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STATISTICAL MODEL FOR AS PERITY-CONTACT TIME FRACTION
IN ELASTOHYDRODYNAMIC LUBRICATION
by Steven M. Sidik and John J. Coy*

Lewis Research Center

SUMMARY

The theory of two-dimensional Gaussian random processes was applied to determine
the time fraction during which there is asperity contact as a function of nominal elasto-
hydrodynamic (EHD) film thickness. Calculations were based on profile traces obtained
from typical bearing surfaces. The profile records were converted to digital form for
statistical analysis. Moments to fourth order of the power spectral density function
were computed and in turn used to calculate the probability distribution of local film
thickness minima where asperity contact is likely to occur. Finally, the asperity-
contact time fraction was calculated as a function of dimensionless film thickness ratio
" A by using two different methods. The number of asperity contacts per unit area of
the nominal contact was also determined.

The results were applied to obtain numerical results for a 20-millimeter-bore ball
bearing with three 7. 15-millimeter (9/32-in.) balls. The contact time fraction was
calculated for axial thrust loads of 90, 445, and 3100 newtons (20, 100, and 700 lb).

The contact time fraction varied from almost no contact to almost full contact (1 percent
to 90 percent) in a relatively narrow range of A (4 to 5). Full contact occurred at a
film thickness ratio several times larger than that commonly reported in the literature
where one-dimensional random process models were used.

INTRODUCTION

Elastohydrodynamic lubrication (EHD) is the term used-to describe part of the
technology concerning lubrication of concentrated mechanical contacts. EHD technology'-
is particularly important and useful in the design and analysis of rolling-element bear-
ings and gears.

*Propulsion Laboratory, U.S. Army R&T Laboratories (AVRADCOM).



Concentrated mechanical contacts are often called Hertzian contacts in honor of
Heinrich Hertz, who first published a theory on the contact of elastic solids (ref. 1).

In general, Hertzian contacts are flat and bounded by an ellipse.that is small when
compared with the radius of curvature at the point of contact. The Hertzian-contact
pressure distribution is parabolic over the contact ellipse. For lubricated bodies in
rolling contact a more comprehensive analysis is given by EHD theory, Both the shape -
of the contact zone and the pressure distribution are different from those given by
Hertz's theory. References 2 to 5 are of general interest. In essence, EHD lubricant
film formation depends on the coupled effects of physical changes in the lubricant,
which are caused by high pressures in the Hertzian contact area, and elastic changes
in the shape of the Hertzian contact area, which affect the pressure distribution. The
high pressures in the EHD contact area act to squeeze out the lubricant. However, the
lubricant becomes thicker (more viscous) with increasing pressure and resists being
squeezed out. The net result is the formation of a thin Iubricant film that is beneficial
in preventing seizure and rapid wear of the contacting parts. Knowledge of the EHD
film thickness is also essential for accurate prediction of fatigue life (ref. 6).

In evaluating the effect of various parameters on EHD film formation, physical ex-
perimentation is necessary. For many applications the EHD film thickness is the same
order of magnitude as the surface rms roughness. Experimental measurement of the
film thickness is very difficult because films are so thin. Various methods that have
_been used are optical (interferometry), X-ray, and electrical capacitance and conduct-
ance techniques (ref. 7). Of the aforementioned measurement methods, the capacitance
and conductance methods are most suited to measurement of film thickness in full-scale
bearings. The conductance method of measurement depends on having a known relation
between film thickness and contact time fraction. The contact time fraction is directly
related to the normalized average voltage observed when a low voltage is applied across
the lubricant film.

In 1964, Tallian and his coworkers (ref. 8) formulated a statistical model of bearing
surface roughness and used the model to infer EHD film thicknesses, based on electrical
conductance measurements. Their results were applicable to the regime of '"partial
EHD contact, '* where the load is shared by the EHD film and the high points or asperi-
ties of the metal surfaces that momentarily interrupt the lubricant film (ref. 9).

By the early 1970's it was generally accepted that partial EHD contact must be
viewed as a random process (refs. 9 to 12). Most researchers used stylus traces of
the surface to obtain profile statistics for the random process models. In 1971, Nayak
(ref. 13) explained how Longuet- Higgins' theory of ocean surfaces (refs. 14 to 16) could
be used to model rough surfaces as two-dimensional, isotropic, Gaussian random
processes. He showed that significant differences exist between surface statistics and
profile statistics and that a naive analysis assuming that profile statistics may be



directly used is erroneous (refs. 13 and 17). Sidik has extended the theory of Nayak to
obtain a model for asperity-contact time fraction as a function of film thickness in
partial EHD contact lubrication (ref. 18). In reference 19, the theory is generalized to
nonisotropic Gaussian surfaces.

The objective of the work described in this report was to apply the relevant results
of two-dimensional random surface analysis to obtain a relation between asperity-
contact time fraction and average EHD film thickness for a typical ball bearing that is
used in the NASA EHD test rig.

THEORY RELATING CONTACT TIME FRACTION TO FILM THICKNESS

The ball bearing for which this analysis was performed has a 20-millimeter bore
and three 7.15-millimeter- (9/32-in.-) diameter balls, figure 1. The contact angle is
17°, and the inner and outer race conformities are 53 and 54 percent, respectively.
The pitch diameter is 35.5 millimeters (1.4 in.). Three different thrust loads were
considered in the analysis of contact time fraction. Table I gives the calculated
‘Hertzian stresses and contact ellipse dimensions corresponding to the different loads.

Bearing surfaces are herein represented as two-dimensional Gaussian random
processes. The mathematical techniques are defined in appendix A. Longuet-Higgins
(refs. 14 to 16) and Nayak (refs. 13 and 17) have examined the geometrical properties
of random surfaces. In particular, they have derived expressions for the distributions
of heights of summits, mean curvatures of summits, slopes of profiles, and expected
density of maxima. Ina recent paper, Adler and Hasofer (ref. 20) have defined an
"upcrossing'' of a random surface above a particular level and derived an expression
for the expected number of such upcrossings per unit area of the reference plane.
Relevant results from this reference are used in the results and discussion section
of this report. Pertinent geometrical considerations from the aforementioned refer-
ences are presented in appendix B.

Under loaded conditions, assume that the ball and race surfaces are two-
dimensional ergodic Gaussian processes and that within the Hertzian contact zone the”
mean planes are parallel and separated by a lubricant film of thickness h. A cross
section of a single ball-race contact is presented in figure 2. Coordinate x is in the
direction of rolling. The ball surface is denoted by zb(x, y) and the race surface by
zr(x, y). The two processes z, and z,, are independent, with néean levezls My, =0
and By & 0, correlation functions Rb and Rr’ and variances % and 0., respec-
tively.

The composite process z = Zy + 2, is also gn ergodic Gaussian process with mean
zero and correlation function R and variance o¢°, where
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ozR(Tx, ‘ry) = 0 Ry (T4 Ty) + 0, R (7, 'ry) (1)

With this notation, then (as shown in fig. 3) any metallic contact occurrence is repre-
sented by the composite surface rising above the level h.

An approximation to the time fraction during which there is metallic contact any-
where within the Hertzian zone will now be derived. This derivation is motivated by
the problem described by Tallian (ref. 8), where this relation was used to measure EHD
film thickness.

Consider the process z above the x-y plane. At a level h above the reference
plane, pass a cutting plane that will occasionally intersect z. The sets of points in the
reference plane where z(x,y) = h are called excursion sets. Such excursion sets are
represented as the crossed areas in figure 4. Superimposed upon this plane is an
elliptical region that represents the Hertzian contact area. For constant rolling veloc-
ity, this elliptical region moves to the right at a constant velocity v through the region
bounded by the parallel dashed lines Yy and Yo- At the termination of a test period of
time T the Hertzian area is at the elliptical region at the right in figure 4.

If it is assumed that A = h/o is large, the number of excursion sets is reason-
ably represented by a Poisson process. In this event, there will be few excursions of
z above h and, hence, few metallic contacts. The contacts will be small in area, and
the probability of two or more contacts in a small area is negligible. The contact
occurrence is as follows: The dashed ellipse on the left in figure 4 represents the loca-
tion of the Hertzian area when the contact is first made. The dashed ellipse on the right
represents the location of the Hertzian area when the contact is broken. The two points
P(xM, yM) and P(xB, yg) denote coordinates of the make-contact and break-contact
occurrences. The distance of P(xp, yg) to the centerline of the ellipse on the right is
termed Lpg. Thus, contact exists for a total distance L that is composed of three
parts. Two of these parts are LM and Lp; the third is termed X and is the distance
Xy - Xp- From the Poisson assumptions, X is negligible with respect to LM and LB
and the excursions are uniformly distributed with respect to the y~axis. Also LM and
LB are approximately equal. As a result,

E{L} = 2E{Ly} =2 2)

2

where 7nl/2 is the average length of the Hertzian ellipse. The expected total contact
time E { T* } can be approximated by the product of the average number of excursions
and the average time of contact for each. Equivalently, E { T* } can be approximated
by the average number of excursions per unit area E { x} times the area rolled over,
times the average time of contact for each. If T is large, the rolled-over area is
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approximately vI'w, so that

E{T*) =E{x}(vTW)<;—l) (3)
VvV,

The expected contact time fraction is obtained as

E{Tc}:E{;*}e";WE{x} | (4)

Thus, E { T, } as a function of A can be calculated directly from a computation of

E { x} as a function of A. The derivation of E { x} is presented in appendix B, where
it is shown how E { x} is computed from the lower order moments of the power spectral
density function of the composite surface process.

The derivation to this point provides contact time fraction as a function of h for a
single Hertzian contact. Next, the results are applied to a ball bearing with three balls
for three different loads. It is assumed that at each of the six ball-race contacts the
mean film thickness is the same and that each contact is statistically independent of the
others. Because of the geometry of the balls and the r'ace, however, the nominal
Hertzian areas at the inner and outer race contacts are different. Table I presents the
calculated conditions at these contacts for three different loads. From equation (4) it
is evident that E { Tc } is simply the area of the Hertzian contact times E { x}.

Let Tc, in and Tc’ out denote the expected contact time fractions at the inner and
outer races for a single ball. Thus, the probability of no contact on a single ball is

1- Tc, inTc, out’ From the independence assumption, the probability of no contact on
any of the three balls is the quantity

- 3
1- Tc, ov =1~ Tc,inTc,out) ()
and the expected overall contact fraction is thus
T, =1-(-T,.T. —.)° (6)
c, ov ¢,in"c, out

Surface Measurement and Analysis

The first step in determining the expected number of excursions per unit area is to
obtain and analyze surface profile traces from the bearing surfaces. By using these
profile traces, the important surface parameters are computed as outlined in the pre- '



vious section. Samples of the microtopography of bearing surfaces were obtained by
using a surface finish inspection machine. The stylus used to obtain the traces had a
tip radius of 0. 00025 centimeter (0.0001 in.). The traces were recorded on the stand-
ard paper from the inspection machine and also recorded as a frequency-modulated
(FM) signal on magnetic tape for digitizing and further analysis. As explained in
appendix A, in order to characterize the surface statistics, one must first obtain pro-
file traces in at least three different directions. The surfaces of the ball and race
specimens were sampled to obtain records of the surface profile. Several traces in
different directions on the ball surface showed that it was an isotropic surface. How-
ever, the race surface was not isotropic. In addition, it was very difficult to obtain a
sample record on the race surface in any direction other than the rolling direction and
the ball radius direction.

In order to obtain the necessary additional traces, a flat specimen was prepared by
material and finishing methods identical to those used in making the bearing race. The
flat specimen was approximately 2.5 by 5.0 centimeters (1 by 2 in.) witha 0. 13- to
0.25-micrometer (5- to 10-puin.) CLA surface finish, Similarly, a surrogate ball,

14. 3 millimeters (9/16 in. ) in diameter with a 0.03- to 0.05-micrometer (1- to 2- pin.)
CLA surface finish, was used to obtain sample ball records of sufficient length. ,

Figures 5 and 6 show the microtopography of the ball and the flat specimen. The
traces shown in the figure were generated by making repeated traces in parallel direc-
tions. The trace lines are spaced on the graph approximately to the same scale as in the
trace direction. For the ball in figure 5(b) the traces are 6.4 micrometers (0. 00025 in.)
apart, which is the limit of the tracing machine's resolution for sideways adjustment.
For the flat specimen in figure 6(b) the traces are 63.5 micrometers (0.0025 in.) apart.
. In general, the adjacent traces are highly uncorrelated for the ball, which is expected
from the method of manufacture, The flat specimens show evidence of grinding marks
or grooves that run for 500 to 750 micrometers (0. 020 to 0. 030 in. ).

Traces to be analyzed were recorded for three different directions on the ball and .
six different directions on the flat specimen. Nominally, the traces were taken 45°
apart for the ball and 18° apart for the flat specimen. The first trace on the flat speci-
men was taken in the direction of the lay of the surface finish. This is the rolling
direction for the ball in the race. Five more traces were taken, with the last trace
being at 90° to the lay of the surface finish. The traces were taken several times and
were found to be exactly repeatable.

As mentioned previously, the raw surface data were recorded in analog form as an
FM signal on magnetic tape. This tape was sampled at equal intervals and written in
digital format on another tape. The sampling intervals and the number of sampled
points, along with the total sampled length, are presented in table II.



Each of the digitized profile traces was processed by a computer program that
performed the following seven steps:

(1) Plotted the input data

(2) Performed a moving-average trend removal

(3) Plotted the centered and detrended data

(4) Plotted a frequency polygon of the relative surface he1ghts

. (5) Provided a normal probability plot of the sample cumulative distribution function

(6) Estimated the zeroth-, second-, and fourth-order moments by a differencing
method for that profile

(7) Estimated the correlation function for that profile to five lag spacings and com-
puted the second and fourth derivatives of the correlation function by using
finite difference appfoxiinations

The results are given in the following section.

Profile Analysis

Plotted input. - All the plots were examined for faithful reproduction of the original
~ record and were visually found to be identical. For the sake of brevity, only the first

0.1 centimeter of trace 10 is shown as a typical result in figure 7. ' '

Moving-average trend removal. - The raw data required detrending for two rea-
sons. First, the stylus head does not follow a path parallel to the mean line of the pro-
file when tracing. This causes a linear trend, The other reason for detrending was to
anticipate the detrending that occurs ‘maturally in the lubrication process. - Therefore, it
was decided to remove trends with wavelengths longer than the Hertzian contact. The
moving -average trend remover, which is essentlally a high-pass filter; was effective in
removing these trends. .

The trend removal consisted of taking the input data record represented as

Zys - o5 2y and replacing it by a new record Zl’ o e oe ZN-K’ where
Z'_E = Zi - Zi | ’ (7)
2
where
i+§
2
- 1
Z. = Z
L ' | ZK ]
j=i-2
2



and K must be even. The number of points in the moving average is a function of the
Vsample interval and the load since the contact ellipse dimensions change with load. The
number of points for each load and each profile are given in table III.

Plotted centered and detrended data. - The first 0.1 centimeter of trace 10, after
centering and moving-average removal, is given in figure 8.

Frequency polygons. - A frequency polygon or histogram was constructed and
plotted for each detrended profile by determining the maximum and minimum surface
heights attained and dividing into k equal intervals (up to k = 100).

k =1+ 4(log N)2 (8)

The data record was then scanned, and the frequency fi of heights in each interval was
recorded. A sample frequency polygon for trace 10 is presented in figure 9. The fre-
quency polygons indicated a general agreement with Gaussian distributions.

~ Normal probability plot. - A simple graphical test for normality is to plot the
sample cumulative distribution function on Gaussian probability paper. The ordinate is
the proportion of observations in the sample that are less than or equal to h. The
abscissa is the relative height. If a plotted sample were to exactly represent a normal
distribution, the resulting points would fall on a straight line.

Plots for all sample records are provided in figure 10.

Estimated spectral moments. - There are several methods that might be used to
estimate the spectral moments of the surface profile process. Lindgren (ref. 21) dis-
cusses several, but a detailed comparison of the methods is not yet available. The
method chosen here is as follows: The spectral moments are given by the variance of
derivatives

mg = VAR[Z(ti)ﬂ

m, = VAR(Z'(t;)] T ’ 9)

m, = VAR[Z"(ti)JJ

where the derivatives are approximated by differences

Z{t.)- Zt; ;) O
Z'(ti) _ i i-1
ZNt.) - Z'(t: () > ' ' (10)
Zn(ti) = ( ! A ( i-1 .
A=t-t g J




and VAR( ) is the sample variance operator. Table IV presents the estimated moments
for the three load conditions.

The rms roughness of the surface is estimated by m%)/ 2 Note that m is approx-
imately the same for each ball trace. For the flat surface, m decreases almost
monotonically as the angle increases to 90°. Theoretically, m 0 should be independent

of dir_ection. We do not have an explanation for m 0 varying with direction. '

The values of m, for the ball traces are quite close for traces 2 and 3 but some-
what smaller for trace 1. Theoretically, they should all be the same. There is no
obvious reason for trace 1 and traces 2 and 3 to be different.

The values of m, -for the flat traces increase monotonically from the 0° to the 90°
angle traces. This is to be expected since traces 4 to 9 are sequentially taken from the
direction of lay to directly across the lay.

The values of m 4 for the ball traces are quite close for traces 2 and 3 but some-
what smaller for trace 1. Theoretically, they should all be the same. There is no
obvious reason for trace 1 and traces 2 and 3 to be different. The values of m 4 are '
all roughly the same for each of the flat traces.

Estimated correlation functions. - The correlation function for each profile was
estimated by the definitional formula

N-k
(Zl'z)(znk Z)
R, ==l 11
Xk e (11)
> (2, - 2P
i-1

for k =1,5. This was done because there is a well-known relation between spectral
moments and derivatives of R evaluated at the origin (ref. 22),

i (93
my, = my(-1)'RZ1(0) (12)
This relation serves as a way to check the general accuracy of the moment estimations ™

described in the previous section. The derivatives are calculated by the difference
approximations: '



3 - 2
A

> 7 2

6A

R.(72)\ - 245R0 - 270R1 + 27R2 - 2R3

13
5 > (13)

90A

5 =

A4

T T 4 '
: 3A )

where R.(i) denotes the ith derivative approximated by a j point symmetric finite dif-

ference (ref. 23). The correlation functions for the 90-newton (20-1bf) load-case and
the resulting moment estimates are given in table V and plotted in figures 11 and 12.
The moments obtained are appfoximately the same as those obtained by using equa-
tions (9) and (10) (table IV). ‘

COMPOSITE SURFACE ANALYSES

Up to this point, each trace has been analyzed as a separate profile from the ap-
propriate surface. It is now time to pool the information from these profiles to obtain
a description of the surfaces in their two-dimensional forms. This is achieved by
mathematically combining the surfaces to obtain the statistics-for the composite‘ process.
The process consists of three stages, averaging the ball moments, adding ball moments
to flat profile moments, and estimating spectral moments by least squares. The stages
are discussed separately. ‘ .
Averaging ball moments. - Ball surfaces are typically finished in such a manner
that there is no preferential direction for surface lay. This is described statistically
by calling the surface isotropic. For the ball surface the three separate profiles can

10



be considered to"provide three independent observations. Therefore, the average
moments for the ball are given by-

mb .1 }

w
..a

~

(14)

mg = %ZmZi
mg =§Z“‘4ij

Adding ball mo/ments to flat profile moments. - According to the definitional equa-
tion for spectral moments (eq. (A8)), the spectral moments of a profile of the -composite

surface are simply the sums of the appropriate individual surface moments. The n th

moment of a composite profile in direction 6 is denoted by m, g the nth moment of

the flat surface in direction 6 by mfl 0’ and the nth moment of the ball profile by mb
Hence, it is true that ’

b f :
Wy g =Mp+my o (15)

Table IV shows that the moments of the flat surface dominate the ball surface for all
loads.
Estimating spectral moments by least squares. - The followmg relations between

the two-dimensional moments m;; and the profile moments m_ , were obtained from
equation (A9).

2
™0,6 = ™00 = % (16)

m2', g = Myg cos26 + 2m,, cos 6 sin 6 + mg, sinZe (17)

_ 4 35 s 25 i 2 .3 . 4
m4,6«m40 cos 9+4m31 cos 0 sin 6+ 6m22 cos“0 sin“6+ 4m13 cos 8 sin 6+m04 sin*@

- (18)

Equation (16) implies that the best estiniator for mg, is simply the average of the
fmo 0" The results for mg,, are 5. 97><10'2 6.41x10 -2 and 5. 90><10'2 square microm -

)

eter respectively, for loads of 90, 445, and 3100 newtons (20, 100, and 700 1bf).
Equation (17 provides one equation for each 6, or a total of seven equations in

11
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three unknowns. For each load the estimates for méo, my4, and mg, are given here
in a matrix format, emphasizing that this represents the covariance matrix of Yy A

and (,oy in the spectral density function.

The matrices are nearly diagonal, which

means that the distributions of Py and goy are effectively uncorrelated. For the

90-newton (20-1bf) load,

-3 -5
meq myq| |2:39x10 3. 4x10°
= 5 (19)
- -3
my; mgy| [3.4x10 5.73x10
For the 445-newton (100-1bf) load,
m m,i| [2.22x1073  1.31x107%4|
20 SHU I :
) 4 3 (20)
my4 m;o 1.31x10 5.58%x10
For the 3100-newton (700-1bf) load,
m m 2.17x10°3  -4.4x107°
20 11 : = o
) 5 3 (21)
Eqdation (18) provides one equation for each 6, hence, seven equations in the five
unknowns mya, Mgy, Moy, Myq, and mgy- For each load the estimates of these
moments are as follows: For the 90-newton (20-1bf) load,
m m m..] [6.65x102  3.88x107%  1.809x1072]
40 31 22 . : .
m m m,, |=13.88x100%  1.89x10°2  2.14x10°3| pm2 (22)
31 22 137 [° y . H
m m m 1.89x10°2  2.14x107%  7.2m1072|
M2 13 04| [ ) . |
For the 445-newton (100-1bf) load,
m,, m mo| [6.61x102  3.13x103  1.55%10°2]
40 31 TMagp PP . ' ,
m m m.o|=13.13x103  1.55x1072  4.39x1073| ym~? (23)
31 22 13| = |°" : ' H
;. m m m 1.55x1072  4.39x10°3  7.20x10°2
M2 13 04| L : ‘ |

12




For the 3100-newton (700-1bf) load,

~

K 1 [ -2 -3 -2
my, Mgy Mgyl [6.49x10 4.50x10 1.51x10

-3 - - -
mg; My, mys|=[4.50x10 1.51x10"2  5.33x1073 | ym 2 (24)
11.51x1072

L

' -3 -2
mys myq m04_J 5.33%10 7.05%10 |

.From appendix A, equation (A10), a spectrum or random process is isotropic if
my; =my3 =mgy =0

myq = Mpy =My (25)

myq = Moy = 3Myy =My

Note that my,, Myq, and mgy are much smaller than the other moments. Also, mg,

and m 40 are approximately equal to each other and to 3m22. The fourth-order

moments thus satisfy isotropy conditions. Further examination, however, shows that

mg, is approximately twice my - The second-order moments thus satisfy an elliptical
isotropy condition. A process is elliptically isotropic if

>

R(7y, 74) ~# R(2)
where
2 .2 2
¢ = aTy + Ty (26)

for some a > 0. Webber (ref. 24) discusses methods of treating such processes.

RESULTS AND DISCUSSION

The final result of this analysis was obtained by using the moment estimates for the
two-dimensional process to calculate the expected number of crossings per unit area
(egs. (B8) to (B12)) for various film thickness ratios. These expectations were then
used to obtain the contact time fraction T, (egs. (4) to (6)). The results are presented
in table VI. Curves of contact time fraction against film thickness ratio are plotted in
figure 13. The calculations for these results required some 30 hours of computer time.

13



For comparison, values of E { x} were calculated from the spectral moments by
using the method of Adler and Hasofer (eq. (B13)). Table VII presents the values of
E { x} and the resulting contact time fractions. Figure 14 gives the contact time frac-
tion curves from the method of Adler and Hasofer, which may be compared to the NASA
results in figure 13. Both sets of curves are similar in shape and in the spacing be-
tween the different loads. The NASA curves are shifted toward higher values of A by

~an amount approximately equal to 0.35. The reason for this difference is unclear. Both
methods should be asymptotically equivalent, and values of A greater than 4 should be
sufficiently large for the asymptotic results to hold. Adler and Hasofer's ''upcrossings''
seem closer to the required ""excursion sets' in the development of contact time frac-
tion than the approximation based on peak height distribution. Nevertheless both are
approximations. At this point it is not known which is the best.

Some comments are needed regarding the usefulness of these curves as a means of
measuring film thickness by the electrical conductance method of Tallian (ref. 8). Pre-
vious work has indicated that the contact time fraction begins to increase from zero at
A ~ 3 and monotonically increases until there is 100-percent contactat A ~ 1. By
comparison the results of this investigation show this same change in contact time frac-
tion occurring for film thicknesses several times larger. Also, the incremental change
in film thickness corresponding to the incremental change from no contact to 100-percent’
contact is smaller. Therefore, the usefulness of the model is limited to a narrow range
of film thickness for any given constant load. The theoretical differences in probability
distributions for peak heights of summits on a two-dimensional surface and peak heights
on profile traces along a fixed direction on the surface may account for these differ-
ences.

SUMMARY OF RESULTS

Relations for asperity-contact time fraction as a function of nominal elastohydrody-
namic (EHD) film thickness have been presented. The calculations were based on a
two-dimensional random surface model. Results were obtained for a 20-millimeter-
bore ball béaring with three 7. 15-millimeter (9/32-in.) balls. Surface traces were
obtained by using a profilometer, and a statistical analysis was performed in which the
profile traces were used as statistical sample records. Histograms, spectral moments,
and the number of asperities per unit area were obtained. The investigation yielded the
following results:

1. The contact time fraction varied from almost full contact (90 percent) to almost
no contact (1 percent) in the dimensionless film thickness range 4 to 5. Full contact
occurred at a film thickness ratio several times larger than commonly reported in the
literature.

14
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2. The composite surface process is approximately elliptically isotropic.

3. The surfaces measured were only approximately Gaussian.

4. The usefulness of the curves of contact time fraction as a means of determining
film thickness by electrical conductance measurements is limited to a narrow range of
film thickness ratio. ‘

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, September 13, 1977,
505-04. .
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APPENDIX A

CORRELATION AND POWER SPECTRAL DENSITY FUNCTIONS

The probabilistic behavior of an ergodic Gaussian random surface is entirely de-
fined by either the correlation function R or the power spectral density (psd) function
¥. They are Fourier transform pairs. A Gaussian random process z(X,y)is one
(1) that follows a Gaussian distribution with mean p and variance ¢“ and (2) for which,
for all finite n and values of Tg, i and Ty:d (i =1,n), the variables z(x + Tx, i’
vy + 7y .) follow joint mulhvanate normal d1$tr1but10ns In this report the correlatmn

function is defined as

R(‘T,T)—;EE{[Z(X+ y+7 )-u][z(x,y)- ]} | (A1)

This function measures the degree of relation between the heights of the random surface

"above two points of the reference plane that are a fixed distance and direction apart. -
The ergodic assumption states that the statistics of the process are not a function

of x and y. Therefore, the expectation may be taken in the ensemble sense as in .

equation (Al) or as an average over the x-y plane as follows:

R( q—)_T];;foo _ZF;T_/ fy[z(x+'r,y+'r)— ][z(x,y)- ]dydx

T.y-.oo . (A2)

The psd is the Fourier transform of R given by

S (@ 0y) = f f exp[-i(7 ¢ + TY(PY)]R(TX, T,) d, d7g (A3)

@r)?

Hence, by means of the inverse Fourier<transform the correlation function is obtained.

R('rx,Ty)=ff i 0 4 + T0)| 0y 04) doy doy (A4)

o0

The correlation function is a characterization of the surface in the x-y plane; the
~ psd is a characterization of the surface in the frequency domain, where ¢ - and (py

16



are frequencies. That is, a random surface z(x,y) may be thought of asa superp081-
tion of many surface waves of different wavelength, as follows:

12 N : ‘
2
z(x,y) = I\}I-Eo 0(N> nz::l cos (xq)x,n +YPynt €,)

where the frequency pairs (go ,n’ cpy ) are independent random observations from a
bivariate probability d1str1but1on with joint probability density function &(¢ — )

The €, are phase factors that are independent random observauons from a umform
d1str1but10n over [0,2r]. Frequencies at which the psd is largest contribute more.
cosine terms; frequencies at which it is smallest contribute the least. Shinozuka

(ref. 25) expands on this I:epresen’w.tion‘ and uses this technique to simulate multidimen-
sional processes.

Spectral Moments

The interpretation of the psd as a probability density function leads naturally to
considering the moments of that distribution as descriptors of its shape. In fact,
several authors (refs. 13 to 17) have shown that many geometrical properties (such as
peak heights, curvature, and crossings) are determined by functions of the lower order
spectral moments. These moments, mij’ are defined here as ’ '

N A
my; = 0 [m [w PxPy NPy @) dpy doy (A5)

The psd ¥(x,y), as defined here; is truly a probability density function. Thus, strictly
speaking, the m; as defined by équation (A5) should not include the factor 02. The ~
reason for including it in this way is so the spectral moments defined herein will corre-
spond to the definition of spectral moments as presented by Longuet- Higgins and Nayak
(refs. 13 to 17). ‘
From equation (A5), mg, =07, which is the variance of z(x,y). The quantities
mzo/oz, moz/cz, and mn/ g2 represent the va.r1ances and covariances of the fre-
quency distribution, respectively. That is, m20/° is a descriptor of the spread of the
marginal distribution of ) and m 02/02 is a descriptor of the spread of the marginal
distribution of cpy, while mll/ 02 describes the covariance of Py and ¢

2

e
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Single Profile Analysis

Webber (ref. 24) and Williamson and Hunt (ref. 26) have discussed methods of es-
timating the psd of the surface from measurements taken on a grid of points in the x-y
plane or from a series of parallel traces. From the spectrum estimate, the spectral
moments may be calculated. Nayak (ref. 13), however, has discussed a method of es-
timating the two-dimensional moments from a series of one-dimensional profiles ob -
tained in several different directions. This method is explained here.

Relation between surface and profile power spectral densities. - Consider a straight
line through the origin in the x-y plane and at an angle 6 to the x-axis. The height of
the surface above this line is a one -dimensional random function of r, the distance from
the origion. The correlation function and psd are defined by - '

R () iz E{Z() - W]Z@ + 7 - 1) (A6)
g .
and
(@) =$[: R9(72e'i¢7 ar : (AT)

The moments of the profile spectrum are calculated by

my =/ " (@) do (A8)

- 00

The moments of profile psd's and the surface psd are related by the following equation
(ref. 13): '

n

n .k n-k .
m) g = kz;) (k) m; g g Sin 6 cos 0 \ (A9)

where ({;) denotes the number of combinations of n things taken k ata time.

18



Isotropic random surfaces. - For isotropic random surfaces the surface profile

psd's are the same in every direction. Under isotropic conditions the correlation func-

tion R(7,,7 ) can be written as R(r) where r? = 7}2( + 72', and the psd  S(p (ph) can

be wr1tten as o ) where (¢ ) = cpx + 9032, Therefore, the spectral moments are re-

lated as follows:

myy =myg =mgy =0
myg = Moy =My (A10)

Myq = Moy = 3Mgy =my

19



APPENDIX B

SUMMITS AND LEVEL CROSSINGS

~ Surface characterizations relevant to this study are the number of summits per unit
area, the probability distribution of the summit heights, and the number of excursions
of the surface above a reference level per unit area. ‘
The first two characterizations have been extensively dealt with by Longuet- Higgins
(refs. 14 to 16) and Nayak (ref. 13). The third has been considered in an approximate
manner by Sidik (ref. 19) and in a more direct but also approximate manner by Adler
and Hasofer (ref. 20).
To calculate the distribution of summit heights, first assume z(x,y)to be an
ergodic Gaussian random surface process and let the following variables ¢ i (i=1,86)
be defined: -

22 |
£1=81x,5) =—z(x,y)
. ox2

£y = £y, 9) = 2
2_2x’y_axay

z(x,y)

2
£3.= £3(x, Y) 58_2 Z(X, Y)

~—

. (B1)
&4 = 54(X, Y) = Z(X, Y)
5 =£g(x,y) = 2 2(x,y)
ox
tg = Eg%,¥) = 2(x,)
oy J
It is well known (ref. 13) that £T = (El, Ce 56) follows a multivariate normal dis-

tribution. The expected number of summits of height £ 4 within a unit area is given by
the triple integral

~
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1) = L l648g - £21e7 (/2R az, azg (82)
#1252 @n)? /'V// , |

where the region of integration V is déﬁned by
£g <0 | (B3)
bty - £2 20
and -
My M3p My My,
Mgy Mgy  Myg -myy

F= ) (B4)
Mgy  Myg Mgy -Mpgpf -

Moo My
S = . , | (B5)
M1 Mg
1 T :
Q = (51:52;&3;&4).7’ (£1,§2,§3;£4) ‘(BG)

Equation (B2) was transformed to cylindrical coordinates followed by a rotation. The
transformation equations are



~
r-pcos @

V2

"31 =
£, _psin ¢ _
vz r (B7)

r +pcos ¢

Ve

1/2
€4 =Am06 J

§3=

It now becomes evident that the region V describes a semi-infinite cone,-as shown by
the limits of integration on the transformed equatmn

£(A) = /// a*-op, “A2R 4y gpar (B8
1.¢|1/2|S|1/2(2n)3 0 Jo0 o0 93/2 \ :

[+ - p cos o|T [_m m m Mool [+ - p cos o
Va2 : ) V2
p sin ¢ -m p sin ¢
— mgy Mgy  myz 1} ———=
Va . | m(%z V2
Q-= (B9)
I +pCos @ ma, m,g mg, - Moyl [r+pecos @
Va2 ' m1/2 V2
00
A "My ~Myy Mgy ! A
1/2 /2 _1/2 |
B | [mgo ™oo- ™go 1L ]

Equation (B8) was evaluated numerically on the digital computer. The expected number
of summits per unit area Dsum is given by the integral

Dgum =[: £(A) dA . (B10)

22



The probability density for summit heights is given by the ratio

p* (7)) = 2(A) (B11)

Dsum

The expected number of excursions above level A per unit area is approximated by the
product of peaks per unit area and the proportion of such peaks that exceed the level A.

B X))~ Dy [~ ) [ s ®12)

' This approximation is valid only in the limiting sense as A - «.
Adler and Hasofer (ref. 20) also provide an approximation for the upcrossings of a
process z(x,y) over the level A. Interms of the present notation, their results are

given by the relation
2
A]S|1/2 exp <—£—>
2

3/2 02

E{x(A)} ~ (B13)

\

(2m)

It is interesting to note that this expression does not involve any fourth-order moments.
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TABLE 1. - HERTZIAN CONTACT CONDITIONS AT INNER AND OUTER

RACES FOR THREE THRUST LOADS

[Width of rolling track is determined by major axis width.]

Race Contact condition Thrust load, N (1bf)
90 (20) 445 (100) 3100 (700)
Inner [Maximum Hertzian stress, GPa (ksi) 1. 28 (185) 2.09 (303) 3.63 (527)

Semimajor axis, c¢m (in.)
Semiminor axis, cm (in.)

0. 0510 (0. 0200)
0. 0066 (0.0026)

0. 0840 (0. 0330)
0.0110 (0.0043)

0. 1500 (0. 0570)
0. 0190 (0. 0076)

Outer

Maximum Hertzian streés, GPa (ksi)

Semimajor axis, cm (in.)
Semiminor axis, cm (in.)

1.13 (164)
0. 0460 (0. 0180)
0. 0086 (0. 0034)

1.85 (269)
0. 0740 (0.0290)
0. 0140 (0. 0055)

3.27 (474)
0. 1300 (0. 0500)
0. 0250 (0. 0097)

TABLE II. - DIGITIZATION SAMPLE INTERVALS, NUMBER OF SAMPLE

POINTS, AND TOTAL LENGTH OF SURFACE PROFILE SAMPLED

Trace Profile Sdmple interval, | Sample points, | Sampled length,
A, N cm
pm

1 |Bal, 0° 0.94 14 220 1.30
2 |Ban, 45° .75 32 232 2. 40
3 |Ban, 90° .71 9 954 S .10
4 |Flat, 0° 0.31 29 388 0.90
5 |Flat, 18° 25 122 LT
.6 |Flat, 36° 27 492 .84
7 | Flat, 54° 29 388 .90
8 |Flat, 72° 29 388 .90
9 |Flat, 90° 25 122 .77
10 [Fiat, 90° (repeat) 4} 28 440 .87




TABLE III. - TOTAL NUMBER OF SAMPLE POINTS

USED IN COMPUTING MOVING AVERAGE

Trace Profile Thrust load, N (lb)
90 (20) [ 445 (100) { 3100 (700)

1 |Bal, 0° 2163 | 3567 | 6163
2 [Ball, 45° 2711 4 475 7 729
3 |Bal, 90° 2857 41715 8 143
4 |Flat, o° 6623 | 10927 | 18875
5 |Flat, 18°
6 |Flat, 36°
7 |Flat, 54°
8 |Flat, 72°
9 |Flat, 90°

10 |Fiat, 90° (repeat)| ¥ Y Y

TABLE IV. - ESTIMATES OF SPECTRA L. MOMENTS

Trace Profile Thrust load, N (lb)
90 (20) | 445 (100) |3100 (700)| 90 (20) | 445 (100) |3100 (700)| 90 (20) | 445 (100) |3100 (700)
- Profile spectral moments
mg, pmz . my, dimensionless my, um'z

1 |Bau, o° 1.90x1073 (1. 92x1073 | 1. 91x1073 | 8. 48x1075 | 8. 49x107° | 7. 56x 1075 | 4. 071079 | 4. 21x107% | 3. 041075
2 |Bal, 45° 1.86x10°3 [ 2. 01x10°3 [ 2. 27x1073 | 1. 66x10™% [ 1. 67x107 % | 1. 68x 1074 [ 1. 22x10" 4 [ 1. 23x107 % [ 1. 24x1074
3 |Bal, 90° 1.81x1073 [ 1. 69%1073 [ 1. 26x1073 | 1. 66%107% | 1. 63x10-% | 1. 38x107%4 [ 1. 13x107% [ 1. 121074 [ 1. 01x1074
4 | Fiat, o° 7.94x1072(9.84x10°2 [ 6. 12x1072 | 2. 12x1073 | 2. 11x1073 | 2. 06x1073 | 6. 64x1072 | 6. 61x1072 | 6. 40%102
5 |Flat, 18° 6.59x1072 [ 6.99x1072 | 4. 22x1072 | 2. 65x1073 | 2. 69x1073 | 2. 57x 1072 | 6. 55%1072 | 6. 671072 | 6. 711072
6 | Flat, 36° 5.55x1072 [ 6. 19x10°2 | 6. 91x1072 | 3. 62x1073 |3. 64x1073 | 3. a0x1073 | 6. 44x1072 | 6. 471072 | 6. 56x1072
7 |Fat, 54° 6.06x1072 | 6.371072 | 7.58x1072 | 4. 38x1073 | 4. 46x1073 | 4. 421073 | 6. 771072 | 6. 74x10"2 | 6. 83102
8 |Flat, 72° 4.45x1072 | 4. 42x1072 { 4. 97x1072 (5. 07x1073 | 5. 191073 | 5. 08x 1073 { 7. 20x10°2 | 7. 25x10"2 | 7. 21x10™2
9 |Fnat, 90° 4.99x1072| 4.73x1072 | 5. 18x1072 [5. 65x1073 | 5. 62x1073 | 5. 821073 | 7. 141072 | 7. 12x10"2 | 6. 8Ox10"2
10 | Fiat, 90° (repeat)|4.96x1072]4.98x1072|5.05x1072 [5.72x1073 [5. 68x1073 | 5. 661073 | 7. 391072 | 7. 20x1072 | 7. 21x1072
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TABLE V. - CORRELATION FUNCTION ESTIMATES AND SPECTRAL

MOMENTS GENERATED BY USING EQUATION (12)

[Load, 90 N (20 1bf).]

Trace Profile Correlation Spectral moment calculated
by equation (12)

) mp, my m 4

: , 2 -2

R1 R2 R3 R4 R5 ym ©m
1 |Bal, 0° 0.9802 | 0.9293 | 0. 8623 | 0. 7903 |0.7198 | 1.90x1073 | 8.52x107° | 4. 171070
2 |Ban, 45° .9750| .9103] .8258) .7387| .6603|1.86x1073|1.66x10"%|1.24x107¢
3 |Bal, 90° .9750{ .9119| .8263| .7327| .6433 [1.81x1073|1.80x10" %] 1. 701074
4 |Fiat, o° 0.9987 | 0.9987| 0. 9984 | 0. 9981 |0.9978 | 7.94x1072 | 2. 12x1072 | 6. 64x10~2
5 |Flat, 18° .9981| .9968| .9946| .9917| .9881|6.59x1072 |2.67x1072 | 6. 60x1072
6 |Fiat, 36° .9969| .9927| .9859| .9769| .9660)5.56x1072|3.71x10"2 | 6. 62x10"2
7 |Fiat, 54° .9966 | .9913| .9826| .9714| .95806.06x1072 | 4.42x10"2 |6. 85x1072
8 |Fat, 72° - .9946 | .9857| .9712| .9526 | .9308 |4.45x1072 5. 10x1072 | 7. 25%102
9 ' | Flat, 90° | .9942| .9840| .9681| .9480| .92474.99x1072|6.15x10"2 8. 13x1072
10 |Flat, 90° (repeat)| .9945| .9847| .9690| .9491| .9261|4.96x107%|5.83x1072|7. 61x1072




TABLE VI. - DIMENSIONLESS CONTACT FRAC TIONS GENERATED BY USING

EQUATION (B12)

Load Dimensionless Summits_of ‘Excursions above | Dimensionless contact fractions
film height A level A per
thickness, | per square square
centimeter, centimeter,

N Inf A 1(A) E(x) Tc, in Tc, out Tc, ov
90| 20 4.35 3018 679.8 0.717 0.843 0.938
90 20 4.40 2440 543.9 .573 .65 .70
90| 20 4.50 1584 345.7 .364 .429 .399
90 | 20 4,60 1017 217.5 . 229 . 270 . 174
90 | 20 4.70 647 ~ 135.6 . 143 .168 . 0704
90| 20 4.80 407 83.7 .088 .104 -, 0273
90| 20 4.90 254 51.2 . 054 .064 .0103 -
g0 20 5.00 157 31.1 .033 .039 . 00378
90| 20 5.10 " 96 T 18,17 .020 .023 . 00137

445 | 100 4.55 1242 267.8 0.771 0.866 0.963

445 | 100 4. 60 994 212.2 .610 .686 . 804

445 | 100 4,170 632 132.2 .380 .428 .413

445 1 100 4,80 398 81.6 . 235 . 264 .175

445 | 100 4.90 248 43.9 .144 .161 . 0679

445 | 100 5.00 153 30.3 . 087 .098 . 0253

445 | 100 5.10 93 18.2 .052 .059 .00918

3100 | 700 4.80 403 '82.8 0.727 0.814 0.932
3100 | 700 4,90 251 50.6 .444 .498 ©.528
3100} 700 5.00 155 30.7 . 269 .302 . 224
3100 | 700 5.10 95 18.4 .162 .181 . 0851
3100 | 700 5. 20 57 10.9 .096 .108 . 0307
3100 | 700 5.30 34 6.4 .057 - .063 . 0107
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TABLE VI, - DIMENSIONLESS CONTACT F RACTIONS GENERATED BY

USING EQUATION (B13)

Load [Dimensionless| Expected number of |Dimensionless contact fraction
film thick- excursions above
ness, level A per square
centimeter,
N | Ibf A E(x) Tc, in Tc, out Tc, ov
90| 20| 3.90 763. 1 0.804 | 0.947 | 0.986
90| 20 4.0 527.3 .556 . 654 .T42
90| 20 4.1 360.5 . 380 . 447 .428
90} 20 4,2 243.8 . 257 . 303 . 216
901 20 4.3 163.2 L1172 .202 . 101
90| 20 4.4 108.1 .114 . 134 .0452
901 20 4.5 70.9 L0175 .088 . 0196
90| 20 4.6 45.9 .048 .057 . 00826
90| 20 4.7 29.6 .031 .037 . 00341
901} 20 4.8 18.17 020 .023 .00138
90| 20 4.9 11.8 .012 .015 . 000544
445 1100 4,2 216.4 0.622 | 0.700 | 0.820
445 (100 4.3 144,8 L4117 .468 . 478
4451100 4.4 95.9 . 276 .310 . 235
445 [100 4.5 62.9 .181 | .203 | .106
445 1100 4,6 40.8 117 .132 . 0457
445 | 100 4.7 26. 2 .075 | .085 | .0190
445 (100 4.8 16.6 . 048 .054 . 00769
445 1100 4.9 10.4 .030 .034 . 00304
445 | 100 5.0 6.5 .019 .021 .00118
" 4451100 5.1 4.0 .012 .013 . 000446
3100|700 4.5 68.0 0.597 | 0.668 | 0.783
3100 (700 4.6 44,1 . 3817 . 443 .424
3100 700 4.7 28.3 N . 248 . 278 . 193
3100 | 700 4.8 18.0 .158 | .177 | .0813
3100 { 700 4.9 11.3 . 099 111 .0327
3100|700 5.0 7.0 .062 .069 L0127
3100|700 5.1 4.3 .038 .043 . 00483
3100 §700 5.2 2.6 .023 .026 .00180°
3100 {1700 5.3 1.6 .014 .016 .000653




Figure 1. - Typical thrust-loaded ball bearing.

Hertzian contact zone

— —— — Nominal (mean level) surface

Figure 2. - Cross section of ball-race contact. (Surface roughness is greatly exaggerated.)

~Metal-to-metal contact

Figure 3. - Cross section of a composite surface roughness process.
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Surface roughness
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{a} Nominal trace spacing, 13 micrometers (0.0005 in. ); vertical magnification, approximately 40 times horizontal scale.
(See fig. 5(b) for enlargement of area within dashed box. )

Figure 5. - Microtopography of ball specimen. Nominal centerline average (CLA) roughness, 0.03to 0.05 micrometer (1 to
2uin. ). .
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Figure 5. - Concluded.
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