N78-18084

NASA Technical Memorandum 74040

é.

DO MOT CISTE OV OFTENNA 10 LEKART

LASER VELOCIMETER SURVEY ABOUT A NACA 0012 WING AT LOW ANGLES OF ATTACK

Danny R. Hoad, James F. Meyers, Warren H. Young, Jr. and Timothy E. Hepner

January 1978

4, DEC 1978 NCDONNELL DOUGLAS RESEARCH & ENCINEERING LIBRARY ST LOUIS

Space Administration

Langley Research Center Hampton, Virginia 23665

COST FTEM \$8.00

F1 che-NASA N78-/8084

INGLIG: IN LAG

C

0

849458 M78-15068

LASER VELOCIMETER SURVEY ABOUT A NACA 0012 WING

AT LOW ANGLES OF ATTACK

Danny R. Hoad*, James F. Meyers, Warren H. Young, Jr.*, and Timothy E. Hepner* Langley Research Center Hampton, Virginia 23665

SUMMARY

An investigation has been conducted in the Langley V/STOL tunnel with a laser velocimeter to obtain measurements of airflow velocities about a wing at low angles of attack (0.6° and 4.75°). The applicability of the laser velocimeter technique for this purpose in the V/STOL tunnel was demonstrated in this investigation with measurement precision bias calculated at -1.33 percent to 0.91 percent and a random uncertainty calculated at ± 0.47 percent. Free-stream measurements were obtained with this device and compared with velocity calculations from pitot-static probe data taken near the laser velocimeter measurement location. The two measurements were in agreement to within 1 percent. Velocity measurement results about the centerline at 0.6° angle of attack were typically those expected. At 4.75°, the velocity measurements indicated that a short laminar separation bubble existed near the leading edge with an oscillating shear layer.

INTRODUCTION

The laser velocimeter (LV) has a potential of measuring fluid velocities in flow conditions where traditional devices either are incapable of providing measurements or would seriously influence the measurements due to their presence. A fringe-type, two-component LV is being developed for use at the Langley V/STOL tunnel to capitalize on this potential. The most probable early use of this LV system would be the measurement of air velocities in the vicinity of a rotor system on the General Rotor Model System (GRMS) that is used extensively for aerodynamic and acoustic research in the V/STOL tunnel (ref. 1).

*Structures Laboratory, U.S. Army Aviation Research and Development Command

In recent years, several investigators have applied the LV to the problem of measuring helicopter rotor flow fields. (See refs. 2 to 5.) The LV has been applied to velocity measurements within turbine stages of an engine assembly (ref. 6). The examples in references 2 to 6 are indicative of applications where a conventional probe could not survive. The LV is used extensively as a research tool to determine the exhaust characteristics of jets and nozzles (refs. 7 to 9). Quite often a well-defined jet or nozzle has been used as a reference to prove the validity of the LV measurements. Characteristics of turbulent flows have been studied using the LV (refs. 10 and 11), and power-spectral data have been attempted with some success (ref. 12). These latter examples are indicative of applications where a conventional probe's presence would influence the measurement accuracy.

Recently, an LV system was temporarily installed in the 7- by 10-foot tunnel at Langley to measure the flow characteristics over a stalled three-dimensional wing (ref. 13). The system described in the present report was similar to that in reference 13. The system was operated in the backscatter mode to permit a common platform for the transmitting and receiving optics. The tunnel flow was seeded with particles of kerosene smoke with a known particle size distribution output. This was required in order to: (1) increase the number of velocity measurements per unit time to minimize tunnel run duration; and (2) control measurement precision by providing particles with proper density and size characteristics for tracking fidelity.

This investigation was designed to accomplish two objectives: (1) to demonstrate and verify the use of the LV in the V/STOL tunnel; and (2) to obtain twodimensional velocity measurements about a wing, to be used later for comparison with theoretical techniques.

SYMBOLS

The axes used for this investigation was presented in figure 1. The units for the physical quantities defined in this paper are in the International System of Units. Most quantities were measured in this system; however, some were measured in the U.S. Customary Units and converted by using factors given in reference 14.

- c wing chord, 0.3048 m
- C_i number of velocity measurements in ith histogram interval as percent of N
- D_{sv} diameter of sample volume, m
- DR average data rate in ensemble, measurements/sec
- E excess (or kurtosis) of histogram
- f signal frequency received from LV, Hz
- L_{sv} length of sample volume, m

L_{fr} fringe spacing, m

M free-stream Mach number

- N number of velocity measurements in one ensemble
- R_c airfoil Reynolds number, based on chord
- S_R skewness of histogram
- T_R reset time of the high-speed burst counter, sec
- U local velocity component, direction described by subscript (see fig. 1)

$$U_{\rm R}$$
 local total velocity, $\sqrt{U^2 + V^2}$, m/sec

- +U uncertainty in velocity component (U), m/sec
- U_T free-stream velocity determined from pitot-static probe, m/sec

۷	local velocity component, direction described by subscript (see fig. 1)
V _{fr}	velocity of the fringes due to Bragg cell, m/sec
<u>+</u> V	uncertainty in velocity component (V), m/sec
X _f ,Y _f	coordinate axis relative to free stream (fig. 1)
X _c ,Y _c	coordinate axis relative to wing chord (fig. 1)
×c	distance downstream from wing leading edge along chord, m
У _С	distance above (and measured on perpendicular to) wing chord, m
α	wing angle of attack, deg
۵ _R	local flow angle, $\tan^{-1} \begin{pmatrix} V_f \\ \overline{U_f} \end{pmatrix}$, deg
∆t	time between two consecutive velocity measurements, sec
∆z	distance between beam focus and sample volume, m
ε	error, percent
θ	angle between crossing laser beam components, deg
λ	laser radiation wave length, m
σ	standard deviation, m/sec
+ σ	uncertainty in calculation of standard deviation, m/sec

Subscripts:

В	data corrected for Bragg bias and velocity bias
6	ensemble-average data
f	direction indication of parameters U,V,X,Y parallel and perpendicular to free stream (see fig. 1)
i	i th measurement in ensemble
L	direction indication of velocity components inclined 44.4° above free stream and 45.6° below free stream (see fig. 1)
t	time-average data
u	data in direction of U _L component
v	data in direction of V _L component

APPARATUS

Laser Velocimeter - Optical System

A fringe-type LV optics system operating in the backscatter mode was used for these tests. The characteristics of the optics system are provided in table 1. The backscatter mode of operation allowed the use of simplified scanning, vertically and horizontally, without compromizing the optical alignment since the output lens is used for both transmitting the output beams and collecting the scattered light. The system was used to consecutively measure the two components of velocity $\pm 45^{\circ}$ to a parallel to the test section longitudinal geometric centerline (fig. 1). The LV optics are illustrated in figure 2.

A laser beam is a monochromatic and coherent source of light. The LV uses these source characteristics to develop a fringe pattern. The beam is optically split into two parallel beams, which are focused with a lens to the point where the two beams cross. In the sample volume, at the crossover point, the two light waves interfere constructively and destructively forming a fringe pattern. This is no more than a volume in space which if examined very closely would appear as being a series of alternating light and dark planes, orthogonal to the direction of the velocity measurement and parallel to the optical axis, each with approximately 26 micron size spacing between fringes in the present case.

The spacing between the fringes, as described above, is determined by:

$$L_{fr} = \frac{\lambda}{2 \sin \frac{\theta}{2}}$$
(1)

è

As a micron-sized particle passes through the fringe pattern, light is scattered with an intensity proportional to the incident intensity in the fringe pattern. If a portion of this scattered light is detected by a photomultiplier tube, an electrical signal proportional to the Doppler frequency is generated.

To obtain two components of velocity, U_{L} and V_{L} , two sets of fringes are formed orthogonal to each other. These two fringe patterns are obtained by focusing three parallel laser beams, instead of two at a point, with each beam located at an apex of an isosceles-right triangle. The resulting fringe patterns are illustrated in figure 3. In reference 13, polarization separation was used to make simultaneous measurements in both components; however, in the present test, the 15 dB cross talk separation was due to the modifications in the optics system to accommodate a Bragg cell system. Thus, the measure of both components were made consecutively.

The investigation described in reference 13 experienced problems in fourfold ambiguity in direction measurement and limited low velocity measurement capability; therefore, a Bragg cell was placed in the beam that is common to both velocity components in the present test. The Bragg cell shifts the frequency of the light beam by a small amount. To obtain maximum resolution in the electronic frequency counter, the effective Bragg shift was chosen to be 5 MHz since the expected signal would be on the order of 2 MHz. This shift sets each fringe pattern in motion at a velocity proportional to a Doppler frequency of 5 MHz (\approx 132 m/sec). For example, a particle with zero velocity would scatter light with a

6

Doppler frequency of 5 MHz as the fringes move past the particle. A particle traveling in the direction of the fringe motion would provide a signal frequency less than 5 MHz, conversely a particle moving against the direction of the fringe motion would produce a signal oscillation greater than 5 MHz. Thus, direction-ality of particle motion through the fringe pattern can be determined. The velocity of the particle is determined from measurement of the frequency of oscillation of the scattered light by:

$$U_{L}$$
 or $V_{L} = (f - 5 MHz) L_{fr}$ (2)

An Argon-ion continuous wave laser was used in the present LV system. It was operated at about 4 watts output power at a wavelength of 514.5×10^{-9} m. The system was installed in the test chamber of the V/STOL tunnel just outside the test section, and the beams were projected through one of the test-section glass windows into the test area. The beam-crossing optics had a focal length of about 3.86 m (sufficient to reach the centerline of the wing) and a collecting solid angle of 0.00108 steradians. The sample volume was 2.29 cm long with a diameter of 0.314 mm. The optical axis was set approximately 3° off orthogonality to the tunnel free stream to provide for unobstructed measurements very near the leading and trailing edge of the wing. The optical system was mounted on a mechanical two-component traversing mechanism to allow movement of the common volume in the X_f, Y_f directions. The overall assembly, including the traverse system, laser, and the optical system, is presented in figure 4.

Laser Velocimeter - Electronics System

The interface between the optics system and electronics system consisted of two S-20 response photomultiplier tubes, one for each directional component, and signal conditioning electronics. The signal conditioning electronics consisted of line-driving amplifiers attached to the photomultipliers and band-pass filter banks to remove the signal pedestal ("DC bias") and high frequency noise.

The LV electronics system, shown schematically in figure 5, measures the frequency contained in each output signal burst, converts the frequency to velocity, develops velocity histograms, computes the statistical mean velocity and standard deviation of the velocity fluctuations, and stores

¥

7

the raw velocity data, computed data and tunnel parameters on magnetic tape for later, complete, data reduction.

High-speed burst counter. - The high-speed burst counter is a device designed to measure the period of a high-frequency signal (1 KHz to 100 MHz) contained in a burst of the type received from a LV. An idealized burst received from the LV is illustrated in figure 6(a). The pedestal ("DC bias") is removed by high-pass filters so that the burst is symmetric about 0 volts (fig. 6(b)). A double threshold comparator is used to convert the burst into a digital pulse train (fig. 6(c)). In order for the comparator to work, the signal must cross the positive threshold before crossing 0 volts with a negative slope, and the signal must cross the negative threshold before crossing to 0 volts with a positive slope. Any other combination will not operate the comparator. The first pulse in the digital pulse train is used to clear the counter circuits; the second is used to arm the counters; and the third triggers the counters to begin counting pulses from the 500 MHz reference clock. When the tenth digital pulse occurs, the counters are halted. Thus, each counter now contains the measurement of the period average of 8 signal cycles based on a reference clock of 500 MHz, yielding a period average measurement with a resolution of 2×10^{-9} seconds.

<u>Data gathering system</u>. - The data from the two high-speed burst counters is input to the LV buffer interface which stores the velocity data and measures the time between the arrival of each datum and the immediately preceding datum to a resolution of 0.1×10^{-6} seconds. The interface is described in greater detail in Appendix A. When either 4096 data points are gathered or 1.0 minute of measurement time elapses, the data gathering process halts and the interface flags the minicomputer which begins the data transfer from the interface to the computer. The raw data are converted to velocity values in the computer and stored, along with the interarrival times, on magnetic tape. The statistical quantities, e.g., mean, standard deviation, skew, etc., are computed on-line and output on-line on the CRT. The total time required for measurement, data transfer, storage, computation and output is less than 2 minutes.

Tunnel Model

The model used in this investigation was a simple straight wing with revolved tips. It had a span of 2.438 m, a chord of 0.3048 m, and a NACA 0012 airfoil

section. Velocity measurements were made within a vertical plane at center span to obtain two-dimensional characteristics. The wing was supported by struts from the floor near the tunnel centerline with no balance measurements taken. The location of the strut mount to the wing was chosen as far outboard as structurally feasible. This provided ample space between struts to minimize flow disturbance at the wing centerline. A photograph of the model with crossing laser beams is presented in figure 7.

Local flow velocities were measured about the wing centerline at two geometric angles of attack, 0° and 4.15°. A pitot-static probe was mounted in the tunnel vertical center plane 2.5 m below and 1 m ahead of the wing leading edge to provide accurate reference of the free-stream tunnel dynamic pressure. A hygrometer was used to obtain wet bulb temperatures; the <u>total temperature</u> was measured in the tunnel settling chamber. Thus, the tunnel air density and velocity could accurately be calculated.

Tunnel Seeding

Perhaps the foremost problem in achieving LV measurement accuracy is due to seeding-particle lag. In most applications, the distribution of velocities within a gas medium is the main subject of the measurements; however, the LV measures the velocity of seed particles in the gas. In many cases, these velocities are identical; however, in regions of large velocity gradients, such as along a stagnation streamline, the inertia of comparatively larger seed particles does not allow them to immediately adjust to local flow velocity. Care was taken in the present tests to ensure that the seed particles within the flow were small enough to follow the flow with sufficient accuracy. This problem was addressed in the investigation described in reference 13. It was found in those tests that 3-micron size particles responded to the severe velocity gradient (1540 m/sec/m) along the stagnation line of a hemisphere at a Mach number of 0.55. It was determined from laboratory tests and preliminary calculations that with the LV system and at the focal lengths used in the present investigation, the minimum particle size for reasonable signal intensity was of the order of 2 microns. This then put a restriction on the particulate required for practical use of the LV in the V/STOL tunnel 2 to 3 microns.

The V/STOL tunnel standard smoke generator flow-visualization device was modified to yield the appropriate particle size distribution for this test. The distribution was measured by an optical technique similar to that discussed in reference 13 and is presented in figure 8(a). The smoke generator vaporizes liquid kerosene by adding heat and emits a dense white smoke through a nozzle. The nozzle was positioned in the settling chamber of the tunnel to minimize flow disturbance on the model. The nozzle position was critical in that the particulate was only to be applied in the region of the measurement volume. The smoke plume in the test section was observed to be about 0.4 m in diameter. To keep the sample volume from traversing out of the smoke plume, the nozzle was repositioned as necessary. This was done manually which was very time-consuming (required 20 to 60 minutes). Future LV use for similar purposes in the tunnel will require remote positioning of the smoke nozzle to minimize test times.

DATA ACQUISITION AND REDUCTION

Laser Velocimeter Data Processing

<u>Statistical quantities</u>. - The LV measures velocity events that are Poisson distributed in time at a location in the flow. During the measurement process, two assumptions are made: first, the particles embedded in the flow are not only randomly dispersed in space but are also randomly dispersed in the velocity field; and secondly, that the measurement sample taken over a finite period of time is a good representation of the stationary condition at the measurement location. The statistical quantities of sample mean, standard deviations (and their statistical uncertainties), skew, and excess are computed. Graphical representation of the velocity probability density functions for each velocity component were made by placing each velocity ensemble in histogram form.

The sample mean was calculated by three different methods: (1) arithmetic mean, (2) arithmetic mean with corrections for velocity bias (ref. 15) and Bragg cell bias, and (3) time averaging (ref. 16). The arithmetic mean assumes that all velocities present in the flow at the measurement point have equal probability of being measured. The computations use the classical nonweighted equation:

$$V_{e} = \frac{V_{i}}{N}$$
(3)

However, from reference 15, it was found that if the seeding particles are uniformally distributed in the flow, the number of measurements will be weighted toward the higher velocities since more gas (and thus more particles) passes through the sample volume per unit time than at lower velocities. Conversely, when a Bragg cell is used for directionality measurements, as in the present study, the number of measurements will be weighted toward the lower velocities since the particle will cross more of the moving fringes than at higher velocities; for example, a particle at 0 velocity will yield an infinite number of measurements. Therefore, the data must be weighted to account for these biases and then the arithmetic mean calculated:

$$V_{B} = \frac{\frac{10 L_{fr} + T_{r} V_{fr} + T_{r} V_{i}}{D_{sv} (V_{fr} + V_{i})} V_{i}}{\frac{10 L_{fr} + T_{r} V_{fr} + T_{r} V_{i}}{D_{sv} (V_{fr} + V_{i})}}$$
(3)

From reference 16, it has been suggested that all biases are removed if the data are weighted by the amount of time elapsed between each particle arrival. The restriction of this method is that the mean particle arrival rate must be equal to or greater than the highest flow turbulence frequency that contributes to the energy contained in the overall turbulent power spectra. The method for determining the time weighted average is:

$$V_{t} = \frac{\frac{(V_{i} + V_{i+1})}{2}}{\Delta t_{i}} \Delta t_{i}$$
(4)

From tables 2 to 4, it may be seen that all three averaging techniques yield similar results when the mean data rate is above about 10 particle arrivals per second. Also, in all cases, the simple mean and the corrected mean for velocity bias and Bragg cell bias yield similar results, which infers that when a Bragg cell is used whose frequency is large compared to the signal frequency, the bias errors are self-cancelling. Thus, the statistical quantities calculated from the test data were determined by using simple moment equations:

$$V_{e} = \frac{\sum V_{i}}{N}$$
(6)

$$\sigma = \sqrt{\frac{\sum (v_i - v_e)^2}{N}}$$
(7)

$$S_{R} = \frac{\sum (v_{i} - v_{e})^{3}}{N \sigma^{3}}$$
 (8)

$$E = \frac{\frac{\sum (v_i - v_e)^4}{4}}{\left(\frac{\sum (v_i - v_e)^2}{N}\right)^2} - 3.0$$
 (9)

In order to determine the statistical accuracy of the mean and standard deviation obtained from each measurement ensemble, the measurement uncertainties were calculated. From reference 17, the measurement uncertainty in the mean value is expressed for a 95 percent confidence limit as

Uncertainty in
$$V_e = \frac{+V_e}{\sqrt{N}}$$
 (10)

where σ is the standard deviation of the histogram and N is the number of discrete velocity measurements in the ensemble. That is, the true stationary mean velocity of the flow lies within a radius of uncertainty about the measured mean calculated from the ensemble. Similarly, the measurement uncertainty in the standard deviation for a 95-percent confidence limit is

Uncertainty in
$$\sigma = \pm \sigma \sqrt{\frac{2}{N}} (1 \pm \frac{E}{2})^{1/2}$$
 (11)

It should be noted that the inclusion of excess in equation 10 allows the measurement uncertainty to be calculated for ensembles with probability densities other than Gaussian.

Since the high-speed burst counters provide data in the form of number of reference clock pulses, the histogram interval width is established. Thus, the histograms are formed by determining the number of occurances of each counter output pattern present in each measurement ensemble. These patterns are converted to velocity and the histograms plotted, either on the CRT for on-line analysis or by plotter off-line.

Instrument precision. The overall measurement precision is obtained by determining the accuracies of all variables in the system which will affect the accuracy of each velocity measurement. From reference 13 these error sources are: cross beam angle measurement, diverging fringes, time jitter, clock synchronization. and quantizing error. The cross beam angle measurement error is a bias error based on the uncertainty in locating the center of each laser beam when the cross beam angle is determined. This error is estimated to be +1.12 percent in the present study. The diverging fringes, resulting from the focus point of each laser beam being at a different location than the crossover point, yield both a bias error (-0.5 percent in the present test), and a random error (+0.37 percent in the present test). Time jitter is an error resulting from the threshold detector in the high-speed burst counter triggering at different points on the signal burst when the signal amplitude changes as the particle passes through the Gaussian light intensity distribution in the sample volume. However, in the present system, a double threshold technique with zero crossing detection is used which eliminates the time jitter error. The clock synchronization error, time difference between the high-speed burst counter start pulse and the first reference clock pulse that is counted, yields a bias error (0.29 percent in the present test) and a random error (+0.29 percent in the present test). The quantizing error is nonexistent in the present test since the 10 bit digital output from the high-speed burst counter is not truncated, that is, the lowest bit is one clock pulse from the 500 MHz reference clock in the present test. It should be noted that the above calculated errors are percentages of the velocity measurement, but they were calculated at signal frequencies which include the Bragg cell frequency; for example, the errors would be much less if the Bragg cell were removed.

The errors mentioned above yield an effective total bias error of -1.33 percent to 0.91 percent calculated by an algebraic sum of the partial bias

13

. .

errors. The total effect of random error was ± 0.47 percent uncertainty, which was obtained by the square root of the sum of the squares of the partial random errors described above.

In large velocity gradients, velocity measurement errors may occur if the measurement point is not at the desired location. The two-component, mechanical traversing system for the LV optics had a placement uncertainty of ± 1 mm which yield a worst case (based on the measured velocity flow field) uncertainty of 1.6 percent.

Particle lag. - Since the LV measures particle velocities and not the gas velocity, the final measurement accuracy is dependent on the ability of the particle to faithfully follow the flow. The size distribution of the seed particle was measured using an optical particle size analyzer placed in the test section so as to capture particles from the generator which yielded acceptable LV signals. The resulting distribution is shown in figure 8(a). The particle size necessary from the LV to obtain valid measurements was determined using the computer simulation of the LV developed by Meyers (ref. 18). The probability of a successful measurement is based on the signal level calculated for a given particle size. The effective sample volume size that would yield a successful measurement was calculated and compared to the sample volume size based on the $1/e^2$ power level. For example, if a particle of a certain size whose path is tangent to the 1/e² power circle, and it yielded a successful measurement, that particle size is given a weight of unity. Any particle size that would result in a measure beyond or less than $1/e^2$ is weighted greater than or less than unity, respectively. The probability of a successfull measurement, as a function of particle size is shown in figure 8(b). Thus, the overall measurement probability for this test was found (fig. 8(c)). As mentioned previously, from reference 13 it was determined that a 3-micron particle traveling at Mach 0.55 free stream would faithfully follow a velocity gradient of 1540 m/sec per m. Since this velocity gradient is far greater than any experienced in these tests, it is concluded that the velocity measurements obtained are a true representation of the gas velocity flow field.

TEST AND PROCEDURES

This investigation was conducted in the Langley V/STOL tunnel at a nominal free-stream Mach number of 0.15. The Reynolds number, based on the wing chord

length was approximately 1×10^6 . Preliminary free-stream measurements were made with the tunnel clear except for the pitot-static probe used as a reference. These measurements were made in the vicinity where the model would be positioned later. The wing was installed at two geometric angles of attack, 0° and 4.15° .

The scan capability of this particular preliminary LV system was not sufficient to survey above, ahead of, and behind the wing without moving either the wing or LV system platform. There was no survey behind the wing in the $\alpha = 0^{\circ}$ case. With the wing at 4.15° angle of attack, a complete survey was made. To obtain the measurements behind the trailing edge, the model was moved forward and raised inside the test section with very little change to the LV system platform.

To obtain measurements very near the leading and trailing edges of the model, the optical centerline was inclined off perpendicular to the tunnel vertical center plane such that the laser beam component nearest the leading (or trailing) edge was aligned with the edge. Thus, in these cases, the angle of inclination of the optical centerline was approximately 3°.

At each angle of attack, a series of runs was made by beginning at the uppermost limit of traverse capability at a desired x_c location. The scan was accomplished by making measurements at locations along a line perpendicular to the wing chord line. Runs were taken increasingly closer to the wing surface until blockage by the wing precluded further measurements, or the lower limit of the traverse was reached.

The measurements were obtained as indicated previously and raw data converted to velocity values and stored on magnetic tape for later data reduction. The on-line capability of the computer system was invaluable in the immediate assessment of the acceptability of each data ensemble as it was obtained.

PRESENTATION OF RESULTS

As mentioned previously, all of the velocity measurements at each measurement location were first reduced to histogram form. These histograms are presented in Appendix B with a figure list and a short discussion of interpretation. Statistical analysis of the data was performed as described previously, and the results are presented in tabulated form. The free-stream data are presented in table 2, data for the wing at two angles of attack are presented in tables 3 and 4.

The statistical characteristics of the data presented in tables 3 and 4 are plotted as a function of vertical height above the wing chord in figures 9 to 39. To summarize some of the statistical characteristics, contour plots were generated using spline-fit routines between data points. They are local total velocity and local flow angle presented as contours of constant values about the wing. These are presented in figures 40 to 47.

DISCUSSSION

Free-Stream Data

The data acquired in the free stream are presented in table 2(a). Analysis of these data indicated that, at the Mach number used for this test, the flow angularity in the tunnel at the model position was, on the average, 0.6° (inclined above the tunnel centerline). The ${}^{U}f_{e}$ and ${}^{V}f_{e}$ velocities listed in table 2 are, therefore, referenced to free stream rather than tunnel centerline. The velocity computed from measurements by the pitot-static probe U_{T} was used to nondimensionalize these velocity components. The ratio provides a means of determining the error in measurement between this device and the LV. The variation of ${}^{U}R_{e}/{}^{U}T$ can be accepted as reasonable instrument error as compared to the previously determined LV instrument error.

The standard deviation, , can be considered as a measure of the unsteadiness of the flow. For the first five runs, the Mach number was 0.15. The average ratio σ_u/U_T and σ_v/U_T is 3.4 percent and 2.5 percent, respectively. For runs 6 and 7, the Mach number was 0.37 with average ratio σ_u/U_T and σ_v/U_T of 3.5 percent and 2.9 percent, respectively.

Basic Velocity Data - Wing at α = 4.75° and 0.6°

The wing was installed at 4.15° and 0° , referenced to the tunnel centerline. With the tunnel flow angularity of 0.6, the effective angles of attack were 4.75° and 0.6°; therefore, all analyses were conducted with these values.

The statistical characteristics of the velocity data are presented in figures 9 to 27 for the wing at α = 4.75° and figures 28 to 39 for the wing at

 $\alpha = 0.6^{\circ}$. Each figure represents a scan along a perpendicular to the wing chord. Total velocity and local flow angle plots are consistent and reasonable. The wake defect is evident in the trailing-edge scans in both velocity and local flow angle (figs. 25 to 27). The ${}^{\rm U}{\rm L}_{\rm p}$ and ${}^{\rm V}{\rm L}_{\rm p}$ component measurements are as expected, except near the surface (at $\alpha = 4.75^{\circ}$) near the leading edge (figs. 12 to 16). Near the surface, the ${}^{\rm U}L_{\rm p}$ component decreases rapidly as the measurement approaches the surface, with a corresponding increase in the $V_{L_{a}}$ component. For most of the data, standard deviation, skew, and excess, indicate gradual changes as the surface is approached. Away from the surface, the small values of standard deviation and negative values of excess indicate a flow that is relatively steady and contains fewer larger fluctuations from the mean velocity than the traditional Gaussian model of turbulence (for which the excess is zero). The skew differs little from zero (note the expanded scale). The skewness of the histogram (as discussed in Appendix C) provides a measure of flow angle variation and velocity variation. Large values of excess (fig. 12) can be attributed to the double peaks (see App. B, $\alpha = 4.75^{\circ}$, runs 51 and 52). However, near the surface, these values change drastically. This behavior of the velocity field in this area suggest drastic change in the field as though the sample volume passed through a shear layer.

The characteristics of the flow field can be seen in the histograms in Appendix B. The cases for the proposed traverse through a shear layer are presented in figures B-5 to B-7. Notice that in runs 50, 63, 67, and 78, the shape of the histogram alters from the data point just above, runs 49, 62, 66, and 77, respectively. Each histogram seems to split into a double-peaked histogram at this point. This indicates that there are two predominant velocity values. The flow experiences an oscillation between the two values, sometimes with greater tendency to be at or near one value than the other, but spends little time between the two general values. Notice figure B-5, runs 51 and 52. $V_{L_{a}}$ component indicates that, at the position for run 51, the flow experi-The ences the lower velocity value most of the time; however, at the position for run 52, the flow experiences the higher velocity value most of the time. The positions, as listed in table 3(b), are only 0.007 chords apart (2.1 mm). These points, therefore, must be on opposite sides of the proposed shear layer. The most likely explanation of this is that the shear layer is oscillating to provide the double peaks. It is suggested that this is very near the location of the

17

- - -

start of the shear layer. The double peaks are also evident in runs 63, 64, 67, 68, 78 and 79. For the latter run numbers, the double-peaked histograms are broader, and the tendency to favor one velocity over the other is not as evident. The broad histograms are indicative of flow situations with large flow unsteadiness. The double-peaked histograms indicate flow unsteadiness with oscillating velocity fields. If the shear layer was steady, the inner region separated field would be of much lower velocity than the outer. The most probable explanation of these two facts is that the double-peaked histograms were obtained at the region of the shear layer of a laminar separation bubble. This shear layer was oscillatory and possibly a thin vortex sheet was formed between the undisturbed region and separated region. It is postulated that this sheet was the cause of the double peaks.

The broadening of the double-peak histograms for runs 78 and 79 indicate that the separation bubble shear layer has experienced a transition to turbulent flow characteristics, and it is suspected that the flow had reattached further downstream.

A similar situation was reported in reference 19. A NACA 0010 (modified) airfoil was tested to determine its characteristics when laminar separation was developed. Reference 19 report that at a Reynolds number of 1.5 x 10^6 at 4.75° angle of attack, the NACA 0010 (modified) should have a laminar separation at approximately $x_c/c = 0.02$. The flow should transition from laminar to turbulent at $x_c/c = 0.05$ and should reattach at about $x_c/c = 0.05$.

The laminar separation bubble measured in this investigation began at about $x_c/c = 0.01$, with evidence of its existence reaching to $x_c/c = 0.09$. Realizing that this investigation was conducted with a NACA 0012 airfoil at Reynolds number = 1 x 10⁶, it seems entirely possible that the phenomena observed was a laminar separation bubble.

As described in appendix B, a skewed histogram indicates a fluctuation in flow angle and velocity. The histograms of the measurements leading up to the double-peaked histograms were skewed, thus the flow at this location was experiencing variation in velocity and angle. The position of the laminar separation point, as measured in reference 19, is highly sensitive to slight

18

wing angle-of-attack changes; therefore, it is possible that the separation point was moving with the tunnel flow angle oscillation. This unsteadiness in separation point would result in unsteadiness in the shear layer of the separation and trigger an undulating shear layer; thus the double histograms with increasing total velocity as the sample volume is traversed downward into the bubble.

The trailing-edge scans show expected results: (1) wake defect behind the trailing edge; (2) flow angle change through the wake; (3) large unsteadiness in the wake. The data for the wing at $\alpha = 0.6^{\circ}$ indicate that the flow is smooth and can be easily predicted by theories such as that reported in reference 20.

Statistical Characteristics Summarized

In an attempt to summarize the statistical characteristics of the flow field, composites were developed which describe the flow situation over the wing wing as measured.

Total velocity vectors, streamlines, contours of constant local flow angle, and contours of constant ${}^{U}R_{e}/{}^{U}T$ were computed **and** plotted. These are presented in figures 40 to 43 for the wing at $\alpha = 4.75^{\circ}$ and in figures 44 to 47 for the wing at $\alpha = 0.6^{\circ}$.

At $\alpha = 4.75^{\circ}$, the velocity vectors near the region of the laminar separation bubble are clearly affected by the calculation of mean velocity from a doublepeaked histogram. This fact in turn affects the spline fit of the survey flow angle map in an attempt to compute streamlines (a path a particle would take in the flow). The local flow angle is maximum (25°) at the expected location (near the nose), and approaches the upper surface local angle at the trailing edge. The velocity decreases along the stagnation line is evident at the leading edge in the contours of constant ${}^{U}R_{e}/{}^{U}T$ plot. The wake region is evident with approximately 70 percent of the free-stream velocity. It is interesting to note in these figures that the presence of the wing was obvious ahead of it as far as the scans were made. This is evident in all of the plots.

At $\alpha = 0.6^{\circ}$, the velocity vectors are classic, exactly what would be expected for the flow about this airfoil. The streamlines are well-defined and exhibit no obvious inconsistencies. The plot of constant ${}^{U}R_{e}/{}^{U}T$ indicates the velocity decrease along the stagnation line. Local flow angles are smoothly varying with maximum value (17°) at the nose upper surface.

CONCLUDING REMARKS

A LV survey about a NACA 0012 wing installed in the Langley V/STOL tunnel has been conducted to accomplish two objectives: (1) demonstrate the applicability of the LV in the V/STOL tunnel; and (2) to obtain two-dimensional velocity measurements to be used later for comparison with theoretical techniques.

The results of this investigation indicated that the LV is a viable tool in fluid flow research with measurement precision calculated to be -1.33 percent to 0.91 percent bias uncertainty and ± 0.47 percent random uncertainty in this investigation.

The histogram is one means of analyzing the result of LV measurements and provide invaluable insight into the character of the flow.

Free-stream measurement comparison with calculations from a pitot-static probe measurements agree to within 1 percent.

The data for the wing at $\alpha = 4.75^{\circ}$ indicated that a laminar separation bubble probably existed with a thin oscillating shear layer. The data for the wing at $\alpha = 0.6^{\circ}$ indicated that the flow is smooth and can be easily predicted by existing theories.

REFERENCES

- Wilson, John C.: A General Rotor Model System for Wind-Tunnel Investigations. J. of Aircraft, July 1977
- Sullivan, John P.: An Experimental Investigation of Vortex Rings and Helicopter Wakes Using a Laser Doppler Velocimeter. TR-183, M.I.T. Aerophysics Lab., June 1973
- Johnson, B. V.: L.D.V. Measurements in the Periodic Velocity Field Adjacent to a Model Helicopter Rotor. Proc. Sec. Intl. Workshop on Laser Velocimetry, vol. II, March 27-29, 1974, pp. 169-181
- 4. Landgrebe, A. J.; and Johnson, B. V.: Measurements of Model Helicopter Rotor Flow Velocities with a Laser Doppler Velocimeter. Tech. Note, J. Am. Hel. Soc., vol. 20, no. 1, January 1975, pp. 39-43
- Biggers, James C.; and Orloff, Kenneth L.: Laser Velocimeter Measurements of the Helicopter Rotor-Induced Flow Field. J. Am. Hel. Soc., vol. 20, no. 1, January 1975, pp. 2-10
- Goldman, Louis J.; Seasholtz, Richard G.; and McLallin, Kerry L.: Velocity Surveys in a Turbine Stator Annular-Cascade Facility Using Laser Doppler Techniques. NASA TN D-8269, 1976
- Eggins, P. L.; and Jackson, D. A.: Laser Doppler Velocity Measurements in an an Under-Expanded Free Jet. J. Phys. D: Appl. Phys, vol. 7, 1974, pp. 1894– 1906
- Flack, R. D.; and Thompson, H. D.: Preliminary Results with Purdue's LDV System. Proc. Sec. Intl. Workshop on Laser Velocimeter, March 27-29, 1974, pp. 314-334
- 9. Meyers, J. F.; Feller, W. V.; and Hepner, T. E.: A Feasibility Test of the Laser Velocimeter in the Mach 5 Nozzle Test Chamber. Proc. Sec. Intl. Workshop on Laser Velocimeter, March 27-29, 1974, pp. 290-313
- Meyers, J. F.: and Feller, W. V.: Turbulence Measurements in Air. Laser Doppler Anemometer Workshop, June 11-13, 1973
- Avidor, J. M.: Turbulence Measurements in High Speed Wake Flow Using Laser Velocimetry. Proc. Sec. Intl. Workshop on Laser Velocimeter, March 27-29, 1974, pp. 335-354
- Whiffen, M. C.; and Meadows, D. M.: Two Axis, Single Particle Laser Velocimeter System for Turbulence Spectral Analysis. Proc. Sec. Intl. Workshop on Laser Velocimetry, March 27-29, 1974, pp. 1-15
- 13. Young, Warren H., Jr.; Meyers, James F.; and Hepner, Timothy E.: Laser Velocimeter Systems Analysis Applied to a Flow Survey Above a Stalled Wing. NASA TN D-8408, 1977

14. Mechtly, E. A.: The International System of Units - Physical Constants and Conversion Factors (Second Revision). NASA SP-7012, 1973

.

- 15. Tiederman, W. G.; McLaughlin, D. K.; and Reischman, M. M.: Individualized Realization Laser-Doppler Technique Applied to Turbulent Channel Flow. 3rd Biennial Sym. on Turbulence in Liquids, Un. of Missouri, 1973
- 16. Dimotakis, P. E.: Single Scattering Particle Laser Doppler Measurements of Turbulence. AGARD CP-193, May 1976, pp. 10-1 to 10-14
- 17. Yule, G. V.; and Kendall, M. G.: An Introduction to the Theory of Statistics 12th ed., Charles Griffin Co. (London), 1940
- Meyers, J. F.: Computer Simulation of a Fringe Type Laser Velocimeter. Proc. Sec. Intl. Workshop on Laser Velocimetry, vol. II, 1974
- 19. Gault, Donald E.: An Experimental Investigation of Regions of Separated Laminar Flow. NACA TN 3505, 1955

Table l

Laser Wavelength	514.5 nm
Input Lens Focal Length	3.8649 m
Cross Beam Angle	1.1139 deg
Transmission Coefficient	
Beam A	0.15
Beam B	0.16
Beam C	0.12
Input Laser Power	4.0 W
Diameter of Laser Beam at Input Lens	0.0081 m
Receiving Lens Focal Length	3.8649 m
Rotation Angle of Receiver	
Horizontal	180.0 deg
Vertical	0.0 deg
Effective Receiving Lens Diameter	0.127 m
Transmission Coefficient, Receiver	0.42
Bragg Frequency	5.0 MHz
Photomultiplier Quantum Efficiency	0.14
Photomultiplier Gain	60000
Counter Threshold Voltage	0.015 V
Low Pass Filter Cutoff	8.0 MHz
High Pass Filter Cutoff	0.5 MHz
Counter Count Comparison Accuracy	0.02
System Gain	-4.0 dB

ι

•

Julian day 147 147 147 147 147
Time 9:45 0:30 9:41 9:41 9:41 10:26
DR Sec -1 523 523 523 523
DR Sec -1 555 1638 1669 1669 1669 1669
N 253027 24303 337553 3375555 3375555 3375555 3375555 3375555 33755555 33755555 33755555 33755555 337555555 337555555 33755555555
N 3005547 3005557 3005557 300557 300557 300557 300557 300557 300557 300557 300557 300557 300557 300557 300557 300557 300557 300557 300557 300557 3000557 3000557 3000557 30000
π -004000-
,
S
S 25.00 1.84.
Z Z Z Z Z Z Z Z
U J 36.77 36.77 36.77 36.77 36.77 36.77 36.77 36.77 56.88 56.82
L M M S S S S S S S S S S S S S
U B 386.7 386.7 386.7 865.8 86
± ۷ رو
V B B B C C C C C C C C C C C C C C C C
±U. m/sec
C 200 200 200 200 200 200 200 20

•

--

٠

.

Table 2-A (freestream)

Table 2-B (freestream)

deg R		
, ⁴ , ¹ , ¹		
> _ _ ⁻ -	, 000 , 000 , 000 , 000 ,000 , 0000 ,0000	
	,	
ar ag		
CR B	0.00	
⊂_B	22220750	
<u>,</u>	Sc28229	
deg deg	'-coo-+m 111	,
r ^e	3558585	
~ ⁺	8888822	
╧║╤	000000000000000000000000000000000000000	
± ơ _v m/sec	C0000	
σ _v m/ sec	0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,	3
±σ _u m/sec	00000-0	
σ _u m/sec	ww 	
*° ℃	.110 .047 066 075 137 035	
*ບ ບ ×່	590 594 603 603 600	
uny	-094502	

* referenced to location of wing at $\alpha = 4.75^{\circ}$.

r

Julian day	<u></u>			<u></u>	
Time	17:32 17:32 17:35 17:35 17:37 17:43 17:42 17:43	17:45 17:46 17:52 17:52 17:555	100 100 100 100 100 100 100 100	9110 10110 10110 10110 10120 100 10	
DR v 21	26 20 20 20 20 20 20 20 20 20 20 20 20 20		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00040896- 000040896- 000040896-	5-25-25-25-25 2523-25-25-25 2523-25-25-25 2523-25-25-25 2523-25-25-25 2523-25-25-25 2523-25-25-25 2523-25-25-25 25-25-25-25-25 25-25-25-25-25 25-25-25-25-25-25 25-25-25-25-25-25-25 25-25-25-25-25-25-25-25-25-25-25-25-25-2
DR L- L-	, , , , , , , , , , , , , , , , , , ,	553887755 553887755 553887755 553887755 553887755 553887755 553887755 553887755 553887755 553887755 553887755 553887755 553887755 553887755 553887755 553887755 553887755 553887755 553887755 5537555 5537555 55375555 55375555 55375555 55375555 55375555 55375555 55375555 55375555 55375555 553755555 5537555555 553755555 553755555555	23 3 0 0 0 8 8 8 ~ 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 -		2022 8 - 333 9 - 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
z>	225 1072 1329 1759 3398 2066	1894 1695 1905 1905 1009 1009 1009 1009 1009 10	9000 989 874 874 1877 1877 1876 1521 956 956	2502 4076 4076 4081 4081 3381 3381 715 715 51 51 51	280 58 58 58 58 58 58 58 58 58 58 50 57 50 50 50 50 50 50 50 50 50 50 50 50 50
z	165 165 1955 1332 1489 2087 2323 2323	2167 2552 2552 2552 2552 2551 2551 1351 1351	1242 1055 2877 2807 960 1192 1814 1814 1814	1003 4073 4076 4076 4008 4008 181 181 181 192 192 192 192 192 192 192 192 192 19	105 1024 1024 1024 1024 1024 1024 1024 1024
чу	V 00 - 04 V 4 4	nut nu-r-r,	- 111111 -	I- I N4-w4w0w640001	0.00-40400400000,
ц С	90-000	- 44-00000	-00000-0	000000000000	1 1 1 1 1 1 1 4
s _R	0.0 20 44 44 45 45 44 44 45 45 44 44 45 45 44 45 45	11 440-0-0-878 0040-0-878		-15 -120 -120 -120 -120 -120 -120 -120 -120	
s _R		0	111 112 100 100 100 100 100 100 100 100	1111111 4.0.0	4.0 % W 4.5 % W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	35.1 35.1 32.6 32.6 32.6 31.5 31.5 31.5	30-00 20 20 20 20 20 20 20 20 20 20 20 20 2	20000000000000000000000000000000000000	0 	222 222 222 222 222 222 222 222 222 22
a, cc ∎	441-5 44-6 44-6 44-6 44-6 44-6 44-6 44-6 44	99999999999999999999999999999999999999	42.14 41.14 41.14 41.15	444444444 97944444 979999 9799999999999	₩₩44444800444494444808 488489898989444994 498 ₩₽00₩4-₩0004-80-044944
LB m/ser	35.1 34.5 34.5 33.4 32.0 31.5	31.4 331.4 334.9 334.9 334.9 334.9 334.1 334.9 35.7 35.5 35.5 35.5 35.5 35.5 35.5 35.5	22222222222222222222222222222222222222	8000000000000 9000000000000000000000000	22222222222222222222222222222222222222
U B m/ser	2005 2007 2007 2007 2005 2005 2005 2005	80 80 80 80 80 80 80 80 80 80 80 80 80 8	446 3910 389 380 380 337 426 42 33 33 33 33 33 33 33 33 33 33 33 33 33	4444444446 8444446 8000000 90040004 90040004 90040004 8004000 8004000 8004000 8004000 8004000 8004000 8004000 8004000 800400 8000000	0.044444444444444444444444444444444444
± / L b m/ cer	-00000000	000000		00000000-0004	vwcoccooc-ww-cc-cooo
ر ارو سر دهر	35.2 34.6 32.9 32.8 31.8 31.8 31.8	31.5 345.5 3	28	22222222222222222222222222222222222222	88888888888888888888888888888888888888
±Ute m/ser	-0000000	0000000	00000000	-000000000	
U e m/sec	411 - 2 41 - 4 39 - 2 39 - 2 3	38.8 38.8 338.2 44.4 44.9 44.9 44.4 44.4 44.4 44.4 44	44.0 39.9 39.9 39.9 30.9 47.0 47.0 43.2 43.2	4444444446 	20000000000000000000000000000000000000
uny	-00400r0	00-0040 <u>0</u> 0	2005577-000 200577-000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	444 4444 666667 666667 66667 66667 66667 66667 66667 66667 66667 66667 66667 66667 6667 6667 6667 6667 6667 6667 6667 6676 6776 67776 77776 777777

Table 3-A ($\alpha = 4.75^{\circ}$)

Julian . dav	F	, 133 133	1 33 1 33	133	136 136	136	136	136	136	136	136	, 136	136	136	136	136	136	136	136	136	136	136	136	136	136	136	136	136	136	136	136	136	136	143	136	136	136	136	136
Time		21: 7 21: 9	21:14	21:12	14:39 14:41	14:43	10:18	10:20	10:24	10:26	10129	10:35	14149	14152	10115	10138	10:40	10143	10:45	10:48	10:50	10:59	- ~	12:31	12:33	12:43	12:47	12:48	12:52	12:56	13:20	13: 5	13.0	131 9	13:16	131 18	13:22	141 0	141 4
DR	sec -1	47 125	30 43	135	143 63	21	¢ -	151	177	151	63	0	157	4 C	סיה	51	2 4	161	167	5 7 4	64 160	202	64 144	180	27	171	59	163	2 R	16	250	64 4 7	4 4	51	185	148	<u>-</u>	62	165
DR	sec -1	, 64 64 64	34 30	108	111	81	- 4 - 4	152	202	224	128	ωr	136	ω -	- vo	25	07 19	231	184	134	140 75	125	136	202	219	24	215	124	τ W 0 4	22	124	113	0 4 7 7	133	158	135 29	20 130	20	63
z>		2843 4041	2352 2562	3944	4049 3752	1249	3573	4075 4064	4067	4C84 4080	3794	5 <u>0</u>	4078	261	343	1288	2011 224	4092	4083	3258	36 44 4085	2988	3823 4081	4065	3441 669	4001	1001 1500	4083	1967	973 2160	3305	3400	2372	3077 963	4037	3028 : . / 3	71 1 40//	5750 C478	4064
z		3861 2605	2041	4045	4093 3585	1073	2670	4044 4034	4035	4029 4050	4032	470	3995	209 5,0	357	1491	0/ G1 88/5	4050	4022 3001	4000	3995 3671	4080	4069 4034	4045	4067 4028	2544	3056	4036 2740	2059	1340	40 79	3000	2001	1053 1153	4071	4077	1567	3005	3754
_{. س} >		m 0 -	η — (η Μ	· - '	ڻ ٻ	+ - 1	5 — · I I	- n 1 1	, u , u	4 4 1 1	- 7	-1-0		r i -	00	0 r 1 ·	1 1	9 0 1	ມ ເມື		-1-2	ן ני ו	00	0.1		<u>0</u> ,0		, I 4 C	. I . 4	5°1		 i 1	C.	- 4			• <u>-</u>		ິ ເ ເ
u"		200	۳œ،		11 14	0.1-	0 V			6. 1.6		6./ -	3.1			ۍ ۹	-~	'n	4 4 	- m	2.0		<u>م</u> م	4.	2 m 1	•	М	0 - 1 1	- m -		- ·			0 -		- ഗ • •	о 	•	-
S _R	•	• 43 • 84	08 	• 10 20 20	66 °	. 45	- 22	- 53 - 23	27	• 52 • 30	36	-2,36	. 65	- 42	- 46	- 22	, 1 1 1 1 1 1	1.10	01.1	6	14 00	3	10.1	.5.	1.20	- 22	- 40	1.70		03		5°.1	.22	2/••	- 57	• • • • • •		-1.05 -1.16	07
Sr.	3	61	- 5 - 5 - 5 - 5 - 1	- 85	47	63	1 1	- 44 - 39	- 20	61	- 01	-1.79	32	.00		- 50	1 2 9	20	- 15	- 5 ²	- 60 - 42		40	- 84		.34	.24	•47 •	54	. 18 1, 25	18.	در. ۳.			្រ ភូមិ •	4 4 4	• • • •	ور.1 در11	L.
>	m/ sec	30.6 26. J	22.6	20.0	24.6 20.8	15.7	37.2	37.1	37.3	37.8	37.2	36.6	28.5	28.6	90 . 0	38.5	39.8	38.5	38°8 36°3	39.6	39. l	38.3	39.5 40.8	41.9	43.9 36.8	0	42.7	43°.	44.0	43.1	4.04 4.1.1	1) C 1) C 1) C	4 5 7 7 7	46.04	43.1	4 4 4 6 4 4 0 4 4 0	44.1 44.3	46.7	45.2
ٹد ت	m/sec	56.7 62.4	64.4 64.2	52.5 58.0	54.5 56.3	57.7	44.0 43.6	45.5 47.3	50.1	51.7	57.1	ກ ຄື ເ	62.0	50.9 45.4	1 4 1 0 1 0 1 0	43.3	44.0 46.1	47.1	49•2 50.5	52.2	55.3 44.7	45.5	46.7 48.4	48.9	50.4 52.7	42.5	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	43.6	44.5	40.2	40.2	40.3	42.0	40.0 40.6	37.6	۳. ۵. ۳.	38. I	37.4 37.0	37.4
، م رح	m/sec	30.3 25.8	21.6	27.0 29.6	24.7 21.2	16.9	37.0	36.9 36.7	37.0	37.4	36.8	35.4 26.0	28.1	20.5	36.8	38.7	38.1	38.0	39.0 39.0	39.5	38.4 38.3	38.2	39.0 40.5	41.5	43 . 9 36.6		42.3	43.7	44.4	43.2	4 4 7 1 1 1 1 1	43.3	44.70	46. s 46. s	4.04	0 C C C C C C C C C C C C C C C C C C C	44°.	44.5 44.5	6. 44
ц Г	m/sec	56.3 62.2	64.0 64.2	51.7	53 . 0 54 . 5	55 . 7	43.6	45.4	50.0	51.0	57.2	58.7 63 8	61.7	50.0 44.6	43.0	43.5	44.0 45.8	47.0	40,2 50,3	52.2	55.4 4.0	45.4	46.6 48.3	48.8	50.5 52.8	45 0 0	43.6	43.7	1.14	40°3	40.5	41.1	43°0	40.5	37.9	33.51	38.5 38.5	37.7 37.2	38°0
± <	m/sec	00		40		m		••	•••	<u> </u>		ۍ د م	;-	٩å		oʻ-		0,0	•,-,		- 0	•	••		?	0,0		o.c	:	~.~	;;	• •	:-:	-0	c,	ာ့ပ္-	- 0	с, с	0.
مہ ^	m/sec	30.4 25.9	22.0	27.0	24.8 21.1	17.4	37.0	36.9 36.7	37.0	37.4	36.8	35.6 26.8	28.2	29.6 301	36.8	38.7	38° -	38.0	86°97	39.3	38°5 38°5	38.1	39.0 40.4	41.5	43.8 36.5	4 2 - 1 - C	42.3	43.6 44.4	44.3	43 43	42.3	43. 43. F	44.0	43.8 46.1	4 (7) (7)	00 0 00 0	44.1 43.8	44. 7 44. 7	44.4
]±	m/ sec					ຕູ່	20	••	•••	00	0	v	- -	ຈີແ]-		•••	0.0	00	•	•••	Ģ	••	٩	20	0 . 0	0	ç	••	•-	•••	• •	, o	20	0	200	20	0.	<u>.</u>
-J ⁰	m/ sec	56.2 62.0	63.8 63.6	57.2	53 . 2 54.7	56.1 12 E	43.6	45.4	40.0	51.5 53.8	57.0	58.2 54.0	61.10	50.3	43.0	43.4	45°-1	46.9	50 . 1	52.0	4	45.3	40.0 48.2	48.7	52.7	42.4 47.8	43.0	43.7	44.8	40.4 40.4	40.4	47.1	43.0	40.0 0.0	37.9	38.5	د 38°5 38°5	37.7 37.3	38.0
u	ny	\$	8 §	£ \$	67 68	8	22	22	24	75	21	78	× 8	81 18	83	84	8 0 0 0 0	87	88 68	00	100	63	9 6 7 6	0	76 98	88	30	102	104	50	201	801	22	= 2	113	4 0	011	119	120

Table 3-A. - Continued.

•

.

Julian dav	Ĩ.	136	14	136	136	136	36	136	021	136	143	143	143	- 4 C	- 4 2 4 -	1 4 6	143	143	144	1 44	44	+ + + + + + + + + + + + + + + + + + +	144	143	143	143	641	1 4 7 4 0 6	143	143	143	5 4 7	14	143	143	144	144	1 44	44	1 44	144	144	44	44	144	144	44	1 4 4
Time		14: 6	13:23	14:13	141 4	14119	14:21	14:23	CZ 141	14:29	13:28	13+30	13:32	13:53 25:51	000101	07121	13142	13:44	8:52	8:53	8155			14: 7	141 0	14:26	14:28	14:37	14138	14:40	14141	24141	14146	14:47	14:40	9123	9124	9126	8716		9137	6616	9140	2 + 4	9:46	9:48	01:0	, 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DR,	sec -1	4	200	38 38	168	2.52	152	181	2/1	32	129	51	е К	50	200	, ç	10	24	Q	44	4 u 0 c	0 č	r 8	267	17	5.5	0 X 7 -	2	. m	16	51		50	125	8 <u>1</u>	30	14	274	4 -			0	0.	- r	14	16	20 00	141 181
DR	sec -I	27	36	324	152 15	4	120	221	071	17	167	62	5	77 1	2		.04	13	=	171	108	2 m 0 w	10	350	ò	<u>ې</u>	44	ţ	7	6	63	200	140	152	02 263	33.55	9	207	- 43	ΞΛ	- 1	-	(N 0	2 F-	Ñ	50 130	179
z>		2474	795	22.69	4080	3305	3990	4010	4075	1037	4004	3076	2140	11/1	1745	3136	3810	1423	369	2670	2420	2024	1768	4059	1 02 7	013 2013	1017	13	202	086	3064	367.0	3490	4084	0001	2178	362	4055	7047 700	69 63	35	<u>8</u>	67 67	15.5	240	520 520	1001	4061 4061
zn		1035	2158	1910	4073 V16	2737	4073	4010	3070	1018	C B U B	3738	18/9	C 4 7 1	3130	3633	2394	1075	600	4079	4004	21.85	2322	4065	386	380	2010	76	450	538	3757	3607	4079	4031		1077	373	4075	5/0 1	50	1.0	36	46	×	413	1235	40.60	4077 1061
< س		2.0) - -	- -	2.0	2.3			. 7	m.	•	- r 1 1				с. 1	- 2	~ •	ų				<u>،</u>	ທ. ເ	•	- ^. 	- 0		-, '	m •	, r		ر. رو	٩°,	۱ ۱	نې ۱	- 0		2.1	¢,	۰, 4	0 ~ 1 1	1	<u></u> г,) 		
^л о		1 20	!	- n 1 1	80	0.1	ů	- v -	- 0	2	0.	0. 1		- 0) m	~	0.1	-	- (i	•	. v		0.	1.2	ر ،		- 0	•••	-	4.	- 0		0.1		• • •	4.1	•1 •			~	-	o'.)	0	•	, o	
SR	•	-1.34 06	0	0.4	90°	30	-,36	- 40	- 4	4	°0.			1.00	80.	24	.14	.05	.12		•		41	.42	. 17	• • •	0	.16	09	07		• •	.50	00.		90	<u>, 1</u>		- 05	-1.17	-1-10	ية. •	• • •	14-	- 30		.58	. 45
S _R	3	, 00 58	38	55.	10,10	.75	16 .		265	34	ت	<u>.</u>	.	84	50	0	•04	<u>0</u>	0	ໍ່	200	20.	.14	. 68	3:	2	58	- 8. .8	• 05	, 26 26	3.5	. 43	.4	4. 1.	09	1.23	-21	50	10	2.		- 40	ទុំភ្	- 5,0	- 50		È.	5. 5. 6.
ب <	m/sec	45.4 45.4	40.0 0	43.1	42.4 42.4	43.4	43.5 2.6		44 44	45.1	43.8	44. 0	4 4 4 4 4 4 4	44.0	41.8	40.8	40.7	40.7	4. LC	52.0 22.25		33.9	34.2	39.8	40.9	1.95 7.85	38.1	14.3	32.4	32.8	3.55 8.55	34.2	34.5	ω•• ω••	34.6	39.0	39 . 6	3/°G		35.2	34.1) • C		26.5	31.6		33 . 8	34.4
5ª	m/ sec	37.5	36.7	30.9	37.8	35.9	35.2	2.0.2 		34.7	35.5	34.1	0.05 - 55	- .	33.0	31.6	30.7	30.3		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	35.5	35.2	33.1	33.7	5. ¥ 0. 7 70 7	30.2	32.4	34.1	0.46 0.4	4.07 4.07	35.5	35.0	0 r 1 n 1 n	0.46	32.0	32.0	0.15 - 15		31.0	28.1		26.65	29.0	33.0	າ ເ າ	0. 6. 6. 6. 6. 6. 6. 6. 6. 6. 7. 6. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	34.4 34.8
۳ ر	m/sec	45.2 45.0	45.4	43.0	42.7	43.3	43.5	44.0	44.8	45.2	43.9	44.0	4 u	14	41.9	40.8	40.8	40.7		32°8	33.6	33.9	34.2	30.9	41.1	50°5	38.1	28.7	32.3	32.7	, o c c	34.3	34.6	34.8	34.6	39.8	39.6	31.1	36.1	35.0	34.0	2. 2. 2. 2.	22.02	26.3	31.5	1.1. 1.1. 1.1.	0.46	34.5 2.8
۳ ۲	m/sec	38.1	36.9	37.3	37.0	36.4	35.9	35.8	20.00 90.00	34.7	35.8	34.8	y.,,,	33.8	33.0	31.5	30.8	30.2	4.45 4.45	50°5			35.3	33.1	33.4	- 15 a 02		32.3	34.3	35.0	4°05 4°05	35.8	35.7	35.7	35.1 35.1	33.7	32.6	c •15	31.4	30.8	28.2	27. 2. 2.	20.02	29.6	32.5	5.75 5.0	33.9	34.0 35.0
± <_ _	m/sec	c	5.	-0	<u>-</u> -	0	oʻc		0	0	¢,	• •	, C		•	0	c.	° .		ļ	•	0	0	•	'	, c	0	. ~ .		ç	ç	<u>,</u>	°.	٠.	0	•	-, (.	20	, c,	4,	o .	. .	'n	-:	j.c		cc
بر در	m/sec	45.1	45.4	42.9	42.6	42.9	43.2	4 0 4	44	45.2	43.8	44.1	44. 44. 4	0.17	41.0	40.8	40.8	40.7	ر. ای د	52°55	5 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	34.0	34.2	40.0	41.1	59.05 7 85	38.1	28.7	32.3	32.7		34.4	34.6	34.C	34.6	39.7	39.6	31.1	36.2	34.9	34.0		22.1	26.3	31.5	34.0	33 . 0	34.5 34.5
±U_e	m/sec		0.	•••	o. –,	•	<u>.</u>		0	:-:	•	•	•	20	0	0	0.	•		ç	0	•	0.	•	-, '		0	4		-, '		0	0.	ဝို	20	-	~ (-	Ŷ		- 0	4.	-		2.2	<u>.</u> .
ສັ	m/sec	38.1	36.9	37.1	30.3 97.9	36.2	35.8 35.8	35. B	35.9	34.8	35.6	34 . 8			33.0	31.6	30.8	30.2	.45 .46 .00	ດີ ເຊ		35.3	35.2	33.1	33 . 5	20.05	30.3	32.2	34.2	35.0	4°0° 4°0°	35.6	35.5	35.0	35. I	33.4	32.7		4.10	30.8	28.2	4 0 4 0	25.6	29.7	32.4	75 EE	33.9	34.6 34.7
un	В	121	123	125	127	128	129	131	132	133	134		22	138	39	140	141	42	4 - 2 4 2	1 44	40.4	147	148	149	150	5	153	154	155	2021	285	150	1 60	5	50	164		85	168	169	170	- 2	173	174	175	177	178	179

Table 3-A. - Continued.

Julian day	144	144	144	144	144	144	144	144	144	144	144	144	1 44	144	144	- 44	- 144	144	144	144	144	144	144
Time	9:58	10:0	101 2	10: 6	10: 7	10:10	10:11	10:13	10:14	10:16	10:17	10:26	10:30	10132	10:33	10:35	10:36	10:38	10\$39	10:41	10:42	10\$44	10:46
DR V Sec -1	157	137	611	201	160	62	40	4	~	C	0	0	-	-	0	ò	Ξ	38-	32	134	47	40	29
DR U sec -1	175	161	140	264	196	250	47	7	2	0	0	С	0	-	0	ى م	12	56	170	192	157	142	44
2	4075	4068	4076	4086	4036	3727	2387	250	122	7	4	01	49	ñ	25	390	645	2251	1912	4071	2838	2411	1749
N	4065	4070	4064	4Co4	4078	4L 89	2006	419	137	17	22	13	ъ,	5	25	200	704	3353	4083	4064	4078	4034	2648
<mark>~</mark> س	0.1	8	1.2		ر. ۲	<u>،</u>	;	2	۳ 	6	1	2 . -	2	7	6 . ,	Ŷ	4	-	m.	°.	8.	1.3	۲.
щ _Э	1.2	4.	1.2	1.8	1.2	.	•	۳ .		1.5	α.	.	6 . -	۰. 4	တ ၊	•	ŝ	в .	4.	0.1	1.3	•••	
S _R	• 55	•24	.44	.57	.34	. 18	.06	07		09	1.12	• 93	.72	• 1 4	•34	20	6 0 °	• 20	•04	. 17	•07	01.	•23
s _u	. 60	.50	.55	.86	• 06	08	- 10	.09	.12	-1-00	• 39	.80	•52	44	17	50	10	13	-07	; 3 3	.54	.42	е.
V Lt m/ sec	34.8	34.9	35.1	33.7	38.6	37.4	36.4	36.0	35.4	33.5	c.	22.1	25.7	24.3	25.3	30.9	33.0	34.5	34.4	34.4	34.7	34.9	35.1
لر ۳/sec	34.5	34.9	35.0	32.9	32.3	31.7	32.0	32.4	30.8	28.8	26.0	23.6	25.8	28.1	26.0	32.0	33.0	33.1	33.7	34.0	34.2	34.4	34.5
VLB m/sec	35.0	35.1	35.2	38.9	38.9	37.4	36.3	36.0	35.3	33.3	29.6	23.2	25.3	24.7	25.2	30.9	32.6	34.4	34.4	34.6	34.7	34.9	35.0
UL B m/sec	35.0	35.1	35.2	33.1	32.4	32.0	32.0	32.1	30.6	28.0	25.5	26.0	26.0	28.2	26.5	32.5	33.1	33.3	33.8	34.3	34.3	34.5	34.6
±VL bec_m/sec	0	•	•	•	•	•	•			۰.	0.1	ŝ	•	4.	4.		-	•	9	•	•	•	0
VLe m/sec	34.9	35.0	35.2	38.9	38.9	37.4	36.3	36.0	35.2	33.3	29.7	23.9	25.4	24.7	25.2	30° 9	32.6	34.5	34.4	34.6	34.7	34.9	35.0
±U _L e m/sec	0	0.	0	0.	•	•	•	-	•	۰ ت	٥.		0.1	•	8.	-2	•	•	0,	•	0	0.	•
ULe m/sec	34.7	34.9	34.9	33.0	32.4	32.0	32.0	32.1	30.6	28.1	25.6	26.1	26.0	28.3	20.0	32.4	33.0	33.3	33.8	34.2	34.3	34.5	34.6
uny	18	182	183	184	185	186	187	188	189	190	161	192	193	194	195	196	197	198	8	288	201	202	203

•

۰

Table 3-A. - Concluded.

.

gr.	de -	, (,	101 101	- 0.0	6.2 6.3	6.2	۰. م	ۍ 4	4 U 1 O	0.0	0.0 7	8.7	10.0		0.7	0 ° 0	5.8	5.4	4 4	ວ ທ ເ	6.6 5		12.1	15.2	16.7	18.2	1.7	12.0	7.6	- 9 - 9	4.7	4.4	8°5	16.0	21.9	24.8	10.5	4	101 101	1°/	010.01
Ľ,	- - -		40	1.02	10.1	- 97	.95 .95	.94	. 94	1.07	1.07	1.04	1.01	. 95 95		94 6	26.	-92	- 92	.07	1.07	1.08	.08	40	- 94	06°	.87	-85 - 	84	.72	==	1.12		=	60.1	8	1.02	<u> </u>	-12	- - - - -	1.21
بر م	- -	- 0	86		==	=	010	60 .	20.	=	12	- -	-12	-13	.16	==	28	60 .	•08 •7	20	27	<u></u>	.22	دی. 22	.27	.23	81.	18 12	=	20.	60.		10	.30	.41 .41		- 29	6	ê		
,.* ```	- -	-		- 05 - 1	88.	70 .	.95 .95	.94	.94 1.07	1.06	1.06	1.03	<u>8</u> .	07 04	- 92		.92	- 92	16.	1.07	1.06	1.06	1.04	10.1	06.	08. 28.	58.	.83 .81	.83	.72	01.1	==	60°-	1.06	10 . -	10	- 07 - 68	1.12	1.14	1.14	
° °	deg o	• •	1 4 I	ۍ. ۲۰۰	6. 0	5.0	0.0 • • •	5.0	44	5.7	0.0 0	8.0	0.7	10.01	9.6	ο. 4 α	4	4.7	44		د. م	.0	12.0	14.9	16.6	17.0	5.	10.1	0.7	- 4	4.7		8.3	15.8	21.6	24.1	14.0	4.4	₽•0 ₽•0	C' C	13.0
u R	°∣₋	- 2 -		1.02	- 0 -	- 67	.96 .96	.95	• 94 1 - 07	1.07	1.07	0.0	0.1	. 9. 20.	66	• 94 04	• 94	• 63 • 63	- 02 - 09	1.07	1.07	1.08	1.06		94	06.	.87	ς 2.8,	.83	. 72	01.1	==	0.0	°	50-1	8	1.12	1.12		- 15 - 15 - 15	1.17
ر ر	° 5	- 6	60.	60 .	01.	.10	0.00	.08	10	5=.	.12	.15	.17	.16	51.	0	.08	90 .	70 .	20	-12	. 8	. 22	5 Y C	.27	92. 53	81.	- 5	.12		٥ 0 •	- 4	.16	30	96. 4	4	07. 01	60.	5	- 14	570
<u>ئ</u> ر	ہ ء	- 2	200	05	- 86	. 97	95.	.04	.94 1.06	1.06	1.06	1.02	66.	94°	16	- 0 7 7	. 94	• 93	- 02 - 1	.07	1.06	8	.03	00.1	16	80 86	58.	58. 28.	.83	.72	01.1	0	1.00	1.05	8.	00	.73 .73	1.12			1.17
å	ded e) (c	×►:	ດ ດີ ດີ	5.9 • • 0	5.8	0 m	5.0	4 4 4 8,4	5.0	۰¢ ۳۰	ە. 5	0.7	0.0	9.5	۰.4 4 a	4.8	4.6	4 4 2 - 4	5.3	6.2 8.2	4	6.1	14.8	16.4	14.5	8.1	• • • • •	7.8	- 4	4.7	1.1	8.2 10.9	7.41	21.4	24.0	۰.4 ۲.4	4.4	- 0 - 0		10.0
UR,	ہ ۳			.02	2.6	. 97	.90. 90	• 95 26	۲0.1	1.07	1.07	.00	8.	8Å.	. 93	04 04	94	5°.	50°	1.07	1.06	1.03	1.05	38.	. 95	89.	.87		•8•	.73	2:	=	0.0	2	1.03	3:	20.1	1.12			2
>*-	°∣⊣	- 5	80.	01.	01.	.10	88	•08	ò.	.10	12	-12	<u></u>	.16	.15	01.	.08	-0 .	08	.10	=-	8.	- 22	.26	.27	-20	8.	- 4		.05	60 .	- 1 -	.16	30	• 39	4	;5	90	11.	• - •	20
۔ م	د د	Ē,		1.02	88	.97	દુર	.94	- 94 - 07	1.06	1.06	1.02	6°	.94	- 92	- 94 - 03	.94	93	26.1	1.06	1.06	1.06	1.04	.07	16.	.86 .86	8. 8	8 8 8	89	.73	01.1	01-1	1.09	1.06	8.	16.	.73	1.12	114	1.14 1.14	
5	^ ^ 7	Das /m		20	••	••	••	0.0	? - ,	-	.	•••	••			o c	0		20	•	ود	•••	° .	••	•	2	ų,	٩Ņ	۳ . -	~~	0.0		00	0	°	. რა • •	. -	••	00	olo	00
t	~ ~		4	 • • •	4 4 - 1	نې د 		4.	<u></u>	1.2		4.1	1.7		1.9	2.5	3.3	0.0	1.7	1.7		0	ند. س	2.2	2.5	9 CY	4.4 4.4	2.7	2.8 7	2.0	4	<u>م</u>	ດ. 	1.6	4.8	3.6	2.0	4	۲ LD Y	•	8
د ح	л л,	, , , , , , , , , , , , , , , , , , ,		•••	००	••		٥	?	-	- 0	•	o, c		ç		0	oʻ	<u>-</u>	0	0,0	••	٥	••	ç	? ?				- m	••	•••	.	•	•		×	.		o'o	00
e	, , , , , , , , , , , , , , , , , , ,	וו אבר וו אבר	<u>ب</u>		۳. 	1.2	7-1		2°.	1.5		. 0	<u>ر</u> ،	2.2		20	~	~			5 C	0	2.2	200	8.1	10	<u>،</u>) m.	4α	0.0		. Q	2°9	ۍ م• ګ		5.0	0.7.0 	.		2.2	.0°
2	~' ·	- <u></u>	.239	191.	.120	-041	8	- 020	-276	.240	.160	.121	.080	.040	.021	005	010	019	- 030	-240	22	.140	28	80	.041	.021	- -		- 019	- 030	.240	661.	.119	.080	.040	.038	55	.290	-231	163	.133
>	د <i>ا</i> ر	·	171	164	161	.163	101	091.	2060	.086	- 084 - 083	080	078	. 080	077	210	.078	078	048	-045	-044	- 038	036	037	036	036	036	037	036		88	000	002	8° 8°		-002 -	10.	.035 .037	039	.045	.047
	սոչ	י - נ	י - מי)4.	יי היס	- 0	200 200	2:	- 2	- -	4 <u>6</u>	22		00	20		23	24	, , 0 0 V V	27	800	ìR		, .	34		37	? 6	4 4	4	5 4 7 4	4 <u>5</u>	4 4 7 4	48	5 4 Q	10	22	ւր 4 Մ		. 85	59 50

Table 3-B ($\alpha = 4.75^{0}$)

•

_
_
_
•
_
-
0
6.2
~
•
~
~
~
A \
•
_
-
_
-
<u> </u>
_

	a _{R.}	Joh	י י הפא י	21.8	25.2	20.1	29.2	т 0.4 0.4		101	8.5 8	9.4 11.3	4.01		- <u></u>	2.5	3.1		- 10 1	9.2		4.1	00 ×	າເ • ທີ -		- 8	-1.2	-2.6	201		0 0 0 0 0 0	1 - 1 - 4 - 0 - 4 - 0	14.3	-3.7	1 1 1 5.0 1 1 1
	Ľ,	<u>- </u> =	; 	- 1. 	1.32			1.13	1.13	8	1.25	1.29	1.25	1.28	22	1.14	1.10	1.13	1.25	1.32	1.14	1.19	1.26	1.26	1.17	1.21	1.23	1.15			1.18	1.120	61.1 1.13	1.15	
	< f	- =	-	2 4 4 0 4 0 4	, , , , , , , , , , , , , ,	64	.57	80. 80.	08	<u>.</u>	0 0 1	.26	34	.38	4. 0.0 0.0	.05	00. 08		 	.21	-07 -07	50	800	325	20	- S - 1 - 1	20.1 1.02	05	534	 		60°-1	0 0 1 1		=22
	Ľ,	- =	<u>,</u> ,	12.1	1.19	101	1.02	1.12	1.15		1-24	1.31	1.32	1.22	02	1.14	-16	.19	400	1.31	1.14 1.16	1.19	-26	1.24		1.19	1.23		-15	0 00	1.18	1.120			
	e B	A not	ncd	21.9	25.8 25.8	4.61	27.5	8°0. 6°0	4 N	101		11.6	13.3 18.6	1.7.1	2.8.6	2.7	34 0 34 0	0 v 4 v	101	.0.0	4 M	4 4 0 0	0.4			, 1 1	1 1 80 4	-2.6	-2-0	- 01	-1-7	4 - 4 4 - 4 0 - 5	- 4 - 4 - 4 - 4	3 - 4 - 4	
	υ _R	²⁰ =	L L	1.30	1.13	14		1.13			52.0		1.34	1.26	N	c0.1	1.16	1.18	42.	32	1.14 1.16	1.18	1.25	1.26		1.19	1.23	1.15	1.14	19	1.18	1.120	1.14	-10	
	>	بم =	5-	• • • • • •	57		• • •	.03 .03	.05		- 6 -	12.	.37	.37	51. 	.05	.07			.22	200	6). 10	60.	2.4.6	8		02	•	-04	.03	5.5	88.1	۰.0 00	00. 100.	
nued.	۲ ^۲	œ =	5-6	1.21	1.13	1.08	0.0	1.13	1.12	1.17	- 53	1.2	1.1.1	1-21	1010	1.14	1.15	1.18	-24	02.1	1.16	1.18	1.25	1.24		1.21	1.23	1.15 1.16	41.1 41.1	8-	1.18	1.120	1.13	1.15	1.14 1.13 1.14
-B Conti	a _R	e don	חנה דייע -	21.7	25.3	19.4	27.2	00 00 00	4 0.0	0.4 4 a	8	1.5	12.7		2 . C	2.7	4.0 4.0	5 N	10 1 10 0	, vu	υ4 υ4	د د ۳	7 r	10	, . .	1 1	 		0.11	1 <u>1</u>		- 4 • 4 • 4	-4.3	2. 1. 1.	5 1 1 2
Table 3-	ň	م _	א רן יי י	1.30	1.130	10 1	1.15	1.13	1.13	1.17		1.33	1.13	1.25		1.14	1.16	1.18		1.51	1.16	1.13	1.25	1.26		1.21	1.23		1.14			1.120			- 14 - 13 - 14 - 14
	ر ₄	e)=	5-1-	1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	500	35.	- 25	.07 .08	. 08 11	• 13 17	6	-27	.30	.37	.27	- 05	.08	11.		225	20	60 . 01.	60 80	270	ŝ	55	01	1 1 04	- 04 - 1	- 03	• • • • • •	55	30. 30.		<u></u>
	Ĵ,	م =		1.21	1.18	- 08	5 6		1.12	1.17	5.5	00.1	1.12	1.20		41.1	1.15	1.13	1.23	- 29	4	1.18 1.22	1.25	1-24	- 1- 1	1.21	1.23		1.14	a	1.18	1.20			
		6 >	m/sec		- ?	•-		- •	00	••	00	0	• 4 • 4	••	o ni r		q -,	, ,	00	و و	••	••	••		•••	ာ့ဝ	ود	- •	0,0	, ,	••	••	ာင္		000
	I	6 ^{>}	m/sec	11-0	44	4 -	- 0. + 00		8 	2°0	100	14	6.7 11.1	- α 		1 V -	0.0	2.5	40	01-0	70	2.1	3.5 2.5	9 4 C		441	2.9	1.8 2.7	2°8	100	5.2	2.0	50 0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 4 0 0 4 0
	1	рл #	m/sec		- 0	 		- ?	<u>,,</u>	٩		0.0		•	• •• •		••	00	•••	00	••	00	••	000	0:	201	••	•	••	000		••	၀့၀	, ,	200
	I	ت ^ے	m/sec	າ ທີ່ທີ່ ຫຼື	48	- 0°-	8.7	4 ~		ហិត ភូមិ			0°0	4 u 4 a	0 - V 1 0 0		22	۰ <u>،</u>	0-0-	- 7 -		- 1	2,3 1,6	5-0	0	0 ·0 (2°0	- 1 8 - 1	- ^	5-2	0 CV	- 9 - 1	5°0	- 7°	2.2 3.0 3.0
	;	>°	ပ	063	050	064	045	.303	.264	.186	126		000	.077	020	308	.231	161.	131	160	.236	.196	.136	.101	. 280	102.	4	.277	.277	.199	148	.304	.287	.228	.187 .187
۲	:	×u	J	046	046	.026	026	010	.082 .085	.088 0880	080	080	.080 .083	.059 .058	059	<u>611</u>	.123	.128	.132	021	55	.171	.171	170	-288	295	296	.411 .414	.413 .418	.419	. 421	579	.581 .581	584	080 086 753
		un	ia (282	32 f	385	5-89 (8°5	72	73 87	52	261	8/	80	- 62 6	0 8 7 4	80 20	79 88	600	220	200	94 95	96 70	800	001	102	67	105	101	6		132	1 1 1 1 1 1 1	0110	021

and the second s	- 5.7	2010 1111	λς φυ ηγρογ		- 97- - 97- - 97-		-7.3 -3.6	5 5 7 7 5 7 5 7 5 5 7 5 5 7 5 7 5 7 5 7	0.81	-5.0	-0.8 -7.3	20.6 .9	- - -	, i o	m	1	0.44	- 2.5	N 4 C	- o. -	1 I I I
Å, P		4-0-	000	201		03 03 03 03	558	6.5.9	. 96 . 96	-01 -01 -03	.95 .95	.92 .92	.95 90 90	07.0	20°	10.1	. 4 C	.32	889	6.5.0	4000
╱ ^{┱┲} ┶	- 200	<u></u>					+ ₩	- 15	2000	82 22	222	-24 -01 -02	8.0.0		857 •••	===?	20°	- 12	50.7 7	520	
5-15		200	633	00	2600	201 201 1		00 00 00 00 00	90 90	10.1	0004	65 0 0 0 4 0	200	96	. 07 - 07	00.1	500 500	8 9 1 1	000	8.0.0 8.0.0	5000
and Back and	1 1 1 2 2 2 1 2 2 2 2			- 00 - 00 - 1		2 8 0 9 9 9 9 1 1 1		0 0 0 0 0 0	- 0 0	100 100 1000		2.8	- 6 9		ו היי הייני	- 5. 9 - 5. 8	1 1 1 4 6 0 4 0	-5.0	0 0 t 1 0 1 -	<u> </u>	- 1 I I
ч ^д в 1	- 10		00-			00°-1	20.02	5555	000 000	10.1 ED.1	02 62		96 96	50.000	- 47 - 47 - 1.03	10.1	40.		67 73	စိုင်ုံ	2 0 C
		- 00 - 1 - 1			277	01-1	111 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2000	3=2:	1.12	05 02 02	500	683	388		0.0	60°-	555	855	555
			50°1	2=2	2000	0.1	2688	95 95	86. 86.	10.0	900 900 900		.95 .06	20°	.07 1.02	.00.1 .96.	6	0	51.	3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4 C
a _R deg	1 1 1 1 0 0 1 4 0 7 0		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				00.0	- @ Ŵ (90.00 90.0 1 1	6	1.1			, , , , , ,	- 10 - 15 - 8 - 1	044 1-0	 		2 × 7	1001
une n	- 1		00.1	- 2 -	228	60.00	5-0-0	6.6.6	000	200	868	92 92	95 96	16.	- 97 - 97	1.0.0	• •	82 84	567	835	2001
>- ⁰	- = = = = = =		2-1	1.12	274	<u></u>	1 1	289. 1	9 <u>0</u> 08	3=29	200	500. 700.	555	858	382 111	= <u>2\</u> ;;;	50.	6 	520	355	555
בר _ש ב			8 6 O	2=2	200	0.00	3688	86. 86. 86.	96.0	10.0	000	800 800 800	95 06	76. 79.	 	-08 -08 -08	6	80 181	222	9.	20 00 10
±ớ _v m/sec			000	000	000		0000			000		- • • •	000	000	000	0,00	<u></u>	, , ,	<u>, v</u>	- < >	225
م v m/sec	2-8 8	61.0	2.1	004		0.4	 1000				101		0 0 0	<u> </u>	00 S	- 08	000	4.00	000		- 0 4
±a _u m/sec	.000-	000	000	000	000	000		000	000	<u>, , , , , , , , , , , , , , , , , , , </u>		4-0	•••	000	00	-00	0	- M 4		- ? ?	ودئ
a u m/sec	2.2	80-0	0 0 0 4 4 0	5.88	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		 2400					5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4.0.0	ມ ມີມີ ເ	- 0			- 0 4	\$ 8 1 8 1 8	200 - 20	
د د ح	- 158 - 145 - 126	291	.251	.171	.130	185	087 087	020	- 059	.149	080	010.1	039	- 079	- 141	681. 130	.032	.021	.007		019 029 038
່× ^ບ ບ		.744 .746 .746	. 750 . 750 . 751	. 751 . 754 . 755	.743 .745 .746	- 952	951 961	1.005	2000	1.014	1.021	1.028	1.027	1.026	1.027	1.083 1.083 1.085	1.086 1.088	1.088	1.089 1.088	1.089	1.088 1.088
นทษ	121 122 123	126	128	131 132 133	135	137	041 041 041	144 144 144	140	150	122	195	158	161	163	165	168	122	173 174	221: 221:	178 179 180

Table 3-B. - Continued.

•

ຮີ	4-1 2	đeg	`ພ ເ	6	7	-5.2	-5.7	-5-3	-4.2	-3.6	-4.6	-4.9	44.4	1.3	5	3.5	• 23	• •	6	-1.8	÷1.3	0	-1.0	-1.0	
u,	2-1	ц,	. 20	.07	1.6.	8.1	8.	-97	• 95	• 95	.92	.87	-51	. 64	. 72	. 73	.71	. 68	. 92	.94	. 95	• 95	.96	.97	.97
^*	- - -	5	10	01	01	09	- 10	-•00	07	06	07	07	.35	.01	01	•04	8.	ıс .	IC	03	02	02	02	02	02
'n		5	.50	.97	.97	66.	66.	• 06	. 95	• 95	.92	.87	.37	• 04	.72	.73	.71	• 38	.92	.94	. 95	• 95	• 96	.97	.97
ມີ	B	deg	•. •	0	6	-5.2	-5.8	-5.1	-4.2	-3.9	-4.7	-5 - 5	-4.9	2.7	• 5	3.2	۰.	۰.	2	-1.6		٥ . -	6. -	۰ . ۱	6.1
'n	а ^л	7	L6.	.98	.98	1.00	.0	.97	°.	.95	- 92	.36	.77	. 69	.71	.74	. 72	. 38	.92	.94	• 95	.96	.96	. 97	.97
۷,	<u>_</u> 80	Ļ	01	01	10	- 00	- 10	- 00	07	06	07	08	07	.03	8.	•04	.01	10.	- 00	- 03	02	02	02	02	02
'n	<u>8</u>	7	.97	.98	.98	-00	. 99	.97	• 95	.95	.92	.85	.77	.67	.71	.74	.72	.88	• 92	.94	• 05	• • 6	•96	- 97	.97
g	×9 ×	deg	8	7	۰ 8	-5.3	-5. 3	-5.1	-4.2	-3.8	-4.6	ເມີ. ເມ	-4.9	1.9	-	3.3	٥.	8.	÷.2	-1.6		6 . -	-1.0	6 . 1	ó
'n	e P	ⁿ	76,	- 01 -	. 97	.0	1.00	.97	. 95	. 95	.92	.86	. 77	.70	.72	.74	. 72	. 88	16.	.94	• 95	.96	• 96	.97	. 97
ر د	_°`	Ļ	10	10	01	8.	10	- 00	07	06	07	08	07	• 02	8.	•04	10.	10.	8.	- 03	02	02	02	02	02
ň	- 9	_ _	.97	.97	.97	8.	66.	.97	95	• 95	16.	8	Ŀ.	.70	.72	.74	.72	88.	.91	.94	. 95	.96	.96	.97	.97
	±0,	m/ sec	•	•	ç	•	•	•	•	•	-	ŝ		ŝ	4.	•5	°.	-	•	Ģ	•	°	•	•	°
	6 ³	m/sec	1.4	1.3	1.3	1.6	1.6	1.0	8.	۰.	1.4	2.4	3 . 8	2.3	4.3	2.5	1.9	1.7	1.6	1.1	•••				•••
	±0,	m/sec	0	•	•	•	•	•	•	•		•	. د	۰.	ů	•4	•	-		•	°,	•	•	•	Ģ
	6	m/sec		1.7	1.7	1.9	1.5	1.4		1.1	1.4	2.2	4.1	3.9	9°0	4.3	4.2	2.8	2,2	1.6	1.4	- 5	- 5-	- 5	1.4
	Υ,	ט י	058	078	-•099	.178	.139	.100	.060	.041	.031	.026	.021	.019	.018	.013	.013	.05	00	010	018	039	060	079	8
	×	ט ^ו י	1.001	1.089	1.089	1.116	1.120	1.122	1.126	1.127	1.128	1.128	1.128	1.128	1.128	1.129	1.129	1.129	1.130	1.132	1.132	1.130	1.132	1.131	1.131
	U	ny.	181	182	.183	184	185	186	187	188	189	190	161	192	193	194	195	196	197	198	66	28	201	202	203

.

Table 3-B. - Concluded.

41

1 . .

4

.

•

ì

Table -4 ($\alpha = 0.6^{\circ}$)

.

Ę	UL_	±۷	VL	±۷	S _R	S _{R.}	Е _U	Ev	Nu	Nv	DRu	DR v	Time	Julian
Ru B	n/sec	m/sec	m/sec	m/sec	u :	v					sec -1	sec ⁻¹		uay
1	36.9	•0	33.6	.0	28	.36	.1	1.3	482	248	8	4	13#52	130
2	36.7	• 1	33.0	.0	19	.05	.0	•1	258	374	4	6	13:55	130
4	36.5	.0	32.8	.0	33	15 27	1	.9	307	355	5	0 6	13+57	130
5	36.4	•0	32.5	.0	06	12	1	•5	362	245	6	4	14: 0	130
0 7	30.3	.0	32.2	.0	34	09	3 3	•2	287	257	5	4	14: 1	130
8	35.8	•1	31.9	.ŏ	.09	.47	6	1.0	145	266	2	4	14: 4	130
9	35.4	•0	31.8	.0	02	•54	1	•4	593	679	10	11	14: 6	130
11	34.8	.ŭ	32.0	•1	09	• 47.	1	.3	660	252	11	14	14:10	130
12	34.6	•0	32.0	•!	.18	.51	4	2	221	149	4	2	14:41	130
13	33.9	•1	32.1	• 1	.02	.39	3	3	157	136	3	2	14:43	130
15	33.6	.0	32.0	.i	. 34	44	. 1	. 6	198	105	3	2	14:46	130
16	33.4	.1	33.0	.1	.26	. 34	4	.2	123	64	2	1	14:48	130
18	37.3	ŏ	32.9	.ŏ	28	.53	.2	1.2	3990	2376	144	40	2:21	131
19	37.4	•0	32.5	.0	32	01	•4	• 4	4014	2356	125	39	9:23	131
20	37.2	.0	31.8	.0	29	.23	.3	1.0	4005	2575	133	43 44	9125 9127	131
22	36.9	.0	31.0	.0	21	.18	.0	.8	3995	2780	141	46	0:23	131
23	36.7	•0	30.5	.0	22	.31	.1	2.3	3915	2771	137	46	9:30	131
25	30.0	.0	29.6	.0	.00	.24	.3	1.1	3714	2634	62	45	9:32	131
26	35.3	.0	29.1	•0	05	.47	.2	•7	3597	2573	60	43	?: 35	131
28	34.5 33.8	.0	28.8	.0	.02	.13	1	.4	3427	2048	57 59	44 40	9137 9138	131
29	33.2	.0	28.9	.0	.03	.61	.0	1.3	3675	2538	61	42	9:40	131
30.	32.7	.0	29.1	•0 •0	.19	.41	-2	.0	3522	2417	64	40	0:42	131
32	31.9	, Ő	29.0	.õ	.31	.28	2	6	3948	2942	144	49	9:45	131
33 .	31.8	•0	30.8	.0	.37	•50 67	-, l	3	3951	3683	129	61	9:50	131
35 3	31.4	.0	31.0	.0	•35	.53	1	.0	3967	3877	96	05	9•47 9•48	131
36	38.2	•0	33.5	.0	12	.63	.4	.8	2930	1081	49	13	9:59	131
38	38.3	.0	33.0	.0	17	09	.0	1.0	3842	2129	04	35	10: 1	131
39	38.5	•0	31.7	.0	12	.41	0	•5	4056	1140	120	19	10: 5	131
40 .	38.5 38.4	.0	31.2	.0	17	•63 •.09	2	1.4	3894	1886	65 64	31	10: 7	131
42	38.2	.0	30.0	.0	24	17	0	1.6	3976	2332	170	39	10:12	131
43	37.8 37.4	.0	29.4	.0	15	26	1	1.7	4000	2401	159	40	10:15	اد ا
45	36.6	.0	27.7	.0	01	.27	2 0	.2	3995	2483	150	38	10:13	131
40	35.7	.0	26.8	.0	36	. 33	•2	.8	3725	1997	62	33	10:22	131
47	34.2	.0	26.2	.1	23	-05	.7	8	2407	367	40 8	6 1	10:25	131
49	32.0	.0	26.6	.2	.20	.18	.5	1	372	23	õ	ò	11:1	131
50 51	31.8	•1	26.8	•3	. 44	00	-2	-1.5	453	15	8	ပ O	111 5	131
52	30.7	•1	30.5	.1	.23	.09	.3	1	365	2 55	6	4	11:13	131
53	30.0	•1	30.2	•!	27	.50	17	1	160	285	3	.5	11:15	131
55	38.4	.0	33.3	.0	72	.23	1.0	•5	2086	1495	∠0 35	25	13:34	131
56	38.6	.0	32.7	.0	49	.73	1.5	.5	2143	996	36	17	13:37	131
57	38.9 30.4	.0	31.7	.0	45	.03	1	2.2	2442	2119	41	35 41	13:39	131
59	39.5	.0	30.6	.ŏ	33	18	1	1.5	3947	2358	126	39	13:42	131
60 .	39.7	.0	29.9	•0	39	19	1	.7	3989	2458	138	41	13:44	131

Table 4-A. - Continued.

-

5	U _{Le} `	±ULe	۷ _L e	±V _{Le} S _{Ru}	s _{Rv}	. E _u	۴ _v	Nu	Nv	DRU	DRv	Time	Julian dav
ž	m/sec	m/sec	m/sec	m/sec						sec ⁻¹	sec ⁻¹		,
01	39.8	.0	23.9	.026	07	1	.9	4017	2232	139	37	13:45	131
62	39.7	.0	27.6	.031	.07	2	• 3	4055	1482	125	25	13:47	131
63	39.5	•0	25.6	.031	.74	3	.9	4068	549	110	9	13:48	131
64	30.1	.0	23.5	•] -•]	.40	5	•9	4073	338	103	6	13:50	131
υ <u>6</u>	37.3		22.8	•1 -•11	•09	5	1	4079	102	30	3	13:52	131
57	34.4	•1	24.0	1.1 .41	.49	.2	-1.3	219	7	4	ò	13:57	131
65	39.4	•U	34.4	·n .u3	. 04	1	1.6	2391	283	40	5	14: 4	131
69	37.2	•0	33.6	•0 -•01	.12	!	• 3	2768	422	46	7	14: 7	131
71	40.5	.0	33.2	.0 .00	.26		-,5	4005	2108	34 283	35	15:12	131
72	40.7	.0	32.1	·0 - ·2)	07	0	2.1	3805	1480	63	25	15:26	131
73	41.0	.0	31.4	.019	23	0	2.3	3826	1707	64	29	15:28	131
74	41.7	•0	30.8	.030	27	0	1.6	3867	1734	64	29	15:29	131
75	42.0	• ?	30.1	.057	04	.0	ڻ. 7	3923	1690	184	28	15:31	131
77	43.2	.0	20.0	.050	• 30	1	• *	3045	453	200	2	15:35	131
18	47.3	.0	24.1	.257	1.66	2	2.3	3873	91	65	2	15:37	131
10	39.8	•0	34.8	.002	1.02	•1	1.1	2770	735	46	12	15:47	131
00	40.3	•0	34.4	•1 -•16	•12	• 1	•2	2176	226	36	4	15:48	131
21 	40.3	•0	33.9	•0 -•23	.68	•2	•4	2628	411	44	16	15:50	131
υ <u>2</u>	42.1	.0	33.1	.021	15	.0	2	1996	163	33	13	15:54	131
.4	42.6	.0	32.7	.052	01	.2	5	11 66	372	19	6	15:50	131
ςŋ	43.0	•0	32.0	.105	14	•1	1	1149	179	19	3	15:58	131
-0	43.9	.0	32.7	•0 - 79	46	. 8	• 4	2852	644	48	11	16: 1	131
10	45.7	.0	32.1	-1.11	~.40	.7	.0	3970	1040	275	17	16:24	131
89	46.3	.0	31.3	.188	~.06	.9	8	3672	632	05	11	16:26	131
20	40.9	•U	30.8	•193	03	• 7	5	3700	528	63	9	16:28	131
01	43.3	.0	30.6	•184	34	.7	1	3815	343	64	6	16:30	131
23	40.0	.0	35.6	•2 -•10 •0 -01	92	2•2 - ()	1.1	3887	2145	50	36	16:45	131
50	40.3	.0	35.0	.007	~.19	1	.7	2848	733	47	12	16:47	131
95	41.1	• U	34.4	•025	76	• 5	.7	3653	1349	61	22	16:51	131
90	41.9	•0	33.9	•037	61	1.9	1.2	3486	1770	58	20	16:53	131
28	42.0	.0	34.0	.059	~.58	2.1	1.2	3610	2027	61	34 20	16:57	131
99	43.8	.ŭ	33.8	.078	60	ī.2	.6	3714	1883	62	31	10:58	131
100	4.7	•0	34.0	.081	67	1.3	.8	3650	1939	61	32	17: 0	131
101	46.3	•0	34.4	•072	62	1.5	1.0	3672	2020	61	34	17: 2	131
102	47.1	.0	34.0	•0 -•02	~.33	1.5	• 3	3532	1181	59	20	17: 4	131
104	40.1	.ŏ	35.9	.016	.12	.3	.5	3827	2104	64	36	17:14	131
105	40.6	.0	35.8	.011	.30	.2	•5	3868	2261	64	33	17:15	131
106	41.4	•0	35.9	.021	22	•6	8	3635	2562	61	43	17:17	131
107	42.5	.0	35.5	.0 .00	.02	• 4	1.2	3879	1702	65	28	17:20	131
109	43.6	.0	36.0	.001	02	.3	•5	3929	3046	152	51	17:22	131
110	44.2	.0	36.4	.009	26	•5	•5	4015	2955	149	49	17:24	131
111	45.0	•0	36.7	.0 .09	22	•!	1.5	4029	3250	164	54	17:26	131
112	46.1	.0	37.1	.0 .22	37	•	•8	3789	2634	63	44	1/128	131
114	39.3	.0	37.6	.004	. 19	•5	.7	3960	3864	125	64	9: 0 9: 3	1.32
115	39.8	.õ	38.0	.0 .07	.14	ō	.3	4012	3883	130	65	9:10	132
116	40.2	•0	38.7	.0 .24	.34	•3	2.4	3999	3928	135	176	912	132
117	40.5	•0	39.1	.0 .21	02	.4	2.1	3994	3955	117	158	9:14	132
110	40.1	.0	39.8	.0 .34	.10	2.2	2.1	1726	2753	29	46	9:18	132
120	41.0	.õ	40.1	.0 .52	.92	.7	2.1	2596	2268	43	38	9:23	132

~

120

-

!

Table 4-A. - Concluded.

•

•

c	UL_	±೮	۷ _L	±۷L	S _{R.}	S _{R.}	Eu	Ev	Nu	Nv	DRu	DR _v	Time	Julian
Ru	m/sec	m/ sec	m/ sec	m/se	c u	v					sec ⁻¹	sec ⁻¹		aay
121	41.6	•0	42.8	.0	.61	06	.7	.5	2906	85 7	48	14	9:27	132
155	42.7	•1	43.3	.1	.03	49	.3	1.1	117	248	2	4	9:26	132
153	36.1	•0	37.9	.υ	.04	02	2	1	4050	3923	170	306	9:30	132
124	38.3	•0	38.6	.0	.02	26	2	.2	4067	4026	178	294	9:32	132
125	38.5	.0	39.2	•0	04	29	3	.2	4050	4026	170	356	9:34	132
126	36,5	.0	39.3	•0	.03	24	3	.2	4047	4019	180	349	9:36	132
127	38,5	•0	39.7	.0	.15	16	2	.5	4029	4027	119	297	9:37	132
128	38.7	•0	40.2	•0	.30	.13	.3	1.0	3678	3092	61	211	9:39	132
129	39.0	•0	40.5	•0	.21	• 38	1.4	.7	-1 446	3849	24	64	9:41	132
130	39.9	.1	40.8	.1	.45	•26	3	.0	693	663	12	11	9:45	132
131	40.7	•2	41.1	.1	43	07	.2	.1	51	110	ĩ	2	9:43	132
132	37.0	.0	38.8	.0	.61	32	1.2	.2	2355	3966	39	141	9:48	132
133	36.9	•0	39.0	.0	.35	29	•5	1	2711	3977	45	143	9:49	132
134	36.9	.0	39.5	•0	.37	80	.6	1.4	3365	3957	56	212	9:51	132
135	37.0	•0	39.6	.0	.56	70	.2	.6	2229	3902	37	94	0:53	132
136	36.9	•0	39.7	•0	.87	57	.7	.2	2278	3731	38	62	9:55	132
137	37.2	•0	40.1	.0	1.04	-1.13	•0	1.4	1341	3238	22	54	9:57	132
138	38.2	• 1	40.3	.0	.10	-1.12	8	1.5	533	2064	9	34	9:59	132
139	39.7	•2	39.6	.2	•52	73	.6	2.2	33	87	1	1	10: 1	132
140	30.3	•1	38.4	.0	.76	75	.1	.5	225	1958	4	33	10:25	132
141	30.0	•0	38.9	.0	.58	60	.7	1.0	1/03	2971	28	50	10:32	132
142	35.0	.0	39.2	.0	.17	-1.01	.4	2.4	1399	2255	23	38	10:34	132
143	35.5	.0	39.7	•0	.42	57	1.6	2.0	766	1747	13	20	10:35	132
144	36.0	.0	39.8	.0	1.28	-1.31	1.5	3.3	921	2558	15	43	10:39	132
145	35.7	.0	40.0	.0	1.63	-1.03	2.5	3.5	1026	1948	17	32	10:41	132
146	35.7	.1	40.1	.0	1.57	-1.23	1.8	2.4	790	855	13	14	10:43	132
147	39.6	•1	40.1	•0	27	29	5	2.3	237	2160	4	30	10:46	132
148	39.4	• 1	39.6	• 1	22	18	7	1.4	96	292	2	5 /	10:44	132
Table 4-B ($\alpha = 0.6^{\circ}$)

_	X_ 1	v	σ	±σ	σ	±σ	U _f	V _f	U _{Re}	α _{Re}
nn	<u> </u>	<u> </u>	⁻ u	<u> </u>	V (_~V	Ū.	Ū,	<u> </u>	dea
1	C	C 215	m/sec	m/sec	m/sec	m/sec	-1			
2	171	.250	1.0	.0	•0 •6	.0 .	.96	•04	.97	2.1
3	173	.230	.9	•1	.6	.0 .	96	.04	.96	2.3
4	173	.211	•8	•0	•7	• • •	96	.04	.95	2.5
5 6	173	.190	.7	•0	•0 •6	.0	95 04	•04	•95	2.6
7	171	.151	.8	.0	.7	.0	95	•04	.95	2.6
8	172	.130	•8	.0	•7	•0 •	94	.04	•94	2.7
10	173	.100	•8 •7	.0	•8 •7	.0 .	93	•04	.93	2.4
11	173	.070	.8	.0	.9	.ŏ.	92	.03	.92	1.8
12	171	.059	•7	.0	•9	.0 .	92	.03	•92	1.6
13	- 172	.039	•0	.0	1.0	• • •	91	•02	.91	1.2
. 15	172	.001	.7	.0	.8		91	.00	.91	•0
16	172	019	•7	.0	•6	.1 .	92	00	.92	3
17	093	•319 270	1.2	•0	1.3	.0.	98 07	.04	•98	2.5
19	088	.240	1.0	.0	• 6	.0 .	97 97	•06	.97	3.0
20	089	.201	1.0	.0	.6	.0 .	96	.07	.96	3.9
21	089 080	.181	1.0	•0	•6	.0 .	95	.07	•95	4.1
23	089	•141	1.0	•0 •0	.8	.0	94 93	•07 •08	•94	4.4 4.0
24	089	.121	•9	۰.	•7	•0 •	91	.08	.92	5.0
25	088	• • 101	1.0	•0	•7	•0••	90	•08	.91	5.0
27	088	.060	.9	.0	.0	.0 .	89 88	.08	•89	4.9
28	088	.041	.9	•0	.8	.0 .	87	.06	.87	4.0
29	087 - 088	•031	.d 8	.0	•9	•0 •	86	•05	•86	3.4
31	088	.011	.9	.0	1.0	.0 .	86	.04	80	2.0
32	088	• 002	•9	.0	.9	.0 .1	86	•02	.86	1.3
33	088 088	002	•9	•0 C	1.5	•0 •1	86	• 00	.86	•3
34	088	018	1.0	.0	1.1	.0	86 86	00	.80 .86	3
36	047	.317	1.0	.0	.8	.0 .	99	.05	. 99	3.2
37	047 046	-280 -240	.9	.0	.8	.0 .9	98 08	.06	•98	3.5
39	045	.201	.9	.0	.6	.0 .9	97 97	.08	.98	4.0
40	047	.181	1.0	.0	•7	.0 .9	97	.09	.97	5.4
41 42	046 048	.100	1.0	.0	•8 •8	•0 •9	96 04	•10	•96	5.8 6.2
43	047	.121	1.2	.0	.7	.0 .9	93	.11	•94	0.2
44	047	.101	1.2	.0	•7	.0 .9	91	•11	•92	6.9
45 46	047	- 081	1.0	.0	• /	3. U.	39 36	• 1 1	•90 87	7.3
47	047	.041	1.0	.0	1.0	.0	33	.10	•84	7.0
48	047	.031	1.0	.0	1.1	•1 •8	82	.08	•82	5.5
49 50	045	• 021	.9	•0	.9	•]•{	81 81	.07	•81	4.6
51	046	.002	1.2	.2	.7	•1 •6	B0	.08	.80	4.3 3.1
52	047	009	1.5	• 1	1.3	•1 •8	84	01	•84	4
53 54	047	018	1.3	•1	1.3	3. I.	33	01	.83	9
55	004	.279	1.3	.0	1.0	.0 .0	99 99	.05	.99	2.0 3.5
56	006	.241	1.3	.0	1.2	•0 • 9	99	.07	. 99	4.1
57 59	 005	.201	1.2	.0	1.1	•0 •9	77 77	.09	•98	5.2
50 59	006	•181 •160	1.2	.0	.8	.0 .0	77 77	.10	.98 .97	0.0 6.7
60	006	.140	1.3	.0	.8	0	26	.12	.97	7.4

Table 4-B. - Continued.

							U _f	. V _f	UR	α _R
5	×c	У _С	σu	±σ u	σv	±σ _v	<u>e</u>	<u> </u>	<u>— e</u>	"e
R	C	C	m/ sec	m/ sec	m/sec	m/ sec	Τ	۲	۲	aeg
61	004	.121	1.3	•0	•6	•0	.95	.14	•96	8.5
02 63	005 005	.081	1.6	•0	•0	•0	•93 00	.10	.94	9.0
64	005	.060	1.8	.0	.9	.0	.86	.21	.89	13.4
65	006	.050	1.9	•0	1.1	•1	.84	.21	.86	14.4
00 67	004	.041	1.4	•0 •1	2.7	•3	-83 -80	.19	• 85 • 81	12.9
68	.037	.317	.8	.0	.7	.0	1.02	.06	1.02	3.3
69	.037	•280	•8	•0	•6	•0	1.02	.07	1.02	4.2
71	.037	201	1.1	.0	1.0	.0	1.01	.10	1.02	5.9
72	.038	.181	1.3	.0	1.1	•0	1.00	.11	1.01	0.2
73 74	•037	-160 141	1.5	•0	•9 8	•0	1.00	.12	1.00	7.0
75	.037	.122	1.7	.0	.8	.0	1.00	.16	1.01	9.1
76	.037	.101	1.9	.0	.8	•0	. 99	.19	1.01	10.8
77 97	.037	.081	2.1	.0	1.3	.0	.99	.23	1.02	13.1
79	.078	.318	.9	.0	1.0	.0	1.02	.06	1.02	3.2
80	.078	.278	•9	.0	1.0	•1	1.02	.07	1.03	3.9
81 82	•078 •078	.240	•9	•0	•1	.0	1.02	.08	1.03	4./ 57
83	.077	.181	1.0	.0	.7	.0	1.04	•11	1.04	6.2
84	•076	.160	1.1	.0	.8	.0	1.04	.13	1.05	6.9
85 86	.077	.140	1.2	.0	•8 •9	.0	1.05	•14	1.05	7.8
87	.078	.111	1.5	.0	.7	.0	1.07	.16	1.09	3.6
88	.078	.102	1.6	.0	1.3	•0	1.07	.18	1.03	9.4
89 89	.079	.091	2.3	.0	1.5	.0	1.07	.19	1.03	11.1
91	.078	.071	2.3	.0	1.4	•1	1.08	.23	1.11	12.0
92	.078	•060 318	1.6	•0	1.8	•2	1.11	•26 05	1.14	13.3
93 94	.117	.279	•9	.0	.7	.0	1.03	.06	1.04	3.4
95	.119	.240	1.0	•0	1.2	•0	1.04	.08	1.05	4.5
96 07	.119	.201	1.2	.0	1.2	.0	1.05	•10 •11	1.05	5.4 5.7
98	.119	.160	1.4	.õ	1.5	•0	1.06	.11	1.07	6.1
99	.119	.141	1.4	•0	1.6	•0	1.07	.13	1.08	ó.7 حت
100	.118	.101	1.5	.0	1.5	.0	1.11	.15	1.12	7.8
102	.118	.081	1.5	.0	1.5	.0	1.13	.17	1.14	8.4
103	.118	.072	1.4	.0	1.9	.0	1.14	.19	1.16	9.5 2.5
104	.160	.278	.0	.0		.0	1.05	.05	1.05	3.0
106	.161	.240	•8	.0	.7	•0	1.06	.06	1.07	3.5
107	.160	.180	1.0	.0	•9 •8	•0	1.07	•09 •09	1.08	4.5
109	.160	.160	1.0	.õ	.9	.0	1.09	.09	1.10	4.8
110	.160	.141	1.0	•0	.8	•0; 1	1.11	.10	1.11	4.9
112	-160	.101	1.0	•0	1.1	.0	1.13	.10	1.13	2•2 5•6
113	.293	.318	•7	.0	.8	.0	1.05	.01	1.05	•5
114	.294	.280	•8	•0	•8	•0	1.07	-01	1.07	•7
115	.293	.202	• 1	.0	.9	•0	1.09	.01	1.09	• 1
117	.294	.181	.8	.0	.9	•0	1.10	.01	1.10	•4
118	.294	.161	•8	•0	1.0	•0 1	. 12	.01	1.11	•3
120	.294	.121	•8	.0	1.2	.0	1.13	.00	1.13	• • •

.

•

.

Table 4-B. - Concluded.

Run	x _c c	y _c	σ u m/sec	±ơ _u m/sec	σ _v m/sec	±σ _v m/se	с ^U f _e с ^U T	V _f UT	U _{Re} UT	α _R deg
121	.293	.107	1.0	•0	1.5	•0	1.17	03	1.17	-1.4
122	.295	.102	1.4	• 1	1.4	.1	1.19	02	1.19	-1.0
123	.409	.319	• 6	•0	•0	.0	1.05	01	1.05	5
124	•410	. 280'	•6	•0	•7	.0	1.06	02	1.06	9
125	.410	.240	•6	•0	•7	.0	1.07	02	1.07	-1.1
126	.410	.201	• 6	•0	•7	•0	1.07	02	1.07	-1.2
127	.411	.180	•7	•0	.7	.0	1.08	03	1.08	-1.5
128	.411	.161	.7	•0	.8	•0	1.08	03	1.09	-1.7
129	.413	.141	•8	•0	•8	•0	1.09	03	1.09	-1.6
130	.411	.128	1.4	•0	1.4	.0	1.11	02	1.11	-1.2
131	.412	.121	1.3	.1	1.2	.1	1.13	02	1.13	9
132	.578	.318	• 8	•0	•8	.0	1.04	03	1.04	-1.9
133	•578	.280	•7	•0	•9	•0	1.05	04	1.05	-2.1
134	•578	.241	8.	•0	.8	•0	1.06	05	1.06	-2.6
135	•578	.201	1.0	•0	1.0	.0	1.06	05	1.06	-2.6
136	•573	.180	1.0	•0	1.1	•0	1.06	05	1.06	-2.7
137	.578	.161	1.3	•0	1.1	•0	1.07	05	1.07	-2.7
138	.577	.140	1.7	•0	1.1	.0	1.08	04	1.08	-2.2
139	.578	.127	1.2	•2	1.6	.2	1.09	01	1.09	5
140	.701	•317	1.0	.0	1.0	.0	1.03	04	1.03	-2.2
141	.702	.279	•3	.0	•9	.0	1.03	05	1.03	-2.9
142	.702	.240	•7	.0	•8	•0	1.03	06	1.04	-3.4
143	.703	.202	•7	•0	•0	•0	1.04	07	1.04	-3.8
144	.702	.181	1.4	•0	•9	.0	1.04	06	1.04	-3.4
145	•703	161	1.5	•0	1.0	.0	1.04	07	1.04	-3.8
146	.703	.140	1.7	• 1	1.3	.0	1.04	07	1.04	-3.9
147	.701	.127	1.5	•1	•7	.0	1.09	02	1.09	-1.0
148	.703	.121	1.4	• 1	1.1	• 1	1.09	01	1.09	8

.

•

Argon-Ion Laser

Figure 2.- Schematic of the laser velocimeter optics.

Figure 3. - Two-velocity-component fringes in the sample volume.

Figure 5.- Block diagram of the laser velocimeter data acquisition system.

Figure 8. - Particle size distribution measured by the laser velocimeter.

velocities at constant $x_c/c = -.08$. $\alpha = 4.75^{\circ}$.

Figure 11. Statistical characteristics of the LV measured velocities at constant $x_c/c = -.04$. $\alpha = 4.75^{\circ}$.

Figure 12. Statistical characteristics of the LV measured velocities at constant $x_c/c = .02$. $\alpha = 4.75^{\circ}$.

Figure 13. Statistical characteristics of the LV measured velocities at constant $x_c/c = .03$. $\alpha = 4.75^{\circ}$.

Figure 14. Statistical characteristics of the LV measured velocities at constant $x_c/c = .04$. $\alpha = 4.75^{\circ}$.

Figure 15. Statistical characteristics of the LV measured velocities at constant $x_c/c = .06$. $\alpha = 4.75$

Figure 16. Statistical characteristics of the LV measured velocities at constant $x_c/c = .09$. $\alpha = 4.75^{\circ}$.

Figure 17. Statistical characteristics of the LV measured velocities at constant $x_c/c = .13$. $\alpha = 4.75^{\circ}$.

Figure 18. Statistical characteristics of the LV measured velocities at constant $x_c/c = .17$. $\alpha = 4.75^{\circ}$.

Figure 19. Statistical characteristics of the LV measured velocities at constant $x_c/c = .29$. $\alpha = 4.75^{\circ}$.

y

Figure 20. Statistical characteristics of the LV measured velocities at constant $x_c/c = .42$. $\alpha = 4.75^{\circ}$.

Figure 21. Statistical characteristics of the LV measured velocities at constant $x_c/c = .58$. $\alpha = 4.75^{\circ}$.

Figure 22. Statistical characteristics of the LV measured velocities at constant $x_c/c = .75$. $\alpha = 4.75^{\circ}$.

Figure 23. Statistical characteristics of the LV measured velocities at constant $x_c/c = .96$. $\alpha = 4.75^{\circ}$.

Figure 24. Statistical characteristics of the LV measured velocities at constant $x_c/c = 1.01$. $\alpha = 4.75^{\circ}$.

Figure 25. Statistical characteristics of the LV measured velocities at constant $x_c/c = 1.03$. $\alpha = 4.75^{\circ}$.

Figure 26. Statistical characteristics of the LV measured velocities at constant $x_c/c = 1.09$. $\alpha = 4.75^{\circ}$.

Figure 27. Statistical characteristics of the LV measured velocities at constant $x_c/c = 1.13$. $\alpha = 4.75^{\circ}$.

Figure 28. Statistical characteristics of the LV measured velocities at constant $x_c/c = -0.17$. $\alpha = 0.6^{\circ}$.

Figure 29. Statistical characteristics of the LV measured velocities at constant $x_c/c = -0.09$. $\alpha = 0.6^{\circ}$.

Figure 30. Statistical characteristics of the LV measured velocities at constant $x_c/c = -0.05$. $\alpha = 0.6^{\circ}$.

• • •

Figure 31. Statistical characteristics of the LV measured velocities at constant $x_c/c = 0$. $\alpha = 0.6^{\circ}$.

Figure 32. Statistical characteristics of the LV measured velocities at constant $x_c/c = 0.04$. $\alpha = 0.6^{\circ}$.

Figure 33. Statistical characteristics of the LV measured velocities at constant $x_c/c = 0.08$. $\alpha = 0.6^{\circ}$.

Figure 34. Statistical characteristics of the LV measured velocities at constant $x_c/c = 0.12$. $\alpha = 0.6^{\circ}$.

Figure 35. Statistical characteristics of the LV measured velocities at constant $x_c/c = 0.16$. $\alpha = 0.6^{\circ}$.

Figure 36. Statistical characteristics of the LV measured velocities at constant $x_c/c = 0.29$. $\alpha = 0.6^{\circ}$.

Figure 37. Statistical characteristics of the LV measured velocities at constant $x_c/c = 0.41$. $\alpha = 0.6^{\circ}$.

Figure 38. Statistical characteristics of the LV measured velocities at constant $x_c/c = 0.58$. $\alpha = 0.6^{\circ}$.

Figure 39. Statistical characteristics of the LV measured velocities at constant $x_c/c = 0.70$. $\alpha = 0.60^{\circ}$.

7 **F** figure 20- Velocity vectors computed from measurements over the wing at pppppppppppppp a = 4.750. 4 4 99999 4

•

Figure 41.- Streamlines computed from interpolated flow angle distribution over the wing at $\alpha = 4.75^{\circ}$.

•

,

ţ

.

4,

.

é

-

,

÷,

,

-..

-

ţ

ł

APPENDIX A

A LASER VELOCIMETER BUFFER INTERFACE

By James I. Clemmons, Jr.

The laser velocity buffer interface (LVBI) is an electronic instrument for determining the interarrival times of laser velocimeter (LV) data and for the temporary storage of the LV velocity data and the interarrival time data. Interarrival time is an important parameter which can be used for autocorrelation, or as in this case, used to evaluate an approximate time average for comparison with ensemble average. One or two LV high-speed burst counters provide inputs to the LVBI. The velocity data and interarrival time data are sent to a computer for processing. The computer also provides various controls for the proper operation of the interface.

General purpose computers do not have the hardware or software capability for determining the interarrival times of LV data at a rate of 1 million measurements per second. Also, few if any, general purpose computers can input data at a high enough rate and not impair the functioning of the two-component LV. The LVBI has two data acquisition channels each independently capable of receiving data at a rate of up to 1 million velocity measurements per second and determining the interarrival time between successive measurements. Each data acquisition channel has its own data storage memory.

A computer program uses the velocity data and the interarrival time data to produce a history of the velocity of the tunnel flow and to produce a power spectra analysis of the flow at the points of observation (ref. 12). A program is also used to control the LVBI enabling computer definition of the number of data sets (velocity/interarrival time pair) to be acquired, control of data transfer from the LVBI to the computer, and the testing of the LVBI. Figure A-1 is a block diagram of the LVBI, Table A-1 gives the specifications for the LVBI and figure A-2 shows how a typical data set is stored in memory.

CIRCUIT DESCRIPTION

The LVBI has two major divisions: the data acquisition circuits and the computer interface circuits. There may be two data acquisition circuits

(two-channel operation) each having its own interarrival time circuit, memory, and necessary control circuits. The computer interface circuitry serves both data acquisition circuits (fig. A-1).

Interarrival Time Circuits

The interarrival time circuit does not directly produce a value of the real time between two successive LV velocity measurements. It instead counts the number of cycles of a very precise square wave reference signal that occur during successive LV velocity measurements. The period of the square wave specifies the resolution to which the interarrival time may be measured. In order to achieve a reasonable resolution at a 1-MHz data rate, a 10-MHz square wave reference is used. The period for 10 MHz is 100 nsec, therefore resolving the 1 MHz data rate interval to one part in ten.

If a 16-bit wide word is used for the transferring of data to the computer and if a single 16-bit word is used for the interarrival time measurement, then the maximum interarrival time that could be measured is $(2^{16} - 1) \times (100 \text{ nsec})$ or 65,535 x 100 nsec or 6.5535 msec. If two 16-bit words were used for the interarrival time measurement then the maximum interarrival time that could be measured is $(2^{32} - 1)x(100 \text{ nsec})$ or 4.294.967.304 x 100 nsec or 429.4967304 sec. The use of a 32-bit interarrival time data word would require an excessively large memory (4096 46-bit memory), and it would require the transferring of three 16-bit words per data set per data acquisition channel to the computer. In order to solve these problems, the LVBI uses a variable resolution interarrival time circuit allowing the use of a single 16-bit data word for the storage and transfer of the interarrival time. As previously discussed, a 16-bit interarrival time data word will alow time measurement to 6.5535 msec when using a 10-MHz reference signal. If a 1-MHz signal were used, then a time measurement to 65.535 msec could be made with a resolution of 1 µsec, and if a 100-KHz reference signal were used, then the maximum time measurement would be 655.35 msec with a resolution of 10 usec. The change in the reference signal is noted by generating a 2-bit reference signal status (Δt status). These two bits may be stored with the 14-bit LV velocity data making up a 16-bit-wide data word (fig. A-2).

The interarrival time circuit thus consists of a 16-bit (2¹⁶ -1) binary cycle counter, a 2-bit binary reference signal status counter, and controls

(fig. A-3). The counters are started by a data ready signal from the LV high-speed burst counter. If the interarrival time being measured is less than 6.5535 msec, the resultant cycle and the 2-bit status (00_2) is stored into the memory along with the LV velocity data. During data reduction, the computer will multiply the cycle count by the resolution indicated by the status bits (00_2) , 100 nsec in this case, to obtain the real-time value.

If the interarrival time exceeds 6.5535 msec, the 16-bit cycle counter overflows, incrementing the 2-bit status counter (01_2) . The overflow also switches the reference signal to 1 MHz and a correction value of 6553 is loaded into the interarrival time 16-bit cycle counter. The correction value adjusts the counter to the count which would have occurred had the 1-MHz reference signal been used from the beginning of the interval. The worse-case error when using the 1-MHz reference signal is one part in 6553.

Should the cycle counter overflow again, the status counter is incremented (10_2) , the 100-KHz reference signal is switched in, the correction value of 6553 is loaded into the cycle counter, and counting resumes. If an additional overflow occurs, the status counter is incremented (11_2) , and the cycle counter is filled with zeroes. Either the cycle count, now zero, or the status information (11_2) may be used to indicate that the interarrival time was greater than 655.35 msec and that the interarrival time cannot be computed. A subsequent data ready will reset the status counter to zero (00_2) and switch the reference to 10-MHz allowing normal operation. All calculations involving power spectra will be resumed with this new count.

Data Storage Circuits

The data storage circuits consists of a 4096 x 32-bit memory. The semiconductor memory circuits used allow data to be stored or retrieved in 250 nsec assuring the high-speed operation of the LVBI.

Memory address, the location in memory where data will be stored or retrieved, is generated by a 12-bit (2^{12}) binary counter (fig. A-4). During the data acquisition phase, the entire data set (velocity and interarrival time data) is stored simultaneously, and the address counter is incremented awaiting the next data set. The address counter is usually set to zero at the beginning of the data acquisition phase, but it may be set to any desired value by the computer.

The last memory location into which data is stored or retrieved is set by the computer. This information is stored in the last address latch. Continuous comparison is made between the memory address and the last address and when a true comparison is made the data acquisition is terminated and the computer is flagged.

Computer Interface Circuit

The LVBI communicates with the computer vis two-computer input/output (I/O) channels. Each channel has a 16-bit wide input bus and a 16-bit wide output bus. The first channel is the control/status channel over which the computer sends all major control commands to the LVBI and the LVBI returns information on its status. The data portion of the control commands and the LV velocity/interarrival time data stored in the LVBI memory are transferred over the second channel, the data channel. Stored LVBI data are always transferred to the computer in an LV velocity-interarrival time status/interarrival time data word sequence beginning and ending at the memory address as defined by the computer software. Data from a single data acquisition channel may be transferred or data from both data acquisition channels, in a channel l/channel 2 sequence, may be transferred. Table A-II gives a listing of the various functions of the LVBI.

TABLE A-I -LVBI SPECIFICATIONS

.

LV data acquisition rates:	l nillion data words/second/LV component 14 bits (10-bit mantissa, 4-bit exponent; 2-bit LV counter mode information (not stored))	
Interarrival time measured: Interarrival time resolution:	<pre>1 microsecond to 655.35 milliseconds 1 µsec to 6.5535 msec; 100 nsec resolution 6.5535 msec to 65.535 msec; 1 µsec resolution 65.535 msec to 655.35 msec; 10 µsec resolution</pre>	
Interarrival time data word:	18 bits (16 bits time data, 2-bit status)	
Data storage:	4096 32-bit data sets (LV velocity, Δt, Δt status) per data acquisition channel	
Computer interface	16-bit data I/O (input/output) 16-bit control I/O	
Data transfer rate:	1 million 16-bit data or control words/second	
Operational specifications:		
Software computer definition of:		

Soltware	- computer definition of:
	- first data storage location in memory
	- last data storage location in memory
	- time alloted for LV data acquisition
	(0 to 9 minutes, 59 seconds; 1 second resolution)
	- data for memory diagnostic tests
Electronics:	Transistor-transistor logic (TTL), Schottky and low-power
	Schottky TTL integrated circuits except memory.

Memory - 1K static N-channel metal-oxide-semiconductor (NMOS) circuits.

TABLE A-II

LVBI/COMPUTER I/O SPECIFICATIONS

Control/Status Channel

(type of control/status)

Computer to LVBI (Control)

Set memory address Set last data address Set real-time clock Send diagnostic data Start data acquisition Stop data acquisition

Computer to LVBI (Control)

Send LVBI data to computer Read memory address, channel 1 Read memory address, channel 2

LVBI to Computer (Status) Memory full/time limit Channel 1 active Channel 2 active Channel 1 transferring data Channel 2 transferring data LV or ∆t data being transferred LV counters in 5/8 or 10/16 mode LV counters in time or velocity mode Data Channel (Type of data)

<u>Computer to LVBI</u> Memory address Last data address Time Diagnostic data No action No action

LVBI to Computer Data Memory address, channel 1 Memory address, channel 2

LVBI to Computer

No	actior)
	÷1	
	IJ	
	11	
	11	
	11	
	н	
	11	

Δt TIME DATA 16-BITS 16 , 32-BITS -4-BITS LV EXP LV VELOCITY MANTISSA **10-BITS** 16 Δt STATUS 2-BUTS TO COMPUTER 16 ∆t TIME DATA 16-BITS 16 32-BITS 4-BITS LV EXP LV VELOCITY MANTISSA 10-BITS 16 Δt STATUS 2-BITS LOCATION 4096 LOCATION 1

,

Figure A2.- Data store diagram.

CHANNEL 2

CHANNEL 1

•

1 7 3 3 4

1 • 4

Figure A4. - Data Storage Circuits

.- OS-

· > > , ,

APPENDIX B

LASER VELOCIMETER HISTOGRAMS WITH INTERPRETATION

The histograms for every data run recorded during this investigation are presented in this appendix. The order of presentation is as follows:

	Figure
Free Stream	B-1
Wing at α = 4.75°	B-2 to B-15
Wing at α = 0.6°	B-16 to B-22

Each figure is presented (except free-stream data) with a sketch of the wing cross section with arrows indicating the position, direction, and relative magnitude of the mean velocity vector. A run consisted of an ensemble of data acquired at the position desired. The scan, therefore, is a series of runs at various y_c/c positions at constant chordwise position. The histogram is a graphical representation of the variation of velocity measured over a time period as mentioned in the text. Statistical analysis of each run can be found in corresponding tables.

To interpret the histograms, one must be prepared to consider a velocity measurement not as a single measurement, but as a large number of measurements (ensemble) which is assumed to describe the time-average nature of the flow at the measurement location. Thus, more than just the average velocity can be obtained from the velocity measurements. It is necessary to mention that the LV is not a continuous measurement device such as a hot-wire anemometer but acquires data randomly (Poisson distributed in time) depending upon the rate at which particles of proper size pass through the sample volume. Only when this data rate is continuously large can the system be considered to be quasi-continuous.

The histograms are presented with C_i , percentage of that number of measurements within incremental velocity band, as a function of velocity. In all cases, the U₁ component is presented on the left and the V₁ component on the right.

The method of determining the expected value of the velocity from a histogram is described in the text. The breadth of the histogram provides a means of relative determination on the unsteadiness of the flow. For example, the last two runs in figure B-1 are data for higher tunnel speeds than the first five. These histograms would indicate that the unsteadiness of the flow is greater at higher speeds.

Most of the histograms have a form of being Gaussian in nature indicating that the flow has just as great a probability to fluctuate towards lower velocities as to higher velocities. In some cases, particularly near the leading edge of the wing (see fig. B-4, runs 31-37), the histogram is skewed. A histogram resulting from a random velocity unsteadiness in magnitude would be symmetrical about the peak. However, if a steady velocity were oscillating in angle, skewness in the histogram would result. Consider the measurement direction $\pm 45^{\circ}$ to free stream. A steady free-stream flow oscillating in angle would have mean velocity components of magnitude cos 45° in the two measurement directions. A positive oscillation in angle would result in positive deviation from the mean in the -45° histogram. Similarly, the negative oscillation in angle affects the component histograms. Thus, an unsteadiness in flow angle could, if the mean unsteady angle is nonzero, generate the skewed histograms in the measurement directions $+45^{\circ}$ to flow direction.

In many situations, a velocity measurement at a point experiences a peculiar phenomenon. If the velocity at a point does not fluctuate randomly, but oscillates between two pronounced velocity values, a so-called double-peaked histogram will occur. (See figs. B-4, B-5, B-6, and B-7, runs 37, 50-53, 63-68, and 78-79, respectively.) These double-peaked histograms indicate that for a large percentage of the time the velocities are centered about one velocity, and at other times they are centered at another velocity. This unexpected phenomenon, at least for the wing at $\alpha = 4.75^{\circ}$, is discussed fully in the text.

An intuitive confidence in the velocity measurement can be obtained by analysis of the histograms. If the histogram generated is a well-defined shape (whatever it may be), then one may consider that there is a sufficient number of samples in the ensemble to obtain a reasonable measure of the velocity characteristics. However, if the histogram is very ragged (see fig. B-15, runs 190, 191, and 192), it can be very difficult to associate a great detail of confidence in the statistical parameters calculated from such an ensemble. In these cases, however, realizing that the measurements were obtained very close together in space, the mean velocity calculations are reasonable.

The statistical parameters calculated from these histograms are presented in: Table 2 for the free-stream condition; Table 3 for the wing at $\alpha = 4.75^{\circ}$; and Table 4 for the wing at $\alpha = 0.6^{\circ}$.

٠

Figure B-1.- Histograms for free-stream measurements.

C_i, percent

Figure B-2.- Histograms in scan at constant $x_c/c = -0.16$, $\alpha = 4.75^{\circ}$.

Figure B-2.- Concluded.

Figure B-3.- Histograms in scan at constant $x_c/c = -0.08$, $\alpha = 4.75^{\circ}$.

Figure B-3.- Concluded.

Figure B-4.- Histograms in scan at constant $x_c/c = -0.04$, $\alpha = 4.75^{\circ}$.

Figure B-4.- Continued.

Figure B-4.- Concluded.

Figure B-5.- Histograms in scan at constant $x_c/c = 0$, $\alpha = 4.75^{\circ}$.

Figure B-5.- Concluded.

Figure B-6.- Histograms in scan at constant $x_c/c = 0.03$ and 0.04, $\alpha = 4.75^{\circ}$.

Figure B-6.- Continued.

Figure B-7.- Histograms in scan at constant $x_c/c = 0.06$ and 0.09, $\alpha = 4.75^{\circ}$.

Figure B-7.- Continued.

-

Figure B-7.- Concluded.

٩

Figure B-8.- Histograms in scan at constant $x_c/c = 0.13$ and 0.17, $\alpha = 4.75^{\circ}$.

Figure B-8.- Concluded.

•

Figure B-9.- Histograms in scan at constant $x_c/c = 0.29$ and 0.42, $\alpha = 4.75^{\circ}$.

Figure B-9.- Concluded.

Figure B-10.- Histograms in scan at constant $x_c/c = 0.58$, $\alpha = 4.75^{\circ}$.

Figure B-10.-Concluded.

.

'_

Figure B-11.- Histograms in scan at constant $x_c/c = 0.75$, $\alpha = 4.75^{\circ}$.

Figure B-11.-Concluded.

Figure B-12.- Histograms in scan at constant $x_c/c = 0.96$ and 1.01, $\alpha = 4.75^{\circ}$.

Figure B-12.- Concluded.

Figure B-13.- Histograms in scan at constant $x_c/c = 1.03$, $\alpha = 4.75^{\circ}$.

Figure B-13.- Concluded.

Figure B-14.- Histograms in scan at constant $x_c/c = 1.09$, $\alpha = 4.75^{\circ}$.

Figure B-14.- Continued.

Figure B-14.- Concluded.

Figure B-15.- Histograms in scan at constant x_c/c = 1.13, α = 4.75⁰.

Figure B-15.- Concluded.

Figure B-16.- Histograms in scan at constant $x_c/c = -0.17$ and -0.09, $\alpha = 0.6^{\circ}$.

Figure B-16.- Continued.

Figure B-16.- Continued.

Figure B-16.- Continued.

Figure B-16.- Concluded.

Figure B-17.- Histograms in scan at constant $x_c/c = -0.05$, $\alpha = 0.6^{\circ}$.

Figure B-17.- Continued.

Figure B-17.- Concluded.

Figure B-18.- Histograms in scan at constant $x_c/c = 0$, $\alpha = 0.6^{\circ}$.

Figure B-18.- Concluded.

Figure B-19.- Histograms in scan at constant $x_c/c = 0.04$, $\alpha = 0.6^{\circ}$.

C_i, percent

Figure B-20.- Histograms in scan at constant $x_c/c = 0.08$, $\alpha = 0.6^{\circ}$.

C₁, percent

Figure B-20.- Concluded.

Figure B-21.- Concluded.

Figure B-22.- Histograms in scan at constant $x_c/c = 0.16$, 0.29, 0.41, 0.58, and 0.70, $\alpha = 0.6^{\circ}$.

Figure B-22.- Continued.

Figure B-22.- Continued.

Figure B-22.- Continued.

١

Figure B-22.- Continued.

Figure B-22.- Concluded.

1. Report No. TM 74040	2. Government Accession No	3 Recipient's Catalog No			
4 Title and Subtitle	5 Report Date January 1978				
ANGLES OF ATTACK	6 Performing Organization Code				
7 Author(s) Danny R. Hoad, James F. Meyer Timothy F. Hepner	8 Performing Organization Report No				
		10 Work Unit No			
9. Performing Organization Name and Address	505-10-23-05				
NASA Langley Research Center Hampton, VA 23665		11 Contract or Grant No			
		13 Type of Report and Period Covered			
12 Sponsoring Agency Name and Address	Technical Memorandum				
Washington, DC 20546 and Space Structures Laboratory, U.S.	14 Sponsoring Agency Code				
15 Supplementary Notes Hoad, Young, and Hepner - Structures Laboratory, U.S. Army Res. and Tech. Labs. Meyers - NASA Langley Research Center					

16 Abstract

An investigation has been conducted in the Langley V/STOL tunnel with a laser velocimeter to obtain measurements of airflow velocities around a wing at low angles of attack (0.6° and 4.75°). The applicability of the laser velocimeter technique for this purpose in the V/STOL tunnel was demonstrated in this investigation with measurement precision bias calculated at -1.33 percent to 0.91 percent and a random uncertainty calculated at ± 0.47 percent. Free-stream measurements were obtained with this device and compared with velocity calculations from pitot-static probe data taken near the laser velocimeter measurement location. The two measurements were in agreement to within 1 percent. Velocity measurement results about the centerline at 0.6° angle of attack were typically those expected. At 4.75° , the velocity measurements indicated that a short laminar separation bubble existed near the leading with with an oscillating shear layer.

17 Key Words (Suggested by Author(s)))	18 Distribut	tion Statement		
Laser velocimeter Aerodynamics Fluid dynamics NACA 0012 airfoil		Unclassified - Unlimited			
19 Security Classif (of this report)	20 Security Classif (of this	page)	21 No of Pages	22 Price*	
Unclassified	Unclassified		151	\$6.75	

* For sale by the National Technical Information Service, Springfield Virginia 22161