NASA TM-72851

FLIGHT-DETERMINED STABILITY AND CONTROL

COEFFICIENTS OF THE F-111A AIRPLANE

(NASA-TH-72851) PLIGHT-DETERMINED STABILITY AND CONTROL COEPFICIENTS OF THE F-111A AIRPLANE (NASA) 91 P HC A05/HF A01 CSCL 01C

N78-18075

Unclas G3/08 06558

Kenneth W. Iliff, Richard E. Maine, and Sandra Thornberry Sieers

Dryden Flight Research Center P.O. Box 273 Edwards, California 93523

March 1978

Center-printed Technical Memorandums are issued to provide rapid transmittal of technical information from the researcher to the user. As such, they are not subject to the usual NASA review process.

National Aeronautics and Space Administration Washington, D.C. 20546

NASA Technical Memorandum 72851

FLIGHT-DETERMINED STABILITY AND CONTROL COEFFICIENTS OF THE F-111A AIRPLANE

Kenneth W. Iliff, Richard E. Maine, and Sandra Thornberry Steers

Dryden Flight Research Center Edwards, California

Scientific and Technical Information Office

1978

FLIGHT-DETERMINED STABILITY AND CONTROL COEFFICIENTS OF THE F-111A AIRPLANE

Kenneth W. Iliff, Richard E. Maine, and Sandra Thornberry Steers Dryden Flight Research Center

INTRODUCTION

Because of the continuing interest in flight simulation and handling qualities, reliable estimates of the stability and control derivatives of most types of aircraft are required. In response to these requirements, the NASA Dryden Flight Research Center perfected a technique for determining the stability and control derivatives of aircraft from flight data (ref. 1) and developed a set of FORTRAN computer programs to implement the technique (ref. 2). These programs use a modified maximum likelihood method with a Newton-Balakrishnan algorithm to perform the required minimization.

These computer programs are currently being used at the Dryden Flight Research Center to obtain stability and control derivatives for a wide variety of aircraft. Among the aircraft being studied is the F-111A fighter bomber airplane. This report presents the estimates of the derivatives for the F-111A airplane determined from flight data by the modified maximum likelihood estimation technique. The F-111A airplane of this report is the baseline vehicle for the transonic aircraft technology (TACT) program. The data are therefore of particular interest for assessing the effect of the TACT modifications on the stability and control characteristics of the baseline vehicle.

The flight data were selected from maneuvers performed in the course of a multiple purpose flight test program. As a result, the entire flight envelope was not studied in the flight test program. In some instances, the incremental effect of a configuration was studied instead of all possible configurations.

SYMBOLS

Parenthetical symbols are computer identifiers.

 a_n normal acceleration

C_l (CL) rolling-moment coefficient

 C_m (CM) pitching-moment coefficient

 C_N (CN) normal-force coefficient

 C_n (CN*) yawing-moment coefficient

 C_{V} (CY) side-force coefficient

CG center of gravity

IX roll moment of inertia

IXZ cross product of inertia between roll and yaw axes

IY pitch moment of inertia

IZ yaw moment of inertia

M (MACH) Mach number

p (P) roll rate

q (Q) pitch rate

r(R) yaw rate

α (ALPHA) angle of attack

β angle of sideslip

 δ_a (DA) aileron deflection

 δ_{c} (DC) blend of aileron and spoiler deflection

 δ_e (DE) elevator deflection

 δ_r (DR) rudder deflection

Su cripts:

 $\begin{array}{ll} p\ (P),\ q\ (Q),\ r\ (R), & \text{partial derivative with respect to the} \\ \alpha,\ \beta,\ \delta_{\alpha}\ (DA),\ \delta_{c}\ (DC), & \text{indicated quantity} \end{array}$

 δ_e (DE), δ_r (DR)

DESCRIPTION OF AIRPLANE AND INSTRUMENTATION

The F-111A airplane (fig. 1) is a two-place (side-by-side), long-range fighter bomber aircraft designed for all-weather supersonic operation at both low and high altitudes. Power is provided by two TF30-P-3 axial flow, dual compressor turbofan engines equipped with afterburners. The wings are equipped with leading edge slots and trailing edge flaps and may be varied in sweep angle between 16° and 71.5° (fig. 2). The empennage consists of a fixed vertical stabilizer with rudder for directional control and a horizontal stabilizer (rolling tail) that is moved symmetrically for pitch control and asymmetrically for roll control. At wing-sweep angles of less that 47°, wing spoilers augment roll-control power; at high wing-sweep angles, the spoilers are disengaged. The aircraft has an adaptive gain-scheduled stability augmentation system that was not engaged during these maneuvers. Physical characteristics of the airplane are given in table 1. A more complete description of the aircraft and its control system is given in reference 3.

Airspeed, altitude, and the pertinent stability and control quantities were among the data recorded. Angles of attack and sideslip were measured by vanes on a nose boom. Data were acquired by means of a pulse code modulation (PCM) system. Standard passive analog filters with break frequencies at 10 hertz were applied to all the data signals. The digital data were recorded at 20 samples per second on magnetic tape and telemetered to a ground station for real-time monitoring and recording. The data were corrected for all known time and phase shifts due to sampling skew and filtering.

TEST PROCEDURE AND FLIGHT CONDITIONS

Standard stability and control pulses were performed at wing-sweep angles of 26°, 35°, and 58°. Elevator and rudder pulses were obtained at all wing-sweep angles. Aileron (rolling tail) pulses were obtained at a wing-sweep angle of 58°; however, at wing-sweep angles of 26° and 35°, the roll-control pulses resulted in combined aileron-spoiler motion, $\delta_{\rm C}$, as mentioned previously. The flight conditions analyzed covered a Mach number range of 0.63 to 1.43, an angle of attack range of 2° to 15°, and an altitude range of 3000 to 11,000 meters. The stability augmentation system was off for all these maneuvers.

The flight program consisted of 25 flights, of which flights 5 to 8, 16, and 17 contained usable stability and control maneuvers. For correlation with other data, these flight numbers are retained in this report.

The initial data were gathered from flights 5 to 8 in level flight at 1g conditions. To investigate aeroelastic effects, elevated g data were taken during flights 16 and 17. These maneuvers were performed during steady turns, and normal acceleration ranged from 0.9g to 3.8g. It was anticipated that the wing deformation under load would affect the aerodynamic derivatives. No $\delta_{\rm C}$ pulses were obtained at the elevated g conditions.

METHOD OF ANALYSIS

A modified maximum likelihood estimator program was used to determine a complete set of linear stability and control derivatives from the maneuvers performed in flight. The program, sometimes called the Newton-Raphson program, minimizes the difference between the measured aircraft response and the computed aircraft response by adjusting the stability and control derivative values used in calculating the computed response. A Newton-Balakrishnan iterative algorithm was used to perform the minimization. The method can be modified to include a priori information from previous calculations, flight tests, or wind tunnel tests. This modification is made by including a penalty for adjusting the unknown stability and control derivatives away from the a priori values. If new information is contained in a flight maneuver, the estimate of the derivative is not affected significantly by the a priori feature. If no new information is contained in a maneuver, however, the a priori value results. A low a priori weighting was used on these data. A complete description of the computer program used for the derivative extraction and the FORTRAN listings is given in reference 2.

In addition to giving estimates of the derivatives, this method of analysis provides uncertainty levels for each derivative. The uncertainty levels are proportional to the Cramèr-Rao bounds described in reference 1 and are analogous to the standard deviations of the estimated derivatives. The larger the uncertainty level, the more uncertainty there is in the estimated value. The uncertainty levels obtained for a derivative from different maneuvers at the same flight condition can be compared to determine the best estimate. Therefore, the uncertainty levels provide additional information about the validity of the estimate of the derivative.

Since rolling tail and spoiler surfaces move together for wing-sweep angles of 26° and 35°, it is not possible to estimate their effectiveness separately. Thus, an equivalent combined effectiveness was obtained as suggested in reference 4, by using the spoiler position only. The spoiler signal was used for the equivalent control because the moments produced by the spoiler deflection were larger than the moments produced by the rolling tail. The spoiler position was not measured directly but was computed from the differential tail movements and the known characteristics of the control system. This equivalent combined control is referred to as $\delta_{\mathcal{C}}$. For a wing-sweep angle of 58°, the rolling tail moves alone and the usual $\delta_{\mathcal{C}}$ derivatives are obtained.

RESULTS AND DISCUSSION

The results are presented in figures summarizing the stability and control coefficients as functions of angle of attack. The data in these figures are corrected to the wind tunnel reference center of gravity. The center of each symbol indicates the maximum likelihood estimate of the coefficient, and the vertical line indicates the uncertainty level of the estimate. Those estimates with smaller uncertainty levels are more reliable estimates and should be considered more strongly in fairing the estimated coefficients. A further explanation of uncertainty levels is given in

reference 4. The figures summarizing the coefficients are divided into groups of longitudinal and lateral-directional coefficients and then further divided as a function of increasing wing sweep.

Analysis of Data Obtained at 1g Conditions

Estimates of the vehicle's stability and control characteristics at 1g conditions were obtained from 71 maneuvers performed during flights 5 to 8. Thirty of these maneuvers were longitudinal. Based on the quality of the fits obtained and the uncertainty levels, 27 (that is, 90 percent) of the longitudinal maneuvers were considered acceptable. Similarly, 36 of the 41 lateral-directional maneuvers were used, which constituted 88-percent utilization. Several of the lateral-directional maneuvers used were analyzed in pairs, obtaining one set of derivatives for each pair of maneuvers as discussed in reference 4.

Table 2 summarizes the flight conditions, weights, and inertias for all the maneuvers (both longitudinal and lateral-directional) for flights 5 to 8. The inertias are based on the best available calculated values. The estimated derivative values are presented in table 3 for the longitudinal maneuvers and in table 4 for the lateral-directional maneuvers. All these data are referenced to the wind tunnel center of gravity locations. The maneuver numbers used in tables 3 and 4 are defined in table 2.

Longitudinal data.—Figures 3 to 5 summarize the longitudinal stability and control data from flights 5 to 8 for wing-sweep angles of 26°, 35°, and 58°. These data are corrected to the 0.45-chord wind tunnel reference center of gravity. The longitudinal wind tunnel data were obtained from reference 5.

The flight-determined estimates generally show consistent trends in reasonable agreement with the wind tunnel estimates. $C_{m_{\alpha}}$ for a wing-sweep angle of 26° is

the obvious exception. Figure 6 shows $C_{m_{\alpha}}$ as a function of Mach number, with

symbol shape denoting the approximate angle of attack. $C_{m_{\alpha}}$ shows a significant

change near Mach 0.85 and then returns to the same value as at the lower Mach numbers. Thus, the apparent scatter in $C_{m_{\alpha}}$ (fig. 3) is due to the particular Mach

breakpoints used (Mach 0.7, 0.8, and 0.9); the estimates from the Mach 0.85 transition region were divided between the Mach 0.8 and 0.9 breakpoints, giving the appearance of large scatter. If the three flagged data points from the transition region are grouped, there is a well defined trend, on which the fairings are based.

Lateral-directional data.—Figures 7 to 9 summarize the lateral-directional stability and control data from flights 5 to 8. The format is the same as for the longitudinal data. The lateral-directional wind tunnel data are the same as those used in the Air Force Flight Test Center's F-111A simulator. All the lateral-directional data are corrected to the 0.305-chord reference center of gravity of the wind tunnel data. Well defined trends were obtained for all the derivatives except C_{l_n} .

The maneuvers analyzed did not contain enough information to accurately estimate C_l ; thus, the a priori weighting held it close to the a priori values. The wind

tunnel data were used for a priori values in this analysis. This is evidenced by the fact that the C_{l_r} estimates are all very close to the a priori values and have

large uncertainty levels. A more complete discussion of this conclusion is given in reference 4.

The $C_{Y_{\beta}}$ and $C_{n_{\beta}}$ estimates were generally smaller in magnitude than the wind

tunnel estimates for all wing sweeps. The flight estimates ranged from 40 to 80 percent of the wind tunnel values. The C_l estimates for a wing-sweep angle of 58°

agree well with the wind tunnel estimates, but those for wing-sweep angles of 26° and 35° show some significant differences, particularly a strong Mach effect between Mach 0.8 and 0.9. The two flagged data points in figures 7 and 8 are for a Mach number of 0.82. Nonetheless, they agree quite well with the Mach 0.9 estimates rather than those for Mach 0.8 and below. This indicates a significant and abrupt Mach effect at a Mach number of approximately 0.82. Some of the discrepancies between the flight and wind tunnel estimates of the angle of sideslip derivatives may be attributable to the nonlinearities observed in the wind tunnel data near 0° sideslip. As a result of these nonlinearities, the wind tunnel derivative estimates depend on the angle of sideslip increment used.

The flight and wind tunnel estimates for C_{lp} and C_{nr} agree fairly well, the flight estimates being slightly more negative in some areas. Although the wind tunnel C_{nr} estimates are much closer to zero than the flight estimates, all the values are relatively small.

The flight estimates of $C_{Y_{\delta_r}}$ and $C_{n_{\delta_r}}$ were significantly lower in magnitude than the wind tunnel estimates, although $C_{l_{\delta_r}}$ showed reasonable agreement.

The flight estimates of the roll control derivatives generally agreed well with the wind tunnel estimates.

Analysis of Data Obtained at Elevated g Conditions

Estimates of the vehicle stability and control characteristics at elevated g conditions were obtained from data collected from flights 16 and 17. A total of 109 maneuvers were obtained from these flights. Of these, 86 maneuvers were successfully analyzed. This resulted in 79-percent utilization of the maneuvers. This is lower than the 89-percent utilization achieved for the 1g maneuvers. The reason for the lower utilization is that the elevated g maneuvers were obtained in steady turns, which are more difficult to adequately stabilize than the 1g maneuvers.

Table 5 summarizes the flight conditions, weights, and inertias for all the flight 16 and 17 maneuvers. The inertias are based on the best available calculated values. The estimated derivative values are presented in table 6 for the longitudinal maneuvers and in table 7 for the lateral-directional maneuvers. All these data are referenced to the wind tunnel center of gravity locations. The maneuver numbers used in tables 6 and 7 are defined in table 5.

Figures 10 to 15 summarize the stability and control data obtained from flights 16 and 17. The 1g points from flights 5 to 8 are repeated on these figures for comparison. The data are presented in a manner similar to that used for the data from flights 5 to 8, but the shape of the symbol indicates the g level at which the maneuver was obtained, and the fairing is from the data for flights 5 to 8. Deviation from this fairing may indicate aeroelastic effects.

Longitudinal data.—Figures 10 to 12 summarize the results of the longitudinal stability and control analysis, corrected to the 0.450 chord, obtained from flights 16 and 17. Where the data obtained from flights 16 and 17 overlap the data from flights 5 to 8, no discrepancies are evident. In some instances, the trend established by the 1g data (which were only available at lower angles of attack) changes at the high angle of attack where data were obtained only at elevated g conditions. No effect is evident that can be attributed conclusively to aeroelasticity.

Lateral-directional data.—Figures 13 to 15 summarize the results of the lateral-directional stability and control analysis, corrected to the 0.305 chord, obtained from flights 16 and 17. At a wing-sweep angle of 26° and high angles of attack, C_l , C_l , and C_n were somewhat closer to zero than an extrapolation of the 1g fairing would indicate. At wing-sweep angles of 35° and 58° and high angles of attack, C_n remains more negative than the 1g data would indicate. The values of C_l , and C_n are not well determined in the analysis of the elevated g data, as is indicated by the large uncertainty levels obtained and the small deviation from the extrapolated 1g data. As mentioned previously, little information was available in the 1g flight data for C_l . Since the aircraft was in a banked attitude at a high angle of attack for the elevated g maneuvers, it is not surprising that little information was obtained from these maneuvers for C_n or C_l . There is no conclusive indication that aeroelasticity has a marked effect on the lateral-directional stability and control characteristics.

In extracting stability and control coefficients from flight data, it is sometimes apparent that different values are indicated for the same coefficient at the same flight condition. The uncertainty levels and the quality of the fits can be used to substantiate the differences. The phenomenon is usually difficult to show conclusively, because the time history is a complex, simultaneous interaction of many of the coefficients. However, the phenomenon is illustrated by the estimates obtained for C_{l}

at a wing-sweep angle of 35°. Figure 16, which is repeated from figure 14(e),

shows the data points for maneuvers 74 and 75, which were performed within 50 seconds of each other at essentially the same flight condition. The value of $c_{l_{\delta_r}}$

from maneuver 75 is several times greater than the value of $C_{l\delta_r}$ from maneuver 74.

This difference is shown convincingly in figures 17 and 18. Figure 17 is a time history of maneuver 74, and figure 18 is a time history of maneuver 75. The significant parameters are the rudder input, δ_r , and the roll response, p. As shown in

the figures, the rudder pulse for maneuver 75 is somewhat stronger than that for maneuver 74. The two pulses have roughly the same amplitude, but the pulse for maneuver 75 occurs over a longer time period. Very little, if any, immediate roll response to the pulse is apparent for maneuver 74, while a significant immediate roll motion results from the rudder pulse for maneuver 75. As would be expected, the value of C_1 for maneuver 74 is smaller than that for maneuver 75. The variation δ_r

in the aircraft's response to two similar pulses is probably due to some effect that has not been accounted for.

CONCLUDING REMARKS

A complete set of linear stability and control derivatives of the F-111A airplane was determined with a modified maximum likelihood estimator. The derivatives were determined at wing-sweep angles of 26°, 35°, and 58°. The flight conditions included a Mach number range of 0.63 to 1.43 and an angle of attack range of 2° to 15°. Maneuvers were performed at normal accelerations from 0.9g to 3.8g during steady turns to assess the aeroelastic effects on the stability and control characteristics.

The derivatives generally showed consistent trends and reasonable agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82, particularly for static longitudinal stability. At high angles of attack, rolling moment due to rudder deflection showed two significantly different values at the same flight condition. This is presumably due to some effect that was not accounted for. No large effects attributable to aeroelasticity were noted.

Dryden Flight Research Center
National Aeronautics and Space Administration
Edwards, Calif., August 18, 1977

REFERENCES

- 1. Iliff, Kenneth W.; and Taylor, Lawrence W., Jr.: Determination of Stability Derivatives From Flight Data Using a Newton-Raphson Minimization Technique. NASA TN D-6579, 1972.
- 2. Maine, Richard E.; and Iliff, Kenneth W.: A FORTRAN Program for Determining Aircraft Stability and Control Derivatives From Flight Data. NASA TN D-7831, 1975.
- 3. Sisk, Thomas R.; Matheny, Neil W.; Kier, David A.; and Manke, John A.: A A Preliminary Flying-Qualities Evaluation of a Variable-Sweep Fighter-Type Aircraft. NASA TM X-1583, 1968.
- 4. Iliff, Kenneth W.; and Maine, Richard E.: Practical Aspects of Using a Maximum Likelihood Estimator. Methods for Aircraft State and Parameter Identification, AGARD-CP-172, May 1975, pp. 16-1-16-15.
- 5. Final Preliminary Stability and Control Aerodynamic Data for the F-111A Airplane. FZM-12-4198, General Dynamics Corp., Fort Worth Div., Oct. 1, 1955.

TABLE 1.—PHYSICAL CHARACTERISTICS OF F-111A AIRPLANE

Wing-											
Airfoil section, at pi	vot								NACA	64A210.7	(modified)*
Airfoil section, tip									NACA	64A 209.8	(modified)*
Airfoil section, tip Sweep, deg (leading	edge)					•		•		16 to 71.5
Incidence, der							_				1
Incidence, deg Dihedral, deg			•								1
Reference span, m		•	•				_		_		18.1
		•	•	•	•	٠	•		•		
Reference area, m ²		•	•	•	•	٠	•	•	•		48.8
Reference chord, m	•	•	•	•	•	٠	•	•	•		2.76
Leading-edge slats-											
Area (planform proj	(hetpe	m	2								4.38
Span, percent of exp	octed)	win	or-n	onal	enar	٠.	•	•	•		96.5
Deflection, maximum	der	44 1111	5 P	aneı	apai	•	•	•	•		45
Deflection, maximum	ı, ueg		•	•	•	•	•	•	•		40
Trailing-edge Saps-											
Type										Multise	ction Fowler
туре						•	•	•	•	Multipe	
Area (aft of hinge li	ne), π	1	•								9.75
Span, percent of exp	posed	win	g-p	ane!	spar	1	•	٠	•		100
Deflection, maximum	ı, deg		•		•	٠	•	٠	•		. 35
Spoilers-											
Area (planform proj	(hatna	m	2								2.74
Span, m	ected)	,		•	•		•	•	·		3.6
Deflection, maximum			•	•	•	•	•	•	•	• • •	43
Defrection, maximum	i, ueg		•	•	•	•	•	•	•		70
Wing pivot-											
Distance from airpla	na na		~								11.83
Distance from airpla			 lina	m	•	•	•	٠	•	• •	1.79
Distance from an pia	ne cei	iter i	ime	,	•	•	•	٠	•	• •	1,13
Horizontal tail (all mov	(able)	_									
Airfoil section .	avie)										Biconvex
Incidence, deg .	•	•	•	:	•	•	•	•	•		l Biconvex
Dihedral, deg .	•	•	•	:	•	•	•	•	•	• • •	-1
Sweep at leading ed		•	•	:	•	٠	•	•	•		57.5
Span, m				•	•		•	•	•	• •	9.11
opan, m , .	•	•	•	•	•	•	•	•	•	• •	
Area (exposed), m ²											15.74
Arca (movable), m ²											13.92
Aspect ratio .	•			٠	•	•	•	•	•	• •	1.54
Mean aerodynamic c		'~~~		4\	•	•	•	•	•	• •	349.3
As elevators:	nora (exp	ose	u),	CHI	•	•	٠	•		. 345.3
	_										≈25
Trailing edge up		•	•	•	•	٠	•	•	•	• •	
Trailing edge de	own	•	•	•	•	٠	•	•	•	•	. ≈10
As ailerons (total)	,	•	•	•	•	٠	•	•	•	•	. 115
Surface stops:											- 04
Trailing edge up		•	•	•	•	•	•	•		• •	. ≈31
Trailing edge de	own	•	•			٠	•	•		•	. ≈16
							_				

^{*}l'nswept wing.

TABLE 1.-Concluded

Vertical tail-											
Airfoil section											Biconvex
Sweep at leading edge, de											55
Span, m									•		2.71
Area, m ²	•										10.09
Aspect ratio		•			•						1.42
Mean aerodynamic chord,	cm	•	•	•	•	•	•	•		•	404.6
Rudder –											
Span, m						•					2.38
Area, m ² Deflection, maximum, deg											2.65
Deflection, maximum, deg	5	•		•				•			±30
Speed brake-											
Area, m ²											2.39
Deflection, maximum, deg	,		•		•	٠	•				77
Ventrals-											
Area (total). m ²											2.26
Power plants—											
TF30-P-3 engines											2

TABLE 2.-FLIGHT STATISTICS FOR FLIGHTS 5 TO 8

(a) Maneuver type. wing-sweep angle, Mach number, angle of attack, and center of gravity. SWEEP, deg; ALPHA, deg; CG, fraction of reference chord.

NO.	FLT	TYPE	SWEEP	NACH	ALPHA	CG
1	3	ELEVATOR	58.0	.970	8.50	.360
2	5	ELEVATOR	26.0	.904	5.50	.350
3	5	AILERON RUDDER	26.0	-920	5.00	.350
4	5	ELEVATOR	35.0	-910	5.00	.370
5	5	RUDDER	35.0	.910	5.00	.360
6	6	ELEVATOR	26.0	.700	8.50	.320
7	5	AILERON RUDDEP	26.0	.710	8.00	320
3	6	ELEVATOR	26.0	.710	5.00	. 330:
9	6	ELEVATOR	35.0	.700	10.00	.330
10	6	AILERON RUDDER	35.0	.710	9.50	.330
11	6	ELEVATOR	35.0	.700	10.00	.330
12	6	RUDDER	58.0	1.220	3.50	-410
13	6	ELEVATOR	58.0	1.210	2.20	.430
14	6	AILERON RUDDEP	58.0	1.210	2.00	-440
15	7	ELEVATOR	26.0	.820	6.50	.320
16	7	RUONES	26.0	.820	6.00	.330
17	7	AILERON	35.0	-800	7.00	-330
13	7	२ 000E२	35.0	.820	6.50	.330
19	7	ELEVATOR	58.0	.920	10.80	370
20	7	BNDDEs	58.0	.900	11.50	• 3 ~ u :
21	7	RUDDE>	58.0	890	12.00	.370
22	7	ELEVATOR	58.0	.870	8.50	.370
23	7	AILERON RUCDER	58.0	-890	8.06	-370
24	7	ELEVATOR	26.0	.860	4.70	.330
25	7	ELEVATOR	26.0	.860	4.50	.340
25		AILERGN	26.0	880	5.00	350
27	7	ELEVATOR	58.0	1.230	5.50	.410
1 28	. 7	RUDDER	58.0	1.240	5.50	-410
29		ELEVATOR	58.0	1.430	4.50	.430
30	8 7	RUDDER	59.0	1.430	4.25	.430

TABLE 2.-Continued

(a) Concluded

NO.	FLT	TYPE	SMEED	MACH	ALPHA	CG
31	8	AILERON RUDDER	26.0	.810	4.25	.350
32	в	ELEVATOR	26.0	.810	4.40	.350
33	8	AILERON	35.0	.820	5.00	.360
34	8	SLEVATOR	35.0	.820	5.50	.360
35	8	AILERON RUDDES	26.0	.700	5.00	.350
36	8	ELEVATOR	26.0	.710	5.00	.350
37	8	AILERON RUDDEP	35.0	.710	5.50	.370
38	8	ELEVATOR	35.0	.850	5.50	.370
39	8	RUDDEP	58.3	.710	9.00	400
40	8	ELEVATOR	26	.510	4.00	.370
41	8	AILERON RUDDEP	35.0	.910	3.00	.380
42	8	AILERON RUDDER	58.0	.900	5.0 0	.430
43	8	ELEVATOR	58.0	.900	5.00	.430
44	8	AILERON RUDNE	26.0	.810	2.00	.390
45	8	ELEVATOR	25.0	.810	2.00	.390
46	8	AILERON RUDDER	35.0	.800	2.70	-410
47	8	ELEVATOR	35.0	.800	2.50	.410
48	8	AILERON RUDDER	59.0	.700	5.50	450
49	В	ELEVATOR	58.0	.700	5.20	460
50	8	AILERON RUDOEP	35.0	.690	3.00	. 430
51	8	ELEVATOR	35.0	.700	3.00	.430
52	Ą	AILERON PUDDE?	26.0	.690	2.50	•420
53		ELEVATOR	25.0	.700	2.20	430
54	В	RUDDER	59.0	.928	3.00	.490
55	8	ELEVATOR	58.0	.920	3.00	. 490

TABLE 2.—Continued

(b) Mass characteristics, dynamic pressure, and velocity

: OF	1 1	ΙΥ	12	1X?	:	WEIGHT		DYNAMIC PRESSURE		ELOCITY
1					:		:		:	
•	75 1 115-ET 1		SLUG-FT	2 116-FT	•	POHNOS	•	19/51	•	FT/CFC
ŧ	3600-11	1	SEUG-FI	1	:	F OON U 3	i	F.371 1	:	r 17 360
1	1		1	t	;		:		 :	
1:	1	378000.	:	2	2	67400.	1			938.0
51	1	351000.	B 1	1	۲	63100.	1	307.0	:	899.0
3:	68500.1	:	407000.	\$ 3240.0	ŧ	62500.	1	302.0	•	900.0
41	1	342000				5980ũ.		299.0	:	892.0
51			393000.					292.0		886.3
61		427000.				75300.		178.0		682.0
71				: 4490.G						694.9
81						7500C.		183.0	:	696.0
a:		421000.	1	\$	*	74400.	ŧ	190.0	:	586 . 0
10:		3	469000.	1 5230.0				188.0		696.0
111		421000.				73700.				692.0
15:				* 6770.0				•	1	1214.0
13:		342000.				56600.			ŧ	1267.0
141			377603.							1265.0
15:		419000.				73590.			:	800.5
151	•		456000.							804.0
171			: 453600.					236.G		784.0
1 2 1			453000.					248.0		804.0
10:		₹84000•				6948C.				883.0
50:	•		428000.							867.0
21;			428083.					209.G		853.0
551		379500.				67100.		311.6		860.0
23:			· 415C00.					-		871.0
241		362000.				67000.				850.0
251		362000.				66500.				856.3
561				\$ 3900.C						863.0
27:		351000.				60300.				1191.0
281			386030.	: 5700.C						1207.0
291		342000.		:				556.G		1385.0
3 C \$	46300.	3	378000.	7060.0	ı	56900		552.C	ŧ	1378.0
:	;	1	1	:	1		:	•	:	

TABLE 2.—Concluded

(b) Concluded

:-								. –		
ŧ	1	1	1	}	:	1		ŧ	1	1
: 1	10.1	IX 1	I IY	IZ	: IXZ	:	WEIGHT			VELOCITY
1					· -				PRE SSURE	
	1	3				•		•	3	
•		SLUG-FT		5 UC-61		•	POHINGS	•	I DIET	
:	•		3606-71	3E00-F1	• 2F06-b1	•	- OOMUS	•	LOFF	17366
•		,							*******	
•	1	1	1	}	t	t		ŧ	1	1
:	311	69000.	1	495000.	3980.G	:	66300.	:	301.0	810.0
	321		351000.						296.5	800.0
•	331	63500.	1	423003.	4430.0	:	65600.	1	306.0	
	341		366000.1				65700.	:	305.0	
	351				3680.0				289.0	
	361		358000.						296.0	
	371				4040.0					
	381		342000						436.0	
	398				4340.0		_			
	401		353000	700500	1 • 5770 ^	•	58900.		455.0	925.0
	411				: 5770.0 : 7260.0	•	20000	•	490.0	929.0 919.0
	431		330006						474.6	
	441				• 6565.0					
	451		324900						501.0	
	451				. 5850.C					
	47	+ -	333002.						511.0	
1	481	42540.	3	361500.	\$ 8540.0	:	54900.	:	497.0	758.0
1	491	: !	335000.	•	1	:	54800.	:	490.0	755.0
:	501				\$ 9450.C					
	511		335000						499.0	
	521				* 6250.G				-	
	53		329000.						486.0	
	541				8110.0					
:	55		327000		1	:	53000.	:	820.0	984.0
1		; 	· · · · · · · · · · · · · · · · · · ·		; 	<u>.</u>		*		
						_		_		

TABLE 3.-LONGITUDINAL DERIVATIVES FOR FLIGHTS 5 TO 8

[All derivatives are per degree, except $\mathrm{CM}_{\mathbb{Q}}$, which is per radian]

NO.	CNα	CM _a	CM _Q	CN DE	CM DE
1	.0653	0345	: - 34.13	.0033	0356
?	.0970	0184	: -42.96	.0015	: - • 0 405
4	.0880	0098	-44.43	.0007	0 374
. 6	.0603	-0014	-17.60	034	0193
8	.1085	0032	-45.97	^111	G 334
9	.0787	0033	-52.68	5024	0405
11	.0760	1035	-38.19	0076	0265
13	.0456	0462	-23.25	0048	0293
15	.0938	.0033	-38.83	.0033	0363
19	.0570	0219	-39.60	.0136	0331
22	.0600	0220	-36.03	.2046	0 345
24	.1005	.0019	-53.72	0073	0395
25	0905	.052	-39.47	.0077	0362
2 7	.0594	0580	-29.34	.0004	C 331 :
29	.0515	050 0	-26.05	2005	0284
32	1992	º130	-39.55	3030	0351:
34	.0922	0149	-42.9?	.2077	0271
36	0915	0106	-31.30	.0116	0297:
34	.0576	0123	-27.71	.0029	0203:
40	.0870	0145	-40.80	.005	0397
43	.0594	0248	-35.59	•û 096	0354
45	.1083	0105	-35.41	.0097	0332
47	.0883	01A3	-37.53	.0136	0345
49	0552	0239	-29.16	.0097	0313
51	.0843	0194	-29.66	.114	0319
53	.1009	0098	-32.82	.0094	0342
3 5	0581	0264	-37.71	.0119	0360

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 4.-LATERAL-DIRECTIONAL DERIVATIVES FOR FLIGHTS 5 TO 8 [All derivatives are per degree, except ${\rm CL_p}$, ${\rm CL_R}$, ${\rm CN_P^*}$, and ${\rm CN_R^*}$, which are per radian]

(a) Combined lateral controls .0011 .00101 .0015 .0002:-.0015 . 00 15 .0010: .12651 .0011:-.0016:-.0003: .00131 .0027: .0003:-.0015: .0030 .00031-.00151 .00121 .0016: .00031-.001 .0021:

TABLE 4.—Concluded

(b) Aileron controls

NO.	СҮ	CL3	CL _P	CL	C Ν*β	CN*	CN* R	C Y DR	Cr ^{Db}	CN*	CYDA	CL DA	CN* DA
•	:	!	:	: :	3	•	: :	} (1	0009	3	0020	0004
20	0092	0023	1295	.1971	.0009	.0058	1285	.0010	.0002	0014 0013			
•	:	:	:	t 1	!	:	•	1	•	0014 0011	}	0017	0006
•	t 1	•	:	:		:	: :	1	3	0009 0017	3		
:	8	•	:	\$:	•	1	.	0015 0012	3	:	0005 0004
54	0106	0 01 7	1735	.0441	.0010	0072	2313	.0007	.0002	0012		t :	

TABLE 5.-FLIGHT STATISTICS FOR FLIGHTS 16 AND 17

(a) Maneuver type, wing-sweep angle, Mach number, angle of attack, center of gravity, normal acceleration, and altitude. SWEEP, deg; ALPHA, deg; CG, fraction of reference chord; NORMAL ACC., g; ALT, ft.

NO.	FLT	TYPE	SWEEP	MACH	ALPHA	CG	NORMAL ACC.	ALT
1	16	ELEVATOR	26.0	.700	3.35	.318	1.0	3243
2	16	ELEVATOR	26.0	.700	4.90	. 322	1.5	3255
3	16	ELFVATOR	26.0	.700	7.80	.318	2.4	2940
4	16	ELEVATOR	35.0	.700	4.30	. 335	1.0	3210
5	16	ELEVATOR	35.0	.768	5.50	. 324	1.4	3094
6	16	ELEVATOR	35.0	.700	16.96	.320	2.6	2966
7	16	ELEVATOR	35.6	.700	8.90	. 329	2.2	2950
8	16	ELTVATOR	25.0	.700	16.60	.302	2.9	3150
9	16	ELFVATOR	35.0	.700	10.60	.316	2.7	3074
11	16	ELEVATOR	35.0	.720	10.75	.320	2.9	3696
11	16	ELEVATOR	35.0	.700	11.50	. 323	2.7	3056
12	16	ELEVATOR	35.0	.700	13.50	.315	3.1	2953
13	16	ELEVATOR	35.0	.740	10.75	.328	3.1	3252
14	16	ELEVATOR	58.0	.920	4.55	.376	1.4	3191
15	16	FLEVATOR	58.0	.930	6.25	.373	2.0	3172
16	16	ELEVATOR	58.6	.900	9.98	.380	3.3	30 90
17	16	ELEVATOR	25.3	.720	4.70	. 333	1.8	30 99
18	15	ELE WATOR	35.0	•720	5.30	. 352	1.8	3025
19	16	ELEVATOR	24.0	.700	13.20	.352	3.6	33.75
2-	15	ELIVATOR	Se.C	.690	11.30	.356	3.7	3295
21	15	ELEVATOR	53.0	.920	4.80	.406	1.7	3071
22	16	FLEVATOR	26.0	.880	4.00	. 352	1.7	9489
23	15	ELEVATOR	26.0	.870	5.90	. 354	1.5	9779
24	16	FLEVATOR	58.0	.890	5.50	. 474	.9	9310
25	15	ELE VATOR	58.0	.882	9.20	.472	1.5	9229
, 2 E	16	ELEVATOR	55.0	.860	12.30	.486	2.1	9359
27	17	ELEVATOR	26.0	•710	5.19	.307	1.1	7154
24	17	ELEVATOR	35.0	.720	5.80	.317	1.0	70.24
29	17	ELEVATOR	26.0	.730	8.50	.367	1.8	7224
35	17	ELEVATOR	26.0	.730	10.20	.307	1.8	7224

TABLE 5.-Continued

(a) Continued

NO.	FLT	TYPE	SWEFP	MACH	ALPHA	CG	NORMAL ACC.	ALT
31	17	ELEVATOR	25.0	.700	11.50	.367	1.9	6779
32	17	ELEVATOR	35.0	.710	10.00	. 322	1.8	7367
33	17	ELEVATOR	35.0	.710	11.09	.320	1.8	6830
34	17	ELEVATOR	35.0	.710	13.92	.327	2.1	7047
35	17	ELEVATOR	58.0	.920	5.49	.365	1.1	7456
36	17	ELEVATOR	58.0	.910	10.00	362	2.0	7123
37	17	ELEVATOR	58.0	.910	10.77	.357	2.3	7049
38	17	ELIVATOR	26.6	.700	6.55	. 349	1.1	10:12
₹9	17	ELEVATOR	25.0	.705	9.09	.349	1.3	9937
43	17	ELEVATOR	56.0	.700	12.22	.347	1.5	9844
41	17	TLEVATOR	35.0	.710	7.54	.370	1.2	10218
4?	17	FLEVATOR	35.0	.690	13.37	.370	1.5	10217
43	17	FLEVATOR	35.0	.710	14.45	.370	1.7	10309
44	17	ELEVATOR	58.0	.920	7.29	.411	1.1	10691
4 5	17	ELIVATOR	53.0	.920	11.55	• • 1 4	1.7	1055ć
-5	15	อบฏิกิร์อ	25.0	.700	7.33	. 325	2.4	285]
47	16	פיוחרים	35.€	.700	3.40	.320	1.3	30A3
4-	16	ათეუწი	35.6	.700	7.90	323	2.0	2934
49	15	ნუტინა	35.0	.7:0	9.33	.319	2.3	2996
5]	16	ษที่มีประ	35.0	.650	13.25	.323	3.0	3232
51	16	გემინა	58.0	.930	4.25	. 371	1.3	3-12
5?	16	გუტენა	58.J	.920	5.30	.374	2.0	3224
51	16	RUONES	5 H . i.	.920	10.65	390	3.7	3236
54	16	ຂມງໆກູເລ	35.0	.730	5.uQ	.344	1.6	3270
7,	16	დუტიცა	26.0	.720	٤.60	.330	1.8	2955
35	16	פאָתְרוִיפּ	35.C	.713	6.30	.341	2.0	2974
57	16	คบกกลัง	35.[.730	6.40	348	2.1	296?
. T. 4	15	⊋ປກາ∈໑	35.0	.670	15.10	.364	3.8	2994
59	15	გუ <u>ე</u> უნი	25.0	.680	11.50	.348	3.7	2344
ń	16	ຊາງໆຖະລ	25.0	.630	13.10	349	3.5	2785

TABLE 5.—Continued

(a) Concluded

NO.	E FLT	TYPE	SWEEP	MACH	ALPHA	CG	NORMAL ACC.	ALT
61	16	RUDDER	58.6	.920	6.80	.468	2.4	3173
62	16	RUDDER	58.C	.920	4.1C	.409	1.5	3328
63	16	RUDNER	26.0	.880	3.90	.358	1.1	9489
64	16	RUDDEP	26.Ú	.860	4.00	.374	1.0	9438
65	16	AILERON	58.0	.890	6.30	. 495	1.1	9384
66	16	AILERON	58.0	.863	9.50	. 499	1.5	9444
67	16	RUDDER	58.0	.860	9.36	.500	1.5	9444
68	16	RUDDER	58.0	.870	11.50	.506	2.0	9240
63	ló	AILERON	58.0	.850	12.04	-538	2.2	9093
70	17	RUDDER	26.0	.710	4.96	.318	1.€	7123
71	17	RUDDER	35.0	.710	ó.C3	.317	1.0	7843
72	17	RUDDER	26.0	.710	10.35	.306	1.9	6853
73	17	RUDOER	26.0	.730	11.17	.306	2.1	6699
74	17	RUDNEP	35.0	.700	14.30	.319	1.9	7209
75	17	RIDUED	35.0	•76 0	13.00	. 323	1.6	7377
75	17	RUDDER	58.6	.920	4.95	.361	.7	7127
77	17	9200U9	58.6	.940	9.60	. 356	2.1	7039
78	17	ნიმენა	58.0	.930	11.32	. 363	2.2	7193
79	17	PUDDEP	26.0	.890	5.50	. 327	1.6	9356
30	17	२ ७७०२०	26.0	.713	7.31	. 354	1.0	16400
31	17	RUDAER	35.6	.700	7.66	. 361	1.0	16491
82	17	RUDNER	35.0	.700	100	. 357	1.5	10025
93	17	RUDDER	58.0	.929	6.50	. 396	1.2	10365
8 +	17	ลวกกรษ	59.3	.923	11.88	.398	1.7	16303
A j	17	PUDDER	58. C	.890	14.25	.4:1	1.9	16284
85	17	RUDNER	54.0	•920	14,17	- 424	2.0	10592

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 5.—Continued

(b) Mass characteristics, dynamic pressure, and velocity

NO.:	IX	IV	IZ	IXZ	HEIGHT		YNAMIC PRESSURE	VELOCITY
:	SLUG-FT		SLUG-FT	: 2: SLUG-FT :	-	:	2 L9/FT	FT/SEC
:				1		:		
11		443851.		-	78237.		490.8	
31		: 443684.: : 443349.:			78013. 77563.	:	488.G 499.7	
41		443528			76888.		506.0	
51		441680			76664.		498.7	
61		439831.		-	76439.		491.4	
71		439831.			76439.		491.4	
81		426088.			75090.		489.3	
91		415779.			73516.		517.5	
10		412102			73066.		524.8	
111		410253.		1	72842.	•	470.5	
121		404707.		:	72167.	:	449.6	
131	1	397765.	ŧ	t	71043.	1	538.4	790.2
141	!	391083.	:	1	68570.	:	950.C	986.9
151	1	389813.		1	68345.	t	973.0	1000.0
16	1	377111.	:	1	66097.	ŧ	B31.2	970.5
171	!	355516.	:	1	65647.	1	523.4	773.8
181	l	365221.	:	1	65198.	t	518.6	767.2
19		346660.	t	t	61601.		495.1	754.1
20:	:	344782.	:	:	60926.	•	468.4	734.4
211	•	1 349859.	:		59577.		865.7	99:.2
221		1 337837.	:	•	: 58453.	t	355.0	865.6
231		337897.		1	58453.	1	324.1	859.0
241		: 339935.		1	55306.	*	340.0	
251		339451.		1	55081.		337.1	
261		338482.			54631.		311.6	
271		430995.			75697.			
281		433730.			75697.		309.7	
291		412640.			73426.		307.6	
3 C 1		412640.	1		73426.	1	307.0	740.3

TABLE 5.-Continued

(b) Continued

1	1								•			8
	: :	NO.	IX	ΙY	17	IXZ	:::::::::::::::::::::::::::::::::::::::	WEIGHT				: : :
1 311 1 410096.7 1 73111. 1 307.8 2 723.0 2 2 321 1 395888.1 1 70706. 1 288.1 1 723.3 2 1 331 1 395137.1 1 1 70571. 1 307.2 1 723.9 2 2 341 1 395137.1 1 1 70571. 1 207.3 1 721.3 2 3 351 1 395137.1 1 1 70571. 1 207.3 1 721.3 2 2 352 1 389178.1 1 1 68233. 1 506.2 1 941.6 1 2 2 361 1 389178.1 1 1 68233. 1 491.6 1 931.5 1 2 371 1 387527.1 1 1 6924. 1 1 496.6 1 932.1 1 2 381 1 387527.1 1 1 6944. 1 192.8 1 686.6 1 3 381 1 353249.1 1 1 63444. 1 192.8 1 686.6 1 3 381 1 353249.1 1 1 63444. 1 192.8 1 689.2 1 4 401 1 351497.1 1 1 63444. 1 192.8 1 689.2 1 4 401 1 351497.1 1 1 63444. 1 192.8 1 689.2 1 4 401 1 349932.1 1 1 61848. 1 180.9 1 696.4 1 4 421 1 349557.1 1 1 61848. 1 180.9 1 696.4 1 4 421 1 344576.1 1 1 57554. 1 1 61848. 1 180.9 1 674.3 1 4 431 1 347554.1 1 1 57554. 1 296.9 1 896.4 1 4 451 1 344776.1 1 1 57554. 1 296.9 1 896.4 1 4 451 1 3498638. 4361.2 1 76214. 1 512.3 1 754.1 1 4 461 56920.1 1 497861. 1 4433.2 1 75989. 1 528.0 1 767.2 1 4 491 64768.1 1 487821. 1 4433.2 1 75989.	: : : :	;	SLUG-FT	21 SLUG-FT	_	_		POUNDS	: : :	2 i L8/FT i	FT/SEC	
1 311 1 410096.7 1 73111. 1 307.8 2 723.0 2 2 321 1 395888.1 1 70706. 1 288.1 1 723.3 2 1 331 1 395137.1 1 1 70571. 1 307.2 1 723.9 2 2 341 1 395137.1 1 1 70571. 1 207.3 1 721.3 2 3 351 1 395137.1 1 1 70571. 1 207.3 1 721.3 2 2 352 1 389178.1 1 1 68233. 1 506.2 1 941.6 1 2 2 361 1 389178.1 1 1 68233. 1 491.6 1 931.5 1 2 371 1 387527.1 1 1 6924. 1 1 496.6 1 932.1 1 2 381 1 387527.1 1 1 6944. 1 192.8 1 686.6 1 3 381 1 353249.1 1 1 63444. 1 192.8 1 686.6 1 3 381 1 353249.1 1 1 63444. 1 192.8 1 689.2 1 4 401 1 351497.1 1 1 63444. 1 192.8 1 689.2 1 4 401 1 351497.1 1 1 63444. 1 192.8 1 689.2 1 4 401 1 349932.1 1 1 61848. 1 180.9 1 696.4 1 4 421 1 349557.1 1 1 61848. 1 180.9 1 696.4 1 4 421 1 344576.1 1 1 57554. 1 1 61848. 1 180.9 1 674.3 1 4 431 1 347554.1 1 1 57554. 1 296.9 1 896.4 1 4 451 1 344776.1 1 1 57554. 1 296.9 1 896.4 1 4 451 1 3498638. 4361.2 1 76214. 1 512.3 1 754.1 1 4 461 56920.1 1 497861. 1 4433.2 1 75989. 1 528.0 1 767.2 1 4 491 64768.1 1 487821. 1 4433.2 1 75989.	:		•			•	-		•			:
1 321 1 395888.1 1 1 70706.1 288.1 723.3 1 331 1 395137.1 1 70571.1 307.2 723.9 1 1 341 1 395137.1 1 70571.1 297.3 721.3 1 3 351 1 389178.1 1 68233.1 506.2 1 941.6 8 1 361 1 389178.1 1 68233.1 491.6 931.5 1 1 361 1 389178.1 1 68233.1 491.6 931.5 1 1 371 1 387527.1 1 68233.1 491.6 931.5 1 1 381 1 387527.1 1 67941.1 496.6 932.1 1 1 381 1 387527.1 1 63444.1 199.4 686.6 1 1 391 1 353249.1 1 63444.1 192.8 689.2 1 1 401 1 3449.7 1 63444.1 192.8 689.2 1 2 401 1 3449.7 1 63444.1 192.8 689.2 1 2 421 1 349932.1 1 61848.1 180.9 674.3 1 2 421 1 349932.1 1 61848.1 180.9	•		-		•		•	77444	•	707 0	, 727 8	•
1 331 1 395137.1 1 70571.1 307.2 1 723.9 1 1 341 1 395137.1 1 70571.1 297.3 1 721.3 1 1 351 1 389178.1 1 68233.1 506.2 1 941.6 1 1 361 1 389178.1 1 68233.1 491.6 1 931.5 1 1 371 1 387527.1 1 68233.1 491.6 1 931.5 1 1 381 1 387527.1 1 67941.1 496.6 1 932.1 1 1 381 1 353249.1 1 63444.1 192.8 686.6 1 1 401 1 351497.1 1 63444.1 192.8 689.2 1 401.1 691	_											•
1 34: : 395137.: : 70571.: : 297.3 : 721.3 : 2 35: : 389178.: : 68233.: : 906.2 : 941.6 : 3 36: : 389178.: : 68233.: : 491.6 : 931.5 : : 37: : 387527.: : 67941.: : 496.6 : 932.1 : : 38: : 353249.: : 63444.: : 192.8 : 689.2 : : 40: : 351497.: : 63129.: : 196.1 : 691.1 : : 40: : 351497.: : 63129.: : 196.1 : 691.1 : : 41: : 34932.: : 61983.: : 190.1 : 696.4 : : 42: : 349557.: : 61848.: : 180.9 : 674.3 : : 43: : 347554.: : 61129.: : 184.4 : 689.5 : : 44: : 344776.: : 57554.: : 296.9 : 896.4 : : 45: : 344485.: : 57554.: : 296.9 : 896.4 : : 47: 64764.: : 497821.: 4433.2 : 75989.: 522.7 : 763.9 : : 49: 64764.: : 487821.: 4433.2 : 75989.: 522.7 : 763.9 : : 49: 64764.: : 497821.: 4433.2 : 75989.: 522.7 : 763.9 : : 49: 64764.: : 497821.: 44									-			_
1 35: 1 389178.: 1 68233. 1 506.2 1 941.6 1 361.6 2 36: 1 389178.: 1 68233. 1 491.6 1 931.5 1 371.5 2 37: 1 387527.: 1 68233. 1 491.6 1 931.5 1 371.5 3 38: 1 353249.: 1 67941. 1 496.6 1 932.1 1 491.6 1 932.1 1 491.6 1 932.1 1 491.6 1 932.1 1 491.6 1 932.1 1 491.6 1 931.5 1 491.6 1 931.5 1 491.6 1 931.5 1 491.6 1 931.5 1 491.6 1 931.5 1 491.6 1 931.5 1 491.6 1 931.5 1 491.6 1 491.6 1 931.5 1 491.6 1 491.6 1 931.5 1 491.6 1 493.1 1 491.6								-		-		
1 36: 1 389178.1 1 1 68233.1 491.6 1 931.5 1 2 37: 1 387527.1 1 1 67941.1 496.6 1 932.1 1 3 38: 1 353249.1 1 1 63444.1 192.8 686.6 1 3 40: 1 353249.1 1 63444.1 192.8 689.2 1 40: 1 351497.1 1 63129.1 196.1 691.1 1 41: 1 349932.1 1 61983.1 190.1 696.4 1 691.1 1 43: 1 349557.1 1 61848.1 140.9 674.3 1 661848.1 140.9 1674.3 1 6476.1 16129.1 144.4 689.5 1 647.3 1 6476.1 1644.4 1689.5 1 647.3 1 647.4 1 771.3 174.4 1689.5 1 144.4 1689.5 1 144.4 1689.5 1 144.4 1689.5 1 144.4 1689.5 1 144.4 1689.5 1 144.4 1689.5 1 144.4 1689.5 1 144.4 144.4 144.4		-		-								
1 371 1 387527.1 1 1 67941.1 496.6 1 932.1 1 381 1 353249.1 1 63444.1 199.4 686.6 1 1 391 1 353249.1 1 63444.1 192.8 689.2 1 1 401 1 351497.1 1 63444.1 192.8 689.2 1 1 401 1 349557.1 1 61983.1 190.1 696.4 1 1 421 1 349557.1 1 61848.1 180.9 674.3 1 1 431 1 349557.1 1 61848.1 180.9 674.3 1 1 431 1 34976.1 1 61129.1 134.4 689.5 1 1 441 1 344776.1 1 57554.1 236.9 896.4 1 1 451 1 34476.1 1 57554.1 236.9 896.4 1 1 451 1 344776.1 1 57419.1 302.8 897.7 1 1 461 56920.1 1 499841.1 3487.4 77113.1 512.3 770.5 1 1 471 64768.1 1 489638.1 4361.2 1 76214.1 512.3 770.5 1 491.6	_											
1 38: 1 353249.1 1 63444.1 1 192.8 686.6 1 39: 1 353249.1 1 63444.1 1 192.8 686.6 1 39: 1 689.2						_			-	· · · -		
1 391 1 353249.1 1 63444. 1 192.8 1 689.2 1 1 401 1 351497.1 1 63129. 1 196.1 1 691.1 1 2 411 1 34932.1 1 61983. 1 190.1 1 696.4 1 3 421 1 34957.1 1 1 61129. 1 184.4 1 689.5 1 431 1 347554.1 1 1 5129. 1 184.4 1 689.5 1 441 1 344776.1 1 57554.1 1 57554. 1 2 66.9 1 896.4 1 441 1 344776.1 1 57554. 1 5 77554. 1 2 66.9 1 896.4 1 451 1 34476.1 1 499.8 1 77113. 1 512.3 1 754.1 1 441 1 344485.1 1 499.8 1 77113. 1 512.3 1 754.1 1 441 1 489638.1 4361.2 1 76214. 1 512.3 1 770.5 1 441 64769.1 1 489638.1 4361.2 1 76214. 1 512.3 1 770.5 1 441 64769.1 1 487.1 4433.2 1 75989. 1 522.7 1 763.9 1 441 64768.1 1 487.1 4433.2 1 75989. 1 522.7 1 763.9 1 451 47104.1 1 4097.1 5214.7 1 69694. 1 423.4 1 698.4 1 551 47104.1 1 40967.1 5214.7 1 69694. 1 423.4 1 698.4 1 551 63742.1 1 419695.1 5232.6 1 67446. 1 825.9 1 977.0 1 551 63766.1 1 417118.1 5129.5 1 669647. 1 523.2 1 773.8 1 551 63669.1 1 417135.1 4200.4 1 65423. 1 543.7 1 773.8 1 551 63669.1 1 415828.1 4147.0 1 65198. 1 543.7 1 773.8 1 551 63669.1 1 41907.1 3986.9 1 64523. 1 449.6	-						-					
1 401 1 351497.1 1 63129.1 1 196.1 1 691.1 1 411 1 34932.1 1 61983.1 190.1 666.4 1 421 1 349557.1 1 61848.1 180.9 674.3 1 431 1 347554.1 1 61129.1 184.4 689.5 1 441 1 34476.1 1 57554.1 296.9 896.4 1 451 1 34485.1 1 57419.1 302.8 897.7 1 461 66920.1 499841.1 3487.4 77113.1 512.3 7754.1 1 471 64768.1 499841.1 3487.4 77113.1 512.3 770.5 1491.6 4 491 64768.1 497821.1 4433.2 75989.1 522.7 763.9 1491.6 4 501 497821.1 4433.2 75989.1 522.7 763.9 1491.6 64768.1 487821.1 4433.2 75989.1 522.7 763.9 1598.6 1598.6 1696.4 1698.4 1698.4 1698.4 1698.4 1698.4 1698.4 1698.4 1698.4 1698.4 1698.4 1698.4 1698.4 1698.4 1698.4 <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td>						_	_					
1 411 1 34932.1 1 61983.1 1 90.1 696.4 1 421 1 34957.1 1 61848.1 1 80.9 674.3 1 1 431 1 347554.1 1 61129.1 1 84.4 689.5 1 1 441 1 34476.1 1 57554.1 2 96.9 896.4 1 1 451 1 344485.1 1 57419.1 302.8 897.7 1 1 461 66920.1 1 499841.1 3487.4 1 77113.1 912.3 7754.1 1 1 471 64769.1 1 489638.1 4361.2 1 76214.1 512.3 770.5 1 1 491 64768.1 1 487821.1 4433.2 1 75989.1 522.7 763.9 1 1 501 64405.1 1 487821.1 4433.2 1 75989.1 528.0 767.2 1 1 501 64405.1 1 487821.1 4433.2 1 75989.1 528.0 767.2 1 1 501 47104.1 1 420983.1 5284.1 66694.1 67671.1 852.1 1000.0 1 1 521 47104.1 1 419695.1 5232.6	_					_	Ī	•				
1 421 1 349557: 1 61848. 1 180.9 674.3 1 1 431 1 347554.1 1 61129. 1 184.4 1 689.5 1 1 442 1 344766.1 1 57554. 2 26.9 1 896.4 1 1 451 1 344485.1 1 57554. 2 26.9 1 896.4 1 1 461 56920.1 1 499841.1 3487.4 1 77113.1 312.3 770.5 1 1 471 64769.1 1 489638.1 4361.2 1 76214.1 512.3 770.5 1 1 491 64768.1 1 487821.1 4433.2 1 75989.1 522.7 763.9 1 1 491 64768.1 1 487821.1 4433.2 1 75989.1 528.0 1 767.2 1 1 501 64405.1 1 487821.1 4433.2 1 75989.1 528.0 1 767.2 1 1 501 64405.1 1 441967.1 5214.7 1 69694.1 423.4 1 698.4 1 1 511 47104.1 1 419675.1 5232.6 67446.1 825.9 977.0 1 1 521 47104.1						_	-		-		0,	
1 431 1 347554.1 1 61129.1 184.4 689.5 184.4 1 689.5 1 896.4 1 896.4 1 896.4 1 896.4 1 896.4 1 896.4 1 896.4 1 896.4 1 896.4 1 896.4 1 896.4 1 896.4 1 896.4 1 896.4 1 896.4 1 896.4 1 896.4 1 77113.1 1 12.3 1 754.1 1 896.4 1 896.3 1 896.3 1 896.3 1 77113.1 1 12.3 1 770.5 1 762.4 1 7113.1 1 12.3 1 770.5 1 770.5 1 896.3 1 896.3 1 896.3 1 896.3 1 77113.1 1 12.3 1 770.5 1 770.5 1 896.3 1 76214.1 1 512.3 1 770.5 1 770.5 1 896.3 1 76214.1 1 512.3 1 770.5 1 770.5 1 896.3 1 76214.1 1 512.3 1 770.5<		_										
1 441 1 344776.1 1 1 57554.1 236.9 1 896.4 1 1 451 1 344485.1 1 57419.1 302.8 897.7 1 1 461 56920.1 1 499841.1 3487.4 1 77113.1 512.3 1 754.1 1 1 471 64769.1 1 489638.1 4361.2 1 76214.1 512.3 1 770.5 1 1 491 64768.1 1 487821.1 4433.2 1 75989.1 522.7 1 763.9 1 1 491 64768.1 1 487821.1 4433.2 1 75989.1 522.7 1 763.9 1 1 491 64768.1 1 487821.1 4433.2 1 75989.1 522.7 1 763.9 1 1 491 64768.1 1 441967.1 5214.7 1 69694.1 423.4 1 698.4 1 1 1000.0 1 1												
1 451 1 344485.1 1 57419.1 302.8 897.7 1 1 461 56920.1 1 499841.1 3487.4 1 77113.1 512.3 1 754.1 1 1 471 64769.1 1 489638.1 4361.2 1 76214.1 1 512.3 1 770.5 1 1 481 64768.1 1 487821.1 4433.2 1 75989.1 522.7 1 763.9 1 1 491 64768.1 1 487821.1 4433.2 1 75989.1 522.7 1 763.9 1 1 491 64768.1 1 487821.1 4433.2 1 75989.1 528.0 1 767.2 2 1 501 64405.1 1 441967.1 5214.7 1 69694.1 423.4 1 698.4 1 1000.0 3 1 1000.0 3 1 1000.0 3 1 1000.0 3 1 1000.0 3 1						t			-			
1 46: 56920.: : 499841.: 3487.4 : 77113.: 512.3 : 754.1 : 1 47: 64769.: : 489638.: 4361.2 : 76214.: : 512.3 : 770.5 : 2 48: 64768.: : 487821.: 4433.2 : 75989.: 522.7 : 763.9 : 3 50: 64768.: : 487821.: 4433.2 : 75989.: 528.0 : 767.2 : 3 50: 64405.: : 441967.: 5214.7 : 69694.: 423.4 : 698.4 : 3 51: 47104.: : 420983.: 5284.1 : 67671.: 852.1 : 1000.0 : 3 52: 47104.: : 419695.: 5232.6 : 67446.: 825.9 : 977.0 : 3 53: 47104.: : 417118.: 5129.5 : 66996.: 841.6 : 983.0 : 3 54: 63742.: : 418442.: 4253.8 : 65647.: 522.7 : 777.0 : 3 55: 68894.: : 421675.: 3885.8 : 65647.: 533.2 : 773.8 : 3 57: 63669.: : 417135.: 4200.4 : 65423.: 543.7 : 773.8 : 3 57: 63669.: : 41907.: 3986.9 : 64523.: 449.6 : 718.0 : 3						1						
1 471 64769.1 1 489638.1 4361.2 1 76214.1 1 512.3 1 770.5 1 1 491 64769.1 1 497821.1 4433.2 1 75989.1 522.7 1 763.9 1 1 491 64768.1 1 487821.1 4433.2 1 75989.1 528.0 1 767.2 1 1 501 64405.1 1 441967.1 5214.7 1 69694.1 423.4 1 698.4 1 1 511 47104.1 1 420983.1 5284.1 1 67671.1 852.1 1000.0 1 1 521 47104.1 1 419695.1 5232.6 1 67446.1 825.9 1 977.0 1 1 531 47104.1 1 417118.1 5129.5 1 66996.1 341.6 1 983.0 1 1 531 47104.1 1 417118.1 5129.5 1 66996.1 341.6 1 983.0												
1 491 64769.1 1 497821.1 4433.2 175989.1 522.7 1763.9 1 1 491 64768.1 1 487821.1 4433.2 175989.1 528.0 1767.2 1 1 501 64405.1 1 441967.1 5214.7 169694.1 423.4 1698.4 1 643.4 1698.4 1 1000.0												
1 491 64768.1 1 487821.1 4433.2 1 75989.1 528.0 1 767.2 1 1 501 64405.1 1 441967.1 5214.7 1 69694.1 423.4 1 698.4 1 1 511 47104.1 1 420983.1 5284.1 1 67671.1 852.1 1 1000.0 1 1 521 47104.1 1 419695.1 5232.6 1 67446.1 825.9 1 977.0 1 1 531 47104.1 1 417118.1 5129.5 1 66996.1 341.6 1 983.0 1 1 541 63742.1 1 418442.1 4253.8 1 65647.1 522.7 777.0 1 1 551 68894.1 1 421675.1 3885.8 1 65647.1 533.2 773.8 1 2 561 63706.1 1 417135.1 4200.4 65423.1 543.7 773.8 1 2 571 6369.1 415828.1 4147.0 65198.1 564.6 793.4 1 2 581 58416.1 405694.1 3347.0 62725.1 470.5 724.6 1												
1 50: 64405.t : 441967.t 5214.7 t 69694.t : 423.4 t 698.4 t 1 51: 47104.t : 420983.t 5284.1 t 67671.t : 852.1 t 1000.0 t 1 52: 47104.t : 419695.t 5232.f : 67446.t : 825.9 t 977.0 t 1 53: 47104.t : 417118.t 5129.5 t 66996.t 341.6 t 983.0 t 2 54: 63742.t : 418442.t 4253.8 t 65647.t 522.7 t 777.0 t 3 55: 68894.t : 421675.t 3885.8 t : 65647.t 533.2 t 773.8 t 3 56: 63706.t : 417135.t 4200.4 t 65423.t 543.7 t 773.8 t 3 57: 63669.t : 415828.t 4147.0 t 65198.t 564.6 t 793.4 t 3 58: 53558.t : 411907.t 3986.9 t 64523.t 449.6 t 718.0 t 3 59: 58416.t t 405694.t 3347.0 t 62725.t 470.5 t 724.6 t	t								:		• •	
1 51: 47104.1 1 4209A3.1 5284.1 1 67671.1 1 852.1 1 1000.0 1 10000.0 1 10000.0 1 10000.0 1 10000.0 <td< td=""><td>:</td><td>50</td><td></td><td></td><td></td><td></td><td></td><td></td><td>:</td><td></td><td></td><td></td></td<>	:	50							:			
1 53t 47104.t 1 417118.t 5129.5 t 66996.t 941.6 t 983.0 t 1 54t 63742.t 1 418442.t 4253.8 t 65647.t 522.7 t 777.0 t 1 55t 68894.t 1 421675.t 3885.t 1 65647.t 533.2 t 773.8 t 1 56t 63706.t 1 417135.t 4200.4 t 65423.t 543.7 t 773.8 t 1 57t 63669.t 1 415828.t 4147.0 t 65198.t 564.6 t 793.4 t 1 58t 63558.t 1 411907.t 3986.9 t 64523.t 449.6 t 718.0 t 1 59t 58416.t 1 405694.t 3347.0 t 62725.t 470.5 t 724.6 t	:	51	47104.	1 :	420 983.	5284.1	:	67671.	:			
1 541 63742.1 1 418442.1 4253.8 1 65647.1 522.7 777.0 1 1 551 68894.1 1 421675.1 3885.8 1 65647.1 533.2 1 773.8 1 1 561 63706.1 1 417135.1 4200.4 1 65423.1 543.7 1 773.8 1 1 571 63669.1 1 415828.1 4147.0 1 65198.1 564.6 793.4 1 1 581 63558.1 1 411907.1 3986.9 1 64523.1 449.6 1 718.0 1 1 591 58416.1 1 405694.1 3347.0 1 62725.1 470.5 1 724.6 1	:	52	47104.	:	419695.	: 5232.€	:	67446.	:	825.9	977.0	:
1 551 68894.1 1 421675.1 3885.8 1 65647.1 533.2 1 773.8 1 773.8 1 561 63706.1 1 417135.1 4200.4 1 65423.1 543.7 1 773.8 1 773.8 1 571 63669.1 1 415828.1 4147.0 1 65198.1 564.6 1 793.4 1 581 63558.1 1 411907.1 3986.9 1 64523.1 449.6 1 718.0 1 591 58416.1 1 405694.1 3347.0 1 62725.1 470.5 1 724.6 1	:	53	47104.	t 1	417118.	5129.5	ŧ	66996.	ŧ	941.6	983.0	1
1 561 63706.1 1 417135.1 4200.4 1 65423.1 543.7 1 773.8 1 773.8 1 571 63669.1 1 415828.1 4147.0 1 65198.1 564.6 1 793.4 1 581 564.6 1 793.4 1 718.0 1 718.0 1 718.0 1 405694.1 3347.0 1 62725.1 470.5 1 724.6	:	54	63742.	: :	418442.	: 4253.8	:	65647.	:	522.7	777.0	:
1 571 63669.1 1 415828.1 4147.0 1 65198.1 564.6 1 793.4 1 1 581 63558.1 1 411907.1 3986.9 1 64523.1 449.6 1 718.0 1 1 591 58416.1 1 405694.1 3347.0 1 62725.1 470.5 1 724.6 1	t	55	68894.	:	421675.	3885.8	1	65647.	t	533.2	773.8	ŧ
1 58: 63558.: : 411907.: 3986.9 : 64523. : 449.6 : 718.0 : 59: 58416.: : 405694.! 3347.0 : 62725. : 470.5 : 724.6 :	:	56	63706.	:	417135.	: 4200.4	:	65423.	ŧ	543.7	773.8	:
: 591 58416.1	1	57	63669.	: 1	415 828.	4147.0	1	65198.	:	564.E		
	1	5 A	63558.	: :	411907.	3986.9	:	64523.	:	449.6	718.0	ŧ
1 50: 68305.: : 403705.: 3723.3 : 62050. : 407.7 : 672.1 : : : : : : : : : : : : : : : : : : :	:	59	58416.	: 1	405694.	1 3347.0	:	62725.	ŧ	470.5	724.5	1
1 1 1 1 1 1 1 1	ŧ	50	68305.	: :	403705.	1 3723.3	1	62050.	:	407.7	672.1	1
	1		•	: :	}	:	:		1	1	t	1
	:								-			:

TABLE 5.—Concluded

(b) Concluded

1	• • • • • • • • • •						
*NO.	i ix	IY	IZ	IXZ	NEIGHT	I IDYNAMIC IPRESSURE	VELOCITY
:	2: SLUG-FT	-	•	_		: LB/FT	FT/SEC
: 61 : 62 : 63 : 64 : 65 : 65 : 67 : 68 : 70	46593.: 67694.: 67634.: 46368.: 46368.: 46368.: 46368.: 46368.: 59920.: 64768.:		385660. 392650. 391379. 372132. 372132. 371648. 371244. 370801. 490598. 485459.	5854.1 5983.0 5783.6 5928.8 7723.5 7723.5 7773.9 7824.3 7874.8 3894.7	5 02. 5 5 6. 5 7554. 5 4182. 5 4182. 5 3957. 5 3732. 5 3507. 7 5989. 7 75697.	836.4 319.9 319.5 330.6 314.9 304.2 328.7 326.2 296.5 303.2	986.9 1 868.9 1 859.0 1 875.4 1 852.5 1 842.6 1 859.0 1 845.9 1 723.6 1
1 72 1 73 1 74 1 75 1 76	69920. 64762. 54689.	: : :	475 809. 454644. 452030.	4326.5 4546.4 5732.5 5625.7 5691.3	74191. 71875. 71425.	1 310.9 1 330.2 1 283.3 1 278.5 1 506.6	745.2 : 710.8 : 711.5 :
1 77 1 78 1 79 1 80	47104. 47104. 59101.	: : :	429230. 425890.	5614.0 5480.0 4184.7	6911C. 68525.	1 524.6 1 503.5 1 335.0	957.4 1 946.6 1 877.4 1
* 81 * 82 * 83 * 84 * 85	63238. 46461. 46368.	1 ? 1	: 382180. : 379942.		58135.	1 17°.2 1 187.6 1 309.3 1 313.2 1 300.7	683.6 t 896.4 t 698.7 t
1 86				7249.4		302.6	

TABLE 6.-LONGITUDINAL DERIVATIVES FOR FLIGHTS 16 AND 17

[All derivatives are per de CM_Q , which is per radian]

NO.	CN _Q	CM _α	CM ()	CN DE	OM DE
1	.0932	0078	1-34.76	.0102	0329
2	.0943	:09C	: -33.59	.0095	0330
3	.0932	:358	-38.87	.5011	0348
4	0921	- ∙ ി199	-32.52	.0072	0332
5	.0902	0186	-31.85	.:083	0307
5	.0741	:067	-42.19	.059	0324
7	0362	:128	-37.70	.:055	0321
9	.0759	~644	-34,99	.0042	0335
9	.0727	0111	-45.22	.0054	0352
10	.0694	:048	-48.01	.5027	0327
11	.3571	050	-37.ûC	.0008	G 30 2
1?	.0525	(359	-44.91	.7815	0337
13	.û641	:008	-47.11	2035	0333
14	.0579	0270	- 33.35	.053	0327
15	.0613	-•(252	-37.63	.:010	0331
15	.0635	:214	-37.43	.0018	0307
17	.03621	1680	-40.03	.7118	0315
19	.0804	0192	-37.19	.3078	-,6301
19	.0727	1075	-35.31	.673	0322
2)	.2583	170	-25.77	0042	0291
21	6542	270	-34.20	.0052	0334
7 ?	.2904	. 70 - 4	-41.54	.0053	0364
23	. ga33	1013	-31.48	.049	C 324

TABLE 6.-Concluded

i	CN _a	CM _a	CM _Q	CNDE	CM DE
24	.0631	232	- 38.85	.2052	0361
25	.0655	256	-35.93	.ŭů76	0327
26	.0551	188	-47.93	.5074	0379
27	.0958	054	-32.55	.0085	0320
28	.0822	:151	-34.83	.080	0311
23:	. 3716	.0003	-42.45	.0331	5319
₹0;	.3673	0025	-34.05	.7051	C281
31	.0434	0110	- <i>2</i> 5.28	:004	6274
32	.056?	0064	-41.21	.0057	C258
33	.0661	:037	-42.99	. 624	0307
34	.0551	032	-49.11	9829	0335
35	.0593	244	-37.21	.5052	0334
351	. 3543	1203	-38.72	.0034	0315
37	. 0657	5193	-36.71	7621	0278
381	.103+	ū69	- 35.83	.2743	0330
39	.085.	1724	-54.83	.045	0409
+)	. 9547	1587	-28.57	:132	6323
-1	.9837	ü12R	-33.72	.:094	0304
42	9577	::39	- +4 . 71		0355
43:	3645	:322	-37.4	080	0 326
442	.0632	0233	-39.67	.0080	C 333
•5	3554	/159	-49.21	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0327

TABLE 7.—LATERAL-DIRECTIONAL DERIVATIVES FOR FLIGHTS 16 AND 17 [All derivatives are per degree, except CL_P , CL_R , CN_P^* , and CN_R^* , which are per radian]

NO.	СЧВ	CLβ	CL	CL	CN _β	CN*	C 4*	CY	CL DR	CN*	CYDA	CL	CN* DA
46	0169	0 (32	4514	.1771	.0005	1798	+652	.0023	.0002	0015			
1 1	1	•	3 1	: 1	}	:	2366	1	}	CG14	} (
: 1	;	1	32 77		1	:	466			1	;		
: :	}	1	27 76	1	1	•	-,5034 -,5607		1	0015 0015	1 1		
: :	}	1	1	1	1	1	- 24331	1		0013	; 1		
: :	1 :	:	:	: :	,	:	2815	1	1	0013	1		
53	3098	0 024	1344	.0516	.33/9	0471	2171	.0015	.0002	0013			
54	0156	0026	- , 40 40	.0453	.0509	0897	2704	.0022	.0003	0014			
55	0103	0 925	- , 50 4 3	.1-15	.0509	1123	3025	.0019	.0003	0014			
1 1	1	1	1	1	}	•	-,3294		}	0014			
: :	:	:	:	7	!	:	3420		3	0014	: :		
1 1		1 1	:	:	:	:	5555		:	•	} {		•
1 1		3	:	1	!	•	7036 7118	' '	: 1	0014	1 1		
1			1	1	}		2879			0013	1		
1 1	:	1	1	1	!	:	2472	1	1	1	1		
: 1	}	1	:	: 1	!	1	2934	1	}	6014	1		
64	0120	.0305	3334	.1423	.CJ18	.0135	2753	.0013	.0003	0014			
65	0111	0022	1536	.0826	.0019	0369	-,2993				.0041	0016	0003
66	3095	0026	1421	.0375	•0008	0200	2699	:			•0 CS 0	0017	0003

TABLE 7.—Concluded

NO.	сγ _β	СЬВ	CL	CLo	C'1 <mark>*</mark>	CN*	CN* R	CY DR	CL DR	CN* DR	CYDA	CL _{DA}	CN* DA
: :	:	1	1424 1263		1	:	: :		}	1	1		
69	[91	0024	1238 4979	.3337	.1334	0505	1893				.0 518	0)18	0003
: :			3865 1206	: :		:	: :			1	1		
: :	:		2745 1415	1		:	:	1	1	1	1		
76	0113	0018	2390 1712	.0793	.0009	0099	2712	.0527	.0002	CC14			
78	0089	0023	16 74 14 54 4728	.0452	. 2008	0665	2066	.0112	.0003	0013 0013			
80	5096	0028	-,5261 -,3669	.1797	.0006	1549	4413	.0522	.0603	0015 0018			
1 1	:		- 1943 - 1928	: 1	,	t 1	5310 3044	•	} '	0015 0015	;		
85	3073	0926	16:3 1735	.0325	.0304	0855	1929	.0012	.0003	0C14			
85	0100	0029	2073	.02971	.3001	1189	1922	.0015	.0003	0014			

Figure 1. F-111A airplane.

Figure 2. Three-view drawing of F-111A airplane. Dimensions are in meters.

Wind tunnel Flight M

--- 0.7
--- 0.8

--- 0.9

I Uncertainty level

Solid symbol denotes M = 0.81 to 0.86

Solid line is fairing of flight data

Figure 3. Longitudinal stability and control derivatives for 1g flight and 2% wing sweep.

Wind tunnel Flight M

--- 0.7

--- 0.8

--- 0.9

I Uncertainty level

Solid line is a fairing of flight data

Figure 3. Continued.

Figure 3. Concluded.

Wind tunnel

--- 0 0.60

0 0.80

--- \(\triangle \) 0.85

I Uncertainty level

Solid line is a fairing of flight data

Figure 4. Longitudinal stability and control derivatives for 1g flight and 35° wing sweep.

Figure 4. Continued.

Wind tunnel Flight M

--- 0.60
0.80

--- △ 0.85

I Uncertainty level

Solid line is a fairing of flight data

Figure 4. Concluded.

Figure 5. Longitudinal stability and control derivatives for 1g flight and $58^{\rm o}$ wing sweep.

Wind

tunnel

Flight

Figure 5. Continued.

```
Wind tunnel
tunnel
..... □ 0.8
..... △ 0.9
..... △ 1.0
..... + 1.2
..... × 1.6

I Uncertainty level
Solid line is a fairing of flight data
```


Figure 5. Concluded.

	.02	_		Open sy	Flight O D D Pmbols in 5 to 8; som flight	2 to 4 4 to 6 6 to 8 8 to 10 dicate da	uta from	dicate
C _m , a per deg	02	→	Δ		8			≫
	04						1	
	. 6	8	.72	.76	. 80 M	.84	.88	.92

Figure 6. Static stability as a function of Mach number for 26° wing sweep.

Figure 7. Lateral-directional stability and control derivatives for 1g flight and 26° wing sweep.

Figure 7. Continued.

Figure 7. Continued.

Figure 7. Continued.

Figure 7. Continued.

Figure 7. Continued.

Figure 7. Concluded.

Figure 8. Lateral-directional stability and control derivatives for 1g flight and 35° wing sweep.

Figure 8. Continued.

Solid line is a fairing of flight data Flagged symbol denotes M=0.82

Figure 8. Continued.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 8. Continued.

Wind tunnel Flight M

0.7
0.8
0.9
Uncertainty level

Solid line is a fairing of flight data Flagged symbol denotes M = 0.82

Figure 8. Continued.

Wind tunnel Flight M

O.7

O.8

O.9

I Uncertainty level

Solid line is a fairing of flight data

Figure 8. Continued.

Wind tunnel Flight M

O.7

O.8

O.9

I Uncertainty level

Solid line is a fairing of flight data

Figure 8. Concluded.

Figure 9. Lateral-directional stability and control derivatives for 1g flight and $58^{\rm o}$ wing sweep.

Figure 9. Continued.

Figure 9. Continued.

Wind tunnel

Flight

Figure 9. Continued.

ORIGINAL PAGE IS OF P(X)R QI'ALITY

Figure 9. Continued.

Flight

Figure 9. Continued.

Figure 9. Concluded.

Figure 10. Longitudinal stability and control derivatives for elevated g flight and 26° wing sweep.

Figure 10. Continued.

Figure 10. Concluded.

Figure 11. Longitudinal stability and control derivatives for elevated g flight and 35° wing sweep.

Figure 11. Continued.

Figure 11. Concluded.

Figure 12. Longitudinal stability and control derivatives for elevated g flight and 58° wing sweep.

Figure 12. Continued.

Figure 12. Concluded.

Figure 13. Lateral-directional stability and control derivatives for elevated g flight and 26° wing sweep.

Figure 13. Continued.

Figure 13. Continued.

Figure 13. Continued.

Figure 13. Concluded.

Figure 14. Lateral-directional stability and control derivatives for elevated g flight and 35° wing sweep.

Figure 14. Continued.

Figure 14. Continued.

Figure 14. Continued.

Figure 14. Concluded.

Figure 15. Lateral-directional stability and control derivatives for elevated g flight and $58^{\rm o}$ wing sweep.

OF POOR QUALITY

Figure 15. Continued.

Figure 15. Continued.

Figure 15. Continued.

Figure 15. Continued.

Figure 15. Conlinued.

Figure 15. Concluded.

Figure 16. $C_{l_{\delta_r}}$ as a function of angle attack, showing uncertainties at high angle of attack.

Figure 17. Time history of maneuver 74.

Figure 18. Time history of maneuver 75.

A complete set of linear stability and control derivatives of the F-111A simplane was determined with a modified maximum likelihood estimator. The derivatives generally showed consistent rende and sees the accelerations from 0.38 during steady turns to assess the accretions for the numbers as low as 0.82. No large effects attributable to accoelasticity were noted. 10. New Words (Suggested by Authoris) F-111A airplane Stability and control derivatives Maximum likelihood estimation 11. New Words (Suggested by Authoris) F-111A airplane 12. Security Cassif. (of this report) 13. Optical set of the page 1. Description of the page 1. D	1. Report No.	2. Government Access	ion No.	3. Recipient's Catalog	No.	
FLIGHT-DETERMINED STABILITY AND CONTROL COEFFICIENTS OF THE F-111A AIRPLANE 7. Author(s) Kenneth W. Hiff, Richard E. Maine, and Sandra Thornberry Steers 9. Performing Organization Name and Adasses NASA Dryden Flight Research Center P.O. Box 273 12. Sponsoring Agricy Name and Address National Aeronautics and Space Administration Washington, D. C. 20546 15. Supplementary Notes A complete set of linear stability and control derivatives of the F-111A airplane was determined with a modified maximum likelihood estimator. The derivatives were determined at wing-sweep angles of 26°, 35°, and 38°. The flight conditions included a Mach number range of 0.63 to 1,43 and an angle of attack range of 2° to 15°. Mancevers were performed at normal accelerations from 0.99 to 3.8g during steady turns to assess the aeroelastic effects on the stability and control daracteristics. The derivatives generally showed consistent trends and reasonable agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82. No large effects attributable to aeroelasticity were noted. 17. Key Words (Suppsted by Author(s)) 18. Distribution Statement Unclassified—Unlimited Unclassified—Unlimited Category: 88 19. Security Classif (of this page) 21. No. of Pages 22 Price*	NASA TM-72851					
7. Author(s) 7. Author(s) 8. Performing Organization Code 8. Performing Organization Report No. H-999 9. Performing Organization Name and Address NASA Dryden Flight Research Center 9. P. O. Box 273 Edwards. California 93323 12. Sponsoring Agency Name and Address National Acronautics and Space Administration Washington, D. C. 20546 15. Supplementary Notes A complete set of linear stability and control derivatives of the F-111A airplane was determined with a modified maximum likelihood estimator. The derivatives were determined at wing-sweep angles of 26°, 35°, and 38°. The flight conditions included a Mach number range of 0.63 to 1.43 and an angle of attack range of 2° to 15°, Maneuvers were performed at normal accelerations from 0.98 to 3.88 during steady turns to assess the aeroelastic effects on the stability and control characteristics. The derivatives were determined at administration and reasonable agreement with the wind turnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.32. No large effects antiributable to aeroelasticity were noted. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Unclassified—Unlimited Category: 98 19. Security Classif (of this report) 20. Security Classif (of this page) 21. No. of Pages 22. Price*	4. Title and Subtitle					
7. Authoriti Kenneth W. Hiff. Richard E. Maine, and Sandra Thornberry Steers 9. Performing Organization Name and Adaesa NASA Dryden Flight Research Center P. O. Box 273 12. Sponsoring Agency Name and Addres National Acronautics and Space Administration Washington, D. C. 20546 15. Supplementary Notes 16. Abstract A complete set of linear stability and control derivatives of the F-111A airplane was determined with a modified maximum likelihood estimator. The derivatives were determined at wing-sweep angles of 26°, 35°, and 58°. The flight conditions included a Mach number range of 0.63 to 1,43 and an angle of attack range of 2° to 15°. Maneuvers were performed at normal accelerations from 0.98 to 3.88 during steady turns to assess the aeroelastic effects on the stability and control characteristics. The derivatives generally showed consistent trends and reasonable agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82. No large effects attributable to aeroelasticity were noted. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Unclassified—Unlimited 18. Distribution Statement Unclassified—Unlimited Category: 188 19. Security Classif (of this page) 20. Security Classif (of this page) 21. No. of Pages. 22. Price*		EFFICIENTS				
Renneth W. Biff, Richard E. Maine, and Sandra Thornberry Steers H-999	OF THE F-THA AIRPLANE		6. Performing Organization Code			
Renneth W. Biff, Richard E. Maine, and Sandra Thornberry Steers H-999	7. Author(s)			8 Pertorming Organiza	ation Report No.	
9. Performing Organization Name and Addaes NASA Dryden Flight Research Center P.O. Box 273 Edwards, California 93523 12. Sponsoring Agency Name and Address National Aeronauties and Space Administration Washington, D.C. 20546 15. Supplementary Notes A complete set of linear stability and control derivatives of the F-111A airplane was determined with a modified maximum likelihood estimator. The derivatives were determined at wing-sweep angles of 26°, 35°, and 58°. The flight conditions included a Mach number range of 0.63 to 1, 43 and an angle of attack range of 2° to 15°. Maneuvers were performed at normal accelerations from 0.9g to 3.8g during steady turns to assess the aeroclastic effects on the stability and control characteristics. The derivatives generally showed consistent trends and reasonable agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82. No large effects attributable to aeroelasticity were noted. 17. Key Words (Suggested by Author(s)) F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test Category: 88 18. Distribution Statement Unclassified—Unlimited Category: 98 19. Security Classif (of this report) 20. Security Classif (of this page) 21. No. of Pages 22. Price*	•	nberry Steers		, ion report ris		
9. Performing Organization Name and Address NASA Drvden Flight Research Center P.O. Box 273 Edwards. California 93:523 12. Sponsoring Agency Name and Address National Acronautics and Space Administration Washington. D.C. 20546 15. Supplementary Notes 16. Abstract A complete set of linear stability and control derivatives of the F-111A airplane was determined with a modified maximum likelihood estimator. The derivatives were determined at wing-sweep nagles of 29°, 35°, and 58°. The flight conditions included a Mach number range of 0.63 to 1.43 and an angle of attack range of 2° to 15°. Maneuvers were performed at normal accelerations from 0.9g to 3.8g during steady turns to assess the aeroelastic affects on the stability and control characteristics. The derivatives generally showed consistent trend: and reasonable agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82. No large effects attributable to aeroelasticity were noted. 17. Key Words (Suggested by Authoria) 18. Distribution Statement Unclassified—Unlimited 19. Security Classif (of this report) 20. Security Classif (of this page) 21. No. of Pages 22. Price*		_ `				
NASA Dryden Flight Research Center P.O. Bus 273 Edwards. California 93523 12. Sponsoring Agency Name and Address National Acronautics and Space Administration Washington. D. C. 20546 15. Supplementary Notes 16. Abstract A complete set of linear stability and control derivatives of the F-111A airplane was determined with a modified maximum likelihood estimator. The derivatives were determined at wing-sweep angles of 26°, 35°, and 38°. The flight conditions included a Mach number range of 0.63 to 1.43 and an angle of attack range of 2° to 15°. Maneuvers were performed at normal accelerations from 0.9g to 3.8g during steady turns to assess the aeroelastic effects on the stability and control characteristics. The derivatives generally showed consistent trends and reasonable agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82. No large effects attributable to aeroelasticity were noted. 17. Key Words (Suggested by Author/S)) F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test Category: 88 18. Distribution Statement Unclassified—Unlimited Category: 88 19. Security Classif, (of this report) 20. Security Classif, (of this page) 21. No. of Pages 22. Price*	9. Performing Organization Name and Address					
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546 A complete set of linear stability and control derivatives of the F-111A airplane was determined with a modified maximum likelihood estimator. The derivatives were determined at wing-sweep angles of 26°, 35°, and 58°. The flight conditions included a Mach number range of 0.63 to 1, 43 and an angle of attack range of 2° to 15°. Maneuvers were performed at normal accelerations from 0.99 to 3.8g during steady turns to assess the aeroelastic effects on the stability and control characteristics. The derivatives generally showed consistent trends and reasonable agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82. No large effects attributable to aeroelasticity were noted. 17. Key Words (Supposted by Author(s)) F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test Category: 08 18. Distribution Statement Unclassified—Unlimited Category: 08 Category: 08		}		No.		
12. Sponsoring Agency Name and Address Nutional Aeromautics and Space Administration Washington, D. C. 20546 15. Supplementary Notes 16. Abstract A complete set of linear stability and control derivatives of the F-111A airplane was determined with a modified maximum likelihood estimator. The derivatives were determined at wing-sweep angles of 26°, 35°, and 58°. The flight conditions included a Mach number range of 0.63 to 1, 43 and an angle of attack range of 2° to 15°. Maneuvers were performed at normal accelerations from 0.99 to 3.8g during steady turns to assess the aeroelastic effects on the stability and control characteristics. The derivatives generally showed consistent trends and reasonable agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82. No large effects aitributable to aeroelasticity were noted. 17. Key Words (Suggested by Author/9) 18. Distribution Statement Unclassified—Unlimited Category: 08 19. Security Classif, (of this report) 20. Security Classif, (of this page) 21. No. of Pages 22. Price*			11. Commact or Grant	NO.		
National Aeronautics and Space Administration A complete set of linear stability and control derivatives of the F-111A airplane was determined with a modified maximum likelihood estimator. The derivatives were determined at wing-sweep angles of 26°, 35°, and 58°. The flight conditions included a Mach number range of 0.63 to 1,43 and an angle of attack range of 20° to 15°. Maneuvers were performed at normal accelerations from 0.9g to 3.8g during steady turns to assess the aeroelastic effects on the stability and control characteristics. The derivatives generally showed consistent trends and reasonable agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82. No large effects aitributable to aeroelasticity were noted. 17. Key Words (Suggested by Author(s)) F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test Category: 98 18. Distribution Statement Unclassified—Unlimited Category: 98 19. Security Classif (of this report) 20. Security Classif (of this page) 21. No. of Pages 22. Price*	Edwards, Camorna 55525			12. Tues of Parant se	d Desired Coursed	
National Aeronautics and Space Administration Washington, D.C. 20546 15. Supplementary Notes A complete set of linear stability and control derivatives of the F-111A airplane was determined with a modified maximum likelihood estimator. The derivatives were determined at wing-sweep angles of 26°, 35°, and 58°. The flight conditions included a Mach number range of 0.63 to 1.43 and an angle of attack range of 2° to 15°. Maneuvers were performed at normal accelerations from 0.9g to 3.8g during steady turns to assess the aeroelastic effects on the stability and control characteristics. The derivatives generally showed consistent trends and reasonable agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82. No large effects aitributable to aeroelasticity were noted. 17. Key Words (Suggested by Author(s)) F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test Category: 98 18. Distribution Statement Unclassified—Unlimited Category: 98 19. Security Classif (of this page) 21. No. of Pages 22. Price*	12. Sponsoring Agency Name and Address			13. Type of Report and Period Covered		
A complete set of linear stability and control derivatives of the F-111A airplane was determined with a modified maximum likelihood estimator. The derivatives were determined at wing-sweep angles of 26°, 35°, and 58°. The flight conditions included a Mach number range of 0.63 to 1.43 and an angle of attack range of 2° to 15°. Maneuvers were performed at normal accelerations from 0.9g to 3.8g during steady turns to assess the aeroelastic effects on the stability and control characteristics. The derivatives generally showed consistent trends and reasonable agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82. No large effects aitributable to aeroelasticity were noted. 17. Key Words (Suggested by Authorist) F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test Category: 08 18. Distribution Statement Unclassified—Unlimited Category: 08 19. Security Classif (of this report) 20. Security Classif (of this page) 21. No. of Pages 22. Price*		-				
A complete set of linear stability and control derivatives of the F-111A airplane was determined with a modified maximum likelihood estimator. The derivatives were determined at wing-sweep angles of 26°, 35°, and 58°. The flight conditions included a Mach number range of 0.63 to 1.43 and an angle of attack range of 2° to 15°. Maneuvers were performed at normal accelerations from 0.9g to 3.8g during steady turns to assess the aeroelastic effects on the stability and control characteristics. The derivatives generally showed consistent trends and reasonable agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82. No large effects aitributable to aeroelasticity were noted. 17. Key Words (Suggested by Author(st)) F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test Category: 08 19. Security Classif (of this report) 20. Security Classif (of this page) 21. No, of Pages 22. Price*		1	14. Sponsoring Agency	Code		
A complete set of linear stability and control derivatives of the F-111A airplane was determined with a modified maximum likelihood estimator. The derivatives were determined at wing-sweep angles of 26°, 35°, and 58°. The flight conditions included a Mach number range of 0.63 to 1.43 and an angle of attack range of 2° to 15°. Maneuvers were performed at normal accelerations from 0.9g to 3.8g during steady turns to assess the aeroelastic effects on the stability and control characteristics. The derivatives generally showed consistent trends and reasonable agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82. No large effects aitributable to aeroelasticity were noted. 17. Key Words (Suggested by Author(st)) F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test Category: 08 19. Security Classif (of this report) 20. Security Classif (of this page) 21. No, of Pages 22. Price*						
A complete set of linear stability and control derivatives of the F-111A airplane was determined with a modified maximum likelihood estimator. The derivatives were determined at wing-sweep angles of 26°, 35°, and 58°. The flight conditions included a Mach number range of 0 to 30 to 1,43 and an angle of attack range of 2° to 15°. Maneuvers were performed at normal accelerations from 0.9g to 3.8g during steady turns to assess the aeroelastic effects on the stability and control characteristics. The derivatives generally showed consistent trends and reasonable agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82. No large effects attributable to aeroelasticity were noted. 17. Key Words (Suggested by Author(s)) F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test Category: 08 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*	15. Supplementary Notes					
A complete set of linear stability and control derivatives of the F-111A airplane was determined with a modified maximum likelihood estimator. The derivatives were determined at wing-sweep angles of 26°, 35°, and 58°. The flight conditions included a Mach number range of 0 to 30 to 1,43 and an angle of attack range of 2° to 15°. Maneuvers were performed at normal accelerations from 0.9g to 3.8g during steady turns to assess the aeroelastic effects on the stability and control characteristics. The derivatives generally showed consistent trends and reasonable agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82. No large effects attributable to aeroelasticity were noted. 17. Key Words (Suggested by Author(s)) F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test Category: 08 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*						
A complete set of linear stability and control derivatives of the F-111A airplane was determined with a modified maximum likelihood estimator. The derivatives were determined at wing-sweep angles of 26°, 35°, and 58°. The flight conditions included a Mach number range of 0 to 30 to 1,43 and an angle of attack range of 2° to 15°. Maneuvers were performed at normal accelerations from 0.9g to 3.8g during steady turns to assess the aeroelastic effects on the stability and control characteristics. The derivatives generally showed consistent trends and reasonable agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82. No large effects attributable to aeroelasticity were noted. 17. Key Words (Suggested by Author(s)) F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test Category: 08 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*						
airplane was determined with a modified maximum likelihood estimator. The derivatives were determined at wing-sweep engles of 26°, 35°, and 58°. The flight conditions included a Mach number range of 0.63 to 1.43 and an angle of attack range of 2° to 15°. Maneuvers were performed at normal accelerations from 0.9g to 3.8g during steady turns to assess the aeroelastic effects on the stability and control characteristics. The derivatives generally showed consistent trends and reasonable agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82. No large effects aitributable to aeroelasticity were noted. 17. Key Words (Suggested by Author(s)) F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test Category: 98 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*	16. Abstract					
airplane was determined with a modified maximum likelihood estimator. The derivatives were determined at wing-sweep engles of 26°, 35°, and 58°. The flight conditions included a Mach number range of 0.63 to 1.43 and an angle of attack range of 2° to 15°. Maneuvers were performed at normal accelerations from 0.9g to 3.8g during steady turns to assess the aeroelastic effects on the stability and control characteristics. The derivatives generally showed consistent trends and reasonable agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82. No large effects aitributable to aeroelasticity were noted. 17. Key Words (Suggested by Author(s)) F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test Category: 98 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*						
airplane was determined with a modified maximum likelihood estimator. The derivatives were determined at wing-sweep engles of 26°, 35°, and 58°. The flight conditions included a Mach number range of 0.63 to 1.43 and an angle of attack range of 2° to 15°. Maneuvers were performed at normal accelerations from 0.9g to 3.8g during steady turns to assess the aeroelastic effects on the stability and control characteristics. The derivatives generally showed consistent trends and reasonable agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82. No large effects aitributable to aeroelasticity were noted. 17. Key Words (Suggested by Author(s)) F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test Category: 98 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*						
airplane was determined with a modified maximum likelihood estimator. The derivatives were determined at wing-sweep engles of 26°, 35°, and 58°. The flight conditions included a Mach number range of 0.63 to 1.43 and an angle of attack range of 2° to 15°. Maneuvers were performed at normal accelerations from 0.9g to 3.8g during steady turns to assess the aeroelastic effects on the stability and control characteristics. The derivatives generally showed consistent trends and reasonable agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82. No large effects aitributable to aeroelasticity were noted. 17. Key Words (Suggested by Author(s)) F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test Category: 98 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*						
airplane was determined with a modified maximum likelihood estimator. The derivatives were determined at wing-sweep engles of 26°, 35°, and 58°. The flight conditions included a Mach number range of 0.63 to 1.43 and an angle of attack range of 2° to 15°. Maneuvers were performed at normal accelerations from 0.9g to 3.8g during steady turns to assess the aeroelastic effects on the stability and control characteristics. The derivatives generally showed consistent trends and reasonable agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82. No large effects aitributable to aeroelasticity were noted. 17. Key Words (Suggested by Author(s)) F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test Category: 98 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*						
airplane was determined with a modified maximum likelihood estimator. The derivatives were determined at wing-sweep engles of 26°, 35°, and 58°. The flight conditions included a Mach number range of 0.63 to 1.43 and an angle of attack range of 2° to 15°. Maneuvers were performed at normal accelerations from 0.9g to 3.8g during steady turns to assess the aeroelastic effects on the stability and control characteristics. The derivatives generally showed consistent trends and reasonable agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82. No large effects aitributable to aeroelasticity were noted. 17. Key Words (Suggested by Author(s)) F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test Category: 98 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*						
The derivatives were determined at wing-sweep angles of 26°, 35°, and 58°. The flight conditions included a Mach number range of 0.63 to 1.43 and an angle of attack range of 2° to 15°. Maneuvers were performed at normal accelerations from 0.9g to 3.8g during steady turns to assess the aeroelastic effects on the stability and control characteristics. The derivatives generally showed consistent trends and reasonable agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82. No large effects attributable to aeroelasticity were noted. 17. Key Words (Suggested by Author(s)) F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test Category: 08 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*						
and an angle of attack range of 2° to 15°. Maneuvers were performed at normal accelerations from 0.9g to 3.8g during steady turns to assess the aeroelastic effects on the stability and control characteristics. The derivatives generally showed consistent trends and reasonable agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82. No large effects aitributable to aeroelasticity were noted. 17. Key Words (Suggested by Author(s)) F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test Category: 08 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*						
normal accelerations from 0.9g to 3.8g during steady turns to assess the aeroelastic effects on the stability and control characteristics. The derivatives generally showed consistent trends and reasonable agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82. No large effects attributable to aeroelasticity were noted. 17. Key Words (Suggested by Author(s)) F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test Category: 08 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*						
aeroelastic effects on the stability and control characteristics. The derivatives generally showed consistent trends and reasonable agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82. No large effects attributable to aeroelasticity were noted. 17. Key Words (Suggested by Author(s)) F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test Category: 08 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*						
agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82. No large effects attributable to aeroelasticity were noted. 17. Key Words (Suggested by Author(s)) F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test 18. Distribution Statement Unclassified—Unlimited Category: 08 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*	aeroelastic effects on the stability and control characteristics.					
agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82. No large effects attributable to aeroelasticity were noted. 17. Key Words (Suggested by Author(s)) F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test 18. Distribution Statement Unclassified—Unlimited Category: 08 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*	The derivatives generally showed consistent trands and reasonable					
to aeroelasticity were noted. 17. Key Words (Suggested by Author(s)) F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test 18. Distribution Statement Unclassified—Unlimited Category: 08 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*	agreement with the wind tunnel estimates. Significant Mach effects were					
17. Key Words (Suggested by Author(s)) F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test Category: 68 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*						
F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test Category: 08 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*	to deroclasticity were noted.					
F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test Category: 08 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*						
F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test Category: 08 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*						
F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test Category: 08 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*					į	
F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test Category: 08 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*						
F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test Category: 08 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*					l	
F-111A airplane Stability and control derivatives Maximum likelihood estimation Flight test Category: 98 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*			,			
Stability and control derivatives Maximum likelihood estimation Flight test Category: 08 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*	17. Key Words (Suggested by Author(s))	18. Distribution Statement				
Maximum likelihood estimation Flight test Category: 98 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*		Unclassified-Unlimited				
Flight test Category: 98 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*	_					
19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*						
				Category:	08	
Unclassified Unclassified 92	19. Security Classif. (of this report)	20. Security Classif. (c	of this page)	21. No. of Pages	22. Price*	
	Unclassified	Unclassified		92		