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SUMMARY

An investigation has been made into the ability of a method of integral
relations to calculate inviscid, 0° angle of attack, radiative heating distri-
butions over blunt, sonic corner bodies for some representative outer planet
entry conditions. Comparisons have been made with a more detailed numerical
method, a time asymptotic technique, using the same equilibrium chemistry and
radiation transport subroutines. An effort to produce a second-order approxi-
mation (two-strip) method of integral relations code to aid in this investiga-
tion is also described and a modified two-strip routine is presented. Results
indicate that the one-strip method of integral relations cannot be used to
obtain accurate estimates of the radiative heating distribution because of its
inability to resolve thermal gradients near the wall. The two-strip method can
sometimes be used to improve these estimates; however, the two-strip method has
only a small range of conditions over which it will yield significant improve-
ment over the one-strip method.

INTRODUCTION

The method of integral relations is a numerical procedure which has been
used by many researchers to obtain inviscid shock layer solution around blunt
bodies in supersonic flow. (See refs. 1 to 6.) The single-strip method runs
rapidly on the computer and gives results which are within engineering accuracy
for most applications to adiabatic flow situations. Applications of this
method to nonadiabatic flow situations involving radiative heat transfer have
been investigated by Suttles (ref. 1) and Edquist (ref. 2). Suttles studied
the nonadiabatic flow over two spheres in equilibrium air by using a one-strip
integral method but there were no detailed comparisons available with other
numerical methods. Radiative heating contributions were fully coupled with the
other flow equations in that report. Edquist also used a one-strip method to
compute equilibrium gas flow over spherically capped cones with sonic corners.
The radiative heating contributions in that study were not directly coupled to
the governing flow equations and no detailed comparisons were presented with
other solution techniques.

The purpose of this report is to make a detailed comparison of the method
of integral relations (designated MIR) with a more exact numerical method, the
time asymptotic technique (designated TAT) (ref. 7). Radiative heating contri-
butions are fully coupled with the fluid mechanics in this investigation. The
merits of MIR as a tool for making radiative heating calculation over blunt,
sonic corner bodies are evaluated.

There are two major reasons for an interest in this type of investigation.
Exploratory missions to the outer planets by instrumented probe vehicles are
tentatively scheduled for the next decade. The entry environment experienced
by these probes must be understood in sufficient detail to be able to perform
atmospheric reconstruction analyses and to insure their survival during a severe



heating-deceleration pulse. The TAT is currently used for making these calcu-
lations, but it would be advantageous if a faster running MIR could be imple-
mented to replace or supplement that method.

Also, recent investigations into shape changes caused by massive ablation
during entry into the Jupiter atmosphere have indicated the possibility of pro-
ducing forebody concavities (ref. 8) which cannot be analyzed by TAT as it is
now formulated. The ability of MIR to calculate flow over bodies with concavi-
ties has already been demonstrated by South (ref. 3) and Rao (ref. 4). However,
before MIR is used for these studies, the consequences of the cruder approxima-
tions inherent in the method should be understood. To this end, this study is
restricted to the solution of problems which are characteristic of planetary
probes entering hydrogen-helium atmospheres.

It should also be noted that during the course of this investigation, some
time was spent in the development of a higher order (two-strip) MIR. A summary
of the results of this development is presented along with some two-strip MIR
flow field solutions for inviscid, adiabatic, and nonadiabatic flow over blunt,
spherically capped cones.

SYMBOLS

A,B,C,D,E,F nondimensional constants defined in equations (A3) to (A8)

a speed of sound, a'/V̂ * *

^H^He mass fraction of hydrogen and helium, respectively

C-|,C2 ..... Cg nondimensional constants defined in equations (12)

^2* »^3* 1^8' 1^9' nondimensional constants defined in equations (17)

D damping factor

G-| ,63, . . . ,65 nondimensional functions of p, p, u, v, and H defined in
equations (2)

H total enthalpy,

h • static enthalpy, h«/Voo»
2

Il,l2,...,l5 nondimensional functions of p, p, u, v, H, 6, and r defined
in equations (2)

K strip index

L-| ,L,2, . . . ,1.5 nondimensional functions of p, p, u, v, H, 6, Q, u), 65, r, n,
and s defined in equations (2)

M Mach number



M free-stream Mach number,

N number of strips

p pressure, p'/p̂ V̂ *2

Q curvature of reference surface,

qR radiative heat flux, qR*/P00*Voo*3

R radius of curvature, R*/Rfj*

Rg» gas constant, m2/(s2-K)

r radius from axis of symmetry, r*/Rjj*

s,y body-oriented coordinates (see fig. 1), S*/RN*, y*/RN*

T* temperature, K

u tangential velocity, u'/V̂ *

V * free-stream velocity, m/s
GO

v normal velocity, v*/V *

x,z Cartesian coordinates
-i

y ratio of specific heats

6 shock displacement distance, 5*/Rjj*

n transformed y coordinate, y/6

65 body angle, deg

6C cone angle, deg

< metric coefficient, 1 + Q6ri

p density, pVpJ1

0) shock angle, deg

Superscripts:

n iteration number

* dimensional quantity

undamped quantity



converged value of iterative variable on stagnation line

Subscripts:

B

b

j

KO

K1

N

R

s

stag

CO

Abbreviations:

MIR

TAT

base

local body conditions

refers to particular governing differential equation:
j = 1; shock geometry equation
j = 2; continuity equation
j = 3; s-momentum equation
j = 4; y-momentum.equation
j = 5; energy equation

refers to conditions on lower boundary (body side) of kth strip

refers to conditions on upper boundary (shock side) of kth strip

nose

radiative

shock

stagnation point conditions

free-stream conditions

method of integral relations

time asymptotic technique

ANALYSIS

The application of the integral method and the derivation of the approxi-
mating system of nonlinear ordinary differential equations closely follows the
development presented in reference 6. However, an Nth order approximation is
considered herein which involves the construction of N parallel computational
strips between the body and the shock. This construction of parallel strips
corresponds to scheme I of the method of integral relations (MIR) as described
by Belotserkovskiy (ref. 5). For N = 1, the equations which follow will reduce
to the equations in reference 6.

Governing Equations

The conservation equations for the steady axisymmetric flow of an inviscid
radiating gas written in a body-oriented coordinate system are (from ref. 6)



3(Gj(cr)

6 ds 3n
+ LJ = °

where

5

r

I2 = pu

and 6 = 6(s)

L-| = -(1 + Q5) tan (w - 9b)= 0

62 = pv

= p + pu2 63 = puv

L2 = 0

Lo = - - 6n. sin 0K p + Qrl4
\ds ds '

14 = puv GH = p + pv2 L4 = -(Qr + < cos 85)? - Qrpu2

I5 = puH 65 = pvH L5 =

(1)

(2)

The relationship between the shock and the body geometry in a body-oriented
coordinate system is governed by equation (1) with j = 1 (ref. 6).

The relation for L$ has been established by making the local tangent
slab approximation so that from reference 6,

QRs = — (QR> = 0
ds

QR =

The coordinate system is presented in figure 1. All these quantities have
been nondimensionalized as follows:

y =

6 =
6*

%

RN

V =

Q .

u =
V «
CO

r =
RN«

"oo oo

p =

p =

H r
H«

(V

(3)

in addition to equation (1) relationships for p = p(p,h) and for
as a function of thermodynamic properties across the shock layer are required
and are presented in later sections.



Application of MIR

In figure 1 the computational field in the s,n coordinate system" is
shown divided into N strips of equal width. Each strip is indexed by an
integer K where K = 1 for the strip bounding the body and K = N for the
strip adjacent to the shock. The following linear approximations across each
individual strip are assumed:

where

p(n) =

- K)
(4)

- K)

K - 1 K
^ n ̂  -

N N

K = 1,2,...,N

J = 2,3,4,5

and the Ij are defined in equations (2). The subscript KO refers to condi-
tions on the bottom boundary of the Kth strip and K1 refers to conditions on
the top boundary of the Kth strip. At any given s location it can be shown
that (Ij)Ki = dj)(K+1)0 and PK1 = P(K+1)0 f°r K + 1 = 2,3,...,N.

Multiplying equation (1) by 6 and integrating the result with respect
to ri across the Kth strip yields

pK/N

JCK-D/N 9s ds

rK/N 8(Gjicr)
dn

rK/N
-D/N

= 0

'(K-D/N dT1 -

(j = 2,3,4,5) (5)

Equation (5) is simplified by applying Leibniz's rule to the first term,
by integrating the second term by parts, and by directly integrating the third
term. The resulting equation is

, d6

I,-r dn*> i -j~ds
(nljr)

K/N

(K-D/N
Ijr dn (GjKP)

dn = 0

K/N

(K-D/N

(6)



The remaining integrals are evaluated by substituting the linear relation-
ships from equations (4) and (7)

r = rfc + n6 cos 9^

< = 1 + Qy = 1 + QSn.
(7)

After further algebraic manipulation, the transformed governing equations
are written:

Continuity:

CI[(PU)RO - (PU)KI] + c2(pv)K1 + c3(pv)KO + CH(PU)KO

d(pu)KO d(pu)K1
+ 05 — + C = 0

ds ds
(8)

Normal momentum:

Pv2) j(1

+ C5(puv)K-| + 05

+ C8PKO + C9PK1

"d(puv)KO
r\ ( T\ _i_ AI i ̂  \ TJ-- wp + pu ;j{0

ds

= 0

-7

fd(puv)K 1

ds

pv2)KO + Ci|(puv)KO

- Q(p

(9)

Tangential momentum:

pu2)KO - (p + pu
2)K-|] Cn(pu2)KO + C5(pu

2)K1

'd(p

ds

Energy:

'd(p

ds
Q(puv)K-| = 0 (10)

qR)K1 + C3(pvH + qR)KO + Cij(puH)Ko + C5(puH)K1

d(puH)KO
C6-1T-* ds

= 0 (11)

7



where

dS
= |~3N(2K - 1)rb + 2(3K

2 - 3K + 1)6 cos 6b~|—L -Ids

o/ M/ K \
C2 = 6N

2 1 + Q6 - rb + 6 - cos 9b
\ N/\ N /

-> . K - 1W K - 1 \
Co = -6N2 1 + 06 rb + 6 cos 9b

V N / \ N /

C4 = 6

= 6

drb
3N (3K - 2)6 sin 9b

ds

drb
3N (3K - 1)6 sin 9b

deb"
ds

d9b"

dsds

Ge = 6[3Nrb + (3K - 2)6 cos 9b]

C7 = 6[3Nrb + (3K - 1)6 cos 9b]

C8 = -6 cos 9b[3N + (3K - 2)6Q]

Cg = -6 cos 9b[3N + (3K - D6Q]

It has been noted (ref. 6) that numerical instabilities can be elimi-
nated for N = 1 if the integrated form of the tangential momentum equation
(eq. (10)) is replaced by the exact form of the tangential momentum equation
on the body.

The exact form of the tangential momentum equation on the body can be
obtained from combining equation (1) (j = 2) with equation (1) (j = 3) while
noting that n. = 0 and v .= 0 to yield

(12)

d(I3)1>0

ds "1,0 = 0
ds

'(13)

When K = 1, equation (13) replaces equation (10).



Solution Procedure

Overview.- The ordinary differential equations (eqs. (8) to (10) and (13))
are numerically integrated around the body from the axis of symmetry (for 0°
angle of attack), adiabatic flow being assumed (H = Ĥ ). The limiting forms of
the governing equations are obtained on the axis of symmetry and it is found
that for N strips, there are N more unknowns than equations. The N addi-
tional relations required on the axis of symmetry are obtained from regularity
conditions on the sonic line and a sonic corner condition which must be satis-
fied downstream. Consequently, the solution procedure is similar to a shooting
method for a two-point boundary value problem, in which N initial conditions
on the axis of symmetry must be iteratively adjusted until N - 1 regularity
conditions and a sonic corner condition (M-|Q = 1-°) are satisfied downstream
on the sonic line.

For N = 1, the shock standoff distance Sstag ^s the initial condition
which is iteratively adjusted to force M = 1.0 at the sonic corner. For
N > 1, the velocities at the boundaries of adjacent strips are also iteratively
adjusted so that the governing equations can be integrated across the saddle
point singularity located on the sonic line. (A description of the saddle point
singularity and the behavior of the governing equations near the singularity
are presented in refs. 3, 5, and 6.)

A fully converged adiabatic solution is obtained when all downstream regu-
larity conditions and the sonic corner condition are satisfied by using the
adjusted iterative variables at s ='0 for initial conditions. The thermody-
namic conditions around the body are saved and radiative heat fluxes are calcu-
lated and saved for use in the energy equation. Equations (8) to (11) and (13)
are now numerically integrated around the body from the axis of symmetry (by
using the updated values of the radiative heat fluxes) and a new set of initial
conditions must be obtained. When a converged solution is obtained by using
the old values of radiative heat fluxes, new values for the radiative heat
fluxes can be calculated by using the updated thermodynamic distributions.
Thus, there are two iterative procedures involved in obtaining a converged non-
adiabatic solution. The first procedure (Procedure I) involves an iterative
process on the initial conditions to obtain a solution around the body while
holding the radiative heat flux distribution unchanged (even though thermody-
namic distributions are changing during the process). The second procedure
(Procedure II) involves the process whereby the radiative heat fluxes are
updated everywhere in the field after which program control is passed back
to Procedure I. As program control alternates between Procedure I and Proce-
dure II, changes in the radiative heating distribution go to zero and conver-
gence is achieved.

Initial conditions.- The transformed system of governing equations includes
4N ordinary differential equations (eqs. (8) to (11) and (13)), which are inde-
terminant at s = 0. The limiting forms of these equations are obtained by dif-
ferentiating them with respect to s. However, all the terms in the tangential
momentum equations vanish quadratically at s = 0; thus, a single differentia-



tion does not remove the indeterminacy. One can either differentiate the tan-
gential momentum equations again with respect to s and solve for d2p/ds2

along the symmetry line on the strip boundaries or ignore the tangential momen-
tum equations on the symmetry line. The first approach ultimately requires a
specification of d2p/ds2 on the stagnation point whereas the second approach
only requires a specification of p on the stagnation point. Because d2p/ds2

could not be adequately specified for many different body shapes, the second
approach (ignoring tangential momentum on the symmetry line) was implemented.

The limiting form of the governing equations on the symmetry line are:

Continuity:

C2
f(pv)Ki + C3

f(pv)KO
f du\ / du\
p — + 2C5 p — = 0

^ ds/KO \ ds/K1

' (14)

Normal momentum:

- C5QPK1 +

'(p + pv2)KO

Cg'PKI = °

/ du\
2Ci| pv —

\ ds/

/ du\
2C5 pv — - C4QPKO

\ ds/K1

(15)

Energy:

C 2 ' (pvH + qR)K 1 + C3 ' (pvH + qR)KO

where

du\/ du\
p H — + 2 C 5 ( p H - ] = 0

\ ds/Ko \ ds/F

_
C2' = 6 N 2 ( 1 + Q5stag -)(— - 6 stag

ds N/

C3' = -6N 2 l + Q6

C8' = -Sstag (3K - 2)6stagQ]

d6b
C9' = 6stag — [3N + (3K - 1)6stagQ]

(16)

(17)
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The unknowns in equations (14) to (16) are

Unknown

P10» P20

V10» V20>

du-)o/ds,

•••> PNO» PNI

•••» VNO« VN1

du20/ds» •••> duj^o/ds, duj^i/ds

QR10i QR20» •••» <1RNO» QRN1

H10« H20

P10« P20

6 stag

..., HNO, HN1

..., PNO. PNI

Number of

N +

N +

N +

N +

N +

N +

1

unknowns

1

1

1

1

1

1

The variable %i is equal to H^ from conservation of energy across a
shock. (For adiabatic flow H is a constant equal to H^ and equation (16)
is redundant.) Values of qRio> QR20> •••» ^RNO* and QRN1 are eQual to zero
for an adiabatic solution and are calculated from thermodynamic data on the
stagnation line (obtained from Procedure I) by using a tangent slab approxima-
tion for nonadiabatic solutions. Note also that VIQ = 0 (no mass flux through
body) and that the stagnation pressure p-|Q can be approximated as (ref. 6)

P10 = PS + - Psvs

In addition, there are N + 1 local equations of state (see appendix)
relating pressure to density and enthalpy on the strip boundaries. There are
also two more equations (Rankine-Hugoniot relations) governing the conservation
of mass and momentum across a normal shock. Consequently, there are a total of
4N + 3 equations and 5N +3 unknowns. The N additional relations required
come from regularity conditions on N - 1 strip boundaries between the body
and the shock which must be enforced on the sonic line and the imposition of
a Mach number of 1.0 at the aft corner of the body. There are N unknowns
^stag» V20» V30» •••> and VN()) wnich must be guessed at initially and
iteratively corrected until all N conditions are satisfied simultaneously
(Procedure I).

This procedure is most easily implemented for N = 1 where, in the sonic
corner problem, only one variable is iterated to force a Mach 1.0 condition at
the aft corner of the body. If the Mach number M-JQ is greater than 1.0
before the corner or if the solution to the governing equations will not con-
verge at some downstream location (see next section), 6stag ^s increased.
If the Mach number is less than 1.0 at the aft corner of the body,
decreased.

'stag is

11



Solution of governing equations downstream of symmetry line.- The deriva-
tives in equations (8) to (11) and (13) are calculated by using three-point
backward finite-difference formulas. For example,

dpu
-
ds

= C-|pu10(s) + C2pu-|o(s -
 AS-|) + C3pui0(s - As-| - As2)

10

where

•G! = (1 + 2f)/[f As2(1 + f)]

C2 = -(1 + f)/(f As2)

C3 = f/[As2(1 + f)]

f = As-|/As2

As-] current increment in s

As2 previous increment in s

The conservation equations, coupled with the local equations of state (appen-
dix A) , the Rankine-Hugoniot relations (ref . 6) , and the shock geometry rela-
tion (from eq. (1), j = 1)

d6
-- (1 + Q6) tan (o> - 9b) = 0 (18)
ds

now form a system of 5N + 5 nonlinear, algebraic equations with 5N + 5
unknowns. These algebraic equations are solved at every integration step by
using a quadratically convergent Newton-Raphson technique. For the case of
adiabatic flow, H is a known constant and the energy equations can be
replaced; thus, a system of 4N + 5 equations with 4N + 5 unknowns remains.
The equations are solved at a given s location, an increment As is chosen,
and the procedure is repeated at a new body station until the sonic corner is
reached or the Newton-Raphson technique fails. (This failure occurs because
the system of equations becomes ill-conditioned.) At this point the initial
conditions are adjusted and the entire solution procedure is repeated until all
the regularity conditions on the sonic line are met and the Mach number at the
aft corner of the body is~ equal to 1.0.

Radiative heating calculations.- The coupling of the radiative heat flux in
the energy equation is accomplished in an iterative manner (Procedure II). An
adiabatic solution is obtained and the thermodynamic state at each computational
point is saved. The radiative heat flux along a ray normal to the body is cal-
culated from these data by using the tangent slab approximation as utilized in
subroutine RAD/EQUIL (ref. 9). Within RAD/EQUIL, line and continuum radiation
are included. The radiative heat fluxes on the strip boundaries are stored and
used in the energy equation to compute an approximation to the nonadiabatic
solution. A new thermodynamic state from the latest nonadiabatic solution is

12



used to compute new radiative heat flux distributions. This successive substi-
tution process is continued until

n n-1
QR.stag ~ °.R,stag

< 0.0005

QR.stag

Values of QR away from the stagnation point can have larger differences
between iterations but it was found that the convergence criteria specified at
the stagnation point will result in all variables being converged to within
three significant figures. A flow chart of the entire solution procedure is
presented in figure 2.

In some cases with strong radiative heating, it was found necessary to
damp the calculated radiative heat flux when substituting into the energy equa-
tion. Thus, it would be specified that

qR
n = DqR

n + (1 - D)qR
n-1

where D = 0.75 would usually be a sufficient damping factor. For all the
cases considered, the convergence criterion for the nonadiabatic solution was
usually satisfied after five to seven successive substitutions.

Two-Strip Solutions

From a practical point of view, MIR is limited to a one-strip solution
(N = 1). The complexity of'the iteration procedure makes multistrip solutions
very difficult to obtain. The problems of a multistrip approach to the method
of integral relations can be summarized as follows by using a two-strip approx-
imation with equally spaced strips as an example.

In the two-strip approximation, there are two initial conditions on the
stagnation line which must be specified: ^stag» the 3no°k standoff distance,
and V2Q» the velocity on the strip boundary between the body and the shock.
A solution is obtained when the governing equations can be integrated along
each strip to a line normal to the aft corner of the body with a Mach number
of 1.0 at the corner. For the conditions illustrated in figure 3, the equa-
tions must be integrated across the sonic line. The position of the sonic
line in the flow field gives an indication of the location of singular points
of the governing equations (ref. 5). The iterative variable <$gtag and V2Q
must be adjusted to a precision fine enough to simultaneously allow the gov-
erning equations to be integrated through a singularity in the transonic region
of the flow field and to force the Mach number condition at the corner.

In reference 6, it was reported that about four figure accuracy in ^stag
is necessary to integrate through the transonic region of a sphere using a one-
strip MIR. It was also reported that there was poor agreement with experimental
data in the transonic and low supersonic regions because no criteria can be
established to guide further refinement of <Sstag to imProve the solution. In
the flow field depicted in figure 3, much of the region above the cone flank

13



can be classified as transonic and low supersonic. Therefore, in a two-strip
procedure, one should expect some difficulty in using MIR since the upper strip
will pass through a long region of transonic and low supersonic flow.

Many of the difficulties associated with a two-strip MIR can be overcome
if the flow field surrounding the body is characterized by a sonic line which
lies very close to the downstream boundary of the computational domain (fig. U).
Such flows can be found on very wide angle bodies although the details of the
location of the sonic line are also Mach number and y dependent. A two-strip
solution procedure with equally spaced strips was successfully implemented for
flows exhibiting this type of behavior in helium (y = 1.67). The criteria for
obtaining a solution can be summed up as follows:

(1) MIQ = 1 + 0.01 on aft corner of body

(2) Shock angle w is monotonically decreasing

(3) v2o(s) < 0

The iterative variable S^t-as is held constant and the .variable von isstag n n_-| ^u
V20 - V20 ft

iterated according to the criteria described. If - < 10-°, where the
V2Q

superscript n indicates the nth iteration, and all of the solution criteria
have not been met, then <Sstag i-3 adjusted and the iteration on V2Q is
implemented again. The procedure is continued until all the solution criteria
are met . A sample calculation is presented in figure 5 with comparisons to
experimental data from reference 10 that use this approach.

However, there are still some problems with this approach. The execution
time for this program on the computer is significantly increased because it
involves a double iteration procedure and because a smaller integration step
size (as compared with the one-strip MIR) is required to maintain stability.
The solution procedure is not closed. There is a small range of values for
^stag an<^ V20 which can be used that satisfy the solution criteria. In the
small number of cases tested, this relationship between Sstag

 anc^ V20 i3

linear (fig. 6). The final problem is that the iteration procedure will only
work for values of 6stag

 anc* V20 close to the true solution. A one-strip
solution must be obtained to determine an approximate value for <Sstag to be
used in the two-strip solution. Then a range of values for V2Q must be
determined so that the solution can be integrated far enough downstream to
insure that the criteria for adjustments on V2Q are still valid.

Typically, values for V2Q differing by 5 percent from V20 could be
iterated to obtain a solution to the problem. (The quantities V^Q and
6stag

 are the values of V20 and Sstag which satisfy all the convergence
criteria.) Values of V2Q differing by more than +5 percent from V20
would cause the solution to diverge before the sphere-cone junction and no
clear reason for this divergence was observed. In many cases, this divergence
was manifested by the fact that the Newton-Raphson solution of the governing
system of nonlinear algebraic equations would fail to converge to any solution
near the stagnation line. (Other two-strip solutions have been reported by

14



Belotserkovskiy (ref. 5), Inouye and Marvin (ref. 11), and Holt and Hoffman
(ref. 12). The complexity of the iteration procedure and the increased com-
puter time required for mathematically closed two-strip solutions have caused
most researchers using the method of integral relations to concentrate on
obtaining as much information as possible by using the relatively simple one-
strip approach.)

For wide-angle bodies where the sonic line lies close to or outside of the
computational plane (fig. 3), a workable two-strip procedure can be created by
eliminating the requirement of equally spaced strips. When a very narrow strip,
Ari-i ~ 0.075, is placed close to the body and a second wide strip is used to
complete the shock layer , it is found that solutions can be obtained by using
the same integration step size as the one-strip methods. Furthermore, the
solution became relatively insensitive to the choice of one initial condition
V2Q (the value of V2Q °n the stagnation line which satisfies all conver-
gence criteria to the sonic corner). Consequently, the solution procedure
behaves like a one-strip MIR if a reasonable specification can be made for
V20 assuming a quadratic pressure variation across the stagnation line

3p
with — =0 at n = 0, one can write

9n
P20 = Pstag + (Ps - Pstag)(Ani)2 (19)

This value of p2Q can be used to calculate V^Q from the limiting form of
the governing equations on the stagnation line. The reformulation of this two-
strip problem requires another derivation of the governing equations. Now,
rather than integrating from (K - 1)/N to K/N in equation (5), it is neces-
sary to substitute the proper values of r\ at each strip boundary. The only
change which results is in the strip constants of . equations (12). These strip
constants are now expressed as follows:

C2

C3

= BPA2 rb + BBS 6 cos 9b

= (1 + 6Q IT)(rb + 6 IT cos 9b)

= -(1 + 6Q TF)(rb + 5 TF cos 9b)

/ drb d9b\
= «S BMA2 - BB1 6 sin 9b

\ ds ds /

/ drb __
C5 = <SlBMA2 - BB2 6 sin 9b ]

\ ds ds

C6 = 6(BMA2 rb + BBT 6 cos 9b)

C7 = <S(BMA2 rb + BB2 6 cos 9b)

C9 =

-6 cos 9b(BMA2 + BBT 6Q)

-5 cos 9b(BMA2 + BBT 6Q)

(20)
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where

BfiT = (IT + 2AT)BMA2/3

BB2 = (2B1 + ADBMA2/3

BB3~ = (B12 + AT BT + AT2)/3

BPA2 = (IT + IT)/2

BMA2 = (BT - AT)/2

AT = (K - 1)Ani

IT = Am + (K - 1)(1 - Am)

The two-strip solution procedure described requires adjustment on only one
initial condition and has been used as a tool for assessing the effectiveness
of the MIR for use in predicting radiative heating over sonic corner bodies.

RESULTS AND DISCUSSION

Flow field calculations have been made over spherically capped cones and
hyperbolic bodies of revolution with the numerical techniques described herein.
All the body shapes considered are characterized by having the sonic line of
the flow field attached at the aft corner of the body. All the solutions are
obtained for hydrogen-helium gas mixtures because of the current interest in
exploration of the outer planets by instrumented probes.

A time asymptotic technique (TAT) as developed by Sutton (ref. 7), for
inviscid, radiating flow fields has been used as a basis for all the compari-
sons. The technique , which has been tested against other flow field routines
and experimental data, has been found to be an accurate, reliable method which
has been used extensively for making radiative heating calculations over plane-
tary probes (ref. 13). The TAT was initially developed for treating smooth
bodies without sonic corners, but a program modification allows a special treat-
ment of the governing equations at the aft corner of the body to treat a sonic
condition by following the method of Barnwell (refs. 14 and 15). However, the
program modification fails when the sonic line of the flow field moves outside
of the computational domain of a body-oriented coordinate system. This failure
occurs because the backward difference formulas used to obtain the outflow
boundary conditions in the TAT are only valid in a supersonic domain. (Barnwell
uses polar coordinates at the corner to overcome this problem, but Sutton 's
program was never modified in this manner.) Consequently, for given free-
stream conditions, all comparisons are made where the upper bound on the body
angle is restricted so that the sonic line is within the TAT computational
domain, and the lower bound on the body angle is restricted so that subsonic
flow exists along the body to the aft corner as required by the present method.
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Solutions are obtained for the following free-stream conditions:

Case I:

CH = 0.74

CHe = 0.26

Vro» = 39.09 km/s

POO* = 4-65 x 10~'t kS/m3

pm* = 244 N/m
2

Case II:

CH = 0.79

CHe = 0.21

VTO« = 28.19 km/s

POO* = 1-°6 x 10~3 k8/m3

Pa>* = 0 N/m2

Case III:

CH = 0.79

Cne = °-21

V^* = 31.90 km/s

P»* = 7-98 x 10~4 kg/m3

Poo« = 0 N/m
2

Case IV:

CH = 0.79

CHe = 0.21

V^* = 39.09 km/s

Pj* = 3.90 x 10-U kg/m3

pm« = 0 N/m
2
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Case V:

CH = 0.20

CHe = 0.80

V * = 18.13 km/soo

p^* = 2.99 x 10-3 kg/m3

p * = 0 N/m2oo

(Free-stream pressures equal to zero are acceptable specifications because the
static pressure contribution to the momentum relationships across the shock are
extremely small at these velocities.) Execution time for the MIR routine is
approximately two to three times faster than that for the TAT for all of the
solutions presented herein.

Both MIR and TAT use subroutine RAD/EQUIL to calculate the radiative
heating (ref. 9). Cases II to V were run with the same version of RAD/EQUIL
(RAD 69). An updated version of subroutine RAD/EQUIL (RAD 73) is incorporated
into the TAT for the purpose of calculating Case I. RAD 73 has been stream-
lined for faster computations and it treats the hydrogen line contribution to
the radiation in a more accurate manner. The MIR uses the RAD 69 version for
all the cases. The input data deck for RAD 69 is modified to reflect some of
the internal changes in the way RAD 73 treats the hydrogen lines. It is seen
in figure 7 that both versions of RAD/EQUIL yield radiative heating results
which agree closely for a given thermodynamic distribution across the shock
layer typical of Case I.

Figure 8 presents adiabatic results for surface pressure and shock dis-
placement distributions corresponding to Case I for a 70° hyperbola with a nose
radius to base radius ratio of 0.5 (RN* = 0.223 m). The MIR prediction of sur-
face pressure is approximately 7 percent less than predictions made by the more
exact TAT in the region ahead of the sonic corner. This type of underpredic-
tion is typical of a single-strip MIR when applied to sonic corner bodies, as
observed by South (ref. 3) and Jones, et al. (ref. 16) in comparisons made with
experimental data. Shock standoff distance is also underpredicted in this case,
especially near the sonic corner.

The previous case was also computed by including the effect of radiative
heat transfer. With radiation transfer, the shock layer experiences radiation
cooling due to the radiation that escapes through the shock. The nonadiabatic
results are shown in figure 9. Note that there is fair agreement between both
methods in the stagnation region for shock standoff distance and surface radia-
tive heating. For this case, the MIR overpredicts the shock standoff distance
for about one-half of the forebody when compared with the TAT. Also the non-
adiabatic shock standoff distance is considerably less than the corresponding
adiabatic value. For example, at the stagnation point, the TAT predicts a
17-percent decrease in 6stag while the MIR predicts only an 8-percent
decrease. At the aft corner of the body, the TAT predicts a 9-percent decrease
in 6 whereas the MIR predicts only a 3-percent decrease. The comparison of
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radiative heating predictions closely follows the trend of the shock standoff
distance predictions. The largest differences between the two prediction tech-
niques occur along the body near the sonic corner.

The differences in the percent change of 5stag brought about by radia-
tion transfer point out the insensitivity of the MIR relative to that of the
TAT. This insensitivity is a consequence of the linear approximations in equa-
tions (4) of properties across the shock layer for a one-strip MIR. Profiles
of flow field variables as predicted by the two techniques are compared in fig-
ures 9(b) and 9(c). Note the large gradient in p and h predicted by the
TAT near the body. On the stagnation line, there is good agreement between p
and h as predicted by both methods over most of the shock layer. However,
the radiative cooling near the wall causes the surface values of p and h
to differ by 19 percent and 42 percent, respectively. ^Percent difference is

MIR prediction - TAT prediction \
defined by x 100.)

TAT prediction /

Pressure predictions agree within 3 percent on the stagnation line. A qua-
dratic variation of pressure across the shock layer was also tried in several
cases. Although MIR pressure profiles with a quadratic variation agreed more
closely with the TAT pressure profiles in the stagnation region, there was
little effect on the overall flow field predictions.

Further downstream at a body station s = 1.4, density and enthalpy pro-
files (fig. 9(c)) follow much the same pattern as in the stagnation region.
There is a larger percentage difference between the comparisons for density and
pressure than occurred at the axis of symmetry. The TAT also predicts a larger
mass flow rate near the body as compared with the MIR solution (fig. 9(c))
which is locked into a linear variation across the shock layer according to the
assumptions made in equations (4).

When flow field solutions are obtained over less blunt bodies, the MIR
predictions show larger differences as compared with predictions by TAT. Fig-
ures 10 to 12 show shock standoff distance and radiative heating distributions
calculated by both the MIR and the TAT for Cases II, III, and IV over a spheri-
cally capped cone (0C = 60°, RN*/rg = 0.5, and RJJ* = 0.223 m). These condi-
tions correspond to trajectory points for an entry into a Jovian atmosphere as
reported in reference 13.

The comparisons between the two methods are poor. Shock standoff distance
is accurately predicted in the stagnation region, but it is significantly over-
predicted by the MIR along the cone in every case. The radiative heating levels
on the cone are also too high. Some insight into these large discrepancies can
be gained by looking at the details of the flow profiles for one of these cases.

Density, enthalpy, and pressure profiles across the shock layer at two
body locations for Case IV are presented in figure 13- The comparisons here
between the MIR and TAT are similar to those presented in figure 9. There is
a large difference between the two methods in the pu profile across the shock
layer. Because the TAT calculates a larger mass flow rate than the MIR, it
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follows that the TAT will yield a smaller shock ,standoff distance than the MIR
at this location. In general, the shock layer thicknesses along with the pres-
sure and temperature levels are critical parameters for determining radiative
heating levels on planetary probes (ref. 13). The large enthalpy levels near
the wall and the large shock standoff distances predicted with the MIR combine
to cause large radiative heating levels compared with TAT results.

Results of calculations for Case V (spherically capped cone, 6C = 62°,
%*/rB = °-5i and %* = 0-223 m) are presented in figure 14. This case is one
for which a two-strip solution could be obtained, as described in the previous
section. (Free-stream conditions for Case V are those for an entry into Uranus
as reported in ref. 13.)

Pressure and temperature distributions are presented in figures 14(a)
and 14(b). The two-strip solution improves the MIR pressure prediction as com-
pared with the TAT, except near the sphere cone junction where a bump occurs in
the pressure distribution. This bump increased in height as the inner strip
height decreased. The bump is caused by the discontinuity in body curvature
at the sphere cone junction. No such irregularities were obtained on any two-
strip solutions of continuous curvature bodies. Because the irregularity was
confined to a small area of the flow field, no special differencing or smooth-
ing procedures were incorporated to try to eliminate this problem.

The TAT results for temperature variation are shown at nondimensional dis-
tance of n = 0 (body) and n = 0.07- The one-strip MIR agrees closely with
the TAT prediction at n = 0.07. However, there is a 1000-K temperature dif-
ference between the TAT results at n = 0 and n = 0.07. This difference is
indicative of the large gradients in enthalpy profiles near the wall which have
been observed in all the nonadiabatic results. The two-strip MIR agrees more
closely with the TAT result for temperature at ri = 0 than with the one-strip
method. However, even the two-strip method is unable to predict the same large
decrease in temperature near the wall as'the TAT. (See figs. I4(b), I4(e),
and I4(f).)

Shock standoff and surface radiative heating distributions are presented
in figures I4(c) and I4(d), respectively. There is good agreement in the stag-
nation region among all three methods for shock standoff distance. The two-
strip MIR and the TAT results agree closely over the entire body. The two-
strip MIR heating distribution is in good agreement with the TAT results over
the entire body. The one-strip MIR radiative heating distribution shows fair
agreement with the TAT in the stagnation region, but it falls below the TAT
results over the cone.

The improved comparisons of the two-strip MIR calculations with the TAT
calculations can be explained by examining the shock layer property profiles
shown in figures I4(e) and I4(f). There is very little difference between
the one- and two-strip solutions for the density, enthalpy, pressure, and
velocity profiles on the stagnation line except near the body. Near the body,
the enthalpy profile calculated by the two-strip MIR is much closer to the TAT
result than the profile calculated by the one-strip MIR. However, it is clear
that even with a two-strip solution, the enthalpy gradient is not nearly as
great as that calculated by the TAT. Density, enthalpy, pressure, and mass flux
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profiles calculated by using a two-strip MIR are still in good agreement with
TAT profiles at a body location s = 1.5 (fig. Hl(f)). The small bump which
occurs in the two-strip MIR density profile near the wall is a consequence of
the linear approximations made on pu and pu2 across the narrow strip.
/ ?•/ \
(Note that p(n) = [pu(n)] /[pu2(n)].J
V

Comparisons between the one- and two-strip MIR are presented in figure 15
for Case V with various cone angles. The relative difference between the one-
and two-strip radiative heating rate values becomes smaller as the cone angle
increases.

The two-strip MIR can resolve the enthalpy and density gradients near the
wall better than the one-strip MIR. The two-strip MIR also calculates a more
accurate pressure distribution around the flank of sonic corner bodies. How-
ever, the two-strip MIR has an extremely limited range of applicability. The
method can only be used when the sonic line lies near the computational bound-
ary (fig. 4). In the one comparison case that was available with the TAT, the
two-strip MIR calculated radiative heating levels that were within 10 percent
of the TAT values over most of the body. No other cases with entry conditions
significantly different from the one presented were found that could be calcu-
lated by using both the TAT and the two-strip MIR.

One -serious drawback of the two-strip method is that the procedure is not
truly closed. The ability of the two-strip method to converge depends on the
accuracy of the assumption that the sonic line lies very close to or outside of
the border of the computational domain at the aft corner of the body. Usually,
if that assumption is incorrect, the program will fail to converge to any solu-
tion with the two-strip method. However, some cases have been found where the
two-strip method converged to a physically unrealistic solution. Also, the two-
strip method is not always superior to the one-strip method. For example, there
is little difference in the radiative heating results between the one- and two-
strip methods for large cone angles (fig. 15). Consequently, the range of con-
ditions over which the two-strip method can offer any significant improvement
over the one-strip method is small.

CONCLUDING REMARKS

The one-strip method of integral relations is unreliable in making radia-
tive heating calculations over planetary probes with sonic corners. The method
yields surface pressures which are too low near the sonic corner and is unable
to resolve enthalpy and density gradients near the wall. As the solution is
marched downstream from the stagnation line, these errors combine to produce
gross distortions of the radiative heating levels to the surface.

A modification of a two-strip method of integral relations, as described
herein, does a better job of resolving the enthalpy and density gradients near
the wall than the one-strip method; however, the gradients predicted by the
two-strip method are still not quite as severe as those predicted by the time
asymptotic technique. The two-strip method does not distort the pressure dis-
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tribution around the body as severely as the one-strip method. In the one
detailed comparison case with the time asymptotic technique, the two-strip
method of integral relations accurately predicted the radiative heating levels
over the entire body.

Very little difference was observed in the radiative heating distributions
between the one- and two-strip methods for very large cone angles (9C > 75°).
Thus, for the very blunt bodies, there seems to be little advantage in going to
the two-strip method. There is also the possibility that the two-strip method
can converge to a physically unrealistic solution because the procedure is not
truly closed.

Consequently, the one-strip method of integral relations cannot be relied
on to obtain accurate estimates of radiative heating over planetary probe
vehicles for the conditions described herein. In some instances, a two-strip
method can be used to improve these estimates. However, the small range over
which the two-strip method can offer significant improvement over the one-strip
method makes it unrealistic to pursue further development of this technique.

\

Langley Research Center
National Aeronautics and Space Administration
Hampton, VA 23665
December 21, 1977
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APPENDIX

LOCALLY VALID RELATIONS FOR EQUATION OF STATE AND SPEED OF SOUND

Subroutine RAD/EQUIL (ref. 9) is used to obtain density, the mole fraction
of the considered species, the ratio of specific heats, and temperature as a
function of pressure and static enthalpy for arbitrary gas mixtures. An equa-
tion of state for a real gas in chemical equilibrium must be coupled with the
other governing equations to obtain a flow field solution. A successive sub-
stitution algorithm is time consuming, and in the region near the sonic line
singularity, the successive substitution can diverge. It is desirable to
derive a local equation of state at each point in the flow field which is
valid over the small range of anticipated pressures and enthalpies at that
point. This analytic equation of state is then coupled with the other govern-
ing equations and the entire system of equations is solved by using the qua-
dratically convergent Newton-Raphson technique. It is assumed that a locally
valid equation of state can be written as

p = ApBhc (A1)

Choose pa, pb, and pc equal to three values of pressure within the
anticipated pressure range. Choose ha, hb, and hc equal to three values
of enthalpy within the anticipated enthalpy range. (The anticipated pressure
range near the axis of symmetry is bounded by the stagnation pressure and the
pressure behind the shock which can be obtained directly from RAD/EQUIL. The
anticipated enthalpy range near the axis of symmetry is bounded by the stagna-
tion enthalpy and static enthalpy behind the shock. Anticipated ranges of
pressure and enthalpy at subsequent computational points are extrapolated from
converged values of pressure and enthalpy upstream of the points . )

Let

Pa =

Pb = P(Pb'nb>

pc = p(pc,hc)

where p(p,h) is obtained from subroutine RAD/EQUIL. If equation (A1) is to
be valid, the following equations must be true:

Pa = APaBhaC

pb = Apb
Bhb

c

pc = Apc
Bhc

c

(A2)
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APPENDIX

Taking the logarithm of both sides of equations (A2) and solving for A,
B, and C yields

[loge (Pa/Pc) loge (Pa/Pb) -
 loge (Pa/Pb) Io8e (P

c = - . - (A3)
[loge (Pa/Pc) loge (

ha/hb) - Io8e (Pa/Pb) loge (h

[loge
B = - - (AU)

[loge (
ha/hc) loge (Pa/Pb) - loge («a/

nb) loge

A = PP-Bna"C (A5)

Values for A, B, and C are calculated in this manner at the boundary
of every strip and at every integration step around the body. These values are
updated at every pass around the body. (Because the pressure and enthalpy lev-
els in the stagnation region do not substantially change during the last few
iterations, it should be possible to save values of A, B, and C, and thus
save additional calls to RAD/EQUIL. However, the present program was never
optimized in this manner.)

A comparison of results for density obtained by using a local equation of
state and a direct use of RAD/EQUIL are presented in table I.

It is necessary in this analysis to be able to locate the sonic line in
the flow field. A speed of sound must therefore be calculated at every compu-
tational point in the flow field. The speed of sound is defined as

a" =

However, y> ^g*> an^ T* are functions of pressure and enthalpy for arbi-
trary gas mixtures . Since a local equation of state must be determined at
every computational point , it is convenient to determine a local equation for
the speed of sound simultaneously, and thus eliminate an additional call to
RAD/EQUIL .

It is again assumed that a local equation for the speed of sound can be
written as

a = DpEpF

By following the development in the previous section, it is found that

[loge (Pa/Pc)
 lQge (aa/ab) - loge (Pa/Pb) loge

F = - : - - (A6)
[loge (Pa/Pc)



APPENDIX

Io8e (aa/ac)l
E = •• (A7)

[loge (pa/pc) loge (pa/pb) - loge (pa/pt,) loge (

D = aapa-Epa-F (A8)

where

aa = a(pa,ha)

ab = a(pb,hb)

ac = a(pc,hc)

and p's, p's, and h's with subscripts a, b, and c are defined in the
previous section. A comparison of results for speed of sound-obtained by use
of a local equation for the speed of sound and a direct use of RAD/EQUIL are
presented in table I.
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TABLE I.- COMPARISON OF APPROXIMATE RESULTS CALCULATED BY LOCALLY VALID

RELATIONS WITH EXACT RESULTS CALCULATED BY RAD/EQUIL

3 Tl
Density

Approximate Exact Percent
difference

Speed of sound

Approximate Exact Percent
difference

Adiabatic

0

.5

1.0

1.5

2.0

0
1

0
1

0
1

0
1

0
1

10.863889
10.413217

10.498678
10.371731

10.151106
10.294323

9.669698
10.185146

8.200939
9.941612

10.863889
10.415360

10.498678
10.371735

10.151106
10.294323

9.669696
10.185141

8.200835
9.941542

0.00000000
.02057538

,00000000
.00003857

.00000000

.00000000

.00002070

.00004910

.00126820

.00070410

0.32746270
.32580473

.32619309

.32341920

.32488561

.31950323

.32299906

.31421897

.31672379

.30319808

0.32746270
.32577076

.32619307

.32341908

.32488561

.31950322

.32299910

.31421911

.31672656

.30320109

0.00000000
.01042760

.00000610

.00003710

.00000000

.00000310

.00001238

.00004455

.00087457

.00099274

Nonadiabatic

0

.5

1.0

1.5

2.0

0
1

0
1

0
1

0
1

0
1

12.977966
10.413217

13.212973
10.369277

13.223761
10.293324

12.802525
10.187402

10.716830
9.941761

12.977966
10.415360

13.212912
10.369281

13.223746
10.293324

12.802514
10.187397

10.716787
9.941681

0.00000000
.02057538

.00046170

.00003858

.00011340

.00000000

.00008590

.00004910

.00040120
: 00080470

0.29983841
.32580473

.29161431

.32329269

.28612646

.31945370

.28288869

.31432563

.27932643

.30320371

0.29983841
.32577077

.29161350

.32329257

.28612637

.31945369

.28288868

.31432578

.27932757

.30320713

0.00000000
.01042450

.00027780

.00003710

.00003150

.00000310

.00000350

.00004772

.00040812

.00112794
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Shock wave

Body surface

N = number of strips

k = strip index

N = 4

Figure 1.- Coordinate system and strip indexing system.
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Shock

Sonic line

Figure 3.- Sonic line located in computational plane.
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Shock

Figure 4.- Sonic line located at boundary of computational plane.
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-1.2

MIR; 2-strip

MIR5 1-strip

O Experiment(Ref. 10)

Figure 5.- Comparison of one- and two-strip MIR results for shock shape over
70° spherically capped cone with Rn/rB =0.5, M =6.02, and y = 1-67.
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Figure 6.- Initial conditions yielding sonic velocity on corner of body for
two-strip solution with M^ = 6.02, y = 1-67, %/PB = 0.5, and 9C = 70°.
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(a) Surface pressure distributions.
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(b) Shock standoff distributions.

Figure 8.- Comparison of MIR calculations with TAT results. Case I; adiabatic,
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(a) Shock standoff and heat-transfer distributions.

Figure 9-- Comparison of nonadiabatic results for Case I. 70° hyperbola;
RN/rB = 0.5; and RN* = 0.223 m.
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(b) Stagnation line profile properties, s = 0.

Figure 9.- Continued.
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(a) Shock standoff distributions.
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(b) Radiative heat-transfer distributions.

Figure 10.- Comparison of nonadiabatic results for Case II.
Rjf/rB = 0.5; and RN» = 0.223 m.
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(a) Shock standoff distributions.
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(b) Radiative heat-transfer distributions.

Figure 11.- Comparison of nonadiabatic results for Case III.
RN/rB = 0.5; and RN» = 0.223 m.
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(a) Shock standoff distributions.
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Figure 12.- Comparison of nonadiabatic results for Case IV.
%/rB = °-5; and RN« = 0.223 m.
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Figure 13.- Shock layer profile properties for Case IV. 0Q = 60°;
RN/rB = °-5; and RJJ* = 0.223 m.
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(b)' Temperature distribution.

Figure 14.- Comparison of nonadiabatic results for Case V. 0C = 62°;
= 0.5; and %* = 0.223 m.
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(c) Shock standoff distribution.
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(d) Radiative heating distribution.

Figure 14.- Continued.
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