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Introduction

One of the outstanding problems of geophysics is the global

determination of the oceanic tide. The coastal tide can be markedly

different from the oceanic tide due to the influence of bottom topo-

graphy (Redfield, 1958). Many measurements exist of the coastal tide,

but few are known in the deep :ea. If a radar altimeter on a satellite

could adequately detucL deep-sea tides (NASA, 1969), the need for

sea-floor pressure gages could be significantly reduced. Zetler and

Maul (1971) showed that it was possible to retrieve the most important

tidal amplitudes and ptsBes , from a simulated satellite altimeter in

the press= of noise which was larger than the signal. A practical

test of this concept was performed using the GEOS-3 altimeter data and is

reported herein.

Geometry of the measurements is shown in Figure 1. Height of the

spacecraft above the ellipsoid and the corrected altitude measurement

are provided by the NASA Wallops Flight Center; details of the tracking

techniques and microwave propagation corrections are given in Leitao,

et al. (1975). For the purposes of this report, the oceanic tide will

be considered the temporal variability of the sea-surface height at

a particular location in certain tidal frequencies (see again Fig. 1).

Perturbations in the sea-surface height due to wind waves, swell,

quasi-geostrophic currents and eddies, and to steric changes are con-

sidered along with tracking and propagation inaccuracies, to be noise.

Test site for this experiment is the GEOS-3 calibration area

off the east coast of the United States. Surface truth for the



SATELLITE PATH
ALTITUDE MEASUREMENT

(CORRECTED)

SEA SURFACE
HEi	 SEA SURFACE

ELLIPSOID
ELLIPSOID

CENTER OF MASS

Figure 1. Skematic of the measurement geometry. Height of the space-
craft above the reference ellipsoid is determined from tracking
data; attitude measurement is from the corrected radar aZti-
meter data. Note that the ellipsoid, the geoid, and the sea-
surface vary independently of each other.
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observation of oceanic tides does not require concurrent measurements if

the amplitude and phase of the tidal constituents are well known. For

the GEOS-3 calibration area, Mofjeld (1975) developed an empirical tidal

prediction model; development of that model was part of this contract.

Mofjeld ' s model, when compared with a deep-sea tide gage within the GEOS-3

calibration area, had a standard deviation of ± 3 cm. The amplitude of

the tide in this area is approximately 60 cm. Signal to noise ratio due

to inaccuracies in the model is 20 : 1, which is adequate for this analysis.

To analyze altimeter data for tides, the calibration area was

divided into loxlo squares of latitude and longitude. Referring again

to Figure 1, consider a 10x10 square centered on the vertical line

connecting to the center of mass. An altimeter measurement of the sea

surface taken at another point along the curve of the ellipsoid within

the loxlo square will be subject to a difference due to the combination

of the slope of the geoid and the slope of the tidal wave. It is desired

to relate each measurement within the loxlo square to the center; this

can most simply be accomplished by neglecting geoid and tidal effects,

if they are small enough.

I
Mofjeld's (1975) model shows that for an area even as large as

50x5°, the error due to assuming a uniform areal rise and fall is less

than f 5 cm in the GEOS-3 calibration zone. Marsh and Vincent's (1974)

gravimetric geoid shows a broad minimunin the vicinity of 30 0N, 70%

(Fig. 2); geoidal variance is about ± 1 m in a 5 0x5° square here, and

tliis variance is within the noise range that Zetler and Maul (1971)

r^
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Figure 2. NASA's Goddard Space Flight Center detailed gravimeter geoid
based on the work of Marsh and Vincent (4974). Center of the
analysis region used herein is marked by a rectangle	 near
29.50N, 70.SOW (289.50E).
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	 successfully retrieved the tides, Bottom topography (Bush, 1976) is	 a

quite uniform in this region (known as the Hatteras Abyssal Plain),

which supports Marsh and Vincent's calculations. Finally, a deep-sea

tide gage (Zetler, at al., 1975) was located at 29008% 69045 1 W, and

the amplitudes and phases of the tidal constituents are well known.

Based on these facts, the 5 0x5° square centered on 29.50N, 70. 5c W was

chosen for the analysis, and to first order, it is assumed that the

tides and geoid are uniform.

-5-
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Data Management and Processing

Initially GEOS-C data were received in one of two formats: the

7-track binary packed decimal , and the 7-track card image BCD. These

formats existed until January, 1977 when the binary 7-rack format

was replaced by the binary 9-track format. The 7-track BCD formatted

tape was eliminated. Seventy-one (71) 9-track tapes were received.

The final mailing of 20 tapes was received in late August, 1977.

Nine more tapes were received on 29 September, 1977. These had been

sent to an incorrect address and were forwarded by the recipient.

These 71 tapes were difficult to read and necessitated the option

that parity and frame count errors be ignored on reading. On reading

a record , the format indicator was unpacked to determine the data rate.

This determined which number was a valid altimeter status word for

that record. All status words were then compared to this standard

and for all data rates each sample had to be valid in order for that

record to be acceptable.

The latitude and longitude were then unpacked and, if in the

calibration area, were accepted. The various parameters were then

unpacked. All these data were arranged chronologically and ready

for analysis.

The summary report computer printout distributed by Wallops Flight

Center indicates that 357 days of data were acquired and distributed.

These data varied from one to ten orbit segments per day; the elapsed

time between the first and last data tape is IS months. There are
}

then no data for one third of the time these tapes cover. The elapsed



time in that portion of the calibration area represented by the 50X50

shaded box (Fig. 3), is 498 days. There are 97 days for which data are

available in this area and a total of 148 separate data points within

the 97 days. These points are scattered throughout the 5
0
x5o area.

Both high and low intensity mode data were used in this study in

order to have adequate samples. Whenever a )ass crossed any 10x1°

box, all a)timeter values in that pass were averaged, and that single

averaged value was considered a measurement of the sea-surface height

(see Fig. 1). Each average includes an error due to variations in

the tides and the geoid across each 10x1° box. Maximum range of the

geoid in any 10x10 box in the 50x50 area (Fig. 3) is 1 meter, the average

value being approximately 0.2 meters. In summary, the error introduced

by averaging a pass across a 10x10 box (tidal and geoid), is no more

than t0.5 m, and for the most part is t 0.15 m.

-7-
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Data Analysis

Analysis of the GEOS-3 altimeter data for ocean tides was per-

formed using two independent methods, both of which are least squares

techniques. The methods of 2etler at al. (1965) have been applied

to a simulation of this problem Meticr and Maul, 1971) and require

no further verification. Another technique derived by Vanicek (1971)

is also applied, but since it is not well known to the oceanographic

community, it was tested with simulated tidal data.

Consider a time series of the form

H(t) - Ho+ E A cos (wit-0i )	 ( 1)

where the height (17) of the tide at time (t), is the sum of the mean

value (Ho) plus a series (i) of cosine terms with amplitude (A),

frequency (w), and phase (m). From well known trignometric identities

equation (1) may be written

H(t) - He + E C COS (wit) + E S i sin (wit)	 (2)

i i	i

where A2 = C2 + S 2 and 0 - tan-, (Sm .

A time series using equation (1) was generated for the M 21 S21 N2,

01 , and K1 tides, and C, S, and 0 given in equation (2),and the variance

spectra were calculated by vanicek's (1971) method using the program

of Wells and Vanicek (1977), in order to simulate randomly acquired

-9-
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data, a random number generator ( R) on the interval (0,1) was used

to degrade the data generated by equation ( 1) progressively until

1001, 90%, 80%...10% ( R - 1, 0.9, 0.8,...,0.1) of the original data

remained. Results of those calculations are given in Table 1.

Listed at the top of Table 1 are the original input values for

the five constituents and the mean value. Record length is 2160

hours 0 months), and m - 0 for all inputs. The least squares analysis

is within a few tenths of a percent of the input data when 100% of the

original data are used (row 1.0). Even when only 10 % of the original

data are input (row 0.1 ), the maximum error in amplitude is 0.6% and

the maximum error in phase is 3 0 . Thus, for a geophysical process

where the frequency is well known, randomly spaceu' gappy uata sampled

without regard to the Nyquist theoren, car, be successfully analyzed.

If the frequencies are unknown, Vanicek's ( 1971) technique is

still useful. Figv..>+^	 is a variance spectrum for the se ii -diurnal

species input as before (Table 1). The ordinate in Figure 4 is the

percentage variance, defined as

A2i
EA2
i i

(3)

and the abscissa is the period. It is clear that the spectrum using

100% of the data (dotted line) and the spectrum computed from 10%

of the data ( solid line) are quite similar. There are no errors in

period, and the maximum error in percentage variance is 5% which occurs

-10-	 ORIGINAL PAGE IS
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in the M2 constituent. Thus, if the signal to noise is low (there being

no noise in this example), it appears that an unknown period can be

detected, and then once detected, its amplitude and phase calculated.

The analysis techniques tested above were applied to the GEOS-3

data in the calibration zone. It should be noted that the

calibration zone is typical of oceanic regions, and imposes a reasonable

test. The number of observations would be increased by using a higher

latitude site; the signal to noise would also be impaired by choosing

an area with large tidal range. The intent herein is to question

the applicability of GEOS-3 data for determining the global tide,

rather than a proof of concept.

-13-
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Results

Table 2 summarizes the calculations using the methods of Vanicek

(1971) and Zetler at al. (1965)1 the known tidal ".onstituents from

Zetler at al. (1975) are listed at the bottom of the table. Tabulated

are the amplitudes in meters, and the phases in degrees (relative to

0000 GMT, 1 March , 1975). The number of samples in each area size is

based on 18 months of data. The average number of samples is 1.5 per

month in each 1 x10 square (Zetler and Maul (1971) used more than 9
samples per month in their analysis which was based on different orbital

parameters). Sparcity of samples undoubtedly contributes to the poor

agreement between predicted values and observed in the GEOS-C data.

In most cases (Table 2) the GEOS-C derived amplitude is an order of

magnitude more than the values reported by Zetler, at al. (1975). The

phase calculations are equally uncorrelated. Comparisons of the two

analysis methods (see 5°x5 0 rows) show some consistency in the calculation

of amplitude (within 93i), but the phases are poorly related.

The correlation is graphically displayed in Figure 5. Observed

sea-level heights from GEOS-3 are plotted along the ordinate, and the

values predicted due to ocean tides by Mofjeld's (1975) model are along

the abscissa. The range of the tide (signal) is at best an order of

magnitude less than the measurement variability (signal + noise). Thus,

the tidal signal to noise ratio is approximately 0.1, which is seven

times smaller than assumed by Zetler and Maul (1971) in their successful

theoretical analysis. Table 3 summarizes the



Table 2

Area Size No. Samples S2 M2 N2 K1 01

Ampl./Phase

IC xl° 26 1.92/75.9 1.55/32.2 1.59/27.6 2.02/81.5 1.25/36.9

n

.mom. 	 2°x2° 58 0.46/12.1 1.52/294.4 0.37/327.6 2.05/75.9 1.0/42.4

3°x3° 92 0.98/69.3 1.67/347.1 0.739/3.2 2.11/85.8 .96/337.2

40x4° 119 1.24/42.5 1.83/1.7 0.577/29.8 2.16/280.0 .476/338.8

5°x5° 148 .81/20.6 1.35/315.5 0.75/18.8 1.86/303.4 .91/86.4

Area Size No. Samples S2 M2 N2 K1 01

Ampl./Phase

1°x1° 26 .49/166.8 1.21/330.2 1.39/133.7 1.98/99.5 1.43/132.4

2°x2° 58 .48/354.6 1.49/279.1 .39/209.3 2.25/94.7 .96/179.6

4) m
3°x3° 92 1.01/309.6 1.63/228.4 .71/310.0 2.11/89.0 .95/249.0

.a
40x4° 119 1.20/335.4 1.85/215.4 .37/277.5 2.13/78.1 .49/251.1

50x50 148 .78/337.8 1.31/231.8 .62/307.8 2.01/70.2 .96/271.6

S2	M2	 N2	 K1	 01

Ampl./Phase
u..

0.071/30.8 0.345/0.6 	 0.080/339.8 0.077/194.7 0.061/197.6

Vv
N
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Figure 5. Comparison of tidal height c-beerved by the GEOS-3 altimeter
versus computed tides (Mofjeld, 1975) in the 5 0x5o calibration
area. Observed values are corrected for atmospheric effects but
not for spatial variation in the geoid.
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variance of sea-level height above the ellipsoid from the GEOS-3 altimeter

in the Sox5o square shaded in Figure 3. Mean height of sea-level in

this Sox5o square is 50.7 (31.3) meters below the ellipsoid. The low

standard deviation is in agreement with the Marsh and Vincent (1974)

gravimeter geoid (cf. Fig. 2), and confirms that geoid variability does

not significantly contribute to the inability of the GEOS-3 data to

discriminate the oceanic tide.

However, to further insure that geoid variability is not important,

the calculations summarized in Table 2 were repeated after subtracting

the Marsh and Vincent (1974) geoid. That is, the Vanicek (1971) and

2etler et al. (1965) techniques were applied to the temporal term

H(t) = hss-h,9	 (4)

where hss is the GEOS-3 determined height of the sea-surface above

the ellipsoid, and hg is the height of the Marsh and Vincent 5'x5'

geoid. The results of those calculations were essentially identical

to the results summarized above, leading to the conclusion that the

GEOS-3 data, in the form provided, is not useful for observing ocean

tides.

As a final test of using GEOS-3 altimeter data to study temporal

variability of the sea-surface, the percentage variance spectrum (cf.

Equation 3) was computed for the 50x5o calibration area. Tidal frequencies

have been removed in this application of Vanicek's (1971) least squares

technique. Because of the signal to noise analysis above, it is difficult

to have a great deal of confidence in this spectrum. However, some

J

-17-



Table 3 

Mean and standard deviation of the GEOS-3 height of sea-level above 
ths ellipsoid in the SOxSo calibration area 

lOxlo Nwnber Mean 
Box of Points (Meters) 

10 24 -4B.6 
11 24 -50.9 
12 22 -51.1 
13 2B -49.6 
14 34 -49.7 

17 36 -50.6 
1B 33 -51.3 
19 26 -52.0 
20 26 -50.9 
21 31 -51.2 

27 27 -51.1 
2B 35 -51.3 
29 33 -51.5 
30 2B -Sl.B 
31 24 -52.4 

3B 30 -51.2 
39 32 -51. 7 
40 35 -51.5 
41 32 -51.3 
42 2B -50.7 

52 31 -51.4 
53 31 -51.6 
54 29 -50.3 
55 31 -47.6 
56 34 -47.2 

-16-

(see Fig. 

Std Dev 
(Meters) 

±3.9 
±6.B 
±7.1 
±7.1 
±2.B 

±S.9 
±6.l 
±3.3 
±3.3 
±3.7 

±2.7 
±3.2 
±3.6 
±3.B 
±3.S 

±3.9 
±3.l 
±3.B 
±4.0 
1:4.7 

±4.2 
±4.3 
±3.5 
±7.2 
±9.6 

3) • 
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features are common to a similar analysis of Gulf Stream meanders made

C,'am lnfrered measurements by Maul, deWitt, Yanaway, and Baig (in pre-

paration). The numerous spectral peaks with a period of a fortnight or

so and lees are commooky reported in the roasaographic literature.

At 38 days, a strong peak (Fig. 6) is evident, which is probably due

to the 37 day cycle in the GEOS-3 orbit. The most intriguing peak,

however, is at 56 days. Hansen (1970) noted that the average periods of

Gulf Stream meanders is about 1+ months, which is close to 56 days, and

Maul et al. noted this too in their spectra of meanders. This raises

the interesting possibility that sea-level in the Sargasso Sea pumps up-

and-down in response to the meanders, as well as to other forcing.

Conclusions

The GEOS-3 oltimetcr data as processed by the NASA Wallops Flight

Center were analyzed for deep-sea tides in the calibration area of the

western North Atlantic ocean. It was found that the signal to-noise

ratio of the data was about 0.1, and that only one observation every

four days was available in a S ox5o latitude s longitude area for the 18

months analyzed. Using two independent methods, the tides could not be

resolved. Tidal variability will not detract from geoid determination

if data averaging is used, however, other error sources such as orbit

determination, altimeter correction, or mean (steric) sea level will

influence the accuracy of the marine geoid.

The consistency of the calculated tidal amplitudes (Table 2)

raises the question of tidal frequency errors in the tracking of GEOS-3.

If there are undetectable errors of these frequencies in the data,

it may never be possible to do deep-sea tide determinations with

-19-
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future vehicles such as SEASAT-A. The average of the standard deviations 	 . 1

given in Table 3 is ±0.5 m of which can be attributed to variations

of the geoid and oceans tides. SEASAT-A's radial orbit determination

error is specified as ±2 ml unless that can be improved upon by a

factor of at least 2, it does not seem possible to extract tides from

that data either, unless a refined approach is taken.

Refinement of the approach used herein forms the basis for suggestions

for further research. From conversations held at the GEOS-3 Principal

Investigator's Meeting (November, 1977) it appears that better orbit

determinations would give the most marked improvement in the signal

to noise ratio. Thus, a new analysis of the spectrum of variability

(cf. Fig. 6) would identify known periods, such as the 37 day cycle,

which could be filtered out. If filtering etc. increases the signal

to noise by half an order of magnitude, it is reasonable to expect

that the ocean tides would be observed. Success does not seem possible

with these GEOS-3 data, but with improvements in the orbit determina-

tions, SEASAT-A is still a viable contender.

_21_
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