NASA TM-72851

FLIGHT-DETERMINED STABILITY AND CONTROL

COEFFICIENTS OF THE F-111A AIRPLANE

Kenneth W. Diff, Richard E. Maine, and Sandra Thornberry Sieers
Dryden Flight Research Center
P.O. Box 273

Edwards, California 93523

March 1978

Center-printed Technical Memorandums are issued to provide rapid tronsmittal of technical information from the researcher to the user. As such. they are not subject to the usual NASA review process.

National Aeronautics and Space Administration Washington, D.C. 2C.546

NASA Technical Memorandum ?2851

FLIGHT-DETERMINED STABILITY AND CONTROL COEFFICIENTS OF THE F-111A AIRPLANE

Kenneth W. Iliff, Richard E. Maine, and Sandra Thornberry Steers
Dryden Flight Research Center Edwards, California

Nationdi Aeronautics and
Space Administration
Scientific and Technical Information Office

1978

FLIGHT-DETERMINED STABILITY AND CONTROL COEFFICIENTS OF THE F-111A AIRPLANE

Kenneth W. Iliff, Richard E. Maine, and Sandra Thornberry Steers
Dryden Flight Research Center

INTRODUCTION

Because of the continuing interest in flight simulation and handling qualities, reliable estimates of the stability and control derivatives of most types of aircraft are required. In response to these requirements, the NASA Dryden Flight Research Center perfected a technique for determining the stability and control derivatives of aircraft from flight data (ref. 1) and developed a set of FORTRAN computer programs to implement the technique (ref. 2). These programs use a modified maximum likelihood method with a Newton-Balakrishnan algorithm to perform the required minimization.

These computer programs are currently being used at the Dryden Flight Research Center to obtain stability and control derivatives for a wide variety of aircraft. Among the aircraft being studied is the F-111A fighter bomber airplane. This report presents the estimates of the derivatives for the $F-111 \mathrm{~A}$ airplane determined from flight data by the modified maximum likelihood estimation technique. The F-111A airplane of this report is the baseline vehicle for the transonic aircraft technology (TACT) program. The data are therefore of particular interest for assessing the effect of the TACT modifications on the stability and control characteristics of the baseline vehicle.

The flight data were selected from maneuvers performed in the course of a multiple purpose flight test program. As a result, the entire flight envelope was not studied in the flight test program. In some instances, the incremental effect of a configuration was studied instead of all possible configurations.

SYMBOLS

Parenthetical symbols are computer identifiers.

$C_{1}(\mathrm{CL})$	rolling-moment coefficient
C_{m} (CM)	pitching-moment coefficient
$C_{N}(\mathrm{CN})$	normal-force coefficient
$C_{n}\left(\mathrm{CN}^{*}\right)$	yawing-moment coefficient
$C_{Y}(\mathrm{CY})$	side-force coefficient
CG	center of gravity
IX	roll moment of inertia
1X2	cross product of inertia between roll and yaw axes
IY	pitch moment of inertia
IZ	yaw moment of inertia
M (MACH)	Mach number
p (P)	roll rate
q(Q)	pitch rate
r (R)	yaw rate
α (ALPHA)	angle of attack
β	angle of sideslip
$\delta_{a}(\mathrm{DA})$	aileron deflection
δ_{c} (DC)	blend of aileron and spoiler deflection
$\delta_{e}(\mathrm{DE})$	elevator deflection
$\delta_{r}(\mathrm{DR})$	rudder deflection
Su cripts:	
$\begin{aligned} & p(\mathrm{P}), q_{(Q)}(\mathrm{Q}(\mathrm{R}), \\ & \alpha, \beta, \delta_{a}(\mathrm{DA}), \delta_{c}(\mathrm{DC}), \\ & \delta_{e}(\mathrm{DE}), \delta_{r}(\mathrm{DR}) \end{aligned}$	partial derivative with respect to the indicated quantity

DESCRIPTION OF AIRPLANE AND INSTRUMENTATION

Abstract

The F-111A airplane (fig. 1) is a two-place (side-by-side), long-range fighter bomber aircraft designed for all-weather supersonic operation at both low and high altitudes. Power is provided by two TF30-P-3 axial flow, dual compressor turbofan engines equipped with afterburners. The wings are equipped with leading edge slots and trailing edge flaps and may be varied in sweep angle between 16° and 71.5° (fig. 2). The empennage consists of a fixed vertical stabilizer with rudder for directional control and a horizontal stabilizer (rolling tail) that is moved symmetrically for pitch control and asymmetrically for roll control. At wing-sweep angles of less that 47°, wing spoilers augment roll-control power; at high wing-sweep angles, the spoilers are disengaged. The aircraft has an adaptive gain-scheduled stability augmentation system that was not engaged during these maneuvers. Physical characteristics of the airplane are given in table 1. A more complete description of the aircraft and its control system is given in reference 3 .

Airspeed, altitude, and the pertinent stability and control quantities were among the data recorded. Angles of attack and sideslip were measured by vanes on a nose boom. Data were acquired by means of a pulse code modulation (PCM) system. Standard passive analog filters with break frequencies at 10 hertz were applied to all the data signals. The digital data were recorded at 20 samples per second on magnetic tape and telemetered to a ground station for real-time monitoring and recording. The data were corrected for all known time and phase shifts due to sampling skew and filtering.

TEST PROCEDURE AND FLIGHT CONDITIONS

Standard stability and control pulses were performed at wing-sweep angles of $26^{\circ}, 35^{\circ}$, and 58°. Elevator and rudder pulses were obtained at all wing-sweep angles. Aileron (rolling tail) pulses were obtained at a wing-sweep angle of 58°; however, at wing-sweep angles of 26° and 35°, the roll-control pulses resulted in combined aileron-spoiler motion, δ_{c}, as mentioned previously. The flight conditions analyzed covered a Mach number range of 0.63 to 1.43 , an angle of attack range of 2° to 15°, and an altitude range of 3000 to 11,000 meters. The stability aligmentation system was off for all these maneuvers.

The flight program consisted of 25 flights, of which flights 5 to 8,16 , and 17 contained usable stability and control maneuvers. For correlation with other data, these flight numbers are retained in this report.

The initial data were gathered from flights 5 to 8 in level flight at 1 g conditions. To investigate aeroelastic effects, elevated g data were taken during flights 16 and 17. These maneuvers were performed during steady turns, and normal acceleration ranged from 0.9 g to 3.8 g . It was anticipated that the wing deformation under load would affect the aerodynamic derivatives. No δ_{c} pulses were obtained at the elevated g conditions.

METHOD OF ANALYSIS

A modified maximum likelihood estimator program was used to determine a complete set of linear stability and control derivatives from the maneuvers performed in flight. The program, sometimes called the Newton-Raphson program, minimizes the difference between the measured aircraft response and the computed aircraft response by adjusting the stability and control derivative values used in calculating the computed response. A Newton-Balakrishnan iterative algorithm was used to perform the minimization. The method can be modified to include a priori information from previous calculations, flight tests, or wind tunnel tests. This modification is made by including a penalty for adjusting the unknown stability and control derivatives away from the a priori values. If new information is contained in a flight naneuver, the estimate of the derivative is not affected significantly by the a priori feature. If no new information is contained in a maneuver, however, the a priori value results. A low a priori weighting was used on these data. A complete description of the computer program used for the derivative extraction and the FORTRAN listings is given in reference 2.

In addition to giving estimates of the derivatives, this method of analysis provides uncertainty levels for each derivative. The uncertainty levels are proportional to the Cramèr-Rao bounds described in reference 1 and are analogous to the standard deviations of the estimated derivatives. The larger the uncertainty level, the more uncertainty there is in the estimated value. The uncertainty levels obtained for a derivative from different maneuvers at the same flight condition can be compared to determine the best estimate. Therefore, the uncertainty levels provide additional information about the validity of the estimate of the derivative.

Since rolling tail and spoiler surfaces move together for wing-sweep angles of 26° and 35°, it is not possible to estimate their effectiveness separately. Thus, an equivalent combined effectiveness was obtained as suggested in reference 4, by using the spoiler position only. The spoiler signal was used for the equivalent control because the moments produced by the spoiler deflection were larger than the moments produced by the rolling tail. The spoiler position was not measured directly but was computed from the differential tail movements and the known characteristics of the control system. This equivalent combined control is referred to as δ_{c}. For a wing-sweep angle of 58°, the rolling tail moves alone and the usual δ_{a} derivatives are obtained.

RESULTS AND DISCUSSION

The results are presented in figures summarizing the stability and control coefficients as functions of angle of attack. The data in these figures are corrected to the wind tunnel reference center of gravity. The center of each symbol indicates the maximum likelihood estimate of the coefficient, and the vertical line indicates the uncertainty level of the estimate. Those estimates with smaller uncertainty levels are more reliable estimates and should be considered more strongly in fairing the estimated coefficients. A further explanation of uncertainty levels is given in
reference 4. The figures summarizing the cocfficients are divided into groups of longitudinal and lateral-directional coefficients and then further divided as a function of increasing wing sweep.

Analysis of Data Obtained at 1 g Conditions

Estimates of the vehicle's stability and control characteristics at 1 g conditions were obtained from 71 maneuvers performed during flights 5 to 8 . Thirty of these maneuvers were longitudinal. Based on the quality of the fits obtained and the uncertainty levels, 27 (that is, 90 percent) of the longitudinal maneuvers were considered acceptable. Similarly, 36 of the 41 lateral-directional maneuvers were used, which constituted 88 -percent utilization. Several of the lateral-directional maneuvers used were analyzed in pairs, obtaining one set of derivatives for each pair of maneuvers as discussed in reference 4.

Table 2 summarizes the flight conditions, weights, and inertias for all the maneuvers (both longitudinal and lateral-directional) for flights 5 to 8. The inertias are based on the best available calculated values. The estimated derivative values are presented in table 3 for the longitudinal maneuvers and in table 4 for the lateraldirectional maneuvers. All these data are referenced to the wind tunnel center of gravity locations. The maneuver numbers used in tables 3 and 4 are defined in table 2.

Longitudinal data.-Figures 3 to 5 summarize the longitudinal stability and control data from flights 5 to 8 for wing-sweep angles of $26^{\circ}, 35^{\circ}$, and 58°. These data are corrected to the 0.45 -chord wind tunnel reference center of gravity. The longitudinal wind tunnel data were obtained from referenze 5 .

The flight-determined estimates generally show consistent trends in reasonable agreement with the wind tunnel estimates. $C_{m_{\alpha}}$ for a wing-sweep angle of 26° is the obvious exception. Figure 6 shows $C_{m_{\alpha}}$ as a function of Mach number, with symbol shape denoting the approximate angle of attack. $C_{m_{\alpha}}$ shows a significant change near Mach 0.85 and then returns to the same value as at the lower Mach numbers. Thus, the apparent scatter in $C_{m_{\alpha}}$ (fig. 3) is due to the particular Mach breakpoints used (Mach 0.7, 0.8, and 0.9); the estimates from the Mach 0.85 transition regior: were dividec. between the Mach 0.8 and 0.9 breakpoints, giving the appearance of large scatter. If the three flagged data points from the transition region are grouped, there is a well defined trend, on which the fairings are based.

Lateral-dirertional data. -Figures 7 to 9 summarize the lateral-directional stability and control data from flights 5 to 8 . The format is the same as for the longitudinal data. The lateral-directional wind tunnel data are the same as those used in the Air Forc ? Flight Test Center's F-111A sim'lator. All the lateral-directional data are corrected to the 0.305 -chord reference center of gravity of the wind tunnel data. Well defined trends were obtained for all the dorivatives except $C_{l_{r}}$.

The maneuvers analyzed did not contain enough information to accurately estimate $C_{l_{r}}$; thus, the a priori weighting held it close to the a priori values. The wind tunnel data were used for a priori values in this analysis. This is evidenced by the fact that the $C_{l_{r}}$ estimates are all very close to the a priori values and have large uncertainty levels. A more complete discussion of this conclusion is given in reference 4.

The $C_{Y_{\beta}}$ and $C_{n_{\beta}}$ estimates were generally smaller in magnitude than the wind tunnel estimates for all wing sweeps. The flight estimates ranged from 40 to 80 percent of the wind tunnel values. The $C_{l_{\beta}}$ estimates for a wing-sweep angle of 58° agree well with the wind tunnel estimates, but those for wing-sweep angles of 26° and 35° show some significant differences, particularly a strong Mach effect between Mach 0.8 and 0.9 . The two flagged data points in figures 7 and 8 are for a Mach number of 0.82 . Nonetheless, they agree quite well with the Mach 0.9 estimates rather than those for Mach 0.8 and below. This indicates a significant and abrupt Mach effect at a Mach number of approximately 0.82 . Some of the discrepancies between the flight and wind tunnel estimates of the angle of sideslip derivatives may be attributable to the nonlinearities observed in the wind tunnel data near 0° sideslip. As a result of these nonlinearities, the wind tunnel derivative estimates depend on the angle of sideslip increment used.

The flight and wind tunnel estimetes for $C_{l_{p}}$ and $C_{n_{r}}$ agree fairly well, the flight estimates being slightly more negative in some areas. Although the wind tunnel $C_{n_{p}}$ estimates are much closer to zero than the flight estimates, all the values are relatively small.

The flight estimates of $C_{Y_{\delta_{r}}}$ and $C_{n_{\delta_{r}}}$ were significantly lower in magnitude than the wind tunnel estimates, although $C_{l_{\delta_{r}}}$ showed reasonable agreement.

The flight estimates of the roll control derivatives generally agreed well with the wind tunnel estimates.

Analysis of Data Obtained at Elevated g Conditions

Estimates of the vehicle stability and control characteristics at elevated g conditions were obtained from data collected from flights 16 and 17 . A total of 109 maneuvers were obtained from these flights. Of these, 86 maneuvers were successfully analyzed. This resulted in 79-percent utilization of the maneuvers. This is lower than the 89 -percent utilization achieved for the 1 g maneuvers. The reason for the lower utilization is that the elevated g maneuvers were obtained in steady turns, which are more difficult to adequately stabilize than the lg maneuvers.

Table 5 summarizes the flight conditions, weights, and inertias for all the flight 16 and 17 maneuvers. The inertias are based on the best available calculated values. The estimated derivative values are presented in table 6 for the longitudinal maneuvers and in table 7 for the lateral-directional maneuvers. All these data are referenced to the wind tunnel center of gravity locations. The maneuver numbers used in tables 6 and 7 are defined in table 5.

Figures 10 to 15 summarize the stability and control data obtained from flights 16 and 17 . The $1 . g$ points from flights 5 to 8 are repeated on these figures for comparison. The data are presented in a manner similar to that used for the data from flights 5 to 8 , but the shape of the symbol indicates the g level at which the maneuver was obtained, and the fairing is from the data for flights 5 to 8. Deviation from this fairing may indicate aeroelastic effects.

Longitudinal data.-Figures 10 to 12 summarize the results of the longitudinal stability and control analysis, corrected to the 0.450 chord, obtained from flights 16 and 17. Where the data obtained from flights 16 and 17 overlap the data from flights 5 to 8 , no discrepancies are evident. In some instances, the trend established by the 1 g data (which were only available at lower angles of attack) changes at the high angle of attack where data were obtained only at elevated g conditions. No effect is evident that can be attributed conclusively to aeroelasticity .

Lateral-directional data.-Figures 13 to 15 summarize the results of the lateraldirectional stability and control analysis, corrected to the 0.305 chord, obtained from flights 16 and 17 . At a wing-sweep angle of 26° and high angles of attack, $C_{l_{\beta}}, C_{l_{p}}$, and $C_{n_{p}}$ were somewhat closer to zero than an extrapolation of the 1 g fairing would indicate. At wing-sweep angles of 35° and 58° and high angles of attack, $C_{n_{p}}$ remains more negative than the $1 g$ data would indicate. The values of $C_{l_{r}}$ and $C_{n_{r}}$ are not well determined in the analysis of the elevated g data, as is indicated by the large uncertainty levels obtained and the small deviation from the extrapolated 1 g data. As mentioned previously, little information was available in the 1 g flight data for $C_{l_{r}}$. Since the aircraft was in a banked attitude at a high angle of attack for the elevated g maneuvers, it is not surprising that little information was obtained from these maneuvers for $C_{n_{r}}$ or $C_{l_{r}}$. There is no conclusive indication that aeroelasticity has a marked effect on the lateral-directional stability and control characteristics.

In extracting stability and control coefficients from flight data, it is sometimes apparent that different values are indicated for the same coefficient at the same flight condition. The uncertainty levels and the quality of the fits can be used to substantiate the differences. The phenomenon is usually difficult to show conclusively, because the time history is a complex, simultaneous interaction of many of the coefficients. However, the phenomenon is illustrated by the estimates obtained for $C_{l_{l_{~}}}$ at a wing-sweep angle of 35°. Figl:re 16 , which is repcated from figure $14(e)$,
shows the data points for maneuvers 74 and 75 , which were performed within 50 seconds of each other at essentially the same flight condition. The value of C_{1} δ_{r} from maneuver 75 is several times greater than the value of $C_{\boldsymbol{l}_{\boldsymbol{\delta}_{\boldsymbol{r}}}}$ from maneuver 74. This difference is shown convincingly in figures 17 and 18. Figure 17 is a time history of maneuver 74, and figure 18 is a time history of maneuver 75. The significant parameters are the rudder input, δ_{r}, and the roll response, p. As shown in the figures, the rudder pulse for maneuver 75 is somewhat stronger than that for maneuver 74. The two pulses have roughly the same amplitude, but the pulse for maneuver 75 occurs over a longer time period. Very little, if any, immediate roll response to the pulse is apparent for maneuver 74, while a significant immediate roll motion results from the rudder pulse for maneuver 75. As would be expected, the value of $C_{l_{\delta_{r}}}$ for maneuver 74 is smaller than that for maneuver 75 . The variation in the aircraft's response to two similar pulses is probably due to some effect that has not been accounted for .

CONCLUDING REMARKS

A complete set of linear stability and control derivatives of the F-111A airplane was determined with a modified maximum likelihood estimator. The derivatives were determined at wing-sweep angles of $26^{\circ}, 35^{\circ}$, and 58°. The flight conditions included a Mach number range of 0.63 tc 1.43 and an angle of attack range of 2° to 15°. Maneuvers were performed at normal accelerations from 0.9 g to 3.8 g during steady turns to assess the aeroelastic effects on the stability and control characteristics.

The derivatives generally showed consistent trends and reasonable agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82 , particularly for static longitudinal stability. At high angles of attack, rolling moment due to rudder deflection showed two signiricantly different values at the same flight condition. This is presumably due to some effect that was not accounted for. No large effects attributable to aeroelasticity were noted.

Dryden Flight Research Center
National Aeronautics and Space Administration
Edwards, Calif., August 18, 1977

REFERENCES

1. Iliff, Kenneth W .; and Taylor, Lawrence W. , Jr .: Determination of Stability Derivatives From Flight Data Using a Newton-Raphson Minimization Technique. NASA TN D-6579, 1972 .
2. Maine, Richard E.; and Iliff, Kenneth W.: A FORTRAN Program for Determining Aircraft Stability and Control Derivatives From Flight Data. NASA TN D-7831, 1975.
3. Sisk, Thomas R.; Matheny, Neil W.; Kier, David A.; and Manke, John A.: A A Preliminary Flying-Qualities Evaluation of a Variable-Sweep Fighter-Type Aircraft. NASA TM X-1583, 1968.
4. Iliff, Kenneth W.; and Maine, Richard E.: Practical Aspects of Using a Maximum Likelihood Estimator . Methods for Aircraft State and Parameter Identification, AGARD-CP-172, May 1975, pp. 16-1-16-15.
5. Final Preliminary Stability and Control Aerodynamic Data for the F-111A Airplane. FZM-12-4198, General Dynamics Corp., Fort Worth Div., Oct. 1, 1965.

TABLE 1.-PHYSICAL CHARACTERISTICS OF F-IILA AIRPL: NE

[^0]
TABLE 1.-Concluded

Vertical tail-
Airfoil section Biconvex
Sweep at leading edge, deg 55
Span, m 2.71
Area, ${ }^{2}{ }^{2}$ 10.0 ?
Aspect ratio 1.6
Mean aerodynamic chord, cm 405.6
Rudder-
Span, m 2.38
Area. m^{2} 2.65
Deflection, maximum, deg ± 30
Speed brake-
Area. m^{2} 2.39
Deflection, maximum, deg 77
Ventrals -
Area (total). m^{2} 2.26
Power plants-
Tr30 P - 3 engines 2

TABLE 2.-FLINLT STATISTICS FOR FLIGHTS 5 TO 8
(a) Maneuver type. wing-sweep angle, Mach number, angle oí attack, and center of gravity. SWEEF, deg; ALPHA, deg; CG, fraction of reference chord.

TABLE 2.-Continued
(a) Concluded

TABLE 2.-Continued
(b) Mass characteristics, dynamic pressure, and velocity

TABLE 2.-Concluded
(b) Concluded

TABLE 3.-LONGITUDINAL DERIVATIVES FOR FLIGHTS 5 TO 8
[All derivatives are per degree, except CM_{Q}, which is per radian]

TABLE 4. - LATERAL-DIRECTIONAL DERIVATIVES FOR FLIGHTS 5 TO 8
[All derivatives are per degree, except $\mathrm{CL}_{\mathrm{p}}, \mathrm{CL}_{\mathrm{R}}, \mathrm{CN}_{\mathrm{P}}^{*}$, and $\mathrm{CN}_{\mathrm{R}}^{*}$, which are per radian]
(a) Combined lateral controls

TABLE 4.-Concluded
(b) Aileron controls

TABLE 5．－FLIGHT STATISTICS FOR FLIGHTS 16 AND 17

（a）Maneuver type，wing－sweep angle，Mach number，angle of attack，center of gravity，normal acceleration，and altitude．SWEEP，deg；ALPHA，deg；CG， fraction of reference chord；NORMAL ACC．，g；ALT，ft．

	$0.8 F$	8 TYPE 8	SWEEP：	MACH：ALPHA	CG：	$\begin{aligned} & \text { NOR MAL } \\ & \text { ACC. } \end{aligned}$		ALT
	\％	81	，	8	8		1	
	8	8 ！	8^{8}	70 \％ 3 \％			E	
8	1816	8FLEVATOR：	26．0\％	．7CJ8 3．35：	－ 3188	1.0	1	32438
8	1		8	88	，		\＆	
2	2816	：FLEVATOR：	26．0：	－760：4．90：	． 3228	1.5		3255
1	，		8	8	818		\％	
1	3816	\＆ELFVATOR：	26.02	－7C08 7．80：	． 3188	2.4	8	29
8	\％		2	＊	${ }^{8}$			
8	816	：ELEVATOR：	5.08	． $700 \% 4.308$	－ 3358	1.0	8	32
	8		8				8	
8	5\％16	EELIVATOR：	35.08	－7C0\％5．50：	－324\％	1.4	8	3094：
8	\％	${ }^{8}$ ELCVATOR	8	$8{ }^{8}{ }^{8}$			\％	
t	5826	ELEVATOR：	35.08	－7COE1C．OC：	－320：	2.6	:	29FE：
8			8	$8{ }^{8}$!	
8	7：16	ELEVATOR：	35．6：	． 70088.002	－ 3298	2.2	\％	2956：
t	8	ELTVATOR：	－${ }^{5}$	${ }^{2} 10.00^{\text {\％}}$	8		！	
8	8816	8EL＇VATOR：	25．c ${ }^{8}$	． 700810.008	－302\％	2.9	：	3150
1	1		8	810			$\stackrel{1}{1}$	
t	9816	EELFVATOR：	35．0：	． 70081 L .608	． 3168	2.7	8	3574：
	1			720810．75			－	
d	16816	8 ELEVATOR：	35.0 ：	． 720810.758	． 3208	2.9	：	
	\％	\％ELEVATOR	8	\％ 11.50°	，		：	
	$11: 16$	：ELEVATOR：	35.08	． 700811.508	． 3238	2.7	：	$3[$
	！	：	8	${ }^{8} 13.50^{8}$	，		：	
	12：16	3ELEVATOR：	35．0：	－7C0\％13．50\％	． 3158	3.1	：	
，	1		8	\％ 5^{8}	${ }^{81}$		：	
	13：16	PELEVATOR：	35．0：	． 74381 i .75 \％	－ 3288	3.1	：	325？
	\％		－	！ 5 \％			：	
	$1+116$	：ElfVator：	58．0	．920： 4.55 \％	． 3758	1.4	：	3131
	－ 1			\％ 6.25			：	
，	15：16	：「゙L三VATCR：		．930：6． 25 \％	． 3738	2.6	：	
	$16: 10$	：ELSVATJR：		\％${ }^{2}$				
	8						\％	
1	17：16	： $5:$ VATOR：		．727：4．70：	－333t	1.8	：	
，	1		8	： $5 \cdot 8$			：	
，	14：15	：ELEVTITOR：	35．0：	． 723 5．30：	－3528	1.8	：	3 i
	191		8	！ 20 ！			：	
	19115	：二LEVATOR：	2F． $0:$	． $7 \mathrm{ju}: 13.20:$	． 3528	3.6	：	3： 75
	＋			\％ 11.30°			：	
，	2＊15	：EL．Vator：	26．C：	－69E：11．301	－ 3568	3.7	：	327ニ：
	21			4．80\％			：	
！	21：15	：ELTVATOR：	54．0！	．920！4．80！	－406\％	1.7	：	3：
!	22：16			B80\％4．ifo				
	22：16	：-L VATOR：	2E．C：	－ 88084.408	－352\％	1.7		
8	23：15，	：ELSVATJD：	25．0：	． 87185.901	． 354		8	
！	1		8	1	8		：	
	24：15	＇cl ${ }^{\text {SVATOR：}}$	¢3．38	． 890 5 5．50：	． 4748	． 9	：	
	1		8	t	8			
\％	25：1ヶ	：$-2=V A T O R:$	5月．C：	． 88289.258	． 472%	1.5	：	
	$!$		8	\％12．30			：	
！	35：16	：ELFVATOR：	53.08	． 860812.338	． 4868	2.1	！	9.9
	$!$		\％	8 ！ 8^{8}	，		！	
	？7117	：ELこVATOR：	25．0：	． 71085.198	． 3078	1.1	\％	
8	1		\％	8	，		$!$	
1	24：17	：ELEVATOR：	35.08	． $72015.80:$	－ 3178	1.0	:	
！	1			－ 0.50 ，	8		：	
8	74：17	：ELEVATOR：	26．ct	． 731 ：8．50：	－ 3078	1.8	：	7226
	35：17	：ELEVATOR：	2¢．t：	． 730 it 0.20 i	． 3078	1.6		72
	8	：	：	1	－ 8		i	

TABLE 5.-Continued
(a) Continued

TABLE 5.-Continued
(a) Concluded

TABLE 5.-Continued
(b) Mass characteristics, dynamic pressure, and velocity

TABLE 5.-Continued
(b) Continued

TABLE 5.-Concluded
(b) Concluded

TABLE 6．－LONGITUDINAL DERIVATIVES FOR FLIGHTS 16 AND 17

［All derivatives are per de

$\begin{aligned} & \text { :NO. } \\ & \vdots \\ & \vdots \end{aligned}$	CN_{α}	$\begin{gathered} \mathrm{CM}_{\alpha} \\ \\ \vdots \end{gathered}{ }^{\mathrm{CM}}{ }_{2}$	${ }^{C N}$	${ }^{T M} O E$
：		：${ }^{\text {\％}}$		
$1:$	． 09	1－34．76：		
： 1	：	：		－ 1
：2：	． 0943 ：	19C：－33．59：	． 60	－． 0330 ：
：		－		
－ $3:$.093	158i－39．87：	－	－． 03438
：${ }^{\text {\％}}$		：		
：4：	．09？1	199：－32．5？：	． 3	：
：${ }^{\text {：}}$				
1 5：	－O9C	8E：－31．85：	－「0	：
－ 5	0741	7：－42．19：		
： 5 ：	． 0741	7：－42．19：	－こ059	248
： 7		！ 37.7 ：		
7：	． 036	128：－37．7：：	－ 2055	21
		！－ 4 ， 27 ！		
$9:$	－0759：	44：－34．73：	－ここ4	35：
8		！－45，22！		
：		：－45．22：		
：$: 78$	． 0594	－ 0048 ：－48． $51:$	． 2027	
！ 11				：
$\text { : } 11!$	－Jn71：	－－05ct－37．40：	－？ 098	：
： 1 ？：	． 052	9：－4．4．91：	C1	
：${ }^{\text {\％}}$		： 7 ：		：
！ $13:$	－U®く41	O［9：－47．11：－		
！．		75！－ 3 3， 35 ！		！
4	．0579：	$275:-33.35!$	$\text { : C C } 3$	$327 \text { : }$
15：	－ 561	25？：－37．6？：	－С 10	$3: 8$
		： 7 ：		
$\text { ; } 15 \vdots$	－にらコニ：	－：214：－37．4］：		$\text { - } 5307 \text { ! }$
$\text { : } 17 \vdots$	－C35？	［82：－4J． $53!$	－－ 11	$315:$
		： 0 ，		！
：：9：	－	192：－37．17：	． 3078	－1：
：17\％		！－35．31！		
： 1 〕！	． 2593 ：	1－c：－？5．77：－	－C C	71：
$\geq 1 \vdots$		$27:!-34.2=:$		$-.0334:$
	－	：		
： 3 ？	－ごこれ！	－ 4 4：－41． 5 －	． 5053	－． 0354 ：
： 2 ？		．－ 13 ！－31．42		
：		（ ${ }_{\text {\％}}$		

TABLE 6．－Concluded

TABLE 7.-LATERAL-DIRECTIONAL DERIVATIVES FOR FLIGHTS 16 AND 17
[All derivatives are per degree, except $C L_{P}, C L_{R}, C N_{P}^{*}$, and $C N_{R}^{*}$, which are per radian]

TABLE 7．－Concluded

	CLs		$\mathrm{Cr}_{\text {OR }}$		$\begin{array}{cc} \mathrm{Cr}_{\mathrm{DA}} & \vdots \\ ! \end{array}$	$\mathrm{CL}_{\mathrm{OA}}$	$\mathrm{CN}_{\mathrm{DA}}^{*} \begin{gathered} ! \\ \vdots \\ \vdots \\ \vdots \end{gathered}$
，							
－67！－．3999：－．0こつ5！－．1424	． $34+7$ ：	．$=$－8i－．04：79－．2532：	． 5.471	．0こ9310．OC14\％			
688－．61：4i－．．？28：－．1253！			．03148	． $0003^{\circ} \mathrm{F}$－．0C138			
6a－01－4：－．28：－1263：	－コ）	－010：－054n：－．2235：	．0314：	－ 0003 ？			
69：－．． 9 91：－．こ 24：－．1239：	． 3337	． $1274:-.55 C 5:-1893!$		？	． 0518	18	！
70：－．，098：－．CC23：－．4979：	．1495：	． 3 －8：－．1155\％－． 3271 \％	．0：25：	． 00028.000158	8		
	． 2.553^{\prime}		． 02178		\％		
	－19＞？：	．05：9：－．0396：－．5585：	－ 0 ¢ $13{ }^{\text {a }}$	．0001\％－0C158	！		
		！		0003：－015？			
：73：－．3085：－0024：－．？745：	－1705：	． 3 CJ4：－．0925：－．5980：	．OC1C：	．0003：－0C15：			
74：－．20＾3：－0C25：－．1415i	－ $01735:$	． 3 ¢5： 5 ．0052：－．5399：	． 0 C15	．0901：－0C14\％	8		
	． 3 －74：		． 02248	$.0073 \text { - . Cicis! }$	：		－
76：－．2113：－．3018：－．171？	． 07979	．0009－00998－．2712：	．0－24\％	．0002：－cc14：	8		－${ }^{3}$
77：－．3099：－0323：－．16i4：	－ 0 ， 775 ：	－00c5：	－0：16	． 00034% \％			
77：－－1099：－0323：－．16i4：	－ 3775 ：	$.0005:-0719:-2539:$	－0：16：	－0034：－00138	8		－${ }^{8}$
78：－0699：－0023：－．1454：	．045？：	－302p：－0665：－．2255：	． $0: 12$	． $\operatorname{COO} 3$－－OC13：			－
	．150こ：	．0014：．0473i－．4547：	．OC09：	．00J3：－0C15：	8		8
	．17a7！	．Jcc5：－．1549i－．4413！	． 0.522^{\prime}		8		－
		O） 6 8：－0669：－．4649：	0－18\％	－ 30018 \％－0018	8		－ 8
81：－．j099：－0：32：－．3559：	－0¢81！	－ 0 ） $8:-0669:-46498$	． $0: 18$ ？	． 00018 \％－0018	8		－
	． C 357 C	． 3 305：－．01E4：－．5310！	．0：15	．0094\％－．0C15\％	\％		！
	．0980：		．0c21\％	． $0001 \frac{8}{8}-0015 \frac{8}{8}$	，		！
84:-.jog :-.0c24:-15:	．0333：	．190E：－．C825：－．1962：	．0011：	． $\cos 33^{8}-0.012{ }^{\text {a }}$	，		－
85： 0 ，					8	d	－
	－0323：					d	－${ }_{8}^{8}$
85：－010c：－0299：－．2073：	－C297：	－3021：－1189：－－192？：	－ 0.15 ？	－0003：－00148	\％		\％

Figure 1. F-111A airplane.

Figure 2. Three-view drawing of F-111A airplane. Dimensions are in meters.
Wind
tunnel Fiight M

	0	0.7
-	0	0.8
	Δ	0.9

I Uncertainty level
Solid symbol denotes $M=0.81$ to 0.86 Solid line is fairing of flight data

Figure 3. Longitudinal stability and control derivatives for $1 g$ flight and 26° wing sweep.

Wind tunnel

0	0.7	
-	0	0.8

$\triangle \quad 0.9$
I Uncertainty level
Solid line is a fairing of flight data

(b) $C_{N_{\delta_{e}}}$ and $C_{m_{e}}$.

Figure 3. Continued.

Wind tunnel Flight M
 万 0.7 $0 \quad 0.8$
 $\Delta \quad 0.9$

I Uncertainty level
Solid line is a fairing of flight data

(c) $C_{m_{q}}$

Figure 3. Concluded.
Wind
tunnel flight M

	0	0.60
	0	0.80
$\cdots-$	Δ	0.85

I Uncertainty level
Solid line is a fairing of filight data

Figure 4. Longitudinal stability and control derivatives for $1 g$ flight and 35° wing sweep.

Figure 4. Continued.

Wind tunnel

Flight M
-- ロ 0.60
$0 \quad 0.80$
——— $\triangle 0.85$
I Uncertainty level
Solid line is a fair:ing of flight data

(c) $C_{m_{q}}$

Figure 4. Concluded.

Figure 5. Longitudinal stability and control derivatives for $1 g$ flight and 58° wing sweep.

Figure 5. Continued.

I Uncertainty level
Solid line is a fairing of flight data

(c) $C_{m_{q}}$.

Figure 5. Concluded.

Figure 6. Static stability as a function of Mach number for 26° wing sweep.
Wind
tunnei Flight M

	0	0.7
$\ldots-$	0	0.8
$\ldots-$	Δ	0.9

I Uncertainty level
Solid line is a fairing of flight data Flagged symbol denotes $M=0.82$

Figure 7. Lateral-directional stability and control derivatives for $1 g$ flight and 26° wing swenp.

Figure 7. Continued.

Figure 7. Concluded.

Figure 8. Lateral-directional stability and control derivatives for $1 g$ flight and 35° wing sweep.

Figure 8. Continued.

Figure 8. Continued.

Figure 8. Continued.

Wind tunnel Flight M
$\begin{array}{ccc} & 0 & 0.7 \\ \ldots- & 0 & 0.8 \\ \ldots & \Delta & 0.9\end{array}$
I Uncertainty level
Solid line is a fairing of flight data Flagged symbol denotes $M=0.82$

(e) $C_{l_{\delta_{r}}}$ and $C_{n_{\delta_{r}}}$

Figure 8. Continued.

Wind
tunnel Flight M
$\begin{array}{lll} & 0 & 0.7 \\ \cdots-- & 0 & 0.8 \\ \cdots & \Delta & 0.9\end{array}$
I Uncertainty level
Solid line is a fairing of flight data

Figure 8. Continued.

Wind tunnel Flight M

$\begin{array}{lll} & 0 & 0.7 \\ \ldots- & 0 & 0.8 \\ \ldots & \Delta & 0.9\end{array}$
I Uncertainty level
Solid line is a fairing of flight data

Figure 8. Concluded.
Wind
tunnel Flight M

	0	0.7
$\cdots-$	0	0.9
$\cdots-$	Δ	1.2
$\cdots-$	+	1.5

I Uncertainty level
Solid line is a fairing of flight data

$$
.002 \Gamma
$$

$$
\begin{gathered}
0 \\
C_{\mathcal{B}^{\prime}} \\
\text { per deg }
\end{gathered} \quad-.00 \hat{2}-=0
$$

$$
-.004 \text { - }
$$

$$
-.006 \frac{1}{0}
$$

$$
\text { (a) } C_{Y_{\beta}} \text { and } C_{l_{\beta}}
$$

Figure 9. Lateral-directional stability and control derivatives for $1 g$ flight and 58° wing sweep.

Figure 9. Continued.
$\underset{\text { tunnel }}{W}$ Flight M
$\begin{array}{lll} & 0 & 0.7 \\ \ldots & 0 & 0.9\end{array}$

- - $\Delta \quad 1.2$
$-\cdots \quad+1.5$
I Uncertainty level
Solid line is a fairing of flight data

$-.4 \Gamma$

$$
-\frac{1}{2} \frac{1}{0}-\frac{1}{6}-\frac{1}{8}-\frac{1}{10}-\frac{1}{12}
$$

(c) $C_{n_{p}}$ and $C_{l_{r}}$.

Figure 9. Continued.

Wind tunnel	Flight	M
	0	0.7
---	0	0.9
.--	Δ	1.2
.--	+	1.5

Figure 9. Continued.

of p(x)R ADMX

Figure 9. Continued.
Wind
tunnel Flight M
$\begin{array}{lll} & 0 & 0.7 \\ \ldots & 0 & 0.9\end{array}$
-... $\Delta \quad 1.2$
$\cdots-1.5$

1. Uncertainty level
Solid line is fairing of flight data

$$
.002 \ldots 1 \ldots 1 \ldots 1
$$

$$
.0006-
$$

$$
-\frac{1}{2}-\frac{1}{4}-\frac{1}{6}-\frac{1}{8}-\frac{1}{10}-\frac{1}{12}
$$

$$
\text { (f) } C_{Y_{\delta_{r}}} \text { and } C_{l_{\delta_{r}}}
$$

Figure 9. Continued.

Figure 9. Concluded.

	$a_{n} .9$
0	1.0
\circ	1.5
Δ	2.0
+	3.0
\times	1.0

1 Uncertainty level
Solid symbol denotes $\mathrm{M}=0.9$ Fairing is of \lg flight data (repeated from fig. 3)

(a) $C_{N_{\alpha}}$ and $C_{m_{\alpha}}$.

Figure 10. Longitudinal stability and control derivatives for elevated g flight and 26° wing sweep.

Figure 10. Continued.

	$a_{n} g$
\square	1.0
0	1.5
Δ	2.0
+	3.0
\times	1.0

1 Uncertainty level
Solid symbol denotes $\mathrm{M}=0.9$ Fairing is of 1 g flight data (repeated from fig. 3)

(c) $C_{m_{q}}$

Figure 10. Concluded.

Figure 11. Longitudinal stability and control derivatives for elevated g flight and 35° wing sweep.

$$
\begin{array}{cc}
& a_{n}, g \\
0 & 1.0 \\
0 & 1.5 \\
\Delta & 2.0 \\
+ & 3.0 \\
\times & 1.0
\end{array}
$$

I Uncertainty level

$$
\text { Fairing is of } \lg \text { flight data }
$$

$$
\text { (repeated from fig. } 4 \text {) }
$$

(b) $C_{N_{\delta_{e}}}$ and $C_{m_{\boldsymbol{e}}}$.

Figure 11. Con:inued.

Figure 11. Concluded.

$$
\begin{array}{ll}
& a_{n}, g \\
0 & 1.0 \\
0 & 1.5 \\
\Delta & 2.0 \\
+ & 3.0 \\
\times & 1.0 \\
\text { I } & \text { Uincertainty level } \\
\text { Fairing is of lg flight data } \\
\text { (repeated from fig.5) }
\end{array}
$$

${ }^{C_{m}}{ }_{a}$

$$
-.02-
$$

$$
-.04-
$$

$$
-06 \frac{1}{0} \quad 2 \quad-\frac{1}{4}-\frac{1}{6}-\frac{1}{8}-\frac{1}{10}-\frac{1}{12}-\frac{1}{14}
$$

a, deg
(a) $C_{N_{\alpha}}$ and $C_{m_{\alpha}}$.

Figure 12. Longitudinal stability and control derivatives for elevated g flight and 58° wing sweep.

Figure 12. Continued.

Figure 12. Concluded.

Figure 13. Lateral-directional stability and control derivatives for elevated g flight and 26° wing sweep.

Figure 13. Continued.

	$a_{n}, 9$
0	1.0
0	1.5
Δ	2.0
+	3.0
\times	1.0
I Uncertainty level	
Solid symbol denotes $M=0.9$	
Fairing is of lg flight data	
(repeated from fig. 71	

ORIGNAL PAGE IS
OF POOR QUALITY
(c) $C_{n_{p}}$ and $C_{l_{r}}$.

Figure 13. Continued.

Figure 13. Continued.

Figure 1\%. Concluded.

	$a_{n} .9$
0	1.0
0	1.5
Δ	2.0
+	3.0
\times	1.0

I Uncertainty level
Fairing is of 1 g flight data (repeated from fig. 3)

(a) $C_{Y_{\beta}}$ and $C_{l_{\beta}}$.

Figure 14. Lateral-directional stability and control derivatives for elevated g flight and 35° wing sweep.

$$
a_{n} g
$$

- 1.0
- 1.5
$\triangle \quad 2.0$
$+\quad 3.0$
$\times \quad 1.0$
I Uncertainty level
Fairing is of ig flight data (repested from fig. 8)

(b) $C_{n_{\beta}}$ and $C_{l_{p}}$.

Figure 14. Continued.

Figure 14. Continued.

(d) $C_{n_{r}}$ and $C_{Y_{\delta_{r}}}$.

Figure 14. Continued.

	${ }^{3} n^{\prime} 9$
0	1.0
0	1.5
Δ	2.0
+	3.9
\times	1.0
I Uncertainty level	
Fairing of lg flight data	
(rapeated from fig. 8)	

(e) $C_{l_{\mathbf{8}_{r}}}$ and $C_{n_{\mathbf{8}_{r}}}$.

Figure 14. Concluded.

$$
a_{n,} g
$$

$$
\text { ㅁ } 1.0
$$

$$
0 \quad 1.5
$$

$$
\Delta \quad 2.0
$$

$$
+3.0
$$

$$
\times \quad 1.0
$$

I Uncertainty level
Fairing is of \lg flight data (repeated from fig. 9)

(a) $C_{y_{\beta}}$ and $C_{l_{\beta}}$.

Figure 15. Lateral-directional stability and control derivatives for elevated g flight and 58° wing sweep.

$$
\begin{array}{cc}
& \partial_{n}, 9 \\
0 & 1.0 \\
0 & 1.5 \\
\Delta & 2.0 \\
+ & 3.0 \\
\times & 1.0
\end{array}
$$

I Uncertainty level
Fairing is of 1 g flight data (repeated from fig. 9)

(b) $C_{n_{\beta}}$ and $C_{l_{p}}$.

Figure 15. Continued.

ORIGRAL PAGE LS of POIR Qualtiy

Figure 15. Continued.

	$a_{n} . g$
0	1.0
0	1.5
Δ	2.0
+	3.0
\times	1.0
I Uncertainty levet	
Fairing is of lg flight tata	
(repeated from fig. 9)	

(d) $C_{n_{r}}$ and $C_{Y_{\delta_{a}}}$.

Figure 15. Continued.

	$a_{n} .9$
0	1.0
0	1.5
Δ	2.0
+	3.0
\times	1.0
I	Uncertainty level

Fairing is of lg flight data (repeated from fig. 9)

(e) $C_{l_{\delta_{a}}}$ and $C_{n_{\delta_{a}}}$.

Figure 15. Continued.

Figure 15. Coniinued.

Figure 15. Concluded.

ORIGINAL PAGE IS OF POOR QUALTTY

Figure 16. $C_{l_{\delta_{r}}}$ as a function of angle attack, showing uncertainties at high angle of attack.

Figure 17. Time history of maneuver 74.

Figure 18. Time history of maneuver 75.

[^1]
[^0]: *Inswept wing.

[^1]: *For sale by the National Technical Information Service, Springfeld, Virginia 221til

