General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

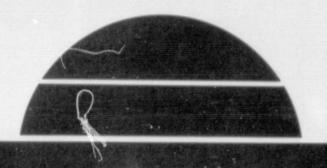
Produced by the NASA Center for Aerospace Information (CASI)

DOE/NASA CONTRACTOR REPORT

DOE/NASA CR-150511

INDOOR THERMAL PERFORMANCE EVALUATION OF DAYSTAR SOLAR COLLECTOR

Prepared by Wyle Laboratories, Solar Energy Systems Division, Huntsville, Ala.


Under sub-contract with

IBM Corporation Federal Systems Division Huntsville, Alabama 35805

Contract NAS8-32036

National Aeronautics and Space Administration George C. Marshall Space Flight Center, Alabama 35812

for the U.S. Department of Energy

(NASA-CR-150511) INDOOR THERMAL PERFORMANCE EVALUATION OF DAYSTAR SOLAR COLLECTOR (Wyle Labs., Inc.) 50 p HC A03/MF A01 CSCL 10A N78-18521

Unclas G3/44 05968

U.S. Department of Energy

N	\sim	m	~	~
N				

This report was prepared to document work sponsored by the United States Government. Neither the United States nor its agents the United States Department of Energy, the United States National Aeronautics and Space Administration, nor any federal employees, nor any of their contractors, subcontractors or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represent that its use would not infringe privately owned rights.

	TECHNIC	L REPORT STAND	DARD TITLE PAGE
1 REPORT NO. DOE/NASA CR-150511	2. GOVERNMENT ACCESSION NO.	3, RECIPIENT'S C	ITALOG NO.
4 TITLE AND SUBTITLE		5. REPORT DATE November	1077
Indoor Thermal Performance E	Cvaluation of Daystar Solar	6. PERFORMING OR	
Collector			
7. AUTHOR(5) Ken Shih			ANIZATION REPORT # 10-10, Rev A
9. PERFORMING ORGANIZATION NAME AND AD	DRESS	10. WORK UNIT, NO.	
Wyle Laboratories		1:1. CONTRACT OR G	RANT NO
Scientific Services and Systems	Group, Solar Energy Sys Div	NAS8-3203	
Huntsville, Alabama 35805		13. TYPE OF REPOR	& PERIOD COVERED
12 SPONSORING AGENCY NAME AND ADDRESS		Contractor	Report
National Aeronautics and Space Washington, D. C. 20546	Administration		
washington, D. C. 20546		14. SPONSORING AC	ENCY CODE
15. SUPPLEMENTARY NOTES		.l	
This work was done under Space Flight Center, Alabama,	the technical supervision of Charl 35812 .	es N. Thomas,	Marshall
16, ABSTRACT			
to obtain thermal performance collector under simulated condiliquid as a heat transfer medium Between the tempered low iron convective heat loss. The collector excursions during stagnation. Collector thermatically by Collector incident d. Collector heat lost e. Collector stagnation.	m. The absorber plate is copper glass and absorber plate is a polyector incorporates a convector here. The following tests were con lefficiency ensure that the angle modifier is coefficient ion.	N 02210, Unit 2, plate solar colle and coated with vearbonate trap to dump panel to ducted:	liquid solar etor using black paint. used to suppress
17. K/E// / # d A/D/S/	18. DISTRIBUTION STA		
	Unclassified	-Unlimited	
	a baan ma	Bunda	· · · · /
	William A. F	rooksbank, Jr.	
	Manager		<i>I</i>
	Solar Heatin	g & Cooling Pro	
19. SECURITY CLASSIF. (of this report)	20, SECURITY CLASSIF, (of this page)	21, NO. OF PAGES	22. PRICE
Unclassified	Unclassified	49	NTIS

TABLE OF CONTENTS

		<u>Page Number</u>
1.0	PURPOSE	1
2.0	REFERENCES	, 1
3.0	MANUFACTURER	1
	3.1 Description of Test Specimens	1
4.0	SUMMAPY	2
5.0	TEST CONDITIONS AND TEST EQUIPMENT	3
	 5.1 Ambient Conditions 5.2 Instrumentation and Equipment 5.3 Data Acquisition System 5.4 Flux Levels and Wind Speed 	3 3 5 5
6.0	REQUIREMENTS AND PROCEDURES	6
	6.1 Collector Thermal Efficiency Test 6.2 Collector Time Constant Test 6.3 Collector Incident Angle Modifier Test 6.4 Collector Heat Loss Coefficient Test 6.5 Collector Stagnation Test	6 8 10 12 13
7.0	ANALYSIS	14
	7.1 Thermal Performance Test 7.2 Time Constant Test 7.3 Incident Angle Modifier Test 7.4 Heat Loss Coefficient Test	14 19 21 22
FIGURE 1	Thermocouple Locations for Daystar 21B Collector	23
FIGURE 2	Instrumentation Locations for Daystar 21B Collector	24
FIGURE 3	Contours of Flux Level at Collector Surface	25
FIGURE 4	Initial Test Plane Overall Flux Level vs. Power Settin	ng 26
FIGURE 5	Wind Distribution at Five Locations on the Collector Surface	27
FIGURE 6	Daystar Collector Indoor Thermal Performance Test	28
FIGURE 7	Daystar Collector Time Constant Test Result	29
FIGURE 8	Daystar Collector Incident Angle Modifier Test Results	30
FIGURE 9	Daystar Collector Incident Angle Modifier Test Results	31

TABLE OF CONTENTS (Continued)

		Page Number
TABLE I	Daystar Collector Instrumentation	32
TABLE II	Daystar Collector Indoor Thermal Efficiency Test Results	34
TABLE III	Time Constant Test	37
TABLE IV	Incident Angle Modifier Test	38
TABLE VQ	Heat Loss Coefficient Test	40
TABLE VI	Daystar Collector Stagnation Test - 45°	41
TABLE VII	Daystar Collector Stagnation Test - 30°	42
TABLE VIII	Daystar Collector Stagnation Test - 60°	44
PHOTOGRAPH 1	Collector Set Up for Indoor Test	46
PHOTOGRAPH 2	Overall View of Indoor Test Site	47

1.0 PURPOSE

The purpose of this report is to present the test procedures used and test results obtained during a collector evaluation test program. The test program was conducted to obtain thermal performance data on a Daystar Model 21B, S/N 02210, Unit 2, liquid solar collector under simulated conditions. The tests were conducted utilizing the Marshall Space Flight Center Solar Simulator in accordance with the test requirements specified in Reference 2.1 and the procedures contained in Reference 2.2.

2.0 REFERENCE

2.1 ASHRAE 93-P Method of Testing Solar Collectors Based on Thermal Performance

2.2 MTCP-DC-SHAC-414 Test Procedure for the Performance Evaluation of the Daystar Solar Collector

2.3 MTCP-FA-SHAC-400 Procedure for Operation of the MSFC Solar

Simulator Facility

3.0 MANUFACTURER

Daystar Corporation 41 Second Avenue Burlington, Massachusetts 01803

3.1 <u>Description of Test Specimen</u>

The test article is a flat plate solar collector using liquid as the heat transfer medium. The absorber plate is copper and coated with black paint. Between the tempered low iron glass and absorber plate is a polycarbonate trap used to suppress convective heat loss. The collector incorporates a convector heat dump panel to limit temperature excursions during stagnation. The absorber plate has the aborption coefficient of .985, the glass cover has the transmission coefficient of .90 and the effective transmission coefficient of the heat trap is .935. Hence, the product of transmissitivity and absorptivity will be .829. The overall dimension of the collector is 44 1/2" x 80 3/4" x 5 1/4". The gross surface area is 24.95 square feet with an aperture area of 21 square feet. The collector weighs approximately 145 pounds.

4.0 <u>SUMMARY</u>

This program was conducted to evaluate the thermal performance of a Daystar liquid collector under simulated conditions. The following tests were conducted:

- 1) Collector Thermal Efficiency Test: The results of this test are presented in Table II and Figure 6.
- 2) Collector Time Constant Test: The results of this test are presented in Table III and Figure 7.
- 3) Collector Incident Angle Modifier Test: The results of this test are presented in Table IV and Figures 8 and 9.
- 4) Collector Heat Loss Coefficient Test: The results of this test are presented in Table V.
- 5) Collector Stagnation Test: The results of this test are presented in Tables VI, VII and VIII.

5.0 TEST CONDITIONS AND TEST EQUIPMENT

5.1 Ambient Conditions

Unless otherwise specified herein, all tests were performed at ambient conditions existing in Building 4619 at the time of the tests.

5.2 <u>Instrumentation</u> and Equipment

All test equipment and instrumentation used in the performance of this test program comply with the requirements of MSFC-MMI-5300.4 C, Metrology and Calibration. Table I contains instrumentation identification and data acquisition connection data. Figures 1 and 2 depict instrumentation locations. A listing of the equipment used in each test follows.

Collector Stagnation Test

Apparatus	Manufacturer/Model	Range/Accuracy*
Reference Junction	Pace/150	150 ±1°F
Thermocouple	Supplied by Collector Manufacturer, Type T	0-700°F ±1°F
Pyranometer	Eppley - PSP	0-800 BTU/Ft ² ·Hr ±3%

Collector Time Constant Test

corrector time constant	1620	
<u>Apparatus</u>	Manufacturer/Model	Range/Accuracy*
Liquid Loop	MSFC Supplied	.1-1.2 GPM
Reference Junction	Pace/150	150 ±1°F
Thermocouple	Supplied by Collector Manufacturer, Type T	0-700°F ±1°F
Flowmeter	Foxboro/1/2-2 81T361	.1-1.2 ±1% GPM FS
Resistance Thermometer	TSI 7082-3	0-500 ±.05°F
Thermopile	Medtherm	0-20°F/±.05°F
Pyranometer	Eppley- PSP	0-800 BTU/Ft ² ·Hr ±3%
Directional Anenometer	MSFC Supplied	0-30 MPH ±.5% FS

^{*}These are instrument accuracies only. Does not include data acquisition system error.

5.0 TEST CONDITIONS AND TEST EQUIPMENT (Continued)

5.2 Instrumentation and Equipment (Continued)

Collector Time Constant Test (Continued)

Apparatus Manufacturer/Model Range/Accuracy*

Strip Chart Recorder Mosley 680 N/A

Solar Simulator MSFC Supplied See SHC 3006

Collector Efficiency Test

Apparatus Manufacturer/Model Range/Accuracy*

Liquid Loop MSFC Supplied .1-1.2 GPM

Reference Junction Pace/150 150 ±1°F

Thermocouple Supplied by Collector 0-700°F ±1°F

Manufacturer, Type T

Flowmeter Foxboro/1/2-2 81T361 .1-1.2 ±1% GPM FS

Resistance Thermometer TSI 7082-3 0-500 ±.05°F

Thermopile Medtherm 0-20°F/±.05°F

0-800 BTU/Ft²·Hr ±3% Pyranometer Eppley - PSP

Directional Anenometer MSFC Supplied 0-30 MPH ±.5% FS

Strip Chart Recorder Mosley 680 N/A

Floor Fan MSFC Supplied N/A

Solar Simulator MSFC Supplied See SHC 3006

Collector Incident Angle Modifier Test

Flowmeter

mara na miningo 🛊 🐒 na at più a inci-

Apparatus Manufacturer/Model Range/Accuracy*

Liquid Loop MSFC Supplied .1-1.2 GPM

Reference Junction Pace/150 150 ±1°F

Thermocouple Supplied by Collector

Manufacturer, Type T 0-700°F ±1°F Foxboro/1/2-2 81T361

Resistance Thermometer TSI 7082-3 0-500 ±.05°F

.1-1.2 ±1% GPM

5.0 <u>TEST CONDITIONS AND TEST EQUIPMENT</u> (Continued)

5.2 <u>Instrumentation and Equipment</u> (Continued)

Collector Incident Angle Modifier Test (Continued)

<u>Apparatus</u>	Manufacturer/Model	Range/Accuracy*
Thermopile	Medtherm	0-20°F/±.05°F
Pyranometer	Eppley - PSP	0-800 BTU/Ft ² ·Hr ±3%
Directional Anenometer	MSFC Supplied	0-30 MPH
Strip Chart Recorder	Mosley 680	N/A
Solar Simulator	MSFC Supplied	See SHC 3006

Collector Heat Loss Coefficient Test

<u>Apparatus</u>	Manufacturer/Model	Range/Accuracy*
Heater	Supplied by Collector Manufacturer	N/A
Thermocouple	Supplied by Collector Manufacturer, Type T	0-700°F ±1°F
Reference Junction	Pace/150	150 ±1°F
Wattmeter	MSFC Supplied	2000 Watt ±1%

5.3 <u>Data Acquisition System</u>

A Hewlett-Packard digital computer system was furnished and operated by MSFC for the data acquisition system. Unless otherwise specified in the test request, the data accuracy was the best obtainable with the available equipment.

5.4 Flux Levels and Wind Speed

Combined simulations of solar flux levels and wind speed conditions were prescribed test conditions to be imposed during these tests. Prior to initiation of testing, a new set of simulator lamps (GE tungsten-halogen ELH lamps) were installed in the simulator array. Consequently, total heating rate surve,'s were made on the test plane to establish the uniformity and total heat flux levels. Results of these measurements are plotted in Figure 3 to show the typical flux contours. This plot indicates the degree of heat flux uniformity achieved over the test plane. An additional plot was prepared from the heat flux measurements to show the average intensity level over the test area as a function of the lamp array power controller dial setting. This plot is presented in Figure 4 and was used during testing to set the prescribed heat flux level.

ORIGINAL PAGE IS OF POOR QUALITY

5.0 TEST CONDITIONS AND TEST EQUIPMENT (Continued)

5.4 Flux Levels and Wind Speed (Continued)

It is noted that, during the incident angle modifier test, the heat flux level was determined including effects of the insolation angle and reflections from surroundings. Correction was made for the insolation angle by the cosine law. Correction factors due to reflections from surroundings were predetermined to be 2%, 11% and 35% for east-west angles of 45, 60 and 75°, respectively.

Floor fans were utilized to simulate wind speeds to 7 1/2 MPH. Wind velocity distribution measurements at the collector surface are shown in Figure 5.

6.0 REQUIREMENTS AND PROCEDURES

D. CULTECTOL INCLINAL FILLCHORY 163	6.1	Collector	Thermal	Efficiency	Test
-------------------------------------	-----	-----------	---------	------------	------

Tested by	
Started	
Completed	

6.1.1 Test Requirements

The thermal performance evaluation data shall be obtained at inlet temperatures of 0, 25, 50 and $100^{\circ}F$ above ambient temperature, at a liquid flow rate of 308.7 lb/hr of 50% by volume or 52.7% by weight ethylene glycol water, at insolation rates of 150, 200, and 300 BTU/Ft²·Hr and a wind speed of 7.5 mph. In addition, three data points without wind were also obtained. The following data were recorded during the test at each test condition.

- 1. Absorber surface temperature 15 locations.
- 2. Heat rejection loop temperature 8 locations.
- 3. Ambient temperature.
- 4. Collector inlet liquid temperature.
- 5. Collector outlet liquid temperature.
- 6. Collector differential temperature.
- 7. Liquid flow rate.
- 8. Insolation rate.

6.1.2 <u>Test Procedure</u>

- 1. Mount test specimen on test table at a 45° angle with respect to the floor.
- 2. Start liquid flow loop and establish a flow rate of 308.7 Lb/Hr.
- Establish the wind speed of 7.5 mph.
- 4. Power up simulator in accordance with Reference 2.3 and establish the required flux level.
- 5. Establish the required inlet temperature.
- 6. Record data for a minimum of five minutes at above stabilized conditions.
- 7. Repeat steps 4, 5, and 6 to change the flux level and liquid inlet temperature as necessary until data has been obtained for each test condition specified.

- 6.0 REQUIREMENTS AND PROCEDURES (Continued)
- 6.1 <u>Collector Thermal Efficiency Test</u> (Continued)
- 6.1.3 <u>Test Results</u>

The results obtained during these tests are contained in Figure 6 and Table II.

6.0 REQUIREMENTS AND PROCEDURES (Continued)

6 2 Collector Time Constant Test

Tested by ______
Started _____

6.2.1 <u>Test Requirements</u>

According to ASHRAE 93-P, the time constant test shall be conducted by abruptly reducing the flux level to zero. The inlet temperature shall be kept to within $\pm 2^{\circ}F$ of ambient, or the best achievable with the existing system, with a liquid flow rate of 308.7 Lb/Hr. The differential temperature across the collector were recorded to determine the time required to reach the condition of

$$\frac{\text{Te - Ti}}{\text{Te}_{\text{ini}} - \text{Ti}} = .368$$

where

Te = Outlet temperature

Te_{ini} = Initial outlet temperature

Ti = Inlet temperature

The following data were recorded during the test:

- 1. Absorber surface temperature 15 locations.
- 2. Heat rejection loop temperature 8 locations.
- 3. Ambient temperature.
- 4. Collector inlet temperature.

ORIGINAL PAGE IS OF POOR QUALITY

- 5. Collector outlet temperature.
- 6. Collector differential temperature Thermopile.
- 7. Liquid flow rate.
- 8. Insolation rate.

6.2.2 <u>Test Procedure</u>

- 1. Mount the collector on test table at 45° from the horizontal and assure that solar simulator surface is parallel to the collector surface.
- 2. Adjust the liquid flow rate to 308.7 Lb/Hr.

- 6.0 REQUIREMENTS AND PROCEDURES (Continued)
- 6.2 <u>Collector Time Constant Test</u> (Continued)
- 6.2.2 3. Adjust the liquid inlet temperature to within $\pm 2^{\circ}F$ of ambient.
 - 4. Adjust the flux level to 250 BTU/Ft²·Hr.
 - 5. Monitor the differential temperature on strip chart recorder.
 - 6. Allow the system to stabilize at above conditions for at least 5 minutes.
 - 7. Turn off the solar simulator.
 - 8. Monitor the differential temperature until the ratio of $\frac{Te Ti}{Te_{ini} Ti} = is less than .30.$

6.2.3 Test Results

The result obtained during this test is contained in Figure 7 and Table III.

- 6.0 REQUIREMENTS AND PROCEDURES (Continued)
- 6.3 Collector Incident Angle Modifier Test

Tested by	
Started	
Completed	

6.3.1 Test Requirement

The collector incident angle modifier shall be conducted at north-south radiation incident angles of 0, 15, 30 and 45°. At 0 and 45° angles, the east-west (angle changes parallel to heat trap folds and along constant length station) radiation incident angle were 0, 30, 45, 60 and 75°. At 15 and 30° north-south incident angles the east-west angles were 0°. The liquid flow rate will be 308.7 Lb/Hr with the inlet temperature controlled to within *2°F of ambient, or the best achievable with the existing system, at the insolation rate of approximately 300 BTU/Ft2·Hr at normal incidence and 0 mph wind speed. The following data were recorded during the test at each test condition.

- Absorber surface temperature 15 locations.
- 2. Heat rejection loop temperature 8 locations.
- 3. Ambient temperature.
- 4. Collector inlet liquid temperature.
- 5. Collector outlet liquid temperature.
- 6. Collector differential temperature.
- 7. Liquid flow rate.
- 8. Insolation rate.

6.3.2 Test Procedure

- 1. Mount the collector on test table at 45° from the floor,
- 2. The solar simulator angle was adjusted to obtain the proper north-south incident angles.
- 3. At 0 and 45° north-south incident angles the east-west was adjusted to 0, 30, 45, 60 and 75°. At 15 and 30° north-south incident angles, the east-west angles are 0°.
- 4. Establish the required liquid flow rate.
- 5. Establish the required liquid inlet temperature.
- 6. Power up the solar simulator to obtain an insolation rate

- 6.0 REQUIREMENTS AND PROCEDURES (Continued)
- 6.3 <u>Collector Incident Angle Modifier Test</u> (Continued)
 - 7. Record data for a minimum of five minutes at above stabilized conditions.
 - 8. Repeat above steps to complete all the required tests.

6.3.3 <u>Test Results</u>

The results obtained during the test are depicted in Figure 8 and 9, and Table IV.

6.0 <u>REQUIREMENTS AND PROCEDURES</u> (Continued)

6.4	Co11	lector	Heat	Loss	Coeff	ici	ent	Test

Tested by	
Started	
Completed	

6.4.1 Test Requirements

With the built-in electric heater on the absorber plate, the collector heat loss coefficient can be determined. The collector was tilted at 45° from the floor with the wind speed of 7 1/2 mph. The power input to the absorber plate electrical heater was adjusted so as to maintain the absorber plate at average temperatures of 200° and 160° F. The following data were recorded during the test.

- 1. Surface temperature 15 locations.
- 2. Heat rejection loop temperature 8 locations.
- 3. Ambient temperature.
- 4. Power input to absorber surface.

6.4.2 Test Procedure

- 1. Mount the collector on the test table at 45° from the floor.
- 2. Assure that the flow passages are dry.
- 3. Establish the required wind speed.
- 4. Adjust the heater power controller to obtain the required average absorber plate temperature.
- 5. Record data for a minimum of five minutes at stabilized conditions.

6.4.3 Test Result

The results obtained during these tests are presented in Table V.

ORIGINAL PAGE IN

6.0	REQUIREMENTS	AND	PROCEDURES	(Continued)	ì

6.5 <u>Collector Stagnation Test</u>

Tested by	
Started	
Completed	

6.5.1 Test Requirement

Utilizing the MSFC Solar Simulator, conduct the stagnation tests at collector tilt angles of 30, 45 and 60° from the horizontal. For each tilt angle, the collector panel was irradiated by the insolation rates of 250, and 300 BTU/Ft 2 ·Hr normal to the collector. The following data were recorded during the test at each test condition.

- 1. Collector tilt angle
- 2. Insolation rate.
- 3. Ambient temperature.
- 4. Absorber surface temperature 15 locations.
- 5. Convector tube surface 8 locations.

6.5.2 Test Procedure

- 1. Mount test specimen on test table at required tilt angle.
- 2. Fill the collector flow passage with liquid.
- 3. Power up simulator in accordance with Reference 2.3 and establish the required solar flux level.
- 4. Monitor data until the surface temperatures reach steady state.
- 5. Data was recorded continuously during the test.

6.5.3 Test Results

The results obtained during these tests are contained in Tables VI, VII and VIII. Due to the loss and degradation of lamps, the flux levels dropped. Refer to Tables VII and VIII for the insolation rate at 30 and 60° tilt angles.

7.0 ANALYSIS

7.1 Thermal Performance Test

The analysis of data contained in this report is in accordance with the National Bureau of Standards recommended approach. This approach is outlined below.

The efficiency of a collector is stated as:

$$Z = \frac{q_{u/A}}{I} = \frac{\dot{m} Ctf(tf,e-tf,i)}{IA}$$
 (1)

where:

9u = rate of useful energy extracted from the Solar Collector (BTU/Hr)

A = overall total collector area including convector = A) 24.95 Ft²

I = Total solar energy incident upon the plane of the solar collector per unit time per unit area (BTU/Hr·Ft2)

m = Mass flow rate of the transfer liquid through the collector per unit area of the collector = 14.7 Lbm/

Hr·Ft²

Ctf = Specific heat of the transfer liquid (BTU/Lb.°F)

Rewriting Equation (1) in terms of the total collector area yield:

Notice that:

Pi = IA = Total Power Incident on the Collector

mA = M = Total Mass Flow Rate through the Collector

Therefore M Ctf (tf,e-tf,i) = Total Power Collected by the Collector

7.0 ANALYSIS (Continued)

7.1 Thermal Performance Test (Continued)

Substitution in Equation (2) results in:

where:

Pabs = Total collected power

Pinc = Total incident power

This value of efficiency is expressed as a percentage by multiplying by 100. This expression for percent efficiency is:

Collector Efficiency =
$$\frac{P_{abs}}{P_{inc}} \times 100$$
 (4)

or from Equation (2), collector efficiency is defined by the equation:

% Eff. =
$$\frac{\text{M C}_{tf}(t_{f,e}-t_{f,i}) \times 100}{P_{i}}$$
 (5)

Each term in Equation (5) was measured and recorded independently during the test. The calculated values of efficiency were determined at eighty-second intervals. The mean value of efficiency was determined over a five-minute period during which the test conditions remained in a quasi-steady state. Each five-minute period constitutes one "data point' as is graphically depicted on a plot of percent efficiency versus

a plot of percent efficiency versus
$$(t_{f,i-t_a})/I$$
, $\frac{t_{f,i+t_{f,e}}-t_a}{2}$ and I

where:

tf,i = Liquid inlet temperature (°F)

tf,e = Liquid outlet temperature (°F)

t_a = Ambient temperature (°F)

tp = Average absorber plate temperature (°F)

I = Incident flux per unit area (BTU/Hr·Ft²) The abscissa terms (tf , i - ta) /I , (tf , i - tf , e - ta)/I and tf - ta

The abscissa terms (${}^{t}f, i-{}^{t}a$) /I , $\frac{2}{I}$ were used to normalize the effect of operating at different values of I, ${}^{t}f, i$, ${}^{t}f, e$, ${}^{t}p$ and ${}^{t}a$. The results are found in Figure 6.

7.0 ANALYSIS (Continued)

Thermal Performance Test (Continued) 7.1

The first and second order polynomial to best describe the test results are

Efficiency =
$$a_0 + a_1 T$$

and Efficiency = $a_2 + a_3\Gamma + a_4\Gamma^2$

where:

ORIGINAL PAGE IS $T = (t_{f,i}-t_a) / I \text{ or } \left(\frac{t_{f,i}+t_{f,e}}{2} - t_a\right) / I \text{ or } \frac{t_{p}-t_a}{I}$

and the coefficients are determined to be:

T Coefficient	(tf,i-ta) /I	$\frac{(t_{f,i}+t_{f,e})/2-t_a}{I}$	t _{p-ta}
aŋ	.6852	.7100	. 7654
aj	6905	7167	7736
a2	.6777	.6998	.7504
a3	6155	6317	6793
a4	1057	1128	1116

where:

$$\bar{t}_p = \frac{t_{4A} + t_{6A} + t_{7A} + t_{8A} + t_{9A}}{5}$$

The performance of a flat-plate solar collector under steady state conditions can be described as

$$q_{u} = A_{i} I \left(2 \right)_{e} - A_{i} U_{L} \left(p_{-} t_{a} \right)$$
 (6)

where:

 A_i is the absorber plate area = 21 Ft²

(42) $_{\rm e}$ is the product of transmissitivity and absorptivity at normal incident angle

Since the officiency is defined as the ratio of the useful energy extracted from the collector to the total incident energy.

7.0 ANALYSIS (Continued)

7.1 <u>Thermal Performance Test</u> (Continued)

It is convenient to introduce two parameters F_R and F'

where:

$$q_u = F_R A_i I(\mathcal{X})_e - U_L A_i (t_1 - t_a)$$

or

$$Z = \frac{q_U}{AI} = \frac{A_i}{A} F_R(22)_e - \frac{A_i}{A} F_RUL \quad \underline{(t_i - t_a)}$$
(8)

and

F' = actual useful energy collected
useful energy collected if the
entire collector surface were
at the average liquid temperature

$$q_u = F' \left[A_i I(\lambda z)_e - A_i U_L \left(\frac{t_{f,i} + t_{f,e}}{2} - t_a \right) \right]$$

r

As shown in Figure 6, if the efficiency is plotted against $\frac{t_{f,i-t_a}}{I}$, $\frac{t_{f,i+t_{f,e}}}{2}$ and $\frac{t_{p-t_a}}{I}$, a linear regression can

be applied to determine the coefficients in equations 7, 8, and 9.

From equation 7

$$\frac{A_{i}}{A} (\lambda z)_{e} = .7654$$
 $\frac{A_{i}}{A} U_{L} = .7736$
 $(\lambda z)_{e} = .91$

ANALYSIS (Continued) 7.0

Thermal Performance Test (Continued) 7.1

From equation 8

$$\frac{A_{\dagger}}{A} F_{R}(22)_{e} = .6852 \qquad \qquad \therefore F_{R} = .895$$

$$\frac{A_{i}}{A} F_{R}(\lambda Z)_{e} = .6852$$
 $\therefore F_{R} = .895$ $\frac{A_{i}}{A} F_{R}U_{L} = .6905$ $\therefore F_{R} = .892$

From equation 9

$$\frac{A_1}{A} F'(\lambda 2)_e = .7100$$
 $\therefore F' = .927$

$$\frac{A_i}{A} F'U_L = .7167$$
 :. $F' = .925$

7.0 ANALYSIS (Continued)

7.2 Time Constant Test

Two methods are proposed by ASHRAE 93-P for conducting a time constant test. However, due to facility limitations, only the first method could be used. This method consisted of shutting down the simulator and maintaining a constant flow rate and inlet temperature while obtaining data.

According to the definition of time constant given in 93-P, it is the time required for the ratio of the differential temperature at time 2 to the initial differential temperature to reach .368. It can be expressed as:

$$\frac{T_{f,e,7} - T_{f,i}}{T_{f,e,ini} - T_{f,i}} = .368$$
 (1)

If the inlet liquid temperature can not be controlled to equal the ambient air temperature, then the following equation must be used

$$\frac{F_{R}U_{L}(t_{f,i}-t_{a}) + \frac{mcp}{A_{i}}(t_{f,e} \cdot z - t_{f,i})}{F_{R}U_{L}(t_{f,i}-t_{a}) + \frac{mcp}{A_{i}}(t_{f,e,ini} - t_{f,i})} = .368$$
 (2)

(A)

where:

Tf,e, T Exit liquid temperature at time T

Tf,i Inlet liquid temperature

Tf,e,ini Initial exit liquid temperature

in Liquid mass flow rate = 307.8 Lb/Hr

Cp Specific heat of liquid = .79 BTU/Lb.°F

Ai Absorber area = 21 Ft²

FRUL Negative of the slope determined from the thermal efficiency curve

During the time constant test, the inlet liquid temperature can not be controlled to within $\pm 2^{\circ} F$ of ambient air temperature, hence equation (2) was used for evaluation. From the performance curve, it is found that $F_{R}U_{L}=.62$. Equation (2) becomes

$$\frac{.62 (93.1-82.6) + 11.58 (t_{f,e} 7-82.6)}{.62 (93.1-82.6) + 11.58 (16.75)} = .368$$

- 7.0 <u>ANALYSIS</u> (Continued)
- 7.2 <u>Time Constant Test</u> (Continued)

or

$$\frac{t_{f,e} \ 7 - t_{f,i}}{t_{f,e,ini} - t_{f,i}} = .347$$

From Figure 2 the time constant was determined to be 3 minutes and 22 seconds.

ORIGINAL PAGE IS OF POOR QUALITY

7.0 <u>ANALYSIS</u> (Continued)

7.3 <u>Incident Angle Modifier Test</u>

Two methods are proposed by ASHRAE 93-P for incident angle modifier tests. For the MSFC Solar Sinulator Facility, only method 1, (tilting the collector) is applicable. The collector was adjusted so that the north-south incident angles were 0, 15, 30, and 45° . At 0 and 45° north-south angles the east-west angles were adjusted to 30, 45, 60 and 75° .

According to 93-P, the performance of a flat-plate solar collector at incident radiation angles other than normal is defined as

$$Z = \frac{q_u}{AI} = \frac{A_i}{A} F_R (az)_n - \frac{A_i}{A} F_R U_L (tf, i-ta)$$
 (1)

Rearrange equation (1), the incident angle modifier, K_{22} , can be expressed as

$$Kir = \frac{R + \frac{A_i}{A} F_R U_L \frac{(t_{f,i} - t_a)}{I}}{\frac{A_i}{A} F_R (\lambda z)_n}$$
(2)

If the inlet liquid temperature is controlled to within $\pm 2^{\circ}F$ of ambient temperature, equation (2) becomes

$$Ka = \frac{2}{\frac{A_i}{A} F_R(az)_n}$$
 (3)

Table IV shows that the inlet liquid temperatures were not within $^{\pm}2^{\circ}F$ of ambient air temperatures. Hence, equation (2) was used for evaluation.

$$k_{a} = \frac{7}{1} + .519 \frac{t_{f,i} - t_{a}}{1}$$

The results of this computation are shown on Table IV and plotted against east-west incident angles in Figure 8 and plotted against $\frac{1}{\cos \delta_i}$ - 1 in Figure 9.

For the 45° north-south incident angle with a 75° east-west incident angle, the data plot was found to be anomalous and is not reported herein.

ORIGINAL PAGE IS OF POOR QUALITY

7.0 ANALYSIS (Continued)

7.4 Heat Loss Coefficient Test

The heat loss coefficient is determined at a given input heater power when the absorber plate temperature reaches a steady state condition. The heat balance equation describes this steady state condition is

$$P_{in} = A_i U_L (\overline{t}_{p-} t_a)$$

where:

$$A_i$$
 = Absorber surface area = 21 Ft²

$$U_L$$
 = Heat loss coefficient $\frac{BTU}{Ft^2 \cdot Hr \cdot {}^{\circ}F}$

$$\bar{t}_p$$
 = Average plate temperature °F

During the test the heater power was set to 600 watt and 400 watt. The heat loss coefficients can be calculated as following:

$$U_L = \frac{600 \times 3.413}{21 \times (196.9 - 89.9)} = .91 \frac{BTU}{Ft^2 \cdot Hr \cdot {}^{\circ}F}$$

$$U_L = \frac{400 \times 3.413}{21 \times (162.7 - 82.8)} = .81 \frac{BTU}{Ft^2 \cdot Hr \cdot {}^{\circ}F}$$

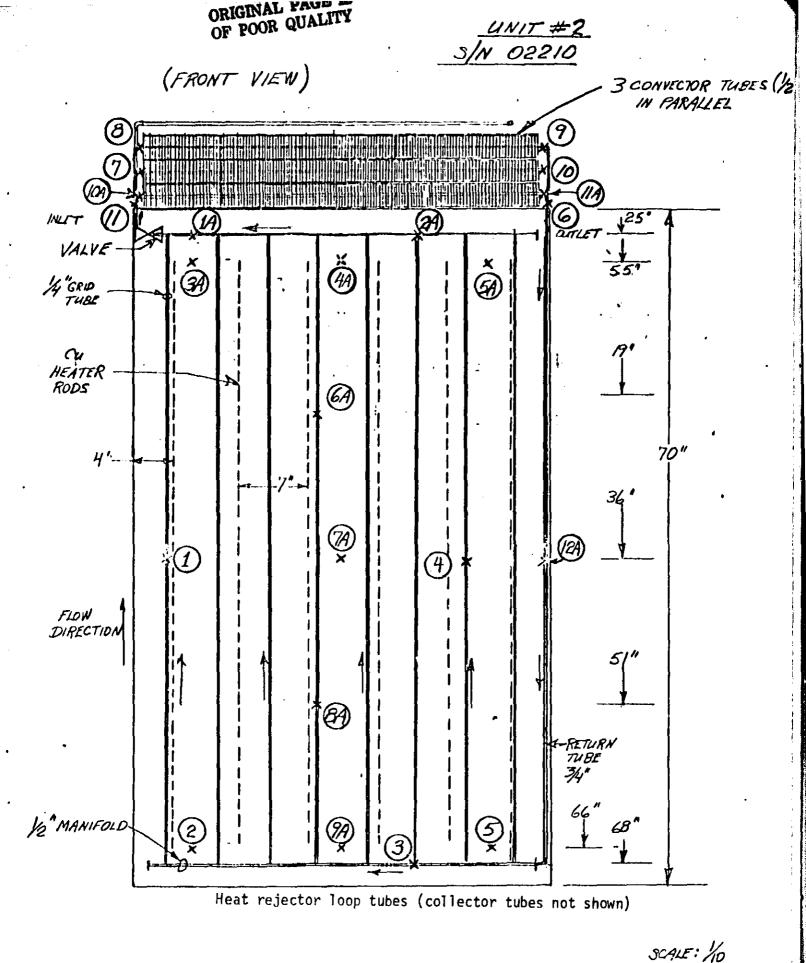


FIGURE 1. Thermocouple Locations for Daystar 21B Collector.

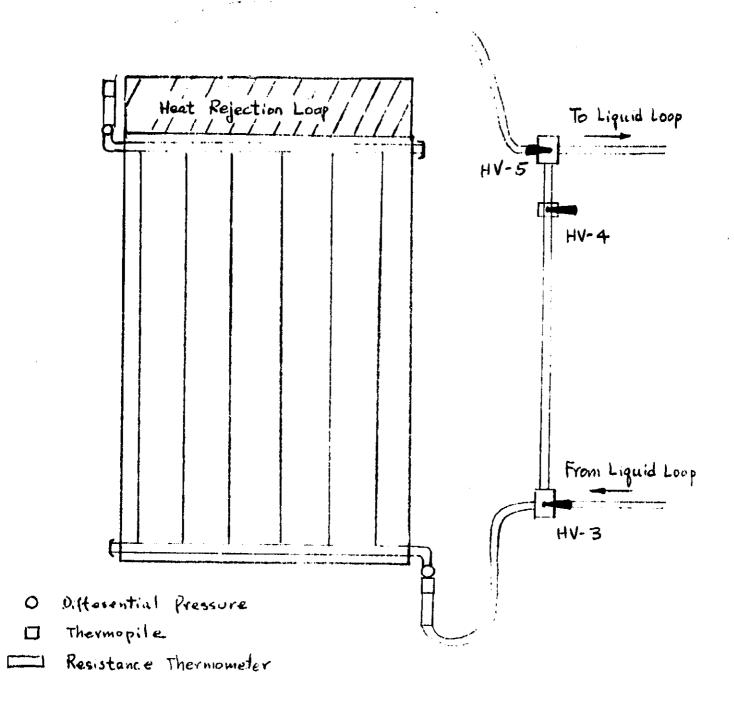


FIGURE 2. Instrumentation Locations for Daystar 21B Collector

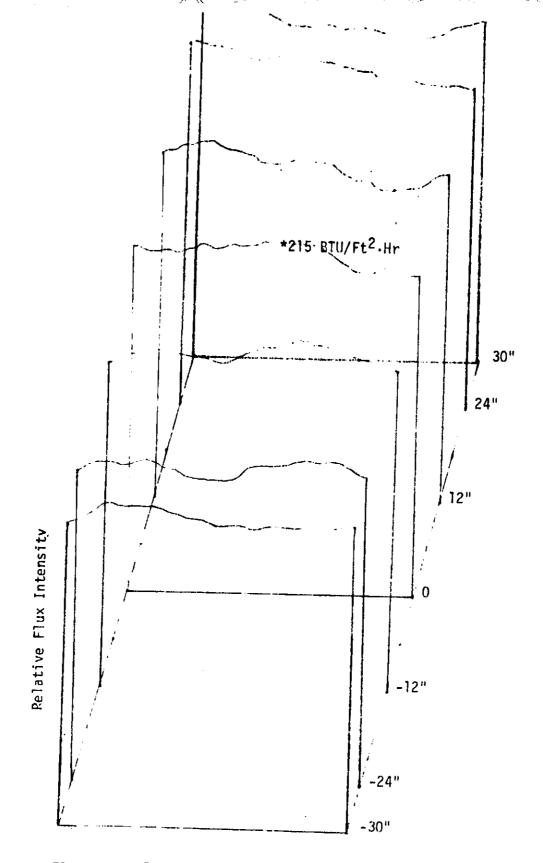


FIGURE 3. Contours of Flux Level at Collector Surface

ORIGINAL PAGE IS OF POOR QUALITY

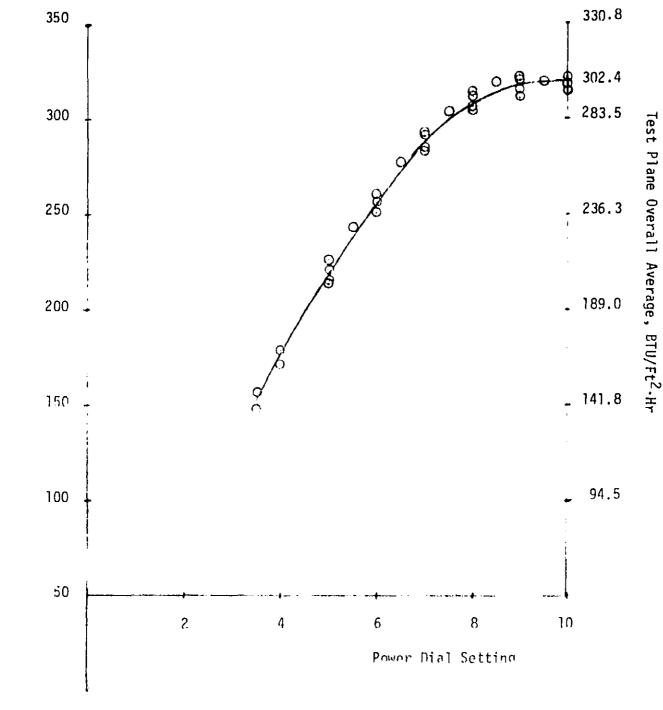
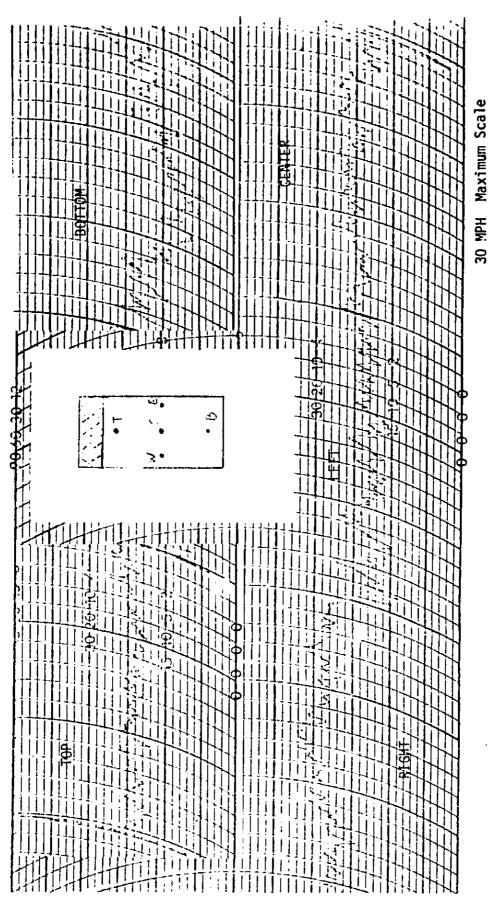
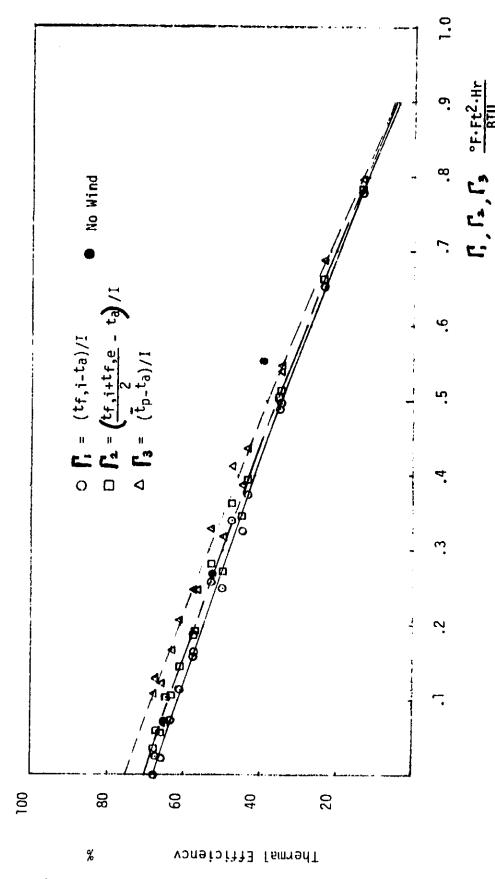



FIGURE 4. Initial Test Plane Overall Flux Level vs. Power Settinc*

Center Point Flux Level, BTU/Ft²·Hr


^{*}As a result of lamp loss curve degraded with time

Wind Distribution at Five Locations on the Collector Surface у. FIGURE

ORIGINAL PAGE IS OF POOR QUALITY

The second secon

Daystar Collector Indoor Thermal Performance Test -- 7.5 WPH Wind, 14.7 LBM/Hr·Ft², Area 24.95 Ft² FIGURE 6.

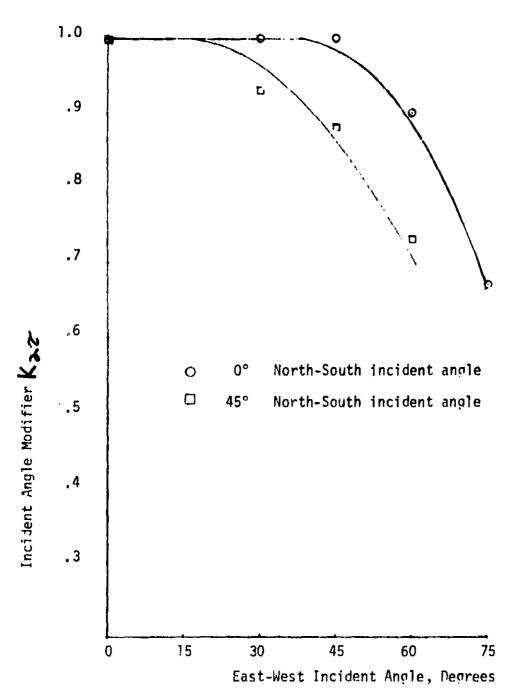
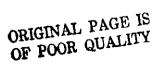



FIGURE 8. Daystar Collector Incident Angle Modifier Test Pesults

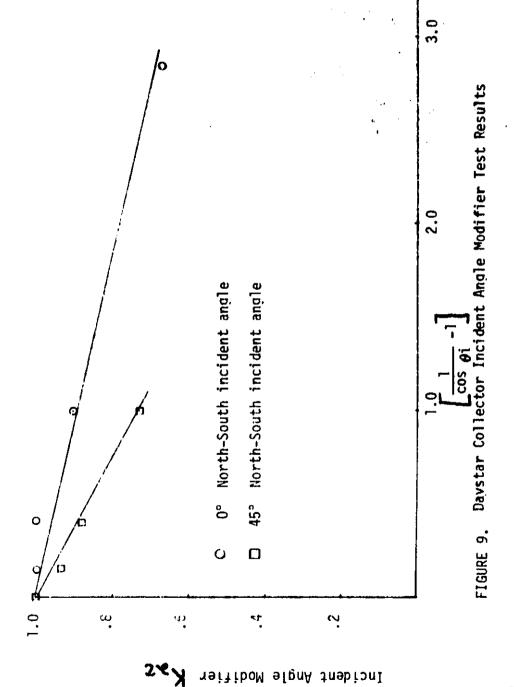


TABLE I
DAYSTAR COLLECTOR INSTRUMENTATION

HP No.	COMPUTER LINE	INST.	FUNCTION
26	107B	1	Absorber surface temperature °F
2	109B	2	Absorber surface temperature °F
3	110A	3	Absorber surface temperature °F
4	110B	4	Absorber surface temperature °F
5	111A	5	Absorber surface temperature °F
6	111B	6	Convector tube surface temp. °F
7	112A	7	Convector tube surface temp. °F
8	112B	8	Convector tube surface temp. °F
9	113A	9	Convector tube surface temp. °F
10	113B	10	Convector tube surface temp. °F
11	114A	11	Convector tube surface temp. °F
12	114B	lA	Absorber surface temperature °F
13	115A	2A	Absorber surface temperature °F
14	115B	3A	Absorber surface temperature °F
15	116A	4A	Absorber surface temperature °F
16	116B	5A	Absorber surface temperature °F
17	117A	6A	Absorber surface temperature °F
18	117B	7A	Absorber surface temperature °F
21	119A	8A	Absorber surface temperature °F
22	119B	9A	Absorber surface temperature °F

TABLE I (Continued)

HP No.	COMPUTER LINE	INST. ID	FUNCTION	
23	120A	10A	Convector tube surface temp.	°F
24	120B	11A	Convector tube surface temp.	°F
25	107A	12A	Absorber surface temperature	°F
27	108A		Ambient temperature	°F
66	138	Q	Insolation rate BTU/Ft2·Hr	
67	133A	F	Flowrate Lb/Hr.	
68	135	TR-2	Collector inlet temperature	°F
69	1.34	TR-3	Collector outlet temperature	°F

Refer to Figure 1 for surface temperature measurement locations.

ORIGINAL PAGE IS OF POOR QUALITY

TABLE II

Daystar Collector Indoor Thermal Efficiency Test Results - 7.5 mph wind

ID	===	#2	#3	#4	# 5	#6	#7	#4	#9
IA	107.0	115.5	1211	1054	125.1	136.3	146.6	1525	162.5
2A	109.8	119.0	133.4	120%	128.0	140.6	147.9	1545	1660
3A	108.6	116.9	129.3	119.6	125.9	136.7	146.8	152.5	1620
YA.	109.0	117.5	130.4	120.7	127.0	/37.7	148.3	1540	
5A	108.7	117.4	130.6	120.4	126.8	137.9	148.1	154.0	163.8
6A	112.4	121.8	136.5	123.6	130,9	143.5	150.6	157.2	168.3
7A	107.5	115.5	126.9	119.5	124.9		1470	152.0	160.1
	109.0	117.5	130.4	120.0	126.5	1372	146.2	152.0	
4	110.1	118.8	132.1	121.6	128.1	139.4	149.0	154.9	1649
12A	92.9	95.7	98.9	89.6	92.8	95.5	99.8	101.3	103.8
SA.	107.9	116.0	128.2	119.5	125.3	/35.3	146.7	151.9	160.5
AP	96.4	101.6	108.4	109.6	112.3	//6.7	138.5	140.7	144.0
2	974	104.3	112.6	111.7	115.1	121.0	140.6	143.5	148.2
3	97.5	102.3	108.3	104.8	108.1	//2.7	126.4	128.9	133.4
5	97.3	102.7	109.7	109.8	112.7	117.4	137.7	140.0	143.4
Amb	90.4	88.6	89.6	81.4	82.4	83.1	84.4	85.0	85.4
Tin	90.3	93.3	96.2	104.9	105.2	105.3	135.3	136.2	1947
Tout	100.7	107.1	116.3	//3.7	117.5	124.3	142.4	145.8	151.6
ΔΤ	10.4	13.7	20.1	8.7	12.3	19.0	7.0	10.4	16.8
Tp	106.6	ान-म	126.1	118.6	124.1	/33.5	146.2	151.2	1593
9	150	200	300	150	2.00	300	150	200	300
E	309.2	309.5	3094	308.7	_ <i>308</i> _	309.6	3/0.0	3092	9/0.0
2	67.8	67.2	65.7	57.7	61.0	63.0	47.7	53.0	_57/
\mathcal{I}	.000	.024	022	./57	. 114	.074	340	256	.164
T.	.03.1	058_	.056	./86	145	./06	363	.282	.192
T ₃	801.	129	.122	.248	208	168	. 4/2	33/	246
							·		
		i							

TABLE II (Continued)

ID	#10	#//	#/2	#13	#14	#15	#17	6a*	#18 *
LA_	164.1	170.2	180.5	115.0	190.7	2014	26/5	137.1	192.3
2A	164.6	1714	182.9	184.8	1912	203.2		141.6	195.0
3A	164.3	170.2	180.0	185.3	190.7	2010	202.2	1378	1914
<u> 4A</u>	165.9	1718	181.5	187.0	192.5				192.8
<u> 5A</u>	165.7	17/8	182.0	186.8	192.6	203.3			193.4
6A	1674	174.2	185.4	188.0	194.3	206.0	2043	144.5	196.8
7A	164.9	170.1	178.6	186.1	191.0	199.8	209.3	135.1	1893
	162.9	168.9	178.9	183.0	188.7	199.3	199.4	138.4	190.2
4	166.7	172.8	183.1	1827	193.5	2042	204.6	1403	194.1
12A	102.2	103.6	105.6	1090	110.1	112.7	116.6	100.2	1273
AR_	164.1	169.6	178.4	184.6	189.7	199.0	2010	136.2	1894
9A	157.4	159.9	163.7	179.4	181.5	1857	1973	117.0	174.8
<u> </u>	159.5	162.7	1679	181.5	1844	1900	199.2	1214	178.7
3	138.0	140.6	145.0	1518	154.3	1592	1642	113.9	160.0
5	156.1	158.5	162.1	1773	179.3	183.4	194.6	118.1	173.3
Amb	8/.7	8/.7	82.0	81.9	82./	82.6	82.4	84.4	86.4
Tin	156.2	156.5	156.5	179.7	179.9	1805	198.8	105.4	167.0
Tout	161.2	1649	171.0	183.1	186.5	193.1	200.7	125.0	182.1
<u> </u>	5.0	1.4	145	3.3	6.6	12.7	1.9	19.6	15.2
Ťρ	163.9	1691	177.5	185.0	1898	198.6	202.0	134.3	188.6
ā	150	200	300	150	200	300	150	300	300
<u>F</u>	1 11	310.4	3/1.3	3/2.2	3/0./	3/0.9	3076	308.9	308.0
7) I.	34.4	43.2	50.0	23.6	35.0	44.9	13.4	64.7	52.4
1	497	374	248	652	489	.326	.776	. 070	.267
Te .	5/4	375	272	. 663	506	.347	782	./03	. 293
T _s	.548	. 4/37	.3/8	. 688	.599	. 387	. 797	. 166	.339
	* No	Wind							
FC - Form 20	9 (July 1960)	<u> </u>			35				

	TABLE II (Continued)										
ID	#/9*										
/A	1773										
2 A	177.7										
3 A	177.5										
4A	178.9										
5 A	178.4										
6 A	180.2										
7A	/77.7										
	175.2										
4	178.9										
12A	/22.0						· 				
¥A_	177.1	ļ		ļ							
9A_	170.2			18				-			
2	172.4										
3	151.6								· · · · · · · · · · · · · · · · · · ·		
5	169.0	<u> </u>									
Amb	89.9	I									
Tin Tout	161.5	1							<u>,</u>		
	173.8	<u> </u>	ļ								
ΔT	5.3								<u> </u>		
Ť _p	176.8	 					-				
Ē	141.3	 									
	3076	<u> </u>									
7, 7, 7, 7,	307.6 39.3 .555 .574 .614	 	 								
	1-7/	1	 				-				
1-2	2/4		 		,						
-4.9	.0/4										
<u> </u>											
			<u> </u>								
· · · · · · · · · · · · · · · · · · ·	* No	Wind	 								
· · · · · · · · · · · · · · · · · · ·	1	1 P.W. 4 P.J. 14									
			1			<u> </u>					
<u> </u>		 									
	<u> </u>				· 						
-		 	 								

TABLE III Time Constant Test

Time	12:59:32	15:0:51	13:2:10	15:5:29	15:4:49	13:6:8	/5:7:27	19:8:46	13:10:5
LIA	120.1	120.2	1203	(20.3	120.3	120.3	115.2	109.9	104 1
2A_	123.6	123.7	123.8	123 8	123.9	123.9	12.1.3	118.0	106.1
3A	121.4	1215	121.5	12.1.6	121.6	119.0	109.8	105.0	101.9
4A_	121.8	1213	1219	122.0	12.2.1	119.9	110.9	105.8	102.5
5A	12).7	121.3	1218	121.9	121.9	119.3	110.4	105.7	102.6
6A	127.0	1271	127.2	127.2	1272	125.4	115.1	108.1	103.7
_7A	1/9./	119.1	119.2	119.2	119.3	115.6	107.0	102.3	99.4
	121.8	1219	121.9	122.0	122.0		109.8	104.5	100.8
4	123.1	1233	1234	123.4	123.4	123.4	112.6	106.0	101.9
12A	92.3	91.5	92.7	92.9	93.1	93.2	93.3	93.2	93.1
8A	120.2	1202	/20.3	1203	120.4	117.4	107.8	102.2	99.0
9A	103.0	103.1	165.1	103.1	103.2	100.0	96.1	94.9	94.3
_2	106.4	166.5	136.5	106.5	106.5	106.6	98.6	96.5	95.3
3	1017	101.2	1220	102.1	102.2	102.3	100.7	99.4	98.2
5	104.1	104.2	104.3	1043	104.3	103.8	97.2	95.2	943
<u>Amb</u>	82.5	82.5	82.5	82.6	82.7	82.7	82.8	827	82.6
<u>Tin</u>	92.95	93.00	93.62	93.06	93.12	93./3	93.19	93.18	93.09
Tout	109.65		104.78	109.84	109.91	104.90	100.61	98.33	96.82
ΔT	16.69	16.7/		16.78	16.80	11.77	7.42	5.15	3.73
Q	250	250	25.9	250	250	0	0	0	0
	309.3	308.9	3090	308.8	308.0	307.9	307.4	305.9	305.2
FC - Porm 209	(July 1960†				37				

TABLE IV

Incident Angle Modifier Test

} -									
N-S	0	0	0	0	0	15	30	45	45
E-W	0	30	45	60	75	0	0	0	30
L/A_	12.6.0	123.4	119.4	108.7	96.8	126.4	126.4	129.8	113.4
2.A.	130.2	125.1	121.1	444	99.4	131.8	1312	124.0	115.0
_3A	127.3	124.7	120.2	108.4	95.2	12.8.0	12.8.1	121.3	115.0
HA.	1275	12.3.9	119.7	109.0	96.9	123.2	1284	122.0	114.6
5A	127.5	123.0	119.2	109.5	99.0	128.4	128.3	122.0	113.9
6A	133.9	129.7	1242	1.2.1	98.4	133.9	133.0	125.5	117.3
7A	124.0	12.0.9	117.0	107.4	96.3	123.6	123.1	117.0	110.4
	127.8	1242	118.7	106.1	95.0	127.7	126.8	120.0	112.4
4	129.3	1251	120.5	109.9	98.6	128.8	127.7	120.5	112.4
12A	94.5	108.8	94.9	86.4	89.8	99.2	100.0	99.5	90.6
8 A	125.4		118.1	108.9		1242	123.9		110.5
9A	105.1	1048	103.9	97.6	91.0	105.4	106.7	103.3	99.0
2	1094	108.5	106.7	99.1	91.0	109.0	109.7	105.6	100.7
3	104.1	109.9	1098	102.2	92.7	106.5	107.1	104.6	102.5
5	106.8	1043	103.4	979	91.8	107.0	107.8	104.2	99.2
Amb	82.3	86.4	89.1	82.4	85.7	86.5	90.5	92.6	86.9
Tin	92.8	92.9	94.2	91.3	88.4	94.1	96.4	949	92.1
Tout	1/3.0	110.8	109.0	101.2	93.4	113.7	114.4	109.6	103.9
ΔΤ	20.2	17.9	14.8	10.0	4.7	19.6	18.0	14.8	11.8
F	3/1.7	3097	3096	306.7	309.6	3093	309.0	310.3	308.3
Q	300	2598	211.4	166.5	104.8	289.8	259.8	216.4	187.4
7	66.6	67.6	67.1	58.1	44.1	66.2	67.8	67.2	61.4
Kaz	/	1.0	1.0	.90	.67	993	1.0	1.0	93
		· · · · · · · · · · · · · · · · · · ·							
		Ì				Ì			
									
		1							
									
		ORIGINAL	DACE	<u> </u>	38				<u>_</u>

MSFC - Form 209 (July 1960) ORIGINAL PAGE IS OF POOR QUALITY

38

					ABLE IV ontinued)				
N-S	45	45							
E-W	45	60							
IA.	109.1	101.6			<u> </u>	<u> </u>			
2A	111.2	103.6				<u> </u>			
3A	110.2	101.8				· · · · · · · · · · · · · · · · · · ·			ļ
YA.	110.0	102.1			<u> </u>		ļ	 	ļ
5A	109.5	1022				ļ	 	}	
6A	112.1	103.7							
7 <i>A</i>	106.7	99.9		<u> </u>		<u> </u>			<u> </u>
1.	107.6	975							
4	1083	1014					ļ		
/2A	94.9	_96.5		}		 		ļ	ļ
_8A	106.6	96.5 99.6 93.4		<u></u>					İ
<i>9A</i>	975	93		·		 		\	
2	98.7	978				-			
3	100.9	25.8				! !			
5	979	9/2		 					
Amb Tin	85.6	86.2							<u></u>
Tin	923	91.6							
Tout	1014	46	,						
ΔΤ	9./	300		l 1					
F	3074	367	,	! L					· · · · · · · · · · · · · · · · · · ·
n	156.1	120.1		 		<u> </u>			
Kzz	571	427		, 					
		į							
		1							
			·					_	
		 ;							
<u> </u>	<u>-</u>								
<u> </u>				l					

	٦	TABLE V	
Heat	Loss	Coefficient	Test

ID	#/	#2						!	
17	1970	152.6			Ì.				
2.4		161.8							
.3/		1663			Ī	l			
3A_ 4A		117.0			i				
JA_		15:14		<u>i</u>	<u>i </u>	<u> </u>			
.6A		171.8	2427 # 2 000.00 00.00.00.00.00.00.00.00.00.00.00.	!	<u> </u>	1			
_7. 		165.7		!	!	<u> </u>			
	198.7	JEK Y.			!	<u> </u>			
4	212.7				i	1			
12A	111.8	ومدير الرواي منظمات (۱۹۶۱ استنست		1					
SA	1945	Mille			<u> </u>				
_7A	1215	100 1) 	<u> </u>				
<i>"</i> 3	1880	_/ 5 5.50							
3	152.4	150 E		•	1				
5	151.1	1293		 			1		L
Amb	89.9	82.8				<u> </u>			
P _{in}	600	4/22			ļ				
Ť.,. U _{l.}	19:19	15%	-		<u> </u>	!			
U ₁	. 91	<u> </u>		· · · · · · · · · · · · · · · · · · ·	ļ			ļ	
					<u> </u>	ļ	ļ	ļ	
		,	i		! :	!			
					<u> </u>	<u> </u>			
			<u></u> -	···	<u> </u>				
					<u> </u>				
					ļ	ļ			
					<u> </u>				
		i							
İ									
	······································	i							
			·						
<u></u>]		<u>}</u>							
Ţ.	1								

MSFC - Form 109 (July 1960)

TABLE VI

			Profite.	Collecto	ır Stagnat	tion Test	- 45°		
Time	11.52				13:23		i	14:53	1 ' '
<u> </u>	201.0	205.7	2083	2.10.1	2.07.9	223.0	223.1	227.3	226.7
<u> </u>	191.8	2039	2074	208.5	206.3	225.4	2248	2214	225.6
3	1598	1883	1304	194.6	190.6	203.9	205.1	210.5	
4	206.5	72072	2100	212.3	2/0.3				2.30.9
_5	1870	2017	2057	2092	205.9	225.3			1
6	126.3	1846	1852	188.5			200.0		204.7
7	128.8	2.12.3	2143	215.1	2/4.7		2296		
8	132.2	2/03	2/24						
9	124.1	145.4	1962	1993		208.7		2/4.0	
10	1246	1844	101						207.2
11	130.9	2117	2143				2293	2324	232.2
IA	200.2	2/53			2/74	2294	23/9		235.1
2.A		2.11.		2/7.3		227.9			
3A		113		2278		- 1	242.5		
4A		125.2				2396	270.0		
5A	208.2	2175	2758	2.26.1		234.3	239.3	238.2 239.0	
6 A	2092			2183					
7 A		21				- 1		-	236.1
8 A		2016				2101	2200	240.1	240.3
9A	1843	443.2	2.10	2100	2171	223.3			
/0A	128.5	2107			212.9	226.2	226.9	230.0	229./
//A		111.0					228.6	23/8	
/2A						195.5	194.9	201.0	198.9
Amb	87.1	87.9	757	89.0	89.0	194.5		199.6	198.7
	<u> </u>		_% 8 · A	<u> </u>	· · · · · · · · · · · · · · · · · ·	89.6	90.7	90.8	9/.4
Q T _P	i				250			- 1	300
'P					2/4.6				233.8

MSFC - Form 209 (July 1966)

41 ORIGINAL PAGE IS OF POOR QUALITY

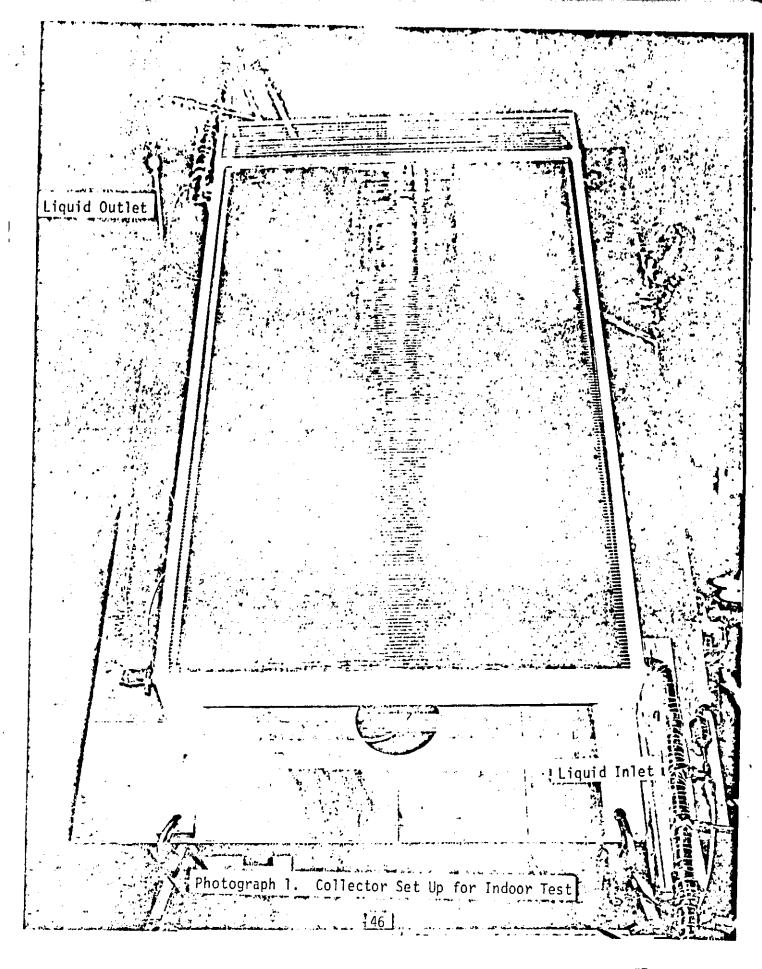
TABLE VII $\label{eq:Daystar Collector Stagnation Test - 30° }$

Time		**	<u> </u>	T .	Υ				
ID	8 20	8:50	9:20	9:50	10:15	10:19	10:50	11:20	
	107.2.	198.9	196.7	196.5	199.1	199.1	2/2.6	217.2	
2	104.9	196.4	192.0	193.2	195.7	196.2	208.8	2.14.0	
3	86.4	147.1	174.6	176.5		179.4	189.1	195.0	
4	105.1	2.28.3	1923		203.0	202.2	2/7.0	221.6	
5	105.6	194.1	189.2] ,			206.2	219.3	
6	101.2	110.9	17L.5_		175.9	176.0	184.4	189	
7	85.1	195.4				2078	2.19.4	224.2	
8	86.0	182.4				206.0	2/8.5	223.0	
9	87.6		1826				196.1	199.6	
10	103.6	112.9		175.0	1794	178.9	186.5	1916	
	83.4		2042		206.4		2199	224.5	
IA.	91.6		2094		2/2.5		226.5	230.8	
2A_	90.0		2.7%	, ,			227.1	230.0	
3A	103.7	2/20	2176	2/7.7	2195	2/9.8	233.7	239.3	******
4A	104.1		2185			221.6		237.4	
5A	103.7	2/42	2/8/	220.0			2354	235.8	
6A	1078	2263		205.7			223.0	227.0	
7A	110.6	,	20 E7				222.7	226.7	
δA	110.3		1.25		193.5		206.1	2/1.2	
9A	105.0		ر در	- 1	195.0	195.6	208.2	2/5.0	
IOA	84.2	•	200,2	· I	202.7	203.7	2/3.2	218.5	
LIA.	84.9		1685		174.0	173.0	180.7	186.7	
12A	81.1		156.8		171.3	170.2	179.4	184.8	
Amb	8/8	81.8	855	86.3	86.6	87.2	88.0	89.2	
<u>_Q</u>				<u> </u>		227.7			
Ťρ						2.05.5			
	* -	~	, 						
*	<u>_</u> <u>Lnd</u>	of tes	<u>†</u>	,					
7	- Hed	<u>t rejek</u>	tar va	ve ope	en				
									
									
	! :								
MPA					42				

CALCULATION OR DATA SHEET

					BLE VII stinued)			
Time	11:50	12:20	2:50	10:57				
	2/8.8	2201	2735	2260			 	
2	2/6.3	219 7	2213	2224			 	
2 3 4	196.7	212 7	12.6	2072			-	+
4	2271	10 A .		2295				+
5	ZZZ.	2.11	11/22	2241				-
6	191.1		^ !	100X	·			
7	2264	2000	37	2278			1	
8	225.4	200 J	3.7.7	228.0			 	
9	LOLL		- N 2	2072				
10	193.5	137.	ا رایه اسالا	1988			 	
_11	22/2	?	a sign of .	1184			 	<u> </u>
IA	232.2		7	2362				
2.A	1303	4	نتياء عا	14.25 Q			<u> </u>	
3A	241.0	200	<i>P</i> 3	275.9			1	
4A	239.7	And St.	· / / / /	2418				
5A	235.5		. 2	210.3				
6A	23/2	21 5	أحسين المعالات	2354				
7A_	1299	and a second	e de la companya de l	37.6				1
8A	214.4	Lie ,	423.23.	1200				
9A	2/8.3	Ander		2267			1	ļ
IOA	221.1							
11A		1071	1.1					
12A	185.7	1221	193/	193.				
\mb	893	99.7	195	90.6				-
Q	, 			220.2				
ρ				231.9		ORIGINAL	PAGE IS	
<u>'</u>		**************************************				OF POOR	QUALITY	
								
								··········
								
1	i	Maria 2 1 Maria 4						
•			•	······································				· · · · · · · · · · · · · · · · · · ·

TABLE VIII


the rear Collector Stagnation Test - 60°

Time	8:44	9:14	9:34	10:4	10:34	11:0	11:42	11:47	
IO									
	86.6		2003	Y		20/2	205.0		<u></u>
2	88.5	198.9	** * - 	2024		198.5		199.7	
3	84.8	,	1845				,	1857	
4	86.8	i .	1327	2075		204.4		205.0	·
5	88.6	162.4		200.3		196.5		197.4	
_ 6	83.0	I	1815					1819	
7	83.0	1455	208.0	211.6	207.4	208.2	2//3	208.6	
8	83.0	, ·		210.3			2/0.2	207.3	
9	83.2		169.6		187.7	188.8	192.6	1894	
10	83.2		1872	189.5		1877		188.2	
	83.0		2071					208.7	
IA	85.8			214.2				2/2.4	
2A	84.4	24.		2/1.0			214.7		
3A	87.2		224	223.7			223.4		
4A	87.4			225.9		,			
5A	87.5								
6A	86.6		,	212.5		,		210.7	
7A	87.5			2/3.7			2/4.3	2/1.9	
8A	87.5			2015	196.7	1	201.6	1988	
9A	88.8	17:		2021	197.7	1986	201.9	1998	
10A	83.1		22.5	1	206.1	204.2			
I/A	83.2	111.00		178.5	177.0	183.0	180.3	1763	
12A	82.1		176.7	- Prince Company	176.5		18/2	178.9	
Amb	82.4	95.0	35.2	86.3		87.1	88.2	88.5	
D		naan ar 🤛 tee (18)	- '					237.4	
To		i	· · · · · · · · · · · · · · · · · · ·					209.2	
									
	-								
3	* End	of the	- y						
* 7	* 100	F 1,217	المستدرية المام. المدارية المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام	avea	1)61				
	4.13-6-6	ا الله المستحدد	Maria (14)		F-71				·······
			. . .						
									
		·- -	•						
·									

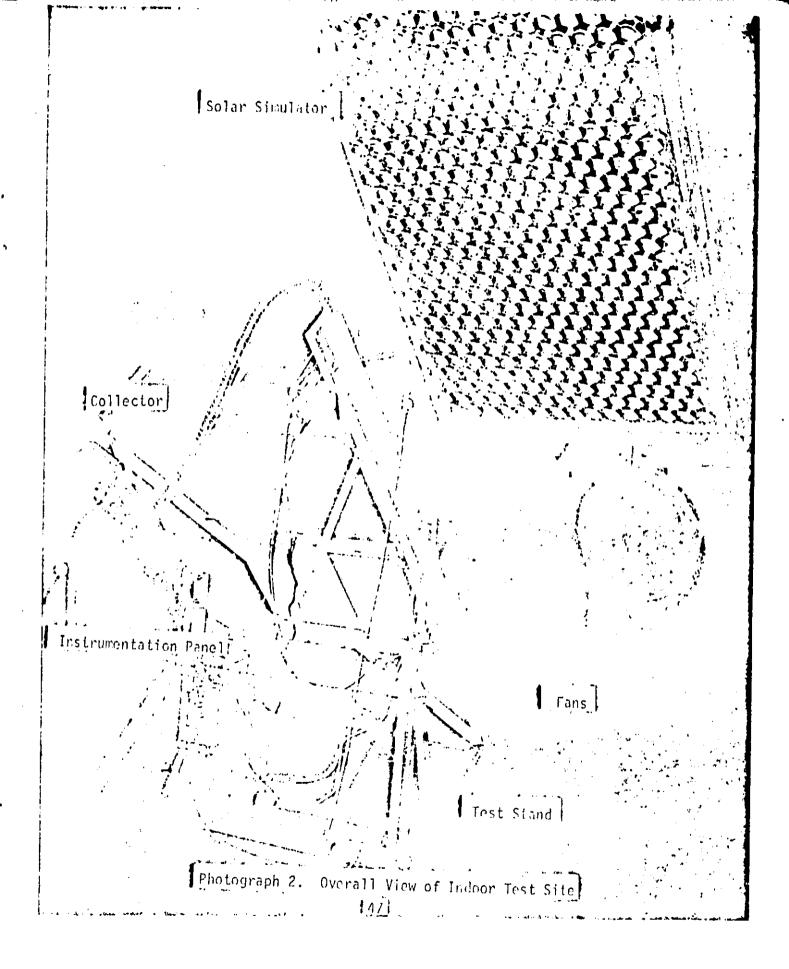

CALCULATION OR DATA SHEET

TABLE VIII (Continued)

Time	12:17	12:47	13:17	/3:30	13:43	14:14	14:44	15:22	15:28
	2.18.6	2220	224.6	225.2	185.6	2193	228.8	23/2	2328
2	2/6.1	222.0	215.9	225.7	185.5	2/5.0	23/9	23/3	231.6
3	203.2	210.6	211.7	2/1./	183.2	2032	214.0	2/80	220.3
4	223.1	2227	170	2291	1820		231.7	235.3	I
5	218.0	ا من الله الله	1.2.3	2222	181.2	2/23	224.9	227.4	228.8
6	195.0	1	2027		143.9	201.6	210.6	2/4.6	217.0
7	224.7	2737	-11	2244	141.4	2245	228.3	229.5	232.4
8	223.7	š .	1125			2233	227.6	228.9	231.6
9	205.6	2035	5091	211.5	143.8	206.7	215.3	2173	2196
10	203.6	2.07.5	1.2.2	210.4	143.2	205.8	2/2.5	216.1	2/8.9
11	224.6	13.	- Till	228.6	145.5	223.2	2284	2326	234.0
/A	2275	73.0	1. 32	232.2	185.6	226.2	233.4	237.2	238.7
2A_	226.8	25 8		231.4	188.5	225.8	234.0	236.4	2379
3A	2381	A. Carl	A 1 / m	243.9	185.8	225.4	240.3	248.5	250.0
4A	238.8	List.	202		1891	236.4	244.8	249.0	250.7
5A	2.36.7	2100	2407	244.8	190.4	2359	243.1	246.2	248.3
6A	227.5	2712		2.33.8	189.9	226.9	235.5	2392	240.4
7A	229.7	A STATE OF		237.4	1901	2194	239.6	243.0	243.9
8A	215.7	8220	J. J. S.	223.9	187.9	216.4	227./	2299	23/5
9A	216.2	A. 6		225.9	1889	216.1	230.2	231.6	
10A	2194			216.0	141.8	220.6	216.9	222.7	2/99
I/A_	2013	100	2017	2092	141.5	196.4		216.6	2/83
12A	1914	1932	2005		166.7	194.6		2078	2/02
Amb	88.9	296	900	30.7	90.4	90.9	92.3	926	
Q_	! 	 	}	0.					283.6
To									234.8
'	<u> </u>		<u></u>						
	***		 -	 					
		Dimul	in the C	ontrol	-tailu	e			
	**	iest!	្រះខ្លួនយោ	e			ORIGINAL PAGE IS		
	*	End		-			OF P	OOR QUA	LITY
	! 			Ĺ. <u>.</u>					
		,	;		<u></u>	<u> </u>		N	ASA-MSFC

ORIGINAL PAGE IS OF POOR QUALITY

