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ABSTRACT



This report describes the Cluster Compression Algorithm (CCA), which



was developed to reduce costs associated with transmitting, storing, dis­


tributing, and interpreting Landsat multispectral image data. The CCA is a



preprocessing algorithm that uses feature extraction and data compression
 


to more efficiently represent the information in the image data. The for­


mat of the preprocessed data enables simple look-up table decoding and



direct use of the extracted features to reduce user computation for either



image reconstruction, or computer interpretation of the image data.



Basically, the CCA uses spatially local clustering to extract features



from the image data to describe spectral characteristics of the data set.



In addition, the features may be used to form a sequence of scalar numbers
 


that define each picture element in terms of the cluster features. This



sequence, called the feature map, is then efficiently represented by



using source encoding concepts. Various forms of the CCA are defined



and experimental results are presented to show trade-offs and character­


istics of the various implementations. Examples are provided that



demonstrate the application of the cluster compression concept to multi­


spectral images from Landsat and other sources.
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CHAPTER I



INTRODUCTION



A. Objectives of Data Redundancy Reduction



Early removal of redundant data is important in reducing costs and



time delays in the link between the sensor data and the users' results,



or alternately early removal of redundancy can be used-to obtain higher



performance. Data redundancy reduction, or information extraction is



especially important in data systems involving high rate remote data



sensors which require related storage, communication, archiving, distri­


bution and interpretation subsystems. Imaging data systems are



important examples for application of early information extraction.
 


Data rate reductions, or compression ratios in image approximation
 


applications often approach and may exceed an order of magnitude. In



applications of computer classification of the image data, the rate



reductions may be many orders of magnitude. An ever increasing trend



toward automatic interpretation emphasizes the need for data redundancy



reduction jointly suited to computer classification and approximation of



images.



The objective of this work is to develop a joint feature



extraction/data compression technique for removal of redundant data in



image approximation and computer classification applications. A tech­


nique is described which jointly applies clustering and source encoding



concepts to obtain data compression. An algorithm, called the Cluster



Compression Algorithm, for implementing this concept is investigated



with emphasis given to practical data system considerations.
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B. Practical Data System Considerations



The emphasis in'this work-is on the development of a practical



information extraction technique which-benefits the ef-tite data system.
 


The performance of a data compression technique must be judged by more



than its compression ratio. Other system aspects for which the impact
 


and interaction of data compression should be assessed are data storage,



transmission and channel errors, distribution and archiving, and user
 


interpretation.



A block diagram of a practical data system is shown in Fig. 1.1.



AU of the subsystem elements shown in Fig. 1.1 are not present in



every application. For example, in many systems the sensor-located



storage, channel coding/decoding, archiving and distribution are



unnecessary. The sensor design has an important impact on data redun­


dancy. The sensor acquires data which may range from inadequate to



more than adequate to provide the information desired, but in either



situation there is usually considerable extraneous measurement data.



Flexible instrument control strategies can be used to reduce data



redundancy, for example, through control of measurement rate and



resolution, dynamic range scaling, and simple on-off functions.



Channel errors have a more serious impact on data after it has been



compressed. Ideally one would like to jointly solve the problems of



source encoding to remove redundancy and channel encoding for error



protection. From a practical standpoint, however, the present



approaches usually involve using increased transmitter power to lower



the error rate, and the use of periodic references in the compressed



data for source decoding restarts to limit the source decoding error



2





SENSOR 

ANDCONTROL 
J 

SUPERVISION 

ENSRDATASENSOR 

COMPRESSOR 

CHANNELENCODING/ 
DECODING 

DISTRIBUTION DATADECOMPRESSION II USER
INTERPRETATION 

DATAUSER 
ARCHIVINGSTORAGE 

Fig. 1.1. A Block Diagram of a Practical Data System. 




77-43



propagation due to a channel error. An alternate approach derived in



[E] uses channel encoding to group channel errors into long bursts.
 


Since compressed data is degraded nearly equally by a single error and



a burst of errors, the use of channel coding to group errors permits



using a higher average error rate.



In high rate data systems involving large scale archiving, distri­


bution and interpretation, redundant data can cause serious cost and



time delay problems. However, data compression may not benefit these



subsystem functions if complicated decoding is required before selec­


tive access of the data for distribution dnd interpretation is possible.



Benefits would result if the data compression could be obtained through



extraction of only essential features which can be selectively accessed



and interpreted directly without extraneous decoding.



The preceding discussed the interactions of practical data system



functions which need to be considered when incorporating data compres­


sion into a-system. Now consider the desirable characteristics of the



data compressor itself. In general, the process of redundancy removal



might occur in various stages, at the sensor and later in the communi­


cation link. In many cases a data system requires data compression



for widely different applications. Even for a dedicated application,



the user definition of adequate quality is an uncertainty which suggests



a need for capability to change. Therefore, a good data compressor



emphasizes flexibility, allowing a high performance rate vs. quality



trade-off over wide ranges of compression ratios and applications. In



order to aid the user in supervising the redundancy removal, a data



compressor should use features which provide easy understanding of the
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relationship between the feature quality and the resulting quality of 

image approximation, or computer classification. Basically, the data



compressor should allow the user to attempt reduction of the data
 


directly to the desired information.



C. Landsat As a Snecific Practical Example



In view of the emphasis in this work on practical data compression
 


an existing data system will be used throughout to exemplify the results



of investigating the Cluster Compression Algorithm. A particularly



demanding, but practical data system for applying data redundancy
 


reduction is NASA's Landsat, formerly known as the Earth Resources



Technology Satellite (ERTS). Landsat I is in a sun synchronous polar



orbit at an altitude of 915 km and orbits the Earth every 103 minutes.



A block diagram of the major elements in the Landsat data system is shown



in Fig. 1.2, and additional details of these elements can be found in [2].



There are other sensors on-board Landsat I, but attention here is



focused on data-management for the high rate Multispectral Scanner (MSS)



imaging sensor. The MSS sensor continuously scans 6 lines in 4 spectral



bands between 0.5 to 1.1 Mm. The instantaneous field of view (IFV) is



79 m on a side and the cross track motion of the IFV is 56 m per sample.



Every picture element is a vector with four spectral components, each



digitized to one of 64 levels (6 bits) of radiation intensity. A new



picture element is scanned approximately every 1.6 us producing a 15
 


Mbps data rate. The resulting PCM data is temporarily stored on a Wide
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Band Video Tape Recorder and/or used to FSK modulate a carrier or



transmission to Earth with an average error rate less than 10- 5 .



The NASA Data Processing Facility (NDPF) at Goddard Space Flight



Center in Greenbelt, Maryland segments the continuous MSS data into



185 Km square scenes and provides standard output products of black and



white, and color negatives, positives and prints in 70 mm and 241.3 mm



enlargements as well as computer compatible digital tapes. The NDPF



also provides radiometric, geometric and other corrections to the MSS



data, but it does not perform any redundancy reduction, since the satel­


lite is presently a research vehicle. The NDPF products are archived



and distributed to many users over the entire world.



User analysis techniques include film interpretation, computer



classification, predictive modeling and combinations of these methods.



By analyzing the sampled electromagnetic energy in four spectral windows



the investigators can extract information from the image data which is



useful in water and crop management, urban analysis, pollution detec­


tion, weather and flood prediction, mapping, and many other applica­


tions. Discussions of applications of Landsat MSS data are given in



[3] and [4].



Presently there is no data compression on-board the satellite,



because Landsat has been used principally as a research vehicle to deter­


mine the beneficial applications of remote sensing. The future outlook



is for operational satellites which gather data for specific purposes



determined to be useful through previous research. These operational



satellites will increase their capabilities by incorporating higher
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spatial and spectral resolution. A reasonable improvement to 10 m



spatial resolution and 10 band spectral resolution, however, results in



an increase in data rate to over 2 x 109 bps, justifying the concern
 


over the often mentioied data explosion.



For the Landsat data system one must consider more than just the



use of on-board data compression to reduce the channel transmission



rate requirements. An important part of the Landsat data management



problem is the ground data handling (e.g., data storage, retrieval,



distribution and intepretation). Furthermore, the Landsat data



system is an example which involves both user needs of visual image



interpretation and computer classification. Thus this data system
 


serves as a good example application for a joint feature extraction/



data compression technique.



D. Prior Efforts in Feature Extraction and Data Compression



Historically, the emphasis in data compression has been in develop­

ing techniques to approximate the raw data with fewer bits required for 

transmission. Techniques such as DPCM [5], Transform methods [6] ­

[8), and combinations of these techniques combined also with variable­


length entropy encoding [91 have received much attention in the litera­


ture. Such approaches are suitable, for example, in applications 


concerned with subjective image quality, but they are less suitable in 


applications involving feature extraction or classification of the 


data. For example, a feature of interest in the image may be difficult 


to emphasize in terms of differences used in DPCM, Hadamard coeffi­


cients in Hadamard Transform techniques, or in terms of the principal
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components resulting from the Karhunen-Lo've Transform. Even more
 


so for classification applications, it would generally be difficult



to tailor the type of data degradation introduced so as to tend to



preserve classification accuracy. This decreases the efficiency in



redundancy reduction and complicates the user requirement input inter­


face. Furthermore, these approaches generally require decompression of



the compressed data to its expanded form before selective access and



interpretation is possible.



In those applications where features or classification are the



desired end product, it is reasonable to consider the use of pattern



recognition theory. Pattern recognition and the subsets of feature
 


extraction and classification are discussed with extensive references in



the surveys of [10] and [llJ.



A very common classification approach is supervised statistical



classification with a parametric model of multivariate Gaussian [12].



Classification-for Landsat data is usually done on a per picture element



basis because of the large volume of data and extra computation required



when texture is used in classification. A discussion and analysis of



using texture in classification is given in [13J.



Much work in feature extraction has centered around finding
 


measures of distance between distribution functions, such that the
 


distance measures are well correlated with the probability-of error



associated with the distribution functions. These measures of dis­


tance are easier to calculate than the probability of error and,



therefore, reduce the computation required to determine the performance



of selected features in the sense of classification accuracy. A
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discussion of such distance measures and their uses are given in



references [13, pp. 27-47] and [14].



Other often used feature extraction and classification is based on 

- the-nonsupervised techniques&of clustering [15], [16). Clustering is a 

technique for extracting statistical features from a data set by group­


ing data vectors of similar characteristics. The clustering of data



into groups can be used to directly provide nonsupervised classifica­


tion, or to provide statistical features for groups of data from which



further classification can be conducted. The application of clustering



for feature extraction and nonsupervised classification to remote sens­


ing applications such as Landsat is discussed in [13], [17], and [18].



Feature extraction and classification as described in the above



references are primarily considered interpretation techniques to be per­


formed by the user. However, if the feature extraction or classification



is performed at the source it is clearly providing data compression. For



example, if every picture element was classified to one of eight classes
 


at the data source, then a total of three bits could be used instead of



the six bits per each band originally used to define the spectral signa­


ture of each picture element. This type of data compression also



directly provides the user with desired results, eliminating the step of



first decoding the compressed data to obtain an approximation of the raw



data before interpreting. One obvious problem with using feature



extraction and classification at the data source is the large computa­


tional complexity associated with these techniques. Another practical



problem, often overlooked, is the difficulty in providing supervision



to the classifier located with a remote sensor.
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The prior research basically consists of the following: 1) data



compression techniques suitable for image approximation, but not well



suited for feature extraction or classification; and 2) feature extrac­


tion and classification techniques not well suited for image approxi­


mation, or for practical implementation at remote sensors. This



dissertation develops a technique which uses feature extraction to



obtain data compression. Modifications to the feature extraction



technique of clustering are investigated which make it useful for



image approximation as well as practical to implement. In addition,



the data compression technique of entropy coding is combined with



feature extraction to further increase performance. This approach



of joint feature extraction/data compression is called the Cluster



Compression Algorithm and some of the initial investigation results



are contained in [19] and [20].



E. A Joint Feature Extraction/Data Compression Model



Assume the data source is the multispectral image source modeled 

by the continuous random process s(yly 2 ,w) which is the electro­

magnetic energy at wavelength w for spatial coordinates y1 and Y2 . 

The measurement vector elements of a digitized d-band multispectral 

image are then represented by the vector X(Yi,Y2 ) obtained from 

s(yly 2,w) by discretizing the variables yI, Y2 and w to give 

X(Y1 ,Y2 )=[s(Y,Y 2,W),s(YIY 2,W2).... ,s(Y1,Y2)Wd). (1.1)



Figure 1.3 shows a model for the general concept of joint feature



extraction/data compression. The Cluster Compression Algorithm defined
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Fig. 1.3. A Joint Feature Extraction/Data Compression Model.
 


in the next chapter is a specific form of this more general model. Let



-xi ni=l be a sequence of n measurement vectors obtained from a subset 


of multispectral image data. The entire sequence fiIn is analyzed
i=1 

to extract features {T i for the sequence {X i=. These features 
j=1 - 11 

could also be considered as primitives, or as a basis for approximating 

the measurement vectors. The sequence of m features (Wj1m provides a 
"'j=l 

description of the characteristics pertaining jointly to the entire 
in 

sequence of measurement vectors I =I and in some applications may be 
i=1



the only output required. In other applications each measurement



vector needs to be approximated in terms of (T } 1lby the sequence
j= 

of scalar numbers {y k which assigns to each measurement vector an



approximation in terms of one of the primitives. Alternately, the



concept of Fuzzy Set Theory [21] might be used to allow each measure­


ment vector to be described by a weighted mixture of more than one of
 


the features in the sequence fmi}m i"The scalar sequence 
{Ykip



J=l 1cC



constitutes a spatial map of the measurement vectors in terms of the 

primitives, and is called the feature map. Spatial features can be 
kip



extracted from {y k, and source encoding can be used to efficiently



represent the spatial characteristics of IX l through the encoded 

feature map denoted by C. For each sequence {X11 1 of measurement 
12 =l 
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vectors the model basically uses feature extraction concepts to



determine a set of features or primitives, and then the model uses data



compression techniques to efficiently represent the spatial features in



terms of the primitives.



The Cluster Compression Algorithm uses clustering to extract



multidimensional primitives from subsets of spatially contiguous measure­


ments in the image data and then applies entropy encoding to the



feature map. Another independently developed data compression technique



related to the model in Fig. 1.3 is the Blob algorithm [22). This



algorithm is basically a boundary finding algorithm that guarantees



closed boundaries. A blob is defined as a connected set of picture



elements all of which have some common characteristic. In the Blob



algorithm the primitives are defined by the boundary finding algorithm



and consist of statistical descriptions of the measurement vectors



contained within the various blobs. Spatial definition can then be



provided by encoding a sequence which defines the spatial boundaries



of the blobs. This algorithm is most useful as a data compressor when



the image consists of well defined boundaries enclosing picture elements



of nearly uniform characteristics, (e.g., agricultural fields). The



Cluster Compression Algorithm is different in that it extracts primi­


tives and obtains significant compression independent of the spatial



characteristics of the data. Thus the cluster compression technique



can efficiently compress images whether or not they contain uniform



areas with well defined boundaries. In addition, if the image does



consist of uniform areas with well defined boundaries, such as fields,
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the entropy-encoding of the feature map results in efficient repre­


sentation of these spatial boundaries.



F. Organization of the Dissertation



In Chapter II the use of clustering as a feature extractor is dis­


cussed and several clustering algorithms are defined for the CCA. In



Chapter III the basic Uncoded CCA is defined and examples are included



of its use in image approximation and automatic image classification.



Chapter IV investigates entropy bounds for a class of entropy



coders and then defines an entropy coder for use in a Coded CCA



configuration. Simulations are used to compare the performance of the



entropy coder with the performance bounds.



Alternate clustering forms of the CCA are defined in Chapter V.



These include the Adaptive CCA and the Cascaded CCA. The performance



of the Uncoded, Cdded, Adaptive and Cascaded CCA are investigated in



Chapter VI. Computer simulation results are used to compare the



performance of-various CCA options in terms of percent mean square



error, subjective image appearance, and classification accuracy as a



function of data rate. Conclusions and recommendations for further



research are contained in Chapter VII.
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CHAPTER II



CLUSTERING AS A FEATURE EXTRACTOR IN DATA COUPRESSION



A. Clustering for Spectral Intensity Feature Extraction



Now consider the selection of features for use in the Cluster



Compression Algorithm (CCA). Let {X il be a sequence of



n d-dimensional spectral intensity measurements for a spatially local



region of a multispectral image. These vectors generally tend to form



groups in multispectral intensity space. A typical plot of {X =1 for



two bands in spectral intensity space is shown in Fig. 2.1Ca). An



intuitively natural set of features to use for representing XY = in



Fig. 2.1(a) are the descriptions for groups of measurement vectors, for



example, the groups depicted in Figs. 2.1(b) - 2.1(d). Each feature



then consists of whatever set of parameters are used to describe the



source distribution for the group of measurement vectors. 
The mean and



covariance are an obvious example of a group description, or feature.



The number-of-features extracted from any sequence of measurement



vectors would depend on how accurately {I must be represented, and



correspondingly what data rate is acceptable. An example of how two,



four, or eight features might be chosen is shown in Figs. 2.1(b) 
 -

2.1(d).



Clustering is a means for automatically grouping multidimensional 

data [II], [15], [16]. The features resulting from clustering a set of 

measurement vectors are typically a subset of the following: cluster 

means, cluster variances per band, cluster covariances, number of 

vectors in each cluster, set of intercluster distances, etc. Anything 
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contributing to the description of the cluster can be considered a



feature, even the set of vectors themselves. Clustering is used at the



Laboratory for Applications of Remote Sensing (LARS) at Purdue Univer­


sity to aid ground analysis of Landsat MSS image data [12]. LARS mainly



uses clustering to aid in selecting training sets from the image data



for use in supervised classification, and also to verify the uniaodal



assumptions for the data. Clustering has also been used as a nonsuper­


vised classifier of Landsat data in studies by Johnson Space Flight



Center [17). The self-scaling and adaptive characteristics of cluster­


ing together with the convenient supervision requirements suggest it



might also be useful as an on-board feature extractor for data com­


pression purposes.



First consider the efficient manner in which cluster features used



by a data compressor can preserve classification accuracy. Let



Fig. 2.2(a) represent sample conditional distributions for class A and



class B which are very separable, and let Fig. 2.2(b) represent two



classes which are less separable. The dashed line represents a good



classification boundary for the sampled data sets. The user generally



X - xx 
xX



XX X 

BANDI AND1 

Fig. 2.2 Example of Two Classes in Two Dimensional Spectral


Space. (a) Separable classes (b) Nonseparable


classes requiring more cldsters.
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knows the separability of the classes, but the distributions and



boundaries move around in spectral intensity space due to disturbance



effects on the measurement process. Clustering will be relatively



insensitive to this shifting since it inherently tracks the data. The



user can supervise the clustering so as to conserve classification



accuracy by simply specifying control parameters such as how many clus­


ters, or maximum variance per band allowed for a cluster, etc. For



example, assume the data in Fig. 2.2 is compressed by approximating each



data vector by one of the cluster means. Then in Fig. 2.2(a) two



clusters are adequate while in Fig. 2.2(b) four or more might be



required for preserving classification accuracy. If other than Class A



and B data is present, then a specification of maximum cluster variance



per band could be used in determining the number of clusters to use, and



the allowed cluster variance would be larger in Fig.'2.2(a) than in



Fig. 2.2(b). There exists a relatively close relationship between clus­


ter features and data features typically used in supervised



classification.



Clustering can also be used by a data compressor to provide a very



sophisticated adaptive multidimensional quantizer for obtaining image



approximation. Image reconstruction can consist simply of using the



cluster mean feature for every vector in that cluster. Again simple



user inputs such as the number of clusters, variance per cluster, etc.,



are easily related to the quality of image approximation. Thus, cluster



features appear to comprise an efficient and easily interpreted set of



features for data compression in both classification and image approxi­


mation applications. However, we must yet consider the modifications
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necessary to the usual clustering approaches in order to make more



practical the use of clustering for data compression.



B. Clustering Approaches



1. Basic Clustering Algorithm



The CCA could use any of the many approaches for grouping



data [11], [15], [16], [23] - [25]. The clustering algorithms investi­


gated in this dissertation are all derived from the basic iterative



approach to clustering referred to in this work as the Basic Clustering



Algorithm (BCA) and shown in Fig. 2.3. This approach is chosen because
 


it requires simple repetitive computations, and can be structured in a



highly parallel manner for very high data rates.



Consider the assignment step shown in Fig. 2.3. Let Xi , i1l, 

2, . . . , n be the ith d-dimensional data vector which is to be 

assigned to one of m cluster centers, or means, C , j=1, 2, . . , m. 

= IPx2 " 
The components of these vectors are defined by X 
 

and C cj , * . . , c). The assignment of data vectors to 

clusters depends on the definition of distance between a data vector and 

a cluster center. In general, the assignment of vectors to clusters 

could involve a distance measure dependent on more than the cluster 

center [24], [25]. For example, the distance measure might involve the 

sample covariance of the cluster to account for the possibly nonsym­

metric distribution of its members. Furthermore, the assignment of 

vectors to clusters could be probabilistic as in Fuzzy Set Theory [21], 

where the degree of assignment of a vector to each cluster would depend 

on the relative distance between the vector and each cluster. However, 
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CLUSTER CENTERS 
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CLUSTER CENTER 

S 	 CALCULATE NEW 

CLUSTER CENTEIRS 

Figure 2.3. The Basic Clustering Algorithm. 

since practical considerations are being emphasized only cluster means



and Fuzzyless assignments are considered here. In addition, only the



most often used and easier to calculate distance measures are investi­


gated. The most common distance measure is the Euclidean distance. Let


±



the Euclidean distance between data vector X
i and cluster center C3



be defined by
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(xiC/2xk (2.1)D~) 

Another distance measure which requires even less calculation is the



absolute value distance, which is defined by



d



D(XZC K ciL (2.2) 

k=l



Thus-assume the assignment task of the BCA consists of assigning each



data vector to the closest cluster, where the distance is measured by



(2.1) or (2.2).



After assigning every data vector to a cluster, there is a check to



see if the iterating procedure should be terminated. In computer



interpretation applications this check consists of terminating when the



clustering has converged, or equivalently, when no datd vectors have



changed cluster assignment. For practical data compression the iterat­


ing should terminate if either the clustering converges, or if a chosen



maximum number ISTOP of iterations are reached. The Impact on cluster­


ing quality due to limiting the number of iterations is investigated in



Chapter VI.



A change in cluster assignment for one or more data vectors usually 

results in a change in the cluster centers. Thus as shown in Fig. 2.3, 

the cluster centers need to be recalculated. Let CJrepresent the set 

of all data vectors belonging to the jth cluster, and ni the number of 

data vectors in Cj. Then the cluster centers are simply recalculated 

according to
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{LXk (2.3) 
n {i:X ic 

where j = 1, 2, . . ,. a and k = 1, 2, • . , d. 

The only user supervision required for the BCA is the number of



clusters desired (ISTOP is assumed to be specified once at time of



implementation only). The number of clusters obtained is generally the



same as the number of initial cluster centers upon entering the



algorithm. However, in some cases a cluster may die during the iteration



process due to no data vectors being assigned to it. The BCA is


somewhat insensitive to the choice of intitial cluster centers.


Basically, the initial cluster centers should be well scattered through­

out the set of all data vectors. Let C = (cl, c2 , . . . , Cd) and 

V= (Vl., v2, . . d)) be the mean and variance respectively of all 

the data vectors to be clustered. Then one method of choosing 

m initial cluster centers, C = i . . , ) is defined by 

i~ k k Vk) (m - 1)c = c + (v 1/2 2(J- 1)-) (2.4) 

where j = 1, 2, . . . , m and m > 1. Equation (2.4) places the 

m initial cluster centers evenly spaced on the diagonal of positive 

correlation through the hyperrectangle enclosing plus and minus one 

standard deviation about the mean in each band.



The BCA of Fig. 2.3 heavily emphasizes simplicity for practical



implementation. This is particularly true if an absolute value distance



measure is used and if there is a limit placed on the number of itera­


tions allowed. The BCA is only the core of more sophisticated
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clustering algorithms used in data interpretation. However, it is



shown in Chapter III that very simple clustering is useful for data



compression purposes. Observe that although only the cluster centers



were used in the above algorithm, other cluster features such as



variance, covariance, etc., could be obtained if desired by calculating



these features once upon terminating the BCA.



2. Adaptive Clustering Algorithm



The BCA generates a predetermined number of features per data set,



which would correspond to a rate controlled mode for a data compressor.
 


However, for some applications it is desirable to have the number of



clusters used per data set be variable and adaptively determined to meet



certain quality requirements. There are many ways to modify the BCA to



make it adaptive. For example, clusters might be split, combined, or



deleted during the iterative clustering based on intracluster and inter­


cluster distance measures. A widely used algorithm, ISODATA, with these



adaptive traits was originated by Ball and Hall [26]. Modifications of



-ISODATA for ground data evaluation of Landsat multispectral data pro­


duced ISOCLS [17], [18], and NSCLAS [27]. An Adaptive Clustering



Algorithm (ACA) is defined in Fig. 2.4 for use in investigating adaptive



clustering for data compression. The ACA results from simplifications



of the ISOCLS approach. Observe that the ACA consists of the BCA as a



core with the added capability of modifying the number of clusters



between iterations. However, changes in the number of clusters is



inhibited in the last two iterations, where only the BCA core is used,
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Fig. 2.4. The Adaptive Clustering Algorithm.



24





77-43



in order to tend toward clustering convergence before reaching the maxi­

mum number of iterations.



The user supervision of the ACA is still simple with only the addi­

tional inputs of limits and thresholds. The limits LL and UL specify 

the lower limit and upper limit respectively for the number of clusters. 

From a practical standpoint, these limits provide important control in



trading-off the degree of adaptability vs. the system complexity. The 

thresholds for deleting, splitting, and combining are defined respec­

tively by Td, Ts, and Tc . Deleting consists of just eliminating a clus­

ter center for which the number of vectors assigned to it are less than 

Td. This corresponds to a minimum density requirement in order for a



type of data to be important. Defining a split threshold corresponds to



specifying an intracluster distance value above which the cluster is



likely to consist of more than one class of interest. Each cluster can



be split at most once per splitting iteration. A necessary condition



for splitting the j-th cluster is that the intracluster distance D. be
2 

greater than the splitting threshold T o However, if the number of



elements in the j-th cluster is not much more than Td, then splitting
 


would likely result in two clusters which would both be deleted. There­


fore, an additional requirement for splitting the j-th cluster is that



the number of elements of the cluster be >(2Td + 1). The final addi­


tional condition necessary for splitting is that the present number of



clusters be less than the maximum number allowed, UL. In sumary, if



the j-th cluster has not been split in this iteration, the necessary



conditions for splitting the J-th cluster are
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D >T


i s



nj . ( 2 Td + 1) (2.5) 

m< UL 

where nj is the number of elements in Ci and m is the present number of 

clusters. An exception to these conditions occurs if m < LL, in which 

case the splitting occurs even if Dj < T . The number of clusters can 

be reduced below LL by the deleting step. 

A discussion of various intracluster distance measures can be found 

in [24J and [25). A very simple distance measure based on the variance 

per band is used in the ACA. Let aiJc 2 . . ,OTaj) be the 

vector of standard deviations for each band of the J-th cluster. Then 

the intracluster distance for the j-th cluster is defined by 

=D 'Max aj (2.6)
kk 
 

where k = 1, 2, . • . , d and j = 1, 2, . . . , m. 

Let k' be the value of k which maximizes &. Then if splitting 

conditions in (2.5) are satisfied, the J-th cluster center C is split 

into two new cluster centers, Cj I and Cj2 defined by 

Cj l = cj. cj , . c , - r,, . . . ci) 

and (2.7)



1=2, , . . . , , +4 . . . , cd. 
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This simply corresponds to splitting C into two cluster centers placed



a plus and minus standard deviation from the original mean and along the



axis of greatest variance.



The combining of clusters in the ACA involves first finding the



intercluster distance measure D for all cluster pairs. Then cluster



pairs are combined in the order of minimum distance first, provided the



distance is less than T and there are presently more than LL clusters.
c 

However, clusters already combined on this algorithm pass are not com­


bined further. Assume the i-th and j-th cluster are to be combined into 

an i'-th cluster. Then the i'-th cluster center is simply defined by a



weighted average, or



niC + nCi 
c = (2.8)

ni + n1



Usual characteristics of Dij are



D-> 0
Ii -

Dii = 0 (2.9) 

Dj =13



for i and j any integer from 1 through m. Thus the number of unique 

intercluster distances, N(m), to calculate for m clusters is given by



N(m) - I - 1) (2.10)
2 

The intercluster distance measure used in the ACA is defined by



dE (2.11) 
k=l k k 
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A more simple measure of distance between clusters would result from 

using the cluster means, for example Dij = De The distance 

measure in (2.11) is better in-that it-weighti the-distance between 

cluster means in each band relative to the spread of the clusters in



that band. Typically the intercluster distance measures used in data



interpretation are more sophisticated than the one in (2.11). For



example, the intercluster distance measure used in NSCLAS is the Swain-


Fu distance, which uses all the covariance characteristics of both



clusters in computing the distance [12]. Many of these general inter­


cluster distances are discussed in [13J. These other measures could



often give a more accurate measure of intercluster distance, but they



would also require considerably more computation. The emphasis in this



preliminary study of adaptive clustering for data compression use is on



clustering approaches amenable to high data rate implementation. From



this standpoint it is desirable to simplify rather than increase



complexity relative to the measure in (2.11). Furthermore, initial



investigations suggest that more sophisticated clustering results in



only slight benefits for data compression purposes. The BCA and ACA



defined in this section provide examples of practical clustering



approaches which can be used for data compression. The next section



discusses other considerations in making clustering more practical for



data compression.



C. Clustering of Spatially Local Sources



Clustering for data interpretation generally involves a clustering



of an image into twenty or fewer groups. However, if a Cluster
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Compression Algorithm is to be useful for image approximation, it must



be able to cluster an image (e.g., 256 x 256 picture elements) into



perhaps thousands of clusters to adequately preserve image quality.



One cannot simply obtain thousands of clusters per image as might 

be needed in image approximation, by performing the clustering jointly 

for thousands of clusters. The large number of clusters would increase 

the computation time beyond practical limits. However, one can cluster 

the vectors in very small array sizes (e.g., 8 x 8). Then even though 

there is a small average number of clusters per area, say 4 per 8 x 8, 

there would still be a large number (4096) of clusters per 256 x 256. 

Other advantages of clustering on such a small scale are discussed



below.



Define P (X) as a global sample distribution function in spectral



intensity space obtained by sampling measurement vectors over some



spatially large source g, for example, 2340 x 3300 picture elements as



in a Landsat image. P (X) can be expressed as a mixture of local sample



distribution functions P,(i) obtained from sampling measurement vectors



within small spatially local sources, (e.g., 8 x 8) giving



9 P ,P, (2.12) 

g ig 


where Nk and N are the number of picture elements in £ and g respec­


tively. Sources g and A are depicted in Fig. 2.5(a) and typical distri­

butions for Pg(X) and P(X_) are shown in Fig. 2.5(b). Observe that it



is reasonable to expect a low average number of classes of interest per



local source relative to the total number of classes within the global
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Fig. 2.5. Global vs. Local Sources. (a) Spatially,


(b) Distributions, (c) Conditional


Distributions.



source. Thus, clustering at the local source level is initially easier



to implement because there are fewer classes and fewer vectors to



cluster simultaneously.



1 2
Consider some local source 2* with classes V and V2 . Typical 

P (S/V ), P9(X/V2), PZ*(X/V ) and P,.(X/V2) are shown in Fig. 2.5(c). 

The larger spread in each global conditional distribution is due to 

averaging over many local conditional distributions, each with corre­

sponding various perturbations due to class variance, moisture, atmos­

phere, etc. Therefore, at the local scale the vectors of a given class



tend to form tighter clusters which are more separable.



The greater separability of classes within a local source would



tend to permit the use of simpler clustering algorithms while still



preserving separability. Thus clustering at a spatially local source



level is not only important for practical implementation reasons, but



it is also an advantage from the standpoint of clustering quality.



Experimental results relating local source size and clustering quality



are contained in Chapter VI.
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CHAPTER III



UNCODED CLUSTER COMPRESSION ALGORITHM
 


A. Spectral Features and Spectral Data Rate



The most basic form of the Cluster Compression Algorithm is the


in



Uncoded CCA as shown in Fig. 3.1. Let fXi }n1 be a set of n measure­

-i=1



ment vectors from one local source out of a sequence of spatially local



sources. The local sources might consist of sequences of multispectral



arrays obtained most conveniently from a single scan swath from the



image sensor. Each local source is then clustered into m clusters to



extract spectral intensity features, where m is assumed constant for an



image and represents the only user supervision input. In this study of



the Uncoded CCA the clustering used is the Basic Clustering Algorithm



defined in Chapter II. The features which can be extracted from



xi n by clustering would typically be a subset of the following:

- i=1 

cluster means, cluster variances per band,
 


USE
SUPERVISION



CLUSTERING 
SOF LOCALSOURCE 

[1 IIn LOCAL 

Ix Ii~l CLUS'TER 
FEATLRES R e 

LOCAL 

SEQUENCE OF LOCAL SOURCES ASIN LOCAL 

STO 
 
I VECTOR 

GLOBAL IMAGE 

Fig. 3.1. A Block Diagram of the Uncoded CCA.
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cluster covariances, number of vectors in each cluster, set of inter­

cluster distances, etc. These types of cluster parameters comprise a 

compact grouping description of {in " t {_ }I be the set of m} 

cluster features which describe the sequence of n d-dimensional measure­


ment vectors. Assume each iJ requires f bits of quantization. For



example, in image approximation J*might be the j*-th cluster mean with



f equal to 6-d bits, or in classification uses iJ* might be the j*-th



cluster mean and variance with f equal to 9-d bits if the variance



per band is defined to 3 bit resolution. The spectral rate R is
spec



defined as the bits per picture element per band (bpppb) needed to


in



define the spectral characteristic of {X i I , or



R = -f 	 (3.1) 
spec n'd



A graph of R vs. m for various values of n is shown in Fig. 3.2 with


spec



f = 24 and d = 4, which corresponds to using only cluster means as



features. In some cases this description of {Xi}=n may be all that



is needed, and R then represents the total rate in bpppb.
 

spec



4.0 

3.0 

2.0 ­

1.0 

,.l256 

2 4 	 8 16 

M 

Fig. 3.2 	 Graph of Spectral Rate per Band vs. Number of Features


for Various n and With f = 24 and d = 4.
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B. Spatial Features and Spatial Data Rate



In many applications it is desired to further approximate i7'-1 

by approximating each vector individually in terms of the cluster 

Xi * belongs to cluster j*, then Xi* 
features. For example, if vector 

could be approximated by * which might be simply the mean of cluster 

j** Alternately, X could be approximated by a combination of {VpJ}=" 

Refer again to Fig. 3.1. Assume that after clustering the local source,



each cluster is uniquely labeled by an integer from I through m. Then


in



map the sequence of data vectors fX il into a sequence of integers


- 1 

{yini=1 by replacing each vector with the integer label of the cluster 

to which it belongs. This sequence of integers is called the local 

feature map and an example of a feature map is shown in Fig. 3.3. 
i n 

The feature map sequence {y }i= 1 defines the approximation of each 

measurement vector and thus gives spatial definition for the sequence 

{xiI . Let R 
spat 

represent the rate in bpppb for representing each 
-il 
 

element of the m-ary feature map sequence with natural coding. Then



R1 1 ogM (3.2) 
spat d( 

where 

Fxl 2 (smallest integer > x). (3.3) 

This representation of the feature map is wasteful if m in (3.2) is not 

a power of two (e.g., the use of 3 bits to specify one of 5 integers for 

m=5). The representation can be generally improved by using the simple 

fixed rate natural coding on the L-th extension (Z-tuples) of the 

source. The spatial rate for natural coding of the Z-th source exten­

sion is given by 
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)R1 (rlog m z . (3.4) 
spat dY. 2 

From (3.3) we obtain



log2
m9 riog2m < log2ek + 1 , (3.5) 

and from (3.4) and (3.5) there results 
logm < IlgmR~at<d+ . (3.6) 

d 2og-S Zspat < I loge +d(.6 

Therefore, from (3.6) we have


2.1 

Rspat > I log2 m (3.7) 

for all Z, and



lira R t = 1 log 2m (3.8)Z _ spat d 

Now define R as


spat 

Rspat 1 log2m . (3.9)



From (3.7) it is observed that the best we can do with simple natural 

coding is Rspat' and from (3.6) and (3.8) it is observed that for any m, 

Rspat can be approached by coding higher source extensions. Of course, 

even natural coding of high source extensions is impractical, but con­

sider now the use of the 3rd source extension which is easy to implement 

for the small values of m of interest. Let R3 be the rate achieved 
spat 

when groups of three of the original m alphabet source are represented 

by natural coding. Figure 3.4 shows R and R3 vs. m for twospat spat



values of d and shows that R3 is never significantly greater than


spat



R for m < 16. Thus the fixed spatial data rate for the Uncoded CCA


spat 

is Rspat3 where
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R3 (logm 3 1) .		 (3.10) 
spat 3d 2



Further reductions in the spatial data rate can be obtained through



variable-length encoding techniques which will be considered in



.Chapter IV.



O.d.

4.0 -0 R3 spt00 

3.0­

S2.0­

333311112220 

33311121122 

44331111122 1.0 d-4 

44121112143 

I I I I 

2 4 8 16 
m 

Fig. 3.3 Figure of a 
Typical Feature 

Fig. 3.4. Graph of R 
spat 

and R3 

spat 

map. 	 vs. m for d=l and d=4.



C. 	 Uncoded CCA Examples and Total Data Rates



The Uncoded CCA of Fig. 3.1 compresses all local sources of an image



to a constant data rate, dependent on the user supervision inputs of m,



n, f, and d for the image. The output is in two parts: 1) the cluster



definitions defining the features extracted in spectral intensity space,



and 2) an array of scalar numbers giving spatial definition to the



occurrence of features in spectral intensity space. The total output



data rate, Rtot, consists in general of both spectral and spatial defi­


nitions defined in (3.1) and (3.10). Thus
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R = R3 _ inf 1 (lam'1) (3.11) 
tot spec spat n d 3d Ifo 3 

In some situations it is only necessary to know the group characteris­

tics (e.g., what is there, and how much of each) for each local source, 

with no need to define each individual picture element. Then the fea­

ture map is not sent and R3 0 and R = Rspe. Similarly, there 
spat tot Spec*



might be situations in which only spatial characteristics in the feature
 


map are of interest and RS could be zero. There is a great degree
spec 

of flexibility in choosing the relative division of Rot between RStot spec 

R3 • 
and 
 

spat



1. Example for Image Approximation Use



Consider an example of applying the Uncoded CCA to obtain compres­


sion in image approximation. Assume that 8 clusters are obtained for 

each local source of 16 x 16 picture elements of 4 bands each. Also 

assume that for each cluster the user is sent 24 bits for the cluster 

mean. This corresponds to m=8, f=24, n=256, and from (3.1), R = spec 

.1875 bpppb. The .1875 bpppb spectral definition defines the centroids 

of 8 groups of data vectors within each local source of 16 x 16 picture 

elements. Now assume the user is also sent the feature map sequence 

consisting of 16 x 16 three bit codewords defining a spatial definition 

of the local source in terms of the 8 cluster mean features. From 

(3.10), R3 = .75 bpppb. The total data rate for sending the spectralspat 

and spatial definition (compressed image data) is Rtot = .9375 bpppb. 

As shown in Fig. 3.5(a) the user reconstructs the approximate image 

in an extremely simple manner as follows: 1) for the given local source 
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the 8 cluster centroids are placed in a small look up table; 2) the fea­


ture map codewords are used as addresses to access the look up table and



provide the proper cluster mean for approximating each picture element
 


in the local source. Thus the compressed image data is very easily



decoded into an image by the user. Furthermore, the Uncoded CCA should



provide excellent image compression performance due to the sophisti­


cated multidimensional quantization of spectral space provided by



clustering. Reconstructed image examples resulting from simulations
 


of the Uncoded CCA are presented in Chapter VI.



2. Example for Supervised Classification Use



Now consider an example where the user desires a supervised classi­

fication result for each picture element in the image. Again assume 

that 8 clusters are obtained for each local source of 16 x 16 picture 

elements in 4 bands, and that the same m, f, and n parameters of the 

=
previous example are used. Thus as before Rp .1875, Rt = .75,Spec spat 

and Ro t = .9375. In fact, the exact same compressed data is sent by



the compressor in both examples. However, this example differs in that



the compressed data is to be interpreted into classified picture ele­


ments rather than an image approximation. As shown in Fig. 3.5(b) the



user obtains the classified picture elements as follows: 1) for a given



local source, the 8 cluster means are placed in a small look-up table;



2) each of the 8 cluster means are classified according to the users'



desired classification method, and the resulting user class label is



also stored in a small look-up table; 3) the feature map codewords are



used as addresses to access the look-up table and provide for each pic­


ture element the user class label of the cluster to which the picture



element belongs.
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Thus the compressed data is also very easily decoded for classifica­


tion use. In fact for each 16 x 16 local source only 8 representative 

vectors needed to be classi-fied -instead of 256; thereby reducing by a 

factor of 32 the user classification computation. Observe also that the



user could elect to use feature maps only for those local sources in



which a class of interest occurs. The Uncoded CCA should perform well



in terms of rate vs. classification accuracy since the clustering tends



to preserve separability of the data. Basically, for whatever number



of user classes are desired in the entire image, if m and n are such



that more than m of these user classes seldom occur within a single n



picture element subset, then classification performance from the com­


pressed data is expected to be good. Examples of classification accu­


racy vs. total data rate resulting from simulation studies are pre­


sented in Chapter VI.



3. Example for Feature Extraction Use



Next consider an example where it is not necessary to define each



individual picture element and where Rspat can be zero. For example,



in agricultural classification it may be adequate to know what crops



are present and in what percentages in each local source. Again assume



8 clusters are used per 16 x 16 picture elements of 4 bands each. As



in the previous examples, for each cluster there is sent to the user



24 bits for the cluster mean, but in addition 8 bits are sent to iden­


tify the number of vectors in the cluster. This corresponds to m=8,



f=32, n=256, and Rspec = .25 bpppb. The per picture element defi­


nition is not needed, so Rspat = 0. Thus for a total rate of .25 bpppb
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the user receives the identification of centroids and the number of



associated data vectors for 8 groups of vectors in spectral space for



each local source of 16 x 16 picture elements in the image. Fig­


ure 3.5(c) shows how the user can then convert this compressed data



directly to crop information by classifying the received cluster means



and calculating percentages from the received data identifying the



number of data vectors assigned to each cluster. This example



demonstrates the potential for the CCA to obtain very high compression



ratios and simple decoding for interpretation, through the extraction



of group features.



4. Example for a Combination of Uses



The previous three examples demonstrated the relative simplicity in



the Uncoded CCA for user distribution, access, and interpretation for



three different applications. Now consider an example in which all



three of the above data uses are simultaneously desired from the same
 


image data, but-by three different users. As in the immediately pre­


ceding example an Rs of .25 bpppb is used to define 8 cluster means
spec 

and the associated number of vectors in each for every 16 x 16 local 

source. Also an R3 of .75 bpppb is used to again define each pic­spat



ture element in terms of the 8 cluster means. Thus the total compressed



=
data rate is Rtot 1.0 bpppb. The operations of the Uncoded CCA for



this example are depicted in Fig. 3.6. Efficient distribution of the



compressed data is accomplished by 1) sending only the spectral data at



.25 bpppb to the user desiring crop percentage information, and 2)



sending the total data at 1.0 bpppb to the other two users. Each user
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then accesses and interprets his data in the same direct fashion as



in the corresponding previous examples.



Figure 3.5 shows the structure for-decoding and interpreting the 

compressed data for any of the above example applications. The basic 

look-up table operations could of course be done at very high data rates 

by a minicomputer. These examples demonstrated the following impor­

tant attributes of the CCA approach: 1) the same data compressor is 

used for image approximation and classification applications, 2) group 

features and/or per picture element definition can be selectively



accessed for distribution and interpretation directly from the com­


pressed data without first reconstructing an approximation of the origi­


nal image, 3) the compressed data decoding operations required for



classification and image approximation are very simple and can be done



at high data rates with readily available equipment, 4) the computation



required for user classification is substantially reduced due to the CCA



compression (e.g., 1/32 as many classifications). Actual simulation



results of image approximation and classification performance are



presented in Chapter VI.



42





77-43 

CHAPTER IV



CODED CLUSTER COMPRESSION ALGORITR 

A. Feature Map Source Uodels and Performance Bounds



A typical feature map sequence for {X in described by four 

cluster features is shown in Fig. 3.3. In image data there is signifi­

cant spectral correlation between spatially close picture elements,



and correspondingly between adjacent elements in the feature map.



Entropy encoding techniques can use this spatial correlation to rep­


resent feature map sequences with a lower average spatial data rate



than Rspat given in C3.9_. Furthermore, this reduction in spatial data



rate is obtained without any degradation to the feature map sequence.



The performance of an entropy encoder is usually compared to the



best performance possible for encoding a data source which statisti­


cally models the actual sequences to be encoded. Basically, a source



model is defined such that the observed feature map sequences are



typical sample sequences from the source model. Then tfe entropy of



the source model is used to bound the lowest possible average data rate



for encoding sequences from the source model [9], [29]. An entropy



encoder attempts to achieve performance close to the entropy of the



source model for the feature map sequences. Two key elements to



entropy encoding are 1) the determination of a model for the source



which has low entropy, and 2) the determination of a practical encoder



which can encode sequences from the source model at an average rate



near the entropy. The source model will have lower entropy if the



model incorporates more memory and nonstationary statistics. However,



the encoder also tends to become impractical when it attempts to make
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use of source memory, or adapt to nonstationary statistics. In this



section some source models and associated entropies are defined for the



feature map sequences. Then a practical entropy encoding technique is



defined, and simulation results used to demonstrate the actual coding



performance relative to the entropy bounds for several source models.



1. 	 Bound for Nonadaptive, Zero-Memory Encoder of Feature Map



Differences



The first source model is similar to the very common and simple



approach of representing the image data in terms of differences between



adjacent picture elements. Of course, the feature map can be repre­


sented in terms of differences with no loss in information. The



differences between spatially adjacent elements of a feature map are



typically distributed as shown in Fig. 4.1. For image data, there is



little correlation between the differences of adjacent elements, tUs



these differences are often modeled as samples from a stationary,



zero-memory source. We now similarly define the analogous source model



-3 -2 	 -1 0 +1 +2 +3 

Fig. 4.1. 	 Typical Distribution of Differences


Within a Feature Map.
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and entropy for the differences between adjacent elements of a feature



map.



A difference in a feature map is an integer 6, where 6 = -(m-1)



through (m-1). Let P6 represent the relative frequency of occurrence



of the integer 6 over all feature maps of the image. Define S as a



source which produces integer outputs 6 with probability P5 . Then S is
 


a stationary, zero-memory source model for producing sample sequences
 


of feature map differences. The entropy in bits for the source S is
 


defined by



(m-1)



H(S) -P log2 P6 (4.1) 
8 =-(m-l) 

H(S) represents a performance bound (lowest possible rate) for encoding



differences from the feature maps with any nonadaptive, zero-memory



encoder.



2. 	 Bound for Adaptive, Zero-Memory Encoder of Feature Map


Differences



Image data and the corresponding feature map data are typically



nonstationary. For example, the set of frequency of occurrences
 


ipkI(-i) obtained from differences in the £-th feature map of an



image may be quite different than the frequency of occurrences



{P(m-1) of differences obtained from averaging over all feature



maps in the image. A source model for the feature maps will have less



entropy if it also models the nonstationarity in the source. Simi­


larly, for nonstationary sources a better performance can be obtained
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from an entropy encoder which adapts to the statistical characteristics



on a local basis. Therefore, we next define a nonstationary source



model for the feature map sequences. The entropy of tlis nonstationary



model serves as a useful bound on the performance of an adaptive



entropy encoder.



Define S as a stationary zero-memory source model for the sample



sequence of differences from the t-th feature map in the image, where



Z . 

S1,2,---,NL and NL is the number of feature maps in the image. For



each L, S% is defined to ouptut an integer 6 with probability P6, where



P is the frequency of occurrence of the difference between adjacent



feature map elements being 6 within the Z-th feature map, and 6 is an



integer from -(m-1) through (m-i). Then let SL be the nonstation­


ary zero-memory source which is constructed from the many different



stationary sources. For each local source in the image, the output of



SL is a sample sequence from a different stationary source. The entropy



in bits for-each S is given by



H(S) Pk log2 P6 (4.2) 

Averaging the entropies in (4.2) over all local sources in the image



results in an average local entropy, or the entropy for SL'



NL 

H(S) Id HS (4.3) 

2=4
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H(SL ) is a performance bound on the average rate obtained by a



zero-memory encoder which adaptively encodes each feature map sequence



of differences. Actually, H(SL) represents an unachievable performance



bound for practical encoding, since we ignored the overhead rate



required to inform the decoder of the new statistics relative to each



local sequence. It can be shown that H(SL ) < H(S) [9, pp. 27-28].



3. 	 Bound for Nonadaptive and Adaptive Zero-Memory Encoder of


Feature Hap Distance Rank Symbols



Recall that the feature map resulted from replacing each picture



element with the integer label of the cluster to which it belonged. In



the above modeling of the feature map differences and the corresponding



entropy H(S ) in (4.2), it was implicitly assumed that the integer



labels assigned to the feature map clufters resulted from the estab­


lishment of labeled initial mode centers in the clustering algorithm



defined by (2.4). However, the clusters corresponding to any feature
 


map can certainly be assigned any set of distinct labels, and the



entropy of differences in the feature map is not necessarily minimized



by using the cluster labels from the initial mode center definition.



Intuitively, the entropy of differences is reduced when the set of



frequency of occurrences for differences become less uniform in value,



for example, the small magnitude differences occur more frequently and
 


the large magnitude differences less frequently. In monochromic



image data the differences consistently tend to lower magnitude, based



on the underlying observation that the next image element tends more



probably to be similar to the preceding. Similarly, for multispectral



images, an image element tends more probably to be similar (in a
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multidimensional sense) to the preceding. However, for multispectral



data, it is often impossible to define a set of cluster labels such



that the magnitude of the difference between each pair of cluster



labels is monotonically related to the multidimensional intercluster



distance,(e.g., Euclidean distance between cluster means) between each



pair of clusters. For example, consider the four clusters in two



bands depicted in Fig. 4.2. The difference symbol resulting for each



pair of adjacent elements of the feature map is shown in Table I for



the arbitrarily chosen cluster labels. Table II is constructed by



assigning an ordering to the multidimensional intercluster distances
 


between each pair of clusters. For cluster 2, for example, the



clusters when ordered as closest first are 2, 3, 4, 1, and the transi­


tions from cluster 2 to these clusters are labeled in the table



respectively as 1, 2, 3, 4. Observe that the magnitude of the differ­


ences in Table I are not consistently monotonically related to the



distance ordering in Table II. Furthermore, no assignment of cluster



labels can achieve such a relationship. Observe also that the differ­


ence representation of the source required a source alphabet of seven



C



z



BAND I 

Fig. 4.2. Four Integer Labeled Clusters.
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TABLE I 
DIFFERENCE OUTPUTS FOR PAIRS OF SOURCE SYMBOLS 

(i+l)-th Source Symbol


i-th Source Symbol 1 2 3 4 

1 0 1 2 3 
2 -1 0 1 2 
3 -2 -1 0 1 
4 -3 -2 -1 0 

TABLE II 
DISTANCE RANK OUTPUTS FOR PAIRS OF SOURCE SYMBOLS 

(i+l)-th Source Symbol


i-th Source Symbol 1 2 3 4 

1 1 2 3 4 
2 4 1 2 3 
3 4 2 1 3 
4 4 2 3 1 

symbols as.opposed to four symbols used in Table II. Therefore, the



representation of the source in termg of differences becomes less



appropriate for multispectral imaging. We next define a new represen­


tation of the-feature map which incorporates the multidimensional nature



of the source. This representation will be generally lower in entropy



and independent of the cluster labeling. The difference representation



of the source is still worthy of note because of its greater simplicity,



and also because its entropy may often be not significantly higher.



Define SS as a new source model for the i-th feature map. Assume



the i-th feature map has m clusters with any arbitrary but distinct



set of cluster labels. Then the output symbol from SS for each fea­


ture map element is an integer r,r = 1,--,m with r determined as



follows: if the cluster corresponding to the present feature map ele­


ment is the i-th closest of all clusters to the cluster corresponding
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to the previous feature map element, then r = i. Closeness is measured 

here in terms of the simple intercluster distance, the Euclidean dis­

tance between cluster centers. Any predetermined ordering can be used 

for equally close clusters. Refer again to the example of four clus­

ters in Fig. 4.2. Table II defines the mapping between feature map 

transitions and output symbols for SS . For example, when the previous 

feature map element is a 2, the output symbol from SSz is either 4, 1, 

2, or 3 dependent on whether the next feature map element is a 1, 2, 3, 

or 4 respectively. Note that a symbol of SS is consistently smaller 

in value when the adjacent feature map elements are more similar. This



generally results in a more nonuniform distribution of symbol values



and a lower entropy. The distance rank representation SS is more



generally applicable than the difference representation 
S in that SS2



possesses the above desirable traits for any cluster labeliig and any



dimensionality of the cluster space. The conversion between feature



map elements and SSz symbols is specified by an m x m distance rank



matrix. Therefore, this source representation requires the additional



computation of the distance rank matrix at the source and at the
 


destination for each feature map. However, no overhead rate is required



to inform the destination of the distance rank matrix, since this matrix



can already be calculated at the destination from the available spectral



data which defined the clusters of the feature map.



Let SS be a source model for the sequence of distance rank sym­

bols from the 2-th feature map. Every symbol in a sequence from SSz is 

defined to have probability P r of being r, where Pz r is the frequency of 
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occurrence of the value r in the distance rank representation of the
 


Z-th feature map. Then the entropy for SSP is



M 

H(SS£) =- Pk£ °g2 (4.4)

r~Pr
r 102p
 


and the average local entropy for the nonstationary model of feature



map distance rank symbols SSL is



NL



H(SS) LN = 1 F H(SSb (4.5)
L 
 

Z-1 

Now let Pr be the frequency of occurrence for the distance rank sym­


bol r averaged over all feature maps in the image. The stationary



model of feature map distance rank symbols is defined as SS and it



produces sequences for which the probability of each symbol being r is
 


Pr The entropy of SS is



mrM



H(SS) = - Pr log2 Pr (4.6) 

r-l 

H(SS) and H(SSL) represent performance bounds for a nonadaptive and



adaptive encoder respectively which encodes sequences of distance rank



symbols from the stationary and nonstationary models of the feature



maps.
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4. 	 Bound for Adaptive, First-Order Memory Encoder of Feature


Map Symbols



Before comparing entropies of the above practical source models,
 


we consider a nonstationary first order Harkov source model SSSL for



the feature maps. This source model is of less practical value than



the preceding source models for the following reasons: use of the
 


additional memory in the model would complicate the encoder, and the



overhead rate and complexity associated with informing the decoder of



the new statistics for each feature map becomes substantial. There­


fore, SSSL is used here only to provide a performance bound which spec­


ifies the limits to the performance improvements which could be



obtained from the next level of modeling complexity.



In a first order Markov source the probability of emitting a given



source symbol depends only on the previous symbol. If there are



m source symbols then there are m states. for the source. A state dia­


gram is used to depict a first order Markov source for three symbols in



Fig. 4.3. In general, a first order Markov source is completely speci­


fied by giving the source alphabet {aa}m and the conditional proba­

j=1



k
bilities pCa/ak ) of getting symbol aj after a for j = 1, 2, . . . , m 

(P(I/i) 

'4k



2 P(2/)3) 

Fig. 4.3.- State Diagram for a First Order Markov Source.
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and k 1, 2,..., M. The state probabilities p(a3 ) for j = 1, 2, 

$ m can be calculated from the conditional source probabili­

ities [30, pp. 338-376]. We can model the feature maps as sequences 

from a nonstationary first order Markov source as follows. Define the 

source alphabet as the integers which are used to label the clusters, 

=
ai = i for j 1, 2, . .. , M . (4.7)



Also define the conditional probabilities of the I-th feature map by



pZ(a j /ak) =p 2 (j/k) (4.8) 

where p u/k) is the frequency of occurrence of an integer j following



an iiteger k in the 2-th feature map. Let SSS denote the stationary



first order Markov source model for the t-th feature map sequence



as defined by (4.7) and (4.8). Then the entropy of SSS is defined as



m 

H(SSS) =E p2 (k)H(SSS/k) , C4.91 

k=1 

where H(SSS 1/k) is the conditional entropy of SSS while in the k-th



state,



m 

H(SSS /k) = ja - PP(J/k) log pjf/k) (4.10) 

J=l 
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for k = 1, 2, . . . , M. Averaging the entropies in (4.9) over all 

feature maps in the image gives the average entropy for the nonstation­


ary source model SSSL ,



NL 
H(sssL) N HCsss). (4.11)
L NL 

H(SSSL ) represents a performance bound for an entropy encoder which



adapts to each sample sequence from the nonstationary first order



Markov source model of feature maps. Actually, H(SSSL) represents an



unachievable performance bound, since H(SSSL) does not include the rate



required to inform the decoder of the relevant source statistics for



each local source, which is required for decoding. However, this bound



is useful since it does place a limit on possible performance improve­


ment from using the full first order memory of the source. 

B. Simulation Results Comparing the Performance Bounds



In Chapter III the Uncoded Cluster Compression Algorithm was shown 

to have a spatial data rate, (bpppb) of R3 as defined in (3.10). It


spat



= was also shown that R was approximately the same as R 
spat spat



(l/d) log 2m, where m is the number of clusters in the d dimensional



measurement space. The lower spatial data rate due to entropy coding is



bounded by the entropy per band,



Hd(y) = d (4.12)
d 4 
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where Y 	 is one of the source models, S, SL, SSL , SS' SSSL , and where



H(91) is defined by (4.1), (4.3), (4.5), (4.6) and (4.11) respectively.



The entropy per band depends directly on m, the number of clusters per



local source, and also upon the test image used which determines the



frequency of occurrences for symbols of the source model. Entropy per



band also depends indirectly upon the size of each feature map source



n, which impacts the nonstationarity of the source, and the set of



frequency of occurrences. The performance bounds for each of the source



models is plotted in Fig. 4.4 for various values of m and n. The bounds



were obtained in each case from using the appropriate feature map source



models for all the spatially disjoint square subsets in the test image



with n picture elements. For example, H(SL ) for m = 8 and n = 256 is



determined as follows: Each 16 x 16 subset of picture elements of the



m= 16 

0.05. -	 2­

0.75 

2 
M=4 	 4



1)UNCODED 
2) Hd 
3H( 10.5 m=2

24LO 25 	 5612 

4) Hd (5S1) 

5)Hd (SSSL) 

50.5 
36 100 256 576 	 1024 

Fig. 4.4 	 Performance Bounds from the Various Source Model 

Entropies as a Function of m and n. 
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test image is clustered to 8 clusters, then the frequency of occurrences 

for differences within each 16 x 16 feature map is calculated, and the 

corresponding H(S ) and H(SL) result from (4.2) And (4.3). The-test 

image is shown in Fig. 6.8(a) and is a 256 x 256 picture element subset



of a four band multispectral image of the Verde Valley, Arizona, taken



by the Landsat I satellite. H(,O) was also determined for a wide range



of other test images and only slight differences from the H(9') for the



test image in Fig. 6.8(a) were observed.



For any source Y let eh(2) be the ratio of entropy per band to



the uncoded rate per band,



e, = d3 (4.13) 

spat



The following information concerning feature map entropy coding can be



observed from the typical performance bounds shown in Fig. 4.4. The



ratio ehG(9 ) ranges mainly between 0.6 to 0.9 with a typical value of



0.75. For a given n, eh(O) reduces as n increases. Similarly, for a



given n, eh(W) reduces as m decreases. In each case the decrease in



eh(P) is due to the decrease in the ratio of clusters to picture



elements. A decrease in this ratio corresponds to a coarser approxi­


mation of the image, which in turn causes a smoother contouring in the



feature map and lower entropy. Incorporating the nonstationary charac­


teristics of the source into the source model results in reducing eh(Y)



by about 5 to 15 percent. The difference between the simplest source



model S and the most complicated practical source model SSL is typically



15 percent. Furthermore, the use of the clearly unachievable bound
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Hd(SSSL ) results in less than 10 percent improvement in eh(g) relative



to the use of Hd(SSL). In summary, the performance bounds for the



practical source models indicate that entropy encoding could possibly



reduce the spatial data by factors approaching 0.8 to 0.65 dependent



on source modeling complexity. However, a reduction in spatial data



rate by a factor less than 0.55 is not possible even with a considerably



more complicated and less practical source model. Therefore, the



practical encoder defined next will be applied only to the source



models SL and SSL -


C. Definition of Practical Entropy Encoder



The chosen practical entropy encoder is an adaptive variable



length encoder described in [31] and briefly defined below. An



adaptive encoder is chosen to enable encoding of widely different types



of image data. Once one can adapt to statistics of different images,



it is a simple extension to be adaptive at a more local scale within



the image. The encoder also includes the ability to represent 3-tuples



of the source, thereby enabling average encoded data rates below one



bit per element of the feature map. Of course, an adaptive Huffman



encoder for the third extension of the source could be used, but such



an encoder would be much less practical to implement. The adaptive



variable length encoder defined below is shown to be easy to implement



and performs near the previously discussed entropy bounds over a large



range of source model entropies. Basically, the procedure of the



adaptive encoder is to encode each code block with four different



methods and use the method which results in fewest bits. Each encoding



method is capable of good performance on typical sample sequences from
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a source with an entropy within a specific and limited entropy range.



By using the best of all four methods for each code block, good encod­


ing performance is obtained for sources with entropies over the full



range of interest.



The functions of the practical entropy encoder are diagramed in



Fig. 4.5. The first element of each feature map sequence y is



left uncoded and used as a decoding start reference. The rest of the
 


feature map elements are segmented into code blocks of length J, where



J is typically fixed between 16 to 32, except for the last code block



which may be smaller. Each of these code blocks is then encoded with
 


one of four methods and the method used is identified for each code



block by using two overhead bits. A J between 16 to 32 represents a



good performance compromise between adaptability and overhead costs.



The first coding method is simply the natural coding of 3-tuples. This



method serves as a backup coding procedure which limits the coded data



rate to a rate only slightly higher than the uncoded data rate,
 


because of the overhead bits. Furthermore, this encoding method is



efficient for code blocks for which the symbols are nearly uniformly



distributed. The results of this coding for the code block is stored



in Buffer 1.



The other three coding methods require that the code block



sequence be represented in terms of either differences between adjacent



elements, or as a sequence of distance rank symbols as previously



discussed in the source representations for the S and SS source
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Fig. 4.5. Block Diagram of a Practical Entropy Encoder.
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models respectively. If the source is modeled by S , then a Funda­


mental Sequence FS is generated for the code block according to Table



III. If the source is modeled by SS , then the FS is generated



according to Table IV. The FS for the code block is collected into



Buffer 3 and constitutes the method 3 encoding for the code block. As



can be seen from Tables III and IV, this encoding is efficient when the



first few symbols of Tables III and IV occur with high frequency in the



code block. However, this method is obviously not efficient for code
 


block sequences which result in many Os within FS. Neither is method 3



efficient coding when FS is nearly all Is, since the average rate per
 


symbol of the FS cannot be below 1 bit per symbol. Method 3 provides



efficient coding for source models with entropies in the range of 1.5 to



3.0 bits per symbol [31].



At the same time that FS is stored into Buffer 3, it is also seg­


mented into 3-tuples and terminated with extra zeros as needed. This



sequence of 3-tuples is then used to generate a Coded Fundamental



Sequence CFS according to Table V. The CFS is collected into Buffer 2



and constitutes the method 2 encoding for the code block. From Table V



TABLE III


CONSTRUCTION OF FS FROM DIFFERENCES
 


Difference FS Contribution 
0 1 
1 01 

-1 001 
2 0001 

-2 / 00001 
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TABLE IV 
CONSTRUCTION OF FS FROM DISTANCE RANK SYMBOLS 

Distance Rank Symbol FS Contribution


1 1


2 01


3 001


4 0001


5 00001



it is clear that the method 2 encoding is more applicable to an FS



with considerable runs of Os. Method 2 provides efficient coding



for source models with entropies in the range of 3.0 bits per symbol up



to an entropy equal to the rate of natural coding of 3-tuples in



method 1. 

Method 4 is implemented in parallel by again segmenting FS into



3-tuples, but terminating with is. Then the sequence of 3-tuples are



complemented and used to generate a Coded Fundamental Sequence Bar CS­


by using the same Table V as used for generating CFS. The CFS sequence



resulting from coding method 4 is stored into Buffer 4. Method 4



provides efficient coding for long sequences of is in the FS. This



TABLE V


CONSTRUCTION OF CFS FROM 3-TUPLES



3-Tuple Input CFS Output 
000 0 
001 100 
010 101 
100 110 
101 11100 
011 11101 
110 11110


1il 1111
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corresponds to efficient encoding for source models with entropies



below 1.5 bits per symbol and down to entropies approaching 0.5 bit per



symbol. The details concerning.which range of entropies each coding



method is most efficient for are discussed in [31].



For the b-th code block the coder selects the coded sequence which
 


has minimum length and outputs the following: 1) a two bit sequence ID



which identifies for the decoder the method used, and 2) the corre­


sponding minimum length coded sequence, NCb , CFSb , FSb , or CF--'Fb . This



procedure is repeated for each code block in the feature map. In this



way the entropy encoder is noted to adapt to the data source for-every



J elements. The entropy encoder output for each feature map consists



of the decoder start reference, and a multiple number of adaptively



coded sequences. This encoded data stream includes all the necessary



-overhead to enable similarly simple decoding back to the original fea­


ture map elements.



Let the coded output sequence for code block b be represented by



b
CS . Also let L[n] represent the length in bits of any binary



sequence n. Then for the b-th code block the coded output has length



LECSb ] = min [L[JcB],LECFSh],L[FS] ,L[CFS ]] + 2. (4.14)



The total length of all the coded output sequences for B code blocks in



the £-th feature map is given by



B 

TL = E L[CSbJ (4.15) 

b=l



The decoder start reference for each feature map requires Flog 2 m
1



bits, where m is the number of source symbols in the feature map.
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The averaged coded spatial data rate in bpppb for the i-th feature map



with source representation Y' is



Rc z lg2m + dn (4.16)
spat d'n d-n 

where .9 is either S , or SS. The entropy coded spatial data rate 

averaged over the 11 L feature maps of the image is 
NL 

Rc (9L)l SI__ c 2pt(,RpLa =L R .(9) (4.17) 

SptL spat 

In summary, R a(S ) is the average encoded spatial data rate


spat L



(bpppb) resulting from entropy encoding the difference between adjacent



feature map elements from the entire image. Similarly, R a(SSL)

spat L



represents the average spatial data rate resulting from entropy



encoding the distance rank symbols representing the feature maps.
 


D. Computer Simulation of the Practical Entropy Encoder



A computer ,simulation of the entropy encoder was developed to



demonstrate its performance on the test image in Fig. 6.8(a). The



performance of the simulated entropy encoder is shown in Fig. 4.6 in



terms of Ra (S ) and RCp(SS ) as a function of m and n. The uncoded
 

spat L spat L



spatial data rate and the entropy per band for source models SL and



SSL are also plotted for comparison. Recall that Hd(SL ) and Hd(SSL) in



Fig. 4.6 represent an unachievable bound to the performance obtainable



by an entropy encoder which adapts to each feature map while encoding



the nonstationary source models SL and SSL for the image in Fig. 6.8(a).



The results in Fig. 4.6 are typical of results similarly obtained from



many other multispectral images. It can be observed from Fig. 4.6 that
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Fig. 4.6. Performance of the Practical Entropy Encoder.



the entropy encoder performs reasonably close to the corresponding



unachievable performance bounds. Therefore, further refinement in the



entropy encoder can result in only small improvements in performance.



Furthermore, it was also shown earlier in Fig. 4.4 that even nonstation­


ary 1st-order Harkov source modeling of the data would not result in



substantial improvement in the performance bound for entropy encoding. 

These observations indicate that additional substantial encoding



performance gains are very unlikely to be obtained from any other



practical encoder which is similarly constrained to permit exact recon­


struction of the feature map. The above practical entropy encoder is



also relatively easy to implement, since it requires simple logic and



little memory. Note, for example, that Buffer 2 through Buffer 4 in



Fig. 4.5 need be no larger than Buffer 1. Therefore, Buffer I through
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Buffer 4 are all at most 128 bits. A serial implementation of the four



coding methods can be used in lower data rate applications.



In summary, the entropy encoder should provide a typical average



data rate reduction of about 20 percent. This data reduction is



significant, especially since no degradation of the feature map occurs.



The entropy encoder itself was also shown to be relatively easy to



implement at high data rates. However, the entropy encoder is a vari­


able length encoder, and variable data rates often seriously impact the



complexity of the rest of the data system. For example, in applica­


tions on-board a satellite it is usually necessary to interface with a



constant data rate transmitter. Thus the use of a variable data rate



encoder introduces a need for considerable data buffering and data rate



control measures between the encoder and the transmitter. The imple­


mentation complexity of these additional data system elements must be



considered before choosing to use any variable-length encoder. In the



next section, we consider other feature map coding methods which are



not constrained to exact reconstruction of the feature map.



E. Other Feature Map Encoding



The above entropy encoding did not introduce any degradation ih



representing the feature map. However, in some applications only cer­


tain spatial characteristics of the feature map need to be preserved.



For example, only closed boundaries in the feature map may be desired



for field interpretation. The use of spatial texture in this applica­


tion would allow the elimination of most irregular single elements



within fields. When only specific spatial characteristics are of
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interest, the feature map can in effect be represented by a sequence



typical of a source with lower entropy. Then the following entropy



encoding may obtain significantly lower data rates. However, the



texture to be preserved and the associated fidelity criterion for its



preservation are usually very difficult to define. Correspondingly,



encoding algorithms which incorporate spatial texture are typically
 


less amenable to high data rate implementations. Perhaps the task of



extracting spatial texture from d-dimensional image data (e.g., boundary



finding algorithms) may be aided by first having local regions of the



image converted to scalar numbers which represent significantly differ­


ent spectral features. The incorporation of spatial texture into the



feature map encoding is not pursued at this point, but appears to be a



topic worthy of further investigation.



An example of a very simple method for reducing the spatial data



rate is the deletion of subsets of the feature map with reconstruction



by linear interpolation. This approach is a crude but simple method



which might be used if spatial resolution is higher than necessary for



observing texture in a particular application. The spatial data rate in



this case is simply reduced by the feature map subsampling factor.



F. Definition of the Coded CCA



The block diagram for the Coded CCA is shown in Fig. 4.7. The



Coded CCA is identical to the Uncoded CCA shown in Fig. 3.1 except for



the addition of the feature map encoder. The feature map encoder may



be a spatial feature extractor, an entropy encoder, or both. In this



work, primary consideration is given to entropy encoding, and the Coded
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CCA should be assumed to use this encoding unless otherwise specifi­


cally stated. Let R represent the average rate in bpppb for the


spat



coded feature map sequence. Define a compression ratio CR for the



feature map encoder by



R3 1 liog2 mn


CR = 

R 
spatc 3d

R

7 (4.13) 

Rc
RC 
 
spat spat



In general, the rate for the coded feature map sequence is then given by



Rc - -'logm2 (4.19)

spat dCR 

and the total coded data rate for the Coded CCA is represented by R


tot'



where



if 3]
1/3 Flog2 m
 tot spec spat n-d d'CR (4.20)



Equation (4.20) also applies to the Uncoded CCA when CR 1.



As noted for the Uncoded CCA, the total data rate Rc tot for the 

Coded CCA also consists of a mixture of spectral and spatial defini­

tions. However, for the Coded CCA the division of Rc between spectraltot 

and spatial definition is dependent on CR in addition to m and n. Let 

Rtot in (4.20) be a constant Rto and express n as a function of m to 

get 

n = (4.21) 

d -t d*CR j 
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where 
 

Rc* > 3
 
tot 
 d.CR 

A plot of n vs. m in (4.21) for a constant R = 1 is given in


tot



Fig. 4.8 with f = 24, d = 4 and CR = 1 and 2. This plot demonstrates



that a given Re may be approximately obtained by many combinations of

tot 

m, n and CR. Chapter VI will compare the performance of various 

(m, n, CR) combinations which have the same Rt

tot' 

1000 -

CR= 1 
0 

=750 Rctot I 

d= 4 

500 f= 24 

250 CR= 2 

00000
125 

00*0
64 
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M 

Fig. 4.8. Plot of n vs. m for Rc = 1 with f = 24, d = 4,

= I and 2. tot
and CR 
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CHAPTER V



OTHER CLUSTERING FORMS OF THE CCA 

A. The Adaptive CCA -

In both the Uncoded CCA and the Coded CCA, it was assumed that



the number of clusters m per local source was a constant throughout the



entire image. However, since most image data is nonstationary, it is



desirable to have the number of clusters used per local source be



variable and adaptively determined to meet the quality requirements for



the data of each specific local source. For example, one local source



may consist of data for which only two clusters are necessary to meet



the quality requirements, while another local source may require ten



clusters. Rather than use ten clusters for each local source, it is



preferable to use only as many clusters as necessary for each local
 


source. The Adaptive CCA is defined to incorporate the use of adaptive



clustering. The advantage of the Adaptive CCA is that a lower average



value of m can-be used and thereby the spectral and spatial data rates



are both reduced.



The form of the Adaptive CCA is the same as for the Coded CCA



shown in Fig. 4.7 except the clustering is adaptive. The Adaptive



Clustering Algorithm (ACA) described in Chapter II is used to demon­


strate the concept of the Adaptive CCA. The ACA is adaptive by delet­


ing, splitting, or combining clusters according to corresponding user



supervision theresholds. The user supervision also specifies the lower



and upper limits, on the number of clusters used per local source.



These thresholds and limits ideally allow the user to define the



quality requirements in terms of 1) minimum number of elements
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(relative spatial density) required for distinct representation,



2) maximum intracluster variance, 3) minimum intercluster distance, and



4) the minimum and maximum number of clusters per local source



(minimum, and maximum number of meaningfully different spectral



reflectances present per local source). These user supervision inputs



are constants and need to be specified only once for the entire image.



For each local source, the adaptive clustering results in a vari­


able number of clusters. The number of clusters for each local source



is dependent on the user supervision inputs and the data of the local



sources. The spectral data definition still defines the cluster fea­


tures present for the local source, only now the number of features is



variable. Thus, the spectral data definition of each local source must



now also include a short lead feature which indicates the number of



clusters present. The feature map encoder and the coded spatial data



rate are unchanged from the nonadaptive CCA, except that the number of



symbols per feature map element now can change from one feature map to



the next. The ground data selection, reconstruction, or interpretation



proceeds as before except that the lead spectral feature is used to



inform the decoder of the number of spectral features being transmitted



for each local source.



The extra complexity introduced by adaptive clustering comes from



two sources, 1) the added complexity of the clustering algorithm, and



2) the increased data system complexity resulting from the variable data



rate. Refer to the block diagram of the ACA shown in Fig. 2.4, and the



BCA shown in Fig. 2.3. Observe that both algorithms have the same



Assign function which requires a very high computation rate of a simple
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distance measure between vectors, for example the distance measure in



(2.1) or (2.2). The ACA in addition requires more difficult computa­


tion during the cluster modification phase between Assign iXtations,



for example the intercluster distance measure of (2.12) for combining



clusters. However, this more involved computation can be performed at



a lower rate than the simple Assign computation, since it is required



only once per each complete Assign function. Thus the structure of the



ACA is such that the more complicated computation is required at a



greatly reduced frequency of repetition.



The adaptive clustering results in a variable data rate and the



same associated data system problems discussed in Chapter IV for the



variable-rate feature map encoder. The range of the data rate is



limited by the specification of the upper and lower bounds for the



number of clusters. In a data system application requiring a fixed



data rate, one should consider augmenting the adaptive clustering with



a control structure to achieve a fixed average data rate over a volume



of data which is compatible with practical data buffer limitations.



This control structure would likely consist of an estimator for deter­


mining the percentage rate allocation to be made between the local



sources of a fixed rate block. Then the data rate allocations could be



made through corresponding modifications of the thresholds and limits



used for each local source. At this time the investigation is focused



on the Adaptive CCA without consideration of rate control.



Let mk and CR represent the number of clusters and the feature



map encoding compression ratio respectively for the £-th local source



of the image. Let Mub be the maximum number of clusters allowed in any
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local source as specified by the user supervision. Assume the number



of clusters per local source is identified by simply using [log2 Mubl



bits at the beginning of the spectral definition data for every local



source. Then the average adaptive spectral data rate R(A) and the


spec



average adaptive spatial data rate Rc(A) for the Adaptive CCA are


spat



given by



NL 
R(A) =E !°2 'b! + 11 M °fd~- (5.1) 

and



L3 log2 1(52

RC(A) =-LE 
 d £ 
 
spat 
 3 dCR



where iL is the number of local sources in the image. The average



adaptive total data rate R (A) is given by

tot 

RC(A) = R(A) + R(A) . (5.3) 
tot spec spat



In the next chapter computer simulations are used to measure perfor­


mance improvements due to using adaptive clustering.
 


B. The Cascaded CCA



When a sequence of local sources is individually clustered, there



is likely to be considerable similarity between many of the clusters.



For example, assume a sequence of 16 local sources are clustered to



8 clusters each. This results in 128 different clusters for the
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sequence of 16 local sources. However, many of these 128 clusters



resulted from image elements in different local sources, but with



similar spectral reflectance properties. Thus many of these 128 clus­


ters are-very similar. Usually similar clusters come from different



local sources. For example, cluster 1 of local source 1, cluster 1 of
 


local source 2, cluster 2 of local source 3, etc., could all be similar



clusters because they might each represent similar image data in differ­


ent local sources. -However, similar clusters can also be from the same



local source. Although the clusters within a local source are by



design dissimilar from one another, the clusters might still be very



similar on a relative basis when compared with all the other clusters



resulting from a sequence of local sources. For example, assume that



the above 128 clusters represent 16 distinctly dissimilar types of



image data. However, assume local source 3 possesses only 2 of the



16 dissimilar types of image data. Then many of the 8 clusters from



local source 3 will be quite similar relative to the dissimilarities



occurring between the other clusters.



One method of taking advantage of these similar clusters is to use



cascaded clustering within the CCA. Cascaded clustering basically col­


lects the cluster descriptions for a sequence of local sources and then
 


clusters these local clusters into a smaller set of cluster descrip­


tions to serve as the cluster features for the sequence of local



sources. For example, a sequence of 16 local sources are initially



clustered to 8 clusters each, and the cascaded clustering combines the



resulting 128 local clusters into 16 sequence clusters to represent the
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sequence. Each local source is still represented in terms of local



cluster features, however, the local cluster features for each local



source are now a subset of the 16 sequence clusters which represent the



sequence of local sources. In addition, the cascaded clustering com­


bines those clusters within a local source which are similar relative



to the clusters present in the sequence. Thus the average number of



clusters per local source might for example be reduced from 8 to 5.



Cascaded clustering reduces the spectral data rate by eliminating the



need to separately define the many similar clusters resulting from



independent clustering of local sources. Cascaded clustering also



reduces the spatial data rate by reducing the average number of clus­


ters per local source through the combining of clusters in a local



source which are similar compared to all the clusters present in the



sequence of local sources. An inherent advantage in cascaded cluster­


ing is the ability to modify the local source clustering based on knowl­


edge of clustering results for surrounding local sources.



1. Sequence Spectral Definition



The form of the Cascaded CCA is shown in Fig. 5.1, and a flow



chart of the functions is given in Fig. 5.2. The input data consists
 


of a sequence of N local sources, each consisting of n image elements.
s 

The partial supervision as before specifies the constant number of



clusters m to be obtained for each local source. Each local source



is then clustered as in the previous CCA forms to provide a set of mt



cluster features and a feature map for each local source. However, now



the m) cluster definitions and the feature map for each of the N1 local
s 
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sources are collected in memory for further processing. The user super­


vision for the Cascaded CCA must in addition specify the user quality



requirements on a sequence basis, as, for example, the number and type of



-cluster features desired to represent the sequence of local sources.



Once the m'Ns local clusters have been collected, they are clustered



to obtain a set of m sequence clusters to be used as the spectral fea­


tures for the sequence of local sources. Assume the Cascaded CCA and



the ground decoder agree to assign the integer labels 1,2,...,m to
s 
 

sequence clusters, according to the order of transmission and reception.



The cascaded clustering results in a mapping between the integer labels



for the m.-Ns local clusters and the integer labels for the ms sequence



clusters, as demonstrated in Fig. 5.3. The ma sequence clusters are



output to provide the cluster definition per sequence at a sequence



spectral data rate defined as R (seq).


spec



2. Local Spectral and Spatial Definition



Figure 5.4(a) shows sections of typical feature maps for the first
 


and second local sources in terms of the local labels. Figure 5.4(b)



shows the same feature map sections represented in terms of the



sequence labels. The feature map for the Cascaded CCA is in terms of



the sequence labels as in Fig. 5.4(b). However, since the total



number of sequence clusters is usually larger than the number of



sequence clusters used in a given local source the feature map repre­


sentation in Fig. 5.4(b) is inefficient. A more efficient method of



transmitting each feature map is to send [1082 mzl bits to identify


b



the number of sequence cldsters m occurring within the b-th local
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Fig. 5.3. 	 Mapping Between Local Fig. 5.4. Typical Sections of


Cluster Labels and Feature Maps. (a) In
 

Sequence Cluster local labels. (b) In



Labels. 	 sequence labels.



source. Then send ilog2 ms bits to identify each of the mb sequence



clusters present in the b-th local source. This data is referred to



as the local spectral data with a data rate of R(loc), and an example


spec 

of this data is given in Fig. 5.5 for the local source examples shown 

in Fig. 5.3 and Fig. 5.4. Assume the Cascaded CCA and the ground 

decoder agree to assign in the order of transmission integer labels 

1,2,... to the subset of sequence clusters present in a given source. 

These integer labels are defined as the subset labels, and they are 

assigned to the subset of sequence labels in the order of their 

transmission. An example of the mapping between the subset of sequence 

labels in a local source and the subset labels is shown in Fig. 5.6.
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Observe that the mapping in Fig. 5.6 simply takes the sequence labels



back into the original local labels of Fig. 5.3 except for the deletions



of local clusters which were combined in the cascaded clustering. The



feature map for the Cascaded CCA can then be represented in terms of



the subset labels as shown in Fig. 5.7. -The decoding of the subset



labels is defined by the transmitted spectral data shown in Fig. 5.5



which specifies for the decoder the mapping in Fig. 5.6. The trans­


mission of the uncoded feature map in terms of subset labels (Fig. 5.7)



requires [ bI bits per element, which is usually considerably
reqireslog2 ms



less than Flog2 msl bits per element required to directly transmit



LOCAL LOCAL 
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1 	 2 
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221 112
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Fig. 5.7. 	 Cascaded CCA Feature Hap in


Terms of Subset Labels.
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the feature map in terms of sequence labels (Fig. 5.4(b)). Also the



overhead bits required to enable decoding of the subset labels is very



small when averaged over all the samples in the local source. Consider



local source 1 in the example of Figs. 5.3-5.7, where m =16, m =4,

S S



mY=4, and assume the number of elements n is 256. Direct transmission



of the sequence labels in Fig. 5.4(b) requires 4 bits/element. Alter­


nately, transmission of the overhead in Fig. 5.5 requires an average of



(2 + 4 x 4)/256 = .07 bit/element, and the transmission of the subset



labels in Fig. 5.7 requires 2 bits/element, or a total of 2.07 bits/



element. Representation of the Cascaded CCA feature map in terms of



subset labels significantly reduces the spatial data rate, while pre­


serving a simple look-up table architecture for the decoding



implementation.



3. Implementation Considerations
 


The primary new function in the Cascaded CCA of Fig. 5.1 is the



cascaded clustering. Cascaded clustering impacts the implementation



complexity in terms of memory and computation requirements. Additional



memory is required to collect the local cluster definitions and the



local feature maps which make up a sequence. The number of cluster



definitions to be stored per sequence is m.'N where m. is the number
 


of clusters per local source and Ns the number of local sources per



sequence. For example, assume mz=8 and Ns=16, and that the mean



and variance of each of 4 bands are stored for each cluster. Then the



storage required is 1024 8-bit words. Each local feature map requires



storage for n-Ns local labels, where n is the number of elements per



feature map. A reasonable maximum value of m, is 16, so each label
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takes 4 bits. Thus a sequence of 16 local sources, each of 16 x 16 ele­


ments requires 4096 4-bit words of storage. These numbers indicate a



relatively small amount of memory is adequate for the Cascaded CCA.



The additional computational requirements in the Cascaded CCA



arise mainly due to the cascaded clustering. The relabeling of any



feature map from local labels to subset labels requires a simple map­


ping as demonstrated in Figs. 5.3 and 5.5. However, the clustering of



clusters requires the use of intercluster distance measures which are



generally more complicated than the distance measures used in cluster­


ing vectors. A discussion of many intercluster distance measures is



contained in [13], and an intercluster distance measure used for the



Adaptive Clustering Algorithm (ACA) is discussed ih Chapter II. An



important attribute of the Cascaded CCA structure is that the more



difficult computations require a correspondingly lower frequency of



repetition. The more difficult computation of the cascaded clustering



must be accomplished only once per the clustering of N local sources,
S 

and similarly only once per the N .n vectors present in an entire
 
5 

sequence. Therefore, the impact of cascaded clustering on the average



computation per vector is greatly reduced.



The basic concept of this cascaded structure is to use fast spe­


cial purpose hardware for simple computation at the data vector level



for extracting local features, and then to use slower general purpose



microprocessors for more complicated computation at the local source



level for extracting sequence features. Of course, this cascading could



be expanded with additional higher levels of even slower rate and more



sophisticated computation. In addition, one could incorporate adaptive



clustering within the Cascaded CCA at the local level, sequence level,
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and higher. The generalized concepts of this cascaded architecture



appear to be useful for applications in artificial intelligence and



other sophisticated pattern recognition problems dealing with high data



rate sources. However, the scope of this work is limited to formulation



of the concept and investigation of a very simple form of the Cascaded



CCA.



4. A Specific Cascaded CCA Form



A simple form of the Cascaded CCA in Fig. 5.1 is defined below.



The user supervision consists of specifying a constant number of local
 


clusters to be obtained for each local source, a fixed number of local



sources to be'used for each sequence, and a constant number of sequence



clusters to be obtained for each sequence. This user supervision is



specified only once per entire image. The clustering of vectors is



accomplished using the.Basic Clustering Algorithm discussed in Chap­


ter II and shown in Fig. 2.3. The cascaded clustering is obtained from



using the BCA again to cluster the local cluster means. This cascaded



clustering is nonadaptive and uses the Euclidean distance between



cluster means for a simple and crude measure of intercluster distance.



Feature map encoding consists of the entropy encoder defined in Chap­


ter IV. Let n be the number of elements per local source, Ns the num­


ber of local sources per sequence, m the number of sequence clusters,



and f the number of bits used to define each sequence cluster. The



sequence spectral data rate R(seq) in bpppb for transmitting the


spec



sequence cluster definition is given by



m f 
R(seq) = s (5.4) 
spec N "nod 
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Let m. be the number of local clusters per local source, and mb the 

number of sequence clusters present in the b-th local source. The



average local spectral data rate R(loc) for defining how many and­


..._ s pe c
 


*hidh sequence clusters are present per local source is given by



NL



(lo 	 = [log2 9 Flog 2 msl L 
spec nd nd oN L b=15 
 

where



N



-1 m'b (5.6) 

L b=1 

is the average number of sequence clusters per local source for the NL



local sources in the image. Let d be the number of spectral bands and



CR be the feature map encoding compression ratio for the b-th local



source. Then the average encoded spatial data rate for the feature map



of subset labels is



NL 3 log m b 

R1 I o (5.7)
spat dN b=l b



The total rate in bpppb for the Cascaded CCA is



R(casc) = R(seq) + R(loc) + Rc , (5.8) 
tot spec Spec spat 

or 

R(casc) = mf +log 2 m + [log2 m 

tot Nsnd nd nod 

NL 1 inb] 
3 FSlog2+ 1 	 (59


d-NL 	 ECRb 

b=l 8 
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5. Impact on User Data Processing



The following is an example of use of the Cascaded CCA. Assume



16 local sources (N,=16) of 16 x 16 elements (n=256) are clustered



to 8 local clusters (m,=8) each and then the clusters are clustered



to 16 sequence clusters (ms16). Assume each sequence cluster defi­


nition consists of 7 bits to define within I percent the number of ele­


ments per cluster, 32 bits to define the cluster mean in 4 bands



(d=4), and 16 bits to define the cluster variance in 4 bands. Each



cluster definition thus requires 55 bits (f=55). The sequence spec­


tral 	 definition data rate from (5.4) is R(seq) = .0537 bpppb. A


spec



typical average number of sequence clusters present per local source



would be about 5.5 (m=5.5). Then the local spectral definition
 


(R(loc)) in (5.5) is .0244 bpppb. There are 4 spectral bands and


spec



assume the average coded spatial data rate per band in (5.7) for the
 


average of 5.5 subset labels is Rc =.5 bpppb. This corresponds to


spat



an average entropy encoder spatial data rate reduction of .81. Thus



the total Cascaded CCA data rate is .578 bpppb. If the entropy coder



was not used the total data rate would be about .7 bpppb.



In some data systems (e.g., Landsat) it is not sufficient-to



provide data compression as a means for obtaining an approximate image



with the transmission of fewer bits. In fact it can be more important



to make the data compression provide a form of preprocessing which



facilitates user data selection and user data interpretation. An accu­


rate measure of how much any algorithm benefits user data processing



can only come through interactive assessment with specific data users.
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However, hare we attempt to exemplify potential user processing bene­


fits of the Cascaded CCA concept through continuation of the above



example.



Figure 5.8 (a) - (d) shows block diagrams of how the outputs of 

the Cascaded CCA might be used to aid user data selection and user data 

interpretation. Assume first that the user needs to know what of inter­

est is there, but does not need to determine accurately where. Such 

information is useful for user data selection to quickly eliminate 

large sequences of data with nothing of interest. Also this informa­

tion may be all that is needed, as in inventory assessments (e.g., 

determination of the percentage of crop types). The user can obtain a 

quick overview of the data by observing only the sequence spectral 

definition of the Cascaded CCA. In the above example, the sequence 

spectral definition provides a representation of what and how much is 

present in a sequence of 4096 picture elements in terms of 16 sequence 

cluster definitions. As shown in Fig. 5.8 (a), the user provides a



classifier to identify which clusters represent data belonging to a



class of interest. The use of R(seq) to identify which classes of


spec



interest are present per sequence of 4096 picture elements required a



data rate of only .0537 bpppb, and the user classification of only



16 features. This reduces the data volume the user must handle by a



factor of 112, and also reduces the number of user classifications to



be made by a factor of 256.
 


Assume the user has selected a sequence of 4096 picture elements



which has one or more classes of interest, and the user now desires to



obtain a better spatial definition for these classes. Let the class
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labels assigned to the 16 sequence clusters be stored in a 16 word



look-up table. The local cluster definition is a list of which sequence



clusters are present per 16-x 16 local source in the sequence. Fig­


ure 5.8 (b) shows the use of the local spectral definition as an



address to the look-up table with the class labels. The output is the
 


identification of classes present per each 16 x 16 image elements, thus 

permitting a finer level of data selection within a larger sequence of 

image elements known to have classes of interest. Even when this finer 

level (16 x 16 image elements) of data selection is used, the data rate 

is only .078 bpppb. Thus the data volume is reduced by 77, and the 

number of classifications still reduced by 256. 

In some applications the identification of what is present within
 


4096, or 256 image element sets would be adequate. In other applica­


tions the user may desire to know where the classes of interest occur



on an image element by image element basis. Refer to Fig. 5.8(c).



The subset of-class labels for each 16 x 16 local source are stored in



an 8-word look-up table. The spatial data definition given by the fea­


ture map is used as an address to define the class label appropriate



for each image element. If feature map encoding is used then a



decoding is required before obtaining the address. This additional



detailed spatial information increases the data rate to .578 bppb.



The data volume is reduced by 10.4, but still the number of classifi­


cations is reduced by 256.



Finally, assume the user desires instead a reconstructed image for



manual interpretation. This application of the data is shown in



Fig. 5.8(d). The 16 sequence clusters defined by the sequence cluster
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definition data are stored in a 16-word look-up table. The local clus­


ter definition data is used as an address to output the subset of



sequence clusters which are present for each local source. The subset



of sequence clusters are stored in an 8-word look-up table. Then the



spatial data definition is used as addresses to output an approximate



reconstruction for each picture element. The approximation typically



would be the cluster mean, although the cluster variance per band could



also be used in reconstructing an image. The data rate required for



this image reconstruction is also .578 bpppb, representing a data



reduction of 10.4.



Observe that a combination of the functional elements in



Figs. 5.8(c) and 5.8(d) give the capability for acquiring all or any
 


subset of the user outputs simultaneously. Figure 5.8 also demon­


strates that a simple look-up table architecture can be used for



decoding. The above examples conceptually demonstrate how the



Cascaded CCA benefits ground data handling by providing for data selec­


tion and reduced interpretive computation. Some computer simulation



results of the Cascaded CCA are given in the next chapter. Further



research is needed to better assess the practical benefits and to



investigate other forms of this concept.
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CHAPTER VI



PERFORMAICE OF VARIOUS CCA CONFIGURATIONS



The performance of-a data ompression algorithm is measured in



terms of the data quality vs. the data rate. Data quality is most com­


monly measured in terms of percent mean square error (%N4SE), classifica­


tion accuracy, and subjective appearance.



Subjective appearance is an appropriate criteria when manual photo­


graphic interpretation is used. In such cases it is often too difficult



to define a mathematical expression for adequately quantifying data



quality. The obvious disadvantage of this criteria is that it is sub­


jective rather than quantitative.



Classification accuracy is an important quantitative measure of



data quality in applications where the compressed data is automatically



interpreted (e.g., Landsat data applications). However, classification



accuracy is dependent on the classification technique, as well as the



data compression technique, and often significant accuracy improvements



can be obtained by tailoring the classification technique to the speci­


fic data compression technique. Therefore, it is important to jointly



investigate compression and classification when the data quality is



based on classification accuracy.



%MSE also provides a quantitative measure of data quality. This



criteria is widely used because of its convenient mathematical form.



The MiSE is not generally meaningful for measuring data quality in an



absolute sense. For example, it would not usually be useful for com­


paring data quality across different compression techniques, or across
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different test images. However, the %MSE can be very useful for com­


paring performance from options of the same compression technique and



the same test image.



In this chapter computer simulations are used to provide compara­


tive performance results for the various CCA configurations. These



performance comparisons can be helpful in assessing the impact of data



compression on the data user, and also for defining performance vs.



implementation complexity trade-offs. In terms of implementation it is



desirable to keep m, n, and the number of clustering iterations small
 


in order to lower memory and computation requirements. It is also



easier to implement simpler distance measures and nonadaptive config­

urations of the CCA. However, the impact on performance of these param­


eters must also be determined. Below, the impact on performance of



various CCA configurations is given in terms of %NSE, subjective



appearance, and classification accuracy.



A. %MSE Performance Results



Let X represent the original d-dimensional image data, and let X



represent the reconstructed approximation of the same image data after



compression. Then the MSE between the original image and the approx­


imate image is the expected value of the square of the Euclidean


A 

distance between X and X, or



MSE = E [1I j _ 112].(.) 

The average energy, E in the original image is defined in terms of the 

variance in the i-th spectral band, a., i = 1, 2, ..., d by 
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dd 2 (6.2)



i= I



Thus the %MSE is defined by



-%=E = _SE- 100%ME=(6.3)

I. Uncoded CCA 

Various configurations of the CCA were simulated on the test image 

shown in Fig. 6.8(a). This test image is a 256 x 256 picture element 

subset from a 4-band Landsat image of the Verde Valley in Arizona. The 

purpose of these simulations is to obtain a measure of 4SE vs. total



data rate as a function of the (n, m, CR) combinations. The first



simulations used the Uncoded CCA of Fig. 3.1. This corresponds to



determining performance as a function of (n,m) pairs for CR = 1. The 

performance of this Uncoded CCA in terms of %MSE vs. Rtot for various 

values of n is plotted in Fig. 6.1. For each n shown, all square sub­

sets of n picture elements in the test image were compressed using 

various values of m. For example, for n = 36 the test image was 

processed four times as follows: two features (m = 2) per each subset 

of 6 x 6 (n - 36) picture elements, three features (m= 3) per 6 x 6, 

four features (m = 4) per 6 x 6, and five features (m = 5) per 6 x 6. 

These four simulation results were then plotted in Fig. 6.1 and a smooth 

curve was drawn between them. The cluster feature used for this image 

approximation application was only the cluster mean, and each cluster 

mean was defined by either 6 or 8 bits per band (f = 24 or 32). There­

fore, the image approximation consisted of substituting the closest 

cluster mean for each piccure element. For every simulation with a 
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Fig. 6.1. 	 %HSE vs. Rto t for Various Values of n for


the Uncodea CCA.



given n and m, the %MSE between the original and reconstructed image was 

calculated from (6.1) through (6.3) and Rtot was calculated from (3.11).



For n = 576 and n - 1024 the performance curves were essentially



identical. The results in Fig. 6.1 show that for the selected source



data the Uncoded CCA peaks in performance for all Rtot at n approxi­


mately equal to 256. Similar results have also been obtained from



simulations with other test images. From (3.11) one can see that for



constant Rtot the spectral data definition decreases as n increases,



and the spatial data definition increases. The simulations suggest
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that as n increases above 256, the data quality (%MSE) is decreased



more due to poorer spectral definition than it is improved due to



better spatial definition.



2. Coded CCA



The same simulations that were conducted for the Uncoded CCA



(CR=d) were also conducted with entropy coding of the feature map.



This simulation configuration is called the Coded CCA, and is shown in



Fig. 4.7. The purpose of these simulations was to measure *ISE vs. data



rate as a function of (m,n) pairs when CR is determined by the entropy



coding of the feature map. The entropy encoding technique used is that



which was described in Fig. 4.5, with the feature map representation of



SS as described in Chapter IV. The simpler feature map representation

L



of SL could also be used with only slightly decreased performance.



Entropy encoding basically reduces the spatial data rate without



increasing the %ISE. The reduction in spatial data rate for the feature



map representations SL and SSL are plotted in Fig. 4.6. The total



coded data rate R is defined in (4.20). All overhead data rate costs

tot



have been included in the entropy coding results.



The Coded CCA simulations were conducted in the same manner as the



Uncoded CCA simulations, resulting in the performance curves shown in



Fig. 6.2. The spatial rate reduction, or CR due to entropy coding was



shown in Fig. 4.6 to be greater for larger n. Thus the performance



curves for the Coded CCA will shift more to the left of the Uncoded CCA



curves when n is larger. This effect is observed by comparing the Coded



CCA curves in Fig. 6.2 with the Uncoded CCA curves in Fig. 6.1. The
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Fig. 6.2. 	 %MSE vs. RIot for Various Values of n for 
the Coded CCA. 

Coded CCA continues to increase in performance as n increases, but it



is near peak performance for n = 256.



3. Adaptive CCA



In the next simulations, the Adaptive Clustering Algorithm (ACA)



which was discussed in Chapter II was used to adaptively determine the



number of clusters to use for each sequence of n picture elements.



The Adaptive CCA configuration is the same as the Coded CCA in



Fig. 4.7, except the clustering is adaptive. The total data rate J (A)


tot
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is defined in (5.3). The advantage of the Adaptive CCA is that a lower



average value of m can typically be used to obtain similar data -quaity.



The performance and rate of the Adaptive CCA are now dependent on the



criteria for increasing or decreasing the number of clusters, as well as



the combination of (n, m, CR). The performance of the Adaptive CCA was



observed to be less dependent on the size of n, with all results for n



of 100 or greater nearly on the same performance curve. Although


c 
R (A) was sensitive to changes in the criteria for determining the


tot



number of clusters used per sequence, the %MSE vs. rate performance was



very insensitive to changes in that criteria. There is a significant



performance gain in the Adaptive CCA relative to the Coded and Uncoded



CCA. This gain is shown in curves 3, 4, and 5 of Fig. 6.3. However,



the performance gain due to adaptability is dependent on both the image
 


data and user application.



4. Performance Comparisons 

Tests were performed to compare the ZMSE performance of the CCA 

with some other compression techniques which are well known. The two 

techniques used for comparison are the well-known Hadamard and Fourier



transform techniques. A discussion of Hadamard and Fourier transforms
 


in image coding is given in [6] through [8]. Both techniques were used 

in an adaptive form, and the compression was done on each band of the



test image independently. Some improvement in performance could be



obtained by modifying the technique to work jointly on all four bands.



The Hadamard transform technique involved taking the two dimensional
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Fig. 6.3 %MSE vs.. Ro t for Vartous CCA Configurations and for


Adaptive Hadamard and Fourier Techniques.



Hadamard transform of all 8 x 8 subsets of the image. Then the 64 coef­


ficients were placed in 9 zones, each of which had the quantization and



corresponding bit rate per coefficient based on the variance, or energy
 


of the coefficients in the zone. The Fourier transform technique was



similarly adaptive, but in addition a symmetrical transform approach



was used which doubly folded each data subset to provide horizontal and



vertical symmetry. This symmetry reduces the intensity discontinuities
 


at the boundaries due to the low pass filtering. The %MSE vs. total



data rate for these two adaptive transform techniques is shown in



curves 1 and 2 of Fig. 6.3 along with the CCA performance curves.
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In Fig. 6.4 a summary of the above simulation results is given by 

plotting Rtot required for 2% MSE vs. n for the various compression con­

figurations. The data points plotted n _ig. -6-4 were interpreted from 

the smooth curves in the previous figures, as well as from other simula­

tion results. These curves point out a substantial %MSE penalty for 

n<100 and that a good value for n would be 256. They also show a per­

formance gain of about 20 percent due to entropy coding, and about 

another 20 percent due to being adaptive. The %MSE vs. Rtot performance 

results agree well with the subjective measure of image appearance for 

1.4 (&ADAPTIVE HADAMARD 

1.3 

1.2. 

1.1 ' 0 ADAPTIVE FOURIER 

0



CODED Cca 

0.7­

0.6 ADAPTIVE CCA 

.5j I 
36 100 256 576 1024 

n 

Fig. 6.4. Rot for 2% MSE vs. n for Various CCA Configurations



and for Adaptive Hadamard and Fourier Techniques. 

98 



77-43



the three CCA forms simulated above. This would be expected since the



Uncoded, Coded and Adaptive CCA all introduce the same type of image
 


degradation. In particular the coding used in the Coded CCA changes the



spatial data rate, but does not change the image quality.
 


5. Cascaded CCA and Feature Map Subsampling



A simple form of the Cascaded CCA was defined in Chapter V, and a



diagram is shown in Fig. 5.1. Points A and B in Fig. 6.5 represent



performance results from two simulations of the Cascaded CCA on the test



image of Fig. 6.8(a). Point A results from clustering a sequence of



16 16 x 16 local sources into 8 clusters each, and then clustering the



128 local clusters into 16 clusters per sequence and an average of 5.44



subset clusters per 16 x 16 local source. Point B results from cluster­


ing a sequence of 16 16 x 16 local sources into 4 clusters each, and



then clustering the 64 local clusters into 16 clusters per sequence and



c 
an average of 3.37 subset clusters per 16 x 16 local source. R (casc)



tot 

is determined from (5.8) with CR=1 to account for not using entropy 

encoding in the following comparisons. Curve 2 is a performance curve 

for the Cascaded CCA (Uncoded) implied by the simulation results of 

points A and B. Curve I is the performance curve for the Uncoded CCA 

with n=256 which was presented previously in Fig. 6.1. The Cascaded 

CCA is compared with the Uncoded CCA such that both CCA configurations 

are uncoded and nonadaptive. These limited simulations showed the 

uncoded Cascaded CCA as having a %MSE performance somewhat less than 

the Uncoded CCA. This unexpected result might be due to the crude 

intercluster distance measure used for this specific cascaded cluster­

ing, or perhaps due to a poor choice of user supervision parameters. 
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For point A, for example, the spectral data definition requires a data 

rate of only .047 bpppb out of the total data rate of .665 bpppb. 

Further investigation and simulations of the Cascaded CCA are needed to 

adequately define its performance characteristics. 

At this time the results of a simulation are presented which



incorporates the use of feature map subsampling in the above Cascaded



CCA examples. Feature map subsampling was discussed in Chapter IV as a



simple means of reducing the spatial data rate by subsampling feature



map elements for transmission, and then using linear interpolation for



approximate reconstruction at the destination. The above Cascaded



CCA examples are used to demonstrate this alternate feature map data



reduction, because of the very high ratio of spatial data definition to



spectral data definition. The spectral data definition is unaffected



by the feature map subsampling. Curve 3 is a performance curve drawn



between simulation results obtained from augmenting the Cascaded CCA



simulation cf point A with subsampling by 2, and subsampling by 4. Per­


formance Curve 4 is obtained by similarly augmenting the Cascaded CCA



simulation of point B. The total data rate in each case is obtained



directly from the cascaded total data rate by simply reducing the



spatial data rate by the subsampling factor. Observe that the slopes of



these performance curves are more favorable, even though subsampling is



a very crude means of data reduction. This result appears to indicate



the importance of properly distributing the total data rate between the



spectral and spatial portions. The meaningfulness of using %MSE as a



data quality measure is less clear in the example of Fig. 6.5, ecause



of the different types of data degradations being compared. However,
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Fig. 6.5. 	 %MSE vs. Rtot for the. Cascaded CCA With CR = 1 
and With Feature Map Subsampling. 

%MSE appears to provide a meaningful performance criteria for comparing



similar data degradations resulting from the various CCA simulations



shown in Figs. 6.1 through 6.4.



6. Convergence Rate of Iterative Clustering



The key element of the clustering approaches used in this work 

is the iterative clustering which makes up the Basic Clustering


I 

Algorithm (BCA) shown in Fig. 2.3. Each iteration of the BCA consists
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of an assignment of all the vectors to the nearest mode center, followed



by the recalculation of the mode center as the average of all vectors



assigned to it. Convergence-of the BCA occurs when none of the vectors



change assignment, since then the mode centers also do not change. In



the above %MSE performance simulations the clustering was allowed to 

iterate until convergence. However, since the clustering computation is



linearly related to the number of iterations, it is necessary to



investigate the relationship between clustering performance and the



number of iterations.



Figure 6.6 shows the average number of iterations required for con­

vergence as a function of m and n from simulations on the test image of 

Fig. 6.8(a). As expected, Fig. 6.6 shows the number of iterations 

increase with increasing m and n. Of course the number of iterations
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Fig. 6.6. 	 Average Number of Iterations Required for BCA



Convergence as a Function of n.



102





77-43



for convergence will fluctuate about the average dependent on the



specific data set. Since it is much more difficult to design hardware
 


to handle a varying number of clustering iterations, it is desirable to



constrain the number of iterations to some maximum number. Intuitively



one would anticipate that many of the last iterations before convergence



are just reassigning a small number of vectors which are located nearly
 


equidistant from more then one mode center. The final assignment of



such vectors will likely have little impact on the clustering perform­


ance. Simulations were conducted to determine the impact on %MSE per­


formance due to constraining the number of clustering iterations. The



results of these simulations are shown in Fig. 6.7 where the %MSE is



plotted as a function of the maximum number of iterations allowed for



various values of m and for n=256:" These results indicate that with



respect to %MSE performance the number of cluster iteration -couldbe



limited to a maximum of about 4 iterations with little performance



loss. This is a significant result in terms of practical implementation
 


considerations.



7. Distance Measure Impact on Performance



The primary function of the Basic Clustering Algorithm (BCA) is the



assignment of vectors to the nearest mode center. As discussed in



Chapter II, there are many different measures of the distance between a



vector and a cluster. A more general measure might use the sample



covariance of the cluster in addition to the sample mean to account for



a possibly nonsymmetric distribution [24], [25]. In order to simplify



implementation, the BCA was assumed to use either Euclidean distance
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Fig. 6.7. 	 %MSE vs. Maximum Number of Iterations Allowed


in BCA for Various Values of m and n 256.



measure as in (2.1), or the absolute value distance measure as in (2.2).
 


The absolute value is a very crude distance measure compared to the



Euclidean distance in higher dimensional space (e.g., four dimensional



spectral intensity space). Thus an indication of the sensitivity of the



clustering performance to the choice of distance measure can be obtained



by comparing results from the use of these two distance measures.



Table VI compares the simulation results from using Euclidean



and absolute value distance measures in the Coded CCA. The simulations



for Table VI used 16 x 16 element local sources of the four dimensional
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TABLE VI 
COHPARISON OF EUCLIDEAN AND ABSOLUTE VALUE DISTANCE MEASURES 

Coded CCA 
n - 256 
d- 4 
f -24 

Euclidean Absolute Value



m Rc %KSE Rc ZMSE 
tot tot 

2 .236 10.43 .238 10.45 
5 .562 2.63 .567 2.70 
8 .777 1.69 .779 1.77 
16 1.19 1.036 1.19 1.134 

test image in Fig. 6.8(a). Simulations were conducted to obtain 2, 5, 

8, and 16 clusters per local source, and each cluster centroid was 

defined by 24 bits. The results show that the absolute value distance 

measure degrades the %MSE performance by about .02 ZNSE at low total. 

data rates, and the degradation increases to about .1 %HSE at high total 

data rates. One would expect the quality of the distance measure to be 

more important at higher total data rates, since the increased number of



clusters make the assignment function more dependent on the distance 

measure. However, even for the higher data rates, the %1SE degradation



due to using the absolute value distance measure is very small. This 

indicates that the clustering performance is quite insensitive to the 

distance measure used in the assignment process. The results in 

Table VI are also typical of results obtained from simulations with 

other CCA configurations and other test images. 

B. Subjective Image Appearance Performance



Figures 6.8 through 6.13 provide examples of reconstructed images 

from simulations of the various CCA forms. The image reconstructions 
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77-43 uoDUCBILITlY OF THE 

(a) 6 bpppb (b) .937 (.776) bpppb



(c) .88 (.78) bpppb (d) .917 (.885) bpppb



(a) Original test itmage of 256 x 256 picture elements 
quantized to 6 bpppb. A subset of a Landsat 1 
1mage of the Verde Valley, Arizona; band 2 selected 
for display from a total of 4 bands. 

C) 16 x 16 local sources with 8 clusters each. 
n256, "8. f-24, d-4; 
RSpec .187. Rspat * *75(.589). Rtot . .937(.776) bpppb. 

(C) 10 x 10 local sources with S clusters each,
 

n-lO0, m-S. f-24, d-4;

RSpec ' . Rspat .58(.48). - .8(.78) bpppb. 

d) 6 x 6 local sources with 3 clusters each,
n-36. Mr3, f-24, d-4; 

RSpec * 5,Rspat * .417(.385). Rtot 2 .917(.885) bpppb. 

Fig. 6.8. Examples of the Uncoded (Coded) CCA



for Different Values of m and n.
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(a) 1.03 	 (.921) bpppb 	 (b) .74 (.67) bpppb



(c) .597 (.516) bpppb 	 (d) .37 (.327) bpppb



(a)6 clusters per local source,


frIl1e, w6. f-24, d-4;


RSpec . .36.R - .667(.S61). Rtot - 1.03(.921) bppb.



OF ' I 	 Ct) 4clusters per local source. 
fR - 24. 	 t * .5(.43), t .74(.67) bpppb. 

Rspe - 8 spat - . totI4AL PG 	 (c) 3clusters per local source.
n-100, w.. f-24, d.4;

Rpc.18,M %t .417(.336). Rto S97(.516) bpppt. 

(d) 2 clusters per local source. 
"100, rn-2, f-24, d-4;



Rspec .12. spat - .ZS(.207). Rtot - .37(.327) bpppb.



Fig. 6.9 	 Examples of the Uncoded (Coded) CCA for a varying 
number of clusters in a constant local source 
size of 10 x 10 elements. 
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(a) 8 bpppb 	 (b) 1.18 (1.04) bpppb



(c) 1.18 (1.04) bpppb 	 (d) 1.18 (1.04) bpppb



(a) 	 Original girl test Image of 256 x 256 picture elements 
quantized to 8 bpppb. Red band selected for display 
from a total of 3 bands. 

(b) 	 Euclidean distance measure. 
n-100. m-S, f-24, 	 d-3; 
Rspec . .4.Rspat 	 - .777(.639). Rtot - 1.18(1.04) bpppb. 

(c) 	 Absolute valued distance measure, 
n-100, rS. f-24, d3; 

Spec .4.R p - .777(.639)s 118(.04) bpppb. 

(d) 	 Maximu, of 4 clustering iterations, 
"100. moS. f-24. d-3; 

Aspec ' .4, Rspat 777(.641).* Rtot - 1.18(1.04) bpppb. 


Fig. 6.10. 	 Examples of the Uncoded (Coded) CCA with 10 x10 element


local sources and 5 clusters each, but for different


distance measures and for a limitation on the number


of clustering iterations.
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REPRODUCIBILITY OF THE 7743A PAGE IS POOR 

(a) .735 (.623) bpppb (b) 1.16 (1.05) bpppb



(c) .896 (.686) bpppb (d) .536 bpppb



(a) 10 x 10 local sources with an average of 4.0 clusters each, 
n-100, average w4.0. f-24, d-4; 
Rspc * .249. Rspat *486(.374), Rtot .735(.623) bpppb. 

(b) 10 x 10 local sources with an average of 5.6 clusters each.


n-l00. average m-5.6, f-24, d-3;



RSpec . .46. RsPat * .70(.59), Rtat * 1.16(1.05) bpppb. 

(c) 16 x 16 local sources with an average of S.47 clusters each,
n-256. average mw5.47. f-24. d-3;



Rspec . .176, Rspat - .72(.51), Rtot .896(.686) bpppb.



(d) The same image as in(c), except the feature map issubsampled


by 2 and reconstructed through linear Interpolation. Entropy


coding Is not used. 
RfSpc - .176, Rspat . Rtot .536 bpppb. 

Fig. 6.11. Examples of the Adaptive CCA, including variations



of no coding, entropy coding, and subsampling of


the feature map.
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(a) .664 (.50) bpppb 	 (b) .356 bpppb



(c) .583 (.403) bpppb 	 (d) .183 bpppb



(a) 16 x 16 local 	 sources are initially clustered to 8

clusters each. The Cascaded clustering combines 128 
local clusters from 16 local sources into 16 sequence
clusters, and an average of 5.44 sequence clusters 
are used per local 	 source. 
n-26 a -8. f-24, 	 d-4, N.16, ml16 ii-S.44;
R7seq)-.A23. R(loc)-.024, R -. 6l7(.453), R -.664(.50) bpppb. 
spec spec spat tot



(b) The same Image as (a), except the feature map is subsampled by 2. 
R(seq)-.023. R(loc)-.024, Rst, 309. R ot*.356 bpppb. 
spec spec 

(c) 16 x 16 local 	 sources are initially clustered to 4 clusters


each. The cascaded clustering cobines the 64 local clusters 
from 16 local sources into 16 sequence clusters, and an 
average of 3.16 sequence clusters are used per local source.n-2S6, ml-4, f-24, 	 d-3. Ns-16. as-16. ile-3.16;

R(seq) .031. R(loc)-.019, Rspat".533(.403). Rt.S583(.403) bpppb.


spec spec 

(d) The same image as (c). except the feature map is subsampled by 4.R(seq)-.031, R(loc) = .019. R -.133. R -.183 bpppb. 
spec spec spat tot 

Fig. 6.12. 	 Examples of the Cascaded CCA, including variations


of no coding, entropy coding, and subsampling of


the feature map.



110 

http:ile-3.16


77-4o-,,-F 	 isPOORIvERODUCBhLlf OF TEE 

(a) 6 bpppb 	 (b) 8 bpppb



(d) 1.25 (1.01) bpppb
(c) .937 (.776) bpppb 	 

REPNODUCWLI OF THE (a) False color composite of Verde Valley test image.ORGAGE Is POOR First three multispectral scanner bands selected 
for display inblue, green, and red respectively.



(b) Color composite of girl test image.



(c) 16 x 16 local soutces with 8 clusters each. 
n-256, smS, f-24. d4;

spat= .75(.589). 	 Rtot = .937(.776) bpppb.Rspec -.187, R 9
 

(d) 16 x 16 local 	 sources with 8 clusters each,


n-Z56, m-S. f-24. 4-3;


Rspec ' '25. Rspat * 1.0(.764), Rtot = 1.25(1.01) bpppb.



Fig. 6.13. 	 Examples of color composites for the


Uncoded (Coded) CCA.
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consisted simply of substituting for each picture element the centroid



value of the cluster to which the picture element was assigned. Other



cluster parameters such as the variance per band could also be useful



for image reconstruction in special cases. In all the CCA simulations,



all the bands of the test image are jointly processed, and the band



with the highest signal energy is selected for display in black and



white. Two different types of image data shown in Fig. 6.8(a) and



Fig. 6.10(a) were selected to demonstrate typical performance in



terms of subjective image appearance. One example of color composites
 


of these test images are also included in Figs. 6.13(a) and (b). Simu­


lations were conducted on many other test images, and the CCA perform­


ance was found to be very similar for wide variations in the type of



test data.



Figures 6.8(b) through (d) demonstrate reconstructed images which



have similar total data rates, but widely varying local source sizes



and number of clusters per local source. Note that the use of entropy



coding on the feature map lowers the spatial data rate, but does not



cause any changes to the reconstructed image. Therefore, the Uncoded



CCA and the Coded CCA have the same resulting reconstructed image, but



different total data rates. Throughout the image examples, the total



data rate corresponding to use of entropy coding on the feature map is



given in parentheses. Figure 6.8 indicates considerable improvement in



using local sources larger than 6 x 6 elements, but the differences 

between local sources larger than 10 x 10 elements appear small. In 

addition, the result for a 6 x 6 element local source does not benefit 

as well from entropy coding. 
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example in Fig. 6.11(c). The feature map is subsampled by a factor of



2, and then reconstructed by using linear interpolation. Thus the



spatial data rate is reduced by a factor of 2, and the image appearance



degrades mainly due to smoothing of sharp edges in the image.



Images resulting from simulations of the Cascaded CCA are shown in



Fig. 6.12. Figure 6.12(a) resulted from clustering 16 16 x 16 local 

sources into 8 clusters each, and then clustering the 128 local clusters



*into 16 sequence clusters. The average number of sequence clusters used



per local source is 5.44. In Fig. 6.12(c), a sequence of 16 16 x 16
 


local sources are clustered to 4 clusters each, and then the 64 local



clusters are clustered into 16 sequence clusters. For this image the



average number of sequence clusters used per local source is 3.16. In



both Fig. 6.12(a) and (c) the spectral data rates are very low. This



results in heavy contouring within the image which significantly



decreases image appearance performance. However, this CCA configuration



is more so intended for automatic interpretation applications. In



such applications it is often desirable to sharply define boundaries



which separate a relatively limited number of classes with different



spectral signatures, but it is not important to preserve the intraclass



scatter information within the boundaries. Furthermore, if the spatial



boundary information is not important, the spectral signature informa­


tion could be obtained for only the very low spectral data rates. The



loss of intraclass scatter information is roughly equivalent to contour­


ing within the image. Generally, contouring degradation of the data
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impacts image appearance performance more so than it would impact auto­


matic interpretation performance. However, the image appearance per­


formance is a subjective measure which greatly depends on the specific



use of the image data.



Figure 6.12, (b) and (d), represent the use of subsampling on the
 


feature maps from the Cascaded CCA results of Fig. 6.12, (a) and (c),



respectively. In Fig. 6.12(b) the feature map was subsampled by a



factor of 2 and the spatial data rate reduced by a factor of 2. In



Fig. 6.12(d) the feature map was subsampled by a factor of 4 to reduce



the spatial data rate by a factor of 4. The impact of feature map sub­


sampling is mainly the poorer definition of sharp transitions in the



image. The overall appearance quality of these two images is quite low.
 


However, the total data rate is also quite low. For the image in



Fig. 6.12(d), the total data rate is reduced by a factor of about 44.



In Fig. 6 .13(a) and (b) are shown color composites of the two test



images. Fig. 6.13(a) is a false color composite which displays the



first three bands of the Landsat I multispectral scanner image in



blue, green, and red respectively. Figures 6.13(c) and (d) show



reconstructed color composites from simulations of the Uncoded and



Coded CCA. Each simulation uses 16 x 16 local sources with 8 clusters



each. The image appearance performance of the CCA is usually better



when judged in terms of color composites instead of black and white
 


images. This apparently results because the clustering algorithms



are attempting to obtain a clustering representation which minimizes



the average error in a multidimensional sense, rather than trying to



minimize the average error in each band of the image independently.
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C. Classification Performance



Classification performance is specified in terms of the classifica­


tion accuracy for a given data rate. Classification accuracy is



dependent on both the classification technique and the data compression



technique. Furthermore, it is also possible that the performance with



a given classification technique may be significantly improved through



adaptations which account for the changes in the data caused by a given



data compression technique. There are of course many different



classification approaches (e.g., parametric, nonparametric, supervised,



nonsupervised). Similarly the classification might be on a per vector



basis, or alternately include texture. A very common classification



approach in Landsat applications as well as elsewhere is the Gaussian



parametric classifier on a per vector basis. This classifier is often



used because of its relatively simple implementation. In this disser­


tation, the Gaussian parametric classifier is selected for investigating



the classification performance of the CCA. In addition, this example



demonstrates the interaction between data classification and data



compression.



1. The Gaussian Parametric Classifier



A model for statistical classification is shown in Figure 6.14. 

Let X be the vector in measurement space and assume there are q classes 

{w.}, j = 1, 2 . . . , q in pattern space each characterized by a con­J



ditional density function p(X/wj), and a prior probability P(w.). If



the classifier G(-) is picked to minimize probability of error, then the



solution for G(-) is to maximize the a posteriori density function, or



equivalently to choose
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Fig. 6.14. Statistical Classification Model.



Xawj iff p(X/wj) > p(/wk) P(wk) V k 1 j*. (6.4) 

The classifier defined in (6.4) is commonly referred to as the Maximum 

Likelihood Classifier. The classifier solution for minimizing a more 

generalized average cost criteria is given in [12, p. 9).
 


The classifier in (6.4) is in terms of unknown density functions



which need to be estimated. In parametric classification a functional



form for the density functions is assumed, and only a set of parameters



need to be estimated in order to completely define the density func­


tions. A functional form which results in a classifier that is rela­


tively easy to implement is the Multivariate Gaussian, or Normal



distribution. For this parametric assumption, each conditional



density function is entirely defined by a mean vector and a covariance



matrix. Assume the measurement vector X which is generated by class



w. is normally distributed with mean U and covariance []. Also, 

assume the covariance matrix has an inverse [09'. Then the d-variate 

conditional distribution function of X is 

w) 2) 01S ]/21 - )t[P'x ) 
P(SWi) d/2 Is (X1/
-U , (6.5 

where II is the determinant of [0j]. Note that the classifier in 

(6.4) is unaffected by taking the log of each side of the inequality



*Ties may be arbitrarily decided.
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since the log is a monotonic function. Define a set of discriminant



functions g (X) by
 


gj (X) = log [pCQlw ) P(w )} (6.6) 

Then from (6.4) the classifier is also defined by



Xswj iff gj(X) . gk(X) V k # j . (6.7) 

By using the parametric assumption of (6.5), the discriminant function



of (6.6) becomes



I- (-'_ )t h - x%_ +lg9jx) =-ji log 27r-1 log 15Dg2O2 d~ 1 I~±XUt E4 P (X-U. + log P6w.) 

(6.8) 

Now assume the a priori class probabilities are equally likely, or



P(w 1) = P~w2 ) = . . . P(wq) = ± (6.9) 

1)Pw2)P~ q q 

Since constants can be removed from both sides of (6.7), the discrimi­


nant function in (6.8) can be reduced to



9 (x) = -4L log II -_-t(x- )t [']- t (6.10) 

Thus, the Gaussian parametric classifier is defined by (6.7) and (6.10), 

where only the mean U and covariance DDJ of the conditional distri­
-j 

bution function in (6.5) must be estimated.



The mean and covariance of the measurement vector X conditioned on



class w. must usually be estimated from samples of X which are



independently known to have resulted from class w.. Such a set of



measurement vectors are referred to as a training set for class w.,



and classification methods which require such training are referred



to as supervised classification methods. Training a classifier can
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sometimes be a difficult task, and at the same time the classification



accuracy is very dependent on accurate training. Similarly, the use



of data compression can greatly impact classification accuracy by



affecting the training of the classifier.



The following is an example of typical training of the Gaussian



parametric classifier for Landsat applications. For Landsat w. * might
3



correspond to a specific earth resource class with a well defined



spectral reflectance. However, the class wj* must be distinguished



from other classes based on the measurement X from the multispectral



scanner (MSS) instrument. If the distribution of the M4SS instrument



output for class w. * can be reasonably approximated by the normal



distribution in (6.5), then determining the discriminant function



in (6.10) for w.* reduces to estimating the mean and covariance of

3 

X resulting from w * In the Landsat example, samples of X for w.* 

are obtained by identifying subsets within the image data which are 

known to represent w. via independent ground truth information.3



Typically, a total training set for a given class consists of a small



number of subsets (e.g., 4) of about 100 picture elements each, which
 


are selected from various locations throughout the image. However,



obtaining good ground truth information and registering the MSS image



elements with the ground truth is often costly and time consuming.
 


Furthermore, the measurement of spectral radiance X for a given class



w.a is also a function of sun angle, ground slope, ground moisture, 

atmospheric absorbtion, extraneous radiation, MSS instrument noise,



etc. Thus, the mean and covariance of X obtained from a training set



for class w.* is also a function of these unpredictable and time



varying disturbance effects. Therefore, it is generally necessary to
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repeatably retrain the classifier due to changes in time or location



of the image data.



Assume that a total of T. training set vectors have been obtained



from an image for class w.. Let uS be the m-th element of U., and let

3 m 

Jn be the element in the m-th row and n-th column of 2.]Also, let

n 

xQmk be the m-th element of the k-th measurement vector in the training 

set for class w.. Then the usual estimators for U3. and [DI are given 
3 3 

by



T. 
J 

u XJ (6.11) 
i k=1



and



Tj 
1 XsJ uJ (6.12)mJnk 

3 k=l



with 

j 1, 2. . .. q



m = , 2, ... ,d 

n =, 2, .. ,d. 

The classifier used for testing the classification performance of the



CCA is the Gaussian parametric classifier defined by (6.7) and (6.10).



The mean and covariance parameters for (6.10) are determined from



training sets as defined by (6.11) and (6.12).



2. Performance from Training and Classifying Original Data



The following assessment of classification performance for the CCA



basically consists of finding the changes in classification accuracy of
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the above classifier due to both training and classifying with CCA 

processed data rather than with original data. 

The test image selected for testing classification performance is 

a 4 spectral band, 256 line by 220 sample subset from the Flight Line 

C-I image taken over Indiana on June 28, 1966. The original image con­

sists of 12 spectral bands and 900 lines by 220 samples. The lines 

selected for the test image are lines 200 through 419. The spectral 

bands selected for the test image are bands 9, 10, 12, and 1, which 

correspond respectively to .62-.66p, .66-.72p, .80-1.0p, and .40-.44p.



Band 12 is selected for display in Fig. 6.15(a), and a false color



composite of the test image using bands 9, 10, and 12 is shown in



Fig. 6.16(a). Further detailed information on this test image can



be obtained from [32].



A primary reason for using the Flight Line C-i data is the avail­


ability of reasonably reliable ground truth corresponding to as many as 

8 classes. Table VII lists eight classes of interest in the test image 

and the location and size of training sets for each class. These train­

ing sets were carefully selected to avoid suspicious areas within the 

fields (e.g., apparent ditches). The mean and covariance of the 

training set samples for each class were determined from (6.11) and 

(6.12), and all the picture elemenis of the test image were classified 

by the Gaussian parametric classifier defined in (6.7) and (6.10). If 

the maximum discriminant value in (6.10) for a picture element was 

below -70, the picture element was assumed to belong to none of the 

8 classes and was assigned a label of class 9. The results of training 
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TABLE VII


TRAINING SETS FOR FLIGHT LINE C-i TEST DATA



All Training Sets are 10 x 10 Elements 

Class 
Number Class Name 

1 Soybean I 

2 Soybean II 

3 Corn 1 

4 Corn II 

5 Corn III 

6 Red Clover 

7 Oats 

8 Wheat 

Starting 

Line 


1 


40 

110 

240 


1 

26 

120 

210 


190 


180 

220 


40 

180 

240 


130 

170 

220 


90 

100 

150 


Starting 

Sample 


135 


130 

60 

10 


20 

40 

10 

120 


10 


40 

10 


10 

70 


140 


130 

140 

60 


190 

130 

110 


and classifying with the original test image data is shown in



Figs. 6.15(b) and 6.16(b), where every picture element is coded to



identify its classification to one of 9 classes, and the relationship



of class number, grey level, and color are given in Fig. 6.17.
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(a) 8 bpppb 	 (b) 8 bpppb, Pe 7.8% 
e 

(c) .625 (.429) bpppb 	 (d) .625 (.429) bpppb,


P 	 -f 3.4% 

e 

(a) 	 The test imgetis a 4 band. 256 line by 220 saple subset from 
the 12 band. 900 line by 220 sample Flight Line C-i image. The 
test liage consists of bands 9. 10. 12, and 1, and lines 200 through 
419. Band it is selected for display and the data rate is 8 bpppb. 

(b) 	 Grey-level coded classified image obtained from training and clas­
sifying on the original test data with the Gaussian parametric clas­
sifier. The classification performance is P. .7.81 for Rt 
8 bpppb. 

(c) Uncoded (coded CCA compressed image. 16 x 16 local sources with 
4 clusters each, n - 256. m- 4. f - 32. d - 4;
Rfspec -. 125, Rsat".5(.304), Rtot-.625(.429) bpppb. 

(d) 	 Grey-level coded classified image obtained from training and 
classifying on the CCA compressed image with the Gaussian para­
metric classifier (8=2). The classification performance is 
Pe - 3.4% for Rtt - .625 (.429) bpppb.



Fig. 6.15. 	 Original, compressed, and classified images of the
 

Flight Line C-1 test data.
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(a) 8 bpppb 	 (b) 	 8 bpppb, Pe - 7.8% 

(c) 	 .625 (.429) bpppb (d) .625 (.429) bpppb, 
P = 3.4% 

(a) 	 Color composite of original test image with bands 9, 10, and 12used for blue, green, and red respectively. The data rate is 
8 bpppb. 

(b) Color coded classified image obtained from training and clas­
sifying on the original test data with the Gaussian parametric
classifier. The classification performance is Pe " 7.8% for 
Rtot - 8 bpppb 

(c) Uncoded (Coded) CCA compressed image. 16 x 16 local sources


with 4 clusters each. n- 256. m - 4,f - 32. d = 4;
RSpec .125, Rspat=-5(.304), Rtotr.625(.429) bpppb. 

(d) Color coded classified image obtained from training and clas­
sifying on the CCA compressed image with the Gaussian parametric
classifier (8-2). The classification performance isPe - 3.4% 
for R .625 (.429) bpppb.



Fig. 6.16. Color composite original, compressed, and classified


images of the Flight Line C-I test data.
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Fig. 6.17. 	 Relationship Between Class Number, Grey-Level,


and Color for the Classified Images.



A simple quantitative measure of classifier performance is the



percent probability of error Pe in classifying a picture element. An



estimate of P can be obtained from the ratio of the number of incor­
e 

rectly classified picture elements to the number of picture elements 

classified. A test set of picture elements is selected for each class 

for the purpose of estimating Pe These test sets basically consist of 

most of the picture elements for each class minus those elements for 

which the correct classification is uncertain. Those picture elements 

near borders of the field, or within regions of apparent ditches and 
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other anomalies are excluded from the test set. Such picture elements



are likely the measured average reflectance over a spatial resolution 

cell which substantially consists of more than one of the classes 

(including class 9), and therefore cannot be simply classified as 

correct or incorrect. The location and size of the test sets for each 

class are given in Table VIII. The large size of the test sets are 

chosen to give a higher confidence level to the estimate for Pe and 

also to decrease statistical dependence between the training and test­

ing procedure. A large test set is of even greater importance when 

estimating P for classifying compressed data, because the correlatione 

between reconstructed picture elements is often increased. This



increased correlation tends to cause error events and no error events



to occur in bursts instead of in a more uniform spatial distribution;



thereby necessitating a larger test set for the equivalent confidence



level in estimating P." The classifier accuracy is defined by Pe



where



- 100 x Number of incorrect classifications in test set (6.13) 
e Number of elements in test set 

For training and classifying the original test image the classifier



accuracy is Pe - 7.8%. The classification performance is given by 

ee 
P e- 7.8% for a total data rate of 8 bpppb. 

3. 	 Performance from Training on Original Data and Classifying



Compressed Data



We now consider the impact on classification accuracy due to first



compressing the data with the CCA. Any data compression algorithm can



affect the classification accuracy in two ways, 1) by changing the



conditional distributions of X, and 2) by changing the training data
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used to estimate the conditional distributions of X. Consider first



the impact of changing the conditional distributions of X. Usually



one thinks of data compression as simply causing a spreading of the



conditional distributions, which results in an increased overlap of



the distributions and an increased error rate. This is typically the



case when the data compression approximates the data based on a



criterion not closely related to minimizing the error probability of



the classifier. However, better classification performance should be



obtainable from a data compressor which specifically provides the



classifier with information which aids accurate classification.



Clearly, the best obtainable classification accuracy from the original



data is also a bound to the classification accuracy which can be



obtained from the compressed data. However, the actual classifier is



usually not the best classifier due to practical memory and computation



limitations in estimating the conditional distribution functions.



For example, the Gaussian parametric classifier reduces computation



by classifying each vector independently, while it is obvious a more



complex classifier using surrounding vector information would have



better classification accuracy. When the classifier is suboptimal



(a most common occurrence), the use of data compression can in fact
 


result in an improvement in classification accuracy. The accuracy
 


obtained with the original data is no longer a bound to the accuracy



obtainable by the same classifier using the compressed data. With the



CCA, for example, the data compression modifies each vector based on



surrounding vector information, such that the simple vector-by-vector



classifier is indirectly making decisions based on more information
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than a single vector. Then th classification accuracy may increase, or



decrease depending on how much useful new information the data com­


pression provides the classifier, vs. how inaccurate the information



is due to the data compression process.



In Fig. 6.18 Curve I shows the classification performance of the



Uncoded CCA when the Gaussian parametric classifier is able to train



on original data. The test image of Fig. 6.15(a) was compressed at



three different data rates by using 8, 4, and 2 clusters per each 

16 x 16 element local source. The classifier trained on the original 

data from the training sets defined in Table VII, and classified the 

CCA processed data by classifying the mean of each cluster. Each 

vector was given the class label of the cluster mean for the cluster 

to which the vector was assigned. The P was determined from (6.13)e 

and the test set of Table VIII. The classification performance for



the same classifier and the original data is also shown in Fig. 6.18



as the point at Pe = 7.8% and Rto t = 8 bpppb. Clearly the classifica­

tion performance substantially benefits from the grouping information 

provided by the CCA data compression. 

4. Performance from Training and Classifying on Compressed Data



In many situations it may be very difficult for a remote sensor



to identify and transmit properly selected subsets of original data



from the image for training purposes. Then one must consider the



additional classification accuracy degradation which may result because



of inaccurate training from the compressed data. Curve 2 in Fig. 6.18



shows the classification performance of the CCA under the same condi­


tions assumed for Curve I except the classifier was trained on the
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reconstruction from the compressed data. The reconstruction consisted



simply of using the appropriate cluster mean to approximate each vector.



Curve 2 demonstrates substantial performance degradation relative to-


Curve 1. The primary reason for this degradation is that the procedure



for training with original data is not in general appropriate for train­


ing with compressed data. When training with original data it is



reasonable to assume that the training sets provide a set of independent



and identically distributed samples from which the first and second



order statistics can be estimated. However, this assumption is less



reasonable when dealing with a compressed representation of the train­


ing set, since most data compression introduces increased dependence



between vectors in a local region. The conditional distribution of all



the samples in the image may be changed very little by the data compres­


sion, but the conditional distribution determined by a small training



subset may be substantially different.



5. 	 Performance from a Modified Estimate for Training Set Mean



and Covariance



There are several approaches to modifying the training procedure



to account for the data compression. One could use more training sets,



or select the same number of training set vectors from more scattered



locations throughout the image. But both of these procedures may



considerably complicate an already difficult task of training. Alter­


nately, it may be possible to analytically determine the impact of the



data compression on the training for the given classifier. Clearly, a



more sophisticated classifier for the CCA compressed data would classify
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clusters on the basis of which conditional distribution the cluster was



most likely to originate from. However, assume for practical reasons it



is desired to restrict the classifier to the more simple Gaussian para­


metric classifier. Then it is important to obtain a good estimate of



the first and second order statistics from the CCA compressed repre­


sentation of the training sets.



Assume a training set of vectors for class w have been compressed



by the CCA. Let the training set have vectors in N different clusters.



Let pi(X) be a model distribution function for all the vectors in the



i-th cluster (whether in the training set, or not), such that the first



and second order statistics of Pi(X) are equal to the sample mean U. and



sample covariance of the vectors in the i-th cluster, i = 1, 2,



N. Then let P. define the ratio of the number of vectors from



cluster i in the training set to the total number of vectors in the



training set. A model distribution p(X) for the training set can then



be expressed as a mixture distribution, or



N



PX) = Pi Pi(X) " (6.14) 
i= 1 

The first and second order statistics for p(X) can be determined in



terms of the N cluster means and covariances, and these first and



second order statistics for p(X) can be used as an estimate of the



sample mean and sample covariance of the training set.



The mean'of p(X) is given by



N


)f AP(X) dXE(X) = dXiX =P(X) d
_Pix) 
 

f 1 
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or



N 

EX) PU (6 y15) 
i=1



Let U = E(X) and let [o] be the covariance of p(X). Then [0] can be



found in terms of U. and [oi] by 

[s] = E [(X- U)(X - U)t]= E(XXt) - U Ut 

.It p d -U 

Ut
= N A p() pi(x_) d -U 

dXUUt

-

N 

t= 

N-NN N 

BP=
X(iC] + pi - (t__)(t ± j
i=1 i:1 i(6.16)



Equations (6.15) and (6.16) define an estimate for the mean and



covariance respectively for the training set in terms of the means and



covariances of the clusters from the CCA processing of the training set.



The mean of the training set is of course a simple weighted average of



the cluster means. For the covariance in (6.16), observe that the first



term on the right is the weighted average of the covariance between the



cluster means. This can be observed more clearly by looking at a given
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element of the covariance matrix. Let uii be the j-th element of U , and

i 

let Jk and jk be the element in the J-th row and k-th column of [s] 

and [0.] respectively. Then from (6.16) we have



N NNN 
+jk pi~jk "i i 1 " 

= ±k {~ P uu 4-(t rig) riu)}(ti=1 i=l1~ ~ 

(6.17) 

The estimate for the training set covariance consists of the weighted



average of intracluster covariance, and the weighted average of inter­


cluster covariance between the cluster means.



Now recall that the usual training procedure simply calculates the 

mean and. covariance of the training set vectors according to (6.11) and 

(6.12). If the training set is compressed by the CCA, then each vector 

of the training set is approximated by the mean of the cluster to which 

the vector was assigned. Thus if one uses the usual training on the



CCA compressed training set, the estimate for the mean is the same as 

the estimate in (6.15), but the estimate for the covariance consists 

of only the intercluster covariance portion of (6.17). Of course, this



is equivalent to assuming a zero value for the intracluster variance of



all the clusters. The classification performance corresponding to this



training was presented earlier in Curve 2 of Fig. 6.18.



The impact of assuming a zero average intracluster variance can be 

large, especially with respect to estimating the diagonal terms of the



covariance matrix. Experimental observations confirmed that the intra­


cluster covariance in (6.17) was frequently much larger than the inter­


cluster covariance. As discussed in [28, p. 541], clustering basically
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Fig. 6.18. Classification Performance of


the Uncoded CCA, n = 256,


f = 32, m 	 = 2, 4, and 8.



attempts to minimize the ratio of intracluster to intercluster dis­


tances for a given set of elements. However, one must note that a



compressed training set may often consist of elements from clusters of



more than one local source. Since the vectors from different local



sources are not jointly clustered, the intercluster distance between



clusters from different local sources may be very small. Therefore, it



is not unreasonable to obtain an intracluster covariance greater than



the intercluster covariance. The classification performance would



likely be most seriously degraded when the intercluster covariance is



very small. Then the assumption of zero intracluster variance can



substantially change the form of the conditional distribution function.



Now consider how the training procedure can be modified when the



training set is compressed by the CCA. Obviously, one procedure could
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be to include the cluster covariance as a cluster feature transmitted



by the CCA. Then the training set covariance estimate could be calcu­


lated directly from (6.17). However, this procedure is likely more than



necessary. In particular, one might anticipate that the intracluster



covariance term in (6.17) is mainly important for the diagonal terms of



the covariance for the training set. Perhaps the crudest modification 

of the training would be to simply assume a constant value a > 0 for 

the diagonal terms of the intracluster covariance for all clusters, and 

assume a value of zero for all off diagonal elements. This corresponds 

to assuming a symmetrical distribution of variance 0 in each band for 

each cluster. The covariance matrix for the training set could be 

obtained from the intercluster variance portion of (6.17), or from the 

usual training procedure, but in either case a value of $ is added to 

.the diagonal elements. Curve 3 in Fig. 6.18 shows the classification



performance when the covariance matrix for the compressed training set



is modified by adding 8 = 2 to the diagonal elements. A significant



performance increase is observable relative to the usual training pro­


cedure which corresponds to using 8 = 0, and which is shown in Curve 2.



The performance of Curve 3 was quite insensitive to changes in $



between i through 5. This result demonstrates that even a very simple



adjustment in the training procedure can make a substantial difference



in the classification performance.



An additional simulation was conducted to determine how much the 

performance would improve if the CCA did transmit covariance information 

about the clusters. Only the CCA configuration of 16 x 16 local 

sources with 4 clusters each was tested. In addition to the cluster 
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mean, the CCA also transmitted the cluster variance per band quantized



to 3 bits. This extra information increases the data rate of the CCA



by only 0.0469 bpppb. The covariance matrix for each training set was­


-adlculated from (6.17) by using the transmitted variance per band for 

the diagonal elements of the intracluster term, and zero for the off 

diagonal terms. The classification performance of this simulation was 

not significantly different than the corresponding performance from 

using 8 = 2 for each variance per band. One could continue attempting 

to improve the classification performance. For example, the classifier 

could be defined in terms of discriminant functions which result from 

modeling the conditional distributions as a weighted mixture of Gaussian



distributions, one for each cluster. These alternate classifiers are



not explored in this work.



6. 	 Discussion of the Data Compression and Data Interpretation



Interaction



The relative changes in the performance curves in Fig. 6.18 indi­


cate the importance of considering the interaction between data com­


pression and data classification. If the classification and classifier



training are not properly matched to the compressed data, an erroneous



measure of classification performance is likely to be obtained. A



similar situation exists with regard to assessing the impact of data
 


compression on other data processing techniques, such as clustering, or



geometric correction of image data. For example, in assessing the



impact of CCA data compression on clustering analysis, one should not



simply cluster the reconstructed image elements. $uch a procedure again



assumes a zero intracluster covariance for every cluster in the
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compressed data, which can significantly degrade, or change the



nonsupervised classification (clustering results) in much the same



manner as occurred for supervised classification. The clustering may



first need to be modified in order to reflect the fact that it is



clustering clusters of nonzero covariance instead of independent



vectors.



7. Performance vs. Class Density per Local Source



From Curve 3 in Fig. 6.18 the classification performance of the



CCA is observed to be very good. In particular, the CCA processing



enabled the Gaussian parametric classifier to reduce the average



error rate while achieving substantial compression of the data.



However, the absolute level of performance of the CCA will be dependent



on the number of classes occurring within a local source. As the



average number of classes per local source increase, the classification



performance of the CCA will decrease. Further simulations are required



in order to quantify the classification performance as a function of



the number of classes per local source. One of the difficulties in



conducting such simulations is the unavailability of test images which



simultaneously have a higher number of classes per 16 x 16 element



regions and reliable ground truth through the class boundaries. Some



understanding of the impact of more classes per local source can be



obtained from Fig. 6.15.



As previously noted, Fig. 6.15(a) is the original image used for



classification performance testing, and Fig. 6.15(b) is the grey-level



coded classified image resulting from training and classifying on the
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original data. Figure 6.15(c) shows a reconstructed image resulting



from using the CCA to compress the original image to 4 clusters per



16 x 16 element local source. In Fig. 6.15(d) is shown the grey-ievel



coded claasified image resulting from training and classifying on the 

CCA compressed image of Fig. 6.15(c). The training on the compressed 

image data was modified as previously discussed by adding S = 2 to the 

diagonal elements of the covariance matrix for each class. Thus this 

classified image corresponds to one of the simulation results used in 

Curve 3 of Fig. 6.18. Figure 6.16 is a color composite image repre­

sentation of the same results shown in Fig. 6.15, and the legend for 

associating classes and grey-levels, or colors is shown in Fig. 6.17. 

From Figs. 6.15 and 6.16 one can observe that even though the CCA was 

limited to only 4 clusters per 16 x 16 elements, the field boundaries 

and interconnecting regions with the higher number of classes per local 

source are apparently well classified. Thus the CCA classification per­

formance appears not to be overly sensitive to increases in the number 

of classes per local source. Of course, the Adaptive CCA could ideally 

tailor the number of clusters per local source dependent on the number



of classes present, which should result in further substantial classi­


fication performance gains.



8. Performance in Terms of Inventory Accuracy vs. Data Rate



Another measure of classification performance is inventory accu­


racy vs. total data rate. Inventory accuracy refers to the accuracy of



the classifier in determining the relative density of the classes. In



Table IX the true inventory data is given for the test set of



Table VIII. Also shown in Table IX is the inventory results obtained
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TABLE IX


INVENTORY CLASSIFICATION PERFORMANCE



Estimate From 
Estimate From CCA Compressed 

True Inventory Original Data Data 

Class Number Number % Number % 
1­ 415 2.28 513 2.82 416 2.285 
2 6014 33.04 5548 30.48 5712 31.38 
3 3440 18.90 3486 19.15 3569 19.06 
4 512 2.81 619 3.40 598­ 3.29 
5 604 3.32 856 4.70 785 4.31 
6 2398 13.17 2454 13.48 2394 13.15 
7 2000 10.99 1917 10.53 2010 11.04 
8 2820 15.49 2806 15.42 2819 15.49 
9 0 4 0 

Total = 18,203 

from using the Gaussian parametric classifier with training and classi­


fying on the original image in Fig. 6.15(a). The total data rate for



these inventory estimates is 8 bpppb. Table IX also shows the inventory



estimates obtained from training and classifying on the CCA compressed



data corresponding to the image in Fig. 6.15(c). Again the CCA used



4 clusters per 16 x 16 element local source, and the classifier modi­


=
fied the training covariance matrices by adding 8 2 to the diagonal 

elements. The inventory estimates are more accurate for every class, 

while the total data rate for the Uncoded CCA and the Coded CCA are 

.625 and .429 bpppb respectively.



9. Summary Discussion of Classification Performance
 


The classification performance of the CCA, of course, depends on



the choice of classification technique. In the-proceeding discussions



the Gaussian parametric classifier was used to demonstrate the interac­


tion between data compression and data classification. In particular,
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the classification accuracy was observed to be sensitive to the train­


ing procedure, and it was noted that modifications of the training may



be appropriate when training on compressed data. The CCA data-compres­


-sionwas shown to be capable of benefiting the classifier by providing



group information on the data; however, further investigation is



required to determine the conditions for which the group information



degrades the classification accuracy. The previous classification per­


formance simulations showed the CCA compression to result in signifi­


cantly lower average vector classification error and lower inventory



error, while substantially reducing the total data rate. It should



also be noted that in addition to reducing the data volume, the CCA



data compression also results in reducing the number of classifications



required. For example, in the CCA simulations where 4 clusters are



used per 16 x 16 element local source, the number of classifications is



reduced by a factor of 64.
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CHAPTER 'VII 

SUMMARY AND RECOMMENDATIONS FOR FURTHER RESEARCH 

In this dissertation a joint clustering and data compression



concept is defined for efficient transmission of image information
 


which is to be obtained from manual photo interpretation and/or com­


puter classification. Clustering is used to extract features which



tend to preserve class separability information within the data. Data



compression is used to provide efficient transmission of the informa­


tion in terms of the clustering features. Various forms of a Cluster



Compression Algorithm are defined, discussed, and extensively simulated



to investigate application of this concept to multispectral image data.



The following is a list of topics for further research:



1) The Cascaded CAA should be further Investigated by incorpo­

rating a better intercluster distance measure within the 

cascaded clustering. 

2) An appropriate test set should be obtained, or constructed 

for testing classification performance as a function of class 

density. In addition, a determination of typical class den­

sities for intended applications is needed. 

3) Other classifiers, such as mixture distribution parametric 

classifiers, might be assessed for their impact on CCA classi­

fication performance. 

4) Alternate feature map encoding and spatial feature extractio, 

could be explored. For example, boundary finding algorithms 

might be implemented more simply on the feature map than on 

the original data. 
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5) 	 The use of transformations (e.g., the Karhunen-Lo~ve, or



variance normalization transformations) might be investigated
 


for use in preceding the CCA.



6)- - -The -concept -6f joint clustering and data compression could 

also be researched for applications to television data and 

artificial intelligence. 
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