## General Disclaimer

## One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.


# partial discharges in the transformers due to induced voitages 

 A. Veverka> Translation of "Castecne vyjoje v transformatoru pri Irdukovanem napeti" supplement, Elektrotechniky Obzor, vol. 60, no. 3, March, 1971, pp.117-119.

| (NASA-TM-75256) | PARTIAL DIGCHARGES IN THE |  |  | N 78-19310 |
| :---: | :---: | :---: | :---: | :---: |
| TRANSFORMERS DJE TO INDUCRD VOLTAGES |  |  |  |  |
| (National Aerona | tics and Space |  |  |  |
| Administration) 8 P (HC A02/mF AD1 CSCL 09C |  |  |  | Unclas |
|  |  |  | (3)/33 | 05391 |



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D.C. 20546 FEBRUARY 1978

Standaho title page

| 1. Ropert No. <br> NASA TM-75256 | 2. Covernment Accession No. | 3. Recipient's Catoleg No. |
| :---: | :---: | :---: |
| 4. Tile end subthte PARTIAL DISCHARGES IN THETRANSFORMERS DUE TO INDUCED VOLTAGE(SUPPLEMENT) |  | 5. Repon Date February 1978 |
|  |  | 6. Porlarming Orgonimation Code |
| 7. Aumer (0) <br> A. Veverka |  | 6. Pallerming Orgenisotion Repert No . |
|  |  | 10. Weirt Unit No. |
| 9. Porforming Orgmistation Neme end Addeses <br> Leo Kanner Associates <br> Redwood City, California 94063 |  | II. Contreet on Orant No. NASW-2790 |
|  |  | 13. Type el Repell end Peried Covered |
| 12. Spencering Agoney Name and Addreos <br> National Aeronautics And Space Administration, Washington, D.C. 20546 |  | Translation |
|  |  | 14. Spensoring Ageney Cade |
| 15. Supplementary Noles <br> Translation of "Castecne vyboje $v$ transformatoru pri indukovanem napeti" supplement, Elektrotechniky Obzor, vol. 60, no. 3, March, 1971, pp. 117-119. |  |  |
| 16. Abstrect <br> The supplement furnishes a thoretical proof containing the experimentaliy determined advantage for the connection of capacitance $C_{0}$ between the insulated frame and ground according to the arrangement presented in Fig. 4 in the article. |  |  |
|  |  |  |
| 17. Key Wordv (selected by Author(s)) $\quad$ 18. Distriturion Sie |  |  |
| 19. Security Clasilf, (of this repart) Unclassifled | 20. Security Clossif, (of this poge) Unclassified | 21. No. of Pages 22. Price |

PARTIAL DISCHARGES IN THE TRANSORMERS DUE TO INDUCED VOLTAGE (SIJPPLEMENT)

A. Veverka

## Supplement

For a rough comparison of the operation of a transformer winding connection during an investigation of the transient phenomena caused by a discharge, we consider the relations at the unit voltage jump introduced between the input to the winding and frame as shown in Fig. 9. For simplicity, we investigate Wagner's substitution diagram for a coil winding. The frame is insulated and connected across capacitance $C_{0}$ to the ground, $C, K, L$, are the capacitance to the ground; the capacitance between the windings and the winding inductance, all referred to unit axial length of the winding. Here, the following are valid ( $u$ is the voltage between the point of the winding and the ground, $u_{0}$ is the voltage between the insulated frame and ground).

$$
\begin{align*}
& -\frac{\partial i_{1}}{\partial x} \cdots \frac{\partial i_{k}}{\partial x}=C \frac{\partial\left(u-u_{0}\right)}{\partial t}  \tag{5}\\
& i_{K}=-K \partial_{\partial^{2} u}^{\partial_{r}} \partial  \tag{6}\\
& \frac{\partial u}{\partial u_{x}}=L L_{i} i_{t}  \tag{7}\\
& \left.u_{n}\right)^{\partial u_{n}}=\int_{i}^{1} C d x \partial\left(n-u_{0}\right) \tag{8}
\end{align*}
$$

In the transformed range (Carson-Wagner) we obtain from equations (5), (6) and (7)

$$
\begin{equation*}
\frac{t^{2 I}:}{d x^{3}}=\frac{p^{2} L(C}{1+p^{2} L h^{\prime}}\left(U-U_{n}\right) \tag{9}
\end{equation*}
$$

The general solution of this equation is:

* Numbers in the margin indicate pagination in the foreign text.

The integration constants are determined from the boundary conditions

$$
\begin{aligned}
& x=0 ., U-U_{11}=1 \\
& x=l, \ldots, \cdot U=0
\end{aligned}
$$

Having determined the integration constants and substituted them in equation (10), we obtain, after appropriate transformations,

$$
\begin{equation*}
u=\frac{-u_{n} \sinh p \frac{\sqrt{L O}}{\sqrt{1+p^{2} K^{2}} x+\sinh p \frac{\sqrt{L Q}}{\sqrt{1+2^{2 L L}}}}(l-x)}{\sinh p \frac{\sqrt{L C}}{\sqrt{1+p^{2} L K}} l}+U_{n} \tag{11}
\end{equation*}
$$

Now we will also apply the last equation (8). In the transformed range, we oftain for the voltaye at $C_{0}$ :

$$
\begin{equation*}
U_{0}=\int_{0}^{1} \frac{0}{O_{0}} \frac{-U_{n} \text { sinh } p \frac{\sqrt{L C}}{\sqrt{1+p^{2} L K}}}{\sinh p \frac{\sqrt{L L C}}{\sqrt{1+p^{2 L K}}} l} \frac{1 / 1+m^{L L K}}{}(1-x) \tag{12}
\end{equation*}
$$

Evaluating the integral, we obtain after appropriate transformations:

## for $p \rightarrow \infty$

$$
\begin{equation*}
U_{0, c}=\frac{\frac{d}{C}}{2\left(\sqrt{\left.\frac{d}{K}-\frac{l}{2}\right) \operatorname{coth} \sqrt{K}} \frac{l}{2}+\frac{d l}{C_{0}}\right.} \tag{14}
\end{equation*}
$$

## and for $p=0$

$$
\begin{equation*}
U_{0,0}=\frac{\frac{G}{G_{0}}}{2+\frac{G}{G_{0}}} \tag{15}
\end{equation*}
$$

## Let us calculate

$$
\frac{U_{0,1,}-U_{0, \ldots}}{U_{0,0}}=\frac{2\left[\left(\sqrt{\frac{a}{N}} \cdot \frac{1}{U_{0,1}}\right) \cot h \sqrt{\frac{a}{K}} \cdot \frac{1}{2}-1\right]}{2\left(\sqrt{\frac{C}{K}} \cdot \frac{1}{2}\right) \cot h\left[\frac{\square}{\kappa} \cdot \frac{1}{2}+\frac{d}{U_{0}}\right.}
$$

and compare the value with the analogous expression for a connection according to Fig, 10.


FIg. 10

Here the following equations hold:

$$
\begin{gather*}
-\partial i t-\frac{\partial i_{h}}{\partial v}=C \frac{\partial u}{\partial i}  \tag{17}\\
i_{K}=-K \partial_{u} \partial_{u} \partial u  \tag{18}\\
-\frac{\partial u}{\partial u}=L \frac{\partial i_{L}}{\partial u} \tag{19}
\end{gather*}
$$

In the transformed (Carson-Wagner) range, we obtain the equations

$$
\begin{align*}
& \frac{d L_{6}}{d x}-\mathrm{d} / L_{2}=p(U  \tag{20}\\
& I_{K}--\mu K  \tag{21}\\
& d U
\end{align*}
$$

$$
\begin{equation*}
-\frac{110}{12}=p L_{t} \tag{22}
\end{equation*}
$$

## and from them:

$$
\begin{equation*}
\frac{r^{2} U}{\pi_{1} r^{2}}=\frac{\mu^{2} L \theta}{1+\mu^{2} / K} v \tag{23}
\end{equation*}
$$

The general solution of the last equation is

$$
\begin{equation*}
U=A n^{2} b_{1} w^{2} n^{x}+B_{0}{ }^{-n} \sqrt{1+w_{1}} \tag{24}
\end{equation*}
$$

The integration constants are determined from the boundary conditions

$$
\begin{aligned}
& a=0, \cdot, .101 \\
& \cdots=1 ., \ldots I_{K}+I_{1}=\left(p k+\frac{1}{n i}\right)\left(\frac{d U}{d x}\right)_{2=1}= \\
& \Rightarrow p T_{0} V_{x} 1
\end{aligned}
$$

After the values of the integration constants have been determined and substituted in equation (24), we obtain after appropriate transformations

At the end of the winding, 1,e, for $x=1$;

$$
\begin{equation*}
U_{1}=-\frac{1}{\left.\cosh p \frac{\sqrt{L C}}{\sqrt{1+p^{2} L K}} l+\frac{p C_{1} / L / C}{\sqrt{1+p^{T L K}}} \sinh p \frac{1 L G}{\sqrt{1+p^{2} L K}} \right\rvert\,} \tag{26}
\end{equation*}
$$

For $p+\infty$
and for $y=0$

$$
\begin{equation*}
U_{1 \infty}=1 \tag{28}
\end{equation*}
$$

Let us calculate $\frac{U_{10}-V_{1,0}}{U_{1,4}}$;
and compute the ratio of expression (16) to (29). After
appropriate transformations we obtain


Fig. 11

FIg. 11 shows the plot of the ratio $\xi$ versus $C_{0} / C l$ for two values


If it is evident that $\xi<1$ and that
$\xi$ decreases with decreasing value of $\sqrt{l} l$, which is a well known
characteristic for the initial. voltage distribution in the transformer windings at a rectangular pulse. For a nonoscillating winding $(\sqrt{K} l \rightarrow 0) \ldots \Leftrightarrow 0$

## REFERENCES

1. Veverka, A., A. Hon and A. Bartok, "Measurement of partial discharges in transformers at an induced voltage," Elektrotechniky obzor 59, 10, 515-517 (1970).
