gm | Breccia fragment with very glassy matrix.<br>No pits observed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 98  | 0.84   | gm | Four fine-grained basalt chips. Pitting is present on all pieces.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 99  | 4.28   | gm | 14 Breccia chips. Pitting is present on the larger chips.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 103 | 2.21   | gm | Basalt chip. No pits observed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 104 | 1.83   | gm | Basalt chip. No pits observed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 105 | 2.20   | gm | Breccia chip. Many large pits present.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 106 | 1.97   | gm | Breccia chip. Pits present on one surface.<br>Low clast population.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 107 | 0.65   | gm | Breccia chip. No pits observed. Low clast population.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

•

ţ

.

 56

# 10002

| 108  | 1.53   | gm | Breccia chip. No pits.                                                                                |
|------|--------|----|-------------------------------------------------------------------------------------------------------|
| 109  | 1.66   | gm | Breccia chip. A few pits present on one surface. Low clast population.                                |
| 110  | 1.54   | gm | Fine-grained basalt chip. Few chips pre-<br>sent on two surfaces. Vesicles comprise<br>5% of surface. |
| 111  | 4.71   | gm | Breccia chip. Patina present on all sur-<br>faces. Pitting present on one. Large<br>clast population. |
| 126  | 0.01   | gm | >1mm Fines.                                                                                           |
| 127  | 0.41   | gm | >1mm Fines.                                                                                           |
| 1000 | 25.73  | gm | >1mm Fines.                                                                                           |
| 1001 | 5.45   | gm | >1mm Fines.                                                                                           |
| 1002 | 101.19 | gm | >1mm Fines.                                                                                           |

NO RETURNED SAMPLES (>75gm)

i

1

1

# ORIGINAL PAGE IS OF POOR QUALITY

5

Ħ

1.

ŧ

## COARSE FINES DESCRIPTION

11

SAMPLE: 10002,88 NUMBER OF PARTICLES: 1 WT.(gm): .78
COHERENCE: Tough
SHAPE: Angular to subangular
SURFACE: 1 fracture. Small amount of pits.
COLOR: Dark gray
MINERALOGY: Black opaque glass enclosing small white clasts.
REMARKS: Aphanitic texture, equigranular, isometric.



ORIGINAL PAGE IN OF POOR QUALITY ť,

··· \* }

11

monored .

. . .

•

10002

COARSE FINES DESCRIPTION

SAMPLE: 10002,93 NUMBER OF PARTICLES: 1 WT.(gm): .15 COHERENCE: Tough SHAPE: Subangular to subrounded SURFACE: Aphanitic texture. Some patina on all surfaces. Small number of pits. COLOR: Dark gray MINERALOGY: Black opaque glass enclosing small white clasts.



| 1 | 10002 59                                                                                                                            |  |  |  |  |  |  |  |  |
|---|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|   | COARSE FINES DESCRIPTION                                                                                                            |  |  |  |  |  |  |  |  |
|   | SAMPLE: 10002,94 NUMBER OF PARTICLES: 1 WT.(gm): .12                                                                                |  |  |  |  |  |  |  |  |
| • | COHERENCF: Moderately friable                                                                                                       |  |  |  |  |  |  |  |  |
| • | SHAPE: Subangular to subrounded                                                                                                     |  |  |  |  |  |  |  |  |
| • | SURFACE: No pits on any surface. Glass coating on 2 surfaces. <.5mm thick.                                                          |  |  |  |  |  |  |  |  |
| • | COLOR: Light gray to white                                                                                                          |  |  |  |  |  |  |  |  |
|   | MINERALOGY: Fine breccia: 60% crushed plagioclase, 25% matrix<br>(aphanitic), 15% dark mineral (pyroxene, ilmenite, black<br>glass) |  |  |  |  |  |  |  |  |
|   | REMARKS: Sample has high clast population. Resembles 10056. Mostly plagioclase clasts with matrix.                                  |  |  |  |  |  |  |  |  |

,

--

1 🗥

Ż

I.

1

; 1

خص ζ,"



ORIGINAL PAGE IS OF POUR QUALITY

**)** 

r X

. 

5 ¥ - 1

and the second second

### 10002

### COAKSE FINES DESCRIPTION

SAMPLE: 10002,95 NUMBER OF PARTICLES: 2 WT.(gm): .35

COHERENCE: Fractured

SHAPE: Angular

- URFACE: Fracturing lined with vitreous glass. Some pits on a few faces.
- COLOR: Medium light to dark gray
- MINERALOGY: Microbreccia: Clasts mostly crushed plagioclase. A few basalt clasts are present. High glass content.
- REMARKS: Could be classified as an agglutinate. Lasic mineralogy is the same as 10046 or 10059.



### COARSE FINES DESCRIPTION

SAMPLE: 10002,96 NUMBER OF PARTICLES: 2 WT.(gm): .75
COHERENCE: Tough
SHAPE: Rounded to subrounded
SURFACE: Some small pits on several surfaces. No penetrative fractures.
COLOR: Medium light gray
MINERALOGY: Basalt: Anhedral pyroxene 65%, euhedral to subhedral plagioclase 25%, mesostasis 10%.



OFFICE VERICE CONTRACTOR

### COARSE FINES DESCRIPTION

SAMPLE: 10002,97 NUMBER OF FARTICLES: 1 Willigm): .32

COHERENCE: Moderately coherent

SHAPE: Angular

SURFACE: Rough. No pits, but patinated on several surfaces. Surface has several large cavities.

COLOR: Medium dark gray

MINERALOGY: Microbreccia: Aphanitic glass matrix with one large basalt clast, and several areas of brown vitreous material.

REMARKS: Unlike any other Apollo 11 breccia. Matrix structure resembles 10002,88.



62

7

### COARSE FINES DESCRIPTION

SAMPLE: 10002,98 NUMBER OF PARTICLES: 4 WT.(gm): .84 COHERENCE: Coherent SHAPE: Subangular to subrounded

SURFACE: Surface on all pieces is pitted, with no patina. Some small Imm vesicles. Texture is isometric, fine grained, equigranular.

COLOR: Medium dark gray

t

1

ł

MINERALOGY. Basalt: 50% pyroxene, 25% plagioclase, 10% ilmenite, 15% mesostasis.

REMARKS: Resembles 10057



ORIGINIAL PAGE IS OF POOR QUALITY

### COARSE FINES DESCRIPTION

· ••• • •

.

SAMPLE: 10002,99 NUMBER OF PARTICLES: 14 WT.(gm): 4.28

COHERENCE: Coherent

SHAPE: Angular to subangular

SURFACE: Some small pits (<1mm) on larger pieces

111

. . .

COLOR: Medium dark gray

MINERALOGY: Microbreccia: Typical matrix enclosing white and basalt clasts.

REMARKS: One chip has a small amount of glass coating.



|                     | 10002                                               |            | 65   |  |  |  |
|---------------------|-----------------------------------------------------|------------|------|--|--|--|
|                     | COARSE FINES DESCRIPTI                              | ON         |      |  |  |  |
| SAMPLE: 10002,103   | NUMBER OF PARTICLES:                                | 1 WT.(gm): | 2.21 |  |  |  |
| COHERENCE: Tough    |                                                     |            |      |  |  |  |
| SHAPE: Subrounded   |                                                     |            |      |  |  |  |
|                     | Some patina is present,<br>ne small (<1mm) vesicles |            | ob-  |  |  |  |
| COLOR: Medium light | arav                                                |            |      |  |  |  |

. .. ]

. 1

-

! · ..

\*

I,

ì

MINERALOGY: Basalt: 50% brown pyroxene, 40% plagioclase, 10% opaques.



NUNAL PAGE IS

### COARSE FINES DESCRIPTION

ŝ

1

SAMPLE: 10002,104 NUMBER OF PARTICLES: 1 WT.(gm): 1.83 COHERENCE: Moderately friable SHAPE: Subangular SURFACE: Rough. Patination was observed on all surfaces. No pits. COLOR: Medium light gray MINERALOGY: Basalt: 60% brown pyroxene, 25% plagioclase and 15% opaques.



ţ

Rent and a second second

1

| _ |      |
|---|------|
| 1 | 0002 |

4

#### COARSE FINES DESCRIPTION

SAMPLE: 10002,105 NUMBER OF PARTICLES: 1 WT.(gm): 2.20 COHERENCE: Friable SHAPE: Subangular SURFACE: Irregular. Several large pits present. Some penetrative fractures. COLOR: Medium dark gray MINERALOGY: Microbreccia: Typical breccia matrix enclosing white and basalt clasts. REMARKS: Large pits are a special feature.



ORIGINAL PAGE 15 OF POOR QUALITY 67

.

In I

1

#### COARSE FINES DESCRIPTION

SAMPLE: 10002,106 NUMBER OF PARTICLES: 1 WT.(gm): 1.97

COHERENCE: Moderately friable

SHAPE: Subangular

SURFACE: Smooth to irregular. Few pits present on one surface.

COLOR: Medium dark gray

MINERALOGY: Microbreccia: Typical breccia matrix enclosing white clasts.

REMARKS: Very small clast population.



ł,

| त्र म<br>क् | 10002 69                                                                                  |
|-------------|-------------------------------------------------------------------------------------------|
|             | COARSE FINES DESCRIPTION                                                                  |
|             | SAMPLE: 10002,107 NUMBER OF PARTICLES: 1 WT.(gm): .65                                     |
| •           | COHERENCE: Moderately friable                                                             |
| :           | SHAPE: Subangular                                                                         |
| •           | SURFACE: Smooth to irregular with no pits or patina                                       |
|             | COLOR: Medium dark gray                                                                   |
|             | MINERALOGY: Microbreccia: Typical breccia matrix enclosing small white and basalt clasts. |
|             | REMARKS: Small clast population.                                                          |

7774 A**T** 1 H A.

ì

1 • !

11



ORIGINAL PAGE IS OF POOR QUALITY

Contraction of the Area I

### COARSE FINES DESCRIPTION

SAMPLE: 10002,108 NUMBER OF PARTICLES: 1 WT.(gm): 1.53

COHERENCE: Moderately friable

SHAPE: Angular to subangular

SURFACE: Irregular to rough. Some patina is present but no pits.

COLOR: Medium dark gray

MINERALOGY: Microbreccia: Typical breccia matrix enclosing small white and basalt clasts.

REMARKS: Small glass spherules present on surface inspection. Small clast population.



70

11

|                       | 10002                                     | 71                        |
|-----------------------|-------------------------------------------|---------------------------|
|                       | COARSE FINES DESCRIPTIO                   | DN                        |
| SAMPLE: 10002,109     | NUMBER OF PARTICLES:                      | 1 WT.(gm): 1.66           |
| COHERENCE: Moderately | friable                                   |                           |
| SHAPE: Subangular     |                                           |                           |
| SURFACE: Smooth to ir | regular. A few pits are                   | e present on one surface. |
| COLOR: Medium dark gr | ay                                        |                           |
|                       | cia: Typical breccia ma<br>basalt clasts. | atrix enclosing small     |
| REMARKS: Small clast  | population                                |                           |

A ......

The second states

71

Ŧ

)

ţ

٦

States ....

•...,

ĝ,

.

Ę

•.

ا يايد

۲

•\*\*\*1, \*\*



ORIGINAL PAGE IS OF POOR QUALITY,

Ţ;

COARSE FINES DESCRIPTION

SAMPLE: 10002,110 NUMBER OF PARTICLES: 1 WT.(gm): 1.54

COHERENCE: Tough

SHAPE: Angular

SURFACE: Irregular. Few pits present on two surfaces. 5% vesicles surface coverage.

COLOR: Medium light gray

MINERALOGY: Basalt: Aphanitic pyroxene, plagioclase and ilmenite.



. . . . .

73

1

1

#### COARSE FINES DESCRIPTION

SAMPLE: 10002,111 NUMBER OF PARTICLES: 1 WT.(gm): 4.71

COHERENCE: Moderately friable

- ". F

SHAPE: Subrounded

....

1

SURFACE: Irregular to rough. Patina present on all surfaces. Pitting is present on one.

COLOR: Medium dark gray

MINERALOGY: Microbreccia: Typica! breccia matrix enclosing white, basalt and gray clasts.

REMARKS: Large clast population



Arc Nat. Mar. 18
 Arc Donk QUALLUS;

ан алан айтан а Тайтан айтан айт

### RETURNED SAMPLES: None

| CHEMICAL ANALYSES |                       |       |       |       |
|-------------------|-----------------------|-------|-------|-------|
| Element           | Number of<br>Analyses | Mean  | Units | Range |
| TiO <sub>2</sub>  | 1                     | 7.010 | PCT   | 0     |
| Fe0               | 1                     | 15.95 | PCT   | 0     |
| Ca0               | 1                     | 12.03 | PCT   | 0     |
| K <sub>2</sub> 0  | 2                     | .130  | PCT   | .012  |
| Н                 | 1                     | .84   | CC/G  | 0     |
| Th                | 1                     | 1.92  | РРМ   | 0     |
| U                 | 1                     | .49   | РРМ   | 0     |
| С                 | 2                     | 210.0 | PPM   | 40.0  |
| Ν                 | 1                     | 125.0 | ррм   | 0     |
| S                 | ١                     | .107  | PCT   | 0     |

Analysts: Stoenner et al., (1970); O'Kelly et al., (1970); Stoenner et al., (1970); Kaplan et al., (1970); Moore et al., (1970).

No Age References

-



10003,0 Original PET Photo (S-69-45193)



10003,25 (S-76-25546)



ORIGINAL PAGE K-OF POOR QUALITY

#### 10003

Sample 10003 is a Cristobalite Basalt which originally weighed 213 gm, and measured 7x4.5x3.5 cm. Its shape was originally described by PET as subangular to blocky, with its color being light brown to "salt and pepper". Sample was returned in the Documented Sample ALSRC (#1004).

BINOCULAR DESCRIPTIONBY: KramerDATE: 6/09/76ROCK TYPE:Cristobalite basaltSAMPLE: 1000.,12WEIGHT: 19.5 gm

COLOR: Light brown to salt & pepper DIMENSIONS: 3 x 2 x 1.5 cm

SHAPE: Subrounded

COHERENCE: Intergranular - coherent Fracturing - absent

FABRIC/TEXTURE: Isotropic/Equigranular

VARIABILITY: Homogeneous

SURFACE: Slightly granulated; splattered with various glasses and covered with pits (PET)

ZAP PITS: Few; size range of lmm (PET)

CAVITIES: 5% of surface covered with vugs. Many are lined with plagioclase.

| COMPONENT                | COLOR                         | % OF<br>ROCK | SHAPE    | SIZE(MM)<br>DOM. RANGE |
|--------------------------|-------------------------------|--------------|----------|------------------------|
| Pyroxene <sub>l</sub>    | Resinous<br>brown to<br>black | 50           | Equant   | 0.3 0.1-0.5            |
| Plagioclase <sub>2</sub> | Milky                         | 40           | Lathlike | 0.3 0.1-0.5            |
| Ilmenite <sub>3</sub>    | Metallic<br>black             | 10           | Variable | 0.2 0.05-0.3           |

1) Two types; amber and dark brown (approximately 50-50 distribution)

2) Dominant in vugs

3) Identified by cleavage and luster





SECTION 10003,49 Width of field: 1.39 mm plane light THIN SECTION DESCRIPTION BY: Walton DATE: 6/09/76

SECTION: 10003,49

SUMMARY: Medium-grained subophiti basalt composed of clinopyroxene, two generations of plagioclase, ilmenite with subordinate crist(we' te imesostasis. Large subhedral to anhedral crystals of inopyroxene form an interlocking network with euhedral tablets of plagioclase and subhedral ilmenite. Many of the ilmenite crystals are somewhat skeletal in their development.

| PHASE | % OF SECTION | SHAPE                 | <u>SIZE(MM</u> ) |
|-------|--------------|-----------------------|------------------|
| Pyrox | 44           | Subhedral to anhedral | 0.2-0.3          |
| Flag  | 30           | Euhedral to anhedral  | 0.01-0.1         |
| Oµaq  | 20           | Subhedral to skeletal | 0.02-0.15        |
| Cris  | 3            | Anhedra !             | 0.1-0.5          |
| Meso  | 3            | Irregular             | 0.001-0.1        |

#### COMMENTS:

- Pyroxene The clinopyroxene forms large light brown subhedral to anhedral crystals. The crystals form an almost continuous interlocking array with the other phases present as interstitial members or as part of the array. Many of the crystals show some reaction has taken place between phases. Many of the crystals are zoned and have uneven extinctions. A well-developed cleavage pattern is present in many crystals. A few crystals show simple twinning. More than one type of pyroxene may be present in the rock.
- Plagioclase Two distinct types of plagioclase occur in the rock. The first type occurs as euhedral tablets which appear as rectangular sharp crystals in the section. Twinning is sharp and the crystal outline is well defined.

The second type of crystals formed are larger ill-defined anhedral masses which form interstitially to the crystalline phases. The twinning is poorly defined and extinctions are irregular.

Many of the first type are grouped into somewhat radiating masses within the rock. These groups are somewhat isolated in the pyroxene array and tend to form localized concentrations.

Opaques - The crystals of ilmenite in the rock form subhedral to almost euhedral crystals with some skeletal development. Many crystals have several discernable forms present in the same crystal. Many crystals have rutile and chromite exsolutions. A majority of the crystals are more or less equant. Small rounded masses of armalcolite are present in a few crystals.

Small rounded masses of troilite and troilite with iron-nickel are also present in the rock. These masses are randomly scattered throughout the rock.

- Cristobalite Small anhedral masses of cristobalite occur as interstitial masses in the crystalline network. It, together with the brown glass-rich mesostasis and the anhedral plagioclase form all the void filling phases.
- TEXTURE: Medium-grained subophitic basalt consisting of an interlocking network of subhedral pyroxene, small euhedral tablets of plagioclase and subhedral ilmenite crystals. Large anhedral plagioclase crystals, anhedral cristobalite and masses of mesostasis occur interstitially to the crystalline network. Troilite masses occur both as inclusions in the pyroxene and associated

ORIGINAL PAGE &

78

1 I ()

1 .

10003

with the mesostasis.

the second states of the

. .

4

1

11340 --

8

Selected References: Ross et al. (1970), Haggerty et al. (1970).

### HISTORY AND PRESENT STATUS OF SAMPLES - 10/4/76

10003 was the first rock removed from the bulk sample box in the vacuum laboratory. It was sent for gamma-ray counting almost immediately, returned to Vac Lab and chipped for PET. It was sawed and chipped in SPL for allocation.

#### PRISTINE SAMPLES (all VAC-RCL-VAC-SPL-SSPL)

| 9   | 9.33   | gm | Chip. One sawed surface. One surface with<br>1/2 cm <sup>2</sup> glassy spatter. All others appear<br>fresh. |
|-----|--------|----|--------------------------------------------------------------------------------------------------------------|
| 12  | 19.55  | gm | Chip. One lunar exposed surface. All others appear fresh.                                                    |
| 25  | 117.00 | gm | Piece. Pitted on T, N. Patina on W face. All others fresh. 5.4x3x4.4 cm.                                     |
| 134 | 1.22   | gm | Chips and fines. Largest chip is 1 cm.                                                                       |
| 135 | 3.70   | gm | 3 chips. Largest two have two lunar exposed surfaces each. Smallest chip is fresh.                           |
| 136 | ٢.١١   | qm | Chips and fines.                                                                                             |

#### RETURNED SAMPLES

| 38  | 4.544 gm | 1 large (2x1.5x1.5cm) chip with four sawed<br>faces plus two smaller chips. No pits ob-<br>served. |  |  |
|-----|----------|----------------------------------------------------------------------------------------------------|--|--|
| 74  | 5.39 gm  | Chip. Three sawed faces. No pits.<br>1.7x1.5x1.5 cm.                                               |  |  |
| 119 | 3.234 gm | Chip. 1.3x1.2x1 cm. Two sawed faces. No pits.                                                      |  |  |

4-14-1

1 -

1

# 10003

1.1.1

ent Hartster

## CHEMICAL ANALYSES

| Element                        | Number of<br>Analyses | Mean   | Units       | Range |
|--------------------------------|-----------------------|--------|-------------|-------|
| SiO <sub>2</sub>               | 3                     | 38.62  | РСТ         | 1.96  |
| A1 <sub>2</sub> 0 <sub>3</sub> | 4                     | 10.32  | РСТ         | 1.36  |
| TiO <sub>2</sub>               | 3                     | 11.45  | РСТ         | 1.5   |
| Fe0                            | 3                     | 19.76  | РСТ         | .12   |
| Mn0                            | 4                     | .29    | РСТ         | .108  |
| Mg0                            | 3                     | 7.33   | РСТ         | 1.43  |
| Ca0                            | 3                     | 11.25  | РСТ         | .61   |
| Na <sub>2</sub> 0              | 4                     | .510   | РСТ         | . 486 |
| K <sub>2</sub> 0               | 8                     | . 054  | РСТ         | .010  |
| $P_{2}O_{5}$                   | 1                     | .12    | РСТ         | 0     |
| Li                             | 1                     | 9.0    | РРМ         | 0     |
| Rb                             | 3                     | .710   | PPM         | .5    |
| Cs                             | ļ                     | . 022  | PPM         | 0     |
| Be                             | 1                     | 1.5    | PPM         | 0     |
| Sr                             | 3                     | 153.97 | PPM.        | 9.2   |
| Ba                             | 3                     | 162.0  | PPM         | 114.  |
| Sc                             | 2                     | 84.0   | PP <b>M</b> | 20.0  |
| ۷                              | 2                     | 72.5   | PPM         | 19.   |
| $Cr_2O_3$                      | 3                     | . 25   | РСТ         | .069  |
| Со                             | 2                     | 14.55  | PPM         | .9    |
| Ni                             | l                     | 2.70   | PPM         | 0     |
| Cu                             | 1                     | 6.7    | PPM         | 0.    |
| Y                              | 2                     | 112.5  | PPM         | 1.0   |
| Zr                             | 3                     | 416.33 | PPM         | 251.  |
| NÞ                             | 1                     | 21.0   | PPM         | 0     |
| Hf                             | 1                     | 11.6   | PPM         | 0     |
| La                             | 4                     | 14.32  | PPM         | 1.5   |
| Се                             | 3                     | 41.27  | PPM         | 8.5   |

-

4

| Element | Number of<br>Analyses | Mean  | Units | Range |
|---------|-----------------------|-------|-------|-------|
| Nd      | 2                     | 40.4  | PPM   | 4.2   |
| Sm      | 3                     | 13.37 | РРМ   | 1.0   |
| Eu      | 3                     | 1.80  | PPM   | .08   |
| Gd      | 2                     | 18.0  | PPM   | 2.0   |
| Tb      | 2                     | 3.38  | РРМ   | .24   |
| Dy      | 2                     | 22.0  | PPM   | .8    |
| Но      | 2                     | 3.85  | РРМ   | .3    |
| Er      | 2                     | 12.7  | PPM   | 1.4   |
| Yb      | 3                     | 13.4  | PPM   | 3.4   |
| Lu      | 3                     | 1.77  | РРМ   | 1.62  |
| Th      | 5                     | 1.01  | PPM   | .2    |
| U       | 5                     | .27   | PPM   | .060  |
| Ga      | 1                     | 4.7   | РРМ   | 0     |
| Pb      | 1                     | .495  | РРМ   | 0     |
| 0       | ŗ                     | 38.1  | PCT   | 0     |
| S       | 1                     | .18   | PCT   | 0     |

#### CHEMICAL ANALYSES

Analysts: Compston et al., (1970); Ehmann & Morgan, (1970); Rose et al., (1970); Goles et al., (1970); Annell & Helz, (1970); Gast et al., (1970); O'Kelly et al., (1970); Perkins et al., (1970); Bochsler et al., (1971); Eberhardt et al., (1971); Stettler et al., (1974); Haskin et al., (1970); Tatsumoto (1970); Wrigley & Quaide, (1970).

Age References: Eberhardt (1971b); Turner (1970); Hintenberger et al., (1971); Stettler et al., (1974); O'Kelly et al., (1970); Boschler (1971b); Perkins (1970); Tatsumoto (1970).



I.

Sample 10004 consists of soil material which came from the second drive tube. It was taken from a location 20 feet northwest of the Lunar Module (LM). It penetrated to a depth of 13.5 cm, recovering 44.8 gm of material.

10004 was opened in the Bio-Prep Lab. It was determined that the material inside the drive tube had moved substantially due to the improper placement of a Teflon follower.

Due to the biological testing during the Lunar quarantine, one-half of the drive tube material was removed for study. As a result, little observational data exists as it was neither x-rayed nor dissected. It was reported that 10004 had a slightly lighter 2-5mm thick zone about 6 cm from the top of the core, which had a sharp upper boundary and e gradational lower boundary.

During PET examination, some of the material in 10004 was sieved (Fig. 15). However, the amount of material sieved is unknown and the sieve fractions obtained have been consumed in biological experiments.

### HISTORY AND PRESENT STATUS OF SAMPLES - 10/6/76

10004 was removed from the ALSRC 1004 in the Vac Lab. It was then transferred to the Bio-Prep Lab where it was opened and allocated to the Bio Pool.

| 0  | 14.954 gm | Core remainder. Vac-BP |  |
|----|-----------|------------------------|--|
| 15 | 0.157 gm  | Fines. Vac-BP          |  |
| 16 | 0.157 gm  | Fines. Vac-BP          |  |
| 37 | 2.15 gm   | Core overflow. Vac-BP  |  |
| 38 | 0.44 gm   | Fines. Vac-BP          |  |

Returned Samples - The largest returned sample is ,37 (2.15gm). The rest are less than lgm in weight.

ŧ

I

|         | CHEMICAL ANALYSES     |       |       |       |  |
|---------|-----------------------|-------|-------|-------|--|
| Element | Number of<br>Analyses | Mean  | Units | Range |  |
| Fe0     | 5                     | 15.49 | PCT   | 1.16  |  |
| Mn0     | 5                     | .209  | РРМ   | .013  |  |
| Li      | 2                     | 19.0  | PPM   | 2.0   |  |
| 0s      | 2                     | .016  | РРМ   | .016  |  |
| Hg      | 1                     | 3.0   | РРВ   | 0     |  |
| U       | 3                     | 5.47  | РРМ   | 10.8  |  |
| Te      | 1                     | .1    | РРМ   | 0     |  |
| F       | 2                     | 372.5 | PPM   | 295.0 |  |
| C1      | 2                     | 27.5  | РРМ   | 21.0  |  |
| Br      | 1                     | .048  | PPM   | 0     |  |

Analysts: Finkel et al., (1971); Reed & Jovanovic, (1971); Reed et al., (1971).

No Age References

ł

ORIGINAL PAGE

·· •! 1

ł

Sample 10005 consists of regolith material which came from the first drive tube. The sample was taken approximately 10 feet from the second drive tube, 10004. (Both were approximately 20 feet northwest of the Lunar Module.) It penetrated to a depth of 10cm, recovering 53.4 gm of material.

Like 10004, it was opened in the Bio-Prep Lab where one-half of the sample was removed for biological testing. It was not x-rayed or dissected. There was no evidence, however, of stratigraphic disturbance caused by movement of the material inside the drive tube. It showed weak coherence and was fractured in places.

During PET examination, some of the material in 10005 was sieved (fig. 15). However, the amount of material sieved is unknown and the sieve fractions obtained have been consumed in Biological experiments.

HISTORY AND PRESENT STATUS OF SAMPLES - 10/13/76

10005 was removed from ALSRC #1004 in the Vac Lab. It was then transferred to the Bio-Prep Lab where it was opened and allocated to the Bio-Pool.

PRISTINE SAMPLES

Z

t

1

| 0  | 5.798 | gm | Core remainder VAC-BP-SSPL |
|----|-------|----|----------------------------|
| 6  | 0.18  | gm | Fines VAC-BP-SSPL          |
| 54 | 0.80  | gm | Fines VAC-BP-SSPL          |

The largest returned sample is ,33 (12.378 gm). The rest are less than 1gm in weight.

ų :

11

| Element                        | Number of<br>Analyses | Mean  | Units | Range |  |
|--------------------------------|-----------------------|-------|-------|-------|--|
| A1 <sub>2</sub> 0 <sub>3</sub> | 1                     | 13.98 | PCT   | 0     |  |
| TiO <sub>2</sub>               | 1                     | 8.01  | PCT   | 0     |  |
| Fe0                            | 5                     | 15.98 | РСТ   | 1.8   |  |
| Mn0                            | 4                     | .213  | РСТ   | .006  |  |
| Ca0                            | 1                     | 12.31 | PCT   | 0     |  |
| Na <sub>2</sub> 0              | 1                     | .441  | PCT   | 0     |  |
| Ba                             | 1                     | 140.  | PPM   | 0     |  |
| Sc                             | 1                     | 62.   | PPM   | 0     |  |
| V                              | 1                     | 66.   | PPM   | 0     |  |
| $Cr_2O_3$                      | 1                     | . 297 | PCT   | 0     |  |
| Со                             | 1                     | 32.0  | PPM   | 0     |  |
| Zr                             | 1                     | 340.  | PPM   | 0     |  |
| Hf                             | 1                     | 8.    | PPM   | 0     |  |
| La                             | 1                     | 15.5  | PPM   | 0     |  |
| Sm                             | 1                     | 11.9  | РРМ   | 0     |  |
| Eu                             | 1                     | 2.1   | PPM   | 0     |  |
| Yb                             | 1                     | 11.1  | PPM   | 0     |  |
| Lu                             | 1                     | 1.6   | PPM   | 0     |  |
| Th                             | 1                     | .8    | PPM   | 0     |  |

CHEMICAL ANALYSES

Analysts: Wakita et al., (1970); Finkel et al., (1971).

No Age References

10008 was the generic number given to the Bio-Pool fines from the Documented Sample ALSRC. It was separated from the rocks in the Vac Lab and transferred to PCTL for splitting and allocation.

## PRISTINE SAMPLES

55.10 gmFines.VAC - PCTL - SSPL90.015 gmFines.VAC - PCTL - SSPL

NO RETURNED SAMPLES

1

NO CHEMICAL ANALYSES OR AGE PATES

i



10009,0 (S-75-31108)

> ORIGINAL PAGE 1 OF POOR QUALITY

F SS

:

ι....

Sample 10009 is a microbreccia which originally weighed 112gm, and measured 5 x 5 x 4 cm. Sample is medium dark rey in color and hemipyramidal in shape. Sample was returned in ALSRC 1004 (Documented Sample Container). No PET description was generated for this sample.

BINOCULAR DESCRIPTIONBY: TwedellDATE: 9-4-75ROCK TYPE: MicrobrecciaSAMPLE: 10009,0WEIGHT: 95gmCOLOR: Medium dark greyDIMENSIONS: 5 x 5 x 4 cm.

SHAPE: Hemi-pyramidal, irregular

\_ 1

COHERENCE: Intergranular - friable Fracturing - absent

FABRIC/TEXTURE: Anisotropic/Microbreccia

VARIABILITY: Homogeneous

SURFACE: Hackly, has appearance of a shatter cone.

ZAP PITS: Glassy splitting on surface, but no apparent pits.

CAVITIES: Absent

|               |             | % OF |           | SIZE (         | MM)    |
|---------------|-------------|------|-----------|----------------|--------|
| COMPONENT     | COLOR       | ROCK | SHAPE     | DOM.           | RÁNGE  |
| Matrix        | Med.Dk.Grey | 98%  | Irregular |                |        |
| White Clast   | White       | 1%   | Rounded   | <b>. 1</b> 5mm | .1-2mm |
| Salt & Pepper | B1k. & Wh.  | 1%   | Rounded   | .5mm           | .1-1mm |
|               |             |      |           | icat from a    |        |

SPECIAL FEATURES: The hackly surface seems to project from a point. Sample is probably a shatter cone.

89

4 . Juni Andrew Charl

}

10009



SECTION: 10009,7 With of Field: 2.72mm plane light

THIN SECTION DESCRIPTION BY: Walton

DATE: 6/22/76

<u>SUMMARY:</u> Highly devitrified typical breccia with a high glass-clast content. Some anorthrositic clasts are present and contain small anhedral py exere crystals. Lithic clasts are relatively rare.

### Matrix 41% of Rock

| Phase      | % Section | Shape | <u>Size (mm)</u> | Comments                                                   |
|------------|-----------|-------|------------------|------------------------------------------------------------|
| Dark brown | 100%      |       | 0.001            | Abundant cryrtocrys-<br>talline phases, dis-<br>continuous |

### Mineral Clasts 21% Rock

| <u>Phase</u> Re            | lative Abundance | Shape              | <u>Size (mm)</u> |
|----------------------------|------------------|--------------------|------------------|
| Clinopyroxene <sub>l</sub> | Very abundant    | Anguian            | 0.001-0.3        |
| Plagioclase <sub>2</sub>   | few              | Blocky             | 0.001-0.05       |
| Opaques <sub>3</sub>       | few              | Blocky to Skeletal | 0.001-0.08       |

ORIGINAL PAGE IS OF POOR QUALITY

1) Poor optical properties; approximately 85% of clasts

- 2) Few scattered; poorly formed approximately 5% of clasts
- 3) Most in clasts; few isolated blocky, 10% of clasts

### Lithic Clasts 17% of Rock

| Type               | Relative ^bundance | Shape              | <u>Size (mm)</u> |
|--------------------|--------------------|--------------------|------------------|
| Small              | Very abundant      | Rounded to irregul | lar 0.001-1.0    |
| Large <sub>4</sub> | Two present        | Irregular          | >1.0             |

- a. Coarse-grained basalt with large pyroxene crystals, tabular plagioclase with minor ilmenite.
  - b. Poly ranular plagioclase with small olivine/pyroxene crystals; typical anorthositic fragment.

### Glass Clasts 21% of Rock

| Type Rel                   | ative Abundance | Shape                  | <u>Size (mm)</u> |
|----------------------------|-----------------|------------------------|------------------|
| Yellow-orange <sub>5</sub> | Very abundant   | Spherical to irregular | 0.001-0.4        |
| Colorless <sub>6</sub>     | few             | Angular                | 0.001-0.1        |
| Brown orange <sub>7</sub>  | few             | Irregular              | 0.1 -0.4         |

5) Mostly spherical; partly devitrified

6) Some devitrification

こうない かんかいとうかんない ないときをもちます

(

7) Some crystal fragments included

#### HISTORY AND PRESENT STATUS OF SAMPLES - 10/7/76

10009 was not split during early processing in the Vac Lab or SPL. It was first subdivided in SSPL on 9-5-75 during re-examination. PRISTINE SAMPLES:

|   | 0 | 90.77 gm | Rock. See binocular description.                                                                                                          |
|---|---|----------|-------------------------------------------------------------------------------------------------------------------------------------------|
|   | 1 | 12.19 gm | Three chips. No pits were observed on<br>any, but could have easily been eroded<br>away. The largest chip has one vuggy<br>glass surface. |
| • | 2 | 7.39 gm  | Chips and fines. No pits observed on any chips.                                                                                           |

NO RETURNED SAMPLES.

NO CHEMICAL ANALYSES OR AGE DATES.

 $\sum_{i=1}^{n}$ 

### 10010

10010 was the generic number assigned to the Contingency Sample. The twelve rocks, >1 cm or so, in the contingency samples were assigned new generic numbers (10021 through 10032, Table 2). About 106 gm of the 491 gm of fines remaining were sieved. In late 1969 about 393 gm of 10010 was renumbered 10084 (the sample number for <1 mm fines from the bulk sample, 10002). In 1977 these samples were changed back to 10010 in the subsample range 66 through 125, see below.

PRISTINE SAMPLES: (All PCTL - SSPL)

| 7  | 0.60  | gm   | Fines.                                                                                         |
|----|-------|------|------------------------------------------------------------------------------------------------|
| 10 | 30.26 | gm   | Fines.                                                                                         |
| 19 | 0.11  | gm   | l small anorthosite breccia chip. Some small<br>dark clasts (may be pyroxene).                 |
| 22 | 0.146 | gm   | 2 small basalt chips. Largest chip is aphantic in texture, the small chip has a coarser grain. |
| 27 | 0.83  | gm   | Fines.                                                                                         |
| 39 | 42.41 | gm   | Fines. >60 <35 mesh.                                                                           |
| 40 | 34.98 | gm   | Fines.>100 <60 mesh.                                                                           |
| 41 | 3.63  | gm   | Fines.>200<100 mesh.                                                                           |
| 45 | 0.04  | gm   | Fines.                                                                                         |
| 50 | 0.43  | gm   | Fines.                                                                                         |
| 55 | 0.49  | JIII | Fines.                                                                                         |
| 56 | 1.30  | gm   | Fines.                                                                                         |
| 66 | 36.35 | gm   | Fines.                                                                                         |
| 67 | 55.66 | gm   | Fines.                                                                                         |
| 68 | 40.05 | gm   | Fines.                                                                                         |
| 69 | 64.23 | gm   | Fines.                                                                                         |
| 70 | 45.27 | gm   | Fines.                                                                                         |
| 71 | 0.65  | gm   | Fines.                                                                                         |
| 72 | 37.38 | gm   | Fines.                                                                                         |
| 73 | 0.82  | gm   | Fines.                                                                                         |
|    |       |      |                                                                                                |

i

1

0

( )

中かい

ì

いいちょう かんがく いいしょう たいたい ちょうし

Ĵ

5

Fines.

Fines

Fine.

fin∈).

Fines.

Fires

Filles.

Finer.

Fines.

Fines.

Fines.

Fines.

Fince.

Fines.

Flaes,

Fires.

Files.

Fines.

Fines

Fines.

1.50

0.50

0.50

0.54

0.54

0.53

0.52

0.55

0.56

0.52

0.51

0.49

0.51

0.57

1.03

1.02

1.02

1.01

0.98

1.00

1.00

1.06

1.02

1.02

1.02

1.00

0.50

0.50

1.99

2.01

2.01

1.99

gm

76

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

ORIGINAL PAGE IS OF POOR QUALITY 93

1.4

......

**(**)

;; ;;

:

1. March 1. Constrained and the state of the

10010

Ĵ

 $\bigcirc$ 

· · · · Year'

1

S. Franks

3.2 " . S. . . . . . . . . . .

 $\square$ 

i

ł

| 111 | 1.99 | gm | Fines.  | PCTL-BP-SSPL |
|-----|------|----|---------|--------------|
| 112 | 2.01 | gm | Fines.  | PCTL-BP-SSPL |
| 113 | 2.00 | gm | Fines.  | PCTL-BP-SSPL |
| 115 | 2.01 | gm | Fines.  | PCTL-BP-SSPL |
| 116 | 1.99 | gm | F1/ %.  | PCTL-BP-SSPL |
| 117 | 1.99 | gm | Filles. | PCTL-BP-SSPL |
| 118 | 2.01 | gm | Fines.  | PCTL-BP-SSPL |
| 119 | 2.00 | gm | Fines.  | PCTL-BP-SSPL |
| 120 | 2.00 | gm | Fines.  | PCTL-BP-SSPL |
| 121 | 2.00 | gm | Fines.  | PCTL-BP-SSPL |
| 122 | 2.00 | gm | Fines.  | PCTL-BP-SSPL |
| 123 | 2.00 | gm | Fines.  | PCTL-BP-SSPL |
| 124 | 2.04 | gm | Fines.  | PCTL-BP-SSPL |
| 125 | 1.96 | gm | Fines.  | PCTL-BP-SSPL |
|     |      |    |         |              |

# **RETURNED SAMPLES:**

| 74 | 16.699 gm | Fines. |
|----|-----------|--------|
|----|-----------|--------|

NO CHEMICAL ANALYSES OR AGE DATES.

1

1

1

ţ

10011 was the generic assigned to a part of the fines recovered from the Documented Sample. They were generated as a result of the crumbling and spalling of the Documented Sample rocks in the Vac Lab.

10011

## HISTORY AND PRESENT STATUS OF SAMPLES 7/1/76

10011 was returned in ALSRC #1004 (Documented Sample Container) and processed in the Vac Lab. It was re-examined in SSPL. There is no evidence of processing in other laboratories.

### PRISTINE SAMPLES (All VAC-SSPL)

| 6  | 0.57  | gm | Breccia chips and fines.       |
|----|-------|----|--------------------------------|
| 7  | 0.27  | gm | Breccia chips and fines.       |
| 11 | 0.59  | gm | Fines.                         |
| 14 | 0.72  | gm | Fines.                         |
| 15 | 0.43  | gm | Fines.                         |
| 17 | 3.99  | gm | Fines.                         |
| 28 | 25.14 | gm | Fines.                         |
| 32 | 20.20 | gm | Small breccia chips and fines. |

NO RETURNED SAMPLES (>5 gm)

NO CHEMICAL ANALYSES OR AGE DATES

15, 64, 61, - 1

A. . .

あっていたい ないのうちょう ちょうちょう

ŝ

·\*\* · ·

•

<u>.</u>

Ł

10015 was the generic number assigned to the lunar material recovered from the Gas Reaction Cell when the sample first entered the vacuum system of the LRL.

## PRISTINE SAMPLES:

| 17 | 0.02 | gm | Fines. |
|----|------|----|--------|
| 21 | 0.01 | gm | Fines. |
| 28 | 0.10 | gm | Fines. |
| 29 | 0.01 | gm | Fines. |

NO RETURNED SAMPLES

NO CHEMICAL ANALYSES OR AGE DATES

 $\bigcirc$ 

 $\bigcirc$ 



10017,0 Original PET Photo (S-69-45783)

10

ALL ST

. . .

2 cm

ORIGINAL PAGE IS OF POOR QUALITY  $\mathbb{P}_{2}$ 

97



Sample 10017 is a vesicular basalt which originally weighed 973 gm, and measured 16x11x6 cm. The sample is described as being black and white on fresh surfaces to steel grey on sawed. Sample was returned in ALSRC #1004 (Documented Sample Container).

BINOCULAR DESCRIPTIONSBY: KramerDATE: 8/1/75ROCK TYPE:Vesicular basaltSAMPLE: 10017,15WEIGHT: 197.4 gmCOLOR:Finely Salt and Pepper (fresh)DIMENSIONS: 8x6x4.5 cm.<br/>Steel Grey (sawed)

SHAPE: Sub-rounded

PTP. 7.

()

COHERENCE: Intergranular - coherent Fracturing - Two large penetrative fractures parallel to  $E_1-W_1$ . Slight non-penetrative fracturing parallel to  $T_1-B_1$ .

- FABRIC/TEXTURE: Isotropic/Equigranular
- VARIABILITY: There is some difference in relative abundances of the various mineral components from place to place within the sample.
- SURFACE: Irregular (both fresh and exposed)
- ZAP PITS: Few on  $E_1$ ,  $S_1$ ; 1-3mm diameter (PET)
- CAVITIES: 15-20% of fresh surface covered by small (<2mm) vugs. The vugs are glass-lined and approximately 1/3 are irregular in shape.

| COMPONENT             | COLOR                 | % OF<br><u>ROCK</u> | SHAPE    | SIZE(MM)<br>DOM. RANGE |
|-----------------------|-----------------------|---------------------|----------|------------------------|
| Pyroxene <sub>1</sub> | Light Honey<br>Yellow | 40                  | Equant   | .2 .013                |
| Plagioclase           | Milky White           | 40                  | Lathlike | .6 .28                 |
| Ilmenite              | Black                 | 15                  | Equant   | .2 .14                 |
| ${\tt Mesostasis}_2$  | Black                 | 5                   |          |                        |

Difficult to distinguish from plagioclase on color.

2) Difficult to distinguish from fine-grained ilmenite.



SECTION 10017,82 Width of field 2.22 mm plane light THIN SECTION DESCRIPTION BY: Walton DATE: 6/19/75 SECTION: 10017,82

SUMMARY:

4 7 Fine-grained, poikilitic, vesicular basalt composed of clinopyroxene, plagioclase, two generations of ilmenite and subordinate opaques and mesostasis. The pyroxene and ilmenite crystals are much finer than the crystals of the plagioclase. The majority of all the crystals are anhedral. Some preferred orientation in the plagioclase crystals is present.

| PHASE | % OF SECTION | SHAPE                 | <u>SIZE (MM</u> ) |
|-------|--------------|-----------------------|-------------------|
| Pyrox | 44           | Subhedral to anhedral | 0.04-0.12         |
| Plag  | 24           | Tabular to anhedral   | 0.2-2.0           |
| Opaq  | 24           | Subhedral to anhedral | 0.03-0.1          |
| Meso  | 8            | Irregular             |                   |

ORIGINAL PAGE IS OF POOR QUALITY  $\left( \right)$ 

COMMENTS:

T.

(

の記録を見た

Pyroxene - Pale brown to nearly clear anhedral crystals of clinopyroxene surround the large plagioclase crystals. Some smaller euhedral crystals are found within a few of the crystals of plagioclase. Some zoning is present, but it is not pronounced. Some small subhedral crystals exhibit clear cleavage traces. simple twinning, and appear to have formed at a different stage of crystallization from the majority of the clinopyroxene.

10017

Plagioclase - Small tabular crystals of plagioclase form distinct groupings, while the majority of the plagioclase, in the section, forms anhedral crystals in the interstercies formed by the pyroxene-ilmenite network. Twinning in the crystals is commor and pronounced.

- Opaques Two generations of ilmenite occur in the section. The first forms small lath-like to skeletal lath-like crystals. The second type forms large, blocky, anhedral crystals which have a sieve texture and many re-entrants which are filled by the two silicate minerals.
- Isclated masses of troilite and troilite with iron-nickel are found throughout the section. Some are associated near ilmenite crystals while others are isolated along the boundaries between the silicate phases. Occasional iron-nickel vein fillings are observed in the fractures within the silicates.
- Mesostasis Isolated irregular masses of a glass-rich phase occupy boundary voids between adjacent silicate phases. The size of the masses are from 0.05 to 0.1mm. The masses are very turbid and distinct crystals were not observed.
- B.M. French et al., (1970) have described 10017,16 in some detail. Their modal analysis was: Clinopyroxene, 49.7%; plagioclase, 18.0%; ilmenite, 23.9%; and, mesoscasis, 8.3%; which is in good agreement with the above analysis.
- TEXTURE: The rock consists of a random network of intergrown clinopyroxene and ilmenite crystals. Plagioclase and glassy mesostasis occur interstitial to the pyroxene-ilmenite network. The overall texture is poikilitic. The plagioclase crystals display a moderate alignment suggesting flow within the crystallizing lava. Vesicles are rimmed by small clinopyroxene crystals. Sharp boundaries occur between all phases except the mesostasis.

ş

#### <u>SELECTED REFERENCES</u>: Adler et al. (1970), Brown et al. (1970), Dence et al. (1970), French et al. (1970), Kushiro and Nakamura (1970), Mason and Wilson (1970), Reid et al. (1970).

#### HISTORY AND PRESENT STATUS OF SAMPLES 10-12-76

10017 was removed from ALSRC #1004 and processed in the Vac Lab. It was one of the samples in F-201 at the time of the glove rupture. A 400 gm piece was sent to PCTL for analyses. A portion of this rock (subsample number unknown) was sawed in SPL. All remaining pristine subsamples were re-examined in SSPL.

PRISTINE SAMPLES:

| 15          | 197.46 | gms | Largest piece. Three surfaces are lunar<br>exposed with pits and patina. Ail other<br>surfaces are fresh. VAC-SSPL |
|-------------|--------|-----|--------------------------------------------------------------------------------------------------------------------|
| 74          | 105.93 | gms | 14 sawed chips. Many have 3-5 sawed sur-<br>faces. 11 of them have one lunar exposed<br>surface. VAC-PCTL-SPL-SSPL |
| 81          | 91.0   | gms | l piece pitted on N <sub>l</sub> T face. All others<br>fresh and dust free. Ex-display sample.<br>VAC-SSPL         |
| 85          | 12.54  | gms | Chips and fines. Several medium (c.25gm)<br>chips, many with patina and pits.VAC-SSPL                              |
| 88          | 1.41   | gms | Chips and fines. Largest chips are 3-5mm,<br>some with lunar exposed surfaces. VAC-SSPL                            |
| 96          | 6.84   | gms | Small chips and fines representative of sample. VAC-SSPL                                                           |
| 280         | 13.07  | gms | Chip. Split from subsample 15. One lunar<br>exposed surface. All others are fresh.<br>VAC-SSPL                     |
| 281         | 6.66   | gms | Chips and fines. Split from subsample 15.<br>Two large (>1 gram) chips with lunar ex-<br>posed surface. VAC-SSPL   |
| <b>2</b> 82 | 0.12   | gms | Small fresh chips and fines. Subsamples 89<br>and 90 were combined to make up this sub-<br>sample. VAC-SSPL        |
| 283         | 1,59   | gms | Small chips and fines. Split from subsample<br>74. No exposed surfaces. VAC-PCTL-SPL-SSPL                          |

1

1. ...

ł

# RETURNED SAMPLES:

Ĩ,

x

ł

•

EL.

\$

1

D

| 50  | 5.05  | gms  | Chip. One sawed, two pitted and three fresh surfaces.                                                |
|-----|-------|------|------------------------------------------------------------------------------------------------------|
| 64  | 11.09 | gins | Chip. Six sawed surfaces. 3x1x1 cm.                                                                  |
| 76  | 7.00  | gms  | Chips and fines. Largest chip is 2x2x0.5<br>cm with two sawed, two pitted and two fresh<br>surfaces. |
| 159 | 8.23  | gms  | Chip. One fresh surface, all others are patinateu. Pits are few.                                     |
| 180 | 13.23 | gms  | Chip. 1.5x1.5x2cm. Six sawed surfaces.<br>Impregnated with epoxy.                                    |

# CHEMICAL ANALYSES

| Element                        | Number of<br>Analyses | Mean   | Units | Range |
|--------------------------------|-----------------------|--------|-------|-------|
| SiO <sub>2</sub>               | 6                     | 41.34  | РСТ   | 3.33  |
| A1 <sub>2</sub> 0 <sub>3</sub> | 7                     | 7.85   | PCT   | .907  |
| TiO <sub>2</sub>               | 7                     | 11.68  | PCĩ   | 2.5   |
| Fe0                            | 7                     | 19.55  | РСТ   | 5.21  |
| Mn O                           | 7                     | .235   | РСТ   | .089  |
| Mg0                            | 5                     | 7.76   | PCT   | .448  |
| CaO                            | 6                     | 10.74  | PCT   | 1.19  |
| Na <sub>2</sub> 0              | 9                     | .490   | РСТ   | .050  |
| K <sub>2</sub> 0               | 13                    | .290   | PCT   | .089  |
| $P_{2}O_{5}$                   | 3                     | .167   | PCT   | .02   |
| Н                              | 1                     | .47    | РРМ   | 0     |
| Li                             | 6                     | 19.35  | ррм   | 6.7   |
| Rb                             | 12                    | 5.66   | РРМ   | 2.4   |
| Cs                             | 5                     | .154   | РРМ   | .066  |
| Sr                             | 9                     | 157.72 | РРМ   | 74.8  |
| Ba                             | 10                    | 261.39 | РРМ   | 150.0 |
| Sc                             | 5                     | 80.26  | РРМ   | 25.5  |
| ۷                              | 4                     | 66.62  | PPM   | 54.0  |

Т ,

10017

103

ž

ų

1

 $\overline{\ }$ 

1

)

ţ

t i

•

•

10017

| Element                        | Number of<br>Analyses | Mean   | Units | Range |
|--------------------------------|-----------------------|--------|-------|-------|
| Cr <sub>2</sub> 0 <sub>3</sub> | 5                     | .354   | РСТ   | .073  |
| Co                             | 7                     | 30.7   | РРМ   | 20.5  |
| Ni                             | 2                     | 36.26  | РРМ   | 47.54 |
| Cu                             | 3                     | 10.10  | РРМ   | 4.8   |
| Zn                             | 2                     | 33.    | РРМ   | 30.0  |
| Y                              | 4                     | 168.75 | РРМ   | 25.0  |
| Zr                             | 4                     | 695.0  | PPM   | 965.  |
| Nb                             | 1                     | 27.4   | РРМ   | 0     |
| Pd                             | 1                     | .001   | РРМ   | 0     |
| Ag                             | 1                     | .016   | PPM   | 0     |
| Cd                             | 2                     | .056   | РРМ   | .024  |
| Ta                             | 3                     | 2.8    | РРМ   | 3.8   |
| W                              | 1                     | . 4    | РРМ   | 0     |
| Hf                             | 4                     | 17.72  | PPM   | 12.5  |
| 0s                             | 1                     | .22    | PPM   | 0     |
| Ir                             | 1                     | .001   | РРМ   | 0     |
| Au                             | 2                     | .004   | РРМ   | .007  |
| Hg                             | 1                     | .013   | PPM   | 0     |
| La                             | 4                     | 24.95  | РРМ   | 5.6   |
| Ce                             | 5                     | 75.98  | РРМ   | 20.0  |
| Pr                             | 2                     | 10.10  | PPM   | 5.6   |
| Nd                             | 4                     | 64.40  | РРМ   | 16.   |
| Sm                             | 6                     | 22.11  | PPM   | 6.1   |
| Eu                             | 6                     | 2.24   | РРМ   | .86   |
| Gd                             | 4                     | 19.45  | РРМ   | 11.0  |
| ТЬ                             | 4                     | 4.49   | PPM   | 1.62  |
| Dy                             | 5                     | 29.34  | РРМ   | 17.   |
| Но                             | 3                     | 6.17   | РРМ   | 4.5   |
| Er                             | 4                     | 18.27  | РРМ   | 8.    |
| Tm                             | 1                     | 3.0    | РРМ   | 0     |

ORIGINAL PAGL & OF POOR QUALITY Ū

(\_)

 $\left\{ \right\}$ 

ŝ

| Element | Number of<br>Analyses | Mean  | Units | Range |
|---------|-----------------------|-------|-------|-------|
| Yb      | 6                     | 17.85 | РРМ   | 6.5   |
| Lu      | 6                     | 2.98  | РРМ   | 2.88  |
| Th      | 9                     | 3.70  | PPM   | 2.45  |
| U       | 9                     | .698  | РРМ   | .65   |
| В       | 1                     | .7    | РРМ   | 0     |
| Ga      | 3                     | 4.43  | РРМ   | 1.10  |
| In      | 3                     | .070  | РРМ   | .137  |
| TI      | 1                     | .006  | РРМ   | 0     |
| С       | 1                     | 100.  | PPM   | 0     |
| Ge      | 1                     | 1.0   | РРМ   | 0     |
| Pb      | 2                     | 1.62  | PPM   | .113  |
| Bi      | 1                     | .001  | РРМ   | 0     |
| 0       | 1                     | 40.7  | PCT   | 0     |
| S       | 3                     | .22   | PCT   | .02   |
| Se      | 1                     | .215  | РРМ   | 0     |
| Те      | 1                     | .117  | РРМ   | 0     |
| F       | 2                     | 164.5 | PPM   | 173.  |
| C1      | 3                     | 13.43 | PPM   | 2.8   |
| Br      | 3                     | .155  | РРМ   | .12   |
| I       | 2                     | .242  | PPM   | .475  |
|         |                       |       |       |       |

()

のというなるもので

Analysts: Compston et al., (1970); Goles et al., (1970); Maxwell et al., (1970); Wakita et al., (1970); Wanke et al., (1970); Willis et al., (1972); Gast et al., (1970); Gibson & Johnson (1971); Marti et al., (1970); Murthy et al., (1970); O'Kelly et al., (1970); Perkins et al., (1970); Philpotts & Schnetzler, (1970); Tera et al., (1970); Reed & Jovanovic, (1970); Reed & Jovanovic, (1971); Anders et al., (1971); Papanastassiou et al., (1970); Eberhardt et al., (1974); Shedlovsky et al., (1970); Goles, (1971); Silver, (1970); Tatsumoto, (1970).

Age References: D'Amico et al., (1970); Turner, (1970); Hintenberger et al., (1971); Armstrong & Alsmiller, (1971); O'Kelly et al., (1970); Boschler (1971a); Marti et al., (1970); Perkins (1970); Eberhardt et al.,(1974); Silver (1970); Tatsumoto (1970); Papanastassiou (1970); Papanastassiou et al., (1971); Crozaz et al., (1970).

ORIGINAL PAGE IS OF POOR QUALITY



10018,1 Original PET Photo (S-69-46005)



10018,0 (S-75-30226) Sample 10018 is a rounded, dark grey, fine breccia that originally weighed 213 gm., and measured 8x5x4 cm. Sample was returned in ALSRC #1004.

BINOCULAR DESCRIPTIONBY: TwedellDATE: 8/6/75ROCK TYPE:Fine BrecciaSAMPLE: 10018,0WEIGHT: 215 gmCOLOR:Dark Grey (fresh & exposed)DIMENSIONS: 8x6x4 cm.

SHAPE: Rounded

. . . . . . . . .

()

COHERENCE: Intergranular - tough Fracturing - few, non-penetrative

FABRIC/TEXTURE: Anisotropic/Fine Breccia

VARIABILITY: Homogeneous

- SURFACE: Slightly irregular; patch of vesicular glass near narrow end (PET).
- ZAP PITS: Few pits on  $T_1$  surface only. Pits are glass lined up to 4 mm in size.

CAVITIES: None

| COMPONENT                           | COLOR                | % OF<br><u>ROCK</u> | SHAPE                       | SIZE<br>DOM. | (MM)<br>RANGE |
|-------------------------------------|----------------------|---------------------|-----------------------------|--------------|---------------|
| Matrix                              | Dk.Grey              | 97-98               |                             | <.1          | -             |
| Salt & Pepper<br>Clast <sub>l</sub> | Black &<br>White     | <]                  | Subrounded                  | 1-1.5        | <]-2          |
| White Clast <sub>2</sub>            | White                | <]                  | Subangular to<br>subrounder | 1            | 1-2.5         |
| Basaltic $Clast_3$                  | White &<br>Hon.Brown | 1-2                 | Angular to<br>subangular    | 1-5          | 1-10          |

- 1) Salt & pepper clast is aphanitic in texture. It has an even distribution of light and dark material.
- 2) White clast has a powdered sugar texture. Clasts are evenly distributed throughout the rock. It appears to be approximately 90% plagioclase.
- 3) Basaltic clast consists of 35% plagioclase, 30% ilmenite and 35% pyroxene.

ORIGINAL PAGE IS OF POOR QUALITY



Section 10018,32 Width of field 1.39 mm reflected light



Section 10018,32 Width of field 1.39 mm plane light

÷

109

.,

1 (N) - 1

64-1 · · · ·

ふやいれ

Sala and the same

THIN SECTION DESCRIPTION

BY: Walton

SECTION: 10018,32

SUMMARY: Slightly devitrified typical breccia with only moderate amounts of clasts present. Many of the lithic clasts are crushed and granulated. The rock appears to be a high glass breccia with minor crystalline inclusions.

#### Matrix 78% of Rock

| <u>Phase</u>                | <u>% Section</u> | Shape | <u>Size (mm</u> ) | <u>Comments</u> :                                                         |
|-----------------------------|------------------|-------|-------------------|---------------------------------------------------------------------------|
| Dark brown nearly<br>opaque | 100%             |       | <0.001            | Very high turbid<br>glass content;<br>some cryptocry-<br>stalline phases. |

#### Mineral Clasts 7% of Rock

| Phase                      | <u>Relative Abundance</u> | Shape                    | <u>Size (mm</u> ) |
|----------------------------|---------------------------|--------------------------|-------------------|
| Clinopyroxene <sub>1</sub> | Very abundant             | Angular                  | 0.001-0.4         |
| Plagioclase <sub>2</sub>   | Few                       | Blocky                   | 0.001-0.2         |
| Opaques <sub>3</sub>       | Moderate                  | Lath-like to<br>skeletal | 0.001-0.2         |

1) Highly granulated to single crystals

2) Normal, sharp twins

3) Isolated, most large crystals in clasts

### Lithic Clasts 13% of Rock

| Туре               | <b>Relative Abundance</b> | <u>Shape</u>            | <u>Size (mm)</u> |
|--------------------|---------------------------|-------------------------|------------------|
| Small              | Very abundant             | Rounded to<br>irregular | 0.001-1.0        |
| Large <sub>4</sub> | Six present               | Rounded to<br>irregular | >1.0             |

 a. Coarse grained basalt composed of clinopyroxene, plagioclase, and ilmenite.

b. Coarse grained basalt with brown pyroxene crystals, somewhat granulated.

c. Coarse grained basalt with part of the clast showing melting and subsequent devitrification.

ORIGINAL PAGE IS OF POOR QUALITY

~

()

ð.

(

b.

.)

()

- d. Coarse grained basalt composed of clinopyroxene, plagioclase and ilmenite.
- e. Coarse grained basalt composed of clinopyroxene, plagioclase, and ilmenite.
- f. Coarse grained basalt similar to (b).

#### Glass Clast 2% of Rock

| Туре                       | Relative Abundance | Shape                     | <u>Size (mm)</u> |
|----------------------------|--------------------|---------------------------|------------------|
| Yellow-Orange <sub>5</sub> | Very abundant      | Spherical to<br>irregular | 0.001-0.2        |
| Colorless <sub>6</sub>     | Moderate           | Spherical to<br>angular   | 0.001-0.3        |
| Red-Orange <sub>7</sub>    | Few                | Spherical                 | 0.05             |

5) Some devitrification; mostly angular.

6) Bubbles and some devitrification; mostly angular.

7) One piece.

Selected References: Chao et al. (1970), Dence et al. (1970), Reid et al. (1970).

#### HISTORY AND PRESENT STATUS OF SAMPLES 10/12/76

10018 was removed from ALSRC #1004 and originally processed in the Vac Lab. It was in the F-201 system at the time of the glove rupture. A small chip was transferred to PCTL for PET analyses. At some time, a small portion of the sample was sawed in SPL. Most of the original sample is intact and was re-examined in SSPL.

**PRISTINE SAMPLES:** 

| 0  | 199.40 | gm | Rock. It has pits and patina on one large<br>face. All other faces are non-exposed.<br>VAC-SSPL                                             |
|----|--------|----|---------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | 1.87   | gm | Chips. It consists of one large chip (1.5gm)<br>with no sawed or exposed surfaces, some < 5mm<br>chips and some fines. VAC-PCTL-SSPL        |
| 16 | 3.17   | gm | <lpre><lmm fines.="" pre="" vac-spl-sspl<=""></lmm></lpre>                                                                                  |
| 17 | 3.70   | gm | Three large sawed chips and two unsawed chips.<br>None of the pieces show evidence of pitting<br>or patination. Sample was probably removed |

from lunar bottom of the mother rock. VAC-SPL-SSPL

## **RETURNED SAMPLES:**

24 25.25 gm

Fresh chip. One small (1.5mm) pyroxene clast not previously noted.

## CHEMICAL ANALYSES

| Element           | Number of<br>Analyses | Mean   | <u>Units</u> | Range |
|-------------------|-----------------------|--------|--------------|-------|
| SiO <sub>2</sub>  | 4                     | 42.46  | PCT          | 1.29  |
| A1203             | 4                     | 12.48  | PCT          | 2.07  |
| Ti0 <sub>2</sub>  | 4                     | 8.25   | РСТ          | 1.50  |
| Fe0               | 4                     | 16.4   | PCT          | 3.21  |
| MnO               | 5                     | .194   | PCT          | .084  |
| Mg0               | 3                     | 8.18   | PCT          | .665  |
| CaO               | 3                     | 11.97  | PCT          | .70   |
| Na <sub>2</sub> 0 | 4                     | .492   | PCT          | .068  |
| K <sub>2</sub> 0  | 4                     | .170   | PCT          | .020  |
| P205              | ۱                     | .15    | PCT          | 0     |
| Li                | 2                     | 12.65  | РРМ          | 1.3   |
| Rb                | 3                     | 3.68   | PPM          | .19   |
| Be                | 1                     | 1.8    | РРМ          | 0     |
| Sr                | 4                     | 158.78 | РРМ          | 85.0  |
| Ba                | 4                     | 218.75 | РРМ          | 105.0 |
| Sc                | 4                     | 63.52  | PPM          | 10.2  |
| V                 | 3                     | 59.33  | РРМ          | 16.0  |
| $Cr_2O_3$         | 5                     | .291   | РСТ          | .067  |
| Со                | 5                     | 32.88  | РРМ          | 4.10  |
| Ni                | 3                     | 255.67 | РРМ          | 173.0 |
| Cu                | 2                     | 22.0   | РРМ          | 20.00 |
|                   |                       |        |              |       |

, ; °

> ۰ •

;

•

•

**(**)

\$

ł,

()

The second se

11. 4. 1. 1.

4

こうないとうできたいないので、それに、ちょうない、ないないのであるというないではないでしたのできたが、

s,

لاهريه والمراقب المحالية المحالم

١.

いやい やうういうそう

. . . . . .

;

•

, , ,

•

• •

•

1

1.

10018

| Element | Number of<br>Analyses | Mean   | Units | Range |
|---------|-----------------------|--------|-------|-------|
| Zn      | 2                     | 38.5   | РРМ   | 31.0  |
| (       | 2                     | 101.5  | РРМ   | 9.0   |
| Zr      | 4                     | 356.75 | PPM   | 101.0 |
| Nb      | 2                     | 22.    | РРМ   | 6.0   |
| ſa      | 3                     | 1.53   | PPM   | .3    |
| łf      | 3                     | 12.43  | PPM   | 2.4   |
| \u      | 1                     | 5.00   | PPB   | 0     |
| _a      | 5                     | 18.16  | PPM   | 9.0   |
| Ce      | 5                     | 61.56  | РРМ   | 19.2  |
| ۱d      | 3                     | 44.8   | РРМ   | 31.0  |
| Sm      | 4                     | 14.4   | РРМ   | 3.1   |
| Eu      | 4                     | 1.80   | PPM   | .19   |
| °r      | 1                     | 11.0   | PPM   | 0     |
| d       | 1                     | 20.5   | РРМ   | 0     |
| ГЬ      | 3                     | 3.44   | РРМ   | 1.48  |
| Ŋу      | 2                     | 20.4   | РРМ   | 2.8   |
| lo      | 2                     | 5.05   | РРМ   | .5    |
| ir      | l                     | 12.8   | PPM   | 0     |
| 'b      | 4                     | 12.38  | PPM   | 4.1   |
| u       | 4                     | 1.74   | PPM   | .74   |
| ĥ       | 3                     | 2.81   | PPM   | 1.42  |
| J       | 4                     | .585   | PPM   | .08   |
| ia      | 2                     | 4.2    | PPM   | .4    |
| 'n      | 1                     | .36    | РРМ   | 0     |
| )       | 2                     | 40.4   | PCT   | .6    |
| •       | ו                     | .15    | PCT   | 0     |
|         | l                     | 101.0  | PPM   | 0     |
| :1      | 1                     | 16.5   | РРМ   | 0     |

1

,

;

i

()

۸

.

 $\bigcirc$ 

•

ł

0

;

ļ

「「「「「」」

こう とうかい とうちゃうちょうかい となっ

Analysts: Compston et al., (1970); Ehmann & Morgan, (1970); Goles et al., (1970); Wanke et al., (1970); O'Hara et al., (1974); Annell & Helz, (1070); Philpotts & Schnetzler, (1970); O'Kelly et al., (1970); Wanke et al., (1972).

No Age References

 $\mathbb{R}^{N_{1}}$ 

••••

Ì

 $\mathbf{O}$ 

113

j,

1



Sample 10019 is a rounded, medium dark grey, fine breccia. It originally weighed 297gm, and was 7x4x4cm. This sample was returned in ALSRC #1004. (Documented Sample Container) BINOCULAR DESCRIPTION BY: Twedell DATE: 9/8/75

ROCK TYPE: Fine breccia SAMPLE: 10019,31 WEIGHT: 29 gm COLOR: Medium dark grey DIMENSIONS: 3 x 2.5 x 2.5 cm SHAPE: Rounded; subangular to subrounded (PET) COHERENCE: Intergranular - tough (coherent) Fracturing - few, non-penetrative

FABRIC/TEXTURE: Anisotropic/Fine breccia

VARIABILITY: Homogeneous

SURFACE: Smooth and rounded on pitted surfaces, irregular on fresh surfaces  $\mathsf{B}_1$  and  $\mathsf{W}_1$ .  $\mathsf{E}_1$  has been wire-sawed.

ZAP PITS: Many on  $S_1$ . Few on  $T_1$ ,  $E_1$ ,  $N_1$ . None on  $B_1$ ,  $W_1$ . Pits are glass lined.

CAVITIES: None

 $\bigcirc$ 

| COMPONENT              | COLOR                | % OF<br>R0C% | SHAPE                                 |     | E(MM)<br>RANGE |
|------------------------|----------------------|--------------|---------------------------------------|-----|----------------|
| Basalt $Clast_1$       | Honey Brn<br>& White | 2            | Rounded - subrounded                  | 1.5 | 1-3            |
| Salt & Pepper<br>Clast | Blk & White          | 1-2          | Rounded to subrounded                 | 2   | 1-5            |
| White Clast            | White                | 1            | Irregular - subrounded                | 1   | 1-1.5          |
| Matrix                 | Med.Dk.Grey          | 96           | ** ** * * * * * * * * * * * * * * * * |     |                |
| Brown $Clast_2$        | Hon.Brown            | Ϊ            | Subangular                            | .5  | 1              |
| 1) Opaque mater        | ial could be         | ilmeni       | te                                    |     |                |

2) There are only a few of these clasts on the  $S_1$  surface (See below)

SPECIAL FEATURES: This sample resembles 10066 in all components. Surface is sparsely covered with glassy spatter. Some glass on the surface is honey brown in color, with some small brown clasts (lmm) which have a crushed glass appearance.



SECTION: 10019,33 Width of field 2.72 mm plane light

THIN SECTION DESCRIPTION BY: Walton

DATE: 6/22/76

)

1. 1. 1. 1.

 $\bigcirc$ 

SUMMARY: Partly devitrified typical breccia with a fairly low lithic clast content. The lithic clasts present are relatively small as compared to many of the other Apollo 11 breccias. The rock shows a number of strain characteristics.

#### MATRIX 55% OF ROCK

| PHASE      | % SECTION | SHAPE | <u>SIZE(MM</u> ) | COMMENTS:                                                                                  |
|------------|-----------|-------|------------------|--------------------------------------------------------------------------------------------|
| Dark Brown | 100       |       | <0.001           | Glass-rich with<br>many cryptocrystal-<br>line phases; some<br>suggestion of minor<br>flow |

ORIGINAL PAGE IS OF POOR QUALITY

÷.

٩.

#### MINERAL CLASTS 30% OF ROCK

| PHASE                    | RELATIVE ABUNDANCE | SHAPE                | SIZE(MM)  |
|--------------------------|--------------------|----------------------|-----------|
| Clinopyrcxene $_1$       | Very abundant      | Equant to irregular  | 0.001-0.5 |
| Plagioclase <sub>2</sub> | Abundant           | Tabuiar to irregular | 0.001-0.2 |
| Opaques <sub>3</sub>     | Few                | Blocky to skeletal   | 0.001-0.2 |

1) Most highly strained

ないで、「ないない」のないでは、

いたの

()

ŧ

`{

2) Most show fair to good twin planes

3) Most in clast, some shards in matrix

#### LITHIC CLASTS 10% OF ROCK

| TYPE               | RELATIVE ABUNDANCE              | SHAPE                 | <u>SIZE(MM)</u> |
|--------------------|---------------------------------|-----------------------|-----------------|
| Small              | Very abundant                   | Rounded to irregula   | r 0.001-1.0     |
| Large <sub>4</sub> | Two present                     | Rounded to irregula   | r >1.0          |
| 4) a.              | Coarse-grained basalt consistin | g of large pyroxene o | crystals        |

with high skeletal ilmenite crystals and subhedral plagi lase.

b. Coarse-grained basalt consisting of very narrow plagioclase tablets with large pyroxene crystals and minor ilmenite.

#### GLASS CLASTS 5% OF ROCK

| <u>TYPE</u>                | RELATIVE ABUNDANCE | <u>SHAPE</u>              | <u>SIZE(MM)</u> |
|----------------------------|--------------------|---------------------------|-----------------|
| Yellow-Orange <sub>5</sub> | Very abundant      | Spherical to irregular    | 0.001-0.5       |
| Colorless <sub>6</sub>     | Few                | Spherical to irregular    | 0.001-0.2       |
| 5) Approximately crystals. | half spherical mas | sses-half angular; many o | dendritic       |
| 6) Mostly angula           | <b>n</b>           |                           |                 |

Mostly angular

Selected References: Keil et al. (1970)

#### HISTORY AND PRESENT STATUS OF SAMPLES - 6/22/76

10019 was removed from ALSRC #1004 and originally processed in the Vac Lab. It was one of the rocks in F-201 at the time of the glove rupture. Approximately 55gm were sent to PCTL for PET analyses. The larger piece was, at one time, chipped and sawed in SPL. The remaining pristine samples were re-examined in SSPL.

## PRISTINE SAMPLES: (A11 VAC-SPL-SSPL)

167.042 gm

1

Piece. Five surfaces are pitted, one is fresh. Ex-display piece.

| 118 |           | 10019                                                                    |
|-----|-----------|--------------------------------------------------------------------------|
| 30  | 33.323 gm | Piece. One surface is pitted, the others are fresh.<br>Ex-display piece. |
| 31  | 29.55 gm  | Piece. Four surfaces are pitted, two are fresh.                          |
| 77  | 11.12 gm  | Consisting of three large chips. One chip has patches of glassy spatter. |
| 80  | 0.85 gm   | Chips and fines.                                                         |

RETURNED SAMPLES: None

14

## CHEMICAL ANALYSES

| Element                        | Number of<br>Analyses | Mean  | Units | Range |
|--------------------------------|-----------------------|-------|-------|-------|
| SiO <sub>2</sub>               | 16                    | 42.67 | PCT   | 9.98  |
| A1 <sub>2</sub> 0 <sub>3</sub> | 14                    | 10.71 | РСТ   | 5.63  |
| Ti0 <sub>2</sub>               | 12                    | 8.10  | PCT   | 2.54  |
| Fe0                            | 12                    | 16.32 | PCT   | 6.86  |
| MnO                            | 13                    | .265  | РСТ   | .11   |
| Mg ()                          | 11                    | 6.48  | PCT   | 2.46  |
| CaO                            | 15                    | 14.06 | PCT   | 8.24  |
| Na <sub>2</sub> 0              | 14                    | .527  | PCT   | .58   |
| K <sub>2</sub> 0               | 7                     | .140  | PCT   | .05   |
| Cr <sub>2</sub> 0 <sub>3</sub> | 8                     | .270  | PCT   | .24   |
| Li                             | ı                     | 13.14 | РРМ   | 0     |
| Rb                             | 2                     | 3.35  | РРМ   | 0.9   |
| Cs                             | 1                     | 0.23  | РРМ   | 0     |
| Sr                             | 1                     | 166.4 | PPM   | 0     |
| Ba                             | 2                     | 242.5 | РРМ   | 15.0  |
| Sc                             | 3                     | 62.03 | PPM   | 3.10  |
| V                              | 2                     | 56.5  | РРМ   | 13.0  |
| Co                             | 3                     | 33.70 | PPM   | 3.40  |

i

ORIGINAL PAGE IS OF POOR QUALITY .

ł

 $\bigcirc$ 

0

and the states of

1: T

| Element | Number of<br>Analyses | Mean   | Units | Range _ |
|---------|-----------------------|--------|-------|---------|
| Ni      | ]                     | 157.16 | PPM   | 0       |
| Y       | 1                     | 91.00  | РРМ   | 0       |
| Zr      | 3                     | 478.3  | РРМ   | 125.0   |
| Hf      | 3                     | 11.63  | РРМ   | 2.90    |
| La      | 3                     | 14.91  | РРМ   | 1.20    |
| Ce      | 3                     | 55.66  | РРМ   | 8.00    |
| Nđ      | 1                     | 42.00  | РРМ   | 0       |
| Sm      | 3                     | 12.98  | РРМ   | 2.25    |
| Eu      | 3                     | 16.32  | Ррм   | 6.86    |
| Gd      | 1                     | 20.5   | РРМ   | 0       |
| Tb      | 2                     | 3.24   | PPM   | 1.13    |
| Dy      | 2                     | 18.00  | РРМ   | 0.1     |
| Но      | 3                     | 5.5    | PPM   | 0.9     |
| Er      | ۱                     | 14.10  | PPM   | 0       |
| Yb      | 3                     | 11.7   | PPM   | 1.4     |
| Lu      | 3                     | 1.64   | РРМ   | .40     |
| Th      | 2                     | 2.40   | РРМ   | 1.00    |
| U       | 3                     | .427   | РРМ   | .13     |
| I       | 1                     | 073    | PPM   | 0       |
| In      | 1                     | 5.20   | ррв   | 0       |
| 0s      | 2                     | 4.50   | РРВ   | 5.5     |
| Pr      | 1                     | 7.9    | РРМ   | 0       |
| Tb      | 2                     | 3.24   | PPM   | 1.13    |
| 0       | 1                     | 39.90  | PCT   | 0       |
|         |                       |        |       |         |

Analysts: Ehmann and Morgan (1970); Goles (1970a); Goles (1970b); Rose et al., (1970); Wakita et al., (1970); O'Hara (1974); Reed and Jovanovic (1970); Gopalan (1970); O'Kelly et al., (1970); Lovering and Butterfield (1970); Lovering and Hughes (1971).

:

No Age References

ł

1

·\* 2

5

いたのなみないで、「なない」のなない、「ななない」」、「ない」、

日本に行いたが正正に日本の日本

, ,,,

1.22

1

€

ł

( )

Ì

119

- ちんちちちちちちちち

" Altre

11 11 15.

5 P. P. S

and the second states and

,

THE PARTY OF



**BINOCULAR DESCRIPTION** 

COLOR: Medium dark grey

VARIABILITY: Homogeneous

COHERENCE: Intergranular - Tough

other surfaces.

COLOR

White

Dark

**Black** 

Green

1

Fracturing - Absent

% OF

ROCK

30

50

16

4

SHAPE: Irregular

SURFACE:

COMPONENT

Pyroxene

Ilmenite

**Olivine** 

Plagioclase

Sample 10020 is an irregular, medium dark grey, vesicular olivine basalt. This sample originally weighed 425 gm and measured 6x5x4 cm. Sample was returned in ALSRC #1004. (Documented Sample Container) BY: Twedell DATE: 6/10/76 ROCK TYPE: Vesicular Olivine Basalt SAMPLE: 10020,16 WEIGHT: 94 gm DIMENSIONS: 4.5 x 3.5 x 1.5 cm FABRIC/TEXTURE: Isotropic/Fine grained equigranular 3 sawed faces and one face partially sawed. Patina on all ZAP PITS: Many on  $T_1$ , none on others. CAVITIES: Approximately 5% surface coverage up to 2mm in diameter. Cavities are crystal lined. SIZE(MM) SHAPE DOM. RANGE Subrounded-subangular <.1 <.1-.2 Subangular <.1 <.1 Platy <.1 <.1 Subangular <.3 <.1-.9 Special Features: Sample not as fine-grained as 10049. Large olivine crystals are also present.

121

11:5

4

あるか ないかいためでいたなしないとうちょうか ()





SECTION: 10020,31 Width of field: 2.22 mm plane light

THIN SECTION DESCRIPTION BY: Walton

DATE: 6/10/76

 $\bigcirc$ 

SUMMARY: Fine-grained vesicular ophitic basalt composed of clinopyroxene, two generations of plagioclase, two generations of ilmenite with subordinate chromian ulvospinel, troiliteiron nickel, olivine, and cristobalite. The pyroxene forms large subhedral to anhedral crystals with lath-like to anhedral ilmenite crystals in a continuous network. Interstitial to these phases are subhedral to anhedral crystals of plagioclase and cristobalite, with minor glass rich mesostasis. Some of the plagioclase crystals are slightly bent and somewhat skeletal.

| PHASE    | % OF SECTION | SHAPE                 | <u>SIZE (MM</u> ) |
|----------|--------------|-----------------------|-------------------|
| Pyrox    | 51           | Subhedral to anhedral | 0.2-1.0           |
| Plag     | 30           | Tabular to anhedral   | 0.01-0.1          |
| Opaq     | 11           | Lath-like to anhedral | 0.1-0.3           |
| 01iv     | 5            | Blocky, anhedral      | 0.02-1.2          |
| Chr.U1vo | 1            | Euhedral to subhedral | 0.1-0.2           |

ORIGINAL PAGE IS OF POOR QUALITY

| PHASE | % OF SECTION | SHAPE.                | SIZE (MM) |
|-------|--------------|-----------------------|-----------|
| Cris  | 2            | Subhedral to anhedral | 0.05-0.1  |
| Voids |              | Rounded to irregular  | 0.2-0.6   |

#### COMMENTS:

()

Pyroxene - The pyroxene occurs as large pale brown to nearly colorless subhedral to anhedral crystal masses. Occasionally a pyroxene crystal is found within an olivine crystal or vice-versa. A well developed cleavage pattern is found in the more subhedral grains. Crystals of plagioclase and ilmenite occur within the pyroxene crystals and between them.

- Plagioclase Small subhedral crystals of plagioclase occur in the section associated with larger anhedral masses of plagioclase. The anhedral crystals form interstitial void fillings in the pyroxene-ilmenite network. Some bending of the subhedral crystals is present. Many of the larger crystals are somewhat skeletal in development. The smaller more euhedral crystals showed sharp twin planes while the larger interstitial crystals showed only faint to none.
- Olivine Small to large blocky anhedral crystals of olivine are scattered throughout the section. All are fresh crystals with small pyroxene rims. Some crystals contain small pyroxene crystals.
- Opaques The phases comprising the opaques are ilmenite, chromian ulvospinel, and troilite-inon nickel. Ulvospinel has been reported from this rock (Haggerty et al., 1970), but none was noted in this section.

Two generations of ilmenite are present in the section. The crystals occur as small lath-like crystal sections and also as large somewhat skeletal anhedral crystals. The larger crystals are by far more abundant.

Associated with the ilmenite are isolated euhedral to subhedral crystals of chromian ulvospinel. Approximately 10% of the total opaques in the section are chromian ulvospinel. One well defined octahedron is completely enclosed in a pyroxene crystal which is itself enclosed in a larger olivine crystal.

Small masses of troilite-iron nickel are present, but are rather sparse. A few veins of iron-nickel metal are found in some of the silicate phases.

÷

#### 10020

TEXTURE: Interlocking subhedral to anhedral crystals of pyroxene intergrown with two generations of ilmenite and two generations of plagioclase crystals. Interstitial to this network are masses of plagioclase, cristobalite and mesostasis. The texture is ophitic.

Some vesicles (approximately 1%) are present in the section, but none of the crystals are seen to be growing into the voids.

Selected References: Albee and Chodos (1970), Chao et al. (1970), Dence et al. (1970), Haggerty et al. (1970).

#### HISTORY AND PRESENT STATUS OF SAMPLES - 6/15/76

10020 was removed from ALSRC #1004 and originally processed in the Vac Lab. It was one of the samples in F-201 at the time of the glove rupture. A small portion was sent to PCTL for PET analyses; the remainder was sawed in SPL. Samples were re-examined in SSPL.

PRISTINE SAMPLES: (A11 VAC-SPL-SSPL)

| 15  | .31   | gm | Fines.                                                                   |
|-----|-------|----|--------------------------------------------------------------------------|
| 16  | 94.00 | gm | Piece. Three saw surfaces.                                               |
| 60  | .49   | gm | Fines.                                                                   |
| 189 | 31.59 | gm | Piece with 1 saw surface. No pits or patina on rock surface. 5x3x1.5 cm. |
| 190 | 2.43  | gm | Small chips and fines from ,189 & ,16.                                   |

#### **RETURNED SAMPLES:**

| 3 | 6.01 gm  | Sawed piece. Some pitting on one surface.<br>Three sawed surfaces. |
|---|----------|--------------------------------------------------------------------|
| 5 | 10.54 gm | Sawed piece. Five sawed surfaces. Pitting present but rare.        |
| 6 | 20.32 gm | Sawed piece. Three surfaces are sawed, one is pitted.              |

ORIGINAL PAGE IN OF POOR QUALITY ð

1";

the second of the second s

22

2

ł

ちょうちょう いちょうかい

• 1

ļ

| Element                        | Number of<br>Analyses | Mean          | Units | Range        |
|--------------------------------|-----------------------|---------------|-------|--------------|
| SiO <sub>2</sub>               | 2                     | 40.72         | PCT   | 1.56         |
| A1 <sub>2</sub> 0 <sub>3</sub> | 3                     | 10.57         | PCT   | 1.03         |
| $Ti O_2$                       | 5                     | 10.08         | PCT   | 3.75         |
| Fe0                            | 4                     | 18.46         | PCT   | 1.62         |
| Mn0                            | 5                     | .2615         | РСТ   | .022         |
| MgO                            | 2                     | 8.06          | PCT   | .45          |
| Ca0                            | 3                     | 11.69         | PCT   | .91          |
| Na <sub>2</sub> 0              | 6                     | .372          | PCT   | .019         |
| К <sub>2</sub> 0               | 4                     | .057          | PCT   | .016         |
| P <sub>2</sub> 0 <sub>5</sub>  | 2                     | .118          | PCT   | .085         |
| Cr <sub>2</sub> 0 <sub>3</sub> | 4                     | .3514         | PCT   | .068         |
| Li                             | 1                     | 5.00          | РРМ   | 0            |
| Rb                             | 5                     | .72           | PPM   | .124         |
| Be                             | 1                     | 2.00          | PPM   | 0            |
| Sr                             | 3                     | 149.5         | РРМ   | 5.3          |
| Ba                             | 2                     | 86.55         | PPM   | 18 <b>.9</b> |
| Sc                             | 3                     | 91.3          | PPM   | 13.0         |
| ٧                              | 1                     | 5 <b>9.</b> 0 | РРМ   | 0            |
| Со                             | 3                     | 19.66         | РРМ   | 3.0          |
| Cu                             | 2                     | 5.135         | PPM   | 2.87         |
| Zu                             | 2                     | 1.69          | РРМ   | .81          |
| Y                              | 1                     | 130           | РРМ   | 0            |
| Zr                             | 2                     | 310           | PPM   | 100          |
| Nb                             | 1                     | 36            | РРМ   | 0            |
| Мо                             | 2                     | .32           | РРМ   | .16          |
| Cd                             | 1                     | 6.37          | РРВ   | 0            |
| Ta                             | 3                     | 1.53          | РРМ   | 1.1          |
| W                              | 1                     | .13           | РРМ   | 0            |

C

.

• • • • • •

Ņ

,

**(**)

-1

1

-

 $U_{2^{n-1}}$ 

1 . . . . . . . . . . . .

i,

\$

ŗ

.

10020

| Element      | Number of<br>Analyses | Mean  | Units              | Range                  |
|--------------|-----------------------|-------|--------------------|------------------------|
| Hf           | 2                     | 7.4   | РРМ                | 1.6                    |
| Ir           | 1                     | .03   | РРВ                | 0                      |
| La           | 4                     | 7.7   | РРМ                | 1.8                    |
| Се           | 4                     | 27.58 | РРМ                | 9.1                    |
| Pr           | 1                     | 8.7   | РРМ                | 0                      |
| Nd           | 2                     | 35.5  | РРМ                | 9.0                    |
| Sm           | 3                     | 9.64  | РРМ                | .47                    |
| Eu           | 5                     | 1.57  | РРМ                | .35                    |
| Gd           | 2                     | 16.5  | РРМ                | 1.0                    |
| ТЬ           | 3                     | 2.89  | РРМ                | 1.4                    |
| Dy           | 4                     | 17.22 | РРМ                | 2.2                    |
| Но           | 2                     | 5.0   | РРМ                | 4.0                    |
| Er           | 2                     | 9.5   | РРМ                | 1.0                    |
| Tm           | 1                     | 1.2   | РРМ                | 0                      |
| Yb           | 4                     | 8.19  | РРМ                | 3.37                   |
| Lu           | 4                     | 1.45  | РРМ                | .09                    |
| Th           | 2                     | 1.08  | РРМ                | .82                    |
| U            | 3                     | . 184 | РРМ                | .08                    |
| 3            | 1                     | 1.00  | РРМ                | 0                      |
| Ga           | 2                     | 2.7   | РРМ                | 1.6                    |
| [n           | 1                     | .0146 | РРМ                | 0                      |
| []           | 1                     | .33   | РРВ                | 0                      |
|              | ו                     | 100   | РРМ                | 0                      |
| Ъ            | ٦                     | .36   | РРМ                | 0                      |
| l            | 1                     | 40    | PPM                | 0                      |
| Is           | 2                     | .045  | РРМ                | .030                   |
| b            | 1                     | .01   | РРМ                | 0                      |
| i            | 1                     | .15   | PPB                | 0                      |
|              | 1                     | .17   | PCT                | 0                      |
| e            | 2                     | .325  | РРМ                | .15                    |
|              |                       |       | ORIGINA<br>OF POOL | L PAGE IS<br>R QUALITY |
| E 1 <u>1</u> | , : I · ·             |       | : ; ; ; .          |                        |

0

э •

...

0

こうちょう ちょうちょうちょう ちょうちょう

وروي المحار المعار أعاداتهم والمحارفة المحاطمة والمحافظ والمحاف ويهجون الالعار

;

.

 $\bigcirc$ 

۰,

| Element | Number of<br>Analyses | Mean | Units | Range |
|---------|-----------------------|------|-------|-------|
| Те      | 1                     | .013 | РРМ   | 0     |
| F       | 1                     | 85   | РРМ   | 0     |
| C1      | 1                     | 150  | PPM   | 0     |

Analysts: Ganapathy et al., (1970); Morrison et al., (1970); Turekian & Kharkar, (1970); Maxwell et al., (1970); Kharkar and Turekian, (1971); Gast (1970); Haskin (1970); Wanless (1970); Tatsumoto (1970); Hurley & Pinson (1970); Papanastassiou (1970); Rosholt & Tatsumoto (1970).

Age References: Wanless (1970); Eberhardt (1971b); Tatsumoto (1970).

i,

 $\mathbf{O}$ 

C

1

ł.

ł

a star

, .

1

i

「「「「「「「」」」」

道法にあるの意思を

'' 'I

1

•



10021,0 Original PET Photo (S-69-45226)



10021,36 (S-75-31372)

> ORIGINAL PAGE IS OF POOR QUALITY

| Чус <i>I</i> 2 | ,        |            |                |
|----------------|----------|------------|----------------|
| •              |          |            |                |
|                |          |            |                |
|                |          |            | _              |
| ,              | <i>,</i> |            | <b>_</b>       |
|                |          | - 数        | 0              |
|                |          | . 🛐        |                |
|                |          |            |                |
|                |          |            |                |
|                |          | · 💽        |                |
| i i i          |          | . 14       |                |
|                |          | } 😫 —      |                |
| L.             |          | - <b>R</b> |                |
|                |          | : 👗 –      |                |
|                |          | <b>N</b>   |                |
|                |          |            | 4              |
| :              |          |            |                |
| :              |          |            |                |
| •              |          |            |                |
|                |          |            | -              |
|                |          |            | •              |
|                |          |            | *              |
| ί.             |          |            |                |
|                |          |            |                |
|                |          |            |                |
|                |          |            |                |
|                |          |            |                |
| - 1<br>- 3 - 4 |          |            |                |
| é a            |          |            |                |
| н.<br>Н        |          |            |                |
| •              |          |            |                |
|                | ·        |            |                |
| 1              |          |            |                |
|                |          |            |                |
| :              |          |            |                |
| :              | ۰.       |            |                |
| -              | •        | 1          |                |
|                |          |            |                |
| · *            |          |            | <u></u>        |
| ÷.*            |          |            | - <b>(</b> - ) |
| 5              | •        |            | •              |
| :              |          |            |                |
| ٢.             |          |            |                |
|                | ••••     |            |                |
|                |          |            |                |
|                |          |            |                |
|                |          | -          |                |
|                |          | 1 E        |                |
|                |          |            |                |
|                |          |            |                |
|                |          | 2          |                |
|                |          |            |                |
|                |          |            |                |
|                |          |            |                |
| <u>_</u>       |          |            |                |
|                | 1        |            |                |
| ;              |          | 1          |                |
| ,              |          |            |                |
|                |          |            |                |
|                |          |            |                |
|                |          |            |                |
|                |          |            |                |
| •              |          |            |                |
|                |          |            | •              |
| ۰.             |          |            | -              |
|                |          |            | •              |
|                |          |            |                |
|                |          |            |                |
|                | ٢        |            |                |
|                | 1        | 1          |                |
| _;             |          | ŧ.         |                |
|                |          | 2          |                |
| <u>`</u> , '   | Ì        | 3          |                |
|                |          |            | E.P            |
| <u>``</u> `    |          |            |                |
| •              |          | 1          |                |
|                |          | 2          |                |
| -              |          |            |                |

,

20 4

İ

Sample 10021 is a rounded, medium light grey breccia. This sample originally weighed 250 gm and was returned in the Contingency Sample Bag.

| BINOCULAR DESCRIPTION | BY: Twedell      | DATE: 9/11/75 |
|-----------------------|------------------|---------------|
| ROCK TYPE: Breccia    | SAMPLE: 10021,36 | WEIGHT: 66 gm |

COLOR: Medium light grey DIMENSIONS: 7.5x6x3.5 cm

SHAPE: Rounded to sub-rounded

COHERENCE: Intergranular - coherent Fracturing - absent

FABRIC/TEXTURE: Anisotropic/Breccia

VARIABILITY: Homogeneous

SURFACE: Rounded and relatively smooth on exposed surfaces. Surface is covered lightly with brown glassy spatter and opaque material. Glass cover is <1% of any one surface.

ZAP PITS: Many on  $E_1$ , few on  $T_1$  and  $W_1$ , none on  $B_1$ ,  $S_1$ ,  $N_1$ . Pits are glass lined and range up to 1mm in diameter.

CAVITIES: Absent

| COMPONENT              | COLOR                 | % OF<br><u>ROCK</u> | SHAPE                        | SIZE(MM)<br><u>DOM. RANGE</u> |
|------------------------|-----------------------|---------------------|------------------------------|-------------------------------|
| Matrix                 | Med.Dk.Grey           | 96                  | Rounded                      |                               |
| Basalt Clast           | Hon.Brn.<br>Blk.& Wh. | 2-3                 | Irregular to sub-<br>rounded | 2-3mm <1-6mm                  |
| Salt & Pepper<br>Clast | Blk.& Wh.             | 1-2                 | Rounded to sub-<br>rounded   | lmm <1−3mm                    |
| White Clast            | White                 | ٦                   | Irregular                    | 0.5mm <1mm                    |

**Special Features:** 

Although this rock resembles 10019, and 10023 mineralogically, it has one distinguishing feature. The surface has a light coat of brown glass which the other samples do not have. The glass is only on the exterior surfaces, and does not appear to be on any fresh surface. Glass covers less than 1% of any surface.

Š

101.14

1.4

. ......

مالك معاد معملي وواسكاني ومعلو فالهادم الم المعاد المعاديني

Ľ

i.

130



SECTION: 10021,29 Width of field 1.39 mm plane light BY: Walton THIN SECTION DESCRIPTION DATE: 6/22/76

SUMMARY: Partly devitrified typical breccia with a relatively low amount of glass fragments. All the lithic clasts are small and a majority of the mineral clasts are plagioclase.

Ś

ORIGINAL PAGE IS OF POUR QUALITY

| DUADE                                                       | ~ ~ ~ ~         | 077.011                     |              | 50% OF ROCK                          | 0010151170                                                                         |                                     |
|-------------------------------------------------------------|-----------------|-----------------------------|--------------|--------------------------------------|------------------------------------------------------------------------------------|-------------------------------------|
| PHASE                                                       | <u>% SE</u>     | CTION                       | SHAPE        | <u>SIZE(MM</u> )                     | COMMENTS:                                                                          |                                     |
| Dk.Brown                                                    | 1               | 00                          | MINERAL CLAS | <0.001<br>STS 19% OF R               | Glass-rich enc<br>small lithic c<br>abundant miner<br>partly devitri<br><u>OCK</u> | lasts and al clasts;                |
| PHASE                                                       |                 | RELATIVE                    | ABUNDANCE    | <u>SHA</u>                           | PE                                                                                 | SIZE (MM)                           |
| Pyroxene <sub>1</sub><br>Plagioclas<br>Opaques <sub>3</sub> | se <sub>2</sub> | Very abu<br>Moderate<br>Few |              | Angular to<br>Blocky to<br>Blocky to |                                                                                    | 0.001-0.2<br>0.001-0.1<br>0.001-0.2 |
| _ • · · · _                                                 |                 |                             |              |                                      |                                                                                    |                                     |

1)

Mostly very small, ill defined crystals. Good twin planes; some with uneven extinctions.

Good twin planes; some with uneven extinct
 Mostly in clasts; a few shards in matrix.

## LITHIC CLASTS 19% OF ROCK

:

( )

C

| TYPE               | RELATIVE ABUNDANCE                                                                                                                                                              | SHAPE                     | <u>SIZE (MM</u> ) |  |  |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------|--|--|--|
| Small              | Very abundant                                                                                                                                                                   | Rounded to irregular      | 0.001-1.0         |  |  |  |
| Large <sub>4</sub> | Six present                                                                                                                                                                     | Rounded to irregular      | >1.0              |  |  |  |
| 4) a.              | Coarse-grained basalt com ilmenite.                                                                                                                                             | posed of pyroxene, placic | clase and         |  |  |  |
| b.                 | Glass-rich matrix hostirg<br>plagioclase.                                                                                                                                       | small crystallites of py  | roxene and        |  |  |  |
| c.                 | Fine-grained basalt compo ilmenite.                                                                                                                                             | sed of pyroxene, plagiocl | ase and           |  |  |  |
| d.                 | Fine-g∽ained basalt compo<br>ilmenite.                                                                                                                                          | sed of pyroxene, plagical | ase and           |  |  |  |
| e.                 | Coarse-grained basalt composed of pyroxene, plagioclase and ilmenite.                                                                                                           |                           |                   |  |  |  |
| f.                 | Crystal aggragation of py<br>glass in the matrix.                                                                                                                               | roxene and plagioclase wi | th some           |  |  |  |
|                    | GLASS CLA                                                                                                                                                                       | ST 19% OF ROCK            |                   |  |  |  |
| TYPE               | RELATIVE ABUNDANCE                                                                                                                                                              | SHAPE                     | <u>SIZE (MM</u> ) |  |  |  |
| Yellow-            | -Orange <sub>5</sub> Very abundant                                                                                                                                              | Angular to spherical      | 0.001-0.3         |  |  |  |
| Colorle            | ess <sub>6</sub> Few                                                                                                                                                            | Angular                   | 0.001-0.5         |  |  |  |
| 5) Mos             | tly angular fragments with                                                                                                                                                      | a few spherical masses.   |                   |  |  |  |
| 6) Par             | tly devitrified; no spheri                                                                                                                                                      | cal masses.               |                   |  |  |  |
| Selecte            | Selected References: Fredriksson et al. (1976)                                                                                                                                  |                           |                   |  |  |  |
|                    | HISTORY AND PRESENT STATUS OF SAMPLES - 10/13/76                                                                                                                                |                           |                   |  |  |  |
| in PCTL            | 10021 was removed from the Contingency Sample Container and processed in PCTL. A large piece was sent to RCL for gamma-ray counting. Pristine samples were re-examined in SSPL. |                           |                   |  |  |  |
| PRISTIN            | PRISTINE SAMPLES: (A11 PCTL-RUL-SSPL)                                                                                                                                           |                           |                   |  |  |  |

| 10 | 5.61 gm | Chips and fines.     |
|----|---------|----------------------|
| 37 | 1.37 gm | l-2mm fines.         |
| 38 | 2.29 gm | Less than 1mm fines. |
| 39 | 2.05 gm | Less than 1mm fines. |

131

1. 1.10

| 41 | 34.52 gm | 15-20 small chips. Few are pitted. Sample exposed to air; has some rust. |
|----|----------|--------------------------------------------------------------------------|
| 79 | 14.81 gm | Chip. One pitted surface.                                                |
| 80 | 7.87 gm  | Chip. One pitted surface.                                                |
| 81 | 6.41 gm  | Chip. Two pitted surfaces.                                               |
| 82 | 0.63 gm  | Chips and fines from ,79 ,80 ,81.                                        |
| 83 | 1.73 gm  | Chip. All surfaces fresh. One surface has<br>large basaltic clast.       |

CHEMICAL ANALYSES

RETURNED SAMPLES: None

| Elemen.                        | Number of<br>Analyses | Mean   | Units | Range |
|--------------------------------|-----------------------|--------|-------|-------|
| SiO <sub>2</sub>               | 2                     | 43.26  | PCT   | 2.67  |
| A1 <sub>2</sub> 0 <sub>3</sub> | 3                     | 12.83  | PCT   | .63   |
| TiO <sub>2</sub>               | 4                     | 7.72   | PCT   | 3.00  |
| Fe0                            | 3                     | 16.08  | PCT   | 1.15  |
| Mn0                            | 5                     | .210   | PCT   | .027  |
| Mg0                            | 1                     | 8.29   | PCT   | 0     |
| CaO                            | 2                     | 12.10  | PCT   | 2.66  |
| Na <sub>2</sub> 0              | 3                     | .466   | PCT   | .005  |
| K <sub>2</sub> 0               | 3                     | .196   | PCT   | .020  |
| Li                             | 1                     | 13.    | PPM   | 0     |
| Rb                             | 2                     | 4.02   | PPM   | .03   |
| Ве                             | 1                     | 2.0    | PPM   | 0     |
| Sr                             | 2                     | 147.5  | РРМ   | 35.0  |
| Ba                             | 4                     | 292.75 | РРМ   | 139.0 |
| Sc                             | 4                     | 66.9   | PPM   | 10.2  |
| ٧                              | 3                     | 64.0   | РРМ   | 14.0  |
| Cr <sub>2</sub> 0 <sub>3</sub> | 4                     | .310   | PC    | .077  |
| Со                             | 4                     | 30.4   | РРМ   | 6.0   |

÷

ŧ

ORIGINAL PAGES OF POOR QUALLY

1

ł

14.

\_ )

۳Ľ

~

1

•

•

1

1

. . .

The local second second

( )

\*

Ć

1. 1.1

C

|   | Mean                                                                                                                 | Units                                                                                                                                                                                                                                                                   | Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|---|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1 | 184.                                                                                                                 | РРМ                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 1 | 12.0                                                                                                                 | РРМ                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 1 | 24.0                                                                                                                 | РРМ                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 1 | 113.0                                                                                                                | РРМ                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 3 | 324.67                                                                                                               | РРМ                                                                                                                                                                                                                                                                     | 174.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 1 | 28.0                                                                                                                 | РРМ                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 1 | .2                                                                                                                   | РРМ                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 1 | .36                                                                                                                  | РРМ                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 3 | 1.6                                                                                                                  | РРМ                                                                                                                                                                                                                                                                     | .4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 3 | 12.63                                                                                                                | РРМ                                                                                                                                                                                                                                                                     | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1 | .008                                                                                                                 | РРМ                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 2 | .003                                                                                                                 | РРМ                                                                                                                                                                                                                                                                     | .002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 5 | 18.64                                                                                                                | РРМ                                                                                                                                                                                                                                                                     | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 4 | 54.62                                                                                                                | РРМ                                                                                                                                                                                                                                                                     | 12.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 1 | 48.9                                                                                                                 | РРМ                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 5 | 13.96                                                                                                                | РРМ                                                                                                                                                                                                                                                                     | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 5 | 1.88                                                                                                                 | РРМ                                                                                                                                                                                                                                                                     | .2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 3 | 3.47                                                                                                                 | РРМ                                                                                                                                                                                                                                                                     | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 4 | 22.8                                                                                                                 | РРМ                                                                                                                                                                                                                                                                     | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 2 | 6.45                                                                                                                 | РРМ                                                                                                                                                                                                                                                                     | .9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| ו | 13.0                                                                                                                 | РРМ                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 4 | 12.38                                                                                                                | РРМ                                                                                                                                                                                                                                                                     | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 4 | 2.11                                                                                                                 | РРМ                                                                                                                                                                                                                                                                     | .26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1 | 2.5                                                                                                                  | РРМ                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 2 | .505                                                                                                                 | РРМ                                                                                                                                                                                                                                                                     | .17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 2 | 5.05                                                                                                                 | РРМ                                                                                                                                                                                                                                                                     | .9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 2 | 25.01                                                                                                                |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 1 | . 41                                                                                                                 |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| I | .050                                                                                                                 | РРМ                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| ו | 41.8                                                                                                                 | PCT                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|   | 1<br>1<br>3<br>3<br>1<br>2<br>5<br>4<br>1<br>5<br>5<br>3<br>4<br>2<br>1<br>4<br>4<br>1<br>2<br>2<br>2<br>1<br>1<br>1 | 1 $12.0$ 1 $24.0$ 1 $113.0$ 3 $324.67$ 1 $28.0$ 1 $.2$ 1 $.36$ 3 $1.6$ 3 $12.63$ 1 $.008$ 2 $.003$ 5 $18.64$ 4 $54.62$ 1 $48.9$ 5 $13.96$ 5 $1.88$ 3 $3.47$ 4 $22.8$ 2 $6.45$ 1 $13.0$ 4 $12.38$ 4 $2.11$ 1 $2.5$ 2 $5.05$ 2 $5.05$ 2 $5.05$ 2 $25.01$ 1 $.41$ 1 $.050$ | 1       12.0       PPM         1       24.0       PPM         1       113.0       PPM         3       324.67       PPM         1       28.0       PPM         1       28.0       PPM         1       28.0       PPM         1       28.0       PPM         1       .2       PPM         3       1.6       PPM         3       12.63       PPM         3       12.63       PPM         1       .008       PPM         2       .003       PPM         5       18.64       PPM         4       54.62       PPM         1       48.9       PPM         5       13.96       PPM         5       1.88       PPM         3       3.47       PPM         4       22.8       PPM         1       13.0       PPM         4       21.38       PPM         1       13.0       PPM         2       .505       PPM         2       .505       PPM         2       .505       PPM |  |

133

ŝ

3

. . . . . . . .

and the state of

1

1

3 3 3

れな

はいが く こんいいご



Analysts: Ehmann & Morgan, (1970); Goles et al., (1970); Turekian & Kharkar, (1970); Kharkar & Turekian, (1971); Annell & Helz, (1970); O'Kelly et al., (1970); Philpotts & Schnetzler, (1970); Wasson & Baedecker, (1970).

Age References: Hintenberger (1971).

i

 $\bigcirc$ 

Ū

 $\bigcirc$ 



the shead

1

\$

#### 10022

Sample 10022 is a medium dark grey vesicular basalt. This sample originally weighed 95~gm and measured 5x4x3~cm. Sample was returned in the Contingency Sample Bag.

BINOCULAR DESCRIPTIONBY: TwedellDATE: 6/15/76ROCK TYPE:Vesicular basaltSAMPLE: 10022,31WEIGHT: 20.9 gmCOLOR:Medium dark greyDIMENSIONS: 2.4 x 2.2 x 2.2 cm

SHAPE: Irregular

COHERENCE: Intergranular - tough Fracturing - absent

FABRIC/TEXTURE: Isotropic/Equigranular

VARIABILITY: Homogeneous

SURFACE: Irregular, but dust free. Some patina present.

ZAP PITS: One surface has a few pits.

CAVITIES: Vesicles cover 20% of surface. Cavities are crystal lined.

| COMPONENT                | COLOR      | % OF<br>ROCK | SHAPE             | SIZE<br>DOM. | (MM)<br>RANGE |
|--------------------------|------------|--------------|-------------------|--------------|---------------|
| Pyroxene <sub>1</sub>    | Dark Brown | 60           | Subhedral         | .2           | <.13          |
| Plagioclase <sub>2</sub> | White      | 25           | Lathy to euhedral | <.1          | <.11          |
| Ilmenite <sub>3</sub>    | Black      | 15           | Anhedra1          | <.1          | <.1           |

1

1) Range from dark honey brown to vitreous black.

2) Clear and translucent (crushed) crystals.

1

i

1

3) Platy semi-opaque crystals.



Constantial on a

E,



| SECTION 10022,57         | Width of field 1.39 m | m plane light |
|--------------------------|-----------------------|---------------|
| THIN SECTION DESCRIPTION | BY: Walton            | DATE: 6/15/76 |

SUMMARY: Fine-grained vesicular intersertal basalt composed of clinopyroxene, plagioclase and ilmenite with subordinate mesostasis. The crystals of plagioclase are, for the most part, tabular which appear in the section as thin narrow acicular crystals with poor optical characteristics. Masses of anhedral plagioclase occur as interstitial void fillings in the pyroxene-ilmenite network. Also filling voids in the network are small masses of glass-rich mesostasis.

| PHASE | % OF SECTION | SHAPE                 | <u>SIZE (MM</u> ) |
|-------|--------------|-----------------------|-------------------|
| Pyrox | 43           | Anhedral, irregular   | 0.01-0.1          |
| Plag  | 11           | Anhedral to acicular  | 0.01-0.3          |
| Opaq  | 39           | Subhedral to skeletal | 0.001-0.8         |
| Meso  | 7            | Irregular             | 0.001-0.05        |

ORIGINAL PAGE IS OF POOR QUALITY

COMMENTS:

Pyroxene - Small pale brown to nearly clear anhedral crystals of pyroxene forms an almost continuous network with the larger ilmenite crystals in the rock. This network then hosts all other phases present. Many of the pyroxene crystals are polygranular, but appear as a monocrystal in plane light. Many of the vesicles are lined with very fractured pyroxene crystals. Many of the subhedral crystals of ilmenite are wholly enclosed in pyroxene crystals.

Plagioclase - The plagioclase crystals in this rock differ somewhat from the typical Apollo 11 interpertal basalt. Nearly every crystal is anhedral and occurs as interstitial void fillings in the pyroxene-ilmenite network. In section, however, many of the crystals appear as acicular crystals sometimes with glass centers. No well defined crystal could be found. Isolated crystals are rare to absent. The twinning is poor and extinctions uneven. A few fan-shaped masses are present, but again are not composed of euhedral crystals.

Isolated patches of a glass-rich mesostasis also occur as an interstitial component in the network. The color is a dark brown. Many of the masses occur near or at a plagioclase-pyroxene interface. The masses are turbid and very irregular in shape.

Opaques - Ilmenite makes up, by far, the most abundant opaque mineral in the rock. Two generations of crystals are present in the rock. The first type forms larger skeletal crystals with several of the crystals having chromite and rutile exsolutions. These crystals are very erose and the embayments are predominately filled with pyroxene.

The second type forms smaller lath-like crystals, some of which are quite thin. In section many of these appear as long thin acicular crystals. Several of these crystals are bent and broken.

TEXTURE: Fine-grained intersertal basalt consisting of a network of pyroxene crystals that are intergrown with larger skeletal ilmenite crystals. Interstitial to this network are crystals of plagioclase and masses of mesostasis. Small subhedral to nearly euhedral crystals of ilmenite occur included in some of the pyroxene grains. The plagioclase is all or nearly all interstitial while appearing as long acicular crystals in the section. Contacts are sharp between all phases.

Selected References: Cameron (1970), Kushiro and Nakamura (1970), Smith, J.V. et al. (1970), Weill et al. (1970).

1

### HISTORY AND PRESENT STATUS OF SAMPLES - 10/13/76

10022 was removed from the Contingency Sample Container and processed in PCTL. At some time, the sample, or a portion of the sample, was sawed in SPL. Samples were re-examined in SSPL.

**PRISTINE SAMPLES:** 

Ċ

٤

(

( )

| 108 | 8.01 | gm | Chip.<br>PCTL-SF | Pitted on<br>PL-SSPL | two surfa | ices. |
|-----|------|----|------------------|----------------------|-----------|-------|
| 114 | 1.69 | gm | Fines.           | PCTL-SPL             | SSPL      |       |

### **RETURNED SAMPLES:**

| 31 | 21.88 | gm |
|----|-------|----|
|    |       |    |

Chip. Pitted on two surfaces. Has been heated to 525°C. Possible silicone grease contamination.

### CHEMICAL ANALYSES

| Element           | Number of<br>Analyses | Mean   | Units | Range |
|-------------------|-----------------------|--------|-------|-------|
| SiO <sub>2</sub>  | 3                     | 41.6   | РСТ   | 3.1   |
| A1203             | 4                     | 8.19   | РСТ   | .872  |
| TiO <sub>2</sub>  | 3                     | 12.24  | РСТ   | .48   |
| Fe0               | 4                     | 18.97  | РСТ   | 2.06  |
| MnO               | 4                     | .23    | PCT   | .028  |
| MgO               | 2                     | 7.27   | РСТ   | .943  |
| CaO               | 2                     | 10.52  | РСТ   | .35   |
| Na <sub>2</sub> 0 | 3                     | .439   | PCT   | .110  |
| K <sub>2</sub> 0  | 3                     | .280   | PCT   | .035  |
| Li                | I                     | 11.5   | PPM   | 0     |
| Rb                | 4                     | 5.73   | РРМ   | .43   |
| Cs                | 1                     | .2     | PPM   | 0     |
| Sr                | 4                     | 166.48 | РРМ   | 9.0   |
| Ba                | 4                     | 248.75 | PPM   | 57.0  |

ORIGINAL PAGE IS OF POOR QUALITY

,\*\*\*\*\*\* '.

•

1

'. .

and the second 
•

,

.

1

Ţ

· • • · · ·

Ξ.

İ

)

10022

| Element                        | Number of<br>Analyses | Mean  | Units | Range |
|--------------------------------|-----------------------|-------|-------|-------|
| Sc                             | 3                     | 76.97 | РРМ   | 2.30  |
| ٧                              | 2                     | 79.50 | РРМ   | 19.0  |
| Cr <sub>2</sub> 0 <sub>3</sub> | 4                     | .342  | РСТ   | .041  |
| Со                             | 3                     | 29.27 | РРМ   | .80   |
| Ni                             | 1                     | 9.98  | РРМ   | 0     |
| Cu                             | 1                     | 5.1   | РРМ   | 0     |
| Zn                             | 1                     | 2.9   | РРМ   | 0     |
| Y                              | 1                     | 230.0 | РРМ   | 0     |
| Zr                             | 2                     | 360.0 | РРМ   | 460.  |
| Ag                             | ו                     | .002  | РРМ   | 0     |
| Ta                             | 3                     | 1.27  | РРМ   | .8    |
| Hf                             | 3                     | 19.73 | РРМ   | 3.4   |
| Au                             | 1                     | .001  | PPM   | 0     |
| La                             | 3                     | 25.37 | РРМ   | 2.6   |
| Ce                             | 3                     | 76.63 | РРМ   | 12.5  |
| ۱d                             | 1                     | 65.   | РРМ   | 0     |
| Sm                             | 3                     | 20.2  | РРМ   | 2.1   |
| Eu                             | 3                     | 2.14  | РРМ   | .25   |
| id                             | 1                     | 23.9  | РРМ   | 0     |
| Ъ                              | 3                     | 4.91  | РРМ   | 1.2   |
| )y                             | 2                     | 30.05 | РРМ   | .1    |
| lo                             | 3                     | 8.37  | РРМ   | 2.7   |
| r                              | 1                     | 15.8  | РРМ   | 0     |
| Ъ                              | 4                     | 15.85 | РРМ   | 14.   |
| .u                             | 3                     | 2.55  | РРМ   | .22   |
| ļ                              | 2                     | .735  | РРМ   | .13   |
| a                              | 1                     | 2.9   | РРМ   | 0     |
| n                              | 1                     | .008  | PPM   | 0     |
| S                              | 1                     | .063  | PPM   | 0     |
| b                              | 1                     | .006  | РРМ   | 0     |

-----

1

i

Ĺ

ļ

at a channel of the

()

•

 $\bigcirc$ 

1

...

;

4

1

1

ł

「たいち」の「おいい」のよい、ましょう



5

\*

| Element | Number of<br>Analyses | Mean | Units | Range |
|---------|-----------------------|------|-------|-------|
| 0       | 1                     | 39.3 | PCT   | 0     |
| Se      | 1                     | .7   | PPM   | 0     |
| C1      | 1                     | 19.3 | PPM   | 0     |
| Br      | 1                     | .129 | PPM   | 0     |

Analysts: Ehmann & Morgan, (1970); Goles et al., (1970); Rose et al., (1970); Haskin et al., (1970); Murthy et al., (1970); Gopalon et al., (1970); Hurley et al., (1970); Ehmann and Morgan, (1970).

Age References: Turner (1970); Eberhardt (1971b).

The second second second second second

あるのないないともの

0

()

[

Ð

٠t

ORIGINAL PAGE IS OF POOR QUALITY



Sample 10023 is a sub-rounded, medium dark grey, fine breccia. This sample originally weighed 66gm and measured 6x4x2cm. It was returned in the Contingency Sample bag.

10023

BINOCULAR DESCRIPTION BY: Twedell DATE: 9/12/75 ROCK TYPE: Fine breccia SAMPLE: 10023,2 WEIGHT: 19 gm. COLOR: Medium dark grey DIMENSIONS: Four chips SHAPE: Rounded to sub-rounded

COHERENCE: Intergranular - coherent Fracturing - few, non-penetrative; rock is microfractured (PET),

FABRIC/TEXTURE: Anisotropic/Fine Breccia

VARIABILITY: Homogeneous

SURFACE: Surface is rounded on exposed surface to sub-rounded on fresh surface (see special features); one side is a flat fracture surface (PET)

ZAP PITS: Many on  $T_1$ , few on  $E_1$ , none on  $W_1$ ,  $N_1$ ,  $S_1$ ,  $B_1$ . Pits are glass lined up to 1.5mm in diameter.

CAVITIES: None

()

|                            |                          | % OF       |                         | SIZE (M |        |
|----------------------------|--------------------------|------------|-------------------------|---------|--------|
| COMPONENT                  | COLOR                    | ROCK       | SHAPE                   | DOM. RA | NGE    |
| Matrix                     | Med.Dk.Grev              | <b>9</b> 7 | Rounded                 |         |        |
| Basalt $Clast_1$           | Honey Brn.<br>Blk. & Wh. | ١          | Subrounded to rounded   | 1mm .5  | -1.5mm |
| White <sub>2</sub>         | White                    | 1          | Rounded to<br>irregular | lmm .8  | -1.5mm |
| Salt & Pepper <sub>3</sub> | Blk. & Wh.               | <1         | Rounded                 | 1mm 1   | mm     |
| Brown $Clast_4$            | Brown                    | <1         | Irregular               | On1y 1  |        |

1) Same type of clast as seen in 10021, 10019.

2) See special features

3) Opaque material is in elongated laths.

4) The only one visible on the sample has a granular appearance. It

# ORIGINAL PAGE IS OF POOR QUALITY

does not appear to be crushed glass. Clast has a smaller white clast contained within it.

SPECIAL FEATURES: Brown glassy spatter covers about 5% of surface area. Small amounts of green glass appear in isolated areas of fresh surface. Three types of white clasts occur: 1) pure white; 2) white with brown glass; and, 3) white with green glass. In all cases, the white component is granular to powdered.



SECTION: 10023,42 Width of field 2.72 mm plane light

THIN SECTION DESCRIPTION BY: Walton DATE: 6/23/76

SUMMARY: Partly devitrified typical breccia with a low lithic clast content. Numerous mineral fragments are present, some of which are subhedral. Most of the lithic clasts present are large with only a few small clasts present.

### MATRIX 50% OF ROCK

| PHASE      | % SECTION | SHAPE | <u>SIZE (MM</u> ) | COMMENTS:                                             |
|------------|-----------|-------|-------------------|-------------------------------------------------------|
| Dark Brown | 100       |       | <0.001            | High glass content<br>with some devitrifica∸<br>tion. |

|                    |                                                                                                 | ו                                                             | 0023                                           |                        |
|--------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------|------------------------|
|                    |                                                                                                 | MINERAL CLAS                                                  | TS 43% OF ROCK                                 |                        |
| PHASE              |                                                                                                 | RELATIVE /BUNDANCE                                            | SHAPE                                          | <u>SIZE (M</u>         |
| Pyroxer            | ie <sub>1</sub>                                                                                 | Very abundant                                                 | Angular to irregular                           | 0.001-0                |
| Plagio             | clase <sub>2</sub>                                                                              | Few                                                           | Blocky to irregular                            | 0.001-0                |
| Opaques            | <b>3</b> 3                                                                                      | Few                                                           | Skeletal to irregular                          | 0.001-0                |
| 2) Son             | ne good <sup>-</sup>                                                                            | poor extinctions.<br>twins; mostly poor<br>crystals with a fe | optical characteristics.<br>w large fragments. |                        |
|                    |                                                                                                 | LITHIC CLAS                                                   | TS 2% OF ROCK                                  |                        |
| TYPE               |                                                                                                 | RELATIVE ABUNDANCE                                            | SHAPE                                          | <u>SIZE (M</u>         |
| Small              |                                                                                                 | Few                                                           | Rounded to irregular                           | .001-1.                |
| Large <sub>4</sub> |                                                                                                 | 10 present                                                    | Rounded to irregular                           | >1.0                   |
| 4) a.              |                                                                                                 | rained subophitic b<br>e, and ilmenite.                       | asalt composed of clinopy                      | yroxene, pl            |
| b.                 | Coarse<br>plagio                                                                                | -grained interserta<br>clase, ilmenite and                    | l basalt composed of clin<br>mesostasis.       | nopyroxene,            |
| с.                 | Fine-gi<br>ilmenit                                                                              |                                                               | sed of clinopyroxene, pla                      | agioclase a            |
| d.                 | <ol> <li>Fine-grained basalt composed of clinopyroxene, plagioclase ar<br/>ilmenite.</li> </ol> |                                                               |                                                |                        |
| e.                 | Fine-gi<br>ilmenit                                                                              |                                                               | sed of clinopyroxeme, pla                      | agioclase a            |
| f.                 | Coarse<br>and ilm                                                                               |                                                               | posed of clinopyroxene, p                      | plagioclase            |
| g.                 | and ilm                                                                                         | nenite.                                                       | posed of clinopyroxene, p                      | -                      |
| h.                 | and ilm                                                                                         | nenite.                                                       | posed of clinopyroxene, p                      | plagioclase            |
| i.                 |                                                                                                 |                                                               | all pyroxene dendrites.                        |                        |
| j.                 | Compose                                                                                         | ed of small crystal                                           | fragments in a partly g                        | lassy matri:           |
|                    |                                                                                                 | GLASS CLAS                                                    | TS 5% OF ROCK                                  |                        |
| TYPE               |                                                                                                 | RELATIVE ABUNDANCE                                            | SHAPE                                          | <u>SIZE (M</u>         |
| Yellow-            | Orange <sub>5</sub>                                                                             | Very abundant                                                 | Angular to spherical                           | 0.001-0                |
| 5) Mos             | t fragme                                                                                        | ents with only a fea                                          | w spherical masses.                            |                        |
|                    |                                                                                                 |                                                               | ORIG                                           | INAL PAGE<br>OOR QUALI |

:-

ľ

•\*\*

nn 4. 1 - 1 77

1

 $\mathcal{Y} = e^{i t} \cdot \frac{1}{2}  

ł

• • • • • • • • • • • • • •

No.

•

ţ,

, <del>N</del>.,

€

(

.e

(

1.

. . .

145

٠,

<u>arten (</u>en l'en l'en l'e

.)

; )

# HISTORY AND PRESENT STATUS OF SAMPLES - 10/13/76

10023 was removed from the Contingency Sample Container and processed in PCTL. Samples were re-examined in SSPL.

PRISTINE SAMPLES:

| 1  | 16.57 gm | Three large chips, small chips and fines.<br>Two of the large chips are pitted. PCTL-SSPL |
|----|----------|-------------------------------------------------------------------------------------------|
| 16 | 1.06 gm  | Fines. PCTL-SSPL                                                                          |

**RETURNED SAMPLES:** 

2 19.53 gm Piece. Pitted on two surfaces.

NO CHEMICAL ANALYSES OR AGE DATES

:



ORIGINAL PAGE IS OF POOR QUALITY

Sample 10024 is a sub-angular, medium light grey, fine grained basalt. This sample originally weighed 68gm and measured 5x4x2.5cm. It was returned in the Contingency Sample Container. BINOCULAR DESCRIPTION BY: Twedell DATE: 6/8/76 ROCK TYPE: Vesicular basalt SAMPLE: 10024,27 WEIGHT: 20.43 gm COLOR: Medium light grey DIMENSIONS: 3.2 x 2.4 x 1.3 cm SHAPE: Angular to sub-angular COHERENCE: Intergranular - friable Fracturing - few, non-penetrative FABRIC/TEXTURE: Isotropic equigranular VARIABILITY: Homogeneous SURFACE: Surface is granulated; Flat fracture surface on one side (PET) ZAP PITS: Few on  $T_1$ ,  $N_1$ . None on  $S_1$ ,  $W_1$ ,  $E_1$ ,  $B_1$ . Pits are glass lined, up to lmm in diameter. CAVITIES: Surface is vuggy on both fresh and exterior surfaces. Vugs cover approximately 25% of rocks surface area. Glass droplets occur inside some of the vugs. % OF SIZE(MM) COMPONENT COLOR ROCK SHAPE DOM. RANGE

| Plagioclase        | White | 30 | Angular | .2 | .14           |
|--------------------|-------|----|---------|----|---------------|
| Pyroxene           | Brown | 30 | Angular | .3 | .15           |
| Black <sub>1</sub> | Black | 25 | Rounded | .3 | .15           |
| Ilmenite           | Black | 15 | Angular | .3 | < <b>.1</b> 3 |

1) Vitreous appearance, probably glass.

SPECIAL FEATURES: There are some dark grey crystals protruding from the vug walls.

~**T** 



SECTION 10024,29 Width of field 1.39 mm plane light THIN SECTION DESCRIPTION BY: Walton DATE: 6/8/76 SECTION: 10024,29

SUMMARY: Fine grained intersertal basalt composed of clinopyroxene, plagioclase, and ilmenite with subordinate mesostasis. Few of the crystals in the section show well defined crystal faces and most are somewhat rounded at the edges. Several groups of radially clustered, acicular pyroxene-plagioclase intergrowths are also present. Glassy cores are present in some of the crystals as well as a glass-rich mesostasis between adjacent crystalline phases.

| PHASE | % OF SECTION | SHAPE                 | <u>SIZE (MM</u> ) |
|-------|--------------|-----------------------|-------------------|
| Pyrox | 45           | Anhedral, irregular   | 0.1-0.8           |
| Plag  | 22           | Anhedral to acicular  | 0.2-0.9           |
| Opaq  | 23           | Anhedral to subhedral | 0.01-0.4          |
| Meso  | 10           | Irregular             | 0.01-0.03         |

ORIGINAL PAGE IN OF POOR QUALITY

### COMMENTS:

Pyroxene - The pyroxene forms pale brown anhedral crystals which host the other phases present. Well developed cleavage is found in many crystals, while fracturing is present in all the crystals. No marked zoning, but occasional twinning is present. The crystals make up an almost continuous array with many areas consisting of only polygranular pyroxene. All contacts with the other crystalline phases are sharp and the mesostasi present in the section usually occurs between adjacent pyroxene crystals.

10024

The mesostasis forms dark brown poorly defined irregular masses throughout the section. The boundaries between the crystalline phases and the mesostasis are ill defined and the glassy material appears to have filled interstitial openings in the other phases. Some devitrification has taken place as the masses are very turbid.

- Plagioclase Two major types of plagioclase occur in the rock. The larger anhedral crystals are skeletal, poorly formed and form interstitial masses between the pyroxene crystals. The smaller acicular crystals are lath-like and may have hollow centers filled with a glassy phase. These crystals form intergrowths with acicular pyroxene crystals in more or less fanshaped manner. Many of the terminations are quite splintery. Small crystals of an apatite-like phase is present associated with the plagioclase. This phase was not identified.
- Opaques The primary opaque phase present in the rock is ilmenite. It forms skeletal crystals which are scattered throughout the section. Few terminations are present on any crystals. Some chromite exsolutions are present. Most of the crystals of ilmenite are very erose and the embayments filled with pyroxene. A few lath-like subhedral crystals are present. These are smaller and far more uncommon than the larger skeletal crystals.

Many masses of troilite with and without iron-nickel inclusions are found scattered throughout the section.

Kushiro and Nakamura, (1970) have reported large crystals of cristobalite from this rock. None of the sections examined could confirm their observation. Several small areas of the mesostasis had what appeared to be small silica inclusions but these were not confirmed.

TEXTURE: Nearly equigranular intersertal basalt consisting of a network of pyroxene that is intergrown with large skeletal crystals of ilmenite. Occurring interstitial to this network are plagio-

### 150

clase tablets that are intergrown with the edges of the pyroxene, acicular pyroxene-plagioclase intergrowth, small subhedral crystals of ilmenite, and anhedral masses of plagioclase and mesostasis. Contacts are sharp between crystalline phases.

# HISTORY AND PRESENT STATUS OF SAMPLES - 10/18/76

10024 was removed from the Contingency Sample bag in PCTL. The sample was split in PCTL and was later re-examined in SSPL.

### PRISTINE SAMPLES: (All PCTL-SSPL)

| 7  | 0.01 gm   | Less than 1mm fines.                                                          |
|----|-----------|-------------------------------------------------------------------------------|
| 19 | 7.22 gm   | Two large pieces plus small chips and fines.<br>There are no pitted surfaces. |
| 27 | 20.427 gm | Piece with one pitted surface.                                                |

### **RETURNED SAMPLES:**

**(** - '

Support State

1

17 10.59 gm Piece with no pitted surfaces.

# CHEMICAL ANALYSES

| 1.25 |
|------|
|      |
| 1.75 |
| 1.3  |
| 1.31 |
| .028 |
| .981 |
| .726 |
| .06  |
| .059 |
| 0    |
|      |

,

152

10024

| Element                        | Number of<br>Analyses | Mean  | Units | Range |
|--------------------------------|-----------------------|-------|-------|-------|
| Rb                             | 5                     | 5.99  | РРМ   | .72   |
| Sr                             | 3                     | 173.7 | РРМ   | 17.5  |
| Ba                             | 3                     | 255.0 | РРМ   | 140.  |
| Sc                             | 1                     | 76.2  | РРМ   | 0     |
| V                              | 2                     | 60.5  | РРМ   | 47.   |
| Cr <sub>2</sub> 0 <sub>3</sub> | 3                     | .372  | РСТ   | .065  |
| C 0                            | 2                     | 30.2  | РРМ   | 3.6   |
| Ni                             | 1                     | 20.04 | РРМ   | 0     |
| Си                             | 1                     | 16.0  | РРМ   | 0     |
| Zn                             | 1                     | 14.0  | РРМ   | 0     |
| Y                              | 1                     | 168.0 | PPM   | 0     |
| Zr                             | 2                     | 512.5 | РРМ   | 275.  |
| ٧b                             | 1                     | 25.   | PPM   | 0     |
| a                              | 1                     | 2.4   | PPM   | 0     |
| łf                             | 1                     | 20.0  | РРМ   | 0     |
| La                             | 2                     | 31.0  | РРМ   | 16.   |
| Ce                             | 3                     | 86.87 | PPM   | 32.   |
| Pr                             | 1                     | 12.0  | РРМ   | 0     |
| ١d                             | 2                     | 60.55 | РРМ   | 11.1  |
| Sm                             | 2                     | 21.3  | РРМ   | 4.2   |
| Eu                             | 1                     | 2.21  | РРМ   | 0     |
| id                             | 1                     | 28.6  | РРМ   | 0     |
| )y                             | 1                     | 33.6  | РРМ   | 0     |
| Но                             | 1                     | 8.1   | РРМ   | 0     |
| Er                             | 1                     | 19.3  | PPM   | 0     |
| Yb                             | 2                     | 18.1  | РРМ   | 0     |
| Lu                             | 1                     | 3.2   | РРМ   | 0     |
| Th                             | 1                     | 4.1   | РРМ   | 0     |
| υ                              | 1                     | .67   | РРМ   | 0     |
| Ga                             | 1                     | 5.0   | РРМ   | 0     |
| 3a                             | 1                     | 5.0   |       | -     |

-

)

٣)

Ĩ )

| Element | Number of<br>Analyses | Mean | Units | Range |
|---------|-----------------------|------|-------|-------|
| 0       | 1                     | 38.9 | РСТ   | 0     |
| S       | 1                     | .22  | РСТ   | 0     |

Analysts: Compston et al., (1970); Ehmann & Morgan, (1970); Rose et al., (1970); Goles et al.,(1970); Gopalon et al., (1970); Philpotts & Schnetzler, (1970); Papanastassiou & Wasserburg, (1971); Hurley & Pinson, (1970).

Age References: Turner, (1970); Eberhardt (1971b); Papanastassiou et al., (1971).

0

Į

1. 1. Sunda, A.

i

. . . . .

()

ł

25

こうかん こうべんてい シー・・スローム たいかん あいろう 「おく」を言いてきた。 なまんしょう なかかけんせん たいろう とうじん



Sample 10025 is a sub-rounded, dark grey microbreccia. This sample originally weighed 9gm and measured 3x3x1cm. It was returned in the Contingency Sample bag. BINOCULAR DESCRIPTION BY: Kramer and Schwarz DATE: 10/3/75 ROCK TYPE: Microbreccia SAMPLE: 10025,3 WEIGHT: 8.06 gm COLOR: Dark Grey DIMENSIONS: 2.5 x 2 x 1.5 cm SHAPE: Sub-rounded COHERENCE: Intergranular - slightly friable Fracturing - few fractures, penetrative

FABRIC/TEXTURE: Anisotropic/Microbreccia

VARIABILITY: Homogeneous

SURFACE: Smooth, rounded

ZAP PITS: Few on B<sub>1</sub> and S<sub>1</sub> faces, some glass lined; all sides have glass pits (PET).

CAVITIES: Absent

ſ

i

ł

1 1 1

C

();

ł

| COMPONENT       | COLOR   | % OF<br>ROCK | SHAPE   | SIZE (MM)<br>DOM. RANGE |
|-----------------|---------|--------------|---------|-------------------------|
| Matrix          | Dk.Grey | 98           |         |                         |
| White Clasts    | White   | 1            | Angular | .25 <.5                 |
| Glass Spherules | Dark    | 1            | Spheres | .25 <.5                 |

### SPECIAL FEATURES:

Matrix immediately surrounding pits is raised with respect to the nonpitted matrix, i.e., they show high relief.

# THIN SECTION DESCRIPTION:

There was no thin section for the generic 10025 at the onset of secondary examination. Due to the small amount of remaining sample (8.06gm), it was judged unwise to remove a chip for thin sections.

ORIGINAL PAGE IS OF POOR QUALITY

### HISTORY AND PRESENT STATUS OF SAMPLES - 6/29/76

 $\langle \rangle$ 

÷ )

1

10025 was removed from the Contingency Sample bag in PCTL and was split in PCTL. It was later re-examined in RSPL.

PRISTINE SAMPLES:

None

**RETURNED SAMPLES:** 

3 8.06 gm Piece. Two pitted surfaces.

NO CHEMICAL ANALYSES OR AGE DATES.

frank i sa

.

•



٦r

1.1.1.1

3.

Y I

÷,

1

mitrary provident and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the seco

1

I.



10026,10 (S-75-32595)

> ORIGINAL PAGE IS OF POOR QUALITY

### 10026

Sample 10026 is a sub-angular, grey microbreccia. The sample originally weighed 9gm and measured 2.5x2x1.5cm. Sample was returned in the Contingency Sample bag. BY: Kramer and Schwarz **BINOCULAR DESCRIPTION** DATE: 10/6/75 ROCK TYPE: Microbreccia SAMPLE: 10026,10 WEIGHT: 8.47 gm COLOR: Grey DIMENSIONS: 2.5 x 2 x 1.5 cm SHAPE: Sub-angular/sub-rounded; a faint layering can be observed parallel to the flat surface (PET). COHERENCE: Intergranular - coherent Fracturing - absent; two sets of faint fine fractures best seen on flat surface (PET). FABRIC/TEXTURE: Anisotropic/Microbreccia VARIABILITY: Homogeneous SURFACE: Irregular ZAP PITS: Glass lined, approximately 10 pits/cm<sup>2</sup> CAVITIES: Absent % OF SIZE (MM) COMPONENT COLOR SHAPE ROCK DOM. RANGE Matrix 90 Grey \_ \_ \_ \_ \_ .25-1 White Clast, White 5 Angular 0.5 Salt & Pepper White & 3 Angular 0.5 .5 -1 Clast Dark Basalt Clast<sub>2</sub> Lt.Grey 2 Angular 0.4

1) Plagioclase (crushed).

2) Remains of basalt clast, on edge of  $E_1$  face (fresh surface).

1

1

#### SPECIAL FEATURES:

Color of pyroxene varies from light orange-brown crushed pyroxene to red-dark brown individual crystals to brown crystals associated with plagioclase clasts.



and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se

٩,

OF POUR QUALITY

2) Sharp twin planes to nearly glass

3) High percentage in matrix; some in clasts.

### LITHIC CLASTS 18% OF ROCK

| TYPE               | RELATIVE ABUNDANCE | SHAPE.               | <u>SIZE (MM</u> ) |
|--------------------|--------------------|----------------------|-------------------|
| Small              | Very abundant      | Rounded to irregular | 0.001-1.0         |
| Large <sub>4</sub> | Five present       | Rounded to irregular | >1.0              |

- a. Coarse-grained basalt consisting of pyroxene, plagioclase and ilmenite.
  - b. Fine-grained basalt consisting of pyroxene, plagioclase and ilmenite.
  - c. Coarse-grained basalt consisting of pyroxene, plagioclase and ilmenite.
  - d. Coarse-grained basalt consisting of pyroxene, plagioclase and ilmenite.
  - e. Fine-grained glass-rich matrix hosting crystal fragments and rock fragments.

### GLASS CLASTS 5% OF ROCK

| TYPE RELA                      | TIVE ABUNDANCE | SHA       | PE         | <u>SIZE (MM</u> ) |
|--------------------------------|----------------|-----------|------------|-------------------|
| Yellow-Orange <sub>5</sub> Ver | ry abundant    | Spherical | to angular | 0.001-1.2         |
| Colorless <sub>6</sub> Mod     | derate         | Angular   |            | 0.001-0.5         |

5) One yellow sphere 1.2mm in diameter; most are only partial spheres; few shards present.

6) All shards, no spheres; sc e bubbles.

### HISTORY AND PRESENT STATUS OF SAMPLES - 6/24/76

10026 was removed from the Contingency Sample bag in PCTL. The sample was later split in RSPL and was re-examined in RSPL. There are no pristine samples remaining.

### PRISTINE SAMPLES:

None

160

· · ·

ŧ

1

}

#### **RETURNED SAMPLES:**

10 8.46 gm Piece. Pics on five faces.

----

NO CHEMICAL ANALYSES OR AGE DATES



**F** 

1

1

10027,0 Original PET Photo (S-69-46023)





10027,10 (S-75-32190)

ORIGINAL PAGE IS OF POOR QUALITY 161

::

Sample 10027 is a subrounded, grey microbreccia that originally weighed 8gm and measured 3.5x2x1cm. This sample was originally returned in the Contingency Sample bag. BINOCULAR DESCRIPTION BY: Kramer and Schwarz DATE: 10/8/75 ROCK TYPE: Microbreccia SAMPLE: 10027,10 WEIGHT: 7.578 gm COLOR: Grey DIMENSIONS: 2.5x1.7x1.4 cm SHAPE: Subrounded COHERENCE: Intergranular - moderately coherent Fracturing - absent FABRIC/TEXTURE: Anisotropic/Micro-breccia; suggestion of lineation locally (PET). VARIABILITY: Homogeneous SURFACE: Irregular ZAP PITS: Few. Many on  $B_1$  and  $N_1$ . Pits are irregular and occasionally frothy. CAVITIES: Absent % OF SIZE (MM) COMPONENT COLOR ROCK SHAPE DOM. RANGE Matrix 90 Grey White Clast, White 5 Angular .5 .25-1 2 1 Wh/Brn Subrounded .5-5 Basalt Clast<sub>2</sub> Salt & Pepper Wh/Dark 2 Subrounded .5 .25-2 Clast **Glass Spheres** Black 1 Spherical .25 <.5 <] .25 <.5 Brown Clast<sub>3</sub> Lt.to Subangular

1) Plagioclase is crushed.

Dk.Brown

1

One clast on N face is elongated, approximately 5x2 mm. 2) Others are smaller.

Occur as crystals and clasts, varying in color from light crushed 3) clasts to darker brown crystals.

 $\bigcirc$ 

( )

A CONTRACTOR OF

£.,



SECTION: 10027,36 Width of field 1.39mm plane light

THIN SECTION DESCRIPTION BY: Walton DATE: 6/25/76

SUMMARY: Partly devitrified typical breccia with a very pale brown matrix. The color of the matrix is much lighter than for most of the other Apollo 11 breccias. Numerous mineral fragments are scattered throughout with a few lithic clasts.

### MATRIX 60% OF ROCK

| PHASE       | % SECTION | SHAPE | <u>SIZE(MM</u> ) | COMMENTS:                                                            |
|-------------|-----------|-------|------------------|----------------------------------------------------------------------|
| Light Brown | 100       |       | <0.001           | High glass content;<br>color varies n<br>medium to very le<br>brown. |

# MINERAL CLASTS 24% OF ROCK

| PHASE                    | RELATIVE ABUNDANCE | <u>SHAPE</u>          | <u>SIZE (MM)</u> |
|--------------------------|--------------------|-----------------------|------------------|
| Pyroxene <sub>1</sub>    | Very abundant      | Angular to irregular  | 0.001-0.5        |
| Plagioclase <sub>2</sub> | Few                | Blocky to irregular   | 0.001-0.2        |
| Opaques <sub>3</sub>     | Moderate           | Subhedral to skeletal | 0.001-0.2        |

ORIGINAL PAGE IS OF POOR QUALITY

Ċ,

J

26 2 20

 $\bigcirc$ 

()

- 1) Most are very small and all show poor extinctions.
- 2) Small blocky crystals with fair twins.
- 3) Some subhedral, some blocky, a few skeletal; most in matrix, some in clasts.

### LITHIC CLASTS 12% OF ROCK

| TYPE               | RELATIVE ABUNDANCE | SHAPE                | <u>SIZE (MM</u> ) |
|--------------------|--------------------|----------------------|-------------------|
| Small              | Very abundant      | Rounded to irregular | 0.001-1.0         |
| Large <sub>4</sub> | Two present        | Rounded to irregular | >1.0              |

- 4) a. Coarse-grained basalt composed of pyroxene, plagioclase and ilmenite.
  - b. Coarse-grained basalt composed of pyroxene, plagioclase and ilmenite.

### GLASS CLAST 4% OF ROCK

| TYPE                       | RELATIVE ABUNDANCE | SHAPE                | <u>SIZE (MM)</u> |
|----------------------------|--------------------|----------------------|------------------|
| Yellow-Orange <sub>5</sub> | Very abundant      | Spherical to angular | 0.001-0.6        |
| Colorless <sub>6</sub>     | Feiv               | Angular              | 0.001-0.1        |

5) Almost all as spheres or part spheres, a few shards.

6) Almost no devitrification; some fracturing.

### HISTORY AND PRESENT STATUS OF SAMPLES - 6/25/76

10027 was removed from the Contingency Sample bag and split in PCTL. It was re-examined in RSPL as there are no pristine samples remaining.

### PRISTINE SAMPLES:

None

i

**RETURNED SAMPLES:** 

0 7.58 gm Piece. Pitted on three faces.

#### NO CHEMICAL ANALYSES OR AGE DATES





10028,0 Original PET Photo (S-59-46040)



10028,0 (S-76-21148)

•

ORIGINAL PAGE IS OF POOR QUALITY

### 10028

Sample 10028 is a subangular to subrounded, medium light grey microbreccia. This sample originally weighed 3gm and measured 2.5x2x1cm. Sample was returned in the Contingency Sample Container. **BINOCULAR DESCRIPTION** BY: Twedell DATE: 1/15/76 SAMPLE: 10028.0 WEIGHT: 3.43 gm ROCK TYPE: Microbreccia COLOR: Medium light grey DIMENSIONS: 2.3 x 1.8 x 1.0 cm SHAPE: Subangular to subrounded COHERENCE: Intergranular - moderately coherent Fracturing - one penetrative fracture on  $T_1$  face FABRIC/TEXTURE: Anisotropic/Microbreccia VARIABILITY: Homogeneous SURFACE: Smooth on all surfaces. ZAP PITS: Many on  $T_1$ . Few on  $N_1$ ,  $S_1$ ,  $W_1$ ,  $E_1$ . None on  $B_1$ . Average size is 1mm or less. Pits are glass lined. CAVITIES: Absent CT 75 (MAA)

| COMPONENT    | COLOR       | % OF<br><u>ROCK</u> | SHAPE                    | DOM. RANGE    |
|--------------|-------------|---------------------|--------------------------|---------------|
| Matrix       | Med.Lt.Grey | 98                  |                          | >++           |
| Grey & White | Grey/White  | 1                   | Angular                  | 3x2 One Clast |
| White        | White       | <]                  | Angular to<br>subangular | .25 <1.5      |

SPECIAL FEATURES: This sample has an unusually high number of large pits on the  $T_1$  face. The average is about lmm. This is large in size for this small a sample. Some areas of brown glassy spatter on  $T_1$  face. None on others. Only a few small clasts exist. Powdery white in texture.

NOTE: This sample has no basalt or salt and pepper clasts, making it different from most Apollo 11 breccias.

### THIN SECTION DESCRIPTION

There was no thin section for the generic 10028 at the onset of reexamination. Due to the small amount of sample in the generic (3.40gm) it was judged unwise to remove a chip for thin sections.

### HISTORY AND PRESENT STATUS OF SAMPLES - 6/28/76

10028 was removed from the Contingency Sample bag and split in PCTL. It was re-examined in SSPL.

PRISTINE SAMPLES:

0

ę.-

**د**ت

3

: ,',

5

ŝ

1

0 3.40 gm Piece. Pitted on five surfaces.

NO RETURNED SAMPLES

### CHEMICAL ANALYSES

| Element | Number of<br>Analyses | Mean | Units | Range |
|---------|-----------------------|------|-------|-------|
| Hg      | 1                     | . 17 | РРВ   | 0     |

Analysts: Reed et al., (1971).

No Age References

ORIGINAL PAGE IN OF POOR QUALITY

Realized in the second in the



10029,0 Original PET Photo (S-69-45748)



1

ţ,

### 10029

Sample 10029 is a sub-angular, medium grey, medium-grained basalt. This sample originally weighed 5gm and measured 1.5x1.5x1cm. Sample was originally returned in the Contingency Sample Container.

BINOCULAR DESCRIPTION BY: Geeslin/Kramer/Walton DATE: 6/10/76 ROCK TYPE: Med.Grained Basalt SAMPLE: 10029,13 WEIGHT: 3.375gm COLOR: Medium grey DIMENSIONS: 1.0x0.5x0.5 cm SHAPE: Laboratory shaped into hemi-ellipsoid (one sawed face).

COHERENCE: Intergranular - coherent Fracturing - None

FABRIC/TEXTURE: Isotropic/Equigranular

VARIABILITY: Homogeneous

0

()

(|

SURFACE: All surfaces fairly smooth.

ZAP PITS: Few on N face

CAVITIES: Vugs on  $W_1$  and  $T_1$  face. Total surface area covered by vugs is 0.5%. Vugs average lmm radius and contain euhedral white and brown crystals.

| COMPONENT   | COLOR             | % OF<br><u>ROCK</u> | SHAPE             | SIZE(MM)<br>DOM. RANGE |  |
|-------------|-------------------|---------------------|-------------------|------------------------|--|
| Plagioclase | White to<br>grey  | 30                  | Sugary to tabular | .33 .058               |  |
| Ilmenite    | Sub-metallic      | 15                  | Subhedral blocky  | .9 .12                 |  |
| Pyroxene    | Orange-<br>Yellow | 4                   | Granulated        | .5 .1-1                |  |
| Pyroxene    | Brown             | 49                  | Subhedral blocky  | .3 .055                |  |
| Olivine     | Lt.Green          | <1                  | Rounded           | .5.5                   |  |
| Orange      | Rust              | 2                   | Non-crystalline   | 1.5-1                  |  |

SPECIAL FEATURES:

Orange blotches that look like rust. Probably oxidation degradation of the sample.

OPIGINAL PAGE R OF POOR QUALITY

10029



SECTION: 10029,17 Width of Field 2.19mm plane light THIN SECTION DESCRIPTION BY: Walton DATE: 6/10/76

SUMMARY: Fine-grained subophitic basalt composed of clinopyroxene, two generations of plagioclase, ilmenite with subordinate mesostasis. Large anhedral crystals of clinopyroxene host the smaller somewhat grouped plagioclase crystals and scattered subhedral to skeretal ilmenite crystals. Many cracks exist in the section which are filled with partly devitrified glass.

| PHASE | % OF SECTION | SHAPE                 | <u>SIZE (MM</u> ) |
|-------|--------------|-----------------------|-------------------|
| Pyrox | 53           | Anhedral, irregular   | 0.3-1.8           |
| Plag  | 32           | Euhedral to anhedral  | 0.01-0.9          |
| Opaq  | 14           | Subhedral to skeletal | 0.01-0.8          |
| Meso  | 1            | Irregular             | 0.001-0.1         |

170

1

i.

7 . . .

#### COMMENTS:

110.

ことからないとことでであるというできていたのであります。

1

Pyroxene - The clinopyroxene forms large anhedral interlocking crystals which host the other phases present. Many of the crystals show zoning and some exsolution. A few crystals contain small cores of olivine. Approximately one-third of the crystals in the section show only a weak cleavage or fracture pattern. A few of the crystals are twinned. Almost all of the crystals show uneven extinctions.

- Plagioclase Two generations of plagioclase occur in the rock. The first type consists of small euhedral tablets which appear in the sections as well defined rectangular crystal sections. These tablets are somewhat grouped and form distinct units within the pyroxene array. The twinning is well pronounced and the interfaces sharp. The second type consists of larger anhedral masses that form interstitial void fillings in the pyroxene array. These crystals show poor twinning and extinctions are uneven. This type of plagioclase is most often associated with the mesostasis present in the rock. The mesostasis is light brown in color. Several cracks in the rock are also filled with the glass-rich mesostasis.
- Opaques The ilmenite present in the rock forms small subhedral crystals which are somewhat skeletal grading to larger poikilitic skeletal crystals. Many of the crystals contain sill cate inclusions, mostly pyroxene. The ilmenite, euhedral tablets of plagioclase and the clinopyroxene form the basic structure array of the rock. Small masses of troilite and troilite with ironnickel are also present in the section. These masses form interstitial masses between silicate grains. Some of the troilite is associated with the ilmenite, but most is isolated in the pyroxene rich ground mass.
- TEXTURE: Fine-grained subophitic basalt consisting of pyroxene, two generations of plagioclase, ilmenite and minor mesostasis. The pyroxene-euhedral plagioclase-ilmenite form the host array with the anhedral plagioclase and mesostasis filling the void areas in the array. All phases are in sharp contact with all other phases.

HISTORY AND PRESENT STATUS OF SAMPLES - 10/25/76

10029 was removed from the Contingency Sample Container and processed in PCTL. The largest chip was later split and re-examined in RSPL.

PRISTINE SAMPLES - None

**RETURNED SAMPLES:** 

13 2.87gm Chip with a few pits on one surface. PCTL-SSPL NO CHEMICAL ANALYSES OR AGE DATES PUBLISHED

ORIGINAL PAGE 15 OF POOR QUALITY



ا به ا

10030,0 (S-69-46057) Original PET Photo



10030,5 (S-76-21142)

1.

10030

Sample 10030 is a subangular to subrounded, medium dark grey microbreccia. This sample originally weighed 2gm and measured 1.5x1.0x0.8 cm. Sample was returned in the Contingency Sample Container.

7 ......

1

**BINOCULAR DESCRIPTION** BY: Twedell DATE: 1/15/76 ROCK TYPE: Microbreccia SAMPLE: 10030.5 WEIGHT: 1.76 ~m COLOR: Medium dark grey DIMENSIONS: 1 x 1 x 0.8 cm SHAPE: Subangular to subrounded COHERENCE: Intergranular - coherent

Fracturing - absent

FABRIC/TEXTURE: Anisotropic/Microbreccia

VARIABILITY: Homogeneous

SURFACE: Smooth on  $T_1-S_1$ , irregular on all others.

ZAP PITS: Few on  $T_1$ . None on any others. Pits are glass lined, <lmm in diameter.

CAVITIES: Absent

The second same

X

14 - 1 - A - A

ł

| COMPONENT                          | COLOR                    | % OF<br>ROCK | SHAPE                         | SIZE (MM)<br>DOM, RANGE |              |
|------------------------------------|--------------------------|--------------|-------------------------------|-------------------------|--------------|
| Matrix                             | Med.Dk.Grey              | 99           |                               |                         |              |
| Grey & White<br>Clast <sub>1</sub> | Grey/White               | <1           | Subangular to sub-<br>rounded | 0.5                     | <1.0         |
| Basalt Clast                       | Black/White<br>and Brown | 1            | Angular                       | 0.7                     | <1.2         |
| Salt & Pepper<br>Clast             | Black/White              | <1           | Angular                       | 0.5                     | <u>.</u> 1.0 |

1) Texture is aphanitic. Even distribution of dark and light minerals.

### THIN SECTION DESCRIPTION

There were no thin sections for the generic 10030 at the onset of reexamination. Due to the small size of the total generic (1.76g), it was judged unwise to remove a chip for thin sections.

> ORIGINAL PAGE IS OF POOR QUALITY

# HISTORY AND PRESENT STATUS OF SAMPLES - 6/28/76

10030 was removed from the Contingency Sample Container and processed in PCTL. The only remaining pristine sample was re-examined in SSPL.

ŗ

¥

## PRISTINE SAMPLES:

5 1.76 gm Chip. One lightly pitted surface. PCTL-SSPL

NO RETURNED SAMPLES

NO CHEMICAL ANALYSES

NO AGE DATES

1

.

١



ODGENAL DAGE IS CE POOR QUALITY

1

, , , , , , •

. . .

ł

175

¥

11

## 10031

1

Sample 10031 is an angular to subangular, medium dark grey, medium-<br/>grained basalt. This sample originally weighed 3gm and measured<br/>2 x 1.5 x 0.5 cm. Sample was returned in the Contingency Sample container.BINOCULAR DESCRIPTIONBY: TwedellDATE: 1/16/76ROCK TYPE: Vesicular basaltSAMPLE: 10031,0WEIGHT: 1.70 gmCOLOR:Medium dark greyDIMENSIONS: 1.9 x 1.2 x 1 cmSHAPE:Angular to subangular

COHERENCE: Intergramular - tough Fracturing - absent

FABRIC/TEXTURE: Isotropic/Equigranular

VARIABILITY: Homogeneous

SURFACE: All surfaces are rough.

ZAP PITS: Absent

CAVITIES: 5% of surface as vesicles and vugs. Average size is <1mm. Largest vesicle is 2mm.

|             |          | % OF |           | SIZE (MM)  |
|-------------|----------|------|-----------|------------|
| COMPONENT   | COLOR    | ROCK | SHAPE     | DOM. RANGE |
| Pyroxene    | Dk.Brown | 60   | Subhedral | .1 <.5     |
| Plagioclase | White    | 20   | Blocky    | .1 <.5     |
| Opaque      | Black    | 15   | Platy     | .05 <.2    |

COMMINTS: Four phases were noted by Harmon (PET). 1) Light green equigranular mineral, evenly distributed throughout the fines. 2) A highly reflective phase that appeared to be glass. 3) The groundmass material which appeared to be dust similar to the contingency sample; and, 4) Amber mineral phase, generally equigranular. These phases were taken from the fines with 10031,0 and not the rock itself.

#### THIN SECTION DESCRIPTION

1

There was no Thin Section made for generic 10031 at the onset of reexamination. The only sample of the generic (1.70 gm) was judged too small for a thin section allocation.

## HISTORY AND PRESENT STATUS OF SAMPLES - 6/30/76

10031 was removed from the Contingency Sample Container and examined in PCTL. No splits were ever made from the rock. It was re-examined in SSPL.

## PRISTINE SAMPLE:

Ē

.

1

0 1.70 gm Piece with no pitted surfaces.

NO RETURNED SAMPLES

## NO CHEMICAL ANALYSES OR AGE DATES

とうちの



10032,0 Original PET Photo (S-69-46006)



10032,20 (S-75-31697)

;

ţ

1

÷

Sample 10032 is an angular to subangular, medium light grey, finegrained basalt. This sample originally weighed 3gm and measured 2x1.5x0.5 cm. Sample was returned in the Contingency Sample container.

BINOCULAR DESCRIPTION BY: Twedell & Geeslin DATE: 9/23/75 ROCK TYPE: Fine-grained basalt SAMPLE: 10032,20 WEIGHT: 3.1 gm COLOR: Medium light grey DIMENSIONS: 2 x 1.5 x 0.5 cm

SHAPE: Angular to sub-angular

COHERENCE: Intergranular - coherent Fracturing - absent

FABRIC/TEXTURE: Isotropic/Equigranular

VARIABILITY: Homogeneous

SURFACE: Irregular due to cavities.

ZAP PITS: Absent

1

CAVITIES: Approximately 7% surface coverage. Average size is <1mm. Cavities are well defined.

| COMPONENT                | COLOR                | S OF<br>ROCK | SHAPE                       | SIZE(MM)<br>DOM. RANGE |
|--------------------------|----------------------|--------------|-----------------------------|------------------------|
| Plagioclase <sub>1</sub> | White                | 45           | Crystalline to<br>aphenitic | .3 .055                |
| Pyroxene <sub>2</sub>    | Hon.Brown<br>to dark | 20-<br>25    | Crystalline                 | .1 <.13                |
| Green <sub>3</sub>       | Dk.Green             | 8-<br>10     | Rounded                     | .1 <.12                |
| Dark <sub>4</sub>        | Black                | 20-<br>25    | Platy                       | s.1 .11                |

1) Comes in three forms. A crystalline material, a shocked material, and a fine white material.

2) Well defined pyroxene crystals.

3) Extremely dark green material, probably either olivine or dark pyroxene.

4) Some appears to be devitrified black glass. Some is semi-opaque material which is associated with the white crushed material.

Opaque is platy ilmenite. Approximately 50% opaque and 50% lustrous material.

## SPECIAL FEATURES:

The dark brown component appears in only one large area on the surface. It has a well defined crystal structure.



SECTION: 10032,26 Width of field 2.72 mm plane light

THIN SECTION DESCRIPTION BY: Walton DATE: 6/9/76

SUMMARY: Fine-grained intersertal basalt composed of clinopyroxene, plagioclase, and ilmenite with subordinate mesostasis. Most of the crystals are poorly formed except for the ilmenite which forms well defined subhedral crystals. Some skeletal development is also evident in the ilmenite, but to a lesser degree than in other Apollo 11 intersertal basalts. All of the plagioclase occurs as interstitial void f lings with no free standing crystals.

]

1

ORIGINAL PAGE IN OF POUR QUALITY

| PHASE | % OF SECTION | SHAPE                 | SIZE (MM) |
|-------|--------------|-----------------------|-----------|
| Pyrox | 53           | Anhedral, irregular   | 0.05-0.2  |
| Plag  | 21           | Anhedral              | 0.01-0.3  |
| Opaq  | 16           | Subhedral to anhedral | 0.005-0.3 |
| Meso  | 10           |                       |           |

ųe'

181

## COMMENTS:

1

- Pyroxene the clinopyroxene forms somewhat larger anhedral crystals which host the other phases. The color is pale brown with some crystals having a yellowish cast. Many of the crystals are zoned and optical characteristics are poor. All crystals are fresh and contacts are sharp.
- Plagioclase Unlike many intersertal basalts, this rock contains only interstitial plagioclase crystals. None of the more tabular crystals appear to have formed. The masses of plagioclase are all anhedral and irregular. They fill the void spaces in the pyroxene-ilmenite network. Very few twin planes are evident and extinctions are irregular. Some smaller, more well defined crystals are present in the rock, but these are far more uncommon than the larger poorly formed crystals. Also associated in the interstitial position are rather large masses of a brownish glass-rich mesostasis. The masses are very turbid and the boundaries are indistinct. The masses are associated more often in the pyroxene crystals than with the plagioclase crystals.
- Opaques Unlike many intersertal basalts, this rock has far less skeletal ilmenite than usual. Most of the crystals are subhedral with some nearly euhedral lathes. The crystals are nearly equant to slightly elongated. Only occasional masses of skeletal growth is encountered. Much of the ilmenite is somewhat grouped and occurs as distinct patches within the rock. Scattered throughout the section are small masses of troilite and troilite with iron-nickel. The masses are small and sparse.
- TEXTURE: Fine grained intersertal basalt consisting of a network of nearly equigranular pyroxene crystals that are intergrown with subhedral ilmenite prisms. Occurring interstitial to the pyroxeneilmenite network are anhedral masses of plagioclase, a few nearly enhedral ilmenite prisms and irregular patches of mesostasis. Most of the crystals show poor optical characteristics.

## HISTORY AND PRESENT STATUS OF SAMPLES - 11/1/76

10032 was removed from the Contingency Sample container and split in PCTL. It was later re-examined and split in RSPL.

PRISTINE SAMPLES:

None

**RETURNED SAMPLES:** 

1

ł

Ļ

| 20 | 3.1 gm  | Chip. Stored in a curator safe in a plastic pill box before going to RSPL.        |
|----|---------|-----------------------------------------------------------------------------------|
| 21 | .001 gm | Fines from ,20. Stored in returned sample lab.<br>Has never been sent to any P.I. |

NO CHEMICAL ANALYSES OR AGE DATES

ORIGINAL PAGE 15 OF POOR QUALITY Ĵ

\_)

ł

1

· · · · · · · · · · · · ·

183

# 10037

1

「「「「「「「」」」

1

1. No 1. No

Carlor and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se

三方、こうちょ しきいる

Site and -

and the state of the second second second

N. . 184

1 4

1 100

1.4

「小学校」を

•.

١

;

Ē,

10037 was the generic number assigned to the half of the drive tube material (10004 and 10005) obtained for biological analyses. There are no pristine samples remaining and less than 1gm was ever returned from the Bio-Pool.



.7

t

184

1 \*

Sample 10044 is an angular to sub-angular, grey and white, cristobalite basalt. This sample originally weighed 247gm. and measured 7x4x3cm. It was returned in ALSRC #1003 (Bulk Sample container).

BINOCULAR DESCRIPTIONBY: TwedellDATE: 9/18/75ROCK TYPE:Cristobalite BasaltSAMPLE: 10044,59WEIGHT: 25 gm.COLOR:Grey & WhiteDIMENSIONS: 4 x 3.5 x 1.5 cm.

SHAPE: Angular to sub-angular; rounded but rough on surface texture (PET).

COHERENCE: Intergranular - friable Fracturing - absent; some elongate openings or fractures --look like semi-healed fractures. Width of fractures variable, in some places almost vuggy (PET).

FABRIC/TEXTURE: Isotropic; structures-many open circles, irregular, not straight, some are discontinuous, definite lines of weakness (PET)/Equigranular; Granular-Holocrystalline (PET).

VARIABILITY: Homogeneous

SURFACE: Irregular

٠,

þ

Í

Ĵ,

ZAP PITS: None observed

CAVITIES: Approximately 5% surface coverage, <2mm in diameter.

| COMPONENT   | COLOR       | % OF<br><u>ROCK</u> | SHAPE                 |     | E(MM)<br>RANGE |
|-------------|-------------|---------------------|-----------------------|-----|----------------|
| Pyroxene    | Pink to Red | 35                  | Anhedral              | 0.5 | 1              |
| Plagioclase | White       | 45                  | Anhedral to laths     | 0.5 | 1              |
| Opaques     | Black       | 20                  | Rounded to subrounded | 0.5 | ו              |

ORIGINAL PAGE 15 OF POUR QUALITY



Width of field 2.72mm plane light SECTION: 10044,55 BY: Walton

THIN SECTION DESCRIPTION

DATE: 9/18/75

SUMMARY: Medium-grained subophitic basalt composed of clinopyroxene, plagioclase, ilmenite with subordinate cristobalite, pyroxferroite and mesostasis. Large anhedral crystals of clinopyroxene host the other phases present. Many of the pyroxene crystals exhibit polygranularity.

> Many of the plagioclase, ilmenite and cristobalite crystals show parallel facial development. The ilmenite occurs in rather large skeletal crystals associated with chromian ulvospinel, troilite and iron-nickel metal.

| PHASE | % OF SECTION | SHAPE                 | <u>SIZE (MM</u> ) |
|-------|--------------|-----------------------|-------------------|
| Pyrox | 47           | Subhedral to anhedral | 0.4-1.4           |
| Plag  | 34           | Blocky to tabular     | 0.1-0.3           |
| Cris  | 3            | Subhedral to anhedral | 0.2-1.2           |
| Opaq  | 12           | Skeletal to anhedral  | 0.08-0.9          |
| Meso  | 4            |                       |                   |

COMMENTS:

C

Pyroxene - At least two types of pyroxene occur in section. One is pinkish in color with a poor cleavage pattern while the other is reddish and has a well developed cleavage pattern. All crystals have wavy extinctions and are more or less polygranular. Occasional small masses of pyroxferroite also occur with the pyroxene. Chao et al., (1970) reported the new mineral pyroxferrite from 10044.

10044

- Plagioclase forms tabular crystals which show sharp twin planes. The crystals are somewhat grouped into radiating groups.
- Cristobalite occurs as interstitial void fillings between the plagioclase and pyroxene crystals.
- The major opaque phase in the section is ilmenite. The crystals are moderately large and only occasional small shards are encountered. The crystals are very skeletal. Troilite and troilite with ironnickel inclusions form small masses in the section. Several crystals of chromian ulcospinel also occur in the section.
- The mesostasis consists of a brownish glass-rich phase which fills interstitial voids in the silicate network. The glass is very turbid.
- Bailey et al. (1070) have reported modal analyses for 10044,74; 10044,41; and 10044,44,1 which is in agreement with the above analysis. They also reported finding apatite and K-feldspar with possible olivine and rutile in their sections, but none were observed in this section.

Cameron (1970) reported on a yttrium zirconium silicate in 10044,50.

Fuchs (1970) has reported apatite in 10044,48.

TEXTURE: Nearly equigranular subophitic with large scattered crystals of ilmenite. Little to no indication of shock is present. All crystals are fresh and in sharp contact with each other.

Selected References: Agrell et al., (-70), Albee and Chodos (1970), Bailey et al., (1970), Cameron (1970), Smith, J.V. et al., (1970).

## HISTORY AND PRESENT STATUS OF SAMPLES - 4/20/76

10044 was removed from the Bulk Sample Container (ALSRC #1003) and processed in the Bio-Prep Lab. A chip was ant to PCTL for splitting and PET description and analysis. A portion was sent to the Bio-Pool

187

¥ 3

١,

いたいというたちにしていてき

for biological analyses. The rock was sawed in SPL. The remaining pristine samples were re-examined in SSPL.

PRISTINE SAMPLES:

| 14 | 16.07 | gm   | Fines. PCTL-SPL-SSPL                                                                                                                       |
|----|-------|------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 15 | 39.65 | gm   | Three large chips plus small chips and fines.<br>PCTL-SPL-SSPL                                                                             |
| 54 | 48.0  | gm   | Chip with one sawed surface. Was display<br>sample kept in a nearly hermetic display con-<br>tainer for 4 1/2 years. PCTL-SPL-Display-SSPL |
| 59 | 24.14 | الآر | Representative chip with no pitted or sawn surfaces. PCTL-SPL-SSPL                                                                         |

## RETURNED SAMPLES:

36 11.121 gm Chip.

## CHEMICAL ANALYSES

| Element                       | Number of<br>Analyses | Mean  | Units | Range |
|-------------------------------|-----------------------|-------|-------|-------|
| SiO <sub>2</sub>              | 6                     | 43.19 | РСТ   | 5.13  |
| A1203                         | 6                     | 10.72 | PCT   | 2.45  |
| TiO <sub>2</sub>              | 8                     | 9.10  | PCT   | 4.09  |
| Fe0                           | 9                     | 15.76 | РСТ   | 19.36 |
| Mn0                           | 9                     | .266  | PCT   | .056  |
| Mg0                           | 5                     | 6.11  | РСТ   | .886  |
| Ca0                           | 7                     | 11.49 | PCT   | 5.59  |
| Na <sub>2</sub> 0             | 9                     | .472  | РСТ   | .079  |
| K <sub>2</sub> 0              | 8                     | .116  | PCT   | .066  |
| P <sub>2</sub> 0 <sub>5</sub> | 3                     | .063  | PCT   | . 04  |
| Li                            | 3                     | 11.77 | РРМ   | 4.5   |
| Rb                            | 5                     | 1.75  | РРМ   | 4.49  |
| Cs                            | 1                     | .034  | PPM   | 0     |
| Sr                            | 3                     | 186.7 | РРМ   | 94.   |

ĩ Ĵ

۱. Ť

 $\bigcirc$ 

| ĥ  | Ţ |
|----|---|
| E. | ø |

ł

÷

{

1.1

`

Ì

| Element                        | Number of<br>Analyses | Mean  | Units | Range |
|--------------------------------|-----------------------|-------|-------|-------|
| Ba                             | 7                     | 149.1 | РРМ   | 163.  |
| Sc                             | 6                     | 95.7  | РРМ   | 12.3  |
| V                              | 3                     | 45.5  | РРМ   | 34.   |
| Cr <sub>2</sub> 0 <sub>3</sub> | 8                     | .213  | РСТ   | .063  |
| Сo                             | 6                     | 12.72 | РРМ   | 4.5   |
| Ni                             | 2                     | 5.50  | РРМ   | 2.99  |
| Cu                             | 3                     | 5.73  | РРМ   | 5.0   |
| Zn                             | 1                     | 3.0   | PPM   | 0     |
| Y                              | 2                     | 163.5 | РРМ   | 33.   |
| Zr                             | 4                     | 501.5 | PPM   | 414.  |
| Nb                             | 1                     | 21.   | PPM   | 0     |
| Мо                             | 1                     | .03   | РРМ   | 0     |
| Ag                             | 1                     | .2    | РРМ   | 0     |
| Ta                             | 4                     | 2.12  | PPM   | 1.2   |
| W                              | 1                     | .24   | PPM   | 0     |
| Hf                             | 5                     | 13.86 | PPM   | 4.5   |
| Au                             | 1                     | .02   | PPM   | 0     |
| Hg                             | 1                     | .001  | РРМ   | 0     |
| La                             | 5                     | 11.41 | PPM   | 4.65  |
| Ce                             | 4                     | 52.4  | PPM   | 48.4  |
| Nd                             | 1                     | 50.0  | PPM   | 4.65  |
| Sn                             | 4                     | 16.07 | PPM   | 7.3   |
| Eu                             | 4                     | 2.76  | PPM   | .36   |
| Gd                             | 1                     | 24.0  | РРМ   | 0     |
| ть                             | 3                     | 4.91  | PPM   | .61   |
| Dy                             | 2                     | 26.05 | · РРМ | 3.1   |
| Но                             | 1                     | 5.67  | РРМ   | 0     |
| Yb                             | 6                     | 13.58 | РРМ   | 6.5   |
| Lu                             | 5                     | 1.89  | РРМ   | .85   |
| Th                             | 2                     | .99   | РРМ   | .02   |

ORIGINAL PAGE IS OF POOR QUALITY

#### an and the second second second second second second second second second second second second second second s

10044

1**89** 

L+.

\_

()

а •

 $\bigcirc$ 

 $\bigcirc$ 

1

the set of the set of the set of the set of the set of the set

| Element | Number of<br>Analyses | Mean  | Units | Range |
|---------|-----------------------|-------|-------|-------|
| U       | 2                     | .24   | РРМ   | .08   |
| В       | 1                     | 1.2   | РРМ   | 0     |
| Ga      | 1                     | 5.1   | РРМ   | 0     |
| Ln      | 1                     | .003  | РРМ   | 0     |
| С       | 1                     | 102.  | РРМ   | 0     |
| Ge      | 1                     | 1.0   | РРМ   | 0     |
| N       | 1                     | 98.0  | РРМ   | 0     |
| As      | 1                     | .05   | PPM   | 0     |
| 0       | 1                     | 41.5  | РСТ   | 0     |
| s       | 2                     | .12   | РСТ   | .12   |
| Se      | 1                     | .23   | РРМ   | 0     |
| F       | 2                     | 142.5 | РРМ   | 119.  |
| C1      | I                     | !4.7  | PPM   | 0     |
| Br      | 1                     | .19   | РРМ   | 0     |
| I       | 1                     | .48   | РРМ   | 0     |

Analysts: Agrell et al., (1970); Engel & Engel, (1970); Goles et al., (1970); Wakita et al., (1970); Wanke et al., (1970); Dymek et al., (1975); Turekian & Kharkar, (1970); Kharkar & Turekian, (1971); Engel et al., (1971); Tera et al., (1970); Murthy et al., (1970); Reed & Jovanovic, (1970); Brown et al., (1970); Papanastassiou et al., (1970); Moore et al., (1970); Meyer, (1972).

Age References: Turner (1970); Hintenberger et al., (1971); Eberhardt et al., (1970); Papanastassicu et al., (1970).

ì

1

1

í

ł

۱

*.*^.



ļ

1

۲,

10045,0 Original PET Photo (S-69-45601)



10045,19 (S-75-31797)

ORIGINAL PAGE 1. OF POOR QUALITY

1 cm.

Sample 10045 is an angular to sub-angular, medium dark grey, olivine basalt. This sample originally weighed 185gm and measured 4x3x2.5cm. Sample was returned in ALSRC #1003. (Bulk Sample Container)

BINOCULAR DESCRIPTIONBY: Tweadl1DATE: 9/18/75ROCK TYPE: Olivine basaltSAMPLE: 10045,19WEIGHT: 100.4 gmCOLOR: Medium dark greyDIMENSIONS: 4 x 2.5 x 2 cmSHAPE: Angular to sub-angular

COHERENCE: Intergranular - coherent Fracturing - few, non-penetrative, fairly wide in places, mostly in middle; numerous in middle of rock, vary in width. Some open to wide cavities (PET)

FABRIC/TEXIJRE: Isotropic/Equigranular

VARIABILITY: Homogeneous

SURFACE: Surfaces are irregular on fresh, to smooth on exposed surfaces.

\$)

*(*)

ZAP PITS: Many on  $T_1$ ,  $W_1$ ,  $B_1$ , edge. None on  $E_1$ ,  $S_1$ ,  $N_1$ .

CAVITIES: 20% of surface covered by vugs. Half of vugs are glass lined. Average size is approximately 1.5 to 2mm, some vesicular cavities make up approximately 10% total surface area (PET).

| COMPONENT                | COLOR       | % OF<br><u>ROCK</u> | SHAPE           |    | ZE (MM)<br>RANGE |
|--------------------------|-------------|---------------------|-----------------|----|------------------|
| Plagioclase <sub>1</sub> | White       | 30-35 Lathy         |                 | .1 | <.052            |
| Pyroxene                 | Dark Brown  | 35 Anhedr           | al              | .3 | .24              |
| Dark <sub>2</sub>        | Black       | 20-22 Anhedr        | al to amorphous | ۱. | .053             |
| 0livine                  | Light Green | 8 Euhedr            | al              | .2 | .14              |

1) Clear to chalky white

2) 10-12% opaque; 10-8% glass

SPECIAL FEATURES: High % of vugs plus fine grained texture as opposed to 10044. White powdery material adhering to outer surface, especially on  $W_1$ ,  $T_1$  surfaces. Sample also seems to have a higher percentage of dark minerals than 10044.





SECTION: 10045,17 Width of field 1.39mm plane light

THIN SECTION DESCRIPTION

「あい」というななな ないまたいのない しんちゃんり いちちょう

 $\mathbf{O}$ 

BY: Walton

SUMMARY: Medium-grained ophitic basalt composed of clinopyroxene, two generations of plagioclase, two generations of ilmenite with subordinate chromian ulvospinel, troilite-iron nickel, olivine, cristobalite, and mesostasis. The pyroxene forms large anhedral to irregular crystals with lath-like to anhedral ilmenite crystals in a continuous network. Interstitial to these phases are subhedral to anhedral crystals of plagioclase and cristobalite with minor glass-rich mesostasis. Some of the plagioclase crystals are slightly bent and somewhat skeletal.

| PHASE    | % OF SECTION | SHAPE                 | <u>SIZE(MM</u> ) |
|----------|--------------|-----------------------|------------------|
| Pyrox    | 52           | Anhedral to irregular | 0.05-0.4         |
| Plag     | 22           | Tabular to anhedral   | 0.1-0.3          |
| Opaq     | 17           | Lath-like to anhedral | 0.05-0.4         |
| 01iv     | 3            | Subhedral to anhedral | 0.05-0.4         |
| Chr.Ulvo | 2            | Irregular to rounded  | 0.02-0.08        |
| Cris     | 2            | Anhedral, blocky      | 0.01-0.1         |
| Meso     | 2            | Irregular             | 0.01-0.2         |

ORIGINAL PAGE IS OF POOR QUALITY

COMMENTS:

Pyroxene - The pyroxene occurs as large pale brown anhedral crystal masses. In sharp contact with the pyroxene are subhedral to anhedral crystals of olivine. A few crystals exhibit a well defined cleavage pattern, while most show only traces of cleavage with predominant fracture patterns. Crystals of plagioclase, ilmenite and cristobalite occur within and between the pyroxene crystals.

Plagioclase - Large to small tabular crystals of plagioclase occur as groups and as isolated crystals within the pyroxene network. Larger anhedral crystals of plagioclase also occur as masses within the network. Some bending of the tabular crystals is present. Many of the larger crystals are somewhat skeletal in development. All crystals showed well developed twin planes, with the sharpest twins seen in the smaller crystals.

Olivine - Small to large blocky subhedral to anhedral crystals of olivine are scattered throughout the section. The crystals are fresh except for small reaction rims of pyroxene. A few crystals clearly show residual crystal faces in sharp contact with the pyroxene.

Opaques - The phases comprising the opaques are ilmenite, troilite, troiliteiron nickel, and chromian ulvospinel.

)

5)

- Two generations of ilmenite are present in the section. The crystals occur as small lath-like crystal sections and also as large somewhat skeletal anhedral crystals. The larger crystals are far more abundant.
- Many of the large crystals of ilmenite have associated armalcolite and/or exsolved chromite. Many of the armalcolite lamallae are transected by exsolution of chromite which produce microfaults in the lamallae. Associated with the ilmenite are anhedral crystals of chromian ulvospinel. The crystals are grouped into small areas of the section where three or more masses are concentrated. In a few cases large isolated masses are seen in the silicate network. Many of the crystals have small borders of ilmenite and are completely encased by ilmenite.

Isolated masses of troilite and troilite with iron-nickel occur in the silicate network. Several cracks in the silicate minerals are filled by iron-nickel metal.

Cristobalite - Isolated small masses of cristobalite are found between adjacent pyroxene crystals. The masses appear to be randomly distributed throughout the section.

Small amounts of a light brown to colorless mesostasis occurs in the section. Some birefringence is present, but no phases were identified in the masses. Some mixing of the mesostasis with a silica phase may be present as the index of refraction varies within the masses.

TEXTURE: Interlocking anhedral crystals of pyroxene intergrown with two generations of ilmenite, two generations of plagioclase and subordinate other phases. Interstitial to this network are masses of plagioclase, cristobalite and mesostasis.

Selected References: Agrell et al., (1970), Brown et al., (1970), Keil et al., (1970), Simpson and Bowie (1970).

HISTORY AND PRESENT STATUS OF SAMPLES - 5/28/76

10045 was removed from the Bulk Sample Container (ALSRC #1003) and processed in the Bio-Prep Lab. A 13gm chip was sent to PCTL for analysis. Remaining pristine samples were re-examined in SSPL. A large piece was sent to RCL.

PRISTINE SAMPLES:

**(**]

()

| 1  | 2.02 gm   | This piece does not have the same lithologic features<br>as other 10045 subsamples. It is believed to be<br>part of 10047 or 10044, but neither could be substan-<br>tiated. It was assigned the number 10999,103.BP-PCTL- |
|----|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3  | 0.159 gin | Small chips and fines. BP-PCTL-SSPL SSPL                                                                                                                                                                                   |
| 18 | 5.91 gm   | Small chips and fines. BP-SSPL                                                                                                                                                                                             |
| 19 | 100.9 gm  | Piece. Pitted on three surfaces. BP-SSPL-RCL-SSPL                                                                                                                                                                          |
| 74 | 6.02 gm   | Piece. It was labeled 10047,1 but was matched with<br>10045 PET photos and assigned to 10045. No pitted<br>surfaces. BP-PCTL-SSPL                                                                                          |
| 77 | 14.68 gm  | Piece. Split from ,18. One pitted surface.<br>BP-SSPL                                                                                                                                                                      |

**RETURNED SAMPLES:** 

47

9.74 gm Piece with no pitted surfaces.

|                                | CHEMICAL ANALYSES     |        |             |       |  |  |
|--------------------------------|-----------------------|--------|-------------|-------|--|--|
| Element                        | Number of<br>Analyses | Mean   | Units       | Range |  |  |
| SiO <sub>2</sub>               | 4                     | 40.99  | РСТ         | 4.28  |  |  |
| A1203                          | 4                     | 10.53  | РСТ         | 3.49  |  |  |
| TiO <sub>2</sub>               | 3                     | 11.39  | РСТ         | .66   |  |  |
| Fe0                            | 6                     | 16.02  | РСТ         | 3.67  |  |  |
| Mn0                            | 4                     | .272   | РСТ         | .020  |  |  |
| Mg0                            | 3                     | 8.32   | РСТ         | 1.39  |  |  |
| CaO                            | 3                     | 11.32  | РСТ         | .023  |  |  |
| Na <sub>2</sub> 0              | 3                     | . 356  | РСТ         | .012  |  |  |
| K <sub>2</sub> 0               | 5                     | .052   | РСТ         | .014  |  |  |
| $P_{2}O_{5}$                   | 2                     | .07    | РСТ         | .06   |  |  |
| Rb                             | 5                     | 1.03   | PPM         | 1.28  |  |  |
| Sr                             | 4                     | 133.92 | PPM         | 36.   |  |  |
| Ba                             | 6                     | 117.23 | PPM         | 355.  |  |  |
| Sc                             | 3                     | 81.9   | PPM         | 12.3  |  |  |
| ۷                              | 2                     | 100.5  | PPM         | 5.    |  |  |
| Cr <sub>2</sub> 0 <sub>3</sub> | 5                     | . 388  | PCT         | .131  |  |  |
| Со                             | 4                     | 20.57  | PPM         | 8.4   |  |  |
| Ni                             | 2                     | 6.99   | PPM         | 5.97  |  |  |
| Cu                             | 2                     | 6.10   | PPM         | .200  |  |  |
| Zn                             | 3                     | 6.63   | PP <b>M</b> | 11.1  |  |  |
| Y                              | 2                     | 79.    | PPM         | 12.   |  |  |
| Zr                             | 3                     | 254.33 | PPM         | 156.  |  |  |
| Nb                             | 2                     | 13.0   | PPM         | 2.    |  |  |
| Ag                             | 1                     | .005   | PPM         | 0     |  |  |
| Ta                             | 2                     | 1.9    | PPM         | .2    |  |  |
| Hf                             | 3                     | 7.73   | PPM         | 2.5   |  |  |
| Au                             | 1                     | .2     | РРВ         | 0     |  |  |
| La                             | 4                     | 9.1    | PPM         | 9.3   |  |  |

ORIGINAL PAGE IS OF POOR QUALITY

.

1

1 ...

 $\overline{\mathbb{C}}$ 

()

**(**)

•

 $\mathbf{i}$ 

ł

•|

i

| 1 | 0045 |  |
|---|------|--|
|   |      |  |

C

()

k

ŝ

ŝ.

ر ا

教室が変

| Element | Number of<br>Analyses | Mean  | Units | Range |
|---------|-----------------------|-------|-------|-------|
| Ce      | 3                     | 27.17 | РРМ   | 9.5   |
| Pr      | 1                     | 6.    | РРМ   | 0     |
| Nd      | 2                     | 19.05 | PPM   | 4.1   |
| Sm      | 3                     | 9.19  | PPM   | 1.43  |
| Eu      | 3                     | 1.5   | PPM   | .09   |
| Gd      | 1                     | 13.2  | PPM   | 0     |
| ТЬ      | 2                     | 2.02  | РРМ   | .23   |
| Dy      | 2                     | 14.95 | РРМ   | .9    |
| Но      | 1                     | 2.8   | РРМ   | 0     |
| Er      | 1                     | 9.7   | PPM   | 0     |
| Yb      | 4                     | 6.99  | РРМ   | 8.85  |
| Lu      | 3                     | 1.34  | PPM   | .28   |
| Th      | 3                     | 1.00  | РРМ   | 1.45  |
| U       | 1                     | .17   | РРМ   | 0     |
| Ga      | 2                     | 3.5   | РРМ   | 1.0   |
| In      | 1                     | .014  | РРМ   | 0     |
| Pb      | 1                     | . 482 | PPM   | 0     |
| As      | I                     | .073  | РРМ   | 0     |
| Sb      | 1                     | .007  | РРМ   | 0     |
| S       | 2                     | .145  | РСТ   | .01   |
| Se      | 1                     | .8    | РРМ   | 0     |
| C1      | 1                     | 6.8   | РРМ   | 0     |
| Br      | 1                     | . 056 | PPM   | 0     |

Analysts: Agrell et al., (1970); Compston et al., (1970); Wakita et al., (1970); Goles et al., (1970); Haskin et al., (1970); Murthy et al., (1970); Brown et al., (1970); Silver, (1970).

Age References: Ekerhardt (1971); Silver (1970).

New grow as a second as a factor

and the second

177 6

ч.

and a subscript of

5

4

第二十 子

こうとう

ł



1" 1

ı

\* 11

.•.

「ない」となっていたかで、このから C 199 10046 Sample 10046 is a sub-angular, dark grey, fine breccia. This sample originŝ ally weighed 663gm, and measured 10x7.5x8cm. Sample was returned in ALSRC #1003. (Bulk Sample Container) Ì 4 BINOCULAR DESCRIPTION BY: Kramer DATE: 11/8/75 ROCK TYPE: Fine Breccia SAMPLE: 10046,193 WEIGHT: 120 gm ø COLOR: Dark grey DIMENSIONS: 5.0 x 4.5 x 2.8 c.1 SHAPE: Sub-angular COHERENCE: Intergranular - moderately friable Fracturing - absent FABRIC/TEXTURE: Anisotropic/Fine breccia VARIABILITY: Homogeneous SURFACE: Hackly and irregular ( ) ZAP PITS:  $E_1$ , few. Others, none. Few - less than 2% of surface. Some are lined with glass and/or CAVITIES: crystals. % OF SIZE (MM) COMPONENT COLOR ROCK SHAPE DOM. RANGE Matrix Dk.Grey 90 \_\_\_\_\_ White Clast<sub>1</sub> White 3 Angular 1.0 0.05-1.5 Brown Clast<sub>2</sub> 1 Honey Brn. Sub-rounded 0.8 0.05-4.0 **Glass Spherules** Black <1 Sub-rounded 0.5 <0.8 Basalt Clast Lt.Grey 5 Sub-angular 2.0 .1-2.5 Single grains and aggregates of plagioclase (many crushed or shocked). 1) 2) Brown pyruxene.

## SPECIAL FEATURES:

. مربع ا

There are small patches of black, glassy spatter on several subsamples.

ł



Section 10046,53

Width of field: 1.39mm plane light

THIN SECTION DESCRIPTION

BY: Walton

DATE: 6/29/76

SECTION: 10046,56

`

SUMMARY: Partly devitrified typical breccia with a relatively high glass content. Several large lithic clasts are present which show a large diversity in composition and type. The matrix is not as continuous as in other Apollo 11 breccias. The array is interrupted by the numerous mineral and lithic clasts.

## MATRIX 50% OF ROCK

| PHASE      | % SECTION | SHAPE | <u>SIZE(MM</u> ) | COMMENTS:                                                                             |
|------------|-----------|-------|------------------|---------------------------------------------------------------------------------------|
| Dark Brown | 100       |       | <0.001           | High glass content;<br>numerous small crys-<br>tallites; somewhat dis-<br>continuous. |

ORIGINAL PAGE IS OF POUR QUALITY

## MINERAL CLASTS 30% OF ROCK

| PHASE                    | RELATIVE ABUNDANCE | SHAPE                | <u>SIZE (MM</u> ) |
|--------------------------|--------------------|----------------------|-------------------|
| Pyroxene <sub>l</sub>    | Very abundant      | Angular to irregular | 0.001-0.2         |
| Plagioclase <sub>2</sub> | Present            | Blocky to irregular  | 0.001-0.1         |
| Opaques <sub>3</sub>     | Few                | Blocky to skeletal   | 0.001-0.2         |

1) Some exsolution and zoning; fair to poor evinctions.

2) Very scarce; a few shards; fair to good twins.

3) Most in clasts; some fragments in matrix.

The Alexandre Martin - The Architecture and the second second second second second second second second second

- -----

いいたのいた

1

Ę

ちじん こうたいがつき

1.4.40

0

## LITHIC CLASTS 10% OF ROCK

| TYPE               | RELATIVE ABUNDANCE | SHAPE                | <u>SIZE (MM</u> ) |
|--------------------|--------------------|----------------------|-------------------|
| Small              | Very abundant      | Rounded to irregular | 0.001-1.0         |
| Large <sub>4</sub> | Nine present       | Rounded to irregular | >1.0              |

## 4) a. Fine-grained basalt consisting of pyroxene, plagioclase and ilmenite.

- Coarse-grained basalt consisting of pyroxene, plagioclase and ilmenite.
- c. Coarse-grained basalt consisting of pyroxene, plagioclase and ilmenite.
- d. Coarse-grained basalt consisting of pyroxene, plagioclase and ilmenite.
- e. Fine-grained intersertal basalt consisting of pyroxene, plagioclase, ilmenice and mesostasis.
- f. Crystal aggregation consisting of large skeletal crystals of ilmenite with small pyroxene, plagioclase and ilmenite crystals; some glass in matrix.
- g. Coarse-grained basalt which appears to be crushed as the crystals of pyroxene and plagioclase are polygranulated. Some ilmenite is present.
- h. Fine-grained basalt consisting of pyroxene, plagioclase and ilmenite.
- Fine-grained with high glass content with several mineral clasts; matrix yellow-brown.

201

## GLASS CLASTS 10% OF ROCK

| TYPE                              | RELATIVE ABUNDANCE                                                                                                     | <u>SHAPE</u>                                      | <u>SIZE (MM</u> )     |  |  |  |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------|--|--|--|
| Yellow-Orange <sub>5</sub>        | Very abundant                                                                                                          | Spherical to angular                              | 0.001-0.3             |  |  |  |
| 5) Many spherica<br>little devitr | 5) Many spherical, ovoid and part spheres plus angular shards; most show little devitrification; some bubbles present. |                                                   |                       |  |  |  |
| Selected Reference                | ces: Adler et al., (<br>Essene et al.,                                                                                 | 1970), Dence et al., (<br>(1970), Lovering and Wa | 1970);<br>are (1970). |  |  |  |

## HISTORY AND PRESENT STATUS OF SAMPLES - 6/29/76

10046 was removed from the Bulk Fines Container (ALSRC #1003) and split in the Bio Prep Lab. A 6.5gm chip was sent to PCTL for PET analysis. The parent rock was sawed and chipped in SPL. Remaining pristine samples were re-examined in SSPL. NOTE: There is a statement in the sample history data that this sample was originally contaminated in the Bio-Prep Lab.

## PRISTINE SAMPLES:

1 . . 1

| 12  | 0.17   | gm | Fines. BP-SSPL                                                                                                                                                                                        |
|-----|--------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14  | 0.149  | gm | Three small chips. Largest is 2.5.xmm. BP-SSPL                                                                                                                                                        |
| 15  | 7.92   | gm | Chips and fines. There are four chips larger than lmm. BP-SSPL                                                                                                                                        |
| 67  | 7.27   | gm | Chips and fines. The largest chip is lxlx0.5cm.<br>There is a small basalt chip in this sample. At<br>some time during early processing, this sample was<br>cross-contaminated with a basalt. BP-SSPL |
| 68  | 5.55   | gm | Chips and fines. BP-SSPL                                                                                                                                                                              |
| 193 | 120.18 | gm | 5.5x4.5x3.5cm piece. Mated with ,194. Two sawed faces $(S_1, B_1)$ . $E_1$ has a few pits. Other surfaces are fresh. BP-SPL-SSPL-RCL-SSPL                                                             |
| 194 | 113.42 | gm | 6.5x6x3cm piece. Mated with ,193. One sawed face $(N_1, E_1)$ . One pitted face (few on S-W <sub>1</sub> ). Other surfaces are fresh. BP-SPL-SSPL                                                     |
| 195 | 27.25  | gm | $5x4x1cm$ sawed end piece. $B_1$ is sawed. $T_1$ has patina but no pits. Large brown clast (4cm) on $T_1$ . BP-SPL-SSPL                                                                               |
| 196 | 17.83  | gm | $4x2x1.5cm$ sawed piece. $T_1$ , $B_1$ , and $E_1$ are sawed. Others are fresh. BP-SPL-SCPL                                                                                                           |
| 197 | 30.60  | gm | 6 sawed chips. Shaped pieces with two to five sawed faces. No pitted surfaces. BP-SPL-SSPL                                                                                                            |

ORIGINAL PAGE IS OF POOR QUALITY )

; }

| 198      | 24.00 gm  | Five large chips. Three have pits on one side.'<br>BP-SPL-SSPL |
|----------|-----------|----------------------------------------------------------------|
| 199      | 17.02 gm  | <.25 small chips. Not dusted. BP-SPL-SSPL                      |
| 200      | 39.70 gm  | Chips and fines. BP-SPL-SSPL                                   |
| RETURNED | SAMPLES:  |                                                                |
| 9        | 12.869 gm | Three chips. Largest chip has pitted surface.                  |
| 46       | 15.328 gm | Fresh chip.                                                    |
| 152      | 13.282 gm | Surface chip. $E_1$ is pitted.                                 |

~ PD.

2

1

,

`~

0

 $(\cdot)$ 

0

ł

•

が見たちという

# CHEMICAL ANALYSES

| Element           | Number of<br>Analyses | Mean  | Units | Range |
|-------------------|-----------------------|-------|-------|-------|
| SiO <sub>2</sub>  | 1                     | 44.07 | РСТ   | 0     |
| A1203             | 1                     | 11.71 | PCT   | 0     |
| TiO <sub>2</sub>  | 2                     | 8.17  | РСТ   | .668  |
| Fe0               | 3                     | 16.0  | PCT   | 1.54  |
| MnO               | 2                     | . 209 | PCT   | .017  |
| MgO               | 1                     | 9.12  | РСТ   | 0     |
| CaO               | 2                     | 13.01 | PCT   | 1.4   |
| Na <sub>2</sub> 0 | 3                     | .544  | РСТ   | .188  |
| K <sub>2</sub> 0  | 2                     | .2    | PCT   | .010  |
| P205              | 1                     | .229  | PCT   | 0     |
| н                 | 1                     | 55.0  | PPM   | 0     |
| Li                | 1                     | 16.0  | PPM   | 0     |
| Rb                | 1                     | 3.6   | PPM   | 0     |
| Cs                | 1                     | .2    | PPM   | 0     |
| Be                | 1                     | 6.0   | PPM   | 0     |
| Sr                | 2                     | 167.5 | PPM   | 5.0   |
| Ba                | 2                     | 249.5 | PPM   | 61.0  |
| Sc                | 3                     | 69.0  | PPM   | 8.0   |
|                   |                       |       |       |       |

:

203- "

÷

21-3

`

CHEMICAL ANALYSES

| Element   | Number of<br>Analyses | Mean        | Units       | Range  |
|-----------|-----------------------|-------------|-------------|--------|
| ٧         | I                     | 68.0        | PPM         | 0      |
| $Cr_2O_3$ | 3                     | . 303       | PCT         | .026   |
| Со        | 3                     | 33.0        | PPM         | 15.0   |
| Ni        | 1                     | 70.01       | PPM         | 0      |
| Cu        | 1                     | 9.7         | PPM         | 0      |
| Zn        | 1                     | 30.0        | PPM         | 0      |
| Y         | 1                     | 190.        | PP <b>M</b> | 0      |
| Zr        | 1                     | 620.0       | PPM         | 0      |
| Nb        | 1                     | 38.0        | PPM         | 0      |
| Мо        | 2                     | . 365       | PPM         | .67    |
| Pd        | 1                     | .1          | PPM         | 0      |
| Ag        | 1                     | .02         | PPM         | 0      |
| Cd        | 1                     | .8          | PPM         | 0      |
| Ta        | 3                     | 1.63        | PPM         | .4     |
| W         | 1                     | .35         | PPM         | 0      |
| Hf        | 3                     | 11.8        | PPM         | 2.4    |
| Re        | 2                     | .400        | РРВ         | .500   |
| 0s        | 2                     | .500        | РРВ         | .520   |
| Ir        | 1                     | .012        | PPM         | 0      |
| Au<br>La  | 1<br>1                | 2.8<br>23.0 | PPB<br>PPM  | 0<br>0 |
| Се        | 4                     | 63.82       | PPM         | 25.7   |
| Pr        | 1                     | 20.0        | PPM         | 0      |
| Nd        | 2                     | 55.1        | PPM         | 9.8    |
| Sm        | 3                     | 15.8        | PPM         | 10.3   |
| Eu        | 3                     | 1.98        | PPM         | .06    |
| Gd        | 1                     | 20.75       | PPM         | 1.5    |
| ТЬ        | ۱                     | 4.5         | PPM         | 0      |

3

1

 $\bigcirc$ 

ļ

ŝ

| CHEMICAL ANALYSES |
|-------------------|
|-------------------|

| Element | Number of<br>Analyses | Mean  | Units | Range |
|---------|-----------------------|-------|-------|-------|
| Dy      | 3                     | 24.93 | PPM   | 10.1  |
| Но      | 1                     | 9.0   | PPM   | 0     |
| Er      | 2                     | 18.9  | PPM   | 8.2   |
| Tm      | 1                     | 1.6   | PPM   | 0     |
| Yb      | 3                     | 12.98 | PPM   | 11.3  |
| Lu      | 3                     | 1.64  | PPM   | .73   |
| Th      | 1                     | 2.8   | PPM   | 0     |
| U       | 1                     | . 58  | РРМ   | 0     |
| В       | 1                     | 9.0   | PPM   | 0     |
| Ga      | 2                     | 5.15  | РРМ   | .5    |
| In      | 2                     | .048  | РРМ   | . 064 |
| Ge      | 1                     | . 39  | РРМ   | 0     |
| РЪ      | 1                     | 2.0   | PPM   | 0     |
| N       | 1                     | 260.0 | PPM   | 0     |
| As      | 2                     | .05   | РРМ   | 0     |
| Sb      | 1                     | .005  | PPM   | 0     |
| Se      | 1                     | .4    | PPM   | 0     |
| F       | 1                     | 220.  | РРМ   | 0     |
| C1      | 1                     | 520.0 | PPM   | 0     |
| Br      | 1                     | .2    | PPM   | 0     |

Analysts: Morrison et al., (1970); Turekian & Kharkar, (1970); Kharkar & Turekian, (1971); O'Hara et al., (1974); Philpotts & Schnetzler, (1970); Friedman et al., (1970); Lovering & Butterfield, (1970); Lovering & Hughes, (1970); Wasson & Baedecker, (1970).

No Age References

0

(

₫,

ORIGINAL PAGE IS OF POOR QUALITY





10047,0 Original PET Photo (S-69-45632)



10047 (S-75-26511)

1

1 cm.

1 cm.

 $\left( \right)$ 

ŧ)

. 70

()

## 10047

Sample 10047 is an angular, pinkish grey, Cristobalite Basalt. This sample originally weighed 138gm, and measured 6.5x4x3.5cm. It was returned in ALSRC container #1003.(Bulk Sample Container)

BINOCULAR DESCRIPTIONBY: KramerDATE: 6/14/76ROCK TYPE: Cristobalite BasaltSAMPLE: 10047,58WEIGHT: 19.44 gmCOLOR: Pinkish greyDIMENSIONS: 3 x 2 x 1.5 cmSHAPE: Angular

COHERENCE: Intergranular - coherent Fracturing - few, non-penetrative

FABRIC/TEXTURE: Isotropic/Equigranular

VARIABILITY: Homogeneous

SURFACE: Granulated

1 .67 10

ZAP PITS:  $T_1$ , few. Others - none

CAVITIES: Absent; irregular shaped vugs up to several mm in size are common. Freshly broken surface shows no vugs (PET).

| COMPONENT   | COLOR    | % OF<br>ROCK | SHAPE    | SIZE (MM)<br>DOM. RANGE |
|-------------|----------|--------------|----------|-------------------------|
| Olivine     | Green    | <3           | Equant   | .8 .5-1.0               |
| Pvroxene    | Brown    | >50          | Equant   | .2 .125                 |
| Plagioclase | Milky    | <40          | Lathlike | .2 .13                  |
| Ilmenite    | Metallic | 10-15        | Platy    | .2 .026                 |

4Ì



1

J

 $\left( \right)$ 



SECTION: 10047,47 Width of Field 2.22mm plane light

THIN SECTION DESCRIPTION BY: Walton DATE: 6/11/76

SUMMARY: Medium grained subophitic basalt composed of clinopyroxene, two generations of plagioclase, ilmenite with subordinate cristobalite pyroxferroite and mesostasis. Large anhedral crystals of clinopyroxene host the other phases present. Many of the clinopyroxene crystals are polygranular while appearing as a single crystal in plane polarized light.

> Many of the plagioclase, ilmenite and cristobalite crystals show parallel facial development. The ilmenite crystals are highly skeletal.

> > ORIGINAL PAGE IS OF POOR QUALITY

| PHASE | % OF SECTION | SH APE                | SIZE (MM)  |
|-------|--------------|-----------------------|------------|
| Pyrox | 48           | Anhedral to irregular | 0.1-2.5    |
| Plag  | 35           | Euhedral to anhedral  | 0.05-0.0   |
| Cris  | 7            | Anhedra 1             | 0.1-0.9    |
| Opaq  | 9            | Subhedral to skeletal | 0.9-2.5    |
| Meso  | 1            |                       | 0.001-0.13 |

COMMENTS:

おけていたいであるというないというとうとう

· · · · · ·

1-4 Jan 17. 497 200

のころを見たいというやいが、

And Antiber Mary and Antipation and Antipation and Antipation

うちのあたいとうというというないのであるというないです。

(Ē-

**T**"

Pyroxene - The clinopyroxene forms large pinkish tan anhedral crystals. Many of the crystals have been granulated while retaining the monocrystalline appearance. These crystals form the host medium for all other phases present.

The extinctions are, for the most part, poor with few grains giving sharp extinction points. Almost all crystals show a pronounced fracture pattern with minor cleavage parting developed. A few crystals show a well developed cleavage pattern.

Small crystals of pyroxferroite are associated as overgrowths on the pyroxene crystals. These crystals form sharp contacts with the pyroxene. Many of the fractures in the pyroxene continue through the adjacent pyroxferroite overgrowth. The pyroxferroite masses are scattered throughout the section and no localized concentration was noted.

Plagioclase - Two generations of plagioclase occur in the rock. The first type are euhedral tablets which appear in the section as equant to acicular crystals. The crystals show well developed twin planes and extinctions are sharp. There appears to be a preferred orientation to the crystals yet there is only minor clustering.

The second type of crystals represented in the rock forms interstitial masses between the pyroxene-ilmenite-plagioclase network. The masses are larger than the euhedral crystals and show poorer twin planes and extinctions are patchy. This later formed plagioclase is most often associated with the mesostasis that occurs in the rock. The mesostasis is light brown in color and very turbid.

Cristobalite - A relatively large amount of cristobalite occurs in this section. Chao et al. (1970) found 4.5% in another section of this rock. This section may, therefore, be atypical. The anhedral masses are all as interstitial fillings between other crystalline phases.

Opaques - As is usual for Apollo 11 basalts, the most common opaque mineral present in the rock is ilmenite. The crystals form subhedral to skeletal masses scattered throughout the rock. The subhedral crystals are associated with plagioclase and cristobalite while the skeletal crystals form in the plagioclase-pyroxene network.

Small masses of troilite and troilite with iron-nickel inclusions are also present. These form only a very small percentage of the opaque phases present. Most of the masses occur with or near the ilmenite crystals.

TEXTURE: Subophitic medium-grained basalt consisting of pyroxene, two generations of plagioclase, ilmenite, and cristobalite with minor other phases. Only moderate shock effects are evident in the section. Contacts are sharp and little to no interreaction between phases was noted.

Selected References: Chao et al. (1970), Dence et al. (1970), Essene e<sup>+</sup> al. (1970), Lovering and Ware (1970), Ross et al. (1970)

#### HISTORY AND PRESENT STATUS OF SAMPLES - 10/29/76

10047 was removed from the Bulk Sample Container (ALSRC #1003), split and organically contaminated in the Bio-Prep Lab. A 6gm chip was sent to PCTL for PET analysis. During re-examination in SSPL, this sample (10047,1) was found to be mis-labeled. A mixup occurred in PCTL on 8-15-69. 10044,1; 10045,1; and 10047,1 were in the same cabinet. It has been shown that the sample labeled 10047,1 is actually 10045,1.

**PRISTINE SAMPLES:** 

56

6.08 gm

| 58       | 19.44   | gm | Piece. Two surfaces show patina, but no pits.<br>All other surfaces are fresh.            |
|----------|---------|----|-------------------------------------------------------------------------------------------|
| 59       | 8.78    | gm | Bandsaw fines.                                                                            |
| 60       | 0,11    | gm | Fines.                                                                                    |
| 93       | 10.20   | gm | Nine chips. Five are fresh, two have one sawed surface each. Two have patinated surfaces. |
| 94       | 8.44    | gm | Chips and fines.                                                                          |
| 171      | 0.19    | gm | Dust.                                                                                     |
| RETURNED | SAMPLES |    |                                                                                           |
| 27       | 10.97   | gm | Chip. One patinated surface.                                                              |
| 54       | 11.07   | gm | Chips and fines. Two chips have sawed surface.<br>Many have pitted surfaces.              |

# CHEMICAL ANALYSES

Chip. All surfaces are fresh.

| Element          | Number of<br>Analyses | Mean  | Units | Range |
|------------------|-----------------------|-------|-------|-------|
| SiO <sub>2</sub> | 4                     | 42.92 | РСТ   | 3.94  |
| A1203            | 6                     | 10.05 | PCT   | 1.32  |
| Ti0 <sub>2</sub> | 6                     | 9.69  | PCT   | 2.34  |
| Fe0              | 4                     | 19.59 | РСТ   | 1.84  |

ORIGINAL PAGE IS OF POOR QUALITY 5. 1

| Element                        | Number of<br>Analyses | Mean  | Units | Range |
|--------------------------------|-----------------------|-------|-------|-------|
| Mn O                           | 4                     | .291  | PCT   | .050  |
| MgO                            | 4                     | 5.84  | PCT   | .43   |
| CaO                            | 5                     | 11.99 | PCT   | 2.73  |
| Na <sub>2</sub> 0              | 5                     | .444  | РСТ   | .051  |
| K <sub>2</sub> 0               | 4                     | .096  | РСТ   | .039  |
| P <sub>2</sub> 0 <sub>5</sub>  | 1                     | .11   | РСТ   | 0     |
| Li                             | 1                     | 16.31 | PPM   | 0     |
| Rb                             | 4                     | 1.129 | РРМ   | .61   |
| Cs                             | 2                     | .052  | РРМ   | .015  |
| Sr                             | 3                     | 198.9 | РРМ   | 15.7  |
| Ba                             | 2                     | 179.0 | РРМ   | 182.0 |
| Sc                             | 2                     | 98.5  | РРМ   | 13.0  |
| V                              | 3                     | 47.0  | РРМ   | 52.   |
| Cr <sub>2</sub> 0 <sub>3</sub> | 4                     | .204  | PCT   | .055  |
| Co                             | 5                     | 14.32 | РРМ   | 5.    |
| Ni                             | 1                     | 20.04 | PPM   | 0     |
| Cu                             | 1                     | 16.00 | PPM   | 0     |
| Zn                             | 2                     | 7.4   | РРМ   | 11.2  |
| (                              | 1                     | 134.0 | РРМ   | 0     |
| Zr                             | 2                     | 384.5 | РРМ   | 101.  |
| ۱b                             | 1                     | 23.0  | РРМ   | 0     |
| Pd                             | 1                     | .002  | РРМ   | 0     |
| ١g                             | 1                     | 1.89  | РРВ   | 0     |
| Cd                             | 1                     | 3.40  | РРВ   | 0     |
| Ta                             | 1                     | 2.6   | РРМ   | 0     |
| lf                             | 2                     | 14.35 | РРМ   | 2.3   |
| Re                             | 1                     | .020  | РРВ   | 0     |
| )s                             | 1                     | .260  | РРВ   | 0     |
| r                              | 1                     | .005  | РРВ   | 0     |
| lu                             | 1                     | .029  | РРВ   | 0     |

211

۰.

ţ

ł

1

**(**)

ŕ

----

•,

| 2 | 1 | 2 |
|---|---|---|
| 4 | 1 | 2 |

1

1

| lement | Number of<br>Analyses | Mean  | Units | Range |
|--------|-----------------------|-------|-------|-------|
| La     | 3                     | 13.77 | РРМ   | 10.0  |
| Ce     | 2                     | 47.0  | РРМ   | 2.    |
| Pr     | 1                     | 13.0  | РРМ   | 0     |
| ۱d     | ٦                     | 36.   | РРМ   | 0     |
| Sm     | 2                     | 18.53 | РРМ   | .75   |
| Eu     | 2                     | 2.63  | РРМ   | .16   |
| ГЬ     | 1                     | 4.1   | РРМ   | 0     |
| lo     | 1                     | 7.9   | РРМ   | 0     |
| (b     | 2                     | 18.1  | РРМ   | .2    |
| Lu     | 2                     | 2.59  | РРМ   | .58   |
| ſh     | 3                     | 1.11  | РРМ   | 1.4   |
| J      | 2                     | .192  | РРМ   | .064  |
| ia     | ן                     | 4.0   | РРМ   | 0     |
| n      | 1                     | 2.80  | РРВ   | 0     |
| .ı     | 1                     | .28   | РРВ   | 0     |
| b      | 1                     | .769  | PPM   | 0     |
| i      | 1                     | .16   | РРВ   | 0     |
| )      | 1                     | 40.10 | РСТ   | 0     |
| i      | 1                     | .18   | РСТ   | 0     |
| е      | 1                     | .25   | РРМ   | 0     |
| e      | 1                     | .013  | РРМ   | 0     |
|        | 1                     | 193.0 | РРМ   | 0     |
| 1      | 1                     | 14.4  | РРМ   | 0     |
| r      | 2                     | .18   | РРМ   | .301  |
|        | 1                     | .016  | РРМ   | 0     |

Analysts: Compston et al., (1970); Ehmann & Morgan, (1970); Rose et al., (1970); Wakita et al., (1970); Ganapathy et al., (1970); Goles et al., (1970); Gopalon et al., (1970); Reed & Jovanovic, (1970); Hurley & Pinson, (1970); Anders et al., (1971); Lovering & Butterfield, (1970); Silver, (1970); Wakita et al., (1970).

> ORIGINAL PAGE IS OF POOR QUALITY

()

ن ۲

**(**)

()

1

•••

0

4

ĺ

Ĵž

**!**••

(

i

1

10047

Age References: Stettler et al., (1974); Boschler, (1971b); Marti et al., (1970); Eberhardt, (1971b); Silver, (1970); Crozaz et al., (1970).

213



10048,0 (S-76-25615)

> ORIGINAL PAGE 15 OF POOR QUALITY

# 10048

Sample 10048 is a rounded to subrounded, medium light grey, fine breccia. This sample originally weighed 579gm and measured 13x8x7cm. Sample was returned in ALSRC #1003 (Bulk Sample Container).

BINOCULAR DESCRIPTIONBY: TwedellDATE: 5/25/76ROCF TYPE: Fine BrecciaSAMPLE: 10048,0WEIGHT: 172 gmCOLOR: Medium light greyDIMENSIONS: 7 x 3 x 4.2 cmSHAPE: Rounded to subrounded

COHERENCE: intergranular - coherent Fracturing - few, non-penetrative; one main fracture visible, parallel to long axis (PET).

FABRIC/TEXTURE: Anisotropic/Fine Breccia

VARIABILITY: Homogeneous

SURFACE: Sawed surface on  $T_1$  and  $B_1$ . Smooth on  $E_1$  and  $T_1$ .

ZAP PITS: Many on  $T_1$ , few on  $E_1$ , none on others. (Glass lined up to 2mm in diameter)

CAVITIES: Absent

We want in the Star

];

(

Ū

| COMPONENT                           | COLOR                   | % OF<br>ROCK | SHAPE     | SIZE (MM)<br>DOM. RANGE |
|-------------------------------------|-------------------------|--------------|-----------|-------------------------|
| Matrix                              | Med.Lt.Grey             | <b>9</b> 6   |           |                         |
| Basalt $Clast_1$                    | Honey Brn.<br>and White | 2            | Irregular | 2 1-8                   |
| Salt & Pepper<br>Clast <sub>2</sub> | Blk/White               | 1            | Angular   | .5 .2-2                 |
| White Clast <sub>3</sub>            | White                   | <1           | Angular   | .1 <.13                 |
| Brown Clast <sub>4</sub>            | Brown                   | <1           | Angular   | .2 <.14                 |

1) Plagioclase 50%, Pyroxene 35%, Ilmenite 15%.

2) Platy elongated ilmenite 30%, semi-opaque and crushed plagioclase 70%.

3) Crushed plagioclase.

4) Appears to be composed of pyroxene crystals.

ORIGINAL PAGE IS OF POOR QUALITY,

216

11 •

()

 $\mathbb{C}$ 



10048,33 Width of field 2.72mm plane light SECTION:

THIN SECTION DESCRIPTION BY: Walton DATE: 7/15/76

SUMMARY: Partly devitrified typical breccia with a low clast content. Several basaltic clasts occur as large inclusions in the matrix. Most of the matrix has undergone only slight devitrification.

# MATRIX 67% OF ROCK

| PHASE      | % SECTION | SHAPE | <u>SIZE(MM</u> ) | COMMENTS:           |
|------------|-----------|-------|------------------|---------------------|
| Dark Brown | 100       |       | <0.001           | High glass content; |

## MINFRAL CLASTS 19% OF ROCK

| PHASE                    | RELATIVE ABUNDANCE | SH APE                | <u>SIZE (MM</u> ) |
|--------------------------|--------------------|-----------------------|-------------------|
| Pyroxene <sub>1</sub>    | Very abundant      | Angular to irregular  | 0.001-0.6         |
| Plagioclase <sub>2</sub> | Present            | Blocky to irregular   | 0.001-0.1         |
| Opaques <sub>3</sub>     | Moderate           | Skeletal to irregular | 0.001-0.1         |
|                          |                    |                       |                   |

1) 2) Several show zoning; most highly fractured.

Few shards; most show some twin planes. X

Small blocky to skeletal masses; widely dispersed throughout matrix. 3)

## LITHIC CLAST 13% OF RUCK

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

いちい 、 いいち ちょうぜいう

「日本のないないないない」となったから、ないないとしてなった。

いちのき、ないまたのであると、おかない、なんでいたのである

٤

~

ť

6

| TYPE               | RELATIVE ABUNDANCE                                          | SHAPE                    | <u>SIZE (MM</u> ) |
|--------------------|-------------------------------------------------------------|--------------------------|-------------------|
| Small              | Very abundant                                               | Rounded to irregular     | 0.001-1.0         |
| Large <sub>4</sub> | Six present                                                 | Rounded to irregular     | >1.0              |
| 4) a.              | Coarse-grained basalt consist ilmenite.                     | ing of pyroxene, plagioc | lase and          |
| b.                 | Very fine-grained basalt with ilmenite with probable plagio |                          | ene and           |
| c.                 | Coarse-grained basalt consist ilmenite.                     | ing of pyroxene, plagioc | lase and          |
| d.                 | Coarse-grained basalt consist ilmenite.                     | ing of pyroxene, plagioc | lase and          |
| e.                 | Fine-grained basalt consistin ilmenite.                     | g of pyroxene, plagiocla | se and            |
| f.                 | Coarse-grained basalt consist ilmenite.                     | ing of pyroxene, plagioc | lase and          |
|                    | GLASS CLAST                                                 | S 1% OF ROCK             |                   |
| TYPE               | RELATIVE ABUNDANCE                                          | SHAPE                    | <u>SIZE (MM</u> ) |
| Yellow-            | Orange <sub>5</sub> Very abundant                           | Angular to spherical     | 0.001-1.0         |
| White <sub>6</sub> | Few                                                         | Angular to spherical     | 0.001-0.5         |
|                    | large piece with fine-grained t spheres.                    | inclusions; only a few s | spheres or        |

6) A few sparse fragments of spheres; some devitrification.

# SAMPLE HISTORY AND PRESENT STATUS OF SAMPLES - 10/29/76

10048 was removed from ALSRC #1003, split, and organically contaminated in the Bio-Prep Lab. It was later sawed and chipped in SPL. Remaining pristine samples were re-examined in SSPL. A large piece was sent to RCL.

217

ł

. 1

**(**)

3

3

ь Д

 $\bigcirc$ 

1

PRISTINE SAMPLES: (A11 BP-SPL-SSPL)

| 0  | 172. | gm | Breccia piece. Two sawed surfaces on $B_1$ and part of $T_1$ . Pits on part of $T_1$ . 7 x 3 x 4.2 cm. |
|----|------|----|--------------------------------------------------------------------------------------------------------|
| 49 | 66.  | gm | Piece. Pitted on one face. Patina on fiveRCL-                                                          |
| 51 | 41.  | gm | Piece. Mated to ,70. One pitted surface. Small amount of patina. 3.5 x 5 x 4 cm.                       |
| 56 | 1.42 | gm | Small breccia chips. No pits.                                                                          |
| 57 | .67  | gm | Fines.                                                                                                 |
| 58 | 1.37 | gm | Fines.                                                                                                 |
| 60 | .42  | gm | Fines.                                                                                                 |
| 62 | 5.75 | gm | Fines.                                                                                                 |
| 63 | 1.14 | gm | Fines.                                                                                                 |
| 64 | 1.61 | gm | Fines.                                                                                                 |
| 68 | .28  | gm | Fines.                                                                                                 |
| 69 | 38.  | gm | Piece. Two sawed surfaces. 1 pitted surface.<br>Small amount of patina. 3.5 x 4 x 3 cm.                |
| 70 | 31.  | gm | Piece. One pitted surface mated to ,51. Small amount of patina. 2.5 x 4.2 x 3.5 cm.                    |
| 71 | 10.  | gm | One small piece. No pits or patina. 3 x 2 x 1.5 cm.                                                    |
|    |      |    |                                                                                                        |

| RETI | JRNE | D SA | MPL | ES: |
|------|------|------|-----|-----|
|      |      |      |     |     |

| 9  | 49.79 gm | 40 chips. Largest is 1 x 0.5 x 0.1 cm. Som have pitted surfaces. | e chips |
|----|----------|------------------------------------------------------------------|---------|
| 22 | 18.34 gm | Chip. One pitted surface.                                        |         |

# CHEMICAL ANALYSES

| Element            | Number of<br>Analyses | Mean  | Units | Range |
|--------------------|-----------------------|-------|-------|-------|
| Si0,               | 2                     | 40.46 | РСТ   | 3.48  |
| SiO2<br>A1203      | 4                     | 12.40 | PCT   | 1.56  |
| TiÔ <sub>2</sub> ĭ | 3                     | 8.77  | PCT   | 1.33  |
| Fe0                | 2                     | 16.34 | РСТ   | 1.28  |

218

Bary Prof

ţ

ς.

**(** ;

( )

'

| Element           | Number of<br>Analyses | Mean  | Units | Range  |
|-------------------|-----------------------|-------|-------|--------|
| MnO               | 3                     | .214  | РСТ   | .019   |
| Mg0               | 2                     | 7.17  | PCT   | .743   |
| CaO               | 3                     | 11.03 | PCT   | . 91   |
| Na <sub>2</sub> 0 | 3                     | .476  | PCT   | . 039  |
| K <sub>2</sub> 0  | 2                     | .17   | РСТ   | . 0001 |
| Rb                | 2                     | 4.16  | PPM   | .01    |
| Cs                | 2                     | . 126 | РРМ   | . 004  |
| Sr                | 1                     | 190.0 | PPM   | 0      |
| Ba                | 2                     | 183.5 | PPM   | 33.0   |
| Sc                | ۷                     | 64.25 | PPM   | 3 10   |
| v                 | 1                     | 67.0  | PPM   | 0      |
| $Cr_2O_3$         | 3                     | . 304 | РСТ   | .031   |
| Со                | 3                     | 34.0  | PPM   | 2.8    |
| Ni                | 2                     | 185.6 | PPM   | 56.8   |
| Cu                | 2                     | 10.14 | PPM   | 1.91   |
| Zn                | 2                     | 29.4  | PPM   | 1.6    |
| Zr                | 1                     | 240.0 | PPM   | 0      |
| Pd                | 1                     | .013  | РРМ   | 0      |
| Ag                | 2                     | .02   | PPM   | . 007  |
| Cd                | 1                     | .078  | PPM   | 0      |
| Ta                | 2                     | 1.85  | PPM   | .1     |
| Hf                | 2                     | 13.1  | PPM   | 2.8    |
| Ir                | 2                     | .009  | PPM   | . 004  |
| Au                | 3                     | .002  | PPM   | .001   |
| La                | 2                     | 19.2  | РРМ   | 3.80   |
| Ce                | 2                     | 47.4  | РРМ   | 18.6   |
| Nd                | 1                     | 40.0  | PPM   | 0      |
|                   |                       |       |       |        |

. ... . . . ....

.

i

1

1

CHEMICAL ANALYSES

Ŷ

1

-----

 $\overline{(})$ 

ing. The

1

4

112212

તું

j,

1

į )

1

 $\bigcirc$ 

| CHEMICAL ANALYSES     |                                                   |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|-----------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Number of<br>Analyses | Mean                                              | Units                                                                                                                                                                                       | Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 2                     | 14.05                                             | PPM                                                                                                                                                                                         | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 2                     | 1.93                                              | PPM                                                                                                                                                                                         | . 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 1                     | 19.8                                              | PPM                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 2                     | 3.6                                               | PPM                                                                                                                                                                                         | .40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 1                     | 24.95                                             | PPM                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 2                     | 4.65                                              | PPM                                                                                                                                                                                         | .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 1                     | 14.0                                              | PPM                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 2                     | 13.82                                             | PPM                                                                                                                                                                                         | 2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 2                     | 1.98                                              | PPM                                                                                                                                                                                         | .15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 1                     | . 69                                              | PPM                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 3                     | 5.65                                              | РРМ                                                                                                                                                                                         | .7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 3                     | .112                                              | PPM                                                                                                                                                                                         | . 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 1                     | 2.83                                              | РРВ                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| ו                     | . 35                                              | РРМ                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 1                     | 8.80                                              | РРВ                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 1                     | 1.62                                              | РРВ                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 1                     | 39.8                                              | РСТ                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 1                     | 1.6                                               | РРМ                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 1                     | .072                                              | PPM                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 1                     | 65.4                                              | PPM                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 2                     | .132                                              | PPM                                                                                                                                                                                         | .013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                       | Analyses  2 2 1 2 1 2 1 2 1 2 1 2 1 3 3 3 1 1 1 1 | Number of<br>AnalysesMean2 $14.05$ 2 $1.93$ 1 $19.8$ 2 $3.6$ 1 $24.95$ 2 $4.65$ 1 $14.0$ 2 $13.82$ 2 $1.98$ 1.693 $5.65$ 3.1121 $2.83$ 1 $8.80$ 1 $1.62$ 1 $39.8$ 1 $1.6$ 1 $0.72$ 1 $65.4$ | Number of<br>Analyses         Mean         Units           2         14.05         PPM           2         1.93         PPM           2         1.93         PPM           2         3.6         PPM           2         4.65         PPM           2         4.65         PPM           2         13.82         PPM           2         13.82         PPM           2         1.98         PPM           3         5.65         PPM           3         5.65         PPM           3         112         PPM           1         2.83         PPB           1         35         PPM           1         8.80         PPB           1         1.62         PPB           1         39.8         PCT           1         1.6         PPM           1         0.072         PPM           1         65.4         PPM |  |  |

Analysts: Fhmann & Morgan, (1970); Rose et al., (1970); Ganapathy et al., (1970); Goles et al., (1970); Haskin et al., (1970); Turekian & Kharkar, (1970); Wasson & Baedecker, (1970).

No Age References

220

ŝ

£

٩,

221

, ř.

١



10049,0 Original PET Photo (S-69-45702)

ŀ





ORIGINAL PAGE IS OF POOR QUALITY

Sample 10049 is an angular, dark grey, fine grained basalt. This sample originally weighed 193gm and measured 6.5x3.5x10cm. It was originally returned in ALSRC #1003 (Bulk Sample Container). 15

ું

1

{ }

T TE ( MANA )

BINOCULAR DESCRIPTIONBY: TwedellDATE: 5/19/76ROCK TYPE: Fine Grained BasaltSAMPLE: 10049,0WEIGHT: 141 gmCOLOR: Dark GreyDIMENSIONS: 4.8 x 4 x 3.5 cmSHAPE: Angular

COHERENCE: Intergranular - tough Fracturing - few, non-penetrative

FABRIC/TEXTURE: Isotropic/Equigranular, very fine grained.

VARIABILITY: Homogeneous

SURFACE: Irregular on all surfaces. A white aphanitic coating surrounds the pitted areas only.

ZAP PITS: Many on  $B_1$ , few on  $T_1$ ,  $N_1$ ,  $W_1$ . None on  $E_1$ ,  $S_1$ . Pits are glass lined up to 0.8mm in diameter.

CAVITIES: 10% total surface average <.6mm in diameter, some crystal lined, some smooth.

| COMPONENT             | COLOR | % OF<br>ROCK | SHAPE                   |     | RANGE |
|-----------------------|-------|--------------|-------------------------|-----|-------|
| Plagioclase           | White | 20           | Subangular - subrounded | <.1 | <.1   |
| Ilmenite <sub>1</sub> | Black | 20           | Angular - subangular    | <.1 | <.1   |
| Pyroxene              | Black | 60           | Subrounded              | <.1 | <.1   |

1) Appears to be semi-opaque platy crystals.

4 ......



SECTION: 10049,39 Width of field 2.22mm plane light THIN SECTION DESCRIPTION BY: Walton DATE: 11/15/75

SECTION: 10049,39

(

SUMMARY: Fine-grained vesicular intersertal basalt with a pyroxene-ilmenite network hosting smaller plagioclase crystals and abundant mesostasis. Most of the silicate crystals are poorly formed and optical characteristics are poor. A few euhedral pyroxene crystals are present, but are scattered. The ilmenite occurs in crystals of two generations. One generation is composed of small euhedral laths and the other as large subhedral laths with irregular boundaries. Many of the larger ilmenite crystals contain silicate or glassy inclusions and have a somewhat sieve texture.

Throughout the section are masses and stringers of a glass-rich mesostasis. It is brownish in color and is very turbid. Many of the ilmenite crystals are surrounded by the mesostasis. Some minor devitrification has taken place.

223

| рилст | % SECTION        | CUADE                 |                   |
|-------|------------------|-----------------------|-------------------|
| PHASE | <u>% SECTION</u> | SHAPE                 | <u>SIZE (MM</u> ) |
| Pyrox | 47               | Subhedral to euhedral | 0.05-0.2          |
| Plag  | 18               | Tabular to anhedral   | 0.01-0.2          |
| Opaq  | 17               | Subhedral to euhedral | 0.001-0.2         |
| Meso  | 18               | Irregular             |                   |
| Mafic |                  | Rods                  | 0.01-0.2          |

#### COMMENTS:

1

224

Pyroxene - Pale brown to colorless subhedral to euhedral crystals of pyroxene enclose the smaller plagioclase and ilmenite crystals. Some euhedral crystals, hexagonal in outline, are scattered randomly in the section. They show poor optical characteristics, but do have sharper grain boundaries. The larger subhedral crystals show some zoning, and all the crystals are highly fractured. Most of the grain boundaries are poorly defined. Due to the poor optical characteristics of the pyroxene crystals, no exact determination of the type of pyroxene could be made.

Plagioclase - Small tabular crystals of plagioclase occur incerdispersed with blocky anhedral crystals forming interstitial fillings within the pyroxene-ilmenite network. The optical characteristics are, for the most part, poor. Some of the smaller tabular crystals have retained sharp twin planes.

The plagioclase grains tend to have sharper and more well defined grain boundaries than do the pyroxenes. The crystals are randomly scattered throughout the section.

Opaques and Mesostasis - The major opaque phase in the rock is ilmenite. Two generations of crystals are present. The smaller euhedral laths are widely scattered throughout the section while the larger subhedral laths are somewhat more grouped. The larger crystals contain glass and silicate inclusions and the boundaries are very irregular. Many of the crystals are bent and some are broken. Many of the crystals are surrounded by the glass-rich mesostasis.

Much of the mesostasis is present as stringers or as isolated masses filling interstices in the silicate-ilmenite network. There appears to be a preference for the mesostasis to form near or around the larger ilmenite crystals.

ORIGINAL PAGE

Isolated patches of troilite and troilite with iron-nickel are also present, but only in moderate amounts. Also present are numerous spherical to irregular vesicles which are up to 0.3 mm in diameter.

TEXTURE: The rock consists of a random network of intergrown pyroxene and ilmenite crystals. Plagioclase and mesostasis occurs interstitial to this network. The pyroxene forms subhedral to euhedral crystals but they lack well defined optical characteristics. The numerous vesicules are rimmed, for the most part, by finely divided pyroxene crystals. The texture is intersertal. Boundaries are sharp to diffuse.

Selected References: Cameron (1970)

### HISTORY AND PRESENT STATUS OF SAMPLES - 10/29/76

10049 was removed from ALSRC #1003, split and organically contaminated (due to a large amount of handling) in the Bio-Prep Lab. A 2gm chip was sent to PCTL for PET analysis. Remaining pristine samples were re-examined in SSPL.

### **PRISTINE SAMPLES:**

O

(

| 35 | 1.18 g        |         | m size chips. All chips range from 3-7mm,<br>ips total. BP-SSPL |
|----|---------------|---------|-----------------------------------------------------------------|
| 36 | <b>.</b> 19 g |         | chips. All <3mm in size but greater than BP-SSPL                |
| 37 | .43 g         | m Fines | . Homogeneous. BP-SSPL                                          |
| 38 | .42 g         | m Fines | . Homogeneous. Bi-SSPL                                          |

### NO RETURNED SAMPLES

### CHEMICAL ANALYSES

| Element                        | Number of<br>Analyses | Mean  | Units | Range |
|--------------------------------|-----------------------|-------|-------|-------|
| SiO <sub>2</sub>               | 3                     | 41.69 | PCT   | 1.78  |
| A1 <sub>2</sub> 0 <sub>3</sub> | 2                     | 9.00  | PCT   | . 997 |
| TiO <sub>2</sub>               | 4                     | 9.42  | РСТ   | 4.13  |
| Fe0                            | 3                     | 17.0  | РСТ   | 4.03  |

1

「あいここ」の 一個人、 いちょう

| 0 | 0 | 6 |
|---|---|---|
| ۷ | ۷ | υ |

 $M^{-1}$ 

1

4

I

ţ

ļ

3 - 1

CHEMICAL ANALYSES

| Element                        | Number of<br>Analyses | Mean  | Units | Range |
|--------------------------------|-----------------------|-------|-------|-------|
| Mn0                            | 4                     | .228  | PCT   | .043  |
| Mg0                            | 2                     | 7.16  | PCT   | .265  |
| CaO                            | 3                     | 10.19 | PCT   | 2.185 |
| Na <sub>2</sub> 0              | 5                     | .511  | PCT   | .054  |
| K <sub>2</sub> 0               | 4                     | .317  | РСТ   | .085  |
| Rb                             | 1                     | 6.2   | PPM   | 0     |
| Cs                             | 1                     | .177  | PPM   | 0     |
| Sr                             | 2                     | 170.4 | PPM   | 19.2  |
| Ba                             | 2                     | 266.0 | PPM   | 128.  |
| Sc                             | 2                     | 83.45 | PPM   | 5.1   |
| Cr <sub>2</sub> 0 <sub>3</sub> | 3                     | . 304 | PCT   | .034  |
| Co                             | 2                     | 23.5  | PPM   | 1.0   |
| Мо                             | 1                     | .055  | PPM   | 0     |
| Ag                             | 1                     | .064  | PPM   | 0     |
| Тэ                             | 2                     | 1.95  | PPM   | .1    |
| Hf                             | 1                     | 17.3  | PPM   | 0     |
| Au                             | 1                     | 4.70  | PPB   | 3.60  |
| La                             | 4                     | 26.45 | РРМ   | 4.2   |
| Ce                             | 3                     | 90.63 | PPM   | 46.9  |
| Nd                             | 2                     | 60.95 | РРМ   | 3.7   |
| Sm                             | 4                     | 16.82 | PPM   | 9.5   |
| Eu                             | 4                     | 2.15  | РРМ   | .19   |
| Gd                             | 1                     | 29.3  | PPM   | 0     |
| ть                             | ı                     | 5.46  | PPM   | 0     |
| Dy                             | 3                     | 31.67 | PPM   | 2.8   |
| Er                             | ł                     | 20.9  | РРМ   | 0     |
| Yb                             | 3                     | 16.93 | РРМ   | 6.    |

ORIGINAL PAGE - OF POOR QUALIT

Ś



3

 $\left( \right)$ 

. )

ときたいと言い

State of the state

「「「」」

1

`

ł

ſ

()

# CHEMICAL ANALYSES

| Element | Number of<br>Analyses | Mean | Units | Range |
|---------|-----------------------|------|-------|-------|
|         |                       | 0.50 | DDM   | 10    |
| Lu      | 2                     | 2.52 | PPM   | .13   |
| Th      | 1                     | 4.03 | PPM   | 0     |
| U       | 2                     | .777 | PPM   | .074  |
| Ga      | 1                     | 4.3  | РРМ   | 0     |
| In      | 1                     | .016 | PPM   | 0     |
| С       | 2                     | 70.  | РРМ   | 0     |
| Ge      | 1                     | .001 | PPM   | 0     |
| N       | ١                     | 116. | PPM   | 0     |
| As      | 1                     | .05  | РРМ   | 0     |
| 0       | 1                     | 41.0 | РСТ   | U     |
| S       | 1                     | .22  | РСТ   | 0     |
| Se      | 1                     | .2   | PPM   | 0     |
|         |                       |      |       |       |

Analysts: Rose et al., (1970); Wanke et al., (1971); Turekian & Kharkar, (1970); Kharkar & Turekian, (1971); Gast et al., (1970); Kaplan et al., (1970); Moore et al., (1970).

Age References: Hintenberger et al., (1971); Burnett et al., (1975); Eberhardt (1971).



10050,0 2 cm. [\_\_\_\_] Original PET Photo (S-69-45731)



10050,U (S-76-21349)

ORIGINAL PAGE 18 OF POOR QUALITY



ć

ł

ŝ

ł

٠

4

1

2

1

J

5

.

| Sample 10050 is an<br>sample originally w<br>in ALSKC #1003 (Bul | eighed 114gm a                  | and measured | ey, Cristobalit<br>d 5x4x3.2cm. S | e basalt. This<br>ample was returned |
|------------------------------------------------------------------|---------------------------------|--------------|-----------------------------------|--------------------------------------|
| BINOCULAR DESCRIPTI                                              | CN                              | BY: Twede    | 11                                | DATE: 1/19/76                        |
| ROCK TYPE: Cristob                                               | alite Basalt                    | SAMPLE:      | 10050,0                           | WEIGHT: 28.53 gm                     |
| COLOR: Medium ligh                                               | t grey                          | DIMENSION    | NS: 3.5 x 3.2 x                   | 2 cm                                 |
| SHAPE: Angular                                                   |                                 |              |                                   |                                      |
| COHERENCE: Intergr<br>Frac                                       | anular - Moden<br>turing - Few, |              |                                   |                                      |
| FABRIC/TEXTURE: Is                                               | otropic/Equig                   | ranular      |                                   |                                      |
| VARIABILITY: Homog                                               | eneous                          |              |                                   |                                      |
| SURFACE: Rough                                                   |                                 |              |                                   |                                      |
| 7AP PITS: Absent                                                 |                                 |              |                                   |                                      |
| CAVITIES: 25% cavi                                               | cies throughou                  | ut sample.   | Average size i                    | s about 1-1.5mm.                     |
| COMPONENT                                                        | COLOR                           | % OF<br>ROCK | SHAPE                             | SIZE (MM)<br>DOM. RANGE              |
| Pyroxene                                                         | Dk.Brown<br>to Dk.Grn.          | 60           | Subhedral                         | 0.1 <.17                             |
| Plagioclase                                                      | White                           | 30           | Anhedra1                          | 0.1 <.17                             |
| Ilmenite                                                         | Black                           | 10           | Subhedral                         | 0.1 <.17                             |



SECTION: 10050,36 Width of field 1.39mm plane light

THIN SECTION DESCRIPTION BY: Walton

DATE: 6/16/76

SUMMARY: Nearly equigranular subophitic basalt composed of clinopyroxene, two generations of plagioclase, ilmenite with subordinate cristobalite, troilite-iron nickel, chromium ulvospinel and mesostasis. Large anhedral crystals of pyroxene host the other phases present. Many of these crystals are polygranular while appearing as a single crystal in plane polarized light.

The plagioclase crystals are more or less grouped and scattered throughout the pyroxene host. Some small euhedral crystals of plagioclase are included in the pyroxene crystals.

The ilmenite crystals are large and highly skeletal. Many of the crystals have chromite and rutile exsolution lamallae. A few of the crystalline masses are made up of many smaller crystals giving a polygranular texture to the crystal.

ORIGINAL PAGE IS OF POOR QUALITY

| PHASE | % SECTION | SHAPE                 | <u>SIZE (MM</u> ) |
|-------|-----------|-----------------------|-------------------|
| Pyrox | 55        | Anhedral, irregular   | 0.4-1.3           |
| Plag  | 28        | Euhedral to anhedral  | 0.2-1.0           |
| Opaq  | 11        | Subhedral to skeletal | 0.2-1.0           |
| Cris  | 5         | Anhedral              | 0.1-0.4           |
| Meso  | 1         | Irregular             | 0.05-0.4          |
|       |           |                       |                   |

#### COMMENTS:

HAR BANKER WE .

and the second state and a second state and second second second

うちゃく いんしょう たいぞく ひ

(

Pyroxene - Large anhedral crystals of clinopyroxene form a nearly continuous array and host all other phases present. The crystals show sharp to distinct extinctions with moderate zoning. Small euhedral to anhedral crystals of olivine are present in several crystals. Many of the crystals are granulated while retaining the monocrystalline appearance. Almost all crystals show a pronounced fracture pattern with only a minor cleavage pattern developed. A few crystals show simple twins, but this is rare.

- Plagioclase Two generations of plagioclase occur in the rock. The first type consists of euhedral tablets which appear in the section as equant to acicular crystals. The crystals show well developed twin planes, sharp extinctions, and minor clustering.
- The second type of crystals represented in the rock forms interstitial masses between the pyroxene-ilmenite-plagioclase network. The crystals are larger than the first type and show poor optical characteristics.
- A possible third generation may be present and is represented by very small, sharp, isolated euhedral crystals completely enclosed in the pyroxene. These crystals may belong to the first generation or may represent a completely independent generation.
- Associated with the second generation of plagioclase crystals are small irregular masses of glass-rich mesostasis. The color is light to dark brown. Some devitrification has taken place, but no phases were determined.
- Cristobalite Randomly scattered throughout the section are anhedral crystals of cristobalite. The grains are found between adjacent pyroxene-plagioclase crystals or between two grains of pyroxene. The later case is the more common.

Opaques - The most abundant opaque in the rock is ilmenite which occurs as subhedral to skeletal crystal masses scattered throughout the

232

٠.,

rock. The lath-like crystals tend to form near the crystals of plagioclase and cristobalite. The skeletal crystals are randomly scattered in the silicate network. Some rutile and chromice exsolutions are present.

Associated with the ilmenite are crystals of troilite and troilite with iron-nickel. The masses are small and widely distributed.

- A few small groups of chromium ulvospinel are also in the rock. These small masses are associated with small masses of ilmenite. The crystals are very rounded and irregular in shape.
- TEXTURE: Subophitic medium-grained basalt consisting of pyroxene, two generations of plagioclase, ilmenite and cristobalite with minor other phases. Contacts are sharp and little to no interreaction between phases is present.

Selected References: Frondel et al. (1970), Ross et al. (1970).

HISTORY AND PRESENT STATUS OF SAMPLES - 10/29/76

10050 was removed from ALSRC #1003 and split in the Bio-Prep Lab. A small chip was sent to PCTL for PET analysis. Remaining pristine samples were reexamined in SSPL.

PRISTINE SAMPLES: (All BP-SSPL)

1

| 0   | 28.53 | gm | Piece. No pitting observed.    |
|-----|-------|----|--------------------------------|
| 1   | 2.40  | gm | Chip. No pits.                 |
| 15  | 4.05  | gm | Chips and fines.               |
| 16  | 11.64 | gm | Chips and fines.               |
| 146 | 11.12 | gm | Chips and fines split from .0. |

### **RETURNED SAMPLES:**

11 7.06 qm

Chip. Three pitted surfaces.

ORIGINAL PAGE 15 OF POOR QUALITY

)

| 1 | 0 | 5 | 0 |
|---|---|---|---|
|   |   |   |   |

٢.

| CHEMICAL | ANALYSES |
|----------|----------|
|          |          |

| Element            | Number of<br>Analyses | Mean   | Units | Range |
|--------------------|-----------------------|--------|-------|-------|
| SiO <sub>2</sub>   | 3                     | 41.05  | РСТ   | 3.53  |
| A1203              | 5                     | 10.21  | PCT   | 2.12  |
| TiO <sub>2</sub>   | 4                     | 12.16  | РСТ   | 1.83  |
| Fe0                | 3                     | 18.12  | РСТ   | 2.05  |
| Mn0                | 3                     | .273   | РСТ   | .034  |
| Mg0                | 3                     | 8.65   | РСТ   | 3.65  |
| Ca0                | 5                     | 11.56  | PCT   | 1.26  |
| Na <sub>2</sub> 0  | 5                     | .403   | РСТ   | .106  |
| K <sub>2</sub> 0   | 4                     | .066   | РСТ   | .030  |
| Li                 | 1                     | 11.00  | PPM   | 0     |
| Rb                 | 4                     | .723   | PPM   | .150  |
| Cs                 | 2                     | .027   | PPM   | .003  |
| Sr                 | 3                     | 166.7  | PPM   | 48.8  |
| Ba                 | 2                     | 80.50  | PPM   | 23.   |
| Sc                 | 2                     | 90.70  | PPM   | 3.6   |
| ٧                  | 3                     | 107.50 | РРМ   | 19.0  |
| Cr <sub>2</sub> 03 | 3                     | .333   | РСТ   | .040  |
| Co                 | 3                     | 15.93  | PPM   | 5.40  |
| Cu                 | 1                     | 15.20  | PPM   | 0     |
| Zn                 | 1                     | 1.75   | PPM   | 0     |
| Y                  | 1                     | 104.00 | РРМ   | 0     |
| Zr                 | 1                     | 520.00 | PPM   | 0     |
| Pd                 | 1                     | .001   | PPM   | 0     |
| Ag                 | 1                     | 1.42   | PPB   | 0     |
| Cd                 | 1                     | 2.56   | PPB   | 0     |
| Ta                 | 1                     | 2.2    | PPM   | 0     |
| Hf                 | 2                     | 11.05  | PPM   | 4.9   |
| Ir                 | 1                     | .010   | PPB   | 0     |

- :

١

ę

1

t

:

•

- たまましたがなるということであるというというというという

1

{

;

۲ • (:

3

()

234

0121

-

•

1

Į

|         |                       | CHEMICAL ANA | LYSES       |       |
|---------|-----------------------|--------------|-------------|-------|
| Element | Number of<br>Analyses | Mean         | Units       | Range |
| Au      | 1                     | .030         | РРВ         | 0     |
| La      | 2                     | 7.70         | РРМ         | 1.    |
| Ce      | 2                     | 35.50        | PPM         | 3.    |
| Pr      | 1                     | 6.20         | РРМ         | 0     |
| Nd      | 1                     | 36.00        | PPM         | 0     |
| Sm      | 2                     | 13.45        | PPM         | 3.3   |
| Eu      | 2                     | 2.08         | РРМ         | .15   |
| Gd      | 1                     | 19.90        | PPM         | 0     |
| Tb      | 2                     | 3.20         | PPM         | 2.2   |
| Dy      | 1                     | 28.00        | PPM         | 0     |
| Но      | 2                     | 4.75         | РРМ         | .3    |
| Yb      | 3                     | 8.90         | РРМ         | 10.2  |
| Lu      | 2                     | 88.۱         | PPM         | .16   |
| Th      | 2                     | 1.17         | PPM         | 1.27  |
| U       | 2                     | .183         | PPM         | .054  |
| Ga      | 1                     | 4.41         | PPM         | 0     |
| In      | 1                     | .004         | PPM         | 0     |
| TI      | 1                     | .330         | РРВ         | 0     |
| С       | 1                     | 64.00        | PP <b>M</b> | 0     |
| Pb      | 1                     | .29          | PPM         | 0     |
| N       | 1                     | 30.00        | PPM         | 0     |
| Bi      | 1                     | .160         | PPB         | 0     |
| 0       | 1                     | 40.50        | PCT         | 0     |
| Те      | 1                     | .011         | PPM         | 0     |
| Br      | 1                     | .010         | PPM         | 0     |

ORIGINAL PAGE IS OF POOR QUALITY

i

)

۱

ų,

Ð

ê G

۰.:

يعادمون والمراجع العالم المحالية والمحالية والمحالية والمحالية العالية العالم المحالية والمحالية والمحالية والم

2

And a set of a particular

18- Bu

And a second second second

3 3

0

•

# 10050

Analysts: Ehmann & Morgan, (1970); Rose et al., (1970); Wakita et al, (1970); Ganapathy et al., (1970); Goles et al., (1970); Tera et al, (1970); Gapalon et al., (1970); Papanastassiou et al., (1970); Moore et al., (1970); Tatsumoto, (1970); Anders et al., (1970).

----

Age References: Armstrong and Alsmiller (1971); Eberhardt (1971b); Tatsumoto (1970).

「ころ」の言葉

5 ..... 1

### 10054

10054 is the generic number assigned to the chips sample allocated to the Bio-Pool. It was composed of 10050,0 (76 gms.), 10051,0 (365 gms) and 10052,0 (155 gms) from the Bulk Sample container (ALSRC #1003). These rocks were placed together and crushed to fines. The composite sample was processed in the Bio-Prep Lab and allocated in PCTL. Remaining pristine samples were re-examined in SSPL.

PRISTINE SAMPLES (A11 BP-PCTL-SSPL)

| 1  | 6.89 gm  | Fines |
|----|----------|-------|
| 43 | 10.63 gm | Fines |
| 44 | 0.15 gm  | Fines |

## RETURNED SAMPLES

| 32 | 76.62 gm | Fines |
|----|----------|-------|
| 33 | 79.55 gm | Fines |

NO CHEMICAL ANALYSES OR AGE DATES

1

# ORIGINAL PAGE IS OF POOR QUALITY

)

 $\bigcirc$ 



#### 10055

Sample 10056 is an angular to sub-angular, medium dark grey, microbreccia. This sample originally weighed 186gm and measured 9.5x4.5x3cm. Sample was returned in ALSRC #1003 (Bulk Sample Container).

| BINOCULAR DESCRIPTION   | BY: Twedell                 | DATE: 10/3/75    |
|-------------------------|-----------------------------|------------------|
| ROCK TYPE: Microbreccia | SAMPLE: 10056,14            | WEIGHT: 174.95gm |
| COLOR: Medium dark grey | DIMENSIONS: 9.2 × 4.5 × 2.8 | 3 cm             |

SHAPE: Angular to subangular; shaped like one-half of a flat-iron broken longitudinally (PET)

COHERENCE: Intergranular - tough Fracturing - few, non-penetrative, some glass lined

FABRIC/TEXTURE: Anisotropic/Microbreccia

VARIABILITY: Homogeneous

- SURFACE: Surface is irregular to smooth, with a good size portion of fresh surface.  $S_1$  and part of  $B_1$  have a partial (<1mm thick) glass coating.
- ZAP PITS: Many on part of  $T_1$ , many on  $N_1$ , few on  $E_1$ ,  $B_1$ , none on  $W_1$ ,  $S_1$ . Pits are glass lined <lmm in diameter; Pits occur on all sides of specimen (PET).
- CAVITIES: Vuggy on glass surface  $(S_1)$  with some cavities along the fractures on  $B_1$ .

| COMPONENT                        | COLOR               | % OF<br><u>ROCK</u> | SHAPE                 |     | E(MM)<br>RANGE |
|----------------------------------|---------------------|---------------------|-----------------------|-----|----------------|
| Matrix                           | Med.Dk.<br>Grey     | 70                  | Angular to subangular |     |                |
| White Clast <sub>1</sub>         | White               | 23                  | Angular to subrounded | <]  | <]-]           |
| Basalt Clast <sub>2</sub>        | Hon.Brn.<br>& White | 2                   | Angular to subangular | 4   | 4-10           |
| Salt & Pepper Clast <sub>3</sub> | Blk/White           | 5                   | Angular to subangular | 2.5 | 2-5            |

- 1) Evenly distributed throughout the sample. Appears to be crushed plagioclase.
- Honey brown pyroxene with white plagioclase and opaque ilmenite. Possibly some cristobalite.

13

)

1)

- 10056
- 3) Appears to be the same as the basalt clast without the pyroxene component. Evenly distributed throughout the rock.

## SPECIAL FEATURES:

ł

Sample has a high clast population, a majority of which is <1mm. This is most evident on fresh surfaces. Small areas of brown glassy spatter on exterior surfaces of sample. Most spatter has a sugary texture.



SECTION: 10056,26

Width of field 2.72mm plane light

THIN SECTION DESCRIPTION

BY: Walton

DATE: 7/14/76

SECTION: 10056,26 and 10056,27

SUMMARY: Partly devitrified typical breccia with a high mineral clast content. Numerous large lithic clasts are also present. The rock is a recrystallized breccia with abundant crystallites and mineral clasts in the matrix.

|            |           | MATRIX 66 | % OF ROCK        |                                                                          |
|------------|-----------|-----------|------------------|--------------------------------------------------------------------------|
| PHASE      | % SECTION | SHAPE     | <u>SIZE(MM</u> ) | COMMENTS:                                                                |
| Dark Brown | 100       |           | <0.001           | High glass content with a<br>very large number of small<br>crystallites. |

ORIGINAL PAGE IS OF POOR QUALITY

()

# MINERAL CLASTS 27% OF ROCK

| PHASE                                              | RELATIVE ABUNDANCE | SHAPE                | <u>SIZE (MM</u> ) |  |  |
|----------------------------------------------------|--------------------|----------------------|-------------------|--|--|
| Pyroxene <sub>1</sub>                              | Very abundant      | Angular to irregular | 0.001-0.4         |  |  |
| Plagioclase <sub>2</sub>                           | Present            | Blocky to irregular  | 0.001-0.2         |  |  |
| Ilmenite <sub>3</sub>                              | Moderate           | Skeletal to blocky   | 0.001-0.2         |  |  |
| 1) Most show zoning; poor optical characteristics. |                    |                      |                   |  |  |

2) Few shards; poor twins and extinctions.

3) Most skeletal; most in clasts.

# LITHIC CLASTS 5% OF ROCK

| TYPE               | RELATIVE ABUNDANCE | SHAPE                | <u>SIZE (MM</u> ) |
|--------------------|--------------------|----------------------|-------------------|
| Small              | Very abundant      | Rounded to irregular | 0.001-1.0         |
| Large <sub>4</sub> | Eleven present     | Rounded to irregular | >1.0              |

- 4) a. Coarse-grained basalt consisting of pyroxene, plagioclase and ilmenite. Most crystals gave poor optical characteristics.
  - b. Coarse-grained basalt with off-set faults in the plagioclase giving the twin planes a "kinked" appearance.
  - c. Fine-grained basalt consisting of pyroxene, plagioclase and ilmenite.
  - d. Glass-rich matrix hosting small irregular plagioclase crystals.
  - e. Fine-grained and glass-rich matrix hosting small crystal fragments and glass fragments.
  - f. Coarse-grained basalt consisting of pyroxene, plagioclase and ilmenite. Most crystals gave poor optical characteristics.
  - y. Coarse-grained basalt with only a small amount of opaques present.

h. Coarse-grained basalt consisting of pyroxene, plagioclase and ilmenite.

- i. Glass-rich matrix hosting small rectangular to equant pl\_gioclase crystals.
- j. Partly devitrified glass with numerous unresolvable crystallites.
- k. Coarse-grained basalt consisting of pyroxene, plagioclase and ilmenite.

240

いれ

## GLASS CLASTS 2% OF ROCK

| TYPE                       | RELATIVE ABUNDANCE | SHAPE                | <u>SIZE (MM</u> ) |
|----------------------------|--------------------|----------------------|-------------------|
| Yellow-Orange <sub>5</sub> | Very abundant      | Angular to spherical | 0.001-0.9         |
| Dark Red <sub>6</sub>      | Present            | Angular to spherical | 0.001-0.2         |
| White <sub>7</sub>         | Present            | Angular              | 0.001-0.6         |

5) One large dark orange sphere; glass coating along one edge of section; some immiscible mixtures; mostly fragments.

6) Part spheres and a few fragments.

7) All fragments; some devitrification.

## HISTORY AND PRESENT STATUS OF SAMPLES - 10/29/76

10056 was removed from ALSRC #1003 and split in the Bio-Prep Lab. A 0.35gm chip was sent to PCTL for PET analysis. The parent rock was split in SPL for allocation. Remaining pristine samples were re-examined in SSPL.

PRISTINE SAMPLES: (All BP-SPL-SSPL)

| 12 | 0.37  | gm | Small chip (.37gm) representative of the sample.<br>No pits or patina.                          |
|----|-------|----|-------------------------------------------------------------------------------------------------|
| 14 | 174.0 | gm | Large surface piece. Four pitted surfaces.                                                      |
| 42 | 3.0   | gm | Small chips found in packaging of subsample 14.<br>Ten small chips and fines. No pits observed. |

### NO RETURNED SAMPLES

Ū

.

ĺ

¢

### CHEMICAL ANALYSES

| Element | Number of<br>Analyses | Mean   | Units | Range  |
|---------|-----------------------|--------|-------|--------|
| W       | 1                     | .15    | РРМ   | 0      |
| Hf      | 4                     | 13.02  | PPM   | 5.3    |
| Ir      | 1                     | .130   | РРВ   | 0      |
| Au      | 2                     | . 0008 | РРМ   | . 0003 |

ORIGINAL PAGE IS OF POOR QUALITY

241

Element

La

Ce

Pr

Nd Sm

Eu

Gđ Tb

Dy

Но Er

Tm YЬ

Lu

Th U

В

Ga In

Ge

Sn РЬ Ν

As

Sb

0

SiO<sub>2</sub>

A1<sub>2</sub>0<sub>3</sub>

1

2

1

1

2

3

ł

ı.

ł

1.1

|                       | CHEMICAL ANA | ALYSES |       |
|-----------------------|--------------|--------|-------|
| Number of<br>Analyses | Mean         | Units  | Range |
| 3                     | 11.77        | PPM    | 2.0   |
| 4                     | 45.92        | PPM    | 42.3  |
| 1                     | 12.0         | РРМ    | 0     |
| 1                     | 57.0         | РРМ    | 0     |
| 3                     | 17.3         | PPM    | 11.9  |
| 4                     | 2.78         | PPM    | .6    |
| 1                     | 24.0         | РРМ    | 0     |
| 2                     | 5.20         | РРМ    | .4    |
| 2                     | 35.75        | PPM    | 8.5   |
| 2                     | 7.75         | РРМ    | 2.5   |
| 1                     | 27.0         | PPM    | 0     |
| ٦                     | 2.1          | РРМ    | 0     |
| 4                     | 14.2         | PPM    | 11.7  |
| 4                     | 1.88         | PPM    | 1.30  |
| 1                     | 1.4          | PPM    | 0     |
| 2                     | .195         | PPM    | .03   |
| 1                     | 2.0          | РРМ    | 0     |
| 2                     | 4.65         | РРМ    | .7    |
| 2                     | .032         | РРМ    | .057  |
| 2                     | .62          | PPM    | 1.16  |
| 1                     | . 3          | PPM    | 0     |
| 1                     | 1.2          | PPM    | 0     |
|                       |              |        |       |

70.00

.04

5.00

41.3

42.78

11.02

PPM

PPM

PPB

РСТ

РСТ

РСТ

0

0

0

.02

.85

.76

CUEMICAL ANAL VCCC



١

1

<u>۲</u> ١, 

, )

٩,

19 17

, . . , ø ,

~

۰.

.

¢

1

.

(

1

Ł

1

•

# CHEMICAL ANALYSES

| Element                       | Number of<br>Analyses | Mean  | Units | Range |
|-------------------------------|-----------------------|-------|-------|-------|
| TiO <sub>2</sub>              | 4                     | 4.34  | РСТ   | 3.84  |
| Fe0                           | 4                     | 17.91 | РСТ   | 2.32  |
| Mn0                           | 3                     | .260  | PCT   | .013  |
| Mg0                           | 2                     | 5.55  | РСТ   | 1.82  |
| Ca0                           | 3                     | 13.66 | PCT   | 2.94  |
| Na <sub>2</sub> 0             | 3                     | .42   | Ρυτ   | .076  |
| K <sub>2</sub> 0              | 1                     | .113  | РСТ   | 0     |
| P <sub>2</sub> 0 <sub>5</sub> | 1                     | .07   | РСТ   | 0     |
| Li                            | 1                     | 16.0  | PPM   | 0     |
| Rb                            | 1                     | 2.0   | PPM   | 0     |
| Cs                            | 1                     | .06   | PPM   | 0     |
| Ве                            | 1                     | 3.0   | PPM   | 0     |
| Sr                            | 1                     | 160.  | PPM   | 0     |
| Ba                            | 2                     | 170.  | РРМ   | 140.0 |
| Sc                            | 4                     | 99.4  | PPM   | 17.4  |
| V                             | 2                     | 51.5  | PPM   | 9.0   |
| $Cr_20_3$                     | 4                     | .200  | РСТ   | .019  |
| Со                            | 3                     | 13.63 | PPM   | 3.10  |
| Ni                            | 2                     | 32.50 | PPM   | 34.97 |
| Li,                           | 1                     | 3.8   | РРМ   | 0     |
| Zn                            | 1                     | 2.7   | РРМ   | 0     |
| Y                             | 1                     | 180.0 | РРМ   | 0     |
| Zr                            | 1                     | 34.0  | РРМ   | 0     |
| Nb                            | 1                     | 34.   | PPM   | 0     |
| м́о                           | 2                     | .215  | PPM   | . 37  |
| Pd                            | 1                     | .1    | РРМ   | 0     |
| Ag                            | 1                     | .2    | РРМ   | 0     |

# ORIGINAL PAGE IS OF POOR QUALITY

;

\*\*\*

L

٩.,

ŝ

Ţ

# CHEMICAL ANALYSES

| Element | Number of<br>Analyses | Mean       | Units            | Range            | -    |
|---------|-----------------------|------------|------------------|------------------|------|
| Cd      | 1                     | . 9        | PPM              | 0                |      |
| Ta      | 4                     | 2.05       | PPM              | 1.0              |      |
| F       | 1                     | 30.0       | PPM              | 0                |      |
| C1      | 1                     | 16.        | PPM              | 0                |      |
| Br      | 1                     | .06        | PPM              | 0                |      |
|         |                       | n, (1970); | Morrison et al., | (1970); Goles et | al., |

(1970); Kharkar & Turekian, (1971); Wasson & Baedecker, (1970)

No Age References

0

J

\* }



10057,0 Original PET Photo (S-69-46294)

1 cm.



10057,19 & ,30 (S-75-33296)

ONIGE OF LAGE IS OF POOR QUALITY

ł

1

11

# 10057

)

ş

( )

4

Э

ł

Sample 10057 is a subangular, dark grey, vesicular basalt. This sample originally weighed 919gm and measured llxlCx6cm. It was originally returned in ALSRC #1003 (Bulk Sample Container). BINOCULAR DESCRIPTION BY: Kramer DATE: 11/21/75 ROCK TYPE: Vesicular basalt SAMPLE: 10057,30 WEIGHT: 230 qm COLOR: Dark grey DIMENSIONS: 7 x 5 x 3.5 cm SHAPE: Subangular; triangular to trapezoidal (PET) COHERENCE: Intergranular - tough Fracturing - none; two sets of fractures 70° apart (PET) FABRIC/TEXTURE: Isotropic/Equigranular VARIABILITY: None SURFACE: All are vesicular - irregular ZAP PITS: Many, all faces; some pits are filled with yellowish-brown glass (PET). CAVITIES: 60% of fresh surface composed of vesicles. Lined with pyroxene and opaques. % OF SIZE(MM) ROCK COMPONENT COLUR SHAPE DOM. RANGE Plagioclase Milky Wh. 25 Lathlike to subhedral .2 .05-.5 Pyroxene Brown 60 Blocky .1 .01-.2 Metallic Blk. 15 Tabular .01-.2 Opaques<sub>1</sub> .1

1) Mostly ilmenite.

SPECIAL FEATURES: Some small patches (<2cm) of black glassy spatter noted on several exterior surfaces.



Section: 10057,81 Width of field: 1.39mm plane light

THIN SECTION DESCRIPTION

おいくちほうごぼう うい

€.

BY: Walton

DATE: 10/14/75

and received the state of the state

SUMMARY: Fine-grained vesicular basalt composed of clinopyroxene, plagioclase, and ilmenite with subordinate troilite, iron-nickel, and mesostasis. The pyroxene forms small subhedral to anhedral crystals and forms a network with the ilmenite. Interstitial to this network, anhedral crystal masses of plagioclase and glassy mesostasis form an intersertal texture. All crystals are in random orientation.

| PHASE    | % SECTION | SHAPE                  | <u>SIZE (MM</u> ) |
|----------|-----------|------------------------|-------------------|
| Pyrox    | 41        | Subhedral to anhedral  | 0.05-0.2          |
| Plag     | 23        | Anhedra1               | 0.01-0.4          |
| Opaq     | 17        | Lath-like to subhedral | 0.01-0.2          |
| Meso     | 19        | Irregular              | 0.05-0.2          |
| Vesicles |           | Round to irregular     | 0.1-0.3           |

247

### COMMENTS:

Pyroxene - Pale brown to clear subhedral to anhedral crystals of clinopyroxene are intergrown with plagioclase and ilmenite. Most of the pyroxene crystals are highly fractured and only occasionally show well developed cleavage patterns. Sharp contacts are present between all pyroxene crystals and the other phases present.

Plagioclase - Small tabular crystals of plagioclase predominate as the interstitial mineral within the pyroxene-ilmenite network. Also included in the interstices are anhedral, blocky crystals of plagioclase. The tabular type show well developed twin planes while the blocky crystals show poor development or none at all. Many of the crystals have glass or silicate inclusions. The crystals are randomly scattered throughout the rock with no preferred orientation.

Opaques - Two populations of ilmenite crystals occur in the rock. The first type are large lath-like crystals which grade to smaller subhedral somewhat skeletal crystals. Many of the crystals contain silicate inclusions. These two types tend to merge and grade from one type to the other.

Associated with the ilmenite are small (0.005-0.01mm) masses of troilite with iron-nickel inclusions. Isolated larger masses of troilite (0.-1-0.09mm) without iron-nickel inclusions occur between the crystals of pyroxene.

Mesostasis - Irregular patches of pale brown to clear glass rich mesostasis occur throughout the rock. The masses have a "bubbly" appearance and are made up of irregular patches of devitrified phases incermixed with the glassy phase. No identification of the phases present was made. The patches fill void areas between adjacent crystalline phases. The contacts with these phases are sharp and no reaction with the glass phase was noted.

TEXTURE: Intersertal basalt consisting of a random network of subhedral pyroxene and ilmenite with interstitial anhedral plagioclase and mesostasis. Some graduation in the development of the ilmenite crystals is present. A similar graduation is also noted in the plagioclase development. The vesicles tend to be rimmed by small pyroxene aggregates. All contacts between phases are sharp.

Selected References: Essene et al. (1970), Lovering et al. (1970), Reid et al. (1970), Haggerty et al. (1970).

1

ORIGINAL PAGE IS OF POOR QUALITY ()

()

ş

248

÷

. 1

# HISTORY AND PRESENT STATUS OF SAMPLES - 10/17/76

10057 was removed from the Bulk Sample container (ALSRC #1003) and split in the Bio-Prep Lab. The sample was sawed and chipped in SPL. Remaining pristine samples were re-examined in SSPL.

PRISTINE SAMPLES: (All BP-RCL-BP-SPL-SSPL)

C

()

| 17         | 26.38   | gm | Chips and fines. Largest chips are less than 0.5gm                                  |
|------------|---------|----|-------------------------------------------------------------------------------------|
| 19         | 167.77  | gm | Sawed piece. Three surfaces were sawed, two are pitted and one is fresh.            |
| 30         | 230.0   | gm | Pitted piece. Three surfaces are pitted, three are fresh.                           |
| 84         | 5.16    | gm | Chips and fines. This subsample appears to be a sorting of ilmenite-lined vesicles. |
| <b>9</b> 8 | .29     | gm | Two sawed chips.                                                                    |
| 99         | 1.68    | gm | Sawed piece. 1 x 1 x 0.5 cm.                                                        |
| 100        | 1.23    | gm | Sawed piece. 1 x 1 x 0.3 cm.                                                        |
| 101        | 3.40    | gm | Slab piece. Five sawed and one fresh surface. 3 x 1 x 0.5 cm.                       |
| 102        | 11.99   | gm | Slab piece. Four sawed, one pitted and one fresh surface.                           |
| 103        | 8.16    | gm | Slab piece. Five sawed and one fresh surface.<br>2 x l x l cm.                      |
| 104        | 27.40   | gm | Slab piece. Four sawed and two fresh surfaces. $4 \times 4 \times 1$ cm.            |
| 105        | 32.70   | gm | Slab piece. Three sawed and three fresh surfaces. 5 x 3 x 1 cm.                     |
| 106        | .40     | gm | Sawed chips.                                                                        |
| 141        | 14.29   | gm | Small chips. All have some pitted surfaces.                                         |
| RETURNED   | SAMPLES | :  |                                                                                     |
| 9          | 7.888   | gm | Sawed chips. Most have pitted surfaces.                                             |
| 13         | 9.117   | gm | Two chips. Both have some pits.                                                     |
| 14         | 6.587   | gm | Two chips. Both have pitted surfaces.                                               |
| 28         | 12.17   | gm | Chip. 3 x 1.5 x 1 cm. One pitted surface.                                           |
| 74         | 7.41    | gm | Two chips. Both have pitted surfaces.                                               |
| 204        | 38.05   | gm | Chips and fines.                                                                    |
| 212        | 5.821   | gm | Chip. Few pits.                                                                     |
|            |         |    |                                                                                     |

TT.

ないないないというないというないというできたので、あっているときなどのと

:

~

-----

\*.

3

and the second

ŝ

Ĵ

5

•

į,

( )

i

1

# CHEMICAL ANALYSES

| Element | Number of<br>Analyses | Mean  | Units | Range |
|---------|-----------------------|-------|-------|-------|
| Ta      | 3                     | 1.63  | PPM   | .8    |
| W       | 2                     | .425  | PPM   | .01   |
| Hf      | 4                     | 16.75 | PPM   | 3.1   |
| Re      | 1                     | .0015 | PPM   | 0     |
| 0s      | 1                     | .020  | FPB   | 0     |
| Ir      | 3                     | .043  | PPB   | .091  |
| Au      | 5                     | 1.67  | РРВ   | 6.39  |
| La      | 8                     | 26.54 | PPM   | 7.9   |
| Ce      | 5                     | 76.72 | PPM   | 13.4  |
| Pr      | 2                     | 15.5  | РРМ   | 13.   |
| Nd      | 4                     | 64.5  | PPM   | 9.    |
| Sm      | 7                     | 19.73 | РРМ   | 9.7   |
| Eu      | 7                     | 2.14  | PPM   | .7    |
| Gd      | 3                     | 27.33 | PPM   | 4.    |
| Tb      | 4                     | 5.65  | PPM   | 2.    |
| Dy      | 6                     | 33.93 | PPM   | 18.   |
| Ho      | 3                     | 6.63  | PPM   | 2.5   |
| Er      | 3                     | 22.33 | PPM   | 16.   |
| Tm      | 1                     | 2.3   | PPM   | 0     |
| Yb      | 7                     | 17.11 | РРМ   | 20.   |
| Lu      | 5                     | 2.44  | PPM   | .55   |
| Th      | 6                     | 3.67  | PPM   | 1.23  |
| U       | 7                     | .772  | PPM   | .500  |
| В       | 2                     | 2.4   | PPM   | 3.2   |
| Ga      | 5                     | 4.66  | PPM   | 1.7   |
| In      | 4                     | .0197 | РРМ   | .067  |
| Tl      | 1                     | 1.109 | PPB   | 0     |

251

1.49

| CHEMICAL ANALYSES               |                       |        |       |       |
|---------------------------------|-----------------------|--------|-------|-------|
| Element                         | Number of<br>Analyses | Mean   | Units | Range |
| С                               | 1                     | 16.0   | РРМ   | 0     |
| Ge                              | 3                     | .79    | PPM   | 1.23  |
| Sn                              | 1                     | .6     | PPM   | 0     |
| Pb                              | 2                     | 2.34   | PPM   | 1.32  |
| SiO <sub>2</sub>                | 5                     | 41.61  | РСТ   | 6.20  |
| A1203                           | 7                     | 8.42   | РСТ   | 3.28  |
| Ti0 <sub>2</sub>                | 9                     | 10.86  | РСТ   | 4.34  |
| Fe0                             | 7                     | 19.08  | РСТ   | 2.19  |
| Mn0                             | 10                    | .230   | РСТ   | .084  |
| Mg0                             | 5                     | 7.02   | PCT   | 1.52  |
| Ca0                             | 8                     | 11.07  | PCT   | 4.20  |
| Na <sub>2</sub> 0               | 8                     | .515   | РСТ   | .142  |
| K <sub>2</sub> 0                | 12                    | .296   | PCT   | .254  |
| P205                            | 2                     | .132   | PCT   | .076  |
| н                               | 2                     | .13    | CC/G  | .06   |
| Li                              | 4                     | 14.50  | PPM   | 11.00 |
| RЬ                              | 8                     | 5.24   | PPM   | 2.62  |
| Cs                              | 5                     | .194   | PPM   | .051  |
| Be                              | 2                     | 2.90   | PPM   | .8    |
| Sr                              | 6                     | 142.22 | PPM   | 90.00 |
| Ba                              | 6                     | 309.67 | PPM   | 232.  |
| Sc                              | 6                     | 89.33  | PPM   | 15.00 |
| ۷                               | 4                     | 55.00  | PPM   | 25.   |
| Cr <sub>.2</sub> 0 <sub>3</sub> | 7                     | . 342  | PCT   | .101  |
| Co                              | 8                     | 26.7   | PPM   | 9.    |
| Ni                              | 5                     | 16.22  | PPM   | 33.87 |
| Cu                              | 5                     | 6.00   | PPM   | 7.48  |
|                                 |                       |        |       |       |

# CHEMICAL ANALYSES

2010 3

1

•

. . . .

三日本の「日本の「日本の」」」「「日本のため」」」「日本の「日本の」」」」

(\_:

• • • •

•

ţ

(

ţ

đ

the second second second second second second second second second second second second second second second se

素小

man and a star man day of the

CHEMICAL ANALYSES

1

| Element | Number of<br>Analyses | Mean   | Units       | Range |
|---------|-----------------------|--------|-------------|-------|
| Zn      | 3                     | 2.12   | PPM         | 1.19  |
| Y       | 4                     | 201.25 | PPM         | 85.0  |
| Zr      | 4                     | 621.25 | PPM         | 250.0 |
| Nb      | 2                     | 35.5   | PP <b>M</b> | 13.   |
| Мо      | 2                     | .25    | ΡΡΜ         | .3    |
| Pd      | 3                     | .039   | PPM         | .09   |
| Ag      | 4                     | .025   | PPM         | .051  |
| Cđ      | 3                     | .302   | PP <b>M</b> | .897  |
| N       | 1                     | 70.    | PPM         | 0     |
| As      | 2                     | .045   | PP <b>M</b> | .01   |
| Sb      | 1                     | .005   | РРМ         | 0     |
| Bi      | 1                     | .270   | РРВ         | 0     |
| 0       | 2                     | 40.4   | РСТ         | 0     |
| S       | 1                     | .228   | РСТ         | 0     |
| Se      | 2                     | .150   | РРМ         | .061  |
| Те      | 1                     | . 008  | PPM         | 0     |
| F       | 3                     | 82.67  | PPM         | 20.   |
| C1      | 2                     | 31.    | РРМ         | 38.   |
| Br      | 2                     | .063   | PPM         | .075  |

Analysts: Begemann et al., (1970); Engel and Engel, (1970); Morrison et al., (1970); Wanke et al., (1970); Smales et al., (1971); Ganapathy et al., (1970); Kharkar & Turekian, (1971); Stoenner et al., (1971); Annell & Helz, (1970); Turekian & Kharkar, (1970); Engel, (1971); O'Kelly et al., (1970) Wanless et al., (1970); Stoenner et al., (1970); Papanastassiou et al., (1970); Anders et al., (1971); Lovering & Butterfield, (1970); Haskin et al., (1970); Perkins et al., (1970); Tatsumoto, (1970); Wrigley & Quaide, (1970); Wasson & Baedecker, (1970); Kaplan et al., (1970); Wanke et al., (1972).

Age References: Hintengerger et al., (1971); Armstrong & Alsmiller (1971); O'Kelly et al.,(1970); Boschler (1971); Marti et al., (1970); Perkins (1970); Wanless (1970); Tatsumoto (1970); Papanastassiou (1970) Crozaz et al.,(1970).

> ORIGINAL PAGE I. OF POOR QUALITY



5 × 19

1)

<u>,</u>

ļ

Sample 10058 is an angular to sub-rounded, white to dark brown, olivine basalt. This sample originally weighed 282gm and measured 5.5x5.5x5cm. It was originally returned in ALSRC #1003.

BINOCULAR DESCRIPTIONBY: TwedellDATE: 6/3/76ROCK TYPE: Medium grained basaltSAMPLE: 10058,3WEIGHT: 173 gmCOLOR: White and dark brownDIMENSIONS: Chips and finesSHAPE: Angular to sub-roundedCOHERENCE: Intergranular - friable<br/>Fracturing - absent; one fracture surface (PET)FABRIC/TEXTURE:Isotropic/Equigranular; Holocrystalline (PET)

VARIABILITY: Homogeneous

SURFACE: Most surfaces are smooth.

ZAP PITS: None

CAVITIES: About 2% of surface is vuggy.

| COMPONENT                  | COLOR      | % OF<br>ROCK |                               | SIZE(MM)<br>DOM. RANGE |
|----------------------------|------------|--------------|-------------------------------|------------------------|
| Plagioclase <sub>1</sub>   | White      | 45           | Subangular to sub-<br>rounded | .5 .258                |
| Pyroxene <sub>2</sub>      | Honey Brn. | 30           | Angular to sub agular         | .3 .25                 |
| Dark/or/Black <sub>3</sub> | Brn/B1k    | 25           | Rounded to elongated          | .5 .48                 |

1) Ranges from crystalline to powder white. Possibly some cristobalite.

Most crystals are in good condition. Not much evidence of shock.
 Probably ilmenite and some pyroxene.





SECTION: 10058,51 Width of field 2.72mm plane light THIN SECTION DESCRIPTION BY: Walton DATE: 6/3/76

SUMMARY: Medium-grained subophitic basalt composed of large anhedral crystals of clinopyroxene, two generations of plagioclase, a ilmenite with subordinate cristobalite, pyroxferroite and mesostasis. The large crystals of pyroxene host all other phases present. The pyroxene is highly zoned. The ilmenite crystals are very skeletal.

| PHASE | % SECTION | SHAPE                 | <u>SIZE (MM</u> ) |
|-------|-----------|-----------------------|-------------------|
| Pyrox | 44        | Anhedral, irregular   | 0.1-2.5           |
| Plag  | 37        | Subhedral to anhedral | 0.05-1.7          |
| Opaq  | 13        | Subhedral to skeletal | 0.2-1.8           |
| Cris  | 5         | Anhedral              | 0.2-1.1           |
| Meso  | 1         | Irregular             | 0.05-0.2          |

ORIGINAL PAGE IS OF POOR QUALITY

「「「「「「「「「「」」」」

「こので、「「「「「」」」」

t

8

### COMMENTS:

Pyroxene - Large anhedral highly zoned crystals of clinopyroxene form an almost continuous array. The extinctions are, for the most part, poor with few grains giving sharp extinction points. Almost all crystals show a pronounced fracture pattern with minor cleavage/ parting developed. Some crystals have sharp, well defined cleavage patterns.

Small crystals of pyroxferroite are associated as overgrowths on the pyroxene crystals. These crystals form sharp contacts with the pyroxene. Many of the fractures in the pyroxene continue through the adjacent pyroxierroite overgrowth. The pyroxferroite crystals are scattered throughout the section and no localized concentration was noted.

Plagioclase - Two generations of plagioclase occur in the rock. The first generation consists of long tabular crystals and appears in the section either as well defined rectangular or acicular crystals. The second generation occurs as anhedral void fillings in the pyroxene-ilmenite-plagioclase network. The first generation crystals are clearly grouped into masses within the rock. Some areas contain no plagioclase while others have a heavy concentration. All the first generation crystal exhibit sharp twin planes and extinctions. The second generation crystals show much poorer optical characteristics.

Isolated, yet closely related to the plagioclase masses, are areas of colorless to pale brown mesostasis. Some devitrification of the glass has taken place.

Cristobalite - Large anhedral crystals of cristobalite occur as interstitial fillings in the voids within the silicate network.

Opaques - The most common opaque mineral present in the rock is ilmenite. The crystals are subhedral to very skeletal and are scattered throughout the section. Many of the crystals have finger-like projections forming a very erose crystal.

Associated with the ilmenite are small masses of troilite, troilite with iron-nickel and baddeleyite. The masses of troilite are more often isolated and not directly associated with the ilmenite. The troilite with iron-nickel and the baddeleyite are, however, found intergrown with the ilmenite. The size of the troilite and troilite with iron-nickel is from 0.01-0.2mm while the baddeleyite forms a few small (0.05mm) masses.

TEXTURE: Subophitic medium-grained basalt consisting of pyroxene, two

generations of plagioclase, ilmenite and cristobalite with minor other phases. The presence of baddeleyite is unusual for Apollo 11 basalts. Contacts are sharp and little to no interreaction between phases is present.

Selected References: Brown et al. (1970), Cameron (1970), Simpson and Bowie (1970)

HISTORY AND PRESENT STATUS OF SAMPLES - 6/3/76

10058 was removed from the Bulk Sample container (ALSRC #1003) and split in the Bio-Prep Lab. A 2gm chip was sent to PCTL for PET analysis. Remaining pristine samples were re-examined in SSPL.

### PRISTINE SAMPLES: (A11 BP-SSPL)

| 2  | 1.20  | gm  | Chip. No pitted surface.                            |
|----|-------|-----|-----------------------------------------------------|
| 3  | 173.0 | gm  | Large chips and fines. No pitted surfaces observed. |
| 15 | 9.24  | gm  | Fine fines.                                         |
| 16 | 5.85  | gm  | Fine fines.                                         |
| 17 | 14.06 | gm  | Fine fines.                                         |
| 18 | 16.21 | gm  | Fine fines.                                         |
| 19 | 6.88  | Gul | Fine fines.                                         |
| 34 | 23.53 | gm  | Chip. No pitted surfaces.                           |
|    |       |     |                                                     |

## RETURNED SAMPLIS:

Ĩ.

109 11.79 gm

Chip. One sawed surface. One pitted surface.

### CHEMICAL ANALYSES

| Element          | Number of<br>Analyses | Mean  | Units | Range |  |
|------------------|-----------------------|-------|-------|-------|--|
| SiO <sub>2</sub> | 4                     | 40.78 | PCT   | 2.34  |  |
| A1203            | 5                     | 10.85 | PCT   | 1.6   |  |
| TiO <sub>2</sub> | 4                     | 10.13 | PCT   | 1.55  |  |
| Fe0              | 4                     | 18.55 | PCT   | 2.25  |  |

ORIGINAL PAGE IS OF POOR QUALITY

**F** - 1

A

| 10058 |  |
|-------|--|
|-------|--|

)

э

東京市の

258

| CHEMI | CAL | ANAL | YSES |
|-------|-----|------|------|
|       |     |      |      |

| Element                        | Number of<br>Analyses | Mean   | Units | Range |
|--------------------------------|-----------------------|--------|-------|-------|
| Mn0                            | 4                     | . 257  | РСТ   | .060  |
| Mg0                            | 4                     | 6.12   | PCT   | .663  |
| Ca0                            | 5                     | 12.37  | PCT   | 4.39  |
| Na <sub>2</sub> 0              | 6                     | .423   | РСТ   | .065  |
| K <sub>2</sub> 0               | 6                     | . 097  | PCT   | .042  |
| P <sub>2</sub> 0 <sub>5</sub>  | 1                     | . 055  | РСТ   | 0     |
| Li                             | 2                     | 8.70   | РРМ   | 5.40  |
| Rb                             | 5                     | 1.01   | PPM   | .620  |
| Cs                             | 3                     | .121   | PPM   | .273  |
| Ве                             | 1                     | 1.5    | PPM   | 0     |
| Sr                             | 4                     | 194.32 | PPM   | 46.3  |
| Ba                             | 5                     | 126.8  | PPM   | 27.00 |
| Sc                             | 3                     | 87.27  | PPM   | 13.20 |
| ٧                              | 2                     | 59.50  | РРМ   | 37.0  |
| Cr <sub>2</sub> 0 <sub>3</sub> | 4                     | .233   | РСТ   | .053  |
| Cr                             | 1                     | 1960.  | PPM   | 0     |
| Со                             | 3                     | 13.93  | РРМ   | 1.00  |
| Ni                             | ו                     | 79.99  | PPM   | 0     |
| Cu                             | ì                     | 7.10   | PPM   | 0     |
| Zn                             | 1                     | 9.3    | PPM   | 0     |
| Y                              | 1                     | 150.0  | PPM   | 0     |
| Zr                             | 4                     | 278.50 | PPM   | 190.  |
| Nb                             | 1                     | 47.    | PPM   | 0     |
| Мо                             | 1                     | . 4    | PPM   | 0     |
| Pd                             | 1                     | .2     | RPM   | 0     |
| Ag                             | 1                     | . 07   | PPM   | 0     |
| Cd                             | 1                     | .7     | PPM   | 0     |
| Ta                             | 2                     | 1.3    | PPM   | .6    |

11

i

ļ

モンドをうちたちのの

}

**!**•

~

| 1 | 0 | 0 | 58 |
|---|---|---|----|
|---|---|---|----|

The second second second second second second second second second second second second second second second s

;

i Y

· · · · · · · ·

うちょうなないち しょうどうちょう ちょうしゅう

The fire care

21 21

1

3

WAY A Dear

ī

\$

•,

•~

Ē

٠

ł,

.

| Element | Number of<br>Analyses | Mean  | Units       | Range |
|---------|-----------------------|-------|-------------|-------|
| W       | 1                     | .36   | PPM         | 0     |
| Hf      | 3                     | 10.82 | PPM         | 4.74  |
| Au      | 1                     | .720  | РРВ         | 0     |
| La      | 3                     | 13.1  | PP <b>M</b> | 4.5   |
| Се      | 3                     | 41.4  | PP <b>M</b> | 6.    |
| Pr      | 1                     | 13.0  | PPM         | 0     |
| Nd      | 2                     | 56.5  | PPM         | 30.8  |
| Sm      | 3                     | 17.73 | PPM         | 8.    |
| Eu      | 4                     | 2.34  | PP <b>M</b> | 1.4   |
| Gd      | 2                     | 22.8  | PPM         | 1.6   |
| Tb      | 2                     | 4.45  | PPM         | 1.9   |
| Dy      | 2                     | 33.0  | PP <b>M</b> | 12.0  |
| Но      | 2                     | 7.25  | PPM         | 3.5   |
| Er      | 2                     | 26.15 | РРМ         | 19.7  |
| Tm      | 1                     | 2.0   | PPM         | 0     |
| YЬ      | 4                     | 14.12 | PPM         | 17.0  |
| Lu      | 3                     | 2.13  | PPM         | . 36  |
| Th      | 1                     | 1.1   | PP <b>M</b> | 0     |
| U       | 2                     | .19   | PP <b>M</b> | . 02  |
| В       | 1                     | 2.    | PP <b>M</b> | 0     |
| Ga      | 2                     | 4.55  | PPM         | .5    |
| In      | 2                     | . 392 | PP <b>M</b> | .415  |
| Ge      | 2                     | .63   | PPM         | 1.14  |
| Sn      | 1                     | 1.2   | PPM         | 0     |
| Pb      | 1                     | 3.    | PPM         | 0     |
| N       | 1                     | 40.   | PPM         | 0     |
| As      | ו                     | .07   | РРМ         | 0     |
| Sb      | l                     | .01   | PPM         | 0     |

1

# CHEMICAL ANALYSES

| Element | Number of<br>Analyses | Mean | Units | Range |
|---------|-----------------------|------|-------|-------|
| 0       | 1                     | 39.9 | РСТ   | 0     |
| F       | ו                     | 50.  | PPM   | 0     |
| C1      | 1                     | 50.  | РРМ   | 0     |
| Br      | 1                     | .3   | РРМ   | 0     |

Analysts: Ehmann & Morgan, (1970); Morrison et al., (1970); Rose et al, (1970); Goles et al., (1970); Tera et al., (1970); Gast et al., (1970); Murthy et al., (1970); Hurley & Pinson, (1970); Ehmann et al., (1975); Wasson & Baedecker, (1970).

Age References: Eberhardt (1971b); Papanastassiou (1970); Papanastassiou et al., (1971); Crozaz et al., (1970).

RIGINAL PAGE 13 OF POOR QUALITY.  $\bigcirc$ 

.])



10059,1,82,83,84 (S-76-21410)

ORIGINAL PAGE IS OF POOR QUALITY

()

 $\bigcirc$ 

----

10059 is a medium dark grey, microbreccia that originally weighed 188gm. It was returned in ALSRC #1003 (Bulk Sample container). There was no PET description generated for this sample.

BINOCULAR DESCRIPTIONBY: TwedellDATE: 1/22/76ROCK TYPE: MicrobrecciaSAMPLE: 10059,1WEIGHT: 24 gmCOLOR: Medium dark greyDIMENSIONS: 3 x 2 x 1.5 cmSHAPE: Rounded to subrounded

COHERENCE: Intergranular - Friable

Fracturing - Few, non-penetrative

FABRIC/TEXTURE: Anisotropic/Microbreccia

VARIABILITY: Homogeneous

SURFACE: Smooth on exterior surfaces to irregular on fresh.

ZAP PITS: Many on one surface of each of the 4 largest pieces, none on all other surfaces. Pits are glass lined, up to lmm in diameter.

CAVITIES: Absent

| COMPONENT                | COLOR       | % OF<br><u>ROCK</u> | SHAPE   | SIZE(MM)<br>DOM. RANGE |
|--------------------------|-------------|---------------------|---------|------------------------|
| Matrix <sub>1</sub>      | Med.Dk.Grey | 99                  |         |                        |
| Wnite Clast <sub>2</sub> | White       | 1                   | Angular | 0.6 .25-1.0            |

Loosely powdered soil breccia.

2) Crushed in texture, no crystal faces.

NOTE: Sample was separated into three larger pieces. All pieces (,1,83,84) fit into this description.

262

17

ţ

1 2 24

1

r

Section 10059,41 Width of field 2.72 mm reflected light

Section 10059,41 Width of field 2.72 mm plane light ORIGINAL PAGE LO OF POUR QUALITY.





| ION DESCRI                              | PTION                             | BY:            | Walton  |                 | DA                             | TE:         | 6/24/76      |
|-----------------------------------------|-----------------------------------|----------------|---------|-----------------|--------------------------------|-------------|--------------|
| 10059,41                                |                                   |                |         |                 |                                |             |              |
|                                         | devitrified typ<br>tent. The math |                |         |                 |                                |             | ithic        |
|                                         | MATRIX                            | <u>( 79% C</u> | OF ROCK |                 |                                |             |              |
|                                         | % SECTION                         | <u>SHAPE</u>   | SIZ     | E ( <u>MM</u> ) | COMMENT                        | <u>5</u> :  |              |
| brown                                   | 100                               | <b></b>        | <0.0    | 001             | Very hig<br>content<br>devitri | ; ver       | y little     |
|                                         | MINERAL CL                        | ASTS 1         | 4% OF R | DCK             |                                |             |              |
|                                         | RELATIVE ABUNE                    | DANCE          |         | SHAPE           |                                | <u>size</u> | <u>(MM</u> ) |
|                                         | Very abundant                     |                | Angula  | r to irre       | gular                          | 0.00        | 01-0.6       |
| e <sub>2</sub>                          | Present                           |                | Blocky  | to irreg        | ular                           | 0.00        | 1-0.05       |
|                                         | Few                               |                | Skeleta | al to blo       | cky                            | 0.00        | 01-0.1       |
| ninant phase present; poor extinctions. |                                   |                |         |                 |                                |             |              |

[]

1

 $\cup$ 

## MINERAL CLASTS 14% OF ROCK

| PHASE                    | RELATIVE ABUNDANCE | <u>SHAPE</u>         | <u>SIZE (MM</u> ) |
|--------------------------|--------------------|----------------------|-------------------|
| Pyroxene <sub>1</sub>    | Very abundant      | Angular to irregular | 0.001-0.6         |
| Plagioclase <sub>2</sub> | Present            | Blocky to irregular  | 0.001-0.05        |
| Opaques <sub>3</sub>     | Few                | Skeletal to blocky   | 0.001-0.1         |

Predominant phase present; poor extinctions. 1)

Very rare; a few small shards. 2)

Scarce; a few present in matrix. 3)

# LITHIC CLASTS 3" OF ROCK

| TYPE               | RELATIVE ABUNDANCE | SHAPE                | <u>SIZE (MM</u> ) |
|--------------------|--------------------|----------------------|-------------------|
| Small              | Very abundant      | Rounded to irregular | 0.001-1.0         |
| Large <sub>4</sub> | Five present       | Rounded to irregular | >1.0              |

4) a. Fine-grained basalt composed of pyroxene, plagioclase and ilmenite.

Coarse-grained basalt composed of pyroxene, plagioclase and ilmenite. b.

Crystal aggragate composed of pyroxene and plagioclase with some c. glass in the matrix.

d. Coarse-grained basalt composed of pyroxene, plagioclase and ilmenite.

Fine-grained basalt composed of pyroxene, plagioclase and ilmenite. e.

THIN SECTION DESCRIPTION

SECTION: 10059,41

Very dark brown

SUMMARY:

PHASE

•

ł

į.

,ä

### 10059

### 265

### GLASS CLASTS 4% OF ROCK

| TYPE                       | RELATIVE ABUNDANCE | SHAPE                | <u>SIZE (MM</u> ) |
|----------------------------|--------------------|----------------------|-------------------|
| Yellow-Orange <sub>5</sub> | Very abundant      | Angular to spherical | 0.001-0.4         |
| Red-Orange <sub>6</sub>    | Abundant           | Spherical to angular | 0.001-0.3         |

5) Mostly angular shards only a few part spheres.

6) Mostly spheres, broken spheres with occasional angular pieces.

## HISTORY AND PRESENT STATUS OF SAMPLES - 6/24/76

10059 was removed from the Bulk Sample container (ALSRC #1003) in the Bio-Prep Lab. It was then transferred to PCTL where it was split for PET analysis. It was then sent to SPL where it was wiresawed and allocated. The sample was described in SSPL during the Apollo 11 re-examination.

PRISTINE SAMPLES: (All BP-PCTL-SPL-SSPL)

| 1  | 10.23 | gm | Chip. | One pitted surface. |
|----|-------|----|-------|---------------------|
| 82 | 24.52 | gm | Chips | and fines.          |
| 83 | 12.77 | gm | Chip. | One pitted surface. |
| 84 | 6.22  | gm | Chip. | One pitted surface. |

### **RETURNED SAMPLES:**

| 8    | 13.34 gm          | Chips and coarse fines. Three largest chips have one pitted surface each.                                                                            |
|------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10   | <b>4.</b> 40 gm   | Chip. 1.0x1.5x2.0 cm. Two pitted surfaces.                                                                                                           |
| 24   | 14.25 gm          | Chip. One sawed surface. No pits.                                                                                                                    |
| 63   | 11.62 gm          | Chip. 2.5x2.0x2.0 cm. Two sawed and one<br>pitted surface. This sample contains one<br>small breccia chip that does not belong with<br>this generic. |
| 9004 | 1 <b>4.</b> 25 gm | Chips. One chip (2.0x2.0x1.0cm) has two<br>sawed and two pitted surfaces. Another chip<br>(1.0x1.0x1.0cm) has 1 sawed and 1 pitted<br>surface.       |

ORIGINAL PAGE IN OF POOR QUALITY

.

C

Ţ

デアード ち・こ

-----

----

Ĵ

 $\bigcirc$ 

 $\mathbb{C}^{\mathbf{i}}$ 

1

|                                |                       | CHEMICAL ANA | ALISES |       |
|--------------------------------|-----------------------|--------------|--------|-------|
| Element                        | Number of<br>Analyses | Mean         | Units  | Range |
| SiO <sub>2</sub>               | 3                     | 41.87        | РСТ    | 1.54  |
| A1 <sub>2</sub> 0 <sub>3</sub> | 5                     | 12.56        | РСТ    | .85   |
| TiO <sub>2</sub>               | 3                     | 8.19         | РСТ    | .584  |
| Fe0                            | 3                     | 17.09        | РСТ    | 1.87  |
| Mn0                            | 5                     | .220         | РСТ    | .071  |
| Mg0                            | 3                     | 8.46         | РСТ    | 1.16  |
| Ca0                            | 4                     | 11.82        | РСТ    | 1.54  |
| Na <sub>2</sub> 0              | 5                     | .486         | РСТ    | .046  |
| K <sub>2</sub> 0               | 4                     | .18          | РСТ    | .031  |
| Li                             | 2                     | 12.95        | PPM    | 1.9   |
| Rb                             | 5                     | 3.54         | PPM    | 1.2   |
| Cs                             | 2                     | .123         | РРМ    | .006  |
| Be                             | 1                     | 1.70         | РРМ    | 0     |
| Sr                             | 3                     | 147.7        | PPM    | 43.1  |
| Ba                             | 5                     | 210.8        | PPM    | 45.0  |
| Sc                             | 4                     | 65.65        | PPM    | 6.9   |
| ۷                              | 4                     | 62.75        | PPM    | 30.0  |
| $Cr_2O_3$                      | 4                     | .317         | РСТ    | .070  |
| Со                             | 3                     | 36.J         | PPM    | 8.0   |
| Ni                             | 2                     | 261.         | РРМ    | 78.0  |
| Cu                             | 1                     | 21.          | PPM    | 0     |
| Zn                             | 1                     | 29.          | РРМ    | 0     |
| Y                              | 2                     | 146.0        | РРМ    | 88.0  |
| Zr                             | 3                     | 448.         | РРМ    | 285.0 |
| Nb                             | 1                     | 18.          | PPM    | 0     |
| Ag                             | 1                     | .009         | PPM    | 0     |
| Ta                             | 1                     | 1.6          | PPM    | 0     |
| Hf                             | 2                     | 13.0         | PPM    | 3.0   |
|                                |                       |              |        |       |

1

ļ

# CHEMICAL ANALYSES

r

•

# CHEMICAL ANALYSES

| Element | Number of<br>Analyses | Mean  | Units | Range |
|---------|-----------------------|-------|-------|-------|
| La      | 4                     | 18.49 | PPM   | 1.15  |
| Ce      | 2                     | 62.5  | PPM   | 7.0   |
| Nd      | 1                     | 51.0  | ΡΡΜ   | 0     |
| Sm      | 4                     | 15.09 | PPM   | 2.25  |
| Eu      | 4                     | 2.00  | РРМ   | .32   |
| Tb      | 2                     | 4.10  | PPM   | .8    |
| Dy      | 1                     | 25.0  | PPM   | 0     |
| Но      | 1                     | 5.5   | PPM   | 0     |
| Yb      | 4                     | 12.41 | РРМ   | 3.15  |
| Lu      | 3                     | 1.92  | РРМ   | .07   |
| Th      | 1                     | 4.2   | PPM   | 0     |
| U       | 1                     | .52   | PPM   | 0     |
| Ga      | 1                     | 4.6   | РРМ   | 0     |
| 0       | 1                     | 40.0  | РСТ   | 0     |
| F       | 1                     | 90.0  | PPM   | 0     |

Analysts: Ehmann & Morgan, (1970); Wakita et al., (1970); Sundles et al., (1971); Goles et al., (1970); Annell & Helz, (1970); Tera et al., (1970); Papanastassiou et al., (1970); Kharkar & Turekian, (1971).

No Age References

11

\* • \* •

0

Ť.

(

١

11

ORIGINAL PAGE ... OF POOR QUALITY





10060,0 Original PET Photo (S-69\_46497)



10060,5 (S-76-25888)

ORIGINAL PAGE IS OF POOR QUALITY

**.** 

Ţ

31.1

### 10060

Sample 10060 is a rounded to sub-rounded, medium dark grey, fine breccia. This sample originally weighed 722 gm and measured  $5 \times 5 \times 4.5$  cm. It was originally returned in ALSRC # 1004 (Documented Sample Container).

BINOCULAR DESCRIPTIONSBY: TwedellDATE: 5-27-76ROCK TYPE: Fine BrecciaSAMPLE: 10060,5WEIGHT: 112 gmCOLOR: Med. dark greyDIMENSIONS: 3.5 x 4.3 x 2.6 cmSHAPE: Rounded to sub-rounded; angular/tabular with dreikanter appearance (PET)

COHERENCE: Intergranular - coherent Fracturing - few - non-penetrative; planar fractures occur parallel to flattest side (PET)

FABRIC/ TEXTURE: Anisotropic/Fine Breccia

VARIABILITY: Homogeneous

SURFACE: Smooth on pitted surface to irregular on non-pitted surfaces; Granular (PET).

ZAP PITS: Few on  $E_1$ ,  $T_1$ ,  $N_1$ ,  $B_1$ . None on any others. Pits are glass lined, up to 2.5 mm in diameter.

CAVITIES: Absent

C

r,

٢.

(

The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon

| COMPONENT                | COLOR       | % OF<br>ROCK | SHAPE   | SIZE (MM)<br>DOM. RANGE |
|--------------------------|-------------|--------------|---------|-------------------------|
| Matrix                   | Med.Dk.Grey | 97%          | -       |                         |
| Basalt Clast             | Brn/Wht/Blk | 1%           | Angular | 2.5-5.                  |
| White Clast              | White       | <1%          | Angular | .9 .23                  |
| Brown Clast <sub>l</sub> | Brown       | <1%          | Angular | <.1 <.12                |
| Grey & White<br>Clast    | Blk & Wht   | <1%          | Angular | <.1 2.1                 |
| Grey Clast <sub>2</sub>  | Grey        | <1%          | Angular | <.1 <.1                 |
| 1) Crushed prox          | ene         |              |         |                         |

2) Only one on surface



SECTION 10060,49 Width of field 2.72 mm plane light THIN SECTION DESCRIPTION BY: Walton DATE: 6-23-76

SUMMARY: Partly devitrified typical breccia with several large class. The matrix appears to be filled with cryptocrystalline material and shards of the clasts present. Minor variation in the amount of devitrification is seen from one part of the section to another.

# Matrix 57% of Fock

| PHASE    | % Section | Shape | Size (mm | ) <u>Comments:</u>                                                 |
|----------|-----------|-------|----------|--------------------------------------------------------------------|
| Dk.Brown | 100%      | -     | < 0.001  | High glass content with<br>abundant cryptocrystalline<br>material. |

# Mineral Clasts 21% of Rock

| Phase                 | Relative Abundance | Shape                | <u>Size (mm)</u> |
|-----------------------|--------------------|----------------------|------------------|
| Pyroxene <sub>1</sub> | Very abundant      | Angular to irregular | 0.001-0.3        |

GRIGINAL PAGE IS OF POOR QUALITY 1 2

.

|       |                     |                                                         | 10060            |                    |                  |
|-------|---------------------|---------------------------------------------------------|------------------|--------------------|------------------|
| Plagi | oclase <sub>2</sub> | Few                                                     | Blocky           | to irregular       | 0.001-0.2        |
| Cpaqu | es <sub>3</sub>     | Few                                                     | Skeleta          | l to irregular     | 0.001-0.3        |
| 2) P  |                     | nctions and highly fr<br>cal characteristics.<br>lasts. | aqmented         |                    |                  |
|       |                     | <u>Lithic (</u>                                         | <u>Clasts 19</u> | % of Rock          |                  |
| Туре  |                     | Relative Abundance                                      |                  | Shape              | <u>Size (mm)</u> |
| Small |                     | Very Abundant                                           | Rounded          | to irregular       | 0.001-1.0        |
| Large | 4                   | Eight present                                           | Rounded          | to irregular       | > 1.0            |
| 4) a  |                     | e-grained basalt cons<br>ite with a glass coat          |                  | f pyroxene, plagic | clase und        |
| b     | . Coars<br>ilmen    | e-grained basalts<br>itc.                               | sisting o        | f pyroxene, plagic | clase and        |
| с     |                     | - ند matrix hosting<br>allites.                         | small py         | roxene and plagioc | lase             |
| d     | . Rando<br>pyrox    | m array of plagioclas<br>ene/olivine crystals.          | e crysta         | ls hosting small e | uhedra]          |
| e     | . Coars<br>ilmen    | e-grained basalt cons<br>ite.                           | sisting o        | f pyroxene, plagio | clase and        |
| f     |                     | grained basalt composite.                               | sed of py        | roxene, plagioclas | e and            |
| 9     |                     | al aggregation consis<br>ite with a minimum gl          |                  |                    | lase and         |
| h     |                     | grained glass-rich ma<br>mall rock fragments.           | atirx hos        | ting small mineral | fragments        |
|       |                     | <u>Glass</u> (                                          | Clasts 3%        | cf Rock            |                  |
| Туре  |                     | Relative Abundance                                      |                  | <u>Shape</u>       | <u>Size (mm)</u> |
| Yello | w-Orange            | 5 Very abundant                                         | Angulaı          | to spherical       | 0.001-0.4        |
| Red-0 | range <sub>6</sub>  | Moderate                                                | Angular          | tc spherical       | 0.001-0.1        |
|       |                     | îresen⁺                                                 | Angular          |                    |                  |

•

;

. .

2

•.

- みこう チャンド

おいている

villand - ver

- 7 - 92

É

414

•

(

С

271

Ĵ

i

;

na ne saeraço I **WARD** 

I

,

~

## 10060

5)

Mostly angular shards: few part spheres. Mostly angular shards; a few spherical masses. 6)

7) Rare: only a few shards.

Selected References: Agrell et al. (1970), Cameron (1970).

HISTORY AND PRESENT STATE OF SAMPLES \_ 6/25/76

10060 was removed from the Documented Sample container and split in the Vac Lab. A 2 gm. sample was sent to PCTL for PET analysis. A 582 gm. piece was transferred to the Bio Prep Lab for preparation of a 479 gm display sample. Remaining pristine samples were re-examined in SSPL.

(all VAC-BP-SSPL) PRISTINE SAMPLES

| 5       | 112 <b>.</b> gm | Piece.  | Few pits on four surfaces. See binocular description. |
|---------|-----------------|---------|-------------------------------------------------------|
| 42      | 2.30 gm         | Chip.   | 1.4 x 1.2 x 1.0 cm. No pits or patina.                |
| 47      | 2.56 gm         | Fines.  |                                                       |
| 48      | 1.90 gm         | Fines.  |                                                       |
| RETURNE | D SAMPLES       |         |                                                       |
| 38      | 28.52 gm        | Chip.   | Pitted on two surfaces.                               |
| 46      | 4.99 gm         | Three C | nips. Largest chip is pitted on one surface.          |

#### CHEMICAL ANALYSES

| Element          | Number of<br>Analyses | Mean  | Units | Range |
|------------------|-----------------------|-------|-------|-------|
| SiO <sub>2</sub> | 7                     | 42.17 | PCT   | 4.8   |
| A1203            | 9                     | 11.43 | PCT   | 2.02  |
| TiO <sub>2</sub> | 8                     | 8.65  | PCT   | 1.48  |
| Fe0              | 8                     | 17.10 | PCT   | 2.72  |
| Mn0              | 7                     | .211  | PCT   | .057  |
| Mg0              | 7                     | 8.01  | PCT   | 2.43  |

ORIGINAL PAGE L OF POOR QUALITY

2.0

J

10060

|                   |                       | CHEMICAL AN | CHEMICAL ANALYSES |       |  |
|-------------------|-----------------------|-------------|-------------------|-------|--|
| Element           | Number of<br>Analyses | Mean        | Units             | Range |  |
| CaO               | 6                     | 12.62       | PCT               | 4.19  |  |
| Na <sub>2</sub> 0 | 7                     | . 484       | РСТ               | .054  |  |
| K <sub>2</sub> 0  | 6                     | .188        | РСТ               | .045  |  |
| P205              | 2                     | . 104       | РСТ               | . 068 |  |
| Н                 | 1                     | 22.0        | PPM               | 0     |  |
| Li                | 2                     | 8.7         | PPM               | 3.40  |  |
| Rb                | 4                     | 4.33        | РРМ               | 1.00  |  |
| Cs                | 2                     | . 195       | PPM               | .01   |  |
| Be                | 1                     | 3.00        | PPM               | 0     |  |
| Sr                | 4                     | 172.75      | PPM               | 16.0  |  |
| Ba                | 5                     | 215.6       | РРМ               | 88.0  |  |
| Sc                | 5                     | 66.9        | PPM               | 9.50  |  |
| ۷                 | 4                     | 65.0        | PP <b>M</b>       | 36.0  |  |
| $Cr_2O_3$         | 7                     | .314        | PCT               | .143  |  |
| Со                | 6                     | 29.92       | PPM               | 4.60  |  |
| Ni                | 3                     | 129.74      | PPM               | 91.99 |  |
| Cu                | 3                     | 8.7         | PPM               | 5.00  |  |
| Zn                | 3                     | 27.33       | РРМ               | 5.00  |  |
| Y                 | 2                     | 168.5       | PPM               | 83.0  |  |
| Zr                | 5                     | 434.82      | PPM               | 635.0 |  |
| Nb                | 2                     | 30.5        | PPM               | 29.00 |  |
| Мо                | 1                     | .7          | PPM               | 0     |  |
| Pd                | 1                     | . 006       | PPM               | 0     |  |
| Ag                | 1                     | .01         | PPM               | 0     |  |
| Cd                | ו                     | . 3         | PPM               | 0     |  |
| Ta                | 4                     | 1.86        | РРМ               | .4    |  |
|                   |                       |             |                   |       |  |

.35

12.79

PPM

PPM

# CHEMICAL ANALYSES

LIGTER IN LIGHT

•

``

(]

(]

W

Ηf

1

5

| CHEMICAL | ANALYSES |
|----------|----------|

| Ir15.40Au11.40La720.67Ce759.36Pr113.0Nd455.75Sm716.69Eu72.00Gd226.00Tb64.23Dy527.84                                                                                            | PPB<br>PPB          | 0     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------|
| Au11.40La720.67Ce759.36Pr113.0Nd455.75Sm716.69Eu72.00Gd226.00Tb64.23                                                                                                           |                     | U     |
| La720.67Ce759.36Pr113.0Nd455.75Sm716.69Eu72.00Gd226.00Tb64.23                                                                                                                  |                     | 0     |
| Ce759.36Pr113.0Nd455.75Sm716.69Eu72.00Gd226.00Tb64.23                                                                                                                          | <b>P</b> P <b>M</b> | 7.3   |
| Pr       1       13.0         Nd       4       55.75         Sm       7       16.69         Eu       7       2.00         Gd       2       26.00         Tb       6       4.23 | PP <b>M</b>         | 6.0   |
| Nd455.75Sm716.69Eu72.00Gd226.00Tb64.23                                                                                                                                         | РРМ                 | 0     |
| Sm         7         16.69           Eu         7         2.00           Gd         2         26.00           Tb         6         4.23                                        | PPM                 | 37.00 |
| Eu72.00Gd226.00Tb64.23                                                                                                                                                         | PPM                 | 10.2  |
| Tb 6 4.23                                                                                                                                                                      | PPM                 | . 99  |
| Tb 6 4.23                                                                                                                                                                      | PPM                 | 4.0   |
| Dv 5 27.84                                                                                                                                                                     | PPM                 | 3.11  |
|                                                                                                                                                                                | PPM                 | 19.3  |
| Ho 5 6.56                                                                                                                                                                      | РРМ                 | 5.20  |
| Er 3 20.17                                                                                                                                                                     | PPM                 | 15.5  |
| Tm 1.8                                                                                                                                                                         | PPM                 | 0     |
| Yb 7 14.13                                                                                                                                                                     | PPM                 | 11.1  |
| Lu 7 1.91                                                                                                                                                                      | PPM                 | .73   |
| Th 2 2.51                                                                                                                                                                      | PPM                 | .976  |
| U 4 .586                                                                                                                                                                       | PPM                 | .153  |
| B 1 3.0                                                                                                                                                                        | PPM                 | 0     |
| Ga 3 5.0                                                                                                                                                                       | PPM                 | . 5   |
| In 3 .711                                                                                                                                                                      | PPM                 | 1.10  |
| C 1 135.0                                                                                                                                                                      | PPM                 | 0     |
| Ge 3 .68                                                                                                                                                                       | PPM                 | 1.16  |
| Pb 2 2.43                                                                                                                                                                      | PPM                 | 1.14  |
| N 1 20.0                                                                                                                                                                       | РРМ                 | 0     |
| As 2 .05                                                                                                                                                                       |                     |       |
| Sb 1 .005                                                                                                                                                                      | РРМ                 | .08   |

OMGINAL PAGE IS OF POOR QUALITY •

x /

:,

274

T, P

,

Ϊ,

•.

1

| 1 | 0 | 0 | 6 | 0 |
|---|---|---|---|---|
|---|---|---|---|---|

## CHEMICAL ANALYSES

| Element | Number of<br>Analyses | Mean | Units | Range |
|---------|-----------------------|------|-------|-------|
| 0       | 3                     | 41.0 | PCT   | 1.10  |
| S       | 2                     | .131 | РСТ   | .038  |
| Se      | 1                     | .9   | РРМ   | 0     |
| F       | 1                     | 80.0 | PPM   | 0     |
| C1      | 1                     | 15.5 | PPM   | 0     |
| Br      | 1                     | .3   | PPM   | 0     |
|         |                       |      |       |       |

Analysts: Agrell et al., (1970); Ehmann & Morgan, (1970); Goles et al., (1970); Morrison et al., (1970); Rose et al., (1970); Wanke et al., (1970); Smales et al., (1971); Smales et al., (1970); Philpotts & Schnetzler, (1970); Friedman et al., (1970); Brown et al., (1970); Wasson & Baedecker (1970); Haskin et al., (1970); Kaplan et al., (1970).

Age References: Silver (1970)

ļ

ł

1

` ا ایر د

•

t,

7

÷

41.12

**1** 

ř

And 5 . . . . . .

÷

115 SAVE.

ł

₹.

275

**7** -

276



10061,18,41,43,131 (S-75-34230) ORIGINAL PAGE L OF POOR QUALITY

Sample 10061 is a sub-angular, medium grey, fine breccia. This sample originally weighed 346gm and measured 9x8.5x8.7cm. It was returned in ALSRC #1004 (Documented Sample container).

| BINOCULAR DESCRIPTION                                                  | BY: Kramer              | DATE:   | 6/24/76 |  |  |
|------------------------------------------------------------------------|-------------------------|---------|---------|--|--|
| ROCK TYPE: Fine Breccia                                                | SAMPLE: 10061,18        | WEIGHT: | 82 gm   |  |  |
| COLOR: Medium grey                                                     | DIMENSIONS: 5.8 x 3.5 x | 2 cm    |         |  |  |
| SHAPE: Sub-angular                                                     |                         |         |         |  |  |
| COHERENCE: Intergranular - friable (granulated)<br>Fracturing - absent |                         |         |         |  |  |
| FABRIC/TEXTURE: Anisotropic/Fine Breccia                               |                         |         |         |  |  |

VARIABILITY: Homogeneous

1

1

SURFACE: Granulated

「「なんとない」という ł

2

(

٠ t

(

Ł

.

(

.

100

ł

1

ZAP PITS: Few - T1

CAVITIES: Absent

| COMPONENT              | COLOR    | % OF<br>ROCK | SHAPE       | SIZE (MM)<br>DOM. RANGE |
|------------------------|----------|--------------|-------------|-------------------------|
| Matrix                 | Med.Grey | 90           |             |                         |
| Salt & Pepper<br>Clast | Blk/Wh   | <1           | Angular     | 1.5 0.05-2.0            |
| Basalt Clast           | Med.Grey | 2            | Sub-angular | 2. 0.05-3.0             |
| Grey & White<br>Clast  | Grey/Wh  | 3            | sub-rounded | 0.5 0.01-7.0            |
| White Clast            | White    | 5            | Angular     | 0,5 0,01-1,             |



SECTION: 10061,28 Width of field 2.72mm plane light

THIN SECTION DESCRIPTION BY: Walton DATE: 6/24/76

SUMMARY: Partly devitrified breccia with a pronounced change in the matrix from one part of the section to another. Approximately one half of the section has a nearly colorless to pale brown glass-rich phase, while the other half has the more usual dark brown nearly opaque phase.

# MATRIX 60% OF ROCK

| PHASE                      | % SECTION | SHAPE | SIZE(MM) | COMMENTS:                                                                                                 |
|----------------------------|-----------|-------|----------|-----------------------------------------------------------------------------------------------------------|
| Colorless to<br>pale brown | 50        |       | <0.001   | High glass con-<br>tent plus numer-<br>ous small crystal-<br>lites; translu-<br>cent to trans-<br>parent. |
| Dark brown                 | 50        |       | <0.001   | High glass con-<br>tent; typical<br>breccia matrix.                                                       |

ORIGINAL PAGE IS OF POOR QUALITY ş

### MINERAL CLASTS 14% OF ROCK

| PHASE                    | RELATIVE ABUNDANCE | SHAPE                 | SIZE (MM) |
|--------------------------|--------------------|-----------------------|-----------|
| Pyroxene 1               | Very abundant      | Angular to irregular  | 0.001-0.4 |
| Plagioclase <sub>2</sub> | Few                | Blocky to irregular   | 0.001-0.2 |
| Opaques <sub>3</sub>     | Few                | Skeletal to irregular | 0.001-0.4 |

1) Mostly angular shards; poor optical characteristics.

2) Blocky with some twins still observable.

3) Most in clasts.

4

# LITHIC CLASTS 13% OF\_ROCK

| TYPE   | RELATIVE ABUNDANCE | SHAPE                | <u>SIZE (MM</u> ) |
|--------|--------------------|----------------------|-------------------|
| Small  | Very abundant      | Rounded to irregular | 0.001-1.0         |
| Large, | Four present       | Rounded to irregular | >1.0              |

- 4) a. Coarse-grained basalt consisting of pyroxene, plagioclase and ilmenite.
  - b. Random array of plagioclase crystals hosting small anhedral pyroxene/olivine crystals.
  - c. Fine-grained basalt consisting of pyroxene, plagioclase and ilmenite.
  - d. Fine-grained basalt consisting of pyroxene, plagioclase and ilmenite.

# GLASS CLASTS 6% OF ROCK

| TYPE                       | RELATIVE ABUNDANCE | SHAPE                | <u>SIZE (MM</u> ) |
|----------------------------|--------------------|----------------------|-------------------|
| Yellow-Orange <sub>5</sub> | Very abundant      | Angular to spherical | 0.001-0.5         |
| Brown-Yellow <sub>6</sub>  | One present        | Spherical            | 0.5               |
| Colorless <sub>7</sub>     | Few                | Angular              | 0,001-0,4         |

5) Mostly angular shards, some part spheres.

6) Two immiscible glasses in a single droplet.

7) All shards, some with bubbles.

17

D

7

0

[]

Selected References: Keil et al. (1970)

# HISTORY AND PRESENT STATUS OF SAMPLES - 6/24/76

10061 was removed from the Documented Sample container (ALSRC #1004) and split in the Vac Lab. Some loose chips were sent to PCTL for PET analysis. Sample was split and allocated in SPL. Remaining pristine samples were re-examined in SSPL.

PRISTINE SAMPLES:

| 2        | 6.08     | gm | Chips and fines. Largest chip is less than lgm.<br>VAC-PCTL-SSPL                        |
|----------|----------|----|-----------------------------------------------------------------------------------------|
| 18       | 81.76    | gm | Large piece. Pitting on $T_1$ . VAC-SPL-SSPL                                            |
| 41       | 30.18    | gm | Large angular piece. No pitting observed.<br>VAC-SPL-SSPL-RCL-SSPL                      |
| 43       | 23.71    | gm | Large piece with some pitting on N <sub>1</sub> .<br>VAC-SPL-SSPL                       |
| 44       | 17.62    | gm | Large piece with some pitting on T <sub>1</sub> .<br>VAC-SPL-SSPL                       |
| 48       | 12.73    | gm | Chips and fines. No chips are larger than 0.25gm.<br>VAC-SPL-SSPL                       |
| 128      | 13.54    | gm | Large chip. No pits. VAC-SPL-SSPL                                                       |
| 129      | 8.69     | gm | Chips and fines. Largest chips are less than<br>0.5gm. VAC-SPL-SSPL                     |
| 130      | 14.11    | gm | Three chips. All have some exterior surface,<br>but no pits were observed. VAC-SPL-SSPL |
| 131      | 20.13    | gm | Surface piece. $B_1$ is pitted. VAC-SPL-SSPL                                            |
| 132      | 5.72     | gm | Three interior chips. Largest is 3.58gm.<br>VAC-SPL-SSPL                                |
| RETURNED | SAMPLES: |    |                                                                                         |
| 42       | 11.20    | gm | Chip. No pits observed.                                                                 |
| 50       | 4.89     | gm | Chip. No pits observed.                                                                 |
| 76       | 5.32     | gm | Chip. No pits observed.<br>ORIGINAL PAGE IS<br>OF POOR QUALITY.                         |

·•••**1** · • • •

:

`

| Element                        | Number of<br>Analyses | Mean   | Units       | Range |
|--------------------------------|-----------------------|--------|-------------|-------|
|                                |                       |        |             |       |
| SiO <sub>2</sub>               | 2                     | 41.15  | PCT         | 1.44  |
| A1 <sub>2</sub> 0 <sub>3</sub> | 4                     | 13.10  | РСТ         | 1.17  |
| TiO <sub>2</sub>               | 3                     | 8.17   | PCT         | 2.00  |
| Fe0                            | 2                     | 16.35  | РСТ         | .2    |
| Mn0                            | 3                     | .214   | PCT         | .048  |
| Mg0                            | 2                     | 8.8    | PCT         | 1.95  |
| Ca0                            | 2                     | 11.30  | PCT         | 1.33  |
| Na <sub>2</sub> 0              | 3                     | .487   | РСТ         | .042  |
| K <sub>2</sub> 0               | 1                     | .18    | РСТ         | 0     |
| $P_{2}O_{5}$                   | 1                     | .14    | PCT         | 0     |
| Н                              | 2                     | 1.95   | CC/G        | 1.1   |
| Li                             | 2                     | 7.5    | PPM         | 7.0   |
| Rb                             | 3                     | 3.70   | PPM         | .59   |
| Cs                             | 1                     | .146   | PPM         | 0     |
| Ве                             | 1                     | 2.40   | РРМ         | 0     |
| Sr                             | 2                     | 148.05 | PPM         | 36.1  |
| Ba                             | 3                     | 219.33 | РРМ         | 142.0 |
| Sc                             | 2                     | 63.3   | PP <b>M</b> | 7.4   |
| ٧                              | 3                     | 58.0   | РРМ         | 46.0  |
| $Cr_2O_3$                      | 3                     | . 322  | 704<br>T04  | .117  |
| Со                             | 4                     | 31.48  | PPM         | 12.0  |
| Ni                             | 2                     | 205.5  | РРМ         | 71.0  |
| Cu                             | 3                     | 21.0   | PPM         | 9.0   |
| Zn                             | 3                     | 31.07  | PPM         | 10.0  |
| Y                              | 2                     | 105.5  | PPM         | 5.0   |
| Zr                             | 3                     | 325.0  | PPM         | 153.0 |
| Nb                             | 3                     | 28.33  | РРМ         | 26.0  |
| Pd                             | ٦                     | 7.00   | PPB         | 0     |
|                                |                       |        |             | -     |

.

ł

CHEMICAL ANALYSES

いちょう いちょう

.

€.

ģ

. •.

| 2 | 02 |  |
|---|----|--|
| ۷ | 04 |  |

•

1.

# CHEMICAL ANALYSES

| Element | Number of<br>Analyses | Mean  | Units        | Range |
|---------|-----------------------|-------|--------------|-------|
| Ag      | 1                     | .163  | РРМ          | 0     |
| Cd      | 1                     | .106  | РРМ          | 0     |
| Hf      | 1                     | 13.10 | РРМ          | 0     |
| Ir      | 1                     | 9.18  | РРВ          | 0     |
| Au      | 1                     | 3.42  | РРВ          | 0     |
| Hg      | 1                     | 120.  | РРВ          | 0     |
| La      | 3                     | 19.27 | PPM          | 6.20  |
| Ce      | 2                     | 42.6  | PPM          | 11.6  |
| Pr      | 1                     | 15.00 | PPM          | 0     |
| Nd      | 1                     | 20.   | РРМ          | 0     |
| Sm      | 1                     | 13.2  | РРМ          | 0     |
| Eu      | 1                     | 1.78  | PPM          | 0     |
| ТЬ      | 1                     | 3.40  | PPM          | 0     |
| Но      | 1                     | 3.7   | <b>See</b> 3 | 0     |
| Yb      | 1                     | 13.1  | PPM          | 0     |
| Lu      | 1                     | 1.94  | РРМ          | 0     |
| Th      | 3                     | 2.60  | PPM          | 0     |
| U       | 3                     | .638  | PPM          | 0     |
| Ga      | 3                     | 5.33  | PPM          | 0     |
| Ln      | 1                     | 1.43  | PPM          | 0     |
| T1      | 1                     | 2.70  | РРВ          | 0     |
| С       | 2                     | 221.5 | PPM          | 81.0  |
| Pb      | 1                     | 1.74  | РРМ          | 0     |
| Bi      | 1                     | 2.73  | РРВ          | 0     |
| U       | 1                     | 41.70 | РСТ          | 0     |
| S       | 1                     | .150  | PCT          | 0     |
| Te      | l                     | .073  | PPM          | 0     |

ORIGINAL PACE IS OF POOR QUALITY

 $\overline{\mathbb{C}}$ 

5

3

Ĵ

, 6

:

-)

### CHEMICAL ANALYSES

| Element | Number of<br>Analyses | Mean  | Units | Range |
|---------|-----------------------|-------|-------|-------|
| F       | 1                     | 342.0 | PPM   | 0     |
| C1      | 1                     | 7.54  | PPM   | 0     |
| Br      | 2                     | . 253 | РРМ   | . 014 |

Analysts: Compston et al., (1970); Ehmann & Morgan, (1970); Ganapathy et al., (1970); Goles et al., (1970); Annell & Helz, (1970); D'amico et al., (1970); Reed & Jovanovic, (1970); Morrison et al., (1970); Herzog & Herman, (1970); Tatsumoto, (1970); Epstein & Taylor, (1970); Epstein & Taylor, (1971).

Age References: Tatsumoto (1970).

1

4. . . .

;'

あた ろう

÷

•

Í

€.

1 . . . . . . .





#### 10062

Sample 10062 is a sub-angular, dark grey, olivine basalt. This sample originally weighed 79gm and measured 7x6x2 cm. It was originally returned in ALSRC #1004 (Documented Sample container).

| BINOCULAR DESCRIPTION       | BY: Kramer            | DATE:   | 1/27/76  |
|-----------------------------|-----------------------|---------|----------|
| ROCK TYPE: Olivine basalt   | SAMPLE: 10062,13      | WEIGHT: | 25.38 gm |
| COLOR: Dark grey            | DIMENSIONS: 4 x 2.5 x | 1.7 cm  |          |
| SHAPE: Sub-angular (broken) |                       |         |          |

COHERENCE: Intergranular - coherent Fracturing - absent; few (PET)

FABRIC/TEXTURE: Isotropic/Equigranular

VARIABILITY: Homogeneous

- SURFACE:  $T_1$  irregular; rough (PET)  $B_1$  (fresh) irregular; rough (PET)
- ZAP PITS: Few on  $T_1$ , none on others. Pits are glass lined, up to lmm in diameter.

CAVITIES: Vesicles cover 10% of surface.

| COMPONENT   | COLOR      | % OF<br><u>ROCK</u> | SHAPE           | SIZ<br>DOM. | · ·      |
|-------------|------------|---------------------|-----------------|-------------|----------|
| Plagioclase | Milk White | 30                  | Blocky to lathy | 0,4         | 0.05-0.7 |
| Pyroxene    | Brown      | 47                  | Blocky          | 0.3         | <0.5     |
| Ilmenite    | Black      | 20                  | Subhedral       | 0.1         | 0.01-0.3 |
| Olivine     | Green      | 3                   | Equant          | 0.6         | 0.2-0.8  |

<u>SPECIAL FEATURES</u>: Vesicles are lined with primarily the same relative quantities of minerals as the bulk rock.





SECTION: 10062,39 Width of field: 1.39mm plane light

THIN SECTION DESCRIPTION

C

(

( )

BY: Walton

DATE: 5/27/76

SUMMARY: Fine-grained ophitic basalt composed of clinopyroxene, two generations of plagioclase, two generations of ilmenite with subordinate olivine, troilite, iron-nickel and mesostasis. The pyroxene forms large anhedral crystals with lath-like to anhedral crystals of ilmenite in a continuous network. Interstitial to these phases are subhedral to anhedral crystals of plagioclase with minor glass-rich mesostasis. Isolated within the network are anhedral crystals of olivine.

| PHASE | % OF SECTION | SHAPE                 | <u>SIZE (MM</u> ) |
|-------|--------------|-----------------------|-------------------|
| Pyrox | 45           | Anhedra 1             | 0.01-0.8          |
| Plag  | 33           | Tabular to anhedral   | 0.08-0.8          |
| 01iv  | 4            | Blocky, anhedral      | 0.001-0.3         |
| Opaq  | 16           | Lath-like to anhedral | 0.05-1.0          |
| Meso  | 2            | Irregular             | 0.001-0.1         |

Por and the second second second second second second second second second second second second second second s

#### COMMENTS:

Pyroxene - Pinkish tan to light brown anhedral crystals of clinopyroxene together with the ilmenite crystals form an almost continuous array hosting the other phases present. The crystals of pyroxene show little cleavage pattern and almost no suggestion of crystal faces. Occasional feathery masses occur between plagioclase crystals. Most of the extinctions are irregular to patchy.

Plagioclase - Small subhedral crystals of plagioclase occur in the section associated with larger anhedral masses of plagioclase. The anhedral crystals form interstitial void fillings in the pyroxene-ilmenite network. Many of the larger crystals are somewhat skeletal in development. The smaller crystals show sharp to moderate twin planes while the larger crystals show little to none.

- Olivine Small to large blocky anhedral crystal masses of olivine are scattered throughout the section. All are fresh crystals with small pyroxene rims. Several of the crystals occur as small cores in some of the pyroxene crystals.
- Mesostasis Small amounts of an almost colorless to slightly brownish glass-rich mesostasis phase occurs usually between the plagioclase crystals and the adjacent pyroxene crystals. No phases were determined and the amounts were small.
- Opaques The opaque phases represented in the section are ilmenite and troilite-iron nickel. Carter, J.L. and MacGregor, I.D. (1970) have reported armalcolite and chromian ulvospinel from this rock. Neither of these phases were seen in this investigation.

Two generations of ilmenite are present in the section. The crystals occur as small lath-like crystal sections and also as large somewhat skeletal anhedral crystals. Both types occur in nearly equal amounts. Some rutile and chromite exsolutions are present in the larger crystals.

Small masses of troilite-iron nickel are present, but are rather sparse. A few masses of just troilite are also present.

TEXTURE: Interlocking anhedral crystals of pyroxene intergrown with two generations of ilmenite and two generations of plagioclase crystals in an ophitic texture. Interstitial to this network are masses of plagioclase and mesostasis.

Selected References: Carter and MacGregor (1970)

ORIGINAL PAGE IS OF POOR QUALITY

> ---

#### 288

2 Ja 🕶 🛓

and a start of the start was and a start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of

10062

### HISTORY AND PRESENT STATUS OF SAMPLES - 5/27/76

10062 was removed from the Documented Sample container (ALSRC #1004) and split in the Vac Lab. A lOgm chip was sent to PCTL for PET analysis. Remaining pristine samples were re-examined in SSPL.

PRISTINE SAMPLES: (A11 VAC-SSPL)

| 14 | 1.67 gm  | Chips and fines. Largest chip has ! pitted sur-<br>face. Remainder of chips have l or no pitted<br>surfaces. No sawed surfaces on any chips. |
|----|----------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 13 | 25.33 gm | Largest chip is described in binocular description.<br>Next largest chip has 2 pitted surfaces. Remainder                                    |

of chips have no pitted surfaces.

### **RETURNED SAMPLES:**

>-\*; (

Ĩ

| 33 | 8.13 | gm | Chip. | Two pitted surfaces. Some chisel marks. |
|----|------|----|-------|-----------------------------------------|
|    |      |    | Other | surfaces are fresh.                     |

#### CHEMICAL ANALYSES

| Element           | Number of<br>Analyses | Mean  | Units | Range |
|-------------------|-----------------------|-------|-------|-------|
| SiO <sub>2</sub>  | 3                     | 39.04 | PCT   | 1.29  |
| A1203             | 4                     | 10.44 | PCT   | 2.09  |
| TiO <sub>2</sub>  | 5                     | 10.10 | РСТ   | 4.75  |
| Fe0               | 5                     | 18.05 | РСТ   | 3.86  |
| Mn0               | 5                     | .251  | РСТ   | .105  |
| Mg0               | 2                     | 7.14  | PCT   | .13   |
| CaO               | 4                     | 12.02 | РСТ   | 1.54  |
| Na <sub>2</sub> 0 | 6                     | .416  | РСТ   | .042  |
| K <sub>2</sub> 0  | 6                     | .070  | PCT   | .062  |
| $P_{2}O_{5}$      | 1                     | .12   | PCT   | 0     |
| Rb                | 3                     | .844  | PPM   | .08   |
|                   |                       |       |       |       |

L

1

ļ

1

15.19

• .

•

:

. .

,2

·..

]•

ſ

211

| CHEMICAL ANALYSES |                       |       |              |                              |
|-------------------|-----------------------|-------|--------------|------------------------------|
| Element           | Number of<br>Analyses | Mean  | Units        | Range                        |
| Cs                | 1                     | .032  | РРМ          | 0                            |
| Sr                | 3                     | 193.4 | РРМ          | 6.5                          |
| Ba                | 3                     | 168.0 | · PPM        | 96.0                         |
| Sc                | 3                     | 78.9  | PPM          | 11.3                         |
| ٧                 | 1                     | 75.0  | PPM          | 0                            |
| $Cr_2O_3$         | 4                     | .227  | РСТ          | .059                         |
| Со                | 3                     | 13.27 | РРМ          | .8                           |
| Ni                | 1                     | 15.01 | PPM          | 0                            |
| Cu                | 1                     | 4.0   | РРМ          | 0                            |
| Y                 | 1                     | 103.0 | PPM          | 0                            |
| Zr                | 2                     | 304.5 | PPM          | 29.                          |
| Мо                | 1                     | .16   | PPM          | 0                            |
| Ag                | 1                     | .071  | PPM          | 0                            |
| Ta                | 3                     | 1.5   | РРМ          | .8                           |
| Hf                | 3                     | 11.23 | РРМ          | 1.9                          |
| Au                | 1                     | .006  | РРМ          | 0                            |
| La                | 4                     | 12.9  | ΡΡΜ          | 3.0                          |
| Ce                | 5                     | 41.72 | РРМ          | 10.4                         |
| Nd                | 2                     | 38.7  | PPM          | 2.4                          |
| Sm                | 5                     | 11.75 | PPM          | 6.0                          |
| Eu                | 5                     | 2.04  | PPM          | .4                           |
| Gd                | 2                     | 18.15 | PFM          | .1                           |
| Тb                | ו                     | 3.3   | PPM          | 0                            |
| Dy                | 4                     | 21.9  | PPM          | 4.2                          |
| Но                | 1                     | 4.4   | PPM          | 0                            |
| Er                | 2                     | 12.3  | PPM          | 1.0                          |
| Yb                | 5                     | 10.24 | PPM          | 7.2                          |
| Lu                | 5                     | 1.6   | PPM          | 1.07                         |
|                   |                       |       | ORIG<br>OF 1 | INAL PAGE 15<br>POOR QUALIT: |

1 1

1

,

1

I

O

C

. .

1

)

1. 1

#### CHEMICAL ANALYSES

| Element | Number of<br>Analyses | Mean | Units | Range |
|---------|-----------------------|------|-------|-------|
| Th      | 1                     | .9   | РРМ   | 0     |
| U       | 3                     | .267 | РРМ   | .03   |
| Ga      | 1                     | 3.0  | PPM   | 0     |
| As      | 1                     | .05  | РРМ   | 0     |
| 0       | 1                     | 38.0 | РСТ   | 0     |
| S       | 1                     | .16  | РСТ   | 0     |
| Se      | 1                     | .23  | РРМ   | 0     |

Analysts: Compston et al., (1970); Ehmann & Morgan, (1970); Rose et al., (1970); Goles et al., (1970); Turckian & Kharkar, (1970); Kharkar & Turekian, (1971); Gast et al., (1970); Philpotts & Schnetzler, (1970).

Age References: Turner (1970); Eberhardt (1971b).

ł

• 3 •

292

7

1 1 3 1 1

**,** n

٠ĩ

, **\*.** 





10063,1 (S-75-30489)

ORIGINAL PAGE IS OF POOR QUALITY

书 23 CT 11 F 11

1

1 ÷.,

•••

Sample 10063 is a sub-angular, dark grey, breccia. This sample originally weighed 148gm and measured 7x6.5x3.5cm. It was originally returned in ALSRC #1004 (Documented Sample container).

BINOCULAR DESCRIPTIONBY: KramerDATE: 8/12/75ROCK TYPE: BrecciaSAMPLE: 10063,1WEIGHT: 128 gmCOLOR: Dark grey (fresh and exposed)DIMENSIONS: 7.5 x 5.7 x 3 cmSHAPE: Subangular; subrounded (PET)COHERENCE: Intergranular - coherent<br/>Fracturing - one penetrative set parallel to  $T_1-B_1$ . One<br/>penetrative fracture parallel to  $E_1-W_1$ .

FABRIC/TEXTURE: Anisotropic/Breccia

VARIABILITY: Large (3cm) basalt clast on one face

SURFACE: Hackly

A CARLEN STAR STARSTARS

C

**(**]

ZAP PITS: Many pits on all faces except part of  $S_1$ . Pits are glass lined, up to 3mm in diameter.

CAVITIES: Absent

| COMPONENT    | COLOR       | % OF<br>ROCK | SHAPE                 | SIZ<br>DOM. | E(MM)<br>RANGE |
|--------------|-------------|--------------|-----------------------|-------------|----------------|
| Matrix       | Dark Grey   | 80           | Aphanitic             |             |                |
| White Clast  | White       | 10           | Angular to subrounded | 1           | <.01-3         |
| Basalt Clast | Light Grey  | 5            | Subrounded            | 10          | .1-30          |
| Grey Clast   | Med.Grey    | 1            | Subrounded            | 1           | .5-1.5         |
| Green Clast  | Apple Green | <1           | Angular               | 1           | .5-10          |
| Brown Clast  | Honey Brown | <]           | Rounded               | 3           | 1-15           |

ŝ



SECTION: 10063,17 Width of field 1.39mm plane light THIN SECTION DESCRIPTION BY: Walton DATE: 6/24/76

SUMMARY: Partly devitrified typical breccia with a relatively high glass clast content. Very few spherical glass clasts are present. Almost all the glass is as fractured shards with minor devitrification.

#### MATRIX 53% OF ROCK

| PHASE      | % SECTION | SHAPE | SIZE(MM) | COMMENTS:                                               |
|------------|-----------|-------|----------|---------------------------------------------------------|
| Dark Brown | 100       |       | <0.001   | High glass<br>content; many<br>small crystal-<br>lites. |

;

ORIGINAL PAGE IS OF POOR QUALITY  $\bigcirc$ 

 $\bigcirc$ 

#### MINERAL CLASTS 20% OF ROCK

| PHASE                    | RELATIVE ABUNDANCE | SHAPE                 | <u>SIZE (MM</u> ) |
|--------------------------|--------------------|-----------------------|-------------------|
| Pyroxene <sub>1</sub>    | Very abundant      | Blocky to irregular   | 0.001-0.4         |
| Plagioclase <sub>2</sub> | Moderate           | Blocky to irregular   | 0.001-0.2         |
| Opaques <sub>3</sub>     | Few                | Skeletal to irregular | 0.001-0.4         |
|                          |                    |                       |                   |

1) Mostly as angular shards; poor optical characteristics.

2) Mostly shocked with few sharp twin planes.

3) Several large in matrix; many in clasts.

()

0

#### LITHIC CLASTS 20% OF ROCK

| TYPE               | RELATIVE ABUNDANCE | SHAPE                | <u>SIZE (</u> M) |
|--------------------|--------------------|----------------------|------------------|
| Sma11              | Very abundant      | Rounded to irregular | 0.001-1.0        |
| Large <sub>4</sub> | Six present        | Rounded to irregular | >1.0             |

- 4) a. Fine-grained intersertal basalt with small euhedral pyroxene and larger plagioclase crystals.
  - b. Fine-grained basalt consisting of pyroxene, plagioclase and ilmenite.
  - c. Coarse-grained basalt consisting of pyroxene, plagioclase and ilmenite.
  - d. Coarse-grained basalt consisting of pyroxene, plagioclase and ilmenite.
  - e. Fine-grained basalt consisting of pyroxene, plagioclase and ilmenite.
  - f. Fine-grained basalt consisting of pyroxene, plagioclase and ilmenite.

#### GLASS CLASTS 7% OF ROCK

| TYPE RELAT                                                      | IVE ABUNDANCE | SHAPE                   | <u>SIZE (MM</u> ) |
|-----------------------------------------------------------------|---------------|-------------------------|-------------------|
| Yellow-Orange <sub>5</sub> Very<br>Colorless <sub>5</sub> Moder | •             | lar to spherical<br>lar | 0.001-0.2         |

5) Very few spheres or part spheres; some devitrification.

6) Several large fragments; some devitrification.

295

のないである

<u>\_\_\_</u>\_\_\_

-----

 $\mathbf{\hat{\mathbf{y}}}$ 

296

4

; ì

`~~ 7

#### 10063

#### HISTORY AND PRESENT STATUS OF SAMPLES - 6/24/76

10063 was removed from the Documented Sample container (ALSRC #1004) and split in the Vac Lab. It was later re-examined and split in SSPL.

### PRISTINE SAMPLES: (A11 VAC-SSPL)

| 1  | 128.01 gm | Large piece. All sides are pitted. Part of ${\rm S}_1$ is fresh. |
|----|-----------|------------------------------------------------------------------|
| 14 | 0.37 gm   | One small chip found when sample was opened.                     |
| 15 | 9.98 gm   | Chip taken from subsample 1. Pitted on $T_1$ .                   |
| 16 | 1.42 gm   | Chips and fines. All interior.                                   |

NO RETURNED SAMPLES

#### CHEMICAL ANALYSES

| Element           | Number of<br>Analyses | Mean   | Units | Range |
|-------------------|-----------------------|--------|-------|-------|
| SiO <sub>2</sub>  | 1                     | 43.43  | PCT   | 0     |
| A1203             | 2                     | 13.04  | PCT   | 1.13  |
| Ti0               | 1                     | 8.841  | PCT   | 0     |
| Fe0               | 1                     | 16.85  | PCT   | 0     |
| Mn0               | 2                     | .215   | PCT   | .011  |
| Mg0               | 1                     | 7.79   | PCT   | 0     |
| CaO               | 1                     | 13.57  | PCT   | 0     |
| Na <sub>2</sub> 0 | 1                     | .456   | PCT   | 0     |
| Sc                | 1                     | 62.20  | PPM   | 0     |
| V                 | 1                     | 90.0   | РРМ   | 0     |
| Со                | 1                     | 35.20  | РРМ   | 0     |
| Cu                | 1                     | 16.0   | PPM   | 0     |
| Zr                | 1                     | 490.00 | PPM   | 0     |

ORIGINAL PAGE OF POOR QUALITY

# 4

| Element             | Number of<br>Analyses | Mean         | Units                | Range            |
|---------------------|-----------------------|--------------|----------------------|------------------|
| Hf                  | 1                     | 13.10        | PPM                  | 0                |
| La                  | 1                     | 16.70        | PPM                  | 0                |
| Sm                  | 1                     | 12.90        | PPM                  | 0                |
| Eu                  | 1                     | 1.83         | PPM                  | 0                |
| Но                  | 1                     | 4.70         | PPM                  | 0                |
| Yb                  | 1                     | 11.0         | РРМ                  | 0                |
| Lu                  | 1                     | 1.76         | PPM                  | 0                |
| U                   | 1                     | .51          | PPM                  | 0                |
| 0                   | 1                     | <b>41.90</b> | РСТ                  | 0                |
| Analysts:<br>(1970) | Ehmann & Morga        | an, (1970);  | Goles et al., (1970) | ; Compston et al |

No Age References

()

()

(j

ţ

~

ŝ

CHEMICAL ANALYSES



, **t**.

1. U. . I.

and service a start days

s,

#### 10064

Sample 10064 is an angular, dark to light grey, fine breccia. This sample originally weighed 65gm and measured 6x3x2.5cm. It was originally returned in ALSRC #1004 (Documented Sample container).

BINOCULAR DESCRIPTIONBY: TwedellDATE: 12/16/75ROCK TYPE: Fine BrecciaSAMPLE: 10064,6WEIGHT: 51 gmCOLOR: Dark to light greyDIMENSIONS: 5 x 3.5 x 2.5 cmSHAPE: AngularCOMEDENCE: Interpresente to be to be an example.

COHERENCE: Intergranular - moderately coherent Fracturing - many penetrative

FABRIC/TEXTURE: Isotropic/Fine Breccia

VARIABILITY: Homogeneous

SURFACE: Smooth on exposed  $(T_1)$  face to angular on fresh surface  $(B_1)$ .

ZAP PITS: Many on  $\mathsf{T}_1$ , few on  $\mathsf{S}_1,$   $\mathsf{W}_1,$  none on others. Some pits on  $\mathsf{T}_1$  are glass lined and are up to 3mm in size.

CAVITIES: Absent

0

()

**(**)

Ļ

-,

Ą

ς.

E. C. P. Low State &

| COMPONENT              | COLOR             | % OF<br>ROCK | SHAPE                 | SIZ<br>DOM. |         |
|------------------------|-------------------|--------------|-----------------------|-------------|---------|
| Matrix                 | Dk.Grey           | 90           |                       |             |         |
| Basalt Clast           | Med.Grey          | ١            | Subrounded to angular | 3.0         | 1.0-8.0 |
| Grey $Clast_1$         | Med.Grey          | 1            | Subangular            | 2.0         | 0.5-8.0 |
| Salt & Pepper<br>Clast | Lt.Grey           | <]           | Subrounded            | 1.5         | 1.0-2.2 |
| Black Clast            | Dk.Grey           | 1            | Subrounded            | 4.0         | 3.0-6.0 |
| Mineral $Clast_2$      | White to<br>amber | 5            | Angular to subrounded | 2.0         | .05-2.0 |

1) Smaller grain size than basalt clast.

2) Single and compound grains of pyroxene and plagioclase.

 $\overline{)}$ 

يدينوا فأسادتهم فد

<u>SPECIAL FEATURES</u>: High population of glass lined pits is an interesting feature of this sample. This sample is also highly fractured, with a high % of penetrative fractures.



SECTION: 10064,25Width of field 2.72mm plane lightTHIN SECTION DESCRIPTIONBY: WaltonDATE: 6/2/76SUMMARY: Highly devitrified typical breccia with a high glass clast content.<br/>Several anorthositic clasts are present, which is unusual. Far<br/>fewer large crystal clasts occur than in the typical breccia. The

clast content.

1

#### MATRIX 32% OF ROCK

rock is a recrystallized breccia with a high crystalline lithic

| PHASE      | % SECTION | SHAPE | SIZE(MM) | COMMENTS:                                                      |
|------------|-----------|-------|----------|----------------------------------------------------------------|
| Dark Brown | 100       |       | <0.001   | High glass content<br>with many crypto-<br>crystalline phases. |

ORIGINAL PAGE IS OF POOR QUALITY

5. 8. 8 1 h

#### MI LIRAL CLASTS 29% OF ROCK

| PHASL                      | RELATIVE ABUNDANCE | ShAPE               | <u>SIZE (MM</u> ) |
|----------------------------|--------------------|---------------------|-------------------|
| Clinopyroxene <sub>1</sub> | Very abundant      | Angular             | 0.001-0.2         |
| Plagioclase <sub>2</sub>   | Moderate           | Blocky              | 0.05-0.2          |
| Opaques <sub>3</sub>       | Few                | Tabular to skeletal |                   |

Most in the 0.001-0.1 range. 1)

2) Highly shocked.

まできっていたでいた。 実施を教えていて、

.

3) Most in clasts, some shards in matrix.

#### LITHIC CLASTS 20% OF ROCK

| TYPE               | RELATIVE ABUNDANCE | SHAPE              | <u>SIZE (MM</u> ) |
|--------------------|--------------------|--------------------|-------------------|
| Small              | Very abundant      | Rounded            | .0.001-1.0        |
| Large <sub>4</sub> | Four present       | Rounded to angular | >1.0              |

- 4) Fine-grained subophitic basalt composed of clinopyroxene, a. plagioclase and ilmenite.
  - Very fine-grained basalt, nearly opaque, with abundant denb. dritic crystals. Only pyroxene, plagioclase, and ilmenite could be confirmed, but other phases may be present and are just too small for resolution.
  - с. Medium-grained subophitic basalt composed of clinopyroxene, plagioclase and ilmenite.
  - Composed of a glass-rich matrix hosting crystalline clasts, d. mineral fragments and glass shards. Typical fine-grained fragment, similar to the host rock.

#### GLASS CLAST 19% OF ROCK

| TYPE                                  | RELATIVE ABUNDANCE | SHAPE              | SIZE (MM)       |
|---------------------------------------|--------------------|--------------------|-----------------|
| Yellow-Orange <sub>5</sub>            | Very abundant      | Spherical to irreg | gular 0.001-1.8 |
| Greenish<br>Yellow/Brown <sub>6</sub> | Few                | Irregular          | 0.2-0.5         |
| White to<br>Colorless <sub>7</sub>    | Moderate           | Irregular          | 0,2-0,6         |
|                                       |                    |                    |                 |

5) 6) Majority are spheres, many with bubbles.

Ĩ

1

i

Two pieces.

, 1

ì

11

7) Many bubbles. ;

Ľ

Ì

, .,

### HISTORY AND PRESENT STATUS OF SAMPLES - 7/13/76

10064 was removed from the Documented Sample container (ALSRC #1004) and split in the Vac Lab. A 1.45gm chip was sent to PCTL for PET analysis. Remaining pristine samples were re-examined and split in SSPL.

## PRISTINE SAMPLES: (A11 VAC-SSPL)

| 6  | 37.01 | gm | Pitted surface piece. Parts of two surfaces are fresh.  |
|----|-------|----|---------------------------------------------------------|
| 18 | 8.31  | gm | Pitted surface piece. Three fresh surfaces are present. |
| 19 | 2.01  | gm | Chip. Two surfaces are pitted.                          |
| 22 | 0.26  | gm | Chips. Three fresh and one pitted chip.                 |
| 23 | 0.80  | gm | Chips and fines.                                        |

NO RETURNED SAMPLES

1

L

. 1

1

1

#### CHEMICAL ANALYSES

| Element           | Number of<br>Analyses | Mean  | Units | Range |
|-------------------|-----------------------|-------|-------|-------|
| SiO <sub>2</sub>  | 1                     | 41.50 | РСТ   | 0     |
| A1203             | 2                     | 11.06 | РСТ   | .19   |
| TiO <sub>2</sub>  | 1                     | 9.34  | PCT   | 0     |
| Fe0               | 1                     | 16.47 | PCT   | 0     |
| Mn0               | 1                     | . 207 | РСТ   | 0     |
| Mg0               | 1                     | 7.13  | РСТ   | 0     |
| CaO               | ו                     | 11.96 | РСТ   | 0     |
| Na <sub>2</sub> 0 | 1                     | .492  | PCT   | 0     |
| Ba                | 1                     | 290.0 | РРМ   | 0     |
| Sc                | 1                     | 60.5  | PPM   | 0     |

1

ł

ORIGINAL PAGE IS

1 .

:

i

4

Ū

4

)

 $\bigcirc$ 

0

 $\left( \begin{array}{c} \\ \\ \end{array} \right)$ 

e . .

· ]

i

()

| Element                                | Number of<br>Analyses      | Mean            | Units            |                 |
|----------------------------------------|----------------------------|-----------------|------------------|-----------------|
| V                                      | 1                          | 73.0            |                  | Range           |
| Со                                     | 1                          | 29.0            | PPM              | 0               |
| Zr                                     | 1                          | 520.00          | PPM              | 0               |
| Ta                                     | 1                          | 1.70            | РРМ              | 0               |
| Hf                                     | 1                          | 13.9            | РРМ              | 0               |
| La                                     | 1                          | 19.6            | PPM              | 0               |
| Се                                     | 1                          | 59.0            | PPM              | 0               |
| Sm                                     | 1                          |                 | PPM              | 0               |
| Eu                                     | 1                          | 15.50           | PPM              | 0               |
| Tb                                     | 1                          | 1.77            | PPM              | 0               |
| Но                                     | 1                          | 3.70            | PPM              | 0               |
| Yb                                     | 1                          | 5.50            | PPM              | 0               |
| Lu                                     | 1                          | 14.8            | РРМ              | 0               |
| U                                      |                            | 2.46            | PPM              | 0               |
| 0                                      | י<br>ז                     | .65             | PPM              | 0               |
|                                        | •                          | 40.50           | PCT              | 0               |
| Analysts. p                            |                            |                 |                  |                 |
| Analysts: E<br>(1970).<br>No Age Refer | Ehmann & Morgan,<br>rences | 6 (1970); Goles | s et al., (1970) | ; Compston et a |

303

;

a ...

an adding the participation of

έ,



10065,7 (S-76-22546)

**(**)

304

.;

Ч

, \* ' nt

#### 10065

Sample 10065 is an irregular, medium dark grey, microbreccia. This sample

1 4 4 4 1 A B

originally weighed 347gm and measured 8.2x7.8x5.8cm. Sample was originally returned in ALSRC #1004 (Documented Sample Container). BINOCULAR DESCRIPTION BY: Twedell 2/2 /76 DATE: ROCK TYPE: Microbreccia SAMPLE: 10065,7 WEIGHT: 147 gm COLOR: Medium dark grey DIMENSIONS: 6 x 6.5 x 5 cm SHAPE: Irregular; rounded on upper side, flat on bottom (PET). COHERENCE: Intergranular - coherent Fracturing - few, non-penetrative FABRIC/TEXTURE: Anisotropic/Microbreccia VARIABILITY: Homogeneous SURFACE: Smooth on exposed to rough on fresh surfaces.  $S_1$  is a sawed surface. ZAP PITS: Many on  $T_1$ ,  $N_1$  and  $E_1$ . None on  $W_1$  or  $B_1$ . Pits are glass lined, ranging from <1-2mm. CAVITIES: Absent % OF SIZE(MM) COMPONENT COLOR ROCK SHAPE RANGE DOM. Matrix Med.Dk.Grey 98 Grey & White 1 Angular .2-.5 1.5-.2 Clast, White White Clast<sub>2</sub> <1 Angular-subrounded .2-.3 <.1-.3

Grey Clast<sub>3</sub> Dk.Grey <] Angular-subrounded .3-.7 1-.2 Salt & Pepper Blk/White <] Subangular-.1-.3 .1-.5 Clast subrounded Basalt Clast .1-.3 Brown, <1 Angular-subangular .2 Blk/White

1) 50/50 distribution of dark and light component. Clast has ophitic texture.

1

2) Crushed plagioclase.

3) Fine grained equigranular, submetallic lustre.

14 C - 1

N. - -

ξ. Γ

Ê

( )

١,

.≠ •••

---

•

•

()

306 Width of field 2.72mm plane light SECTION: 10065,27 THIN SECTION DESCRIPTION DATE: 6/24/76 BY: Walton SECTION: 10065,21 Relatively highly devitrified typical breccia with a high mineral clast content. Much of the matrix has undergone some degree of SUMMARY: devitrification. MATRIX 48% OF ROCK PHASE % SECTION SIZE(MM) COMMENTS: SHAPE 100 Dark Brown <0.001 High glass content

ORIGINAL PAGE 15 OF POOR QUALITY.

with numerous crystallites.

 $\overline{)}$ 

 $\bigcirc$ 

### MINERAL CLASTS 36% OF ROCK

#### PHASE RELATIVE ABUNDANCE SIZE (MM) SHAPE Pyroxene<sub>1</sub> Very abundant Angula: to irregular 0.001-0.3 Plagioclase<sub>2</sub> Blocky to irregular 0.001-0.1 Few Angular to irregular Opaques 3 Few 0.001-0.3

1) Highly strained; highly fractured.

2) Poor twin planes; uneven extinctions.

3) Few in matrix, most in clasts.

C

 $(\uparrow)$ 

۰.

#### LITHIC CLASTS 12% OF ROCK

| TYPE               | RELATIVE ABUNDANCE | SHAPE                | SIZE (MM) |
|--------------------|--------------------|----------------------|-----------|
| Small              | Very abundant      | Rounded to irregular | 0.001-1.0 |
| Large <sub>4</sub> | Five present       | Rounded to irregular | >1.0      |

#### 4) Glass-rich matrix with small crystals of plagioclase and pyroxene. a.

b. Fine-grained glass-rich matrix with mineral fragments and rock fragments.

- Coarse-grained basalt consisting of pyroxene, plagioclase and C. ilmenite.
- d. Coarse-grained basalt consisting of pyroxene, plagioclase and ilmenite.
- e. Random array of plagioclase crystals with small euhedral crystals of pyroxene/olivine.

#### GLASS CLASTS 4% OF ROCK

| TYPE                       | RELATIVE ABUNDANCE | SHAPE                | SIZE (MM) |
|----------------------------|--------------------|----------------------|-----------|
| Yellow-Orange <sub>5</sub> | Very abundant      | Angular to spherical | 0.001-0.8 |
| Colorless <sub>6</sub>     | Few                | Angular to spherical | 0.001-0.1 |

5) Mostly shards and broken spherical masses.

6) A few spheres, mostly angular.

Selected References: Dence et al. (1970)

ملک رہے کہ کار اس میں ایک ان کار میں ملکے ان

12

· · · · · · · ·

1.7

「ない」のなるであったいというないないない

act to

÷

. . . . . . . .

 $\frac{1}{2}$ 

のないないないので、

,

#### 10065

### HISTORY AND PRESENT STATUS OF SAMPLES - 6/24/76

10065 was removed from the Documented Sample container (ALSRC #1004) and split in the Vac Lab. It was later sawed in SPL. Remaining pristine samples were re-examined in SCPL. A large piece was sent to RCL and returned.

### PRISTINE SAMPLES: (All VAC-SPL-SSPL)

| 7   | 147.188 gm | Piece. 6.5 x 6 x 5 cm. Pitted on three surfaces.<br>Sawed on one surfaceRCL- |
|-----|------------|------------------------------------------------------------------------------|
| 49  | 29.38 gm   | Piece. One sawed surface. Others are pitted.                                 |
| 119 | 53.10 gm   | Large chips and fines. Some chips have pitted surfaces.                      |

#### **RETURNED SAMPLES:**

| 18 | 5.79  | gm | Chip. One pitted surface.                                           |  |
|----|-------|----|---------------------------------------------------------------------|--|
| 30 | 7.08  | gm | Piece. Six sawed surfaces.                                          |  |
| 39 | 13.64 | gm | Three chips. All have sawed surfaces. All have one pitted surface.  |  |
| 43 | 7.83  | gm | Five chips. All have sawed surfaces. Three have one pitted surface. |  |

#### CHEMICAL ANALYSES

•

ļ

| Element          | Number of<br>Analyses | Mean  | Units | Range |  |
|------------------|-----------------------|-------|-------|-------|--|
| SiO <sub>2</sub> | 1                     | 41.29 | PCT   | 0     |  |
| A1203            | 1                     | 12.47 | PCT   | 0     |  |
| TiO <sub>2</sub> | 1                     | 7.84  | PCT   | 0     |  |
| Fe0              | 1                     | 16.85 | PCT   | 0     |  |
| MnO              | 2                     | .224  | PCT   | .050  |  |
|                  |                       |       |       |       |  |

ORIGINAL PAGE IS OF POOR QUALITY

ł

1

The second second second

やたい

、ここと、「「」、「」、「」、「」、「」、「」、「」、「」、、「」、、

ALL STATES

0

G

2

0

O

a

 $\mathbf{C}^{\mathbf{y}}$ 

 $\cap$ 

i

í

ł

1

副学校

. . .

• • • •

•. •

••••

South Courses a second

: : :

-

and the second of the second of the

4

10065

CHEMICAL ANALYSES

| Element           | Number of<br>Analyses | Mean   | Units       | Range |
|-------------------|-----------------------|--------|-------------|-------|
| Mg0               | 1                     | 8.29   | PCT         | 0     |
| Ca0               | 1                     | 13.15  | PCT         | 0     |
| Na <sub>2</sub> 0 | 1                     | .485   | РСТ         | 0     |
| K <sub>2</sub> 0  | 2                     | .173   | РСТ         | .008  |
| Li                | 1                     | 12.00  | PP <b>M</b> | 0     |
| Rb                | 3                     | 3.41   | РРМ         | .94   |
| Ве                | 1                     | 2.2    | PPM         | 0     |
| Sr                | 3                     | 157.83 | PPM         | 0     |
| Ba                | 3                     | 226.67 | РРМ         | 60.0  |
| Sc                | 2                     | 65.8   | PPM         | 6.4   |
| ٧                 | 2                     | 70.5   | PPM         | 27.0  |
| $Cr_20_3$         | 2                     | .313   | РСТ         | .073  |
| Со                | 2                     | 30.8   | PPM         | 1.60  |
| Ni                | 1                     | 169.0  | PPM         | 0     |
| Cu                | 1                     | 14.0   | PPM         | 0     |
| Zn                | 1                     | 23.0   | PPM         | 0     |
| Y                 | 1                     | 103.0  | PPM         | 0     |
| Zr                | 1                     | 390.0  | PPM         | 0     |
| Nb                | 1                     | 25.00  | PPM         | 0     |
| Ta                | 1                     | 2.1    | PPM         | 0     |
| Hf                | 1                     | 12.1   | PPM         | 0     |
| La                | 2                     | 16.9   | PPM         | 1.80  |
| Се                | 1                     | 63.0   | PPM         | 0     |
| Sm                | 1                     | 14.60  | PPM         | 0     |
| Eu                | 1                     | 1.73   | РРМ         | 0     |
| Tb                | 1                     | 4.0    | PPM         | 0     |
| Но                | 1                     | 6.7    | PPM         | 0     |
| Yb                | 1                     | 14.5   | PPM         | 0     |

1

1

Ì

1

١

1

309

- 1

i

reed thus

· · · ·

i

: \*\*

1

高いの思い

 $\bigcirc$ 

 $(\mathbf{)}$ 

A.

#### CHEMICAL ANALYSES

| Element | Number of<br>Analyses | Mean  | Units | Range |
|---------|-----------------------|-------|-------|-------|
| Lu      |                       | 2.01  | PPM   | 0     |
| U       | 1                     | . 54  | PPM   | 0     |
| Ga      | ĩ                     | 5.0   | РРМ   | 0     |
| C       | 1                     | 262.0 | PPM   | 0     |
| 0       | 1                     | 41.6  | РСТ   | 0     |

Analysts: Ehmann & Morgan, (1970); Goles et al., (1970); Annell & Helz, (1970); Murthy et al., (1970); Wanless et al., (1970); Epstein & Taylor (1970).

No Age References

OF POOR QUALITY



t

Sample 10066 is a rounded, dark grey, fine breccia. This sample originally weighed 40gm and measured 5.5x4.2x3.0cm. It was originally returned in ALSRC #1004 (Documented Sample Container).

BINOCULAR DESCRIPTION BY: Twedell DATE: 9/3/75 ROCK TYPE: Fine preccia SAMPLE: 10066,1 WEIGHT: 37.34 gm DIMENSIONS: 4.2 x 4 x 2.9 cm (measured at COLOR: Dark grey maximum) SHAPE: Rounded

COHERENCE: Intergranular - moderately friable Fracturing - absent; some small fractures nearly parallel to surface - spalling (PET)

FABRIC/TEXTURE: Anisotropic/Fine breccia

VARIABILITY: Homogeneous

SURFACE: Smooth

ZAP PITS:  $T_1$ -few. None apparent on any other surfaces. Pits could easily have been eroded due to moderate friability of sample.

CAVITIES: Absent

| COMPONENT                | COLOR                             | % OF<br><u>ROCK</u> | SHAPE_                     |    | (MM)<br>RANGE |  |
|--------------------------|-----------------------------------|---------------------|----------------------------|----|---------------|--|
| Matrix                   | Dark Grey                         | 97                  | **                         |    |               |  |
| Basalt Clast             | Hon.Brown<br>Black/Whi <b>t</b> e | 1                   | Rounded                    | 1  | .1-1          |  |
| Grey $Clast_1$           | Light Grey                        | 1                   | Rounded to sub-<br>angular | 1  | <3            |  |
| White Clast <sub>2</sub> | White                             | 1                   | Rounded                    | .8 | <1            |  |

Plagioclase is shocked. 1)

2) Crushed anorthositic clast.

1

SPECIAL FEATURES: There are areas on the sample which appear to have glassy spatter. The surface seems to also have approximately 1% coverage of opaques.

Ę)

< )

----



SECTION: 10066,20 Width of field 1.39mm plane light

THIN SECTION DESCRIPTION BY: Walton

「日本のため」

ŧ

( :

٩

DATE: 6/25/76

SUMMARY: Partly devitrified typical breccia with numerous types of glass clasts. Description made on five small chips.

#### MATRIX 64% OF ROCK

| PHASE      | % SECTION | SHAPE | <u>SIZE(MM</u> ) | COMMENTS:                                 |
|------------|-----------|-------|------------------|-------------------------------------------|
| Dark Brown | 100       |       | <0.001           | High glass content with some crystallites |

#### MINERAL CLASTS 14% OF ROCK

| PHASE                    | RELATIVE ABUNDANCE     | SHAPE                  | <u>SIZE (MM)</u> |
|--------------------------|------------------------|------------------------|------------------|
| Pyroxene <sub>1</sub>    | Very abundant          | Angular to irregular   | 0.001-0.1        |
| Plagioclase <sub>2</sub> | Present                | Blocky to irregular    | 0.001-0.1        |
| Opaques <sub>3</sub>     | Few                    | Subhedral to irregular | 0.001-0.2        |
| 1) Highly str            | ained crystals: highly | fractured              |                  |

Highly strained crystals; highly fractured. Poor extinctions and twinning.

2)

Very small fragments in matrix; larger in clasts. 3)

# ORIGINAL PAGE IS OF POOR QUALITY

#### LITHIC CLASTS 16% OF ROCK

#### TYPE RELATIVE ABUNDANCE SHAPE SIZE (MM) Small Very abundant Rounded to irregular 0.001-1.0 One present Irregular >1.0 Large<sub>4</sub>

4) Pinkish pyroxene with ilmenite; high mesostasis and little to no plagioclase visible.

#### GLASS CLASTS 6% OF ROCK

| TYPE                       | RELATIVE ABUNDANCE | SHAPE                  | <u>SIZE (MM</u> ) |
|----------------------------|--------------------|------------------------|-------------------|
| Yellow-Orange <sub>5</sub> | Very abundant      | Irregular to spherical | 0.001-0.4         |
| Dar: Brown <sub>6</sub>    | Present            | Spherical              | 0.3               |
| White <sub>7</sub>         | Present            | Irregular              | 0.1               |

- 5) Mostly shards with some part spheres and a few spheres; many with bubbles and partly devitrified.
- 6) One sphere has small (0.05mm) clear glass spheres; immiscible glasses with some pyroxene inclusions. One irregular mass has flow lines and bubbles with some pyroxene
- 7) inclusions.

#### HISTORY AND PRESENT STATUS OF SAMPLES - 6/25/76

10066 was removed from the Documented Sample container (ALSRC #1004) in the Vac Lab. It was later split in SPL. Remaining pristine samples were re-examined and split in SSPL.

**PRISTINE SAMPLES:** 

37.0 gm 1 Piece. Pits on  $T_1$  (few).

NO RETURNED SAMPLES

| 10000 | 1 | 0066 |  |
|-------|---|------|--|
|-------|---|------|--|

| Element           | Number of<br>Analyses | Mean  | Units | Range |
|-------------------|-----------------------|-------|-------|-------|
| SiO <sub>2</sub>  | 1                     | 43.21 | PCT   | 0     |
| A1203             | 2                     | 13.51 | PCT   | 0     |
| TiO <sub>2</sub>  | 1                     | 8.17  | PCT   | 0     |
| Fe0               | l                     | 16.47 | РСТ   | 0     |
| Mn0               | 1                     | .205  | РСТ   | 0     |
| Mg0               | 2                     | 7.96  | PCT   | .663  |
| Ca0               | 1                     | 12.03 | PCT   | 0     |
| Na <sub>2</sub> 0 | 1                     | .461  | РСТ   | 0     |
| Sc                | 1                     | 60.3  | PPM   | 0     |
| ۷                 | l                     | 59.0  | PPM   | 0     |
| Со                | ]                     | 33.8  | PPM   | 0     |
| Ta                | 1                     | 2.1   | PPM   | 0     |
| Hf                | 1                     | 10.6  | PPM   | 0     |
| La                | 1                     | 17.4  | PPM   | 0     |
| Ce                | 1                     | 62.0  | РРМ   | 0     |
| Sm                | 1                     | 15.1  | PPM   | 0     |
| Eu                | 1                     | 1.7   | РРМ   | 0     |
| ТЬ                | 1                     | 2.8   | PPM   | 0     |
| Но                | l                     | 6.5   | PPM   | 0     |
| Yb                | 1                     | 11.8  | PPM   | 0     |
| Lu                | ו                     | 1.9   | F PM  | 0     |
| U                 | 1                     | . 56  | ΡΡΜ   | 0     |
| 0                 | 1                     | 41.0  | PCT   | 0     |

Analysts: Ehmann & Morgan (1970); Goles et al., (1970).

No Age References

たいない ちょう

、したたいかかっていたね、この時にていたのもう

C

(

ąl,

ORIGINAL PAGE IS OF POOR QUALITY



.

.

Sample 10067 is a sub-angular, dark grey microbreccia. This sample originally weighed 69 gms and measured 5 x 3 x 3 cm. It was originally returned in ALSRC #1004 (Documented Sample Container)

10067

BINOCULAR DESCRIPTIONBY: KramerDATE: 1-28-76ROCK TYPE: MicrobrecciaSAMPLE: 10067,3WEIGHT: 46.83gmCOLOR: Dark GreyDIMENSIONS: 4 x 3 x 3 cmSHAPE: Sub-angular (broken)COHERENCE: Intergranular - Coherent<br/>Fracturing - Few, non-penetrative

FABRIC/TEXTURE: Anisotropic/Microbreccia

VARIABILITY: Homogeneous

SURFACE: All faces irregular; rough and knobby (PET)

ZAP PITS: Few on all but  $B_1$ .  $B_1$  has none.

CAVITIES: Absent

()

ſ

| COMPONENT                | COLOR     | ∞ OF<br>ROCK | SHAPE                      | SIZE (MM)<br>DOM, RANGE |
|--------------------------|-----------|--------------|----------------------------|-------------------------|
| Matrix                   | Dark Grey | 81           |                            |                         |
| Basalt Clast             | Lt. Grey  | 5            | Sub-angular                | 1.0 .5-3.5              |
| Salt & Pepper<br>Clast   | Lt. Grey  | 3            | Sub-angular                | .8 .1-2.5               |
| Grey Clast               | Med. Grey | 2            | Sub-rounded                | .8 .1-1.5               |
| White Clast              | White     | 7            | Angular to sub-<br>rounded | .5 .05-1.5              |
| Black Clast <sub>l</sub> | Black     | 1            | Sub-angular                | 2 .5-2.5                |
| Brown Clast              | Brown     | <1           | Sub-rounded                | 1.5 .1-3,0              |
|                          |           |              |                            |                         |

1) Appears to be a glass-rich clast.

Special Features: Glassy spatter (1  $cm^2$ ) on  $W_1$ .



SECTION: 10067,10

Width of field 2.72 mm plane light

| THIN SECTION DESCRIPTION BY: Wat | 1ton DATE: 6-25-76 |
|----------------------------------|--------------------|
|----------------------------------|--------------------|

SUMMARY: Partly devitrified breccia with a relatively low glass clast content. Most of the lithic clasts are small and well rounded. No really large clasts are present in the section.

#### MATRIX 62% OF ROCK

| TYPE       | % SECTION          | SHAPE           | <u>SIZE(MM)</u> | COMMENTS:                                            |
|------------|--------------------|-----------------|-----------------|------------------------------------------------------|
| Dark Brown | 100                |                 | <0.001          | High glass con-<br>tent: not a well<br>defined phase |
|            | MINERAL            | CLASTS 26% OF R | OCK             |                                                      |
| PHASE      | RELATIVE ABUNDANCE | SHAPE           |                 | <u>SIZE (MM)</u>                                     |

Pyroxene1Very AbundantAngular to irregular0.001-0.5Plagioclase2FewBlocky to irregular0.001-0.3Opaques3FewAngular to skeletal0.001-0.3

ORIGINAL PAGE IS OF POOR QUALITY こうち いたんや

)

1

おいい いいぞう

1)

1

1

iŧ

C

()

ż

, ,

1 1. J. L.

#### 10067

Most as angular shards with poor optical characteristics
 Blocky crystals with fair to poor twinning

3) Mostly in clasts; some isolated shards

### LITHIC CLASTS 10% OF ROCK

| TYPE               | RELATIVE ABUNDANCE | SHAPE                | <u>SIZE (MM)</u> |
|--------------------|--------------------|----------------------|------------------|
| Small              | Very abundant      | rounded to irregular | 0.001-1.0        |
| Large <sub>4</sub> | One present        | irregular            | > 1.0            |
| a\                 |                    |                      |                  |

 Coarse-grained basalt consisting of pyroxene, plagioclase and ilmenite.

#### GLASS CLASTS 2% OF ROCK

| <u>TYPE</u> | RELATIVE ABUNDANCE               | SHAPE                | <u>SIZE (MM)</u> |
|-------------|----------------------------------|----------------------|------------------|
| Yellow-O    | range <sub>5</sub> Very abundant | angular to spherical | 0.001-0.3        |
| Colorles    | s <sub>6</sub> Few               | angular              | 0.001-0.2        |

5) Many small spheres; most large pieces shards; some with partial devitrification

6) All shards; some bubbles

Selected References: Carter and MacGregor (1970), Keil et al. (1970).

#### HISTORY AND PRESENT STATUS OF SAMPLES - 6/25/76

10067 was removed from the Documented Sample container (ALSRC 1004) and split in the Vac Lab. Pristine samples were re-examined in SSPL.

| PRISTIN | IE SAMPLES: | (All VAC-SSPL)                                                                |  |  |
|---------|-------------|-------------------------------------------------------------------------------|--|--|
| 3       | 46.83 gm    | Piece. Pitted on five surfaces.                                               |  |  |
| 12      | 0.93 gm     | Chips and fines. Some chips have pitted surface.                              |  |  |
| RETURNE | D SAMPLES:  |                                                                               |  |  |
| 9001    | 7.97 gm     | Two chips. Larger chip is pitted on one surface.<br>Smaller chip has no pits. |  |  |

あいい いちょうちょう ふちゅうく

"John "-" -- "

4

-

10067

|                                |                       | UNEPTICAL ANA | ALTSES |       |
|--------------------------------|-----------------------|---------------|--------|-------|
| Element                        | Number of<br>Analyses | Mean          | Units  | Range |
| SiO <sub>2</sub>               | 1                     | 44.07         | РСТ    | 0     |
| A1 <sub>2</sub> 0 <sub>3</sub> | 2                     | 13.80         | РСТ    | 0     |
| TiO <sub>2</sub>               | 1                     | 8.84          | РСТ    | 0     |
| Fe0                            | 1                     | 17.88         | РСТ    | 0     |
| MnO                            | 1                     | .235          | РСТ    | 0     |
| Mg0                            | 2                     | 10.11         | РСТ    | 3.65  |
| Ca0                            | 1                     | 12.17         | РСТ    | 0     |
| Na <sub>2</sub> 0              | 1                     | .484          | РСТ    | 0     |
| Sc                             | 1                     | 66.00         | PPM    | 0     |
| ۷                              | 1                     | 71.0          | РРМ    | 0     |
| Со                             | 1                     | 35.90         | РРМ    | 0     |
| Ta                             | 1                     | 2.10          | PPM    | 0     |
| Hf                             | 1                     | 15.40         | РРМ    | 0     |
| La                             | 1                     | 20.10         | PPM    | 0     |
| Ce                             | 1                     | 68.10         | PPM    | 0     |
| Sm                             | 1                     | 16.70         | PPM    | 0     |
| Eu                             | 1                     | 2.40          | PPM    | 0     |
| Tb                             | 1                     | 3.10          | РРМ    | 0     |
| Но                             | 1                     | 7.50          | РРМ    | 0     |
| Yb                             | 1                     | 13.8          | PPM    | 0     |
| Lu                             | 1                     | 2.2           | PPM    | 0     |
| U                              | 1                     | . 54          | PPM    | 0     |
| 0                              | 1                     | 41.6          | РСТ    | 0     |

CHEMICAL ANALYSES

Analysts: Ehmann & Morgan, (1970); Goles et al., (1970).

No Age References

ORIGINAL PAGE IS OF POOR QUALITY

Ū,

 $\mathbb{C}$ 

()



#### 10068

Sample 10068 is a subangular to subrounded, medium dark grey, microbreccia. This sample originally weighed 218 gm and measured 14x5x4 cm. The sample was originally returned in ALSRC Container #1004.

| BINOCULAR I | DESCRIPTION                                         | BY:          | Twedell                     | DATE: 2-17     | 7-76            |
|-------------|-----------------------------------------------------|--------------|-----------------------------|----------------|-----------------|
| ROCK TYPE:  | Microbreccia                                        | SAM          | IPLE: 10068,5               | WEIGHT: 96     | .7 gm           |
| COLOR: Med  | ium Dark Grey                                       | DIM          | ENSIONS: 5.3                | x 4 x 2.2 cm   |                 |
| SHAPE: Sul  | bangular-Subrounded                                 | ł            |                             |                |                 |
| COHERENCE:  | Intergranular - (<br>Fracturing - /                 | Absent; M    | licro-fracturin<br>e. (PET) | ng present par | allel           |
| VARIABILITY | (: Homogeneous                                      |              |                             |                |                 |
| 5           | Smooth on pitted su<br>surfaces. Overall<br>places. |              |                             |                |                 |
| ZAP PITS:   | Many on $E_1$ , $N_1$ , and lined, approximate      |              |                             | Pits are gla   | ISS             |
| CAVITIES:   | Absent                                              |              |                             |                |                 |
| COMPONENT   | COLOR                                               | % OF<br>ROCK | SHAPI                       |                | E (MM)<br>RANGE |
| Matrix      | Med.Dk.Grey                                         | 97           |                             |                |                 |
| Green Clast | t <sub>1</sub> Green                                | <1           | Angular-subar               | ngular .3      | .23             |
| White Clast | t <sub>2</sub> White                                | <1           | Angular                     | .1             | <.1             |
| Grey Clast  | 3 Lt. Grey                                          | <1           | Subangular-Su               | brounded.4     | .25             |

Green Clast<sub>1</sub> Green <1 Angular-subangular White Clast<sub>2</sub> White <1 Angular Grey Clast<sub>3</sub> Lt. Grey <1 Subangular-Subround Basalt Clast<sub>4</sub> White Brn/Blk <1 Angular-Subrounded Grey & White Grey/White <1 Angular-Subrounded Clast<sub>5</sub> Salt & Pepper Blk/White <1 Subangular

Salt & Pepper Blk/White Clast

1

.4

.2

.3

.2-.6

.1-.2

.2-.4

ż

 $\mathbf{O}$ 

÷,

 $\bigcirc$ 

1)

- 2) 3)
- Elongated tabular crystals (olivine?) Powdered sugar texture, crushed anorthosite. Submetallic luster. Very fine grained. Plagioclase, ilmenite and pyroxene grains; even distribution, 4) equigranular.

10068

5) Equigranular. Very fine grained.

C



SECTION: 10068,35 Width of field 2.72mm plane light

ORIGINAL PAGE 18 OF POOR QUALITY

323

ł



SECTION: 10068,35 Width of field 2,72mm reflected light

THIN SECTION DESCRIPTION

BY: Walton

DATE: 6/28/76

[;

SUMMARY: Partly devitrified typical breccia with a very dark matrix phase. The matrix is mainly an opaque black phase with part of it grading to a very dark brown. Very few fragments of ilmenite are found in the matrix; all of the major fragments are in the lithic clasts.

## MATRIX 51% OF ROCK

| PHASE                  | % SECTION | SHAPE | <u>SIZE(MM</u> ) | COMMENTS:                                                         |
|------------------------|-----------|-------|------------------|-------------------------------------------------------------------|
| Black to<br>dark brown | 100%      |       | <0,001           | High glass content<br>very patchy and<br>grades to dark<br>brown. |

#### MINERAL CLASTS 28% OF ROCK

| PHASE                    | RELATIVE ABUNDANCE | SHAPE                | <u>S!ZE (MM</u> ) |
|--------------------------|--------------------|----------------------|-------------------|
| Pyroxene <sub>1</sub>    | Very abundant      | Angular to irregular | 0.001-0.3         |
| Plagioclase <sub>2</sub> | Few                | Blocky to irregular  | 0.001-0.3         |
| Opaques <sub>3</sub>     | Present            | Irregular            | 0.001-0.1         |

1) Many of the fragments are zoned; highly fractured.

2) Many very small fragments; one large fragment.

()

()

3) A very few isolated in matrix; almost all in clasts.

#### LITHIC CLASTS 17% OF ROCK

| TYPE               | RELATIVE ABUNDANCE | SHAPE                | <u>SIZE (MM</u> ) |
|--------------------|--------------------|----------------------|-------------------|
| Small              | Very abundant      | Rounded to irregular | 0.001-1.0         |
| Large <sub>4</sub> | Four present       | Rounded to irregular | >1.0              |

- 4) a. Fine-grained basalt consisting of pyroxene, plagioclase and ilmenite.
  - b. Coarse-grained basalt consisting of pyroxene, plagioclase and ilmenite.
  - c. Fine-grained basalt consisting of pyroxene, plagioclase and ilmenite.

d. Glass rich matrix enclosing small crystallites of pyroxene and plagioclase.

#### GLASS CLASTS 4% OF ROCK

| TYPE                       | RELATIVE ABUNDANCE   | SHAPE                   | <u>SIZE (MM</u> ) |
|----------------------------|----------------------|-------------------------|-------------------|
| Yellow-Orange <sub>5</sub> | Very abundant        | Spherical to angular    | 0.001-0.3         |
| 5) Approximately           | nalf spheres or part | sphere and half angular | shards.           |

Selected References: Keil (1970)

I.

#### HISTORY AND PRESENT STATUS OF SAMPLES - 6/28/76

10068 was removed from the Documented Sample container (ALSRC #1004) and split in the Vac Lab. A 100mg sample was sent to PCTL for PET analysis. Remaining pristine samples were re-examined and split in SSPL.

325

# PRISTINE SAMPLES: (A11 VAC-SSPL)

1

| 5  | 96.70 | gm | Piece. Three sides are pitted. The others are fresh. |
|----|-------|----|------------------------------------------------------|
| 10 | 2.88  | gm | Chips and fines.                                     |
| 84 | 35.51 | gm | Piece. One surface is pitted.                        |
| 85 | 16.54 | gm | Three chips. Pits on largest piece.                  |
| 86 | 5.26  | gm | Fines.                                               |

RETURNED SAMPLES:

| 12 | 5.92 gm | Chip. No sawed or pitted surfaces.                                  |
|----|---------|---------------------------------------------------------------------|
| 31 | 4.55 gm | Chips and fines. Largest chip is 1.0 cm. No sawed surfaces or pits. |
| 33 | 5.46 gm | Chip. No sawed or pitted surfaces.                                  |

# CHEMICAL ANALYSES

| Element                        | Number of<br>Analyses | Mean  | Units | Range |
|--------------------------------|-----------------------|-------|-------|-------|
| SiO <sub>2</sub>               | 1                     | 41.29 | PCT   | 0     |
| A1 <sub>2</sub> 0 <sub>3</sub> | 2                     | 12.18 | PCT   | .57   |
| TiO <sub>2</sub>               | 1                     | 7.84  | PCT   | 0     |
| Fe0                            | 1                     | 16.47 | PCT   | 0     |
| Mn0                            | 2                     | .225  | PCT   | .071  |
| Mg0                            | 1                     | 6.47  | PCT   | 0     |
| CaO                            | 1                     | 12.17 | PCT   | 0     |
| Na <sub>2</sub> 0              | 1                     | .442  | PCT   | 0     |
| Li                             | 1                     | 14.0  | РРМ   | 0     |
| Rb                             | 1                     | 3.3   | PPM   | 0     |
| Be                             | 1                     | 1.9   | PPM   | 0     |
| ве                             | ł                     | 1.9   | PPM   | U     |

ORIGINAL PAGE 6 OF POOR QUALITY

ŧ

t

 $\overline{}$ 

P.1. 244

and the second

)

)

\*\*\*

٩.

| Element   | Number of<br>Analyses | Mean   | Units | Range  |
|-----------|-----------------------|--------|-------|--------|
| Sr        | 2                     | 147.75 | РРМ   | 35.5   |
| Ba        | 2                     | 200.0  | РРМ   | 100.   |
| Sc        | 2                     | 65.95  | РРМ   | 10.1   |
| V         | 2                     | 52.0   | РРМ   | 12.0   |
| $Cr_2O_3$ | 2                     | .328   | РСТ   | . 104  |
| Co        | 2                     | 32.35  | РРМ   | 1.30   |
| Ni        | 1                     | 205.0  | РРМ   | 0      |
| Cu        | 2                     | 13.5   | РРМ   | 3.0    |
| Zn        | 1                     | 22.0   | РРМ   | 0      |
| Y         | 1                     | 108.0  | РРМ   | 0      |
| Zr        | 2                     | 591.0  | РРМ   | 218.00 |
| Nb        | 1                     | 31.0   | PPM   | 0      |
| Ta        | 1                     | 1.8    | PPM   | 0      |
| Hf        | 1                     | 11.0   | РРМ   | 0      |
| La        | 2                     | 18.7   | РРМ   | 4.60   |
| Се        | 1                     | 60.0   | PPM   | 0      |
| Sm        | 1                     | 14.4   | PPM   | 0      |
| Eu        | 1                     | 1.8    | РРМ   | 0      |
| ТЬ        | 1                     | 3.60   | PPM   | 0      |
| Но        | 1                     | 6.6    | РРМ   | 0      |
| Yb        | 1                     | 12.2   | РРМ   | 0      |
| Lu        | 1                     | 2.6    | РРМ   | 0      |
| U         | 1                     | .61    | РРМ   | 0      |
| Ga        | 1                     | 4.70   | РРМ   | 0      |
| C         | l                     | 165.0  | РРМ   | 0      |
| 0         | 1                     | 40.3   | PCT   | 0      |
|           |                       |        |       |        |

Analysts: Ehmann & Morgan, (1970); Goles et al., (1970); Annell & Helz, (1970); Wanless et al., (1970); Epstein & Taylor, (1971).

i.

Age References: Turner, (1971).

 $\mathbf{C}$ 

C

のないで、「ない」で

C

327

1. 14 A.D.

٠.,.

ł,

¥ -•

328







10069,4 (S-76-23287)

ORIGINAL PAGE IS OF POOR QUALITY

l cm.

F

č

Sample 10069 is an angular, medium dark grey, vesicular basalt. This sample originally weighed 119 gm. and measured 7 x 5 x 5 cm. It was originally returned in ALSRC #1004 (Documented Sample container).

BINOCULAR DESCRIPTIONSBY: TwedellDATE: 2-24-76ROCK TYPE: Vesicular BasaltSAMPLE: 10069,4WEIGHT: 64 gm.COLOR: Medium dark greyDIMENSIONS: 5.5 x 4.7 x 3.2 cm.SHAPE: Angular

COHERENCE: intergranular - friable fracturing - absent; irregular, mainly re-healed (PET).

VARIABILITY: Homogeneous

あいためのか あし

( :

(<sup>-</sup> ·

1

FABRIC/TEXTURE: Isotropic/Equigranular

SURFACE: All surfaces are covered with an adhering soil.

ZAP PITS: Few on  $B_1$ , none on all others. Pits are glass lined up to 1 mm in diameter.

CAVITIES: 15% surface coverage. Vesicles are smooth and glass lined. Some are lined with crystals.

| COMPONENT             | COLOR | % of ROCK | SHAPE                       | DOM. RANGE    |
|-----------------------|-------|-----------|-----------------------------|---------------|
| Plagioclase           | White |           | Angular to sub-<br>angular  | <0.1 0.1-<0.1 |
| Ilmenite <sub>1</sub> | Black | 15%       | Angular                     | 0.1 <0.1-1.2  |
| Pyroxene <sub>2</sub> | Black |           | subangular to<br>Subrounded | <0.1 <0.1     |

1) Long platy crystals, approximately 0.1 mm in length.

2) Pyroxene appears to be welded in with the plagioclase crystals.



| SECTION: 10069,37        | Width of Field: | 2 <b>.</b> 2mm | Plane light |
|--------------------------|-----------------|----------------|-------------|
| THIN SECTION DESCRIPTION | BY: Walton      | DATE:          | 2-28-76     |

SECTION: 10069,37

SUMMARY: Fine-grained poikilitic, vesicular basalt composed of clinopyroxene, plagioclase, two generations of ilmenite and subordinate opaques and mesostasis. Some coarseness variation is present in the rock. Approximately one half of the section 10069,33 is a coarse textured equivalent of the remainder of the section. In the coarser portion, the plagioclase crystals are from 0.6mm to 1.2mm in size as compared to 0.08-0.8 for the finer portion. The ilmenite in the coarser portion forms more equant anhedral crystals and are relatively large.

| PHASE    | % SECTION | SHAPE                  | SIZE (MM) |
|----------|-----------|------------------------|-----------|
| Pyrox    | 46        | Euhedral to anhedral   | 0.03-0.08 |
| Plag     | 23        | Anhedral, interstitial | 0.08-0.8  |
| Opaq     | 14        | Subhedral to anhedral  | 0.01-0.2  |
| Meso     | 17        | Irregular              |           |
| Vesicles |           | Rounded to irregular   | 0.5-1.5   |

ORIGINAL PAGE IS OF POOR QUALITY

÷.

 $\overline{\mathbf{O}}$ 

Э

COMMENTS:

ž

, P

CANADA STRATE

- Pyroxene small pale brown euhedral to anhedral crystals of clinopyroxene enclose the larger plagioclase crystals. The crystals exhibit uneven extinctions and zoning is present in many crystals. Small subhedral crystals of what appears to be apatite occur in some crystals. The composition of this phase was, however, not verified.
- Plagioclase the poikilitic plagioclase crystals are large and show ill defined twin planes and extinctions. Much of the plagioclase forms feature-less patches which are enclosed in the pyroxeneilmenite network. The optical characteristics suggest that the composition varies to some degree, but there is no marked zoning. In section 10069,33 large subhedral crystals of plagioclase exhibiting well defined twin planes and extinctions were noted. It is assumed these represent a different generation of crystal development than the plagioclase in the rest of the section.
- Upaques the subhedral to anhedral crystals of ilmenite are randomly scattered throughout the rock. A few of the crystals have rutile and chromite exsolutions. Most of the crystals show some degree of skeletal growth.

Two distinct generations of crystals are present. The first are the subhedral lath-like crystals which form smaller isolated crystals. The other generation is far more skeletal and anhedral. Many have a sieve terture with glass and silicate inclusions.

Small (0. J5-0.06 mm) masses of troilite and troilite with ironnickel are scattered throughout the rock. Most of the larger masses are essentially troilite. Several spherical masses are present in the section suggesting formation of the masses while there was yet a silicate rich liquid.

- Mesostasis interstitial glassy masses with a turbid appearance occur between the silicate phases. These glassy patches are nearly colorless to brown in color. No extensive devitrification has taken place in any of the masses. A few masses contain what appear to be small cristobalite crystals. This was not comfirmed, however.
- TEXTURE: The rock consists of a random network of intergrown clinopyroxene and ilmenite crystals. Plagioclase and glassy mesostasis occur interstitial to this network. The overall texture is poikilitic intersertal. No preferred orientation was determined for any of the phases present. The occurrence of a much coarser-grained material near the edge of one section could suggest that this rock represents a chilled margin of a larger body of material.

22 × + 1

ſ

10069

Carter and MacGregor (1970) have reported on section 10069,30. Their modal analysis gave clinopyroxene 56%, plagioclase 19%, opaques 24%, and mesostasis 1% which varies considerably from the above analysis.

Selected References: Carter and MacGregor (1970), Dence et al. (1970).

#### HISTORY AND PRESENT STATUS OF SAMPLES - 5/20/76

10069 was removed from the Documented Sample container (ALSRC # 1004) and split in the Vac Lab. Remaining pristine samples were re-examined in SSPL.

PRISTINE SAMPLES: (A11 VAC-SSPL)

| 4 | 64.92 gm | Few pits on one surface |
|---|----------|-------------------------|
| 5 | 10.08 gm | Chips and fines.        |

#### RETURNED SAMPLES

31 6.71 gm

No sawed or pitted surfaces.

CHEMICAL ANALYSES

| Element                        | Number of<br>Analyses | Mean  | Units | Range |
|--------------------------------|-----------------------|-------|-------|-------|
| SiO <sub>2</sub>               | 1                     | 39.15 | PCT   | 0     |
| A1 <sub>2</sub> 0 <sub>3</sub> | 2                     | 7.09  | PCT   | . 189 |
| TiO <sub>2</sub>               | 1                     | 12.01 | PCT   | 0     |
| Fe0                            | 1                     | 18.14 | РСТ   | 0     |
| Mn0                            | 3                     | .275  | РСТ   | .102  |
| Mg0                            | 1                     | 6.13  | PCT   | 0     |
| CaO                            | 2                     | 10.0  | PCT   | .136  |
| Na <sub>2</sub> 0              | 2                     | .475  | PCT   | .034  |
| K <sub>2</sub> 0               | 2                     | .285  | РСТ   | .017  |
| Li                             | 2                     | 17.6  | PPM   | .8    |

ORIGINAL PAGE IS OF POOR QUALITY

i

1

ł

10 m - 1

Я.Ч.

 $\overline{)}$ 

v

Þ

مح**ود**مې

Series in

AND STRATES

2

| 10069 |
|-------|
|-------|

「「「「「「「「」」」」

( <sup>-</sup>)

ĩ

 $(\cdot)$ 

:

~

•

# CHEMICAL ANALYSES

| Element   | Number of<br>Analyses | Mean   | Units       | Range |
|-----------|-----------------------|--------|-------------|-------|
| RЬ        | 5                     | 5.60   | PPM         | .231  |
| Cs        | 1                     | .163   | PPM         | 0     |
| Ве        | 2                     | 2.75   | PPM         | 1.1   |
| Sr        | 3                     | 150.2  | PPM         | 35.0  |
| Ba        | 4                     | 308.75 | PP <b>M</b> | 170.  |
| Sc        | 3                     | 81.47  | PPM         | 21.6  |
| V         | 2                     | 79.5   | PPM         | 15.   |
| $Cr_2O_3$ | 2                     | .357   | PCT         | . 092 |
| Cr        | 1                     | 2270.  | PP <b>M</b> | 0     |
| Со        | 3                     | 28.00  | PPM         | 4.    |
| Ni        | ٦                     | 6.7    | РРМ         | 0     |
| Cu        | 2                     | 10.35  | PPM         | 3.3   |
| Y         | 1                     | 164.0  | PPM         | 0     |
| Zr        | 4                     | 560.75 | PPM         | 135.  |
| Nb        | 1                     | 20.0   | PPM         | 0     |
| Ta        | ۱                     | 2.7    | РРМ         | 0     |
| Hf        | 3                     | 15.6   | PPM         | 9.0   |
| Re        | 1                     | .001   | РРМ         | 0     |
| Os        | 1                     | .800   | РРВ         | 0     |
| La        | 2                     | 25.35  | РРМ         | 3.3   |
| Ce        | 1                     | 65.0   | РРМ         | 0     |
| Sm        | 1                     | 18.0   | РРМ         | 0     |
| Eu        | 2                     | 2.12   | PPM         | .16   |
| Tb        | 1                     | 4.8    | PPM         | 0     |
| Но        | 1                     | 6.9    | PPM         | 0     |
| Yb        | ۱                     | 20.8   | PPM         | 0     |
| Lu        | ۱                     | 2.67   | PPM         | 0     |
|           |                       |        |             |       |

言う

• •

1

i

あたい、うち

1

1

| 1 | 0 | 0 | 69 |
|---|---|---|----|
|   |   |   |    |

CHEMICAL ANALYSES

The second

3

)

0

334

٠.

ł

| Element | Number of<br>Analyses | Mean | Units | Range |
|---------|-----------------------|------|-------|-------|
|         |                       |      |       | _     |
| U       | 1                     | .78  | PPM   | 0     |
| Ca      | 1                     | 4.9  | PPM   | 0     |
| 0       | 1                     | 37.6 | РСТ   | 0     |

Analysts: Ehmann & Morgan, (1970); Goles et al., (1970); Annell & Helz, (1970); Tera et al., (1970); Murthy et al., (1970); Pappanastassiou et al., (1970); Sievers et al., (1970); Ehmann et al., (1975); Turekian & Kharkar, (1970); Lovering & Butterfield, (1970).

Age References: Boschler (1971); Eberhardt (1971); Pappanastassiou (1970)

2 L 335

¥ 17



10070,4,17 (S-75-34246)

> ORIGINAL PAGE IS OF POOR QUALITY

#### 10070

Sample 10070 is a subangular, dark grey, fine breccia. This sample originally weighed 64 gm, and measured  $5.7 \times 3.2 \times 3.2$  cm. It was originally returned in ALSRC #1004 (Documented Sample Container).

BINOCULAR DESCRIPTIONSBY: KramerDATE: 12-5-75ROCK TYPE: Fine Breccia\*SAMPLE: 10070,4WEIGHT: 38.15 gmCOLOR: Dark GreyDIMENSIONS: 5 x 3 x 2 cm

SHAPE: Subangular

COHERENCE: Intergranular - moderately friable Fracturing - absent

FABRIC/TEXTURE: Anisotropic/Fine Breccia

VARIABILITY: Homogeneous

SURFACE: Irregular

ZAP PITS:  $N_1 \& S_1$  - many, others none.

CAVITIES: Absent

| COMPONENT              | COLOR       | % OF<br>ROCK | SHAPE                    | (SIZE MM)<br>DOM. RANGE |
|------------------------|-------------|--------------|--------------------------|-------------------------|
| Matrix                 | Dk.Grey     | 88           |                          |                         |
| Basalt Clast           | Lt.Grey     | 2            | Subrounded               | 2.0 0.5-2.3             |
| Grey Clast             | Med.Grey    | 2            | Subrounded               | 1.5 0.5-5.0             |
| Salt & Pepper<br>Clast | Blk & White | 2            | Subrounded               | 2.0 0.05-2.5            |
| Glass Spherules        | Black       | 2            | Round                    | .25 0.01-1.2            |
| White Clast            | White       | 2            | Angular to<br>Subrounded | 1.0 0.01-1.5            |
| Brown Clast            | Brown       | 2            | Angular to<br>Subrounded | 1.0 .01-1.5             |

 $\mathbf{O}$ 

()

\*Original PET description of 10070,2 (3.82 gm) was apparently done on a mislabelled sample. The description of 10070 was done on a basalt fragment. This was discovered during re-examination of the sample.



| SECTION: 10070,22        | Width of field: | 2.72 mm | Plane light   |
|--------------------------|-----------------|---------|---------------|
| THIN SECTION DESCRIPTION | BY: Walton      |         | DATE: 6-25-76 |

SECTION: 10070,22

0

SUMMARY: Partly devitrified typical breccia with many small lithic clasts but very few large clasts. Many of the mineral fragments are crushed and highly fractured.

| Matrix 55% of Rock |       |                  |                                              |  |  |
|--------------------|-------|------------------|----------------------------------------------|--|--|
| PHASE % OF SECTION | SHAPE | <u>SIZE (MM)</u> | COMMENTS:                                    |  |  |
| Dark Brown 100%    | -     | < 0.001          | High glass content;<br>some devitrification. |  |  |

# Mineral Clasts 29% of Rock

| <u>Phase</u>          | <u>Relative Abundance</u> | <u>Shape</u>         | <u>Size (mm)</u> |
|-----------------------|---------------------------|----------------------|------------------|
| Pyroxene <sub>1</sub> | Very Abundant             | Angular to irregular | 0.001-0.2        |

ORIGINAL PAGE IS OF POOR QUALITY

Opaques<sub>3</sub> Few Rounded to euhedral 0.001-0.2

1) Some grains show twinning, exsolution and fair cleavage development.

2) Many polygranulated, fair to poor twinning, others no twinning visible.

3) Several small euhedral crystals and rounded fragments in matrix; many larger crystals in clasts.

#### Lithic Clasts 18% of Rock

| Туре               | Relative Abundance | Shape                | <u>Size (mm)</u> |
|--------------------|--------------------|----------------------|------------------|
| Small              | Very abundant      | Rounded to irregular | 0.001-1.0        |
| Large <sub>4</sub> | One Present        | Irregular            | >1.0             |

 a. Coarse-grained basalt with large plagioclase crystals (many with glass inclusions), pyroxene crystals (some with olivine inclusions) and ilmenite.

#### Glass Clasts 5% of Rock

| Туре          | Relative Abundance | Shape                  | <u>Size (mm)</u> |
|---------------|--------------------|------------------------|------------------|
| Yellow-Orange | Very abundant      | Irregular to spherical | 0.001-0.9        |

5) Apparently half spheres or part spheres and half angular shards; some devitrification and bubbles.

#### HISTORY AND PRESENT STATUS OF SAMPLES 6-28-76

10070 was removed from the Documented Sample container (ALSRC # 1004) and split in the Vac Lab. A chip was sent to PCTL where a mixup occurred. The chip described in PCTL (10070,2) was a basalt chip and this description appeared in the first catalogue (1969). The discrepancy was discovered during re-examination in RSPL. Remaining pristine subsamples were reexamined in SSPL.

#### PRISTINE SAMPLES

4

1

38.15 gm Large surface piece. N1&S1 are pitted. Other surfaces are fresh.

20.28 gm Five surface chips. All have one pitted surface.
 9.64 gm Chips and fines. Largest chip is about 1/2 gm.

RETURNED SAMPLES - None

C

 $\bigcirc$ 

۲ •

أندة

w,d

CHEMICAL ANALYSES

| Element           | Number of<br>Analyses | Mean  | Units | Range |
|-------------------|-----------------------|-------|-------|-------|
| SiO <sub>2</sub>  | 1                     | 44.07 | PCT   | 0     |
| A1203             | 2                     | 13.80 | PCT   | . 75  |
| Ti0 <sub>2</sub>  | 1                     | 8.34  | PCT   | 0     |
| Fe0               | 1                     | 16.21 | PCT   | 0     |
| Mn0               | ۱                     | .196  | PCT   | 0     |
| Mg0               | 1                     | 8.62  | РСТ   | 0     |
| CaO               | 1                     | 12.31 | PCT   | 0     |
| Na <sub>2</sub> 0 | 1                     | .504  | PCT   | 0     |
| Ba                | 1                     | 310.0 | РРМ   | 0     |
| Sc                | 1                     | 57.4  | PPM   | 0     |
| ۷                 | l                     | 82.0  | PPM   | 0     |
| $Cr_2O_3$         | ï                     | .272  | PPM   | 0     |
| Со                | 1                     | 37.3  | PPM   | 0     |
| Cu                | 1                     | 12.0  | PPM   | 0     |
| Zr                | 1                     | 360.0 | PPM   | 0     |
| Ta                | 1                     | 1.0   | РРМ   | 0     |
| Hf                | 1                     | 12.8  | РРМ   | 0     |
| La                | 2                     | 16.85 | РРМ   | 0     |
| Ce                | 1                     | 56.0  | PPM   | 0     |
| Sm                | 1                     | 13.1  | ΡΡΜ   | Q     |
| Eu                | 1                     | 1.74  | PPM   | 0     |
|                   |                       |       |       |       |

ł

ł

ł

. •.

:

# CHEMICAL ANALYSES

| Element | Number of<br>Analyses | Mean  | Units | Range |
|---------|-----------------------|-------|-------|-------|
| Тb      | 1                     | 3.10  | РРМ   | 0     |
| Но      | 1                     | 5.80  | PPM   | 0     |
| Yb      | 1                     | 14.0  | PPM   | 0     |
| Lu      | 1                     | 1.80  | PPM   | 0     |
| U       | 1                     | .62   | PPM   | 0     |
| 0       | 1                     | 43.40 | РСТ   | 0     |
|         |                       |       |       |       |

Analysts: Ehmann & Morgan, (1970); Goles et al., (1970).

Age References: Eberhardt (1971b).

ORIGINAL PAGE 10 OF POOR QUALITY

•

5

 $\mathbf{O}$ 

1)

 $\overline{\mathbf{O}}$ 



Sample 10071 is an angular medium light grey, fine grained basalt. This sample originally weighed 190 gm and measured 10 x 4.5 x 3.8 cm. It was originally returned in ALSRC # 1004 (Documented Sample Container).

BINOCULAR DESCRIPTIONS BY: Twedell DATE: 6-9-76 ROCK TYPE: Fine Grained Basalt SAMPLE: 10071,5 WEIGHT: 117. qm COLOR: Medium light grey DIMENSIONS: 5.5 x 4.5 x 3.8 cm SHAPE: Angular COHERENCE: Intergranular - friable Fracturing - Absent FABRIC/TEXTURE: Isotropic/Equigranular - fine grained. VARIABILITY: Homogeneous SURFACE: All surfaces have a small amount of adhering soil.  $E_1$  is a fresh surface. ZAP PITS: Many on all but  $E_1$ . None on  $E_1$ . Pits are glass lined up to "5 mm. CAVITIES: 20% Vesicular surface coverage. % OF SIZE (MM) COMPONENT SHAPE COLOR ROCK DOM. RANGE 58: Pyroxene<sub>1</sub> Blk to Drk. Brn. Angular to subangular <.1 <.1 Plagioclase - White **5**% <.1<.1 20% Angular

Plagioclase3White20%Angular<.1 <.1</th>Black4Black10%Platy<.1 <.1-.2</td>

1) Dark honey brown to black crystals are well defined inside vesicles.

2) Powdered white texture.

:

3) Crystalline in appearance.

4) Large platy crystals appear to be ilmenite. Usually associated with powdery white plagioclase.

:

<u>Special Features:</u> This sample differs from most Apollo 11 basalts in that it has a high number of large vesicles throughout its' surface; Olivine is sparse but large and conspicuous up to 1mm. <1% of roc. (PET).



| SECTION 10071,34         | Width of field: | 1.39 mm. Plane light |
|--------------------------|-----------------|----------------------|
| THIN SECTION DESCRIPTION | BY: Walton      | DATE: 9-9-76         |

SECTION: 10071,34

0

SUMMARY: Medium-grained intersertal basalt composed of clinopyroxene, plagioclase, and ilmenite with subordinate mesostasis. Many of the plagioclase crystals form somewhat radiating masses. Both the ilmenite and the µlagioclase are rather skeletal in development. There is glass present in some of the crystals plus a glass-rich mesostasis between the crystalline phases.

| PHASE | % OF SECTION | SHAPE                | <u>SIZE (MM)</u> |
|-------|--------------|----------------------|------------------|
| Pyrox | 45           | Anhedral, irregular  | 0.1 - 0.8        |
| Plag  | 26.5         | Anhedral to skeletal | 0.01- 0.6        |

ORIGINAL PAGE IS OF POOR QUALITY

| Opaq | 24.5 | Anhedral to Subhedral | 0.001-0.8 |
|------|------|-----------------------|-----------|
| Meso | 4    | Irregular             | 0.001-0.3 |

#### COMMENTS:

Pyroxene - The clinopyroxene forms large pinkish tan anhedral crystals which form an almost continuous array within the rock. Grouped within the array are somewhat radiating masses of plagioclase crystals. The pyroxene crystals show some degree of zoning and only a very poor cleavage pattern. Most crystals have a well developed fracture pattern. A few crystals have olivine inclusions.

Plagioclase - Two major types of plagioclase crystals occur within the rock. The larger anhedral are skeletal, poorly formed, and form intersertal masses between the pyroxene crystals. The smaller more tabular crystals are more blocky and some have hollow centers which are filled with glass. Some lineation within this type of crystal is seen, but it is not pronounced.

Intermingled among the pyroxene and plagioclase crystals are patches of a glass-rich mesostasis. The color varies from nearly colorless to a brown.

Opaques - Two generations of ilmenite crystals are present in the rock. The first generation crystals are larger, highly skeletal and rather blocky in appearance. Most have a sieve texture with the silicate phases filling the holes in the crystal. Several of the crystals show rutile and chromite exsolutions.

The second generation crystals are small lath-like subhedral crystals. These are far less common than the first generation crystals. Several of this second generation crystal also show slight skeletal development.

Scattered throughout the section are small masses (0.005-0.1mm) of troilite and troilite with iron-nickel. Many of these masses are associated with the ilmenite, while others are isolated in the silicate network.

- TEXTURE: Somewhat prophyritic intersertal basalt consisting of a network of pyroxene phenocrysts that are intergrown with large anhedral ilmenite prisms. Occurring interstitial to the pyroxene-ilmenite, and masses of mesostasis. Contacts are snarp, for the most part, but many edges are very erose and uneven.
- NOTE: Some textural variation was noted in this rock. See Drake and Weill (1971) for further discussion.

344

- 7

Additional References: Haggerty et al. (1970),

#### HISTORY AND PRESENT STATUS OF SAMPLES - 6-9-76

10071 was removed from the Documented Sample container (ALSRC # 1004) and split in the Vac Lab. A 12 gm chip was sent to PCTL for PET analysis. This chip was then sent to the Gas Analysis Lab. Remaining pristine samples were re-examined in SSPL.

#### PRISTINE SAMPLES (all VAC-SSPL)

1

5 115.65 gm piece. Pitted on five surfaces.
7 15.34 gm consisting of 2 large pieces, chips and fines No pitted surfaces.

#### RETURNED SAMPLES

State and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second

1

C

.

¢

(

(

| 11 | 13.28 gm chip. | Four surfaces are pitted. |
|----|----------------|---------------------------|
| 13 | 5.51 gm chip.  | Three pitted surfaces.    |

| Element           | Number of<br>Analyses | Mean  | Units | Range |
|-------------------|-----------------------|-------|-------|-------|
| SiO <sub>2</sub>  | 2                     | 41.53 | PCT   | 1.34  |
| A1203             | 3                     | 8.02  | РСТ   | . 491 |
| TiO <sub>2</sub>  | 2                     | 12.01 | PCT   | .66   |
| Fe0               | 2                     | 18.05 | PCT   | 2.25  |
| MnO               | 2                     | . 242 | РСТ   | .075  |
| Mg0               | 1                     | 7.30  | PCT   | 0     |
| CaO               | 1                     | 10.07 | PCT   | 0     |
| Na <sub>2</sub> 0 | 3                     | . 477 | PCT   | .112  |
| K <sub>2</sub> 0  | 3                     | . 307 | РСТ   | .057  |
| Li                | 1                     | 17.0  | PPM   | 0     |

#### CHEMICAL ANALYSES

....

1

ł

ī

71

Ĵ

÷

| CHEMI | CAL | ANAL | YSES |
|-------|-----|------|------|
|       |     |      |      |

| Element   | Number of<br>Analyses | Mean  | Units       | Range |
|-----------|-----------------------|-------|-------------|-------|
| Rb        | 3                     | 5.71  | РРМ         | .73   |
| Cs        | 1                     | .17   | PPM         | 0     |
| Ве        | 1                     | 3.0   | РРМ         | 0     |
| Sr        | 3                     | 157.2 | PPM         | 30.6  |
| Ba        | 5                     | 359.0 | PP <b>M</b> | 220.  |
| Sc        | 4                     | 79.91 | PPM         | 24.55 |
| ۷         | 3                     | 86.33 | PPM         | 14.   |
| $Cr_2O_3$ | 3                     | . 359 | РСТ         | .134  |
| Cr        | 1                     | 2290. | PPM         | 0     |
| Со        | 4                     | 28.64 | PPM         | 6.55  |
| Ni        | 1                     | 7.0   | PP <b>M</b> | 0     |
| Cu        | 2                     | 12.5  | РРМ         | 3.0   |
| Y         | 1                     | 162.0 | PPM         | 0     |
| Zr        | 4                     | 494.7 | PPM         | 434.  |
| Nb        | 1                     | 24.0  | FPM         | 0     |
| Ta        | 2                     | 2.05  | PPM         | .1    |
| Hf        | 3                     | 17.15 | PPM         | 3.35  |
| La        | 4                     | 26.06 | PPM         | 6.15  |
| Ce        | 3                     | 81.83 | PPM         | 6.0   |
| Nd        | 1                     | 64.5  | PPM         | 0     |
| Sm        | 3                     | 20.23 | PPM         | 4.7   |
| Eu        | 4                     | 2.14  | РРМ         | .3    |
| Gd        | 1                     | 29.3  | PPM         | 0     |
| Tb        | 2.                    | 4.88  | PPM         | 1.65  |
| Dy        | 2                     | 32.25 | РРМ         | 2.5   |
| Но        | 2                     | 8.6   | PPM         | 1.2   |
| Er        | 1                     | 21.3  | РРМ         | 0     |
| Yb        | 3                     | 18.98 | PPM         | 5.15  |
|           |                       |       |             |       |

~``, ``

<u>)</u>

,

.

19. sept. 19. 19. 19. sept. 19. 19. 19. sept. 1

Ĭ

#### CHEMICAL ANALYSES

| Element | Number of<br>Analyses | Mean | Units | Range |
|---------|-----------------------|------|-------|-------|
| Lu      | 3                     | 2.8  | PPM   | .63   |
| Th      | 1                     | 3.36 | РРМ   | 0     |
| U       | 3                     | .730 | PPM   | .219  |
| Ga      | 1                     | 4.8  | РРМ   | 0     |
| Pb      | 1                     | 1.69 | PPM   | 0     |
| 0       | 1                     | 40.3 | PPM   | 0     |
|         |                       |      |       |       |

1

۹' ۲۰۱۰

C

Ţ

ž

Course of

i (

Analysts: Ehmann & Morgan, (1970); Goles et al., (1970); Annell & Helz, (1970); Gast et al., (1970); Wanless et al., (1970); Stettler et al., (1973); Stettler et al., (1974); Papanastassiou et al., (1970); Eberhardt et al., (1974); Ehmann et al., (1975); Tatsumoto, (1970).

Age References: Stettler et al., (1973); Stettler et al., (1974); Armstrong and Alsmiller (1971); Boschler, (1971b); Marti et al., (1970); Wanless, (1970); Eberhardt et al., (1974); Eberhardt, (1971b); Tatsumoto, (1970); Papanastassiou, (1970).

> ORIGINAL PAGE IS OF POOR QUALITY.

The Par

ł

ł



10072,80 (S-76-22596) B

r 4

ţ

Sample 10072 is an angular medium light grey vesicular Basalt. This sample originally weighed 447 gms, and measured 10 x 8 x 4 cm. It was originally returned in ALSRC # 1004 (Documented Sample container).

DATE: 2-26-76 BINOCULAR DESCRIPTIONS BY: Twedell SAMPLE 10072,80 WEIGHT: 173 gm ROCK TYPE: Vesicular Basalt DIMENSIONS: 6.2 x 5.9 x 4.0cm COLOR: Medium light grey SHAPE: Angular

COHERENCE: Intergranular - friable Fracturing - absent

FABRIC/TEXTURE: Isotropic/Equigranular, fine-grained

VARIABILITY: Homogeneous

「ない」でしょう

C

(

SURFACE: Surface areas are well covered with vesicles which range in size up to 1 cm in diameter.

ZAP PITS: Few on  $N_1$ , none on all others.

CAVITIES: 40% surface coverage. Inside walls of vesicles are smooth, with very few well defined crystals.

| COMPONENT                 | COLOR | % OF<br>ROCK | SHAPE                         | SIZE (MM)<br>DOM. RANGE |
|---------------------------|-------|--------------|-------------------------------|-------------------------|
| Pyroxene <sub>1</sub>     | Brown | 50           | Angular to sub-<br>angular    | <.] <.]                 |
| Plagioclase <sub>2</sub>  | White | 30           | Sub-angular to<br>sub-rounded | <.] <.]                 |
| Black <sub>3</sub>        | Black | 10           | Sub-rounded                   | <.] <.]                 |
| Semi-opaques <sub>4</sub> | Dark  | 10           | Elongated                     | .] <.]3                 |

Honey brown to almost black. **i**)

Two types of plagioclase; one is crystalline, the other is shocked 2) plagioclase associated with ilmenite.

Probably part pyroxene and part mesostasis. 3)

4) Elongated platy crystals have the appearance of ilmenite.

1

ちょう たちょう



| SECTION 10072,43         | Width of field 2.22 | mm plane light |
|--------------------------|---------------------|----------------|
| THIN SECTION DESCRIPTION | BY: Walton          | DATE: 6/1/76   |

SECTION: 10072,43

. :

SUMMARY: Fine grained, vesicular intersertal basalt composed of clinopyroxene, plagioclase and ilmenite. All crystals in the section show some degree of deformation with many highly fractured and broken crystals. Few of the crystals show well defined crystal faces and most are somewhat rounded at the edges. Many groups of radially acicular pyroxene-plagioclase intergrowths are also present. These fan-shaped masses tend to be found near the voids in the section. There is glass present in some of the crystals plus a glass-rich mesostasis between the crystalline phases.

| PHASE | <u>% OF SECTION</u> | SHAPE                 | <u>SIZE (MM)</u> |
|-------|---------------------|-----------------------|------------------|
| Pyrox | 49                  | Anhedral to irregular | 0.1 -0.8         |
| Plag  | 25                  | Anhedral to acicular  | 0.01-0.6         |
| Opaq  | 20                  | Anhedral to euhedral  | 0.001-0.8        |
| Meso  | 6                   |                       | 0.001-0.3        |

#### COMMENTS:

を変する

1

いため

れいます お子 読奉

ころうちのないなんこんないとあり、気をする

いたかがすいたちに、おきな

È

ź

1

( j

l

(

Pyroxene - The clinopyroxene forms large anhedral crystals which host the smaller plagioclase and ilmenite crystals. The crystals are highly granulated while giving the appearance of a monocrystal. The color of the crystals is a light pinkish tan with some crystals having a yellowish cast. Many of the vesicles are lined with very fractured pyroxene crystals.

Near many of the vesicles, radiating clusters of acicular pyroxene crystals, some associated with acicular plagioclase crystals, occur which form fan-shaped masses. These masses of crystals form discrete units within the rock.

Plagioclase - Two major types of plagioclase occur in the rock. The larger anhedral crystals are skeletal, poorly formed and form interstitial masses between the pyroxene crystals. The smaller acicular crystals are lath-like and many have hollow centers filled with a glassy phase. These crystals form intergrowths with acicular pyroxene crystals in fan-shaped masses.

Intermingled among the pyroxene and plagioclase crystals are patches of glass-rich material. This glassy mesostasis forms irregular patches .nd void fillings. The color varies from clear to brown. The masses are more or less evenly dispensed throughout the rock.

Opaques - The major opaque phase in the section is ilmenite. Two generations of crystals are present in the rock. The first type forms very skeletal crystals which contain inclusions of the silicate minerals. These crystals are subhedral in part, but most have lost their original form. The majority of the crystals are lath-like and appear as acicular blades in the section. A few of the larger crystals contain small rutile exsolutions.

Small masses of troilite and troilite with iron nickel inclusions are also present in the section. These form small 0.001 mm to 0.2 mm masses and are for the most part isolated in the silicate crystal assemblage.

TEXTURE: Porphyritic intersertal basalt consisting of a network of pyroxene phenocrysts that are intergrown with large, anhedral ilmenite prisms. Occurring interstitial to the pyroxene-ilmenite network are plagioclase tablets that are intergrown with the edges of the pyroxene phenocrysts, acicular pyroxene-plagioclase intergrowths, small euhedral ilmenite crystals, and anhedral masses of mesostasis and plagioclase. Contacts are sharp, for the most part, but some edges are very erose and uneven.

> ORIGINAL PAGE IS OF POOR QUALITY

()

#### Selected References: Haggerty et al. (1970), Kushiro and Nakamura (1970), Simpson and Bowie (1970), Smith, J.W. et al. (1970).

### HISTORY AND PRESENT STATUS OF SAMPLES - 6-28-76

10072 was removed from the Documented Samples container (ALSRC #1004) and split in the Vac Lab. A 29 gm chip was sent to PCTL for PET analysis. The remainder was sent to RCL for gamma ray counting. Upon its return, this piece was split further in the Vac Lab. Remaining pristine samples were re-examined in SSPL.

#### PRISTINE SAMPLES: (A11 VAC-RCL-VAC-SSPL)

| 19  | 40.26 gm  | Eight chips. No pitted surfaces.              |
|-----|-----------|-----------------------------------------------|
| 80  | 143.92 gm | Piece. One surface is pitted                  |
| 139 | 28.28 gm  | Eleven chips from ,80. No pits on any pieces. |

#### **RETURNED SAMPLES:**

| 15  | 15.30 gm | Chip.   | 0ne   | pit | ted    | surface. | •   |           |
|-----|----------|---------|-------|-----|--------|----------|-----|-----------|
| 41  | 21.65 gm | Piece.  | Pre   | vio | us 1 y | listed   | as  | 10018,24. |
| 109 | 6.78 gm  | Two pie | eces. | A   | ] s    | urfaces  | are | fresh.    |

#### CHEMICAL ANALYSES

| Element          | Number of<br>Analyses | Mean  | Units | Range |
|------------------|-----------------------|-------|-------|-------|
| SiO <sub>2</sub> | 3                     | 40.64 | PCT   | .70   |
| A1203            | 4                     | 8.01  | PCT   | 1.04  |
| Ti0 <sub>2</sub> | 4                     | 12.17 | PCT   | 2.33  |
| Fe0              | 3                     | 19.65 | PCT   | .43   |
| Mn0              | 4                     | .244  | PCT   | .068  |
| Mg0              | 3                     | 7.48  | PCT   | .741  |

10072

|   |                                |                       | CHEMICAL ANALYSES |       |              |
|---|--------------------------------|-----------------------|-------------------|-------|--------------|
| • | Element                        | Number of<br>Analyses | Mean              |       |              |
|   | Ca0                            | 4                     |                   | Units | Range        |
|   | Na <sub>2</sub> 0              | 4                     | 11.49             | РСТ   | 4.06         |
|   | K <sub>2</sub> 0               | 6                     | . 504             | РСТ   | .121         |
| ۴ | P205                           | 3                     | .284              | РСТ   | .149         |
|   | Н                              |                       | .170              | PCT   | .030         |
|   | Li                             | 1                     | . 76              | CC/G  | 0            |
|   | Rb                             | 3                     | 15.0              | PPM   |              |
|   | Cs                             | 6                     | 5.58              | PPM   | 2.           |
|   | Be                             | 2                     | .230              | РРМ   | . 98         |
|   | Sr                             | 3                     | 3.133             | PPM   | .141         |
|   | Ba                             | 5                     | 154.76            | PPM   | 1.3          |
|   | Sc                             | 3                     | 343.              | PPM   | 38.6         |
|   | V                              | 3                     | 86.3              | РРМ   | 130.0        |
|   | Cr <sub>2</sub> 0 <sub>3</sub> | 4                     | 60.5              | PPM   | 19.0         |
|   | Co                             | 4                     | .364              | PCT   | 60.          |
|   | Ni                             | 6                     | 28.7              | РРМ   | .085<br>22.8 |
|   | Cu                             | 5                     | 15.42             | РРМ   | 22.8         |
|   | Zn                             | 5                     | 14.44             | РРМ   | 17.06        |
|   | Ŷ                              | 5                     | 13.71             | РРМ   | 32.28        |
|   | Zr                             | 4                     | 185.5             | РРМ   | 95.          |
|   | Nb                             | 4                     | 551.75            | PPM   | 260.         |
|   | Mo                             | 3                     | 31.0              | РРМ   | 22.          |
|   | Pd                             | 1                     | . 4               | PPM   | 0            |
|   | Cd                             | 2                     | .052              | РРМ   | . 097        |
|   | Ta                             | 3                     | .340              | PPM   | . 994        |
|   | W                              | 2                     | 3.4               | PPM   | 3.2          |
|   | Hf                             | 1                     | . 42              | ۳PM   | 0            |
|   | Os                             | 2                     | 15.0              | РРМ   | 6.0          |
|   |                                | 1                     | .004              | РРМ   | 0.0          |
|   |                                |                       |                   |       | 0            |

•••

£ -

Ţ

ġ.

В

Ga

In

T1

Ge

Sn

ΡЬ

W

;

i

ց

1

5

1

1

2

1

2

1

1

----

ľ Į

1

1

Auris Western

74

f

|         |                       | CHEMICAL ANA | LYSES       |       |
|---------|-----------------------|--------------|-------------|-------|
| Element | Number of<br>Analyses | Mean         | Units       | Range |
| L٣      | 2                     | . 200        | РРВ         | .400  |
| Au      | 3                     | .100         | PPB         | .060  |
| Hg      | 1                     | 5.50         | РРВ         | 0     |
| La      | 4                     | 31.42        | PPM         | 20.3  |
| Ce      | 3                     | 86.33        | ррм         | 27.   |
| Pr      | 2                     | 18.0         | PPM         | 4.    |
| Nd      | 3                     | 62.67        | РРМ         | 39.   |
| Sm      | 3                     | 22.3         | PPM         | 10.1  |
| Eu      | 3                     | 2.09         | FPM         | .2    |
| Gd      | 2                     | 28.5         | ΡΡΜ         | 5.    |
| T5      | 3                     | 4.7          | РРМ         | 3.8   |
| Dy      | 2                     | 38.1         | PP <b>M</b> | 13.8  |
| Но      | 2                     | 8.4          | РРМ         | 3.2   |
| Er      | 2                     | 25.5         | PPM         | 19.   |
| Tm      | 1                     | 2.8          | РРМ         | 0     |
| Yb      | 4                     | 16.4         | РРМ         | 26.   |
| Lu      | 3                     | 3.28         | FPM         | 2.76  |
| Th      | 7                     | 3.51         | PPM         | 2.0   |
| U       | 4                     | .699         | PPM         | . 357 |
|         |                       |              |             |       |

4.0

4.49

.052

.920

.58

.4

2.30

110.

0

ORIGINAL PAGE IS OF POOR QUALITY

.9

1.04 0

1.40

0

0

0

)

1

3 ...4

1

ł

PPM

PPM

PPM

PPB

PPM

PPM

PPM

PPM

r,

「ない」というできた

2

こうちょうかいがい あんていた かまたちがたいない いちゅうちょう たいわかる ふく いしょうかいだい あんろう たちまままたか へきないせん したかく チード

(

## CHEMICAL ANALYSES

| Element | Number of<br>Analyses | Mean  | Units | Range |
|---------|-----------------------|-------|-------|-------|
| 4.      | ,                     | 05    | DDM   | 0     |
| As      | 1                     | .05   | PPM   | -     |
| Sb      | 1                     | .01   | PPM   | 0     |
| Bi      | 1                     | .730  | РРВ   | 0     |
| S       | 2                     | .235  | PCT   | .01   |
| Se      | 1                     | .188  | PPM   | 0     |
| F       | 1                     | 271.0 | PPM   | 0     |
| C1      | 1                     | 14.   | PPM   | 0     |
| Br      | 3                     | .102  | РРМ   | .164  |
| Ι       | 1                     | . 37  | РРМ   | 0     |

Analysts: Compston et al., (1970); Maxwell et al., (1970); Morrison ec al., (1970); Ganapathy et al., (1970); Annell & Helz, (1970); Gopalon et al., (1970); O'Kelly et al., (1970); Hurley & Pinson, (1970); Anders et al., (1971); Reed & Jovanovic, (1970); Wasson & Baedecker, (1970); Haskin et al., (1970); Herzog & Herman, (1970); Silver, (1970); Wrigley & Quaide, (1970).

Age References: D'Amico et al., (1970); Turner (1970); O'Kelly et al., (1970); Eberhardt (1970); Silver (1970).

ORIGINAL PAGE IS OF POOR QUALITY



ŝ

Sample 10073 is a rounded medium dark grey microbreccia. This sample

originally weighed 125 gm, and measured 5 x 3 x 2 cm. It was originally returned in ALSRC # 1004 (Documented Sample container). BY: Twedell BINOCULAR DESCRIPTION DATE: 2/27/76 ROCK TYPE: Microbreccia SAMPLE: 10073,1 WEIGHT: 68.0 gm COLOR: Medium dark grey DIMENSIONS: Four subequal pieces SHAPE: Rounded COHERENCE: Intergranular - Friable Fracturing - Few, non-penetrative FABRIC/TEXTURE: Anisotropic/Microbreccia VARIABILITY: Homogeneous SURFACE: Smooth and rounded on exposed (pitted) surfaces, to angular on fresh surfaces. Few on  $T_1$  face of largest piece. None on any other pieces. Pits are glass lined up to 1.2mm in diameter. ZAP PITS:

5

CAVITIES: Absent

| COMPONENT         | COLOR                      | % OF<br>ROCK   | SHAPE       | SIZI<br>DOM. | · ·     |
|-------------------|----------------------------|----------------|-------------|--------------|---------|
| Matrix            | Dk Grey                    | <del>9</del> 8 |             |              |         |
| White Clast       | White                      | <1             | Sub-angular | 0.9          | 0.2-1.0 |
| Basalt Clast      | Honey Brown<br>Black/White | 1              | Sub-rounded | 1            | 0.6-3.0 |
| Salt/Pepper Clast | Black/White                | <]             | Sub-rounded | 0.8          | 0.4-1.5 |

UGINAL PAGE IS

-

ł

1 ( S

, . ,

1

358

10073



SECTION 10073,27Width of field 1.39 mm plane lightTHIN SECTION DESCRIPTIONBY: WaltonDATE: 6/29/76

SECTION: 10073,27

L

SUMMARY: Partly devitrified typical breccia with a low lithic clast content. Approximately one quarter of the section has a light brown matrix while the remainder of the section has a dark brown matrix. There is a higher concentration of mineral clasts in the lighter brown matrix than the darker.

## MATRIX 58% OF ROCK

| PHASE                 | % SECTION          | SHAPE        | <u>SIZE (MM)</u>   | COMMENTS:                                                 |
|-----------------------|--------------------|--------------|--------------------|-----------------------------------------------------------|
| Dark Brown            | 75                 |              | <0.001             | High glass con-                                           |
| Light Brown           | 25                 |              | <0.001             | tent: light brown<br>has higher mineral<br>clast content. |
|                       | MINERAL C          | LASTS 29% OF | ROCK               |                                                           |
| PHASE                 | RELATIVE ABUNDANCE | SHAF         | <u>PE</u>          | <u>SIZE (MM)</u>                                          |
| Pyroxene <sub>l</sub> | Very abundant      | Angular to i | ir <b>r</b> egular | 0.001-0.6                                                 |

1

and the second of the

1

į

ł

:••

l

٠

C.

:

• ••••••

| Plagioclase <sub>2</sub> | Moderate                                                                    | Blocky to irregular                                | 0.001-0.4        |
|--------------------------|-----------------------------------------------------------------------------|----------------------------------------------------|------------------|
| Opaques <sub>3</sub>     | Few                                                                         | Blocky to skeletal                                 | 0.001-0.4        |
| 2) Locally               | l fragments; poor optic<br>abundant; not evenly d<br>ocky fragments; crysta |                                                    | sts              |
|                          | LITHIC C                                                                    | CLASTS 8% OF ROCK                                  |                  |
| <u>TYPE</u>              | RELATIVE ABUNDANCE                                                          | SHAPE                                              | <u>SIZE(MM)</u>  |
| Small                    | Very abundant                                                               | Rounded to irregular                               | 0.001-1.0        |
| Large <sub>4</sub>       | Six present                                                                 | Rounded to irregular                               | >1.0             |
| 4) a. Fine               | e-grained glass-rich ma                                                     | atrix with mineral and                             | rock fragments.  |
|                          | rse-grained basalt cons<br>mite.                                            | sisting of pyroxene, pl                            | agioclase and    |
| c. Fine                  | e-grained glass-rich ma                                                     | trix with mineral and                              | rock fragments.  |
|                          | ss-rich matrix enclosir<br>gioclase.                                        | ng small crystallites o                            | f pyroxene and   |
|                          | rse-grained basalt whic<br>I identification diffic                          | ch appears to have been<br>cult.                   | crushed. Min-    |
|                          | e-grained mineral aggre<br>glass in the matrix.                             | egate of pyroxene and p                            | lagioclase with  |
|                          | GLASS_CL                                                                    | ASTS 5% OF ROCK                                    |                  |
| ΤΥΡΕ                     | RELATIVE ABUNDAN                                                            | NCE SHAPE                                          | <u>SIZE (MM)</u> |
| Yellow-Orang             | ge <sub>5</sub> Very <mark>a</mark> bundant                                 | Irregular to spheri                                | cal 0.001-0.5    |
| Pale Yellow-<br>White    |                                                                             | Spherical to irregu                                | 11ar 0.001-0.8   |
|                          | gular shards; few spher<br>spheres; more devitri1                           | res<br>fication than other typ                     | e glass.         |
| Selected                 | References: Fredrikss                                                       | son et al. (1970).                                 |                  |
|                          | HISTORY AND PRESENT ST                                                      | TATUS OF SAMPLES 6/29/                             | 76               |
|                          |                                                                             | nted Sample container (<br>pristine samples were r |                  |

•

· •

## PRISTINE SAMPLES: (A11 VAC-SSPL)

| 1 | 68.40 gm | Four pieces. Few pits on one piece; None on others. |
|---|----------|-----------------------------------------------------|
| 2 | 10.90 gm | Chips and fines.                                    |

NO RETURNED SAMPLES

360

## CHEMICAL ANALYSES

| Element           | Number of<br>Analyses | Mean   | Units | Range  |
|-------------------|-----------------------|--------|-------|--------|
| LICHENC           | niuryses              | ncun   | 01103 | Nulige |
| SiO <sub>2</sub>  | 1                     | 43.85  | PCT   | 0      |
| A1203             | 2                     | 13.98  | РСТ   | . 38   |
| Ti0 <sub>2</sub>  | 1                     | 8.17   | РСТ   | 0      |
| Fe0               | 1                     | 16.21  | РСТ   | 0      |
| Mn0               | 2                     | .223   | РСТ   | . 039  |
| Mg0               | 1                     | 7.79   | РСТ   | 0      |
| CaO               | 1                     | 12.45  | РСТ   | 0      |
| Na <sub>2</sub> 0 | 3                     | .459   | РСТ   | .038   |
| K <sub>2</sub> 0  | 2                     | .144   | РСТ   | .0001  |
| Li                | 1                     | 11.0   | РРМ   | 0      |
| Rb                | 3                     | 2.61   | РРМ   | . 79   |
| Cs                | 1                     | .098   | PPM   | 0      |
| Ве                | 1                     | 2.10   | РРМ   | 0      |
| Sr                | 2                     | 163.75 | PPM   | 7.5    |
| Ba                | 2                     | 207.5  | PPM   | 65.0   |
| Sc                | 2                     | 63.0   | РРМ   | 2.0    |
| ۷                 | 2                     | 74.0   | PPM   | 16.0   |
| $Cr_2O_3$         | 2                     | . 309  | PCT   | .063   |
| Со                | 2                     | 30.05  | PPM   | 2.10   |

ORIGINAL PAGE IS OF POOR QUALLY ľ.

~~~

B. C. State - way - war - war

361

|                       | CHEMICAL ANALYSES |                                                                                                                                     |                                                                                                                                                                                                     |
|-----------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of<br>Analyses | Mean              | Units                                                                                                                               | Range                                                                                                                                                                                               |
| 1                     | 199.              | PPM                                                                                                                                 | 0                                                                                                                                                                                                   |
| 2                     | 16.5              | PPM                                                                                                                                 | 5.0                                                                                                                                                                                                 |
| 1                     | 23.               | РРМ                                                                                                                                 | 0                                                                                                                                                                                                   |
| 1                     | 89.               | PPM                                                                                                                                 | 0                                                                                                                                                                                                   |
| 1                     | 322.0             | PPM                                                                                                                                 | 0                                                                                                                                                                                                   |
| 1                     | 14.0              | PPM                                                                                                                                 | 0                                                                                                                                                                                                   |
| 1                     | .163              | PPM                                                                                                                                 | 0                                                                                                                                                                                                   |
| 1                     | 1.6               | PPM                                                                                                                                 | 0                                                                                                                                                                                                   |
| 1                     | 8.9               | РРМ                                                                                                                                 | 0                                                                                                                                                                                                   |
| 2                     | 16.9              | PPM                                                                                                                                 | 8.2                                                                                                                                                                                                 |
| 2                     | 47.25             | PPM                                                                                                                                 | 1.50                                                                                                                                                                                                |
| 1                     | 35.4              | PPM                                                                                                                                 | 0                                                                                                                                                                                                   |
| 2                     | 11.95             | PPM                                                                                                                                 | .9                                                                                                                                                                                                  |
| 2                     | 1.65              | РРМ                                                                                                                                 | .1                                                                                                                                                                                                  |
| 1                     | 15.9              | PPM                                                                                                                                 | 0                                                                                                                                                                                                   |
| 1                     | 18.3              | РРМ                                                                                                                                 | 0                                                                                                                                                                                                   |
| 1                     | 5.0               | PPM                                                                                                                                 | 0                                                                                                                                                                                                   |
| 1                     | 11.4              | РРМ                                                                                                                                 | C                                                                                                                                                                                                   |
| 2                     | 9.15              | PPM                                                                                                                                 | 3.9                                                                                                                                                                                                 |
| 2                     | 1.66              | РРМ                                                                                                                                 | .2                                                                                                                                                                                                  |
| 1                     | .45               | PPM                                                                                                                                 | 0                                                                                                                                                                                                   |
| 1                     | 3.70              | PPM                                                                                                                                 | 0                                                                                                                                                                                                   |
| 1                     | 41.40             | РСТ                                                                                                                                 | 0                                                                                                                                                                                                   |
|                       | Analyses          | Number of<br>AnalysesMean1199.216.5123.189.1322.0114.01.163116.311.618.9216.9247.25135.421.65115.9118.315.0111.429.1521.661.4513.70 | Number of<br>AnalysesMeanUnits1199.PPM216.5PPM123.PPM189.PPM1322.0PPM1322.0PPM114.0PPM1163PPM1163PPM11.6PPM216.9PPM216.9PPM216.5PPM135.4PPM21.65PPM115.9PPM115.9PPM111.4PPM29.15PPM11.45PPM13.70PPM |

CHEMICAL ANALYSES

Analysts: Ehmann & Morgan, (1970); Goles et al., (1970); Annell & Helz, (1970); Gast et al., (1970); Gibson & Johnson, (1971); Ganapathy et al., (1970).

No Age References



ا بور ا د

ľ

۱

1

;

1

I, ,

I.

ł

7. J

34 · 1 · · 4

í

the state index on and some

£,

いな

#### 10074

Sample 10074 is an angular, medium dark grey microbreccia. This sample originally weighed 56 gm. and measured 8.2 x 4.6 x 3.8cm. The sample was originally returned in ALSRC # 1004 (Documented Sample container).

BINOCULAR DESCRIPTION BY: Twedell DATE: 12/24/75 ROCK TYPE: Microbreccia SAMPLE: 10074,1 WEIGHT: 55 gm COLOR: Medium dark grey DIMENSIONS: 6 x 4 x 3 cm. SAHPE: Angular COHERENCE: Intergranular - Coherent Fracturing - Few penetrative, few non-penetrative FABRIC/TEXTURE: Anisotropic/Microbreccia

VARIABILITY: Homogeneous

SURFACE: Smooth on  $B_1$  to hackly on  $W_1$ - $N_1$ . Some glass coating on  $T_1$  face.

ZAP PITS: None apparent on any face.

CAVITIES: Absent

| COM  | PONENT             | COLOR               | % OF<br>ROCK | SHAPE                       | SIZE (MM)<br>DOM. RANGE |
|------|--------------------|---------------------|--------------|-----------------------------|-------------------------|
| Mati | rix                | Med.Dark Grey       | 96           |                             |                         |
| Brow | vn Clast           | Lt.Brown            | 2            | Angular to sub-<br>angular  | 0.6 <0.1-1.0            |
| Whi  | te Clast           | White               | 1            | Subangular to<br>subrounded | 1.0 <0.1-2.5            |
| Grey | / & White<br>Clast | Dk. Grey &<br>White | 1            | Subangular to<br>subrounded | <1.0 <0.1-1.0           |

Special Features: This sample has an unusual amount of honey brown mineral clasts which are very few or non-existent in other samples; There are 4 or 5 fractures that are filled with a vesicular black glass. The glass texture is like black scoria. The filled fractures have more than one orientation. The glass filling is 3-5mm thick. (PET).



SECTION: 10074,7Width of field 2.72 mm plane lightTHIN SECTION DESCRIPTIONBY: WaltonDATE: 6/30/76

. .

SECTION: 10074,7

SUMMARY: Partly devitrified typical breccia with a relatively low lithic clast content. All the lithic clasts present are relatively small with no large clasts.

## MATRIX 61% OF ROCK

| PHASE      | % OF SECTION | SHAPE | SIZE (MM)               | COMMENTS:                                                              |
|------------|--------------|-------|-------------------------|------------------------------------------------------------------------|
| Dark Brown | 100          |       | < 0.001                 | High glass content;<br>very turbid full<br>of small crystal-<br>lites. |
|            |              |       | ORIGINAL E<br>OF POOR G | AGE IS<br>UALITY                                                       |

## MINERAL CLASTS 33% OF ROCK

| PHASE                    | RELATIVE ABUNDANCE | SHAPE                | <u>SIZE (MM)</u> |
|--------------------------|--------------------|----------------------|------------------|
| Pyroxene <sub>l</sub>    | Very abundant      | Angular to irregular | 0.001-0.6        |
| Plagioclase <sub>2</sub> | Few                | Blocky to irregular  | 0.001-0.1        |
| Opaques <sub>3</sub>     | Few                | Blocky to irregular  | 0.001-C.3        |

1) Poor optical characteristics.

「「「「「「「「「「「「」」」

おいてんなまで

C

C

(

2) Widely scattered; poor optics.

3) Large, blocky in matrix; dendritic in clasts.

## LITHIC CLASTS 3% OF ROCK

| TYPE  | RELATIVE ABUNDANCE | SHAPE                | <u>SIZE (MM)</u> |
|-------|--------------------|----------------------|------------------|
| Small | Very abundant      | Rounded to irregular | 0.001-1.0        |
| Large | None               |                      | <1.0             |

## GLASS CLASTS 3% OF ROCK

| TYPE                       | RELATIVE ABUNDANCE | SHAPE                | <u>SIZE (MM)</u>   |
|----------------------------|--------------------|----------------------|--------------------|
| Yellow-Orange <sub>4</sub> | Very abundant      | Angular to spherical | 0.001-0.4          |
| Colorless <sub>5</sub>     | Moderate           | Angular to spherical | 0 <b>.0</b> 01-0.5 |

4) Most angular shards; many irregular masses.

5) Some spheres, most shards, many blocky.

## HISTORY AND PRESENT STATUS OF SAMPLES 6/30-76

10074 was removed from the Documented Sample container (ALSRC # 1004) in the Vac Lab. It was used in the magnetics experiment. It was then split in SPL. Re aining pristine subsamples were re-examined in SSPL.

.

## PRISTINE SAMPLES: (VAC-SPL-SSPL)

55.01 gm Parent rock.
 0.54 gm One small chip. No pits.

NO RETURNED SAMPLES

1

]

1

-

| CHEMICAL ANALYSES                    |                       |                          |                        |                    |
|--------------------------------------|-----------------------|--------------------------|------------------------|--------------------|
| Element                              | Number of<br>Analyses | Mean                     | Units                  | Range              |
| S:02                                 | 1                     | 41.29                    | РСТ                    | 0                  |
| A1203                                | 2                     | 14.36                    | РСТ                    | 2.26               |
| T10 <sub>2</sub>                     | 1                     | 7.84                     | PCT                    | 0                  |
| Fe0                                  | 1                     | 15.31                    | PCT                    | 0                  |
| Mn0                                  | 1                     | .183                     | PCT                    | 0                  |
| Mg0                                  | 1                     | 6.80                     | PCT                    | 0                  |
| Ca0                                  | 1                     | 13.01                    | PCT                    | 0                  |
| Na <sub>2</sub> 0                    | ٦                     | .506                     | PCT                    | 0                  |
| Ba                                   | 1                     | 280.0                    | PPM                    | 0                  |
| Sc                                   | 1                     | 53.7                     | PPM                    | 0                  |
| ٧                                    | 1                     | 78.0                     | РРМ                    | 0                  |
| Со                                   | 1                     | 30.90                    | PPM                    | 0                  |
| Cu                                   | 1                     | 10.00                    | PPM                    | 0                  |
| Zr                                   | 1                     | 500.0                    | PPM                    | 0                  |
| Ta                                   | I                     | 1.0                      | PPM                    | 0                  |
| Hf                                   | 1                     | 11.9                     | PPM                    | 0                  |
| La                                   | 1                     | 13.8                     | PPM                    | 0                  |
| Ce                                   | 2                     | 50.75                    | PPM                    | 8.5                |
| Sm                                   | 1                     | 11.50                    | PPM                    | 0                  |
| Eu                                   | 1                     | 1.73                     | РРМ                    | 0                  |
| ТЬ                                   | 1                     | 2.80                     | PPM                    | 0                  |
| Но                                   | 1                     | 5.0                      | РРМ                    | 0                  |
| YЬ                                   | 1                     | 12.0                     | PPM                    | 0                  |
| Lu                                   | 1                     | 1.7                      | РРМ                    | 0                  |
| U                                    | 1                     | .49                      | PPN                    | 0                  |
| O<br>nalysts:<br>1970).<br>o Age Ref |                       | 42.10<br>n, (1970); Gole | PCT<br>s et al., (1970 | 0<br>); Gast et al |

ORIGINAL PAGE 1 OF POOR QUATE

-AWGUNA HATCH

ź

1

٠. ~ /

1

1

2

`~

. . .

•

i

ľ,

٩.

:•

Ĺ



10075,3 (S-76-20321)

ORIGINAL PAGE 1. OF POOR QUALITY

しょ

ì

Sample 10075 is a sub-angular, medium grey, fine breccia. This sample originally weighed 53gm and measured 8x10x3.2cm. It was originally returned in ALSRC #1004 (Documented Sample container).

BINOCULAR DESCRIPTIONBY: KramerDATE: 1/2/76ROCK TYPE: Fine BrecciaSAMPLE: 100/5,3WEIGHT: 36.29gniCOLOR: Medium GreyDIMENSIONS: 5.5 x 3 x 3 cm

SHAPE: Sub-angular

COHERENCE: Intergranular - coherent Fracturing - absent

FABRIC/TEXTURE: Anisotropic/Fine Breccia

VARIABILITY: Homogeneous

SURFACE:  $N_1$  has two areas  $n_1$  in are smoothed with striations. The areas look like slickensides. Other faces are hackly.

ZAP PITS.  $T_1$ ,  $S_1$  - many.  $N_1$  - few. Jthers - none.

| COMPONENT                 | COLOR               | % OF<br><u>ROCK</u> | SHAPE                 | SIZE(MM)<br>DOM. RANGE |
|---------------------------|---------------------|---------------------|-----------------------|------------------------|
| Matrix                    | Mod.Grey            | 93                  |                       |                        |
| Basalt Clast              | rey                 | 2                   | Sub-rounded           | 2.0 .5-1.0             |
| Grey $Clast_1$            | rd.arey             | 1                   | Sub-rounded           | 1.0 .05-3.0            |
| Salt & Pepper<br>Clast    | Blk/White           | <]                  | Sub-rounded           | 1.0 .5-1.3             |
| Mineral Clast             | Dk.Brown<br>& White | 3                   | Angular to subrounded | 0.5 <2                 |
| Lithic Clast <sub>2</sub> | Med.Grey            | <]                  | Angular               | 2                      |

1) Lighter colored than matrix.

1

2) On  $E_1$ , there is a breccia clast (welded breccia).

**(** .



SECTION: 10075,14 Width of field 1.39mm plane light

THIN SECTION DESCRIPTION BY: Walton DATE: 6/30/76

SUMMARY: Partly devitrified typical breccia with several interesting large lithic clasts. Most are poikilitic with either plagioclase or pyroxene as the host and pyroxene or olivine as the included crystals.

|                     | MATRI   | <u>x 55% OF</u> | ROCK             |                                                             |
|---------------------|---------|-----------------|------------------|-------------------------------------------------------------|
| PHASE               | SECTION | SHAPE           | <u>SIZE(MM</u> ) | COMMENTS:                                                   |
| Brown to pale brown | 100     |                 | <0.001           | High glass content;<br>translucent to<br>nearly transparent |

## MINERAL CLASTS 21% OF ROCK

| PHASE                    | RELATIVE ABUNDANCE | SHAPE                | SIZE (MM) |
|--------------------------|--------------------|----------------------|-----------|
| Pyroxene <sub>l</sub>    | Very abundant      | Angular to irregular | 0.001-0.3 |
| Plagioclase <sub>2</sub> | Moderate           | Blocky to irregular  | 0.001-0.2 |
| Opaques 3                | Few                | Blocky to skeletal   | 0.001-0.1 |

RIGINAL PAGE IS OF POOR QUALITY

I

N. A. A.

- 1) Highly fractured; poor optical characteristics.
- 2) Many show no twin planes; some polygranular.

3) Most in matrix; few in clasts.

## LITHIC CLASTS 19% OF ROCK

| TYPE               | RELATIVE ABUNDANCE | SHAPE                | <u>SIZE (MM</u> ) |
|--------------------|--------------------|----------------------|-------------------|
| Small              | Very abundant      | Rounded to irregular | 0.001-1.0         |
| Large <sub>4</sub> | Four present       | Rounded to irregular | >1.0              |

4) a. Very fine-grained black matrix hosting mineral and rock fragments. Matrix is opaque. Many small ilmenite crystals in matrix.

- b. Fine-grained yellow brown semitranslucent matrix hosting numerous mineral fragments.
- c. Large poikilitic pyroxene crystals hosting small olivine crystals.
- d. Crushed random array of plagioclase crystals hosting small irregular masses of pyroxene.

## GLASS CLASIS 5% OF ROCK

| TYPE                     | RELATIVE ABUNDANCE | SHAPE                  | <u>SIZE (MM</u> ) |
|--------------------------|--------------------|------------------------|-------------------|
| Yellow-Orange $_{\rm S}$ | Very abundant      | Spherical to irregular | 0.001-0.2         |
| Colorless <sub>6</sub>   | Abundant           | Angular                | 0.001-0.3         |

5) Almost all spheres or part spheres; few shards.

6) All angular shards some large; no spheres present; some devitrification.

## HISTORY AND PRESENT STATUS OF SAMPLES - 6/30/76

10075 was removed from the Documented Sample container (ALSRC =1004) and split in the Vac Lab. Remaining pristine samples were re-examined in SSPL.

#### PRISTINE SAMPLES:

| 3  | 36.29 | gm | Parent breccia. For description see F-8.         |
|----|-------|----|--------------------------------------------------|
| 11 | 0.12  | gm | Small representative chip sent for thin section. |

#### RETURNED SAMPLES

None

|                   | CHEMICAL ANALYSES     |       |             |       |  |  |
|-------------------|-----------------------|-------|-------------|-------|--|--|
| Element           | Number of<br>Analyses | Mean  | Units       | Range |  |  |
| SiO <sub>2</sub>  | 1                     | 42.36 | РСТ         | 0     |  |  |
| A1203             | 2                     | 14.64 | РСТ         | 1.32  |  |  |
| Ti0 <sub>2</sub>  | 1                     | 7.51  | РСТ         | 0     |  |  |
| Fe0               | 1                     | 15.57 | PCT         | 0     |  |  |
| Mn0               | 1                     | . 200 | РСТ         | 0     |  |  |
| Mg0               | 1                     | 7.79  | РСТ         | 0     |  |  |
| CaO               | 1                     | 11.89 | РСТ         | 0     |  |  |
| Na <sub>2</sub> 0 | 1                     | .452  | РСТ         | 0     |  |  |
| Ba                | 1                     | 430.0 | PPM         | 0     |  |  |
| Sc                | 1                     | 56.8  | PPM         | 0     |  |  |
| V                 | 1                     | 85.0  | PPM         | 0     |  |  |
| Со                | 1                     | 28.7  | PPM         | 0     |  |  |
| Cu                | 1                     | 10.0  | PPM         | 0     |  |  |
| Zr                | l                     | 390.0 | PPM         | 0     |  |  |
| Ta                | 1                     | 1.4   | PPM         | 0     |  |  |
| Hf                | 1                     | 8.8   | PPM         | 0     |  |  |
| La                | 1                     | 14.9  | PPM         | 0     |  |  |
| Се                | 2                     | 48.25 | PP <b>M</b> | 3.50  |  |  |
| Sm                | 1                     | 11.5  | PPM         | 0     |  |  |
| Eu                | 1                     | 1.62  | MGA         | 0     |  |  |

## CHEMICAL ANALYSES

No Age References

1

1

1

1

1

ORIGINAL PAGE IN OF POOR QUALITY

0

0

0

0

0

0

371

I.

3.1

5.4

11.2

0 1 40.40 PCT Analysts: Ehmann & Morgan, (1970); Goles et al., (1970).

1.89

.52

PPM

PPM

PPM

PPM

PPM

. •.

Тb

Но YЬ

Lu

U

. . .

€

.)

Ĵ

•





.

•.

•

## 10082

Sample 10082 is a rounded to subrounded, dark grey to black, microbreccia. This sample originally weighed 50gm, and was returned in ALSRC #1004 (Documented Sample container).

BINOCULAR DESCRIPTIONBY: TwedellDATE: 1/6/76ROCK TYPE: MicrobrecciaSAMPLE: 10082,1WEIGHT: 48 gmCOLOR: Dark grey/blackDIMENSIONS: 4.5 x 3 x 2.6 cm

SHAPE: Rounded to subrounded

COHERENCE: Intergranular - Moderately coherent Fracturing - Few, non-penetrative

FABRIC/TEXTURE: Anisotropic/Microbreccia

VARIABILITY: Homogeneous

SURFACE: Small patches of black glass coating on the  $S_1$  face.

ZAP PITS: Many on  $B_1$ . Few on  $E_1$ ,  $T_1$ . None on  $N_1$ ,  $S_1$ . Pits are glass lined and are <lmm in size.

CAVITIES: Absent

とうち ひろこ あい いい

C

| COMPONENT    | COLOR                  | % OF<br>ROCK | SHAPE                 | SIZE<br>DOM. | E(MM)<br>RANGE |
|--------------|------------------------|--------------|-----------------------|--------------|----------------|
| Matrix       | Dk.Grey<br>to Black    | 97           |                       |              |                |
| Basalt Clast | Blk/White<br>and Brown | 2            | Angular to subangular | <1           | <1-3           |
| White        | White                  | <1           | Rounded to angular    | .8           | <1             |
| Grey & White | Dk.Grey                | <1           | Rounded to angular    | .8           | <1             |
|              |                        |              |                       |              |                |

ORIGINAL PAGE IS OF POOR QUALITY

<u>د</u> ۱



10022



SECTION: 10082,8 Width of field 1.39mm plane light

THIN SECTION DESCRIPTION

BY: Walton

DATE: 6/29/76

SUMMARY: Partly devitrified typical breccia with no large lithic clasts. The section consists of only two small chips and is the only section available. Due to the small size of the chips, the larger clasts may have been excluded.

## MATRIX 59% OF ROCK

| PHASE                    | SECTION | SHAPE | SIZE(MM) | COMMENTS:                                                                |
|--------------------------|---------|-------|----------|--------------------------------------------------------------------------|
| Light to<br>medium brown | 100     |       | <0.001   | High glass content<br>with many crystal<br>agments and crys-<br>illites. |

. .

ホート・シュート とうとう ション・ション ションション あいし

#### MINERAL CLASTS 21% OF ROCK

| PHASE                    | RELATIVE ABUNDANCE | SHAPE                | <u>SIZE (MM</u> ) |
|--------------------------|--------------------|----------------------|-------------------|
| Pyroxene <sub>1</sub>    | Very abundant      | Angular to irregular | 0.001-0.4         |
| Plagioclase <sub>2</sub> | Few                | Irregular to blocky  | 0.001-0.2         |
| Opaques <sub>3</sub>     | Moderate           | Skeletal to blocky   | 0.001-0.2         |

1) Fractured; poor optical characteristics

2) Poor twinning; poor optics

1. 1. 1.11

ALL PROPERTY

£,

.

(

13

Ċ

3) Some large troilite; most skeletal ilmenite

## LITHIC CLASTS 12% OF ROCK

| TYPE  | RELATIVE ABUNDANCE | SHAPE                | SIZE (MM) |
|-------|--------------------|----------------------|-----------|
| Small | Very abundant      | Rounded to irregular | 0.001-1.0 |
| Large | None               |                      | >1.0      |

#### GLASS CLASTS 8% OF ROCK

| TYPE                         | RELATIVE ABUNDANCE | SHAPE                | <u>SIZE (MM</u> ) |
|------------------------------|--------------------|----------------------|-------------------|
| Yellow-Orange <sub>4</sub>   | Very abundant      | Spherical to angular | 0.001-0.2         |
| Greenish Yellow <sub>5</sub> | Two pieces         | Blocky to irregular  | 0.4-0.5           |

4) Approximately half spheres and half shards; some devitrification.

5) Irregular piece hosting colorless glass masses; blocky piece with bubbles and some devitrification.

#### HISTORY AND PRESENT STATUS OF SAMPLES - 6/29/76

10082 was removed from the Documented Sample container (ALSRC #1004) and split in the Vac Lab. Remaining subsamples were re-examined in SSPL.

#### PRISTINE SAMPLES: (VAC-SSPL)

48.0 gm Piece. Four pitted surfaces.
 0.5 gm Chips and fines.

NO RETURNED SAMPLES

NO CHEMICAL OR AGE DATES.

375

,

đ,

. . 1

## 10084

10084 was the generic number assigned to the <1mm sieve fraction of the Bulk Sample fines (ALSRC #1003). These samples were removed from the container and split in the Bio-Prep Lab. Subsamples of 10084 were not physically re-examined. This sample originally weighed 3830 gm.

PRISTINE SAMPLES: (All BP-SSPL)

| 7<br>36<br>95<br>137<br>159<br>160<br>162<br>163<br>164<br>165<br>165 | 5.10<br>10.90<br>5.04<br>1.85<br>232.7<br>19.89<br>4.77<br>22.25<br>60.60<br>652.8<br>.06 | gm<br>gm<br>gm<br>gm<br>gm<br>gm<br>gm<br>gm | Fines<br>Fines<br>Fines<br>Fines<br>Fines<br>Fines<br>Fines<br>Fines<br>Fines |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------|
| 168<br>169<br>246                                                     | .06<br>1.23<br>.15                                                                        | gm<br>gm<br>gm                               | Fines<br>Fines<br>Fines                                                       |
|                                                                       |                                                                                           | -                                            |                                                                               |

## **RETURNED SAMPLES:**

| 244 8.553 gm Fines<br>532 6.646 gm Fines | 627       17.928         628       12.663         789       8.555         798       6.418         851       14.423         908       14.102         993       6.218         995       10.139         999       8.309         1050       6.572         1225       8.00         1226       7.00         1467       6.435 | gm Fines<br>gm Fines |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|

# ORIGINAL PAGE N OF POOR QUALITY

ł

| 1 | 0084 |
|---|------|
|---|------|

The started are a

(

|                  |                       | CHEMICAL ANA  | LYSES |        |
|------------------|-----------------------|---------------|-------|--------|
| Element          | Number of<br>Analyses | Mean          | Units | Range  |
| SiO <sub>2</sub> | 27                    | 42.55         | РСТ   | 6.70   |
| A1203            | 28                    | 13.47         | РСТ   | 12.44  |
| TiO <sub>2</sub> | 29                    | 7.71          | РСТ   | 6.18   |
| Fe0              | 33                    | 15.16         | PCT   | 15.66  |
| Mn O             | 32                    | .208          | РСТ   | .103   |
| Mg O             | 28                    | 7 <b>.9</b> 8 | РСТ   | 1.33   |
| CaO              | 25                    | 11.99         | PCT   | 2.52   |
| $Na_2O$          | 29                    | .445          | РСТ   | .183   |
| K <sub>2</sub> 0 | 65                    | .147          | РСТ   | .111   |
| $P_{2}O_{5}$     | 12                    | .140          | РСТ   | . 271  |
| Н                | 1                     | 1.20          | CC/G  | 0      |
| Li               | 12                    | 11.31         | РРМ   | 9.0    |
| Rb               | 43                    | 3.17          | PPM   | 5.60   |
| Cs               | 11                    | .187          | РРМ   | .104   |
| Be               | 5                     | 2.10          | РРМ   | 2.9    |
| Sr               | 40                    | 168.72        | РРМ   | 130.0  |
| Ь <b>а</b>       | 41                    | 183.29        | РРМ   | 280.0  |
| Sc               | 16                    | 64.00         | РРМ   | 34.0   |
| ۷                | 9                     | 63.78         | РРМ   | 72.0   |
| $Cr_2O_{c}$      | 27                    | .316          | PCT   | .561   |
| Со               | 19                    | 29.66         | РРМ   | 26.0   |
| Ni               | 20                    | 199.57        | PPM   | 251.42 |
| Cu               | 11                    | 11.74         | PPM   | 25.10  |
| Zn               | 11                    | 24.92         | PPM   | 22.5   |
| Y                | 9                     | 109,78        | ррм   | 93.0   |
| Zr               | 15                    | 324.62        | РРМ   | 187.0  |
| Nb               | 5                     | 22.28         | РРМ   | 15.0   |
| Мо               | 3                     | .683          | РРМ   | .650   |

OF POUR QUALITY

377

PT N

\*† 1

i,

÷

;**\*** 

1

10084

| Elem nt | Number of<br>Analyses | Mean  | Units | Range |
|---------|-----------------------|-------|-------|-------|
| Ru      | ¥                     | .6    | РРМ   | 0     |
| Rh      | 1                     | .1    | РРМ   | 0     |
| Pd      | 3                     | .021  | РРМ   | .030  |
| Ag      | 5                     | .056  | РРМ   | .126  |
| Cd      | 6                     | .347  | РРМ   | 1.56  |
| Ta      | 11                    | 1.57  | РРМ   | 1.7   |
| W       | 3                     | .823  | РРМ   | 1.78  |
| Hf      | 15                    | 9.96  | РРМ   | 5.30  |
| Re      | 6                     | 6.30  | РРВ   | 11.0  |
| 0s      | 4                     | .043  | РРМ   | .134  |
| Ir      | 5                     | .008  | РРМ   | .003  |
| Au      | 9                     | .009  | РРМ   | .039  |
| Hg      | 6                     | .002  | PPM   | .005  |
| La      | 17                    | 18.37 | РРМ   | 22.8  |
| Ce      | 16                    | 49.85 | РРМ   | 40.5  |
| Pr      | 8                     | 7.82  | PPM   | 15.0  |
| Nd      | 12                    | 42.63 | PPM   | 30.0  |
| Sm      | 18                    | 12.28 | PPM   | 9.6   |
| Eu      | 19                    | 1.88  | PPM   | 1.67  |
| Gd      | 10                    | 16.10 | РРМ   | 7.70  |
| Tb      | 15                    | 3.32  | PPM   | 6.80  |
| Dy      | 15                    | 19.76 | РРМ   | 13.3  |
| Но      | 11                    | 5.73  | РРМ   | 7.8   |
| Er      | 8                     | 14.38 | PPM   | 23.5  |
| Tm      | 6                     | 1.53  | РРМ   | .7    |
| Yb      | 18                    | 10.83 | PPM   | 14.1  |
| Lu      | 17                    | 1.72  | PPM   | 2.4   |
| Th      | 16                    | 2.36  | PPM   | 2.7   |
| U       | 18                    | .608  | PPM   | .77   |
| В       | 5                     | 3.51  | PPM   | 6.97  |

2

ور

Ŷ

Ĩ,

4

(C. ) VIII

A TANK

200

Ę

()

Ì

| Element | Number of<br>Analyses | Mean   | Units | Range |
|---------|-----------------------|--------|-------|-------|
| Ga      | 11                    | 4.95   | РРМ   | 4.70  |
| In      | 8                     | .902   | РРМ   | 1.05  |
| ті      | 3                     | .003   | PPM   | .003  |
| С       | 2                     | 140.5  | РРМ   | 17.0  |
| Ge      | 6                     | .731   | PPM   | 1.01  |
| Pb      | 5                     | 2.91   | РРМ   | 4.61  |
| Sn      | 1                     | .7     | РРМ   | 0     |
| N       | 1                     | 110.0  | РРМ   | 0     |
| As      | 5                     | .067   | РРМ   | .07   |
| Sb      | 4                     | .018   | РРМ   | .058  |
| Bi      | 2                     | .002   | PPM   | .0004 |
| 0       | 7                     | 41.59  | РСТ   | 3.100 |
| S       | 7                     | .110   | PCT   | .090  |
| Se      | 7                     | .376   | РРМ   | .66   |
| Те      | 3                     | .486   | РРМ   | 1.393 |
| F       | 6                     | 271.00 | РРМ   | 826.0 |
| C1      | 7                     | 35.70  | PPM   | 72.3  |
| Br      | 8                     | .240   | РРМ   | .532  |
| Ι       | 4                     | .399   | РРМ   | .680  |

Analysts: Agrell et al., (1970); Frondel et al., (1970); Haramura et al.,(1970); Compston et al., (1970); Ehmann & Morgan, (1970); Engel & Engel, (1970); Goles et al., (1970); Maxwell et al., (1970); Morrison et al., (1970); Rose et al., (1970); Smales et al., (1970); Wakita et al., (1970); Wanke et al., (1970); Mason et al., (1971); Kim et al., (1971); Bouchet et al., (1971); Vobecky et al., (1971); Ehmann & Morgan, (1972). Utillis et al., (1972); Hubbard et al., (1972); LSPET, (1973); Begemark et al., (1970); Ganapathy et al., (1970); Shedl Viky et al., (1970); Rhodes et al., (1975); Boynton et al., (1975); Turekia & Kharker, (1970); Kharkar & Turekian, (1971); Haskin et al., (1970); Gast et al., (1970); Gopalon et al., (1970); Murthy et al., (1970); Perkins et al., (1970); Philpotts & Schnetzler, (1970); Tera et al., (1970); Travesi, et al., (1971); Basford, (1974); Murthy et al., (1973); Evensen et al., (1973); Annell & Helz, (1970); Reed & Jovanovic, (1970); Reed & Jovanovic, (1971); Smales et al., (1971); Cliff et al., (1971); Papanastassiou et al., (1970); Laul et al.,(1970).

3

ŵ

-----

:

\*

\* "--- AL

· · · ·

Married and white the street

(

Ū

4 . .

3'

۰**۱** -

1 . . .

t

10084

. .

4

1

 $\left( \right)$ 

7

ŝ

Morgan et al., (1972); Goles, (1971); Chyi & Ehmann, (1-73); Lovering & Butterfield, (1970); Lovering & Hughes, (1971); Wasson & Baedecker, (1970); Reed et al., (1970); Hess et al., (1971); Abdel-Rascoul et al., (1971); Fields et al., (1970); Silver, (1970); Wrigley & Quaide, (1970); Crozaz et al., (1970); Turkevich et al., (1971); Wrigley, (1971); Eugster, (1971); Epstein & Taylor, (1970); Kaplan et al., (1970); Kohman et al., (1970); Wanke et al., (1972).

Age References: Armstrong and Alsmiller, (1971); Marti et al., (1970); Perkins, (1970); Basford, (1974); Gopalan, (1970); Silver, (1970); Tatsumoto, (1970); Huey et al., (1971).

ł.

j,

## 10085

10085 was the generic number assigned to the < 1mm sieve fraction of the 3ul. Sample fines. They were removed from ALSRC #1003 and sieved in the Bio-Prep Lab. Upon re-examination in SSPL, it was noted that many subsamples of 10087 are > 1mm in size. The larger subsamples of this generic were re-sieved in RSPL and the > 4mm coarse fines were described.

#### COALSE FINES DESCRIPTION

SAMPLE: 10085,37 NUMBER OF PARTICLES: 1 WEIGHT(GM): .501 COHERENCE: Coherent SHAPE: Rounded SURFACE: Not pitted. Sav mark on one side. COLOR: Grey

MINERALOGY: Microbreccia fragment with basaltic clasts 5 to 7mm in diameter and white clasts < 1mm to 4mm in diameter.



U PAGE IS OUALITY

A

 $\mathbf{O}$ 

0

## COARSE FINES DESCRIPTION

SAMPLE: 10085,722 NUMBER OF PARTICLES: 3 WT.(gm): 1.268

COHERENCE: Coherent

SHAPE: 3 fragments of irregular shape

SURFACE: Granulated to semi-fresh

COLOR: Medium grey

MINERALOGY: Contains oliving, pinkish brown pyroxene, white to clear plagioclase, and ilmenite.

REMARKS: 3 micro-gabbroic fragments with crystal lined vugs.



382

二十二日、二十二日

1-5

. 1

## COARSE FINES DESCRIPTION

SAMPLE: 10085,723

0

1

÷

;

-

\*\*

7.

.

: ,

いちい いいすい

「「「「「「「「」」」

(

1

---

NUMBER OF PARTICLES: 1 WT.(gm): .545

COHERENCE: Coherent

SHAPE: Irregular

SURFACE: Fairly fresh appearing

COLOR: Medium grey

MINERALOGY: White to clear plagioclase, reddish brown pyroxene, ilmenite.

REMARKS: Micro-gabbroic fragments w/o vugs.



ORIGINAL PAGE 15 OF POOR QUALITY

÷

. . . .

.

. 2....

1:12

384 10085 COARSE FINES DESCRIPTION WT.(gm): .078 NUMBER OF PARTICLES: 1 SAMPLE: 10085,724 COHERENCE: Coherent SHAPE: Jagged SURFACE: Vesicular COLOR: Black MINERALOGY: Glass

1972

**(**)

 $\bigcirc$ 

 $\bigcirc$ 

REMARKS: Black, shiny vesicular glass



•

;

···· 1

ч.

*4* 

۰,

i

| $\bigcirc$   | CUPB                          | 10085<br>SE FINES DESCRIPTION | 385                       |
|--------------|-------------------------------|-------------------------------|---------------------------|
|              |                               | UMBER OF PARTICLES: 1         | WT.(gm): .039             |
|              | COHERENCE: Friable            |                               |                           |
| •            | SHAPE: Rounded                |                               |                           |
| •            | SURFACE: Smooth               |                               |                           |
| •            | COLOR: Black                  | h maturin alaca (no clasts    | )                         |
|              | MINERALOGY: Soil Sreccia blac | K Maurix ylass (nu ciass      |                           |
|              |                               |                               |                           |
|              |                               |                               |                           |
|              |                               | ,                             |                           |
| ()           |                               |                               |                           |
| $\mathbb{O}$ |                               | 11/31                         |                           |
|              |                               |                               |                           |
|              |                               |                               |                           |
|              |                               |                               |                           |
|              |                               |                               |                           |
| •            |                               |                               |                           |
| •            |                               |                               |                           |
| •            |                               |                               |                           |
| ٩            |                               | ORIGI                         | VAL PAGE IS<br>OR QUALITY |
|              |                               | OF PC                         |                           |
|              |                               |                               |                           |
| لىيە تە      |                               |                               |                           |
|              |                               |                               |                           |

à

j

٠

.

# COARSE FINES DESCRIPTION

. 1

1)

 $\bigcirc$ 

「「

ŝ

| SAMPLE: 10085,726          | NUMBER OF PARTICLES:   | 3 WT.(gm): .349                         |
|----------------------------|------------------------|-----------------------------------------|
| COHERENCE: Friable         |                        |                                         |
| SHAPE: Rounded             |                        |                                         |
| SURFACE: Not pitted        |                        |                                         |
| COLOR: Dark grey           |                        |                                         |
| MINERALOGY: Glass matrix w | ith a few white clasts | <l diameter.<="" in="" mm="" td=""></l> |



38**6** 

1

j

.....

| 10085 |  |
|-------|--|
|-------|--|

## COARSE FINES DESCRIPTION

SAMPLE: 10085,727

 $\mathbf{O}$ 

(Ē)

(

1

NUMBER OF PARTICLES: 2 WT.(gm): .240

COHERENCE: Coherent SHAPE: Irregular SURFACE: Granulated to semi-fresh COLOR: Dark grey MINERALOGY: Ilmenite, plagioclase and pyroxene REMARKS: Vuggy fine-grained microgabbro(ilmenite in vugs).



1,

and the stand the top of the

いたい、そうでもない

ż,

10085

## COARSE FINES DESCRIPTION

SAMPLE: 10085,728

NUMBER OF PARTICLES: 3 WT.(gm): .546

ORIGINAL PAGE IS

OF POOR QUALITY

COHERENCE: Coherent

SHAPE: Irregular

SURFACE: Fresh to semi-fresh

COLOR: Light grey

MINERALOGY: Plagioclase, ilmenite, and reddish-brown pyroxene and olivine on two fragments.

REMARKS: Micro-gabbro; two of the fragments have a green mineral (probably olivine). One does not.



•

Ō

Ļ

( i)

COARSE FINES DESCRIPTION SAMPLE: 10085,729 NUMBER OF PARTICLES: 1 WT.(gm): .176 COHERENCE: Coherent SHAPE: Rectangular prism (approximately) SURFACE: Granulated on one end. Other surfaces semi-fresh. Vesicular COLOR: Dark grey MINERALOGY: Plagioclase, ilmenite, pyroxene REMARKS: Vesicular basaltic fragments or ilmenite lines the vesicules.

:: ;•

к. , ,

- \*

4. N

 $\bigcirc$ 

10085



No. Con

うちんちゃ かいまいかん いん いっというもない からかんかいかない

LEVEL LA LA

ş.

10085

## COARSE FINES DESCRIPTION

NUMBER OF PARTICLES: 1

WT.(gm): .321

 $\bigcirc$ 

COHERENCE: Coherent

SAMPLES: 10085,730

SHAPE: Jagged

SURFACE: Vesicular

COLOR: Black

MINERALOGY: Glass

**REMARKS:** Black, shiny vesicular glass.



1

## CGARSE FINES DESCRIPTION

SAMPLE: 10085,731 NUMBER OF PARTICLES: 1 WT.(gm): .150

COHERENCE: Coherent

SHAPE: Irregular

3.00

**(**)

 $\mathbf{C}$ 

k

- SURFACE: One surface topped with shiny vesicular glass, other surfaces jagged.
- COLOR: Grey with black glass
- MINERALOGY: Coherent soil breccia with a few white clasts <lmm. Shiny, black vesicular glass on one surface.



بالمعالية المحاطية المحالية والمحالية المحالية المحالية المحالية والمحالية المحالية المحالية والمحالية و والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمح

## COARSE FINES DESCRIPTION

NUMBER OF PARTICLES: 2

SAMPLE: 10085,733

COHERENCE: Coherent

SHAPE: Irregular

SURFACE: Granulated to pitted. Finely vesicular

COLOR: Dark grey

MINERALOGY: Ilmenite, plagioclase, pyroxene

REMARKS: Vuggy fine grained microgabbro (ilmenite in vugs).



ORIGINAL PAGE IS OF POOR QUALITY.

WT.(gm): .589

.)

1.

)

()

書いていいましい。

į,

<u>'</u>

,`

۰۰ ۲ ۲

#### COARSE FINES DESCRIPTION

SAMPLE: 10085,734 NUMBER OF PARTICLES: 1 WT.(gm): .144 COHERENCE: Coherent SHAPE: Trapezoidal prism SURFACE: Highly granulated to semi-fresh. One surface has patina. COLOR: Light grey MINERALOGY: Ilmenite, plagioclase, reddish-brown pyroxene that looks like clivine (<1 mm)

REMARKS: Microgabbroic fragment.

C

( )

l

:

· • • · · · · ·

. . . .



Ţ.

P

ł,

## COARSE FINES DESCRIPTION

SAMPLE:10085,735NUMBER OF PARTICLES:1WT.(gm):.095COHERENCE:CoherentSHAPE:IrregularSURFACE:RoughCOLOR:BlackMINERALOGY:Dull black glass with one clast <1 mm</td>



1

ORIGINAL FAGE

()

17

394

.

ŝ

and the second second second second second second second second second second second second second second second

「「大学を読い」

1

į

2

t., .

1

| • •

Í

| 1 | 0085 |
|---|------|
|---|------|

## COARSE FINES DESCRIPTION

SAMPLE: 10085,736

ないとないまでもう

あいまた

1.11

0

(

NUMBER OF PARTICLES: 2 WT.(gm): .262

COHERENCE: Coherent

SHAPE: Irregular

SURFACE: Each has one surface rough with black shiny vesicular glass.

COLOR: Grey with black glass

MINERALOGY: Coherent soil breccia fragments with a few white clasts <1 mm. Shiny, black vesicular glass on one surface of each fragment.



# ORIGINAL PAGE IS OF POOR QUALITY

5)

0

 $\bigcirc$ 

COARSE FINES DESCRIPTION

SAMPLE: 10085,737 NUMBER OF PARTICLES: 1 WT.(gm): .758 COHERENCE: Friable SHAPE: Rounded SURFACE: Not pitted COLOR: Dark grey MINERALOGY: Glass matrix with a few white clasts <1 mm in diameter.



1

396

10085 COARSE FINES DESCRIPTION WT.(gm): .179 SAMPLE: 10087,739 NUMBER OF PARTICLES: 1 COHERENCE: Coherent SHAPE: Semi-domed SURNICE: One surface covered with vesicular black glass; the other surface is fractured. COLOR: Glass black, breccia grey MINERALOGY: Coherent soil breccia with white clasts <lmm topped on one side with vesicular black glass. ORIGINAL PAGE IS OF POOR QUALITY

0

()

: 1

 $\mathbf{O}$ 

 $\bigcirc$ 

## COARSE FINES DESCRIPTION

NUMBER OF PARTICLES: 2

WT.(gm): .687

COHERENT: Coherent

SAMPLE: 10635,740

SHAPE: Rounded

SURFACE: Exposed, with some patina.

COLOR: Medium grey

MINERALOGY: Ilmenite, plagioclase, reddish brown pyroxene.

REMARKS: Microgabbroic fragments with a few ilmenite lined vugs.





, r

AEY

с. Н

10.1.1. J. J. J.

کئی •

49**1** 

ł

## ORIGINAL PAGE IS OF POOR QUALITY

ł

ł

A MARY AND

## COARSE FINES DESCRIPTION

SAMPLE: 10085,742

NUMBER OF PARTICLES: 1 WT.(gm): .274

Ō

1

0

COHERENCE: Friable

SHAPE: Rounded pyramid

SURFACE: Two pits on one surface.

COLOR: Dark grey

MINERALOGY: Soil breccia with a few white clasts >1mm.



:

; .

28

٤,

COARSE FINES DESCRIPTION

SAMPLE: 10085,744

C

 $\bigcirc$ 

( )

í

**,**‡

٦.

NUMBER OF PARTICLES: 1 WT.(gm): .105

COHERENCE: Coherent

SHAPE: Irregular

SURFACE: Vesicular

COLOR: Black

MINERALOGY: Black vesicular glass, dull in some places, shiny in others.

ORIGINAL PAGE IS OF POOR QUALITY

N

۰ ، ۱

ŗ,

۰ ب

43

.4 .5

100 a 20

10085

#### COARSE FINES DESCRIPTION

SAMPLE: 10085,745

NUMBER OF PARTICLES: 1 WT.(gm): .655

1

Ć)

 $\bigcirc$ 

COHERENCE: Coherent

SHAPE: Rounded

SURFACE: Granulated with some patina.

COLOR: Dark grey

MINERALOGY: Ilmenite, plagioclase, pyroxene

REMARKS: Vuggy, basaltic fragment.(Basalt to microgabbro in grain size)



()

()

·• 3

ź

#### COARSE FINES DESCRIPTION

SAMPLE: 10085,746 NUMBER OF PARTICLES: 2 WT.(gm): .728
COHERENCE: Coherent
SHAPE: The largest in fragment is prismatic, disc-like. The smaller one is non-descript, irregular.
SURFACE: The larger one has pits on one surface. Other surfaces have granulation and patina. The smaller fragment also has some patina.
COLOR: Medium grey
MINERALOGY: Ilmenite, reddish brown pyroxene, plagioclase
REMARKS: Two microgabbroic fragments.



ORIGINAL PAGE IS OF POOR QUALITY 1.000

المطاط اليدرانة وبالمعين

مدة أالالله يويادكون بال

States - Same

- 12 Starting .....

ېر پړ TTT TO THE CONTRACTOR

. A.

404

#### 10085

## COARSE FINES DESCRIPTION

SAMPLE: 10085,753

1 . . . . 1

NUMBER OF PARTICLES: 1 WT.(gm): .7912

COHERENCE: Moderately coherent

1

SHAPE: Sub-rounded

SURFACE: Smooth-all surfaces appear to be fresh except for some glassy splatter.

COLOR: Dark grey

1

ŧ

MINERALOGY: Breccia with following clast types present: White clast, grey and white clast, salt and pepper clast and glass spherules. One clast is a grey and white, combined with a salt and pepper clast.



()

| 10085 |  |
|-------|--|
|-------|--|

#### COARSE FINES DESCRIPTION

## SAMPLE: 10085,754

NUMBER OF PARTICLES: 1 WT

WT.(gm): .5941

COHERENCE: Tough

\*\*\* Mr.9

Ξ,

Ĩ.

()

SHAPE: Angular

SURFACL: All surfaces fresh

COLOR: Dark grey

MINERALOGY: Approximately 70% dark minerals and 30% light

REMARKS: Very fine grained vesicular basalt. Vesicles comprise only about 5% of the surface area. Grain size is too small to determine exact percentages of components present.



INNANCI. PAGE IS OF POOR QUALITY

一次から、御時に長かり

、あいいいいいの思いいで

\*\*\*\*\*\* 1. See -

á

#### COARSE FINES DESCRIPTION

SAMPLE: 10085,755

NUMBER OF PARTICLES: 3 WT.(gm): .2774

J

**(**)

;)

COHERENCE: Coherent

SHAPE: Equant, rounded

SURFACE: Fresh where not glass coated.

COLOR: Dark grey

MINERALOGY: Glass coated breccias:

- 1. Glass is vesicular, black.
- 2. 2 pieces consist of rounded dark grey breccias containing mostly mineral clasts .1-.4mm except one large salt and pepper clast 4 mm long. Glass coating on one side only.
- 3. ] piece is 60% vesicular glass matrix enclosing grey and white clasts and a dark grey vesicular glassy breccia with a few white clasts.



} ;

٠,

`````

·, .

ĩ

۰,

1

j

COARSE FINES DESCRIPTION

SAMPLE: 10085,756

()

NUMBER OF PARTICLE: 1 WT.(gm): .2593

COHERENCE: Coherent

SHAPE: Equant, sub-rounded

SURFACE: Fresh

1 -

COLOR: Medium grey

MINERALOGY: Medium grain basalt

55-60% brown pyroxene 30-35% plagioclase 25% ilmenite Grain size for all minerals ∿.5mm

OOR QUALITY

COARSE FINES DESCRIPTION

SAMPLE: 10085,757

NUMBER OF PARTICLES: 1 WT.(gm): 0.946

17

COHERENCE: Coherent

SHAPE: Equant, angular

SURFACE: Fresh on all but one side

COLOR: Medium grey

MINERALOGY: Metamorphosed breccia -Lineation of white clasts in medium grey matrix. -One side covered with splashed glass and patina, but zap pits not observed.

いたいい

ł,

į

221.24

Ĺ

COARSE FINES DESCRIPTION

1 piece larger grained bladed ilmenites, brown pyroxenes; elongated plagioclase crystals up to .8mm, >5% vugs. 60-65% pyroxene 25% plagioclase 10-15% ilmenite

ORIGINAL PAGE IS OF POOR QUALITY

COARSE FINES DESCRIPTION

SAMPLE: 10085,759

NUMBER OF PARTICLES: 1 WT.(gm): .0987

 \mathbf{O}

[]

()

COHERENCE: Coherent

SHAPE: Sub-rounded

SURFACE: Fresh, small amount of patina, vugs ~5%.

COLOR: Medium grey

MINERALOGY: Medium grain basalt:

Élongated plagioclase crystals (.4mm), some large pale green transparent plagioclase, equant brown pyroxene (.1mm), some ilmenites (.5mm).

70-80% shocked pyroxene 10-15% enhedral ilmenite Remainder plagioclase

410

(^dt'i

COARSE FINES DESCRIPTION

SAMPLE: 10085,760 NUMBER OF PARTICLES 1 WT.(gm): .5154

COHERENCE: Moderately coherent

SHAPE: Sub-rounded

0

ſ

C

SURFACE: Appears patina-covered all over. 2 faces have zap pits $\sim.5\text{mm}.$

COLOR: Dark grey

ORIGINAL PAGE IS OF POOR QUALITY

()

 \bigcirc

 \bigcirc

COARSE FINES DESCRIPTION

SAMPLE: 10085,761 NUMBER OF PARTICLES: 2 WT.(gm): .3191

COHERENCE: Coherent

SHAPE: Angular

412

ł

۰.

•

,

SURFACE: On each piece is one weathered surface containing whitened plagioclase and more rounded appearance, and light patina. Vugs <5%, zap pits on 1 piece.

COLOR: Medium grey

MINERALOGY: First piece: 55% known pyroxene, 30% plagioclase, 15% ilmenite. Grain size is 0.1-0.2mm. Second piece: 50-55% pyroxene, 35-40% plagioclase, remainder - ilmenite. Frier grained than first piece.

REMARKS: Fine grain basalt, fractured in several directions.

PRISTINE SAMPLES:

1,000

 \mathbf{O}

 (\mathbf{D})

,7<u>1</u>

1

5

ſ

....

i

ì

1

4

i

40	2.09	gm	Fines
45	1.03	ġm	Fines
101	26.08	gm	Fines
102	0.83	ğm	Fines
103	4.96	ັກ	Fines
104	171.95	gm	1-3mm Fines
105	28.19	ġm	Fines
106	79.78	ğm	Fines
141	1.22	ğm	Fines
142	0.39	gm	Fines
143	2.44	ğm	. Fines
144	7.61	ġm	Fines
145	4.05	ġm	Fines

RETURNED SAMPLES:

10	7.308 gm	Fines		
14	5.906 gm	Fines		
20	9.822 gm	Fines		
23	9.707 gm	Fines		
146	14.394 gm	Fines		
236	5.515 gm	Fines		
256	7.729 gm	Fines		
374	10.34 gm	Fines		
723-726	Individually	described	in	preceeding

in preceeding pages. u y

Element	Number of Analyses	Mean	Units	Range
Si0 ₂]	42.13	РСТ	0
A1 ₂ 0 ₃	1	13.64	PCT	0
Ti0 ₂	1	7.69	PCT	0
Fe0	1	15.29	РСТ	0
Mn0	1	.21	PCT	0
Mg0	1	7.38	PCT	0
CaO	1	11.32	PCT	0

١.

CHEMICAL ANALYSES

413

1-.

ころうちたちまではない、こころがあるとないないないできたいで、このないです。たいできたいで、たいでものできたというです

4	1	4

· ---;******

Sec. 1

÷.]

10085

CHEMICAL ANALYSES

lange	ç . .
	•
0	
0	
0	ه
.034	
0	
23.	
0	
0	
0	
0	
0	
0	0

Element	Number of Analyses	Mean	Units	Range
Na ₂ 0]	. 54	PCT	0
K ₂ 0	1	.16	РСТ	0
P ₂ 0 ₅	1	.1	PCT	0
Rb	2	2.98	РРМ	.034
Sr	1	159.0	PPM	0
Ba	2	195.5	РРМ	123.
Cr_20_3	1	.33	PCT	0
Ni	1	150.0	РРМ	0
Cu	1	16.	PPM	0
Zn	1	19.	PPM	0
Ŷ	1	124.	PPM	0
Zr	1	351.0	РРМ	0
Nb	1	15.0	PPM	0
S	ו	. 31	PCT	0

Analysts: Brown et al., (1970); Papanastassiou et al., (1970); Compston et al., (1970).

No Age References

İ

0

ing south of the second s

()

C

415

10086

10086 was the generic number assigned to a portion of the Bulk Sample fines (ALSRC #1003). It was removed from the ALSRC and split in the Bio-Prep Lab. There are no remaining pristine samples. Returned samples were not physically re-examined. This sample originally weighed 823 gm.

RETURNED SAMPLES:

5	49.033 gm	Fines
13	5.70 gm	Fines
14	5.00 gm	Fines
46	23.386 gm	Fines
89	15,643 gm	Fines
90	11,455 gm	Fines
91	11.17 gm	Fines
92	13.196 gm	Fines
98	10.617 gm	Fines
164	10,421 gm	Fines
166	13.229 gm	Fines
167	21.10 gm	Fines
170	32.043 gm	Fines
171	8.00 gm	Fines
183	34.779 gm	Fines
184	54.337 gm	Fines
185	11.278 gm	Fines
200	9.956 gm	Fines

CHEMICAL ANALYSES

Element_	Number of Analyses	Mean	Units	Range
Si0 ₂	1	44.92	РСТ	0
A1 ₂ 0 ₃	1	9.82	PCT	0
Ti0 ₂	1	9.34	PCT	0
Fe0	۱	13.38	РСТ	0
Mn0	2	.217	РСТ	.007
Mg0	1	8.29	PCT	0
CaO	1	8.96	PCT	0

31

ORIGINAL PAGE IS OF POOR QUALITY

Element	Number of Analyses	Mean	Units	Range
Na ₂ 0	1	.224	PCT	0
K ₂ 0	1	.144	РСТ	0
P ₂ 0 ₅	1	.043	РСТ	0
н	1	1.2	PPM	0
Li	1	4.9	PPM	0
Rb	1	13.	PPM	0
Cs	1	.24	РРМ	0
8e	1	1.3	PPM	0
Sr	1	42.	РРМ	0
Ba	1	170.	PPM	0
٧	1	11.	PPM	0
Cr ₂ 0 ₃	1	.248	РСТ	0
Co	1	12.	PPM	0
Ni	1	56.03	РРМ	0
Y	1	11.	PPM	0
Zr	1	140.	РРМ	0
Nb	1	10.	РРМ	0
Ag	1	3.9	PPM	0
La	1	.67	PPM	0
Ce	1	7.3	PPM	0
В	1	.71	PPM	0
Ga	1	3.9	PPM	0
С	5	137.25	PPM	202.
Ge	1	1.3	PPM	0
N	3	91.67	PPM	133.
As	1	.57	PPM	υ
S	4	.044	РСТ	.066

CHEMICAL ANALYSES

O

0

3

} ; } ; あいないない かいろうろう

10086

. . . .

۰.,

1.0

and the state

0	10086 417					
			CHEMICAL AN	ALYSES		
•	Element	Number of Analyses	Mean	Units	Range	
	F	1	3.5	РРМ	0	
	C1	1	.91	PPM	0	
	Analysts: Kaplan et	Oro et al., (19 al., (1970); Kve	970); Engel & ervolden et al.	Engel,(1970); , (1970); Mur	<pre> Hoore et al., phy et al., (19</pre>	(1970); 970).
	No Age Ref	erences				
•						

*10

• • • 1

į

\$

٠.,

いたいたい

: 1

0

· 1

ł

 t^{i}

-44 , Ę

đ 1 3

and the second

Ħ

隙開

1

i

.

ð

Se 1 50

13

٦¥.

10087

10087 was the generic number assigned to a portion of 10011 (Bulk Sample fines) in the Bio-Prep Lab. There are no pristine samples remaining and no returned samples larger than 2 gm. This sample originally weighed 17.4 gm.

CHEMICAL ANALYSES

Element	Number of Analyses	Mean	Units	. Range	
C	1	133.0	PPM	0	
Analysts:	Epstein & Taylo	or. (1970).			

No Age References

ORIGINAL PAGE IS OF POOR QUALITY

0

 \bigcirc

0

EE 73

いたち ちちち ない いいのかれ 一般の

10089

10089 was the generic number assigned to a small portion of the Bulk Sample fines which were sieved and allocated to P.I.'s in the Bio-Prep Lab. No pristine samples are available. This sample originally weighed 50 gm.

RETURNED SAMPLES:

į

2 21.76 gm Fines.

. .

9-1**8-**40

10091

Sample 10091 is an angular to sub-angular, medium dark grey, breccia. This sample originally weighed 24 gm and presently measures 4.2x3x2 cm. It was originally returned in ALSRC #1003 (Bulk Sample container).

BINOCULAR DESCRIPTIONSBY: GeeslinDATE: 7/9/76ROCK TYPE: BrecciaSAMPLE: 10091,26WEIGHT: 10.41gmCOLOR: Medium dark greyDIMENSIONS: 4.2 x 3 x 2 cmSHAPE: Angular to subangularCOHERENCE: Intergranular - fairly coherent
Fracturing - absent

FABRIC/TEXTURE: Anisotropic/Breccia

VARIABILITY: Homogeneous

SURFACE: Edges fairly sharp and not rounded. Some patina on T_1 , N_1 , faces.

ZAP PITS: Few on T_1 - N_1 .

CAVITIES: Absent

COMPONENT	COLOR	% OF ROCK	SHAPE	SIZE (MM) DOM. RANGE
Basalt Clast $_1$	Black, White/Brn	10	Angular to rounded	3 2-5
Matrix	Dk.Grey	90		
 Pyroxene, p distribution 		lilmeni	te. All crystallites,	even

THIN SECTION DESCRIPTION

There was no thin section for the generics 10091 available at the onset of Secondary Examination. It was judged that the remaining sample (10.41 gm) should not be chipped for a thin section allocation.

à

10091

ر مر

()

HISTORY AND PRESENT STATUS OF SAMPLES - 7/12/76

10091 was removed from the Bulk Sample container (ALSRC #1003) and split in the Bio-Prep Lab. There are no remaining pristine samples. The one remaining returned sample was re-examined in RSPL.

PRISTINE SAMPLES:

None

1

RETURNED SAMPLES:

36 10.41 gm

Chip. One face has a few pits.

CHEMICAL ANALYSES

Element	Number of Analyses	Mean	Units	Range
SiO ₂	2	40.64	РСТ	4.27
A1 ₂ 0 ₃	2	11.62	РСТ	6.62
TiO ₂	2	8.84	РСТ	2.50
Fe0	2	17.37	РСТ	3.86
Mn0	2	.194	РСТ	.129
Mg0	2	7.05	РСТ	1.16
CaO	2	10.49	PCT	4.78
Na ₂ 0	2	.198	РСТ	. 305
K ₂ 0	2	.211	РСТ	.133
$P_{2}O_{5}$	2	.041	РСТ	.032
Н	2	.21	PPM	. 020
Li	2	3.90	РРМ	. 4
Rb	2	10.00	РРМ	6.0
Cs	2	.550	РРМ	.67

 \bigcirc

(

i

0

10091

CHEMICAL ANALYSES

Element	Number of Analyses	Mean	Units	Range
Sr	2	41.00	РРМ	2.0
Bà	2	64.00	PPM	92.0
v	2	28.00	РРМ	6.0
Cr_2O_3	2	. 285	РСТ	.044
Co	2	11.8	PPM	4.4
Ni	2	290.0	PPM	260.0
Y	2	1.35	PPM	.100
Zr	2	23.5	PPM	17.00
Nb	2	2.05	PPM	.5
Ag	2	2.0	PPM	2.0
La	2	.535	PPM	. 39
Ce	2	1.90	PPM	1.80
В	2	. 37	РРМ	.52
Ga	2	2.3	РРМ	1.4
ті	1	2.70	РРВ	0
C	1	6.0	PPM	0
Ge	2	.875	P PM	.85
N	1	15.00	PPM	0
As	2	. 335	PPM	.110
S	2	.245	РСТ	.07
F	2	3.05	РРМ	1.3
C1	2	2.65	PPM	1.3

Analysts: Oro et 21., (1970).

No Age References

ORIGINAL PAGE IS OF POOR QUALITY,

1999 A.

の同時

ء 115 Sample 10092 is an angular, medium light grey, olivine basalt. This sample originally was numbered 10002,22, but due to its size was given a new generic number during re-examination in SSPL. The sample was returned in ALSRC #1003 (Bulk Sample container).

BINOCULAR DESCRIPTIONBY: TwedellDATE: 6/2/76ROCK TYPE: Olivine BasaltSAMPLE: 10092,0WEIGHT: 46 gmCOLOR: Medium light greyDIMENSIONS: 3 x 4.2 x 2.6 cmSHAPE: AngularCOHERENCE: Intergranular - Tough
Fracturing - Few, non-penetrative, one penetrative

FABRIC/TEXTURE: Isotropic/Equigranular

VARIABILITY: Homogeneous

SURFACE: Surface is irregular and well coated with patina. One fresh surface on B_1 face.

ZAP PITS: Many on T_1 , N_1 . Few on B_1 . None on any other. Pits are glass lined, up to .8mm in diameter.

		% OF		SIZE(M	
COMPONENT	COLOR	ROCK	SHAPE	DOM.	RANGE
Olivine ₁	Green	3	Euhedral	.09 <.	082
Pyroxene ₂	Honey Brown to Dark	45	Euhedra1	.] <.	053
Plagioclase ₃	White	40	Euhedral to aphinitic	.1 <.	012
Ilmenite	Black	8	Platy	.09 <	.11
Mesostasis	Black	4		<.08	<.1

1) Appears in small groups throughout sample.

2) Well defined crystals.

3) Ranges in texture from crystalline to crushed.

HGINAL PAGE IS

.

SECTION: 10092,5

THIN SECTION DESCRIPTION

BY: Walton

DATE: 7/15/76

ţ

 \bigcirc

Fine-grained subcphitic basalt composed of clinopyroxene, two SUMMARY: generations of plagioclase, and ilmenite with subordinate olivine and mesostasis. Large anhedral crystals of clinopyroxene host the other phases present.

PHASE	% SECTION	SHAPE	<u>SIZE (MM</u>)
Pyrox	48	Anhedral to irregular	0.01-0.9
Plag	29	Euhedral to anhedral	0.01-0.4
01	5	Anhedral	0.2-0.8
Opaq	15	Subhedral to skeletal	0.01-0.4
Meso	3		0.001-0.1

COMMENTS:

Pyroxene - The clinopyroxene forms large anhedral pinkish tan masses which host the other phases present. The extinctions, for the most part, are uneven and zoning is present. Only a few show any cleavage traces.

, <u>,</u> , ,

. .

An unidentified brown mineral was present. It occurred as isolated PRISTINE SAMPLES: (VAC-SSPL)

and the second se

()

• [II.

0 28.63 qm Rock. Three pitted surfaces. One fresh surface. 1 16.32 gm Piece. Two pitted surfaces.

NO RETURNED SAMPLES.

ORIGINAL PAGE IS OF POOR QUALITY

grains and near ilmenite crystals. No cleavage was seen and it was nonisotropic.

Plagioclase - Two generations of plagioclase occur in the rock. The first type consists of euhedral tablets which appear in the sections as equant acicular crystals. The crystals show well developed twin planes and extinctions are sharp.

The second type of plagioclase crystals represented in the rock forms interstitial masses between the pyroxene-plagioclase-ilmenite network. The masses are larger than the euhedral crystals and show poor twin planes and extinctions are uneven. This later formed plagioclase is most often associated with the mesostasis that occurs in the rock. The mesostasis is light brown in color and very turbid.

- Olivine Large to small masses of olivine grading to pyroxene occur in the section. A well developed fracture pattern, color difference and indices easily distinguish it from the adjacent pyroxene. The masses are more or less concentrated in one part of the section and are not uniformly distributed.
- Opaques The most common opaque mineral present in the rock is ilmenite. The crystals form subhedral to skeletal masses scattered throughout the rock. Most of the crystals show rutile exsolutions.

Small masses of troilite and troilite with iron-nickel inclusions are also present. These form only a very small percentage of the total opaques present.

- TEXTURE: Subophitic fine-grained basalt consisting of pyroxene, two
- generations of plagioclase, ilmenite, olivine and mesostasis. Only moderate shock effects are evident. Contacts are all sharp and the only interreaction is the olivine to pyroxene gradation.

HISTORY AND PRESENT STATUS OF SAMPLES - 7/15/76

10092 was split from 10002 (Bulk Sample generic) during re-examination in SSPL. Allocations were made for chemical analyses and thin sections.

and the state of the second second second second second second second second second second second second second

()

1100

• • • • •

•

1,

4 #

.1

1

1. a. a. a. a. a.

ĉ 1 4

10093

Sample 10093 is a subangular, medium dark grey, fine breccia. This sample was originally part of 10002,22 but was given a new generic number during re-examination. It was returned in ALSRC #1003 (Bulk Sample container).

DATE: 6/16/76 BY: Twedell BINOCULAR DESCRIPTIONS WEIGHT: 25.85 gm SAMPLE: 10093,0 RUCK TYPE: Fine Breccia DIMENSIONS: 5 x 2.8 x 1.3 COLOR: Medium Dark Grey SHAPE: Subangular

COHERENCE: Intergranular - coherent Fracturing - few, non-penatrative

FRABIC/TEXTURE: Anisotropic/Fine Breccia.

VARIABILITY: Homogeneous

TA NO. 1

...

-

SURFACE: No patina on any surfaces. Surface is rough on S_1 , smooth on E1 & W1.

Many on E_1 , few on N_1 , and S_1 , none on any others. Pits are ZAP PITS: glass lined up to .8 mm in size.

CAVITIES: Absent.

COMPONENT	COLOR	% OF ROCK	SHAPE	SIZE (MM) DOM. RANGE
Matrix Basalt clast	Med. dk. grey Honey brown, black & white	98% 1%	Angular to sub- rounded	1 1-2
White clast	White	< 1%	Subangular to subrounded	.8 .7-1
Brown & White clast	Honey brown & white	<1%	Angular	5
Salt & Pepper clast	Black & white	< 1%	Angular to sub- rounded	.8 .3-1.0
Grey clast	Submetallic	<1%	Subrounded	•5

10093

SECTION: 10093,5	Width of field 1.35 mm	plane light
THIN SECTION DESCRIPTION	BY: Walton	DATE: 7/15/76

SECTION: 10093,5

....

SUMMARY: Partly devitrified typical breccia with aboundant crystallites in the matrix. Over one half of the matrix is composed of small crystallites giving the overall appearance of the matrix a light brown coloration.

MATRIX 75% OF ROCK

PHASE	% OF SECTION	SHAPE	SIZE (MM)	COMMENTS
Lt to dk brn	100%		<0.001	Moderate glass content; high crystallite content.
	MINERAL CL	ASTS 12% OF R	OCK	
PHASE	RELATIVE ABUNDANCE	SHAP	E	SIZE(mm)
Pyroxene ₁	Very abundant	Angular to	irregular	0.001-0.4
Plagioclase ₂	Moderate	Blocky to i	rregular	0.001-0.4
				ORIGINAL PAGE IS OF POOR QUALITY

 \bigcirc

 \mathbf{O}

0

and a second and the

Opaques ₃	Few	Skeletal to blocky	0.001-0.1	
 Many show poor optical characteristics; mainly smaller fragments. A few large shards; most show good twin planes. A few larger blocky crystals; numerous small fragments in matrix. 				
	LITHIC CLA	STS 9% OF ROCK		
TYPE	RELATIVE ABUNDANCE	SHAPE	SIZE (MM)	
Small	Very abundant	Round to irregular	0.001-1.0	
Large ₄	One present	Irregular	>1.0	
4) A fine-grain	ned basalt consisting	of pyroxene, plagioclas	e and ilmenite.	
	GLASS CLAS	STS 4 % OF ROCK		
<u>TYPE</u>	RELATIVE ABUNDANCE	SHAPE	SIZE (MM)	
Yellow-Orange ₅	Very abundant	Angular to spherical	0.001-0.6	
White ₆	Few	Angular to spherical	0.001-0.3	
5) Approximate	ly half angular shard	s and half spheres or pa	rt spheres.	

shards and half spheres or part spheres: some devitrification.

Mostly angular shards; a few part spheres. 6)

HISTORY AND PRESENT STATUS OF SAMPLES 7/15/76

10093 was part of 10002,22 (Bulk Sample generic processed in the Bio-Prep Lab.) Upon re-examination in SSPL it was assigned its own generic number and allocations were made for thin sections and chemical analysis.

PRISTINE SAMPLES

()

÷

ы.

.

: '

Reaches and the second s

()

j

0 24.17 gm Rock. Three pitted surfaces. VAC-SSPL

NO RETURNED SAMPLES

1

こうというというないでのな

and the second second

いやれたいである

. ¥

ŝ ÷.

2.2

è в. į.

2

10094

Sample 10094 is a subangular to subrounded, medium dark grey, breccia. This sample was originally part of 10001,9, but was given a new generic number during re-examination. The sample was returned in ALSRC # 1003 (Bulk Sample container).

BINOCULAR DESCRIPTIONSBY: TwedellDATE: 9/19/76ROCK TYPE: BrecciaSAMPLE: 10044,59WEIGHT: 25 gmCOLOR: Medium dark greyDIMENSJONS: 3 x 2.5 x 2.3SHAPE: Subrounded - subangular

COHERENCE: Intergranular - coherent Fracturing - few penetrative, few non-penetrative.

FABRIC/TEXTURE: Ansotropic/Breccia.

VARIABILITY: Homogeneous

SURFACE: Irregular due to numerous fractures. Some small patches of patina on several surfaces.

ZAP PITS: Many on S_1 , T_1 ; few on E_1 , W_1 and N_1 . None on B. Pits are glass lined up to 4 mm in diameter.

a or

CAVITIES: Absent

()

¥

 \bigcirc

. .

à

· · · · · ·

. .

ÿ

۰. بر

いるないというというないと

()

TT

i

COMPONENT	COLOR	ROCK	SHAPE	DOM	E (MM) RANGE
Matrix	Med dk grey	97%		-	-
Basalt clast	Brn Wht Blk	<1%	Angular	2	<1-6
Grey clast	Grey	1%	Subangular	1	<1-3
White clast	White	<1%	Angular	2	<]-8
Salt & Pepper	Blk & white	1%	Angular	5	<]-]]

;

• • • • 2

÷.,

¥:

14 7 5

N. S. S. S. S.

1

10094

SECTION: 10094,6

THIN SECTION DESCRIPTION

BY: Walton

DATE: 7/16/76

()

SECTION: 10094,6

Partly devitrified typical breccia with no large lithic clasts. Numerous small lithic clasts are present. Since the section SUMMARY: is very small, the exclusion of large clasts may be a result of the sampling and be atypical for the rock.

MATRIX 69% OF ROCK

PHASE	% OF SECTION	SHAPE	<u>SIZE (MM)</u>	COMMENTS
Dark brown	100%		<0.001	High glass content plus numerous crys . tallites.

MINERAL CLASTS 13% OF ROCK

PHASE	RELATIVE ABUNDANCE	SHAPE	<u>SIZE (MM)</u>
Pyroxene _l	Very abundant	Angular to irregular	0.001-0.3

435

Plagioclase ₂	Moderate	Blocky to irregular	0.001-0.3
Opaques ₃	Few	Skeletal to blocky	0.001-0.1
1) Poor optica	al characteristics:	some zoming.	

2) Fair to good twins; few large pieces.

Most in clasts; numerous small fragment in matrix.

	LITHIC CLASTS 13% OF ROCK			
TYPE	RELATIVE ABUNDANCE	SHAPE	<u>SIZE (MM)</u>	
Small	Very abundant	Rounded to irregular	0.001-1.0	
Large	None		>1.0	

GLASS CLASTS 5% OF ROCK

TYPE	RELATIVE ABUNDANCE	SHAPE	<u>SIZE (MM)</u>
Yellow-Orange ₄	Very abundant	Spherical to angular	0.001-0.3
White ₅	Moderate	Angular to spherical	0.001-0.4

()

Ę

r

(

1

()

ž,

1.17

. . .

2.1

禿

3)

Almost all spheres or part spheres; some large angular shards.

4) 5) Almost all angular shards; some spheres and part spheres; some devitrification.

HISTORY AND PRESENT STATUS OF SAMPLES 7/16/76

10094 was part of 10001,9 (Bulk Sample generic processed in the Bio-prep. Upon re-examination in SSPL, it was assigned its own generic number and allocations were made for thin sections and chemical analysis.

PRISTINE SAMPLES

0	24.23 gm	Rock. Pitted on all but one surface.
4	0.54 gm	Chips and fines.

NO RETURNED SAMPLES

.

ORIGINAL PAGE IS OF POOR QUALITY

*

Appendix A Definition of Terms and Acronyms

.

5

. . .

4

ALSRC	- Apollo Lunar Sample Return Container.
Bio-Prep Lab	- Biological Preparation Laboratory. This lab processed the Bulk Sample and prepared aliquots for biological testing and analysis.
EVA	- Extravehicular Activity.
JSC	- Johnson Space Center, Houston, Texas.
LCL	- Lunar Curatorial Laboratory. This is the present loca- tion for sample processing and storage.
LM	- Lunar Module.
LRL	- Lunar Receiving 'aboratory. This is the overall term for the individual laboratories that first received and processed the Apollo 11 samples.
MESA	- Modularized Equipment Stowage Assembly.
Min.Sep.Lab.	- Mineral Separation Laboratory.
MQF	- Mobile Quarantine Facility.
NASA	- National Aeronautics and Space Administration.
NSI	- Northrop Services Incorporated.
PCTL	 Physical-Chemical Testing Laboratory. This Lab pro- cessed the Contingency Sample and performed detailed descriptions and analyses of the Apollo 11 rocks and soils.
PET	- Preliminary Examination Team.
Pristine Samples	 For Apollo 11, those samples which have not been prev- iously allocated as exposed to highly degrading contam- inants.
RCL	- Radiation Counting Laboratory.
Returned Samples	- Consists of samples that have been allocated to Principle Investigators, analyzed (degraded) and returned.
RSPL	- The Laboratory where the returned samples are presently stored and processed.
SSPL	 The Laboratory where pristine samples are currently stored and processed.

436

٩,

1-1-

П

1

1

i

		AP	PENPIX BPH	OTO INCEN			
SAMPLE NUMBER	PHOTO NUMBER	TYPE VIEW	COLUR OR BLK/WHITE	SAMPLE NUMBER	PHOTO JUMBER	TYPE VIEW	COLOR OR BLK/WHIT
10003.0	5-69-45005 5-69-45006	Stereo	6/W	10003,25	5-76-2554E 5-76-25547	Processing	C
	S-69-45007 S-69-45008 S-69-45009			10003,49	5-76-26304 5-766305	This Section	B/W
10003.0	S-69-45010 S-69-45011 S-69-45014 S-69-45016 S-69-45019 S-69-45021 S-69-45022 S-69-45022 S-69-45027	Rock	₿/W	10004	S-69-45105 S-69-45106 S-69-45107 S-69-45108 S-69-45109 S-69-45110 S-69-45111 S-69-45112 S-69-45113	Core Tube	87W
10903.0	S-52-45066 S-69-45067 S-69-45068 S-69-45069 S-62-45070 S-62-45071	Microscope view	6/W		S-69-45114 S-69-45115 S-69-45117 S-69-45117 S-69-45118 S-69-45119 S-69-45120		
10003,0	S-69-45077 S-69-45078 S-59-45079 S-69-45080 S-69-45081 S-69-45082	Fines	9/W		S-69-45121 S-69-45122 S-69-45123 S-69-45535 S-69-45536 S-69-45537		
	S-69-45083 S-69-45084 S-69-45085			10005	5-69-45244 5-69-45245 5-69-45246	Core Tube	B/W
10003,0	S-69-45124 S-69-45125 S-69-45127 S-69-45127 S-69-45128 S-69-45129 S-69-45130 S-69-45131 S-69-45133	RCL Sample	B/W		S-69-45247 S-69-45248 S-69-45250 S-69-45250 S-69-45251 S-69-45252 S-69-45253 S-69-45254 S-69-45255		
10003,0	S-09-45191 S-69-45192 S-69-45193	ALSRC	B/W	10009.0	S-75-31104 S-75-31105 S-75-31106 S-75-31107	Ortho	C
10003,0	\$-69-45402 \$-69-45403	Stereo	B/₩		S-75-31108 S-75-31109		
10003,0	S-69-45404 S-69-59274	Thin Section	B,∕₩	10099 ,1 2 10009,7	S-75-31361 S-76-25830	Rock Processing Thin Section	C B/W
	S-69-59287 S-69-59288 S-69-59289 S-69-59290 S-69-59290 S-69-59291			10010	5-76-26296 5-69-45406 5-69-45406 5-69-45407	Glass Spheres	6/W
10003,37	5-70-49473 5-70-49474	Thin Section	B+₩		S-69-45408 S-69-45409 S-69-45410		
10003,47	5-70-50549 5-70-50552	Thin Section	B∠W		5-69-45411 5-69-45412		
10003	5-75-28695 5-75-28697 5-75-28698 5-75-28698 5-75-28699	Rock Reconstruc	C	10015	5-69-45062 5-69-45063 5-69-45064 5-69-45065	Ніспоясоре узем	B/W
10003,49	5-75-30939 5-75-30940 5-75-30941	Thin Section	C.		5-69-45194 5-69-45195 5-69-45196 5-69-45197	Powder	B/W
0003,38,71,119	5-76-20468 5-76-20469	Processing	С		5-69-45198 5-69-45199		
0003,25	S-76-25338 S-76-25339 S-76-25340 S-76-25340 S-76-25545	Processing	C	10017 10017,10,20	S-E9-45200 S-69-45214 S-69-45217	F-201 F-201	B/W B/W

ł

• • • 14 i

i

1

2

1

i

0

3

k L

ś

0

· · · · ·

1

i

ł

1 \$

1

1

-1

..,

ſ

•

:

.

Į

- Miler - Salatingan

1

1

P

ORIGINAL PAGE IS OF POOR QUALITY

ľ

1

. 1

1

1

•

r i

0

٩.

ſ

()

i

1

1.1

4

11

i

į.

1

							435
10017	S-59-45222 S-69-45370	F-201 RCL Sample	B/W B/W	10017	5-70-49973 5-70-49974	Thin Section	ß/W
10017e	S-69-45371 S-69-45373 S-69-45374	1-201	ត ហ	10017	S-75-30209 S-75-30210 S-75-30211	Rock Processing	C
10017	S-69-45375 S-69-45376 S-69-45377 S-69-45378	F-201	6/W		\$-75-30212 \$-75-30213 \$-75-30214 \$-75-30215		
	5-63-45379			10017,82	5-75-30942	Thin Section	C
10017	5-69-47558 5-69-47559 5-69-47560	Steren & Post- Split	B/₩	10917	S-76-21149 S-76-21150	Rock Processing	C
	S-69-47551 S-69-47562 S-69-47563 S-69-47564			10017,81	S-76-25451 S-76-25452 S-76-25453 S-76-25453	Ortho	C
	S-69-47565			10017,96	S-76-25457	Rock	С
	5-69-47566 5-69-47567 5-69-47568			10017,82	5-76-26302 5-76-26303	Thin Section	B/W
	S-69-47569 S-69-47570 S-69-47571 S-69-47572 S-69-47573			10018,19,20	S-69-45215 S-69-45216 S-69-45217 S-t9-45218 S-69-45219	F-201-Chio	B/W
	S-+9-47574 S-69-47575			10018,19,20	5-69-45256	Mug Shot	C/W
10017	5-69-47373 5-69-48453 5-69-48454 5-69-48455 5-69-48456 5-69-48456	Mug Shot	R≠W		S-69-45257 S-69-45255 S-69-45259 S-69-45260 S-69-45261 S-69-45262		
10017	S-69-492.2 S-69-49234 S-69-49235 S-69-49236 S-69-49243 S-69-49243 S-69-49244	Rock	B/W		S-69-45263 S-69-45264 S-69-45265 S-69-45266 S-69-45267 S-69-45267 S-69-45269 S-69-45270		
10017	S-69-53961 S-69-53962 S-69-53963 S-69-53964	Thin Section	6/W		S-69-45271 S-69-45272 S-69-45273 S-69-45274		
10017,16	S-69-53982 S-69-53983 S-69-53984 S-69-53985 S-69-54023	Thin Section	B/w		S-69-45275 S-69-45276 S-69-45277 S-69-45278 S-69-45279 S-69-45280		
10017,15	5-69-54058 5-69-54059	Thin Section	B/W		S-69-45281 S-69-45282		
10017,16	S-69-54062 S-69-54063 S-69-54065	Thin Section	B/W	10018,19	S-69-45283 S-69-45976 S-69-45977	Mug Shot	B/W
10017,15	S-69-54066	Thin Section	B/W		5-69-45978 5-69-45979		
10017	5-69-54089 5-69-59252 5-69-59333	Thin Section	₿/₩		S-69-45980 S-69-45981 S-69-45982		
10017,01	5-70-48930 5-70-48931	Thin Section	C		S-69-45983 S-69-45984 S-69-45985		
10017	5-70-49222 5-70-49223	Thin Section	B/W		S-69-45986 S-69-45987		
10017,20	S-70-49230 S-70-49231	Thin Section	B/W		5-69-45988 5-69-45939 5-69-45990		
10017,15	S-70-49868 S-70-49869	Thin Section	B/W		5-69-45991 5-69-45992		
10017,62	S-70-49872 S-70-49873	Thin Section	B/W		S-69-45993 S-69-45994 S-69-45995		
10017,59	S-70-49878 S-70-49879	Thin Section	B/W		S-69-45996 S-69-45997 S-69-45998		

439

and a <u>standard a standard</u> and a sa a standard a standard a standard a standard a standard a standard a standard standard standard standards a standard a standard standard standard standard standard standard a standard a stan

1

ł ł Ę .

> <u>[</u>]. \$

> > •

.;

1

1. A. C.

ŧ

-]

.

hși,

.

1

, .

and the second second second second second second second second second second second second second second second

¥

10018,19	<.69-45999 <.69-45000 S-69-45601 S-69-45602 S-69-45603 S-69-45604	Mug Shot	8/W	10019	5-69-54037 5-69-54038 5-69-54040 5-69-54041 5-69-54060 5-69-54061	ייא. Section	B/₩
10018,20	5-69-45(05 5-69-54003	Thin Section	₿/W	10019.2	5-70-19237 5-70-19238	Thin Section	c
10018	5-69-54004 5-69-54009	Thin Section	B/W	10019	5-70-48934 5-70-48935	Thin Section	C
	S-69-54010 S-69-54015 S-69-54017			10019	S-70-49975 S-70-49976	Thin Section	B/W
10018,32	S-69-54081 S-69-54086	Thin Section	B∕W	10019,17	5-70-50547 5-70-50543	Thin Section	B/W
	5-69-5408/			10019,1	S-74-27033	Rock Display	B/W
10018	S-69-59361 S-69-59396 S-69-59397 S-69-59403 S-69-59414 S-69-59415 S-69-59538 S-70-45933	Thin Section	B/₩ C	10019,30 10019	S-74-27036 S-75-31360 S-75-31361 S-75-31363 S-75-31363 S-75-31366 S-75-31366 S-75-31366	Rock Display Rock Processing	B/W C
10018,27	S-70-49218	Thin Section	G/W	10010 1	S-75-31367	0-41-5	E (14
10018,26	S-70-49219 S-70-49386 S-70-49887	Thin Section	6/w	1001011	S-76-23354 S-76-23355 S-76-23356	Ortho	6/W
10010	S-74-22918 S-74-22918 S-74-22919 S-74-22920	Rock Display	B7₩		S-76-23357 S-76-23358 S-76-23359	Deel	r
	5-74-22920			10019,30,80	S-76-23360 S-76-26276	Rock Thin Section	C B/W
10018,2,16	S-75-30221	Ortho	C	10019,33	S-76-26276 S-76-26277	THE SECTOR	U/ M
10018	S-75-30222 S-75-30223 S-75-30225 S-75-30225 S-75-30226 S-75-30227 S-75-30227 S-75-30227	Ortno	С	10020	S-76-26278 S-69-45214 S-69-45224 S-69-45368 S-69-45369 S-69-45372	F-2G1	6/¥
10018,17	5-75-30537	Sawed Sunface	с	19920,2	S-69-46479 S-69-46480	Stereo	D,/W
10018	5-75-30539	Ortho	c		5-69-46481		
10018.32	\$ -75-30943	Date Section	С	10020	\$-69-47332	stereo	B/W
10018,24	5-76-21352 5-76-21353	Rock Processing	L		5-69-47333 5-69-47334 5-69-47335		
10018,32	5-76-26310 5-76-26312	Thin Section	B/W		5-69-47340 5-69-47341		
10019	5-69-45220 5-69-45221	F-201	D,/W		8-£9-47342 5-69-47343 5-69-47344		
10019	8-69-46255 8-69-46256	Stereo	5/¥		5-69-47345	•	n
	5-69-46257 5-69-46213 5-69-46259 5-19-46260 5-19-46260			10020,28 10020	5-69-54014 5-69-59272 5-69-59284 5-69-59340 5-69-59345	Thin Section Thin Section	B7₩ 67₩
	5-09-40262 5-69-46263 5-69-46264 5-69-46264			10020,57	S-70-15177 S-70-18178 S-70-18179	Rock Display	C
	5-69-46265 5-69-46265 5-69-46267 5-69-46269 5-69-46270 5-69-46330 5-69-46331 5-69-46333 5-69-46333			100.10	5-70-48936 5-70-48937 5-70-48938 5-70-48940 5-70-48940 5-70-48941 5-70-48947	Thin Section	с
	コーじ パー ほど ろろう			10020	5-70-49214	Thin Section	B/W

يىتتى بىر ، ر

1

1

1

1 20 1

.

-) -

1

i

5-1

i

1

7

• ----j: ; į

0

ĩ

ņ

 \bigcirc

2 1

¢

0

ţ

A CONTRACTOR

1.1

1

ł

10020,52	S-70-50543 S-70-50544 S-70-50545 S-70-50546	Thin Section	B∕₩	10022	S-69-45384 S-69-45385 S-69-45386	Siereo	W\¥J
10020,57	5-73-17980 5-73-17985 5-73-17985	Display Case	₿/W	10022	S-69-45522 S-69-45523 S-69-45524 S-69-45525	Mug Shot	67 W
10020,189	5-76-25459 5-76-25469	Rock	С		5-69-45526 5-69-45527 5-67-45560		
10020,6,3,5	5-76-25879 5-76-25880	Rock	C		S-69-46328 S-69-47618		
10020,31	S-76-26292 S-76-26293	Thin Section	B/W	10022	S-69-47619 S-69-47523 S-69-47624	Hicrograph	6/W
10021	5-69-45225 S-69-45226 S-69-45227	RCL Samule	B/W	10022,22	S-69-47895	Rock	C
10021	S-69-45421 S-69-59235 S-69-59236 S-69-59246 S-69-59246 S-69-59281 S-69-59304 S-69-59310 S-69-59323 S-69-59323 S-69-59334	Thin Section	B/W	10022 10022,22	S-69-47908 S-69-53998 S-69-53992 S-69-54022 S-69-54027 S-69-54029 S-69-54030 S-69-54030 S-69-54031 S-69-54031 S-69-54031 S-69-59312 S-69-59312	Close-Up Thin Section	5/W 8/W
10021	S-70-19239 S-70-19240 S-70-19241 S-70-19242 S-70-19243	Thin Section	С	10022,22	S-70-48942 S-70-48943 S-70-48944 S-70-48944 S-70-48945	Thin Section	C
10021,31	S-70-19244 S-70-49226	Thin Section	B/W	10022,40	S-70-49196 S-70-49197	Inin Section	8/W
	5-70-49227			10022,108	S-74-27029	Rock Display	B/W
10021,28	S-70-49449 S-70-49450 S-70-49451 S-70-49452	Thin Section	67W	10022,108	S-76-25426 S-76-25427 S-76-25428 S-76-25429 S-76-25430	Ortho	ĉ
10021,40	5-70-49469 5-70-49470	Thin Section	B7₩	10022,57	S-76-26297 S-76-26311	Thin Section	B/W
10021,28	5-70-49481 5-70-43482	Thin Section	₿/₩	10073	5-69-45387	Stereo	B∕W
10021,30	5-70-49443 5-70-49484	Thin Section	B7₩		5-69-45388 5-69-45389 5-69-45390		
19021,36	S-75-31369 S-75-31370 S-75-31371 S-75-31372 S-75-31373 S-75-31373	Rock Processing	C		S-69-45391 S-69-45392 S-69-45393 S-69-45394 S-69-45395 S-69-45413		
10021,10	8-75-31376	Rock Processing	С		S-69 45414 S-69-45415		
10021,29	5-76-26858 5-76-26859 5-76-26861	Thin Section	B7W		S-69-45416 S-69-45417 S-69-45418		
10022	5-69-45209 5-69-45210 5-69-45211 5-69-45212 5-69-45213	Contingency Samp.	B,∕₩		5-69-45419 5-69-45420 5-69-45421 5-69-45422 5-69-45423 5-69-45424		
10022	5-1-45361 S-69-45362 S-69-45363 S-69-45365 S-69-45365 S-69-45366 S-69-45380 S-69-45380 S-69-45382	<toreo< td=""><td>87W</td><td>10023</td><td>S-69-45425 S-69-59250 S-69-59251 S-69-59255 S-69-59255 S-69-59256 S-64-59256 S-64-59257 S-1)-59856 S-70-19245</td><td>Thin Section Thin Section</td><td>B/₩ C</td></toreo<>	87W	10023	S-69-45425 S-69-59250 S-69-59251 S-69-59255 S-69-59255 S-69-59256 S-64-59256 S-64-59257 S-1)-59856 S-70-19245	Thin Section Thin Section	B/₩ C
	5-69-45383				5-70-19246		•

 \bigcirc

¥

.

 \bigcirc

ŧ ł

١

6

1

and the second se

197.4.82 × 10.5

٠ Ă.

•

LA.

٠,

ORIGINAL PAGE IS OF POOR QUALITY

441

η

3

an a shar water a state and a share a state a share a sha ----h 4

1. 9

:

•

, t

• • • • • •

1111日本 日本の一部にあるのである。

٩.,

l___

1

1.1

i

1

10023.11	S-70-19247 S-75-31694	Thin Section Rock Processing	ι c	10026,10	5-75-32597 5-75-22598	Ortho	C
10023,1 10023,42	\$-76-26300	Thin Section	€/W	10016,17	5-76-26860 5-76-26865	This Section	B/W
10024	S-76-26301 S-69-45397	PCTL	B/W	10027	S-09-45556	Stereo	¢/W
10024	5-69-46026 S-69-46027 S-69-46028 S-69-46029 S-69-46030 S-69-46031 S-69-46033 S-69-46033 S-69-46035	Stereo	Brw		S-69-45557 S-69-46010 S-69-46017 S-69-46018 S-69-46020 S-69-46020 S-69-46022 S-69-46023 S-69-46023 S-69-46023 S-69-46025		
10024	5-69-46329	Mug Shot	В ′ ₩	10027	S-69-46327	Mug Shot	B/W
	5-69-47620 5-69-47621 5-69-47622 5-69-47906			19027,10	S-75-32186 S-75-32187 S-75-32188 S-75-32188 S-75-32189	Ortho	С
19024,14	S-69-53920	Thin Section	B/W		S-75-32190		
10024	S-69-59387	Thin Section	B/W	10002 26	S-75-32191	This Canting	D OL
10024	5-70-48951	Thin Section	C	10027,36	S-76-26306 S-76-26307	Thin Section	8/W
10024,23	S-70-49192 S-70-49193	Thie Section	B/W	10028	S-69-46036 S-69-46037	Stereo	B/W
10024,25	5-70-49880 5-70-49881	Thin Section	B/W		S-69-46038 S-69-46039		
1 2024	S-70-49977 S-70-49978 S-70-49979 S-70-49980	Thin Section	B/W		5-69-46040 5-69-46041 5-69-46042 5-69-46043 5-69-46044		
10024.27	S-73-28295 S-73-28296 S-73-28297 S-73-28298	Rock Mount	₿7W	120.20	5-69-46045 5-69-46046 5-69-46047		c
10024,27	5-74-27030	Display	B/W	10028	S-76-21143 S-76-21148	Rock Processing	С
10024	\$-75-31693	Rock Processing	C	10029	5-69-45748	Stereo	B/₩
10024,29	5-76-26260 5-76-26262	Thin Section	8/₩	10029,13	S-69-45749 S-75-33058	Ortho	с
10025	5-69-45396 5-69-45398	PCTL	B/W		S-75-33059 S-75-33060		
10025	5-69-46061 5-69-46062 5-69-46065 5-69-46065 5-69-46065 5-69-46066 5-69-46067 5-69-46068 5-69-46068 5-69-46068 5-69-46070	Stereo	B/W	10030	S-69-46048 S-69-46050 S-69-46050 S-69-46051 S-69-46052 S-69-46053 S-69-46055 S-69-46055 S-69-46057 S-69-46057 S-69-46057	Stereo	B/W
10025,3	5-75-32637 5-75-32638	Ortho	С		5-69-46059 5-69-46060		
10026	5-75-32639 5-69-46071	Stereo	6/W	10030,5	5-76-21142	Rock Processing	Ĺ
	5-69-46072	•···-		10031	5-69-45401	Stereo Bast Du sassier	B/₩
	5-69-46073 5-69-46074 5-69-46075			10031	5-76-21144 5-76-21147	Rock Processing	C
	S-69-46076 S-69-46077 S-69-46078 S-69-46078 S-69-46080 S-69-46081			10032	S-69-46006 S-69-46007 S-69-46008 S-69-46009 S-69-46010 S-69-46011 S-69-46012	Stereo	B/W
10026,10	S-75-32593 S-75-32594 S-75-32595 S-75-32595 S-75-32596	Ortho	С		5-69-46012 5-69-46013 5-69-46015		

0

1

¢

A station of the state

1 4

0

;

1.1

*

t

0

l

.]

i

1.2

0

۰.

.

0

10032,20	\$-75-31696 \$-75-31697 \$-75-31698 \$-75-31698 \$-75-31699	Ortho	С	10044,57	S-70-48952 S-70-48953 S-70-48954 S-70-48955	Thin Section	
10032,26	S-75-31700 S-75-31701 S-76-25824	Thin Section	B/W	10044,57	S-70-49981 S-70-49982 S-70-49983	Thin Section	
	5-76-25825			10044 51	5-70-49984	Deale Dacalau	
10044	5-69-45538 5-69-45539 5-69-45540	Stereo	B/₩	10044,54 10044,59	5-74-27031 S-75-31691	Rock Display Ortho	
	5-69-45541			10044,15	S-75-31692 S-75-31695	Ortho	
	S-69-45542 S-69-45543 S-69-45544			10044,13	S-76-25541 S-76-25543	Rock	
	5-69-45545 5-69-45546 5-69-45547			10044,55	S-76-25827 S-76-26295	Thin Section	
	5-69-45548 5-69-45549 5-69-45551 5-69-45552 5-69-45553 5-69-45555 5-69-45555 5-69-45556 5-69-45566 5-69-45566 5-69-45566 5-69-45568 5-69-45570 5-69-45571 5-69-45573 5-69-45573 5-69-45573 5-69-45578 5-69-45578 5-69-45578 5-69-45578 5-69-45578			10645	$\begin{array}{c} S-69-45584\\ S-69-45585\\ S-69-45587\\ S-69-45587\\ S-69-45587\\ S-69-45587\\ S-69-45590\\ S-69-45591\\ S-69-45593\\ S-69-45593\\ S-69-45593\\ S-69-45595\\ S-69-45595\\ S-69-45595\\ S-69-45595\\ S-69-45596\\ S-69-45596\\ S-69-45596\\ S-69-45596\\ S-69-45602\\ S-69-45603\\ S-69-45603\\ S-69-45603\\ S-69-45604\\ S-69-45604\\ S-69-45606\\ S-69-45607\\	Stereo	
	5-69-45581 5-69-45582			10045 10045,1	5-69-456°8 5-69-46486	Mug Shot Storeo	
10044,1	5-69-45583 5-69-46484 5-69-46485	Stereo	B/W	10045	5-69-47324 5-69-47325 5-69-45326	Stereo	
10044	S-69-47328 S-69-47329 S-69-47330 S-69-47331 S-69-47331 S-69-47349	Stereo Thin Section	₿/₩ ₿/₩	10045	S-69-45327 S-69-57237 S-69-59305 S-69-59317 S-69-59322	Thin Section	
10044,50	S-69-59242	Thin Section	B/W		S-69-59327 S-69-59830		
1004.1	S-69-59319 S-69-59320 S-69-59321 S-69-59324	Thin Section	B/W	10045	S-69-59832 S-69-59832 S-70-48956 S-70-48957 S-70-48958	Thin Section	
10044,49	5-69-59332	Thin Section	B/W		S-70-48961 S-70-48963		
10044	5-69-59339 5-69-59344 5-69-59363 5-69-59364	Thin Section	B/W	10045	S-70-49001 5-70-49002 S-70-49985	Thin Section	
10044,50	5-69-59367	Thin Section	B/W		S-70-49986 S-70-49987		
10044 10044,49	5-69-59385 S-69-59398 S-69-59399	Thin Section Thin Section	13 'W 13/W	10045	5-70-49988 5-75-31795 5-75-31796	Rock Processing	
10044	5-69-593399 5-69-59828 5-69-59833	Thin Section	B/W		S-75-31797 S-75-31797 S-75-31800		

.

ORIGINAL PAGE IS OF POOR QUALITY

443

_ .

N. 75

.

 \bigcirc

1	
11	
11	
11	

. .

•

And the second s

-

,

}.

10046,1 S-69-464 10046 S-69-470 10046 S-69-470 10046 S-69-490 S-69-490 S-69-490	53 18 Stereo 19 10 11 12 13 14 15 16 17 18 16 17 18 19 20 21 22 23 24 25 24 25 26 27 23 24 25 26 27 23 24 25 26 27 28 29 30 31 5 [*] M /g Shot 89 Stereo 03 Pit Detail	В - W В / K В / M В / W В / W В / W В / W	10046,195,198 10046,94,193 10046,152 10046,153 10046,55 10047	-75-334.26 -75-33600 -75-33600 -75-33600 -75-33075 -75-33975 -75-33975 -75-20719 -75-20719 -75-208.01 -76-208.01 -76-208.01 -69-45633 -69-45633 -69-45633 -69-45633 -69-45633 -69-45633 -69-45633 -69-45633 -69-45633 -69-45633 -69-45633 -69-45633 -69-45633 -69-45633 -69-45634 -69-45633 -69-45634 -69-45644 -69-45644 -69-45644	Ortho Rock Processing Ortho Rock Thin Section Stereo	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	39 10 10 11 12 13 14 14 16 16 17 18 18 20 21 22 23 24 25 24 25 24 25 24 25 29 30 31 5. Mig Shot 89 Storeo 03 Pit Detail	8 ≤ s 8 ≠ W 8 ≠ W	10046,152 10046,129,5,124 10046,55	S-75-338.5 S-75-33975 S-75-20719 S-76-20719 S-76-208.5 S-76-258.79 S-76-258.79 S-69-4563.70 S-69-4563.70 S-69-4563.70 S-69-4563.70 S-69-4563.70 S-69-4563.70 S-69-4563.70 S-69-4563.70 S-69-4563.70 S-69-4563.70 S-69-4563.70 S-69-4563.70 S-69-4563.70 S-69-4564.70 S-69-4564.70 S-69-4564.70 S-69-4564.70	Ortho Rock Thin Section	((
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 31 5 [*] Mag Shot 89 Storeo 03 Pit Detail	B∠W B∠W	10046,152 10046,129,5,124 10046,55	$x_{-75-43974}$ $x_{-75-33975}$ $x_{-75-20719}$ $x_{-75-20819}$ $x_{-76-20819}$ $x_{-76-25819}$ $x_{-69-45631}$ $x_{-69-45633}$ $x_{-69-45634}$ $x_{-69-45634}$ $x_{-69-45634}$ $x_{-69-45634}$ $x_{-69-45635}$ $x_{-69-45635}$ $x_{-69-45635}$ $x_{-69-45635}$ $x_{-69-45635}$ $x_{-69-45635}$ $x_{-69-45635}$ $x_{-69-45635}$ $x_{-69-45645}$ $x_{-69-45644}$ $x_{-69-456445}$ $x_{-69-456445}$ $x_{-69-45645}$	Ortho Rock Thin Section	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 13 14 15 16 17 18 18 20 20 21 22 23 24 25 24 25 29 30 31 5° Mig Shot 89 Storeo 03 Pit Detail	B∠W B∠W	10046,55	$\begin{array}{l} $ $ -76-20719 \\ $ $ -76-20770 \\ $ $ -76-25871 \\ $ $ -76-25871 \\ $ $ -76-25871 \\ $ $ -76-25871 \\ $ $ -76-25871 \\ $ $ -69-45631 \\ $ $ -69-45637 \\ $ $ -69-45637 \\ $ $ -69-45637 \\ $ $ -69-45637 \\ $ $ -69-45637 \\ $ $ -69-45641 \\ $ $ -69-45643 \\ $ $ -69-45644 \\ $ $ -69-45644 \\ $ $ -69-45645 \\ $ $ -69-45647 \\ $ \ -69-45646 \\ $ \ -69-4564 \\ $ \ -69-4564 \\ $ \ -69-4564 \\ $ \ -69-4564 \\ $ \ -69-4564 \\ $ \ -69-4564 \\ $ \ -69-4564 \\ $ \ -69-4564 \\ $ \ -69-4564 \\ $ \ -69-4564 \\ $ \ -69-4564 \\ $ \ -69-4564 \\ $ \ -69-4564 \\ $ \ -69-4564 \\ $ \ -69-4564 \\ $ \ -69-4564 \\ $ \ -69-456 \\ $$	Thin Section	ı
 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.456 > = 60.466 /ul>	14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 31 5 [*] Mig Shot 89 Storeo 03 Pit Detail	B∠W B∠W	10046,55	$\begin{array}{l} S=76+207.70\\ S=76+258.71\\ S=76+258.71\\ S=69+45561\\ S=69+45632\\ S=69+45632\\ S=69+45633\\ S=69+45633\\ S=69+45633\\ S=69+45633\\ S=69+45633\\ S=69+45633\\ S=69+45633\\ S=69+45641\\ S=69+45644\\ S=69+4564\\ S=69+856\\ S=69+85$	Thin Section	ı
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 16 17 18 19 20 21 22 23 23 24 25 26 27 29 30 31 5 ⁻ Mig Shot 89 Storeo 03 Pit Detail	B∠W B∠W		S-76-25824 S-69-45562 S-69-45633 S-69-45633 S-69-45633 S-69-45633 S-69-45635 S-69-45635 S-69-45635 S-69-45635 S-69-45633 S-69-45633 S-69-45643 S-69-456442 S-69-456445 S-69-456445 S-69-456445 S-69-456445		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18 19 20 21 22 23 24 25 26 27 28 29 30 31 5* Mig Shot 89 Storeo 03 Pit Detail	B∠W B∠W	10047	$\begin{array}{l} S=69-45562\\ S=49-45632\\ S=69-45634\\ S=69-45634\\ S=69-45634\\ S=69-45635\\ S=69-45635\\ S=69-45635\\ S=69-45635\\ S=69-45633\\ S=69-45642\\ S=69-45644\\ S=69-4564\\ S=69-856\\ S$	Stereo	Ĩ
$\begin{array}{c} S = 0.9 + 4 b 6 \\ S = 69 - 4 5 6 \\ S = 69 - 4 5 6 \\ S = 69 - 4 5 6 \\ S = 69 - 4 5 6 \\ S = 69 - 4 5 6 \\ S = 69 - 4 5 6 \\ S = 69 - 4 5 6 \\ S = 69 - 4 5 6 \\ S = 69 - 4 5 6 \\ S = 69 - 4 5 6 \\ S = 69 - 4 5 6 \\ S = 69 - 4 5 6 \\ S = 69 - 4 5 6 \\ S = 69 - 4 5 6 \\ S = 69 - 4 5 6 \\ S = 69 - 4 4 4 \\ 10046 + S = 69 - 4 4 4 \\ 10046 + S = 69 - 4 4 4 \\ S = 69 - 5 3 6 \\ S = 69 - 5 3 6 \\ S = 69 - 5 3 6 \\ S = 69 - 5 9 4 \\ S = 60 - 5 9 4 \\ S = 60 - 5 9 4 \\ S = 60 - 5 9 4 \\ S = 60 - 5 9 4 \\ S = 60 - 5 9 4 \\ S = 60 - 5 4 \\ S = 60 - 5 1 \\ S$	20 21 23 24 25 76 27 28 29 30 31 5* Mig Shot 89 Stereo 03 Pit Detail	B∠W B∠W		$5 - \epsilon 9 - 45 \epsilon 3.2$ $5 - \epsilon 9 - 45 \epsilon 3.4$ $5 - \epsilon 9 - 45 \epsilon 3.4$ $5 - \epsilon 9 - 45 \epsilon 3.5$ $5 - \epsilon 9 - 45 \epsilon 3.5$ $5 - \epsilon 9 - 45 \epsilon 3.5$ $5 - \epsilon 9 - 45 \epsilon 63.7$ $5 - \epsilon 9 - 45 \epsilon 63.7$ $5 - \epsilon 9 - 45 \epsilon 64.2$ $5 - \epsilon 9 - 45 \epsilon 64.2$ $5 - \epsilon 9 - 45 \epsilon 64.2$ $5 - \epsilon 9 - 45 \epsilon 64.4$ $5 - \epsilon 9 - 45 \epsilon 64.4$ $5 - \epsilon 9 - 45 \epsilon 64.4$ $5 - \epsilon 9 - 45 \epsilon 64.4$		
$\begin{array}{c} \varsigma_{-69-456} \\ \varsigma_{-61-466} \\ \varsigma_{-61-466} \\ \varsigma_{-69-456} \\ \varsigma_{-69-53} \\ \varsigma_{-69-$	21 27 23 24 25 26 27 28 29 30 31 5* Mig Shot 89 Storeo 03 Pit Detail	B∠W B∠W		$\begin{array}{c} S-69-45634\\ S-69-45635\\ S-69-45637\\ S-69-45637\\ S-69-45637\\ S-69-45638\\ S-69-45638\\ S-69-45643\\ S-69-45644\\ S-69-4564\\ S-69-4564\\ S-69-8564\\ S-69-856\\ $		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	23 24 25 25 29 30 31 57 Mag Shot 89 Storeo 03 Pit Detail	B∠W B∠W		$\begin{array}{l} S-69-45030\\ S-69-45637\\ S-69-45638\\ S-69-45638\\ S-69-45638\\ S-69-45041\\ S-69-45041\\ S-69-45642\\ S-69-45643\\ S-69-45644\\ S-69-45644\\ S-69-45644\\ S-69-45646\\ S-69-45647\end{array}$		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	25 26 27 28 29 30 31 57 Mig Shot 89 Storeo 03 Pit Dotail	B∠W B∠W		5 - 69 - 4563 5 - 69 - 45638 5 - 69 - 45638 5 - 69 - 45640 5 - 69 - 45641 5 - 69 - 45643 5 - 69 - 45644 5 - 69 - 45645 5 - 69 - 45645		
$\begin{array}{c} \varsigma_{-60-466} \\ \varsigma_{-69-456} \\ \varsigma_{-69-456} \\ \varsigma_{-69-456} \\ \varsigma_{-69-456} \\ \varsigma_{-69-456} \\ \varsigma_{-69-456} \\ 10046 \\ 10046 \\ \varsigma_{-64-456} \\ 10046 \\ \varsigma_{-64-456} \\ 10046 \\ \varsigma_{-64-456} \\ \varsigma_{-64-556} \\ \varsigma_{-6$	Pe 27 28 29 30 31 57 Mig Shot 89 Storeo 03 Pit Detail	B∠W B∠W		-69-45(39) -c9-45c40 -c9-45c41 -c9-45c42 -69-45c43 -69-45c44 -69-45c44 -c9-45c44 -c9-45c44 -c9-45c44		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	28 29 30 31 57 Mig Shot 89 Stereo 03 Pit Detail	B∠W B∠W		5-09-45040 5-09-45041 5-09-45043 5-09-45043 5-09-45644 5-09-45645 5-09-45645 5-09-45647		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29 30 31 57 Mag Shot 89 Stereo 03 Pit Detail	B∠W B∠W		5-c9-45642 5-c9-45643 5-c9-45644 5-c9-45645 5-c9-45c46 5-c9-45647		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31 5° Mig Shot 89 Stereo 03 Pit Detail	B∠W B∠W		5-69-45643 5-69-45644 5-69-45645 5-69-45646 5-69-45647		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	5° Mig Shot 89 Stereo 03 Pit Detail	B∠W B∠W		5-69-45645 5-69-45646 5-69-45647		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	89 Stereo 03 Pit Detail	₿7₩		5-69-45647		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	03 Pit Detail					
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1.2 Mua Shot	£ /h		S-69-45648		
S-09-40 1004t S-09-53 S-09-53 S-09-53 S-09-54 S-09-103	and the second second second second second second second second second second second second second second second	127 n		S-69-45649 S-69-45650		
$\begin{array}{llllllllllllllllllllllllllllllllllll$				5-69-45651		
S = 10 - 5.0 S = 20 - 5.3 S - 10 - 10 1,004t - 5.4 S - 10 - 104 S - 10 - 104		З W		5-09-15052 5-09-45053		
5-69-53 5-69-53 5-69-53 5-69-53 5-69-53 5-69-59 5-79-19 5-7	09			5-69-4-654		
$\begin{array}{c} < .69 \pm 5\% \\ < .40 \pm 54 \\ < .40 \pm 54 \\ < .69 \pm 53 \\ < .69 \pm 53 \\ < .69 \pm 53 \\ < .69 \pm 53 \\ < .69 \pm 53 \\ < .69 \pm 53 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 \\ < .69 \pm 59 $				5-69-45655 5-69-45656		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	86		10047,1	5-69-46482 5-69-46483	Stereo	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			10047	S-69-47907	Stereo	
$\begin{array}{c} ({1}, \alpha_{2}, \alpha_{3}, \alpha_{3}) \\ S_{1} \in \{0^{2} - 5\}, \\ S_{2} \in$	40		10047	5-69-53977	Inth Section	
$\begin{array}{rcrcccccccccccccccccccccccccccccccccc$				5-69-53980		
 <. 69-59 <. 69-59 <. 69-59 <. 69-59 <. 69-59 <. 69-59 <. 69-59 <. 69-59 <. 69-59 <. 69-59 <. 69-59 <. 69-59 <. 69-59 <. 69-59 <. 70-19 <. 10-194 	70			5-69-54011 5-69-54012		
5-60-50 5-60-50 5-60-50 5-60-50 5-60-50 5-60-50 5-60-50 5-60-50 5-60-50 5-70-10 5-70-10 5-70-10 5-70-10				5-69-54044 5-69-54048		
5-69-00 5-04-00 5-04-00 5-04-00 5-04-00 5-06-00 5-06-00 5-06-00 5-01-00 5-10-100 5-10-100 5-10-100				5-69-54064		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				N-69-59203 N-69-5927		
(-04-50) (-04-50) (-04-50) (-04-50) (-04-50) (-04-50) (-10-10) (-10-10) (-10-10) (-10-10) (-10-40) (-10-40) (-10-40)				8-69-59282		
5-50-50 5-60-50 5-70-10 1004(-65 5-70-10 5-70-10 10046 5-70-40	44		10047	8-20-48962	Inth Section	
x-70-19, 1004t,65 X-70-19, 5-10-19 1004b S-70-49,	40		1024 1,42	5-70-49212 5-70-49213	Thin Section	
3-10-19 30046 S-70-49.			10047,25	5-70-50530	Thin Section	
		B W		5-70-50540 5-70-50541 5-70-50542		
		8 W	10047,1,151	8-75-25083	Ortho	
10046,59 5-74-11		₿ W		8-75-25084 8-25-25005		
10046.46 5-75-32	71 Reconstruction	с		S-75-25086 S-75-26087		
5-75-32 5-75-32			10047,58,93	8-75 26511	Ortho	
N=75=3.1	72			8-75-26512		
5-75-32 8-75-32	7. 73 74			N=75=26513 N=75=26514		
10046,193,194 \$-75-33	7.2 73 74 75	0	10047,27,54,56	8-76-25537 8-76-25542	ROCK	
·	72 73 74 75 76 82 Ortho	С				

المراسية المراجع والمراجع والمحاصر والمحاصر والمحاصر والمحار المراجع ; á

₹.

Ō

4

•

Ō

1

0

1

1

•

,

1

:

- - B-

j

tine kan

£.

10047,47	5-76-26298 5-76-26299	Thin Section	B/W	10048,67	S-70-50555 S-70-50556	Thin Section	B/W
16948	5-69-45659 5-69-45660 5-69-45661 5-69-45662	Stereo	₽/W	10048,51	S-74-25904 S-74-25905 S-74-25906 S-74-25907	Rock Display	B/W
	S-69-45663 S-69-45664 S-69-45665 S-69-45666 S-69-45667 S-67-45668 S-59-45669 S-69-45677 S-69-45671 S-69-45672			10048,0	S-76-25411 S-76-25412 S-76-25413 S-76-25413 S-76-25416 S-76-25416 S-76-25417 S-76-25417 S-76-25419	Grtho	С
	S-69-45673			10048,9	5-76-24823	Rock	С
	S-69-45674 S-69-45675			10048,49	S-76-26846 S-76-26847	Rock	C
	S-69-45676 S-69-45677			10048,66	S-76-26862	Thin Section	B/W
	S-69-45678 S-69-45679 S-69-45680 S-69-45681 S-69-45682 S-69-45683			10049	S-69-45654 S-69-45635 S-69-45686 S-69-45687 S-69-45688 S-69-45688 S-69-45689	Stereo	B/W
10048	S-69-46165 S-69-46167 S-69-46167 S-69-46169 S-69-46170 S-69-46171 S-69-46171 S-69-46173	Mug Shot	B∕₩		S-69-45690 S-69-45691 S-69-45692 S-69-45693 S-69-45694 S-69-45695 S-69-45695 S-69-45697 S-69-45698		
10048,1	S-69-46490	Stereo	₿/₩		S-69-45699 S-69-45700		
10048	S-69-47601 S-69-47602 S-69-47604 S-69-47604 S-69-47606 S-69-47606 S-69-47607 S-69-47608 S-69-47608 S-69-47610 S-69-47610 S-69-47611	Pit Detail	B/W		S-69-45701 S-69-45702 S-69-45704 S-69-45704 S-69-45705 S-69-45706 S-69-45707 S-69-45708 S-69-45708 S-69-45710 S-69-45710 S-69-45710		
10048	S-69-53956 S-69-592375 S-69-59238 S-69-59238 S-69-59286 S-69-59841 S-69-59851 S-69-59852 S-69-59858	Thin Section	R∕W	10049,1 10049	S-69-45712 S-69-45713 S-69-45715 S-69-45715 S-69-45716 S-69-45717 S-69-46487 S-69-4730	Sterco Sterco	B/W B/W
10048	S-70-19251 S-70-19252	Thin Section	C		S-69-473. S-69-4733%		<i>27 N</i>
10048,49	S-70-47601 S-70-47602 S-70-47603 S-70-47604 S-70-47605	Mug Shot	B∕W	10049	S-69-47339 S-69-57241 S-69-59273 S-69-59283 S-69-59347 S-69-59352	Thin Section	6,W
10048,53	S-70-48964 S-70-48965 S-70-48966 S-70-48967 S-70-48967 S-70-48969 S-70-48969	Thin Section	C		S-69-59382 S-69-59413 S-49-59854 S-70-47980 S-70-17981 S-70-48995		
10048,33	5-70-49471 5-70-49472	Thin Section	B∕₩		S-70-48996 S-70-48997 S-70-48998		
10048,48	S-70-49884 S-70-49885	Thin Section	B∕₩		5-70-48995 5-70-49000		

 \mathbf{O}

٤

\$

()

TT i T

i

~|*

. séte.

1

í

1

i,

---- 1 ,

1

k

445

an international international and the second states of the second states and the second states and international international international international states in the second states

5 1 ł

÷

•

1

4

;

}

ł ł ì

1

......

;

Survey " - 2 - 4 +

and the state of the second second second second second second second second second second second second second

ļ

. .

•

r

÷i

1

ļ,

- 1

1

i

10049,21	5 -70-49447 5-70-49448	Thin Section	₽/W	10056	S-69-46188 S-69-46189	Mug Shot	3/W
10049,22	S-70-49475 S-70-49476	Thin Section	₽/W		১-69-46190 ১-69-46191 ১-69-46192		
10049,0	S-76-25446 S-76-25448 S-76-25449 S-76-25452 S-76-25455 S-76-25455 S-76-25455	Ortno	C		S-69-46193 S-69-46197 S-69-46195 S-69-46195 S-69-46196 S-69-46198		
10049,39	S-76-25838 S-76-26330 S-76-26331	Thin Section	B∕₩	10056	S-69-47105 S-69-47106 S-69-47106 S-69-47107	Post Split	B∕₩
10050	S-69-45718 S-69-45719 S-69-45720 S-69-45721 S-69-45722	Stereo	B/W	10056	5-69-47604 5-69-47605 5-69-47606 5-69-47607 5-69-47608	Rock	b/₩
	S-69-45723 S-69 45724 S-69-45725 S-69-45726 S-69-45727			10056	S-69-59308 S-69-59311 S-69-59316 S-69-59348	Thin Section	B/W
	S-69-45728 S-69-45729 S-69-45730 S-69-45731			10056	S-70-19253 S-70-19254 S-70-19255 S-70-19256	Thin Section	C
	S-69-45732 S-69-45733 S-69-45734 S-69-45735 S-69-45736			10056	S-70-19526 S-70-19527 S-70-19528 S-70-19529 S-70-19529	Thin Section	B/W
	S-69-45737 S-69-45738 S-69-45739 S-69-45740 S-69-45741 S-69-45742			10056,14	S-75-32571 S-75-32572 S-75-32573 S-75-32574 S-75-32575 S-75-32575 S-75-32576	Ortho	С
	5-69-45743 5-69-45744 5-69-45745 5-69-45746 5-69-45747			19056,42 10056,26	5-75-32657 5-76-25832 5-76-26264 5-76-26265	Processing Thin Section	C B∕Wa
0050,1 0050	5-69-46478 5-69-57/34 5-70-49003 5-70-49004 5-70-49006 5-70-49006 5-70-50017 5-70-50018	Stereo Thin Section	67₩ 67₩	10057	5-69-46271 5-69-46272 5-69-46273 5-69-46273 5-69-46275 5-69-46275 5-69-46277 5-69-46273 5-69-46273	Stereo	B∕₩
0050	\$-76-21349 \$-76-21350 \$-76-21351	Rock Processing	С		5-69-46279 5-69-46280 5-69-46281 5-69-46282		
0050,11	S-76-21738 S-76-21739	Weathered Areas	C		5-69-46283 5-69-46284		
0050,36	S-76-26261 S-76-26272	Thin Section	87W		5-69-46285 5-69-46286 5-69-46287		
0054,54	5-70-49882 5-70-49883	Thin Section	B/W		S-E9-46288 S-69-46289		
მმინ	5-69-46174 5-69-46175 5-69-46176 5-69-46177 5-69-46178 5-69-46179	Mug Shot	B/W		5-69-46290 5-69-46291 5-69-46292 5-69-46293 5-69-46293 5-69-46293 5-69-46295 5-69-46296		
	5-69-46180 5-69-46181			10057	5-69-47472	PCTL Chip	B/W
	5-69-46182 5-69-46183 5-69-46184			10057	5-69-47477 5-69-47478 5-69-47479	Post Chip	b∕W
	S-69-46185 S-69-46186 S-69-46187			10057,33	5-69-54018 5-69-59335	Thin Section	B∕W

and a start of the

2 . 14 . Mar .

٩

7

 \cap

1

- ちちち リー・オオオをあり したの シート・ディー いぼうく 長倉 差れ 二次自然の法語語 (の)的ななななななななななな

٣

ļ

 \bigcirc

2

\$

ORIGINAL PAGE IS OF POOR QUALITY

10057,33	S-69-59386 S-69-59407 S-69-59408	Thin Section	8/W	10058	S-69-47321 S-69-47322 S-69-47323	Stereo
10057,77	S-70-49007 S-70-49008 S-70-49870	This Soction	D /Lt	10053	S-69-47474 S-69-47475	Post Chip
	S-70-49871	Thin Section	B/₩	10058	S-69-47476 S-69-47485	Chipping
10057	S-70-49969 S-70-49970	Thin Section	₿/₩	10058	S-69-47486 S-69-59247	Thin Section
10057,58	S-74-22871 S-74-22872 S-74-22873 S-74-22874 S-74-22874 S-74-22874 S-74-22877 S-74-22877 S-74-22879 S-74-22880 S-74-22880 S-74-22881	Cathedral Soc.	C		S-(9-59249 S-69-59268 S-69-59261 S-69-59354 S-69-59354 S-69-59358 S-69-59358 S-69-59355 S-69-59835 S-69-59835 S-69-59836	
10057,30	S-74-25354 S-74-25355 S-74-25356 S-74-25357	Rock Display	C		S-70-49009 S-70-49010 S-70-49011 S-70-49012	
10057,19,98,105	S-7 4- 25358 S-75-20520	Rock	с	10058,33	5-70-49874 5-70-49375	Thin Section
	8-75-20521 8-75-20522	noch	,	10058	S-70-49967 S-70-49968	Thin Section
10057,28	S-75-20523 S-75-34139	Ortho	С	1005 ,74	5-74-2703?	Rock Display
-	5-75-34140			10058,3	5-76-21347	Rock Processing
10057,14	S-75-34415 S-75-34416 S-75-34417	Ortho	С	10058,2,34	S-76-21354 S-76-21355 S-76-23295	Rock Processing Rock
10057,13	S-75-34424 S-76-21408	Rock Processing	С	10058,51	S-76-23296 S-76-26326	Thin Section
10057,9	S-76-20323	Rock	C	10050,51	S-76-26327	With Section
	S-76-20326 S-76-20327 S-76-20328 S-76-20717 S-76-20718			10059	S-69-47081 S-69-47082 S-69-47083 S-69-47084 S-69-47085	Stereo
10057,204	S-76-20325	Rock	c		S-69-47086 S-69-47087	
10057,13 10057,81	S-76-21408 S-76-26315	Rock Thin Section	C B/W		S-69-47088 S-69-47089 S-69-47090	
10058	S-76-26315 S-69-46297	C to make	D (1)		5-19-47091	
10035	S-69-46298 S-69-46298 S-69-46299 S-69-46300 S-69-46301	Stereo	8/W		S-69-42092 S-69-47092 S-69-47094 S-69-47095	
	S-69-46302 S-69-46303 S-69-46304 S-69-46305				5-69-47096 5-69-47097 5-69-47098 5-69-47099 5-69-47100	
	S-69-46306 S-69-46307 S-69-46308 S-69-46309				S-69-47101 S-69-47102 S-69-47103 S-69-47104	
	S-69-46310 S-69-46311 S-69-46312 S-69-46313 S-69-46314 S-69-46314				S-69-47316 S-69-47317 S-69-47346 S-69-47347 S-69-47348	
	S-69-46315 S-69-46316 S-69-46317 S-69-46318 S-69-46319				S-69-47349 S-69-47350 S-69-47351 S-69-47352	
	5-69-41 20 S-1 -47318 S-69-47319			10059	S-69-49205 S-69-49206 S-69-49207 S-69-49208	Mug Shot

۲"

Ŧ

•

Ţ

Г

77

٩

1

. :

ş -

0

٤

.

()

y .

.

C

TT

j

ł

ł

11.20

.

1

Ş

こうちょう いっていたいかいたい

44R

. .**.**?

k

.`

• ۰**.**

· * · · * · ·

ALC: N

福島

Ĵ

П

i

1

ļ

1 20

ī

Т

i

j -----

í, Sec.

10059	S-69-49209 S-69-49210 S-69-49211 S-69-49288 S-69-49288 S-69-49289 S-69-49289 S-69-49280	Mug Shot	C∕W	10060	S-69-59826 S-69-59837 S-69-59839 S-69-59845 S-69-59848 S-70-19538 S-70-19538 S-70-19539	Thin Section	B∕W
10059	S-69-59853 S-70-19530 S-70-19531 S-70-19533 S-70-19533 S-70-19534 S-70-19535 S-70-19535 S-70-19537	ihin Sect∙on	B/W		4-70-19540 S-70-19541 S-70-19543 S-70-49013 S-70-49014 S-70-49015 S-70-49016 S-70-49017 S-70-49018		
0059,7	S-70-50021 S-70-50022	Thin Section	B∕W	10060,35	5-70-49876 5-70 49877	Thin Section	B/W
0059,82,83	S-76-21410 S-76-21411	Rock Processing	С	10060	S-70-50023 S-70-50024	Thin Section	B/W
10059,ċ3	S-76-22650 S-76-22651 S-76-22652 S-76-22653 S-76-22653 S-76-22654 S-76-22655	Ortho	С	10060,5	S-70-50025 S-76-25884 S-76-25885 S-76-25886 S-76-25887 S-76-25838 S-76-25839	Ortho	٢
0059,41	5-76-25835 5-76-26266 5-76-26267	Thin Section	B/W		5-76-25890 5-76-25891		
0060	S-69-46491 S-69-46492	Stereo	B/W	10060,46,38	S-76-25544 S-76-25549	ROCK	C
	S-69-46492 S-69-46493 S-69-46494 S-69-46495			10060,49	5-76-26323 5-76-26324 5-76-26325	Thin Section	B/W
	5-69-46496 5-69-46497 5-62-46490 5-69-46490 5-69-46490 5-69-46500			R 061	S-09-46501 S-63-46502 S-63-40503 S-69-46504 S-69-46505	Stereo	B ∕W
∩∩£ ņ	S-69-48450 S-69-48451 S-69-48452 S-69-48458 S-69-48459	Mug Shot	₿/₩		S-69-46506 S-69-46507 S-69-46508 S-69-46509 S-69-46510		
0060	\$-69-49223	Rock	B/W	10061	5-69-47617	Mug Shot	6/W
	S-69-49224 S-69-49225 S-69-49231			10061	5-69-54002 5-59-54056 5-69-54057	Thin Section	B/W
	S-69-49232 S-69-49233 S-69-49240			10061,20	5-69-54069 5-69-54070	Thin Section	BZW
	S-69-49241 S-69-49242			10061	S-69-54085 S-69-59205	Thin Section	:./W
0060	\$-69-53976 \$-69-59239 \$-69-59240 \$-69-59241	Thin Section	E/W		S-69-59309 S-70-19509 S-70-19510 S-70-19542		
	5- 69-59 259 5-60-59260 5-69-59271 5-69-59280			10061,40	5-70-49019 5-70-49020 5-70-49021 5-70-49032	Thin Section	₿/₩
	5-69-59294 3-69-59295 5-69-59299			10061,34	5-70-49.16 5-70-49.17	This Section	B₂W
	S-69-59302 S-69-59303			10061,42	5-72-46777	This Section	By W
	\$-69-59318			10061,13	\$-74-27041	Rock Display	B/k
	S - 69 - 59349 S - 69 - 59350 S - 69 - 59353 S - 69 - 59381 S - 69 - 59361 S - 69 - 59405 S - 69 - 59405			10061	S - 75 - 34204 S - 75 - 34225 S - 75 - 34220 S - 75 - 34220 S - 75 - 34220 S - 75 - 34220 S - 75 - 34203	Rock Processing	ſ

4 0

「こうちょうない」であっています。「あっていた」と、「なないとないない」と、いうない、いってい

ì

ļ

ł 1

> ; ŀ

í 1

1

1

1

÷

Ō

4

[1]1

2.1

٦.

0

i

1

Ţ.,

7

ł

ŧ

¥

'!., ا د همی 1 ۹. 1 1 ́э -

440

ور منها من و در المراد مولكي ما مراد

Ę

۰,

- 「「」」、「」、「」、「」、「」、」、「」、

1. r A 1. . م Y .

a service internet and the service and

1. 1. Mar 1.

ł,

jî.

* . . .

. . . .

.

;

ž ŝ

í

10061	S •76-20470 S-76-20471 S-76-204/2 S-76-20473	Rock	C	10063	S-69-46528 S-69-46529 S-69-46530 S-69-46531	Stereo	B
10061,28	S-76-25836 S-76-26313 S-76-26314	Thin Section	B/W	10063,1	S-75-30486 S-75-304^7 S-75-30488 S-75-30489	Ortho	C
10062	S-69-46511 S-69-46512 S-69-46513	Stereu	B/W		S-75-30490 S-75-30491		
	S-69-46514 S-69-46515			10063,1,14,15	5-75-34399	Rock Processing	C
	S-69-46516 S-69-46517			10063,17	S-76-26274 S-76-26275	Thin Section	E
	S-69-46518 S-69-46519 S-69-46520			10063,1	S-76-26837 S-76-26838 S-76-26839	Photomicrograph	(
S-69-46521 10062 S-69-48447 Mug Shot S-69-48448 S-69-48449 S-69-48460 S-69-48460 S-69-48461 S-69-48462 S-69-48463 S-69-48463	Mug Shot	₿/₩	10064	S-69-46614 S-69-46615 S-69-46617 S-69-46617 S-69-46619 S-69-46619 S-69-46620 S-69-46622 S-69-46622	Stereo	E	
	S-69-48465 S-69-48466 S-69-48467 S-69-48468 S-69-48469 S-69-48470			10064,6	S-76-20397 S-76-20398 S-76-20399 S-76-20400 S-76-20401	Ortho	(
	S-69-49142 S-69-49143 S-69-49144			10064,25	5 -76-26319 5-76-26320	Thin Section	E
10062	S-69-49145 S-69-49146 S-69-49147 S-69-49147 S-69-49148 S-69-49219	Rock	B∕W	10065	S-69-46623 S-69-46624 S-69-46625 S-69-46626 S-65-46627 S-69-46628	Stereo	ł
	S-69-49226 S-69-49227 S-69-49228 S-69-49229 S-69-49230 S-69-49230 S-69-49238 S-69-49238 S-69-49239			10065	S-69-46629 S-69-46630 S-69-46631 S-69-54910 S-69-59244 S-69-59264 S-69-59266	Thin Section	I
10062	S-69-59371 S-69-59375 S-69-59391 S-69-59394 S-69-59831 S-69-59832 S-70-49023 S-70-49024 S-70-49024 S-70-49025 S-70-49025 S-70-49026 S-70-50019 S-70-50020	Thin Section	B∕W		S-69-59267 S-69-59315 S-69-59316 S-69-59326 S-69-59360 S-69-59360 S-69-59360 S-69-59380 S-69-59824 S-69-59824 S-69-59824 S-69-59829 S-70-19506 S-70-19505		
10062,33	S-76-22210 S-76-22211	Rock Processing	С		S-70-49027 S-70-49028		
10062	S-76-21515 S-76-21516 S-76-21517 S-76-21518	Ortho	C	10065,7	5-70-49971 5-70-49972 5-74-27044	Rock Display	f
10962,35	5-76-26268	Thin Section	B/W	10065,7	5-76-22541 5-76-22542	Ortho	(
1 1063	১-76-26271 ১-৮৩-46522 ১-69-46523	Stereo	B7₩	10065,49	5-76-22543 5-76-22544	Ontho	(
	5-69-46524 5-69-46525 5-69-46526 5-69-46526 5-69-46527			10015,7	5-76-,11546 5-76-22547 5-76-22540 5-76-,11549	Urtho	1

ORIGINAL PAGE IS OF POOR QUALITY

~ +

4

٦

, **1**1,

0

1

()

٢

¥

(

j

٦, 23 m

:

2.1

ŗ

•

۲,

r,

1-

:.

۰۵ ۲

.

•

ł

)•.

i

1

10065,30,43	S-76-23361 S-76-23362 S-76-23363 S-76-23364	Rock	С	10068	5-69-59331 5-69-59356 5-69-59357 5-69-59400	Thin Section	B/W
10065,^7	S-76-25833 S-76-25834 S-76-76863 S-76-76864	Thin Section	R/W	10068,36	S-CO 59402 S-70-19513 S-70 19514 S-70-19544	This Section	D, h
10066	S-69-46632 S-69-46633	Stereo	67W	10068,12,33	5-76-22212 5-76-22213	Rock Processing	C
	5-69-46634 5-69-46635			10063,5	5-76-22539 5-76-22545	Pock Processing	C
	5-69-46636 5-69-46637 5-69-46638			10068,35	S-76-26328 S-76-26329	Thin Section	C/W
	S-69-46639 S-69-46640			10069	S-69-46658 S-69-46659	Sterer	B/W
10056,1	S-75-311,1 S-75-31112 S-75-31113 S-75-31114 S-75-31115 S-75-31116	Rock Processing	С		5-69-46660 5-69-46661 5-69-46662 5-69-46663 5-69-46664 5-69-46664		
10066,20	5-76-26287 S-76-26288 S-76-26289	Thin Section	₿/₩	10069 10069	5-69-47615 5-69-59275	Mug Shot Thin Section	E∕W B∕W
10066,53	S-76-26281 S-76-26282	Thin Section	B/W		5~69-59292 5~69-59336 5~69 59342		
10967	S-69-46641 S-69-46642 S-69-46643 S-69-46644 S-69-46644 S-69-46646 S-69-46647 S-69-46648 S-69-46648	Stereo	Stereo B/₩		S-69-59351 S-69-59383 S-69-59383 S-69-59383 S-60-59412 S-70-19508 S-70-48975 S-70-48975 S-70-48976		
10067	S-69-59265 S-69-59296 S-69-59325 S-69-59328 S-69-59388 S-69-59388 S-69-59389 S-69-59380	Thin Section	B/W		S-70-48977 S-70-48978 S-70-48978 S-70-48980 S-70-48980 S-70-49029 S-49030 S-70-49037		
10067,10	S-70-49220 S-70-49221	Thin Section	B/W	10069,31	5-76-23293 5-76-23294	h (ck	С
10067,6	S-70-50553 S-70-50554	Thin Section	B/W	10069,4	5-76-23281 5-76-23282	Ortuo	C
10967,12	S-76-21920 S-76-21921	Pock Processing	С		5-76-23283 5-76-23284		
10067,3	S-76-21923 S-76-21924	Pock Processing	С		5-76-23200 5-76-23200 5-76-23287		
10067,9001	5-76-22214 5-76-22215	Pock Processing	C	10069,37	5-76-26290 5-76-26291	Thin Section	67 6
10067,10	S-76-26269 S-76-26270	Thin Section	B/W	10070,1	5-69-03001	Pock	b/₩ vije
10068	S-69-46650 S-69-46651 S-69-46652 S-69-46653 S-69-46654 S-69-46655 S-69-46656 S-69-46657 S-69-40657 S-69-47064	Stereo	BZW	10979	5-04-4730 5-05-47301 5-05-47302 5-05-47303 5-05-47311 5-05-47311 5-05-47313 5-05-47313 5-05-47313 5-05-47313	'.tereo	Ъ, W
	S-69-47065 S-69-47066			10070	1-69-47616	Mug Shot	87W
	S-69-47067 S-69-47068			100/0,18	5-75-34/37	Rock Processing	C
	5-69-47088 5-69-47069 5-69-47070 5-69-47071 5-69-47072			10070,4,17	5 - 26,- 84333 5-26,- 34,40 5,-26,- 1241 5-26,- 34,34	Ortho	C

٦

l' y' +.

3

٤,

ころう たまい あいい ちかい いちち ちょう

, m

1

)

ī

1

tiniti, i

ł

1. 14 (2.)

4	r,	۱	
---	----	---	--

. . नेत्र

. . - . . į.

1

S Я

. . .

.

÷

Ż

ć

•

.

ŝ

á

۰.

, . , .

n a

4

÷ .

ж,

۴.

ż

÷

Sec.

.

4

÷

्व

.....

į.

\$

۰<u>ب</u>

· · · ·

. 2

~~~~~

į

anala -

۰,÷ 1 į ý

> x ŗ

,

~

「ちちちの」である」 .; ÷,

|                         | S-69-49317<br>S-69-49318<br>S-69-49320<br>S-69-49320<br>S-69-49323<br>S-69-49323<br>S-69-49323<br>S-69-49324<br>S-69-49325 |                 |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------|
|                         | S-69-54007<br>S-69-54008                                                                                                   | Thin Section    |
| ,40                     | 5-69-54013                                                                                                                 | Thin Section    |
| <b>,</b> 4 <sup>r</sup> | 5-69-54020                                                                                                                 | Thin Section    |
|                         | S-69-5407:<br>S-69-54076                                                                                                   | Thin Section    |
| , A 2                   | S-69-57221<br>S-69-57235                                                                                                   | Thin Section    |
|                         | S-69-59337<br>S-69-59857<br>S-70-48983<br>S-70-48984<br>S-70-48935<br>S-70-48956<br>S-70-48987<br>S-70-48958               | Thin Section    |
| ,33                     | S-70-49194<br>S-70-49195                                                                                                   | Thin Section    |
| ,49                     | 8-70-49228<br>8-70-49229                                                                                                   | Thin Section    |
| ,41                     | S-76-21145<br>S-76-21146                                                                                                   | Rock Processing |
| ,12,139                 | 8-76-22595                                                                                                                 | Processing      |
| .80                     | S-76-22596<br>S-76-22597<br>S-76-22598<br>S-76-22599<br>S-76-22509<br>S-76-22600<br>S-76-22601                             | Ortio           |
| ,15,109                 | S-76-23374<br>S-76-23371                                                                                                   | Ortho           |
| ,43                     | S-76-26285<br>S-76-26286                                                                                                   | Thin Section    |
|                         | 5-69-47308                                                                                                                 | Mug Shot        |
|                         | S-69-59253<br>S-69-59298                                                                                                   | Thin Section    |

5-69-59301 5-69-59368

5-69-59369

5-69-59370

ľ

i.

\$-69-47387

S-69-47388

5-69-47494

5-69-47495 5-69-47495

5-69-47497

5-69-4744

5-69-4749 S-59-47500 S-69-47501

S-69-47502

S-69-47503

5-69-47610

5-69-47611 5-69-47612

5-69-47613

5-69-49311

5-69-49312

5-69-49313

5-59-49314

5-69-49315

5-69-49316

S-69-49317

Stereo

Post Split

Mug Shot

. i

:

ł

ł

;

• .

C

1

t (

4

١

ı.

11

j

10070.4,17

10070,2

10070.15

10070, 2

10071,73

10071

10071

10071

10071

10071

10071,2

10071,5

10071.7

10071,5

10071,11

10071,34

10071,13

10072

10072

10071

10070,4,17

5-75-34146

S-7E-20324

5-76-20329

5-76-34237

5-75-34239

5-76-34213

S-76-34242 5-76-26308

\$-76-26309

S-69-47288

5-69-47289

5-69-47290

5-69-47291

5-69-47292

S-69-47293

5-69-47294 5-69-47295

5-69-47.96

5-69-47297

S-69-47298

5-69-47299

S-69-47304

S-69-47305 S-69-47306

5-69-47307

S-09-47309

S-69-47353

5-69-47354

S-69-47005

5-09-47356 5-69-47357

5-69-47358

S-69-47359

5-69 47360

5-69-47361

5-69-47614

\$-69-54025

\$-69-54088

S-69-57247

\$-69-59374

S-69-59384 S-69-59392

S-70-17978 S-70-17979

5-70-17980

S-70-17981 5-70-17982

S-76-22602 S-76-22603

S-76-22605

S-76-22606 S-76-22607 S-76-22608 S-76-22609

\$-76-23372

5-76-20373

5-76-26321

5-76-263.22

5-76-26082

5-76-26083

5-69-03102

5-69-47364

5-69-47381

S-69-47382

\$-69-47383

S-69-47384 S-69-47385

5-69-17386

Ortho

Pock

Rock

Ortho

Stereo

Stereo

Mug Shot

hug Shot

Thin Section

Thin Section

Thin Section

Ortho

Ortho

Ortho

Rock

Ster u

Processing

Thin Section

Thin Section

Stereo

Thin Section

С

¢

С

С

6/W

B/W

B/W

B/W

B/W

₽/W

R/W

B/W

B/W

С

С

Ç

C

B/W

B/W

B/W

B7W

10072

10072

1907?

10072

10072

10072

1007 :

10072

10072

10072

10072

10072

10072

10072

10072

10072

10073

10073

# ORIGINAL PAGE IS OF POOR QUALITY

ł

ł

1

۰.

6/W

67W

B/W

B/W

6/W

B/₩

B/W

8/W

C/W

87W

B/W

C

£

C

C

B/W

67W

B/W

-

| 10073,27,08 | 5-70-45353<br>5-70-40993<br>5-70-48991                                                                                     | This Section | 0/m  | 10080,0                                                              | 5-76-25106<br>5-76-26283<br>5-76-26284                                                                                                   | Thin Section | b/₩   |
|-------------|----------------------------------------------------------------------------------------------------------------------------|--------------|------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|
|             | s - 70-48392<br>3-70-48993<br>S-70-48994                                                                                   |              |      | 10085.78.75.76<br>,77,73,71<br>,66,65,64                             | 5-70-18460<br>5-70-18469<br>5-70-18470                                                                                                   | Thin Section | B/W   |
| 10073,25    | S-70-49453<br>S-70-49454                                                                                                   | Tnin Section | 6/W  | ,€3                                                                  | 5-70-18471<br>5-70-18472                                                                                                                 |              |       |
| 10073,24    | S-70-49477<br>S-70-49478<br>S-70-49479<br>S-70-49480                                                                       | Thin Section | R/W  |                                                                      | S-70-18473<br>S-70-18474<br>S-70-18475<br>S-70-18476<br>S-70-18476<br>S-70-18477                                                         |              |       |
| 10073,29    | S-70-49485<br>S-70-49486<br>S-70-49487                                                                                     | Thin Section | B/W  |                                                                      | S-70-13478<br>S-70-18479<br>S-70-18480                                                                                                   |              |       |
| 10073,12,53 | S-7€-22590                                                                                                                 | Processing   | C    |                                                                      | 5-70-18481<br>5-70-18482                                                                                                                 |              |       |
| 10073,1     | S-76-22591<br>S-76-22502                                                                                                   | O, tho       | с    |                                                                      | 5-70-18483<br>5-70-18484                                                                                                                 |              |       |
| 10073,27    | S-76-25831<br>S-76-26294                                                                                                   | Thin Section | B/W  | 10005 00 07 05                                                       | S-70-18485<br>S-70-18486                                                                                                                 | This Costion | D 414 |
| 10074       | S-69-47372<br>S-69-47373<br>S-69-47375<br>S-69-47375<br>S-69-47375<br>S-69-47377<br>S-69-47370<br>S-69-47370<br>S-69-47380 | Sterec       | B/W  | 10085.99,97,96<br>,95,93,91                                          | S-70-19515<br>S-70-19516<br>S-70-19517<br>S-70-19518<br>S-70-19519<br>S-70-19520<br>S-70-19521<br>S-70-19522<br>S-70-19523<br>S-70-19524 | Thin Section | B/W   |
| 10074,7     | S-70-53757                                                                                                                 | Thin Section | B/W  |                                                                      | 5-70-19525                                                                                                                               |              |       |
| 10074,5     | 5-70-53768                                                                                                                 | Thin Section | 5/W  | 10085,726,737                                                        | S-76-26881                                                                                                                               | Rock Photo   | С     |
| 10074,7     | 5-70-53769                                                                                                                 | Thin Section | B/ . | ,727,733<br>,725                                                     | S-7C-26882<br>S-76-26883                                                                                                                 |              |       |
| 10074,6     | 5-70-53770                                                                                                                 | Thin Section | B/W  | ,730,724                                                             | S-76-26884                                                                                                                               |              |       |
| 10074,5     | S-70-53772                                                                                                                 | Thin Section | B/W  | ,745<br>,746                                                         | S-7E-26885<br>S-7E-26886                                                                                                                 |              |       |
| 10074,1     | 5-76-20391<br>5-76-20392<br>5-76-20393<br>5-76-20394<br>5-76-20395<br>5-76-20395<br>5-76-20396                             | Ortho        | C    | ,740<br>,739<br>,731,736<br>,735<br>,734<br>,728<br>,729             | S-76-26807<br>S-76-26868<br>S-76-26889<br>S-76-26890<br>S-76-26891<br>S-76-26592<br>S-76-26893                                           |              |       |
| 100/4,7     | S-76-26317<br>S-76-26318                                                                                                   | Thin Section | B/W  | ,741,742                                                             | S-76-26894<br>S-76-26895                                                                                                                 |              |       |
| 10075       | S-69-47362<br>S-69-47363<br>S-69-47365<br>S-69-47366<br>S-69-47367<br>S-69-47368<br>S-69-47370<br>S-69-47370<br>S-69-47371 | Stereo       | B∕₩  | .737<br>.744<br>.723<br>.720<br>.760<br>.761<br>.759<br>.757<br>.758 | S-76-26896<br>S-76-26897<br>S-76-26898<br>S-76-26899<br>S-76-26856<br>S-76-26856<br>S-76-26855<br>S-76-26854<br>S-76-26853               |              |       |
| 10075       | 5-69-47609                                                                                                                 | Mug Shot     | B/₩  | ,755<br>,756                                                         | 5-76-26052<br>5-76-26051                                                                                                                 |              |       |
| 10075,3     | S-76-20467<br>S-76-20317<br>S-76-20318<br>S-76-20318                                                                       | C-tho        | С    | ,754<br>,753<br>,753                                                 | 5-76-26850<br>5-76-26848<br>5-76-26849                                                                                                   |              |       |
|             | S-76-20320<br>S-76-20321                                                                                                   |              |      | 10091,26                                                             | S-76-25548<br>S-76-25552                                                                                                                 | Rock         | C     |
| 10075,14    | 5-76-26279<br>5-76-26280                                                                                                   | Thin Section | F/W  | 10092,0                                                              | S- <b>76-</b> 25871<br>S-76-25872<br>S-76-25873                                                                                          | Ortho        | С     |
| 10082       | 5-69-57952                                                                                                                 | Thin Section | B/W  |                                                                      | 5-76-25874                                                                                                                               |              |       |
| 10082,1     | S-76-20460<br>S-76-20461<br>S-76-20462                                                                                     | Ortho        | С    | 10002-0                                                              | S-76-25875<br>S-76-25876                                                                                                                 | Ortho        | r     |
|             | S-76-20467<br>S-76-20463<br>S-76-20464<br>S-76-20465<br>S-76-20465<br>S-76-20465                                           |              |      | 10043,0                                                              | S-7t-25989<br>S-76-25990<br>S-76-25991<br>S-7t-25997<br>S-7t-25995<br>S-76-25996                                                         | ortho        | ſ     |

i

i

Ũ

J.

•

 $\bigcirc$ 

\* . . .

L.

 $(\tilde{})$ 

4

!

1

ولوليه المحفظة والمحاولة والمعطور والمحمولة والمحافظة المحاور والمحارب والمحفول والمحفظ والمحفظ والمحفظ والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمولية والمحمول

۰, ŝ,

Â

5 · · · · ·

, 17 - 17

5

|         |                                                      | ibrtho          | C |
|---------|------------------------------------------------------|-----------------|---|
| 10093.0 | 5-76-25997<br>5-76-24995                             | 01 010          | c |
| 10094.0 | 5-76-25993<br>5-71-25004<br>5-76-25988<br>5-76-25988 | Ortho           | c |
| 10094.0 | 5-76-26000<br>5-76-26001<br>5-76-26002               | Photomicrograph | L |

Statute and

í

;

. . . . . .

....

.

.

.

Ì 1 ()

r

3

 $\bigcirc$ 

347

•

(

1

)

11

đ

ŝ

1 1

· }• ÷ ORIGINAL PAGE IS OF POOR QUALITY

5

~ | \*\* | i

**BIBLIOGRAPHY** 

()

1

.

(·)

\* \* 1

\$

Abdel-Rassoul, A.A.; Herpers, U. and Herr, W. (1971) Improved techniques for separation and determination of rare-earth elements in extra-terrestrial material. In Activation Analysis in Geochemistry and Cosmochemistry (editors A.O. Brunfelt and E. Steinnes) pp. 219-226. Universitetsforlaget. Adler, I.; Walter, L.S.; Lowman, P.D.; Blass, B.P.; French, B.M. and Philpotts, J.A. (1970) Electron microprobe analysis of Apollo 11 lunar samples. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 1. pp. 87-92. Pergamon. Agrell, S.O.; Scoon, J.H.; Muir, I.D.; Long, J.V.P.; McConnell, J.D. and Peckett, A. (1970) Observations on the chemistry, mineralogy and petrology of some Apollo 11 lunar samples. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 1. pp. 135-158. Pergamon. Albee, A.L. and Chodos, A.A. (1970) Microprobe investigation on Apollo 11 samples. Pro. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 1. pp. 135-157. Pergamon. Anders, E.; Ganapathy, R.; Keays R.R.; Laul, J.C. and Morgan, J.W. (1971)Volatile and siderophile elements in lunar rocks - Comparison with terrestrial and meteoritic basalts. Proc. Second Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 1021-1036. Pergamon. Annell, C.S. and Helz, A.W. (1970) Emission Spectrographic determination of trace elements in lunar samples from Apollo 11. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2 pp. 991-994. Pergamon. Armstrong, T.W. and Alsmiller, R.G., Jr. (1971) Calculation of cosmogenic radionuclides in the moon and comparison with Apollo measurements. Apollo 12 Conf. Bailey, J.C.; Champness, P.E.; Dunham, A.C.; Fyfe, W.S.; MacKenzie, W.S.; Stumpfl, E.F. and Zussman, J. (1970) Mineralogy and petrology of Apollo 11 lunar samples. Proc. Apollo 11 Lunar Sci. Conf. Geochim Cosmochim Acta. Vol. 1. pp 169-194. Pergamon.

454

٠,

here ...

ŝ

э.

Basford, J.R. (1974) K-Ar analysis of Apollo 11 fines 10084. Proc. Fifth Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2 pp. 1375-1398. Pergamon. Begemann, F.; Vilcsek, E.; Rieder, R; Born, W. and Wanke, H. (1970) Cosmic-ray produced radioisotopes in lunar samples from the Sea of Tranquillity (Apollo 11). Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2 pp. 995-1006. Pergamon. Bochsler, P.; Eberhardt, P.; Geiss, J.; Loosli, H.H.; Oeschger, H. and Wahlen, M. (1971) Tritium in lunar material. Proc. Second Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 1803-1812. Pergamon. Bochsler, P.; Eberhardt, P.; Geiss, J.; Graf, H.; Grogler, N.; Krahenbuhl, U.; Morgeli, M.; Schwaller, H. and Stettler, A. (1971b) Potassium-Argon ages, exposure ages and radiation history of lunar rocks. Apollo 12 Conf. Bouchet, M.; Kaplan, G.; Voudon, A. and Bertoletti, M.J. (1971) Spark mass spectrometric analysis of major and minor elements in six lunar samples. Proc. Second Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 1247-1252. Pergamon. Boynten, W.V.; Baedecker, P.A.; Chou, C.L.; Robinson, K.L. and Wasson, J.T. (1975) Mixing and transport of lunar surface materials; Evidence obtained by the determination of lithophile, siderophile, and volatile elements. Proc. Sixth Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 2241-2260. Pergamon. Brown, G.M.; Emeleus, C.H.; Holland, J.G. and Phillips, R.J.(1970) Mineralogical, chemical and petrological features of Apollo 11 rocks and their relationship to igneous process. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 1. pp. 195-220. Pergamon Burnett, D.S., Drozd, R., Morgan, C., Podosek, F.A. (1975) Exposure histories of bench crater rocks. Proc. Sixth Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 2219-2240. Pergamon.

6

1

()

֥••

. . .

.

ż

ĩ., ỉ

1

455

ちょうちょう ちょう ちょう あんでん

いみ しょうしゅうしょう ち

المريبين المرغول الملاء والمرتجا والمعادي ويهوما والمراجع والمرابع والمراجع والمعادين ألمعول والمحمول

The same and the same and

()

Cameron, E.N. (1970) Opaque minerals in certain lunar rocks from Apollo 11. Proc. Apollo 11 Lunar Sci. Conf. Geochim Cosmochim Acta. Vol. 1. pp. 221-245. Pergamon. Carter, J.L. and MacGregor, I.D. (1970) Mineralogy, petrology and surface features of some Apollo 11 samples. Proc. Apollo 11 Lunar Sci. Conf. Geochim Cosmochim Acta. Vol. 1. pp. 247-265. Pergamon. Chao, E.C.T.; Boreman, J.A. and Desborough, G.A. (1971) Unshocked and shocked Apollo 11 and 12 microbreccias; Characteristics and some geologic implication. Proc. Second Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 1. pp. 797-816. Pergamon. Chao, E.C.T.; James, O.B.; Minkin, J.A.; Boreman, J.A.; Jackson, E.D. and Raleigh, C.B. (1970) Petrology of unshocked crystalline rocks and evidence of impact metamorphism in Apollo 11 returned lunar samples. Proc. Apollo 11 Lunar Sci. Conf. Geochim Cosmochim Acta. Vol. 1. pp. 287-314. Chyi, L. L. and Ehmann, W.D. (1973) Zirconium and hafnium abundances in some lunar materials and implications of their ratios. Proc. Fourth Lunar Sci. Conf. Geochim. Cosmochim. Act. Vol. 2. pp. 1219-1226. Pergamon. Cliff, R.A.; Lee-Hu, C. and Wetherill, G.W. (1971) Rb-Sr and U, Th-Pb measurements on Apollo 12 materials. Proc. Second Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2 pp. 1493-1502. Pergamon. Compston, W., Chappell, B.W.; Arriens, P.A. and Vernon, M.J. (1970) The chemistry and age of Apollo 11 lunar material. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 1007-1027. Pergamon. Crozaz, G.; Haack, U.; Hair, M.; Maurette, M.: Walker, R.M. and Woolum, D.S. (1970) Nuclear track studies of ancient solar radiations and dynamic lunar surface processes. Pro. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 3. pp. 2051-2080. Pergamon.

> ORIGINAL PAGE OF POOR QUALIES

Crozaz, G and Walker, R.M. (1971) Solar particle tracks in glass from the surveyor 3 spacecraft. Apollo 12 Conf. D'amico, J.; DeFelice, J. and Fireman, E. L. (1970) The cosmic-ray and solar-flare bombardment of the moon. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 1029-1036. Pergamon. Dence, M.R.; Douglas, J.A.V.; Plant, A.G. and Traill, R.J. (1970) Petrology, mineralogy and deformation of Apollo 11 samples. Proc. Apollo 11 Lunar Sci. Conf. Geochim Cosmochim Acta. Vol. 1. pp. 315-340. Pergamon. Duke, M.B.; Woo, C.C.; Sellers, G.A.; Bird, M.L. and Finkelman, R.B. (1970)Genesis of lunar soil at Tranquillity Base. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 1. pp. 347-362. Pergamon. Duke, M.B. and Nagle, J.S. (1976) Lunar Core Catalogue JSC 09252 Dymek, R.F.; Albee, A.L. and Chodos, A.A. (1975) Comparative mineralogy and petrology of Apollo 17 mare basalts: Samples 70215, 71055, 74255, and 75055. Proc. Sixth Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 1. pp. 49-78. Pergamon. Eberhardt, P.; Geiss, J.; Graf, H.; Grogler, N.; Krahenbuhl, U.; Schwaller, H.; Schwarzmuller, J. and Stettler, A. (1971a) Correlation between rock type and irradiation history of Apollo 11 igneous rocks. Apollo 12 Conf. Eberhardt, P.; Geiss, J.; Grogler, N.; Krahenbuhl, U.; Morgeli, M. and Stettler, A. (1971b) Potassium-Argon age of Apollo 11 rock 10003. Earth Planet. Sci. Lett. Vol. 11. p. 245. Eberhardt, P.; Geiss, J.; Graf, H.; Grogler, N.; Krahenbuhl, U.; Schnaller, H. and Stettler, A. (1974) Noble-gas investigations of lunar rocks 10017 and 10071. Geochim. Cosmochim. Acta. Vol. 38(1). pp. 79-95.

 $\mathbf{O}$ 

1

11

i

4

7

高いいき このなる いい

" the where a second and the

Ehmann, W.D. and Morgan, J.W. (1970) Oxygen, silicon and aluminum in Apollo 11 rocks and fines by 14 mev neutron activation. Proc. Apollo 11 Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 1071-1079. Pergamon. Ehmann, W.D.; Gillum, D.E. and Morgan, J.W. (1972) Oxygen and bulk element composition studies of Apollo 14 and other lunar rocks and soils. Proc. Third Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 11. pp. 1149-1161. Pergamon. Ehmann, W.D.; Chyi, L.L.; Garg, A.N.; Hawke, B.R.; Ma, M.S.; Miller, M.D.; James, W.D., Jr. and Pacer, R.A. (1975) Chemical studies of the lunar regolith with emphasis on zirconium and hafnium. Proc. Sixth Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 1351-1362. Pergamon. Engel, A.E.J. and Engel, C.G. (1970) Lunar rock compositions and some interpretations. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 1081-1084. Pergamon. Engel, A.E.J.; Engel, C.G.; Sutton, A.L. and Meyers, A.T. (1971) Composition of five Apollo 11 and Apollo 12 rocks and one Apollo 11 soil and some petrogenic considerations. Proc. Second Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 1. pp. 439-448. Pergamon. Epstein, S. and Taylor, H.P., Jr. (1970) The concentration and isotopic composition of hydrogen, carbon and silicon in Apollo 11 lunar rocks and minerals. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 1085-1096. Pergamon. Epstein, S. and Taylor, H.P., Jr. (1971) 018/016, S130/S128, D/H, and C13/C12 ratios in lunar samples. Apollo 12 Conf. Eugster, 0. (1971b) Li, Be and B abundances in fines from Apollo 11, Apollo 12 and Apollo 14 and luna 16 missions. Earth Planet. Sci. Lett. Vol. 12. p. 273. ORIGINAL PAGE IS OF POOR QUALITY 

( )

J

ł

( )

こうちょうちょうちょう ちょうちゅう ちょうちょう ちょうちょう

فالمقادمة متقادما فالمنابع والمراقب منتقا والمراقبة مراوية المراقبة المراقبة المراقبة المراقبة المراقبة

. .

۰. ۲

.

.

11



and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se

. . all and

. .

•

` ``

1 .

-v

in the set of the set

j.

1.2.4

and a state and and a state and

いいしょう やいちょう ちょう

Gast, P.W.; Hubbard, N.J. and Wiesmann, H. (1970) Chemical composition and petrogenesis of basalts from Tranquillity Base. <u>Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta.</u> Vol. 2. pp. 1143-1163. Pergamon. ()

4

Gibson, E.K., Jr. and Johnson, S.M. (1971) Thermal analysis-inorganic gas release studies of lunar samples. <u>Proc. Second Lunar Sci. Conf. Geochim. Cosmochim. Acta</u>. Vol. 2. pp. 1351-1366. Pergamon.

Goldstein, J. I.; Henderson, R.I. and Yakowitz H. (1970) Investigation of lunar metal particles. <u>Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmuchim. Acta</u>. Vol. 1. pp. 499-512. Pergamon.

Goles, G.G.; Randle, K.; Osawa, M.; Schmitt, R.A.; Wakita, H.; Ehmann, W.D. and Morgan, J.W. (1970a) Elemental abundances by instrumental activation analyses in chips from 27 lunar rocks. <u>Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta.</u> Vol. 2. pp. 1165-1176. Pergamon.

Goles, G.G.; Randle, K.; Osawa, M.; Lindstrom, D.J.; Jerome, D.Y.; Steinborn, T.L.; Beyer, R.L.; Martin, M.R. and McKay, S.M. (1970b) Interpretations and speculations on elemental abundances in lunar samples. <u>Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta.</u> Vol. 2. pp. 1177-1194. Pergamon.

Goles, G.G. (1971) Instrumental activation analysis of columbia river basalts and of lunar rocks. In <u>Activation Analysis in Geochemistry and Cosmochemistry</u> (editors A.O. Brunfelt and E. Steinnes) pp. 45-50 Universitetsforlaget.

Gopalan, K.; Kaushal, S.; Lee-Hu, C.and Wetherill, G.W. (1970) Rb-Sr and U, Th-Pb ages of lunar materials. <u>Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta</u>. Vol. 2. pp. 1195-1206. Pergamon.

Haggerty, S.E.; Boyd, F.R.; Bell, P.M.; Finger, L.W. and Bryan, W.B. (1970) Opaque minerals and olivine in lavas and breccias from Mare Tranquillitatis. <u>Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta</u>. Vol. 1. pp. 513-538.

÷.``

ł

ł

461 Haramura, H.; Nakamura, Y. and Kushiro, I. (1970) Composition of lunar fines. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 1. pp. 539-540. Pergamon. Haskin, L.A.; Allen, R.O., Jr.; Helmke, P.A.; Paster, T.P.; Anderson, M.R.; Korotev, R.L.and Zweifel, K.A. (1970) Rare-earths and other trace elements in Apollo 11 lunar samples. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 1213-1232. Pergamon. Heiken, G. (1975) Petrology of lunar soils. Rev. Geophys. and Spa. Sci. Vol. 13. No. 4. pp. 567-587. Herzog, G.F. and Herman, G.F. (1970) Na22, Al26, Th and U in Apollo 11 lunar samples. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 1239-1246. Pergamon. Hess, F.D.; Palmer, D.F. and Bischoff, J.L. (1971) Relations of some lunar rocks and fines. Evidence by radiochemical analysis of rare earth elements. Apollo 12 Conf. Hintenberger, H.; Weber, H.W. and Takaoka, N. (1971) Concentrations and isotopic abundances of the rare gases in lunar matter. Apollo 12 Conf. Hubbard, N.J.; Nyquist, L.E.; Rhodes, J.M.; Bansal, B.M.; Wiesmann, H. and Church, S.E. (1972) Chemical features of luna-16 regolith sample. Earth Planet. Sci. Lett. Vol. 13. p. 423. Hurley, P.M. and Pinson, W.H., Jr. (1970) Whole-rock Rb-Sr isotopic age relationships in Apollo 11 lunar samples. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 1311-1316. Pergamon. Kaplan, I.R.; Smith, J.W. and Ruth, E. (1970) Carbon and sulphur concentration and isotopic composition in Apollo 11 lunar samples. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta.

Vol. 2. pp. 1317-1330. Pergamon.

あいろう とうちょう かいかんてい ちょうちょう ちょうちょう ちょうちょう

О

X

(])

11

ļ

and the second second second second second second second second second second second second second second second

, **"**••)

. . . .

. :

Π

i

?

24

Ą

R.

| Keil, K.; Bunch, T.E. and Prinz, M. (1970)<br>Mineralogy and composition of Apollo 11 lunar samples.<br>Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Act<br>Vol. 1. pp. 561-598. Pergamon.                                                                                                                                                      | <u>ta</u> .                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Kharkar, D.P. and Turekian, K.K. (1971)<br>Analyses of Apollo 11 and Apollo 12 rocks and soils by<br>activation.<br><u>Proc. Second Lunar Sci. Conf. Geochim. Cosmochim. Acta.</u><br>Vol. 2. pp. 1301-1306. Pergamon.                                                                                                                                  | neutron                                          |
| Kim, Y.K.; Lee, S.M.; Yang, J.H.; Kum, J.H. and Kim, C.K.<br>Mineralogical and chemical studies of lunar fines 10084<br>12070,98.<br>Proc. Second Lunar Sci. Conf. Geochim. Cosmochim. Acta.<br>Vol. 1. pp. 747-754. Pergamon.                                                                                                                          |                                                  |
| King, E.A.,Jr.; Martin, R.T. and Nance, W. (1970)<br>Tektite glass not in Apollo 12 sample.<br><u>Science</u><br>Vol. 170. p. 199.                                                                                                                                                                                                                      |                                                  |
| Kohman, T.P.; Black, L.P.; Ihochi, H. and Huey, J.M. (1970)<br>Lead and thallium isotopes in Mare Tranquillitatis surfa<br>Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Ac<br>Vol. 2. pp. 1345-1350. Pergamon.                                                                                                                                  | ace material.                                    |
| Kushiro, I. and Nakamura, Y. (1970)<br>Petrology of some lunar crystalline rocks.<br><u>Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Ac</u><br>Vol. 1. pp. 607-626. Pergamon.                                                                                                                                                                   | ta.                                              |
| Kvenvolden, K.A.; Chang, S.; Smith, J.W.; Flores, J.; Perin<br>Saxinger, C.; Woller, F.; Keil, K.; Breger, I.A. and Por<br>(1970)<br>Carbon compounds in lunar fines from Mare Tranquillitat<br>Search for molecules of biological significance.<br><u>Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Act</u><br>Vol. 2. pp. 1813-1828. Pergamon. | nnamperuma C.<br>is I.                           |
| Laul, J.C.; Ganapathy, R.; Morgan, J.W. and Anders E. (1972<br>Meteoritic and non-meteoritic trace elements in Luna-16<br><u>Earth Planet. Sci. Lett.</u><br>Vol. 13. p. 450. Pergamon.                                                                                                                                                                 |                                                  |
| Lindstrom, P.M.; Evans, J.C.; Finkel, R.C. and Arnold, J.R.<br>Radon emanation from lunar-surface.<br><u>Earth Planet. Sci. Lett</u> .<br>Vol. 11. p. 254. Pergamon.                                                                                                                                                                                    | . (1971)<br>ORIGINAL PAGE IS<br>OF POOR QUALITY, |
|                                                                                                                                                                                                                                                                                                                                                         |                                                  |

.

1

1

¢

0

<del>1</del> 4

ş

 $\bigcirc$ 

•

ł

i

1

i

i

المراجع والمحافظ والمراجع والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ

一部分子 一下一部

1.1.1

そうちょうしてい ちいいいろう いちちょうちょう

1

たいち たんとうなおしゃ んとうままん

¥

and a state of the second of the second states and

0

X

\$

| Lovering, J.F. and Butterfield D. (1970)<br>Neutron activation analysis of rhenium and osmium in Apollo 11<br>lunar material.<br><u>Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta.</u><br>Vol. 2. pp. 1351-1356. Pergamon.                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lovering, J.F. and Ware, N.G. (1970)<br>Electron probe microanalyses of minerals and glasses in Apollo 11 luna<br>samples.<br><u>Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta</u> .<br>Vol. 1. pp. 633-654. Pergamon.                                             |
| Lovering, J.F.and Hughes, T.C. (1971)<br>Rhenium and osmium abundance determinations and meteoritic contamina-<br>tion levels in Apollo 11 and Apollo 12 lunar samples.<br><u>Proc. Second Lunar Sci. Conf. Geochim. Cosmochim. Acta</u> .<br>Vol. 2. pp. 1331-1336. Pergamon. |
| LSPET (1969)<br>Preliminary examination of lunar samples from Apollo 11.<br><u>Science</u><br>Vol. 165. p. 1212.                                                                                                                                                               |
| LSPET (1973)<br>Preliminary examination of lunar samples,<br>Apollo 17 Preliminary Science Report<br>NASA SP-330 p. 7-10.                                                                                                                                                      |
| Mason, B.; Fredriksson, K.; Henderson, P.; Jarosewich, E.; Melson, W.G.;<br>Towe, K.M. and White, J.S.,Jr. (1970)<br>Mineralogy and petrology of lunar samples.<br><u>Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta</u> .<br>Vol. 1. pp. 655-660. Pergamon.        |
| Mason, B. and Melson, W.G. (1970)<br>Comparison of lunar rocks with basalts and stony mateorites.<br><u>Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta</u> .<br>Vol. 1. pp. 661-671. Pergamon.                                                                      |
| Mason, B.; Melson, W.G.; Henderson, E.P.; Jarosewich, E. and Nelen, J.<br>(1971)<br>Mineralogy and petrography of some Apollo 12 samples.<br>Apollo 12 Conf.                                                                                                                   |
|                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                |

12.4

С

Ł

\$

 $\cap$ 

i

1

ļ

1 200

Maxwell, I.A.; Peck, L.C. and Wiik, H.B. (1970) Chemical composition of Apollo 11 lunar samples 10017, 10020, 10072, and 10084. <u>Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta.</u> Vol. 2. pp. 1369-1374. Pergamon.

McKay, D.S.; Greenwood, W.R. and Morrison, D.A. (1970) Origin of small lunar particles and breccia from the Apollo 11 site. <u>Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta</u>. Vol. 1. pp. 673-693. Pergamon.

McKay, D.S.; Morrison, D.A.; Lindsey, J. and Ladle, G. (1971) Apollo 12 soil and breccia. <u>Proc. Second Lunar Sci. Conf. Geochim. Cosmochim. Acta.</u> Vol. 1. pp. 755-773. Pergamon.

Moore, C.B.; Gibson, E.K., Jr.; Larimer, J.W.; Lewis, C.F.; Nichiporuk, W. (1970) Total carbon and nitrogen abundances in Apollo 11 lunar samples and selected achondrites and basalts. <u>Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim Acta.</u> Vol. 2. pp. 1375-1382. Pergamon.

Morgan, J.W.; Laul, J.C.; Krahenbuhl, U.; Ganapathy, R. and Anders, E. (1972) Major impacts on the moon; characterization from trace elements in Apollo 12 and 14 samples. <u>Proc. Third Lunar Sci. Conf. Geochim. Cosmochim. Acta.</u> Vol. 11. pp. 1377-1397. Pergamon.

Morrison, G.H.; Gerard, J.T.; Kashuba, A.T.; Gangadharam, E.V.; Rothenberg, A.M.; Potter, N.M. and Miller, G.B. (1970) Elemental abundances of luna. soil and rocks. <u>Proc. Apollo 11 Luna: Sci. Conf. Geochim. Cosmochim. Acta.</u> Vol. 2. pp. 1383-1392. Pergamon.

Murphy, M.E.; Modzeleski, V.E.; Nagy, B.; Scott, W.M.; Young, M.; Drew, C.M.; Hamilton, P.B. and Urey, H.C. (1970) Analysis of Apollo 11 lunar samples by chromatography and mass spectrometry, pyrolysis products, hydrocarbons, sulfur amino acids. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 1879-1890. Pergamon. - 「「「「「「」」」」」

**(**.

¥.

4

(

;

è.

3

Ş.

465

| Mui | rthy, V.R.; Evensen, N.M. and Coscio, M.R.,Jr. (1970)<br>Distribution of K, Rb, Sr and Ba and Rb-Sr isotopic relations in<br>Apollo 11 lunar samples.<br><u>Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta</u> .<br>Vol. 2. pp. 1393-1406. Pergamon.                                                                              |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mu  | rthy, V.R.; Evensen, N.M. and Coscio, M.R.,Jr. (1973)<br>Episodi lunacy ~ IV; Ages, trace elements and delphic speculations.<br>Lunar Science IV<br>p. 549.                                                                                                                                                                                  |
| 0'1 | Hara, M.J.; Biggar, G.M.; Hill, P.G.; Jefferies, B. and Humphries, D.J                                                                                                                                                                                                                                                                       |
|     | (1974)<br>Plagioclase saturation in lunar high titamium basalt.<br><u>Earth Planet. Sci. Lett</u> .<br>Vol. 21(3). pp. 253-268.                                                                                                                                                                                                              |
| 0'  | Kelly, G.D.; Eldridge, J.S.; Schonfe'd, E. and Bell, P.R. (1970)<br>Primordial radionuclide abundances, solar proton and cosmic ray effect<br>and ages of Apol'o (1) is samples by non-destructive gamma-ray<br>spectrometry.                                                                                                                |
|     | Proc. Apollo 11 Lunar sci. Conf. Geochim. Losmochim. Acta.<br>Vol. 2. pp. 1407-1424. Pergamon.                                                                                                                                                                                                                                               |
| Gra | o, J.: Undegrove, W.S.; Gibert, J.; Mcreynolds, J.; Gil-Av, E.; Ibanez<br>J.; Zlatkis, A.; Flory, D.A.; Levy, R.L. and Wolf, C.J. (1970)<br>Organogenic elements and compounds in type C and D lunar fines by mass<br>spectrometry.<br><u>Proc. Apoilo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta</u> .<br>Vol. 2. pr. 901-1920. Pergamon. |
| Paj | panasta 5, 5 A.; Wasserburg, G.J. and Burnett, D.S. (1970)<br>Rb-Sr ag. 5t lunar rocks from Sea of Tranquillity.<br>Earth Planet. Sci. Lett.<br>Vol. 8. p. l.                                                                                                                                                                                |
| Paj | penastassiou, D.A. and Wasserburg, G.J. (1971)<br>Lunar chronology and evolution from Rb-Sr studies of Apollo 1!<br>and Apollo 12 samples.<br><u>Earth Planet. Sci. Lett</u> .<br>Vol. 11. p. 37.                                                                                                                                            |
| Per | rkins, R.W.; Fancitelli, L.A.; Cooper, J.A.; Kaje, J.H. and Wogman, N./<br>(1970)<br>Cosmogenic and primordial radioruclide measurements in Apollo 11<br>lunar samples by nondestructive analysis.<br><u>Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta</u> .<br>Vol. 2. pp. 1455-1470. Pergamon.                                 |
|     | ORIGINAL PAGE IS<br>OF POOR QUALITY                                                                                                                                                                                                                                                                                                          |

Ľ

ļ

いたちちょうない ちょうちょう ちょうちょう ちょうちょう ちょうちょうちょう

Philpotts, J.A. and Schnetzler, C.C. (1970) Apollo 11 lunar samples K, Rb, Sr, Ba and rare-earth concentrations ir, some rocks and separated phases. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 1471-1486. Pergamen. Quaide, W.L. and Bunch, T.W. (1970) Impact metamorphism of lunar surface materials. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 1. pp. 711-730. Pergamon. Reed, G.W., Jr. and Jovanovic, S. (1970) Halogens, mercury, lithium and osmium in Apollo 11 samples. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 1487-1492, Pergamon. Reed, G.W., Jr.; Gole, J.A. and Jovanovic, S. (1971a) Surface-related mercury in junar samples. Science Vol. 172. p. 258. Reed, G.W., Jr. a 1 Jovanovic, S. (1971b) The halogens and other trace elements in Apollo 12 samples and the implications of halides, platinum metals, and mercury on surfaces. Proc. Second Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 1261-1276. Pergamon. Reid, A.M.; Frazer, J.Z.; Fujita, H. and Everson, J.E. (1970) Apollo 11 samples: Major mineral chemistry. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 1. pp. 749-761. Pergamon. Rhodes, J.M.; Adams, J.B.; Charette, M.B. and Rodgers, K.V. (1975) The Chemistry of agglutinate fractions in lunar soils. Lunar Science - VI pp. 665-667. Rose, H.J., Jr.; Cuttitta, F.; Dwornik, E.J.; Carron, M.K.; Christian, R.P.; Lindsay, J.R., Ligon, D.T., Jr. and Larson, R.R. (1970) Semimicro x-ray flourescence analysis of lunar samples. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 1493-1498. Pergamon. Ross, M.; Bence, A.E. and Dwornik, E.J.; Clark, J.R. and Papike, J.J. (1970) Mineralogy of the lunar clinopyroxenes, augite and pigeonite. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim Acta. Vol. 1. pp. 839-848. Pergamon.

Э

¥

:

; )

Shedlovsky, J.P.; Honda, M.; Reedy, R.C.; Evans, J.C.; Lal, D.; Lindstrom, R.M.; Delany, A.C.; Arnold, J.R.; Loosli, H.H.; Fruchter, J.S. and Finkel, R.C. (1970) Pattern of bombardment-produced radionuclides in rock 10017 and in lunar soil. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 1503-1532. Pergamon. Shoemaker, E.M.; Hart, M.H.; Swenn, G.A.; Schleicher, D.L.; Scherber, G.G.; Sutton, R.L.; Dahlem, D.H.; Goddard, E.N. and Waters, A.C. (1970) Origin of the lunar regolith at Tranquillity Base. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 3. pp. 2399-2412. Pergamon. Silver, L.T. (1970) Uranium-thorium-lead isotopes in some tranquillity base samples and their implications for lunar history. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 1533-1574. Pergamon. Simpson, P.R. and Bowie, S.H.U. (1970) Quantitative optical and electron-probe studies of opaque phases in Apollo 11 samples. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 1. pp. 873-890. Pergamon. Smales, A.A.; Mapper, D.; Webb, M.S.W.; Webster, R.K. and Wilson, J.D. (1970) Elemental composition of lunar surface material. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 1575-1582. Pergamon. Smales, A.A.; Mapper, D.; Webb, M.S.W.; Webster, R.K.; Wilson, J.D. and Hilsop, J.S. (1971) Elemental composition of lunar surface material (part 2) Proc. Second Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 1253-1258. Pergamon. Smith, J.V.; Anderson, A.T.; Newton, R.C., Olsen, E.J., Crewe, A.V.; Isaacson, M.S.; Johnson, D. and Wylie, P.J. (1970) Petrologic history of the moon inferred from petrography, mineralogy and petrogenesis of Apollo 11 rocks. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 1. pp. 897-926. Pergamon. RIGINAL PAGE IS OF POOR QUALITY

ものなかというというと

(

ŧ.

1

()

:

. 1

,t

!

1

i

.

| Stettler, A.; Eberhardt, P.; Geiss, J.; Grogler, N. and Maurer, P. (1973)<br>Ar39-Ar40 ages and Ar37-Ar38 exposure ages of lunar rocks.<br>Proc. Fourth Lunar Sci. Conf. Geochim. Cosmochim. Acta.<br>Vol. 2. pp. 1865-1888. Pergamon.                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stettler, A.; Eberhardt P.; Geiss, J; Grogler, N. and Maurer P. (1974)<br>On the duration of lava flow activity in mare tranquillitatis.<br><u>Proc. Fifth Lunar Sci. Conf. Geochim. Cosmochim. Acta</u> .<br>Vol. 2. pp. 1557-1570. Pergamon.                                                  |
| Stoenner, R.W.; Lyman, W. and Davis, R.,Jr. (1970)<br>Cosmic-ray production of rare-gas radioactivities and tritium in<br>lunar material.<br><u>Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta</u> .<br>Vol. 2. pp. 1583-1594. Pergamon.                                             |
| Stoenner, R.W.; Lyman, W. and Davis, R., Jr. (1971)<br>Radioactive rare gases and tritium in lunar rocks and in the samples<br>return container.<br><u>Proc. Second Lunar Sci. Conf. Geochim. Cosmochin. Acta</u> .<br>Vol. 2. pp. 1813-1824. Pergamon.                                         |
| Tatsumoto, M. (1970)<br>Age of the moon, an isotopic study of U-Th-Pb systematics of Apollo<br>11 lunar samples - 11.<br><u>Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta</u> .<br>Vol. 2. pp. 1595-1612. Pergamon.                                                                 |
| Tera, F., Eugster, O.; Burnett, D.S.and Wasserburg, G.J. (1970)<br>Comparative study of Li, Na, K, Rb, Cs, Ca, Sr and Ba abundances<br>in achondrites and in Apollo 11 lunar samples.<br><u>Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta</u> .<br>Vol. 2. pp. 1637-1658. Pergamon. |
| Travesi, A.; Palomares, J. and Adrada, J. (1971)<br>Multielement neutron activation analysis of trace elements in<br>lunar fines.<br><u>Proc. Second Lunar Sci. Conf. Geochim. Cosmochim. Acta</u> .<br>Vol. 2. pp. 1277-1280. Pergamon.                                                        |
| Turekian, K.K.and Kharkar, D.P. (1970)<br>Neutron activation analysis of milligram quantities of Apollo 11<br>lunar rocks and soil.<br><u>Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta</u> .<br>Vol. 2. pp. 1659-1664. Pergamon.                                                   |

5

¥

1

()

ţ

¢,

( )

ł

2

:

Turkevich, A.L.; Reed, G.W., Jr.; Heydegger, H.R. and Collister, J. (1971a) Activation analysis determination of uranium and 204Pb in Apollo 11 lunar fines. Proc. Second Lunar Sci. Conf. Geochim. Cosmochim. Ac ... Vol. 2. pp. 1565-1570. Pergamon. Turkevich, A.L.; Reed, G.W., Jr.; Heydegger, H.R. and Collister, J. (1971b) Activation analysis determination of uranium and Pb-204 in Apollo 11 lunar fines. Apollo 12 Conf. Turner, G. (1971) 40Ar-39Ar ages from the lunar maria. Apollo 12 Conf. Turner, G. (1970) Argon-40/Argon-39 dating of lunar rock samples. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 1665-1684. Pergamon. Vobecky, M.; Frana, J.; Bauer, J.F.; Randa, Z.; Benada, J. and Kuncir, J. (1971) Radioanalytical determination of elemental compositions of lunar samples. Proc. Second Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 1291-1300. Pergamon. VonEngelhardt, W.; Arndt, J.; Miller, W.F. and Stoffler, D. (1970) Shock metamorphism and origin of the regolith at the Apollo 11 landing site. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 1. pp. 363-384. Pergamon. Wakita, H.; Schmitt, R.A. and Rey, P. (1970) Elemental abundances of major, minor and trace elements in Apollo 11 lunar rocks, soil and core samples. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 1685-1718. Pergamon. Wanke, H.; Rieder, R.; Baddenhausen, H.; Spettel, B.; Tecshke, F.; Quijano-Rico, M. and Balacescu, A. (1970) Major and trace elements in lunar material. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 1719-1728. Pergamon. RIGINAL PAGE IS OF POOR QUALITY

Services.

О

()

()

1

١

j

Wanke, H.; Wlotzka, F.; Baddenhausen, H.; Balacescu, A.; Spettel, B.; Teschke, F.; Jagoutz, E.; Kruse, H.; Quijano-Rico, M. and Rieder, R. (1971) Apollo 12 samples - chemical composition and its relation to sample locations and exposure ages, the two-component origin of the various soil samples and studies on lunar metallic particles. Proc. Second Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 1187-1208. Pergamon. Wanke, H.; Baddenhausen, H.; Balacescu, A.; Teschke, F.; Spettel, B.; Dreibus, G.; Palme, H.; Quijano-Rico, M.; Kruse, H.; Wlotzka, F. and Bergmann, F. (1972) Multielement analyses of lunar samples and some implications of the results. Proc. Third Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 11. pp. 1251-1269. Pergamon. Wanless, R.K.; Loveridge, W.D. and Stevens, R.D. (1970) Age determinations and isotopic abundance measurements of lunar samples (Apollo 11). Proc. Apollo 11 Lunar Sci. Conf. Geuchim. Cosmochim. Acta. Vol. 2. pp. 1729-1740. Pergamon. Wasson, J.T. and Baedecker, P.A. (1970) Ga, Ge, Ir and Au in lunar terrestrial and meteoritic basalts. Proc. Apollo 11 Lunar Sci, Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 1741-1750. Pergamon. Weill, D.F.; McCallum, I.S.; Bottinga, Y.; Drake, M.J. and McKay, G.A. (1970) Mineralogy and petrology of some Apollo 11 Junar rocks. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 1. pp. 937-955. Pergamon. Willis, J.P.; Erlank, A.J.; Gurney, J.J.; Theil, R.H. and Ahrens, L.H. (1972)Major, minor and trace element data from some Apollo 11, 12, 14, and 15 samples. Proc. Third Lunar Sci. Conf. Geochim. Cosmochim. Acta. Wood, J.A.; Dickey, J.S.; Marvin, U.B. and Powell, B.N. (1970) Lunar anorthosites and a geophysical model of the moon. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta.

Vol. 1. pp. 965-988. Pergamon.

あいいのうち うちちち あいまちち

Å

滂

Ż

1

Lander Prick.

4

neranje.



C

471

Wrigley, R.C.and Quaide, W.L. (1970) Al26 and Na22 in lunar surface materials; implications for depth distribution studies. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 1751-1756. Pergamon.

Wrigley, R.C. (1971)

Some cosmogenic and primordial radionuclides in Apollo 12 lunar surface materials. Proc. Second Lunar Sci. Conf. Geochim. Cosmochim. Acta. Vol. 2. pp. 1791-1796. Pergamon.

NASA-JSC