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SECTION 1
 

BACKGROUND
 

In 1970, AFGL contracted DBA Systems to perform a study
 

of various reduction approaches to satellite altimetric measurements
 

of the oceanic geoid surface. This study was initiated in view of
 

the then upcoming launch of the GEOS-3 Satellite which was designed
 

to carry a radar altimeter. The primary objective was to derive
 

alternative reduction approaches that may remove the necessity for
 

extremely accurate reference orbits of GEOS-3 required by convent

ional approaches.
 

Conventional approaches to the reduction of satellite
 

altimeter data utilize long arc orbit integration that requires
 

extensive tracking from ground based trackers to maintain extremely
 

accurate orbits. A widely held premise was that inorder to exploit the
 

satellite altimeter of I meter accuracy for geod improvement, it was
 

necessary that the radial component of satellite position be known 

to better then + 1 meter. An example is extracted from reference 11 

that states "Because the orbit will be used in'combinationwith 

altimeter measurements in the data reduction process leading to geoid
 

improvement, it is necessary that the accuracy in S/C height as cal

culated from the orbit be known to better than + 1 meter". Problems 

arose that made the above requirement very difficult. Among these 

problems are (a)unresoZved biases in a given tracker couZd induce 



localized systematic errors in the computed orbit which could be 

transferred to the local geoid, (b)unmodeled perturbations caused
 

by drag radiation pressure, (c)errors in long arc orbits result
 

from integrated effects of errors in the adopted geopotential function
 

and (d)most important is the extensive effort and cost of global 

tracking networks and computer processing required to provide such 

accurate reference orbits. 

In view of the above difficulties, our investigation was
 

directed toward alternative approaches that would fully exploit the
 

1 meter altimeter accuracy for geoid determination with less stringent
 

requirements for orbital accuracies. This led to the investigation
 

of the feasibility of utilizing the short arc technology that AFGL/
 

DBA had developed in previous satellite geodesy programs. Such an
 

approach was envisioned to involve the simultaneous recovery of
 

state vectors defining as many as several thousand short arcs (sub

ject to weak or prior constraints) along with the mathematical model
 

used to define the geoid surface. The estimated orbit accuracy
 

requirement was + 100 meters, which is easily attainable from
 

routine global tracking.
 

The short arc approach is defined as orbital arcs no
 

greater than one fourth revolution. It was shown in Brown (196?)
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that accuracies of integration of better than 1 meter can be attained
 

in short arc reductions provided that
 

a) spherical harmonies at least through 

(n,m) = (4,4) are exercised in the
 

integration
 

and
 

b) all six orbital parameters 

(Xo, YO, Zo, o, io,zo)
 

at mid-arc are free to adoust to 

best accommodate the actual orbit. 
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SECTION 2
 

INTRODUCTION OF THE SHORT ARC APPLICATION
 
TO REGIONAL GEOID REDUCTIONS
 

The initial investigation established that the short arc
 

approach was feasible and offered a flexible means of utilizing
 

altimeter data for determining the geoid surface for a wide range
 

of applications. The initial consideration of the short arc method
 

employed spherical harmonics to mathematically define the geoid
 

surface. This development is well suited to global representations
 

of the geoid undulations and has been implemented into a computer
 

program (SAGG) for the combination of Satellite Altimetry and
 

Ground Gravity reduction. However, it was anticipated that the
 

early data collection phase of the GEOS-3 program would concentrate
 

on altimeter measurements over the North Atlantic calibration area.
 

Additionally, it was felt that investigations of fine detail over
 

limited localized regions would require an extravagant spherical
 

harmonic expression. Therefore, alternative means for analytical
 

representation of the geoid surface were explored. The most
 

suitable model for the proposed application was a derivation of the
 

spheroidal multiquadric analysis developed by Hardy (1972). In
 

Hardy's exercise of the multiquadric analysis, the nodes (oefficient
 

conputafton point) correspond to observed data points. In our deriva

tion, the nodes do not necessarily correspond to data points, are
 

relatively limited in number and, at the outset, are evenly distributed.
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The primary objective of this project was the short arc
 

determination of the North Atlantic geoid, utilizing the spheroidal
 

multiquadric analysis. This led to the development of the computer 

program SARRA (Short Arc Reduction of Radar AZtimetry). It was 

envisioned that the altimeter observation would cover the entire 

North Atlantic Ocean at spacings of approximately a 10 by 10 grid
 

with an initial selection of nodal points at 50 by 50 grid as
 

illustrated by Figure 1.
 

As data became available, itwas evident that there was
 

a high concentration of the observations over the calibration area with
 

sparse measurements over the northeastern portion of the North
 

Atlantic Ocean and almost none in the southeastern portion. The
 

results of the reduction indicated a close detailed agreement of
 

the dense data area with other geoid models (Marsh, Vincent, Strange),
 

but the geoid in the sparse areas (northeastern) seemed tilted toward
 

the more dense areas. This geoid behavior caused concern with the use of
 

the multiquadric analysis when the data is non-uniform and sparse in cer

tain areas. Consequently, other possible surface models were investigated.
 

Upon suggestions by Dr. Donald Eckhart (AFGL),* and extensive
 

theoretical investigation by Dr. George Blaha (DBA)**, the use of the
 

covariance function was introduced as a second option to the computer
 

program SARRA. The two options now offer flexibility depending on
 

the 	characteristics of the available data. Both options are demonstrated
 

* 	 Air Force Geophysics Laboratory, LGHanscom Air Force Base, Ma.
 
Personal communication.
 

* DBA Systems, Inc., Melbourne, FL. Personal comunication.
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.FIGURE 1. 	 Illustrating ground tracks of every fifth pass of
 
approximately 200 passes of GEOS C considered in
 
hypothetical short arc determination of fine
 
structure of North Atlantic geoid. Indicated
 
tracks generate approximate 5°x5' cells. Selected
 
nodes for initial representation of North Atlantic
 
geoid by means of spheroidal multiquadric functions
 
are located nominally at alternate corners of
 
5°X5' cells as indicated by solid dots. Initial
 
set of approximately 150 nodes is subsequently to
 
be augmented by additional nodes at locations
 
indicated by residuals from initial reductions.
 

6
 



in the results portion of this report. Details of the multiquadric
 

analysis and the covariance function models are presented in Section
 

4.1 of this report. The covariance function that is implemented into
 

SARRA refers to a chosen reference ellipsoid.
 

The advantage of the covariance function is realized
 

when data is irregularly distributed with some surface areas
 

being very sparse in measurements. The covariance function
 

implies some apriori knowledge of the geoid behavior through
 

the spherical harmonic coefficients. The spheroidal multiquadric
 

analysis is completely dependent on observation data and reproduces
 

a surface model as the best least squares fit of the observation
 

data. The advantage of using the multiquadric analysis model is
 

realized when the area to be processed is covered with an adequately
 

dense set of altimeter measurements. One unique feature of the multi

quadric analysis is that there is essentially no limit on the size
 

of the area to be processed and, provided enough data, one can
 

obtain as much detail as the data provides by the proper selection
 

of nodal points.
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SECTION 3
 

INVESTIGATIVE EXPERIMENTS CONDUCTED TO DETERMINE
 
THE FEASIBILITY OF THE SHORT ARC APPROACH
 

In the development of the computer program SARRA, a series
 

of investigations were conducted for the purposes of determining
 

a) the basic feasibility of the applicationof 
the short arc technology to geoid recovery 
from satellite altimetry, 

b) the most suitable math models for represent
ing the geoid surface in regard to the in
tended application, 

c) testing the overall concept with simulation 
for its ultimate accuracy potential, 

d) formulation of the'overall concept into a 
reduction program capable of routinely 
processing the observation data when 
CEOS-3 became operational 

and 

e). develop auxiliary programs for the pre and 
post processing required in an operational 
environment. 

The key steps in this investigation are summarized in this section.
 

However, the full detail may be found in references 1 and 11.
 

It was surmised in Brown (1973) that the spheroidal
 

multiquadratic model would be well suited to detailed representa

tion of the geoidal surface over such local regions as the North
 

Atlantic (where intensive testing of OEOS-C was to be conducted).
 



3.1 

In such applications, the model has the virtue of relative simplicity
 

and is especially attractive in the flexibility afforded by the pro

cess referred to as nodal densification. This is an adaptive process
 

wherein the original set of regularly spaced nodes (defining the
 

multiquadric function) are supplemented locally as needed to improve
 

the fit over irregular areas inadequately modeled at the outset.
 

Despite its theoretical attractiveness, the spheroidal
 

multiquadric model had to be implemented and tested. 
The next section
 

outlines the measures taken in evaluating the model under a well
 

controlled experiment with data typical of geoid features.
 

Preliminary Exercises of the Spheroidal Multiquadric Model
 

In order to ascertain the basic adequacy of the spheroidal'
 

multiquadric model, two preliminary numerical tests were performed.
 

The first test was to determine if the model was inherently capable
 

of providing a reasonably good fit to the geoid; the second was to
 

test the model as incorporated in SARRA with extensive simulations.
 

These simulations will be presented in the next section(Section 3.2).
 

The first test used as a data base, the gravimetric geoid
 

of a portion of the North Atlantic produced by Marsh, Strange and
 

Vincent (1972). A sample of about 250 spot elevations of the
 

geoid were extracted from the contour map of this geoid. These
 

geoidal heights were treated as if they were direct observations.
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The multiquadric model was then fitted by least squares to this data
 

set using an initial set of 112 nodes spaced at five degree intervals
 

(see Figure 2). The process of nodal densification was invoked in
 

three iterations of the adjustment to introduce fresh nodes in re

gions leading initially to residuals in excess of two meters. This
 

led ultimately to the incorporation of 22 additional nodes, several
 

of which were in the region of the severe undulation over the Puerto
 

Rico Trench. The final rms error of the fit of the multiquadric
 

model turned out to be an altogether acceptable 0.75 m (the precision
 

of the digitization of the contour map was deemed to be not much
 

better than 0.5 m). This test established two things:
 

(a) 	 that the spheroidal multiquadraticfunction 
could provide an accurate representationof 
regional undulations of the geoid, 

and
 

(b) that the process of nodal densification 
provides a valid, effective and efficient
 
means for extending the model as needed
 
for local improvement of fit. 

Figure 3 is the contour produced by the reduction and Figure 4 

represents contour of closeness of fit. 

With the fundamental soundness of the spheroidal multi

quadric model firmly established as a result of the first preliminary
 

test, steps were taken to incorporate the model into SARRA. After
 

the revised program had been checked out on DBA's Xerox Sigma 5
 

computer, a small scale simulation was performed to provide a
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3.2 

tentative indication of accuracies to be expected in applying the model to
 

the determination of geoidal undulations over the North Atlantic.
 

For this purpose, a set of 40 passes was generated, half of which
 

were ascending (SE-NW) and half of which were descending (NE-SW).
 

Nodes (atotal of 71) were placed at alternate points on a five degree
 

grid and a low sampling rate of one point ever 70 seconds was adopted
 

(this corresponds to a spacing of about five degrees along each arc).
 

A priori one sigma constraints of 5m were exercised on the state vectors
 

for each of the 40 arcs and a standard deviation of 1m was assigned to
 

the altimetry. Under these assumptions, the error propagation performed
 

by SARRA indicated that rms errors in the recovered geoid could be
 

expected to range from a low of 0.67 in the interior of the region,
 

to a high of 1.93m near the boundary. This result is not considered
 

to be particularly realistic because of the obviously inadequate num

ber of nodes exercised in the model. It does, on the other hand,
 

provide some indication of the potential power of the method, parti

cularly when consideration isgiven to the very low sampling rate
 

that was adopted.
 

Computer Simulation of the Recovery of the Geoid Undulation
 
'Over the North Atlantic
 

The successful outcome of the preliminary test made it logical
 

to proceed with large scale simulations that would be more nearly repre

sentati've of what could be expected from the GEOS-3 tests to be conducted
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over the North Atlantic. For this purpose, the revised version of
 

SARRA was converted to run on the CDC-6600 computer at AFGL. The
 

simulations performed, consisted of two runs based on sets of 320
 

passes. In all simulations, the nodes were spaced at regular five
 

degree intervals, the total number being 126. In the case of the
 

200-pass reductions, the altimeter observations were assumed to be
 

spaced at nominal one degree intervals along each arc (this corres

ponds to a time interval of 14 seconds). In the case of the 320

pass reduction, the chosenspacing corresponds to 0.625 degrees, or
 

a time interval of 8.5 seconds. Schematic layouts of the ground
 

tracks for the two sets of simulations are presented in Figures 5
 

and 6. Other pertinent data concerning the distinguishing assump

tions underlying the various simulations are indicated in Table 1.
 

In Cases 3, 4, 5 and 6, the sigma adopted for altimetry,
 

namely 0.37m,, is representative of what would be expected from a
 

data compaction process based on the following considerations:
 

(a) an original sampling, rate of two per second, 

(b) an original sigma of 1.0m, and
 

(c) use of a third order midpoint, cubic
 
polynomial filter employing 17 points.
 

In Cases 1 and 2, no data compaction scheme was considered to have
 

been exercised; accordingly, here the expected sigma of the raw
 

altimeter observations was exercised at the aforementioned data rate
 

of one point every 14 seconds.
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FIGURE 6. Illustration of the Simulation of 320 Satellite Passes That Are Approximately
 
Over the North Atlantic Oceanic Region.
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The output of primary interest from the simulations consists
 

of the.propagation of the specified errors in the input into the com

puted geoidal heights. Such error propagations were,performed for
 

geoidal points corresponding to the nadirs of the data points. In
 

due course, such results will be employed to generate contour maps
 

defining the variation in the error of the recovered geoid. In this
 

section, consideration is limited to the results indicated in
 

Table 2; here, the high, low and average values of the standard
 

deviations of the recovered geoid are listed for each of the simula

tions.
 

TABLE 1. Basic Assumptions Underlying Various Simulations
 

A PRIORI ONE SIGMA 
NUMBER ORBITAL CONSTRAINTS 

CASE OF PASSES (Position/Velocity) ALTIMETRYa(m) 
-11. 

1 200 20m/.02 m sec 1.0 
-110 

2 200 15m/.015 m sec 1.0 

3 320 .15m/.015 m sec 1 0.37
 
-l
 

4 320 15m/.015 m sec 0.37
 

5 320 5m/.005 m/sec-1 0.37
 

6 320 Im/.001 m/sec-1  0.37
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Table 2. Key Results of Simulations
 

One Sigma Sigmas of Recovered Geoi(

Number Orbital Constraints
 

Case of Passes (Position/Velocity) High Low Average
 

1 200 20m/.02 m sec I 1.52 1.34 1.42
 

2 200 15m/.015 m sec-I .96 .82 .89
 

3 320 20m/.02 m sec-I 1.03 .97 1.00
 

4 320 15m/.015 m sec-1 .54 .46 .51
 

5 320 5m/.005 m sec-1 .33 .22 .27
 

6 320 lm/.OOlm sec -I  .13 .06 .09
 

The results indicate that general accuracies comfortably
 

better than 1m (rms) are to be expected from the reduction of 320
 

passes, subject to a priori orbital constraints on the order of
 

15m (Case 4). Because orbital accuracies of considerably better
 

than 5m are a reasonable expectation for the precise reference orbits
 

ultimately to be generated, the results from Cases 5 and 6 suggest that
 

geoidal accuracies on the order of a few tenths of a meter are potent

ially attainable through the application of the Short Arc Method.
 

Attainment of such accuracies in practice will, of course, entail the
 

appropriate application of nodal densification. This, in turn, will
 

require processing of additional passes to maintain a specified level
 

of accuracy. A reasonably conservative extrapolation, in our view,
 

is that with the exercise of some 50 to 75 well-placed, additional
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3.3 

nodes (raisinq the totaZ from 1? to 200) and with the incorporation 

of perhaps an extra 100 passes (for a total of over 400), one can 

expect SARRA to produce geoidal accuracies generally better than C.5m 

when precise reference orbits are employed in the adjustment with one 

sigma a priori constraints of 5m (or better). 

Reduction of the First Available Satellite Altimetry
 

Data from Skylab
 

The first satellite altimetric data for experimental process

ing with the SARRA computer program became available from altimetric
 

observations made by Skylab (SL-2). Two passes were processed through
 

the SARRA computer program for the purpose of testing the basic data
 

flow procedures and to evaluate the adequacy of the program in reducing
 

the data. Figure 7 shows the ground track of the two passes plotted by
 

the DBA CALCOMP plotter. Pass 9 begins off the east coast of the United
 

States and extends approximately 15 to 20 degrees below the equator.
 

Pass 4 begins off the east coast and extends over Puerto Rico.
 

Mid-arc state vectors were computed from ephemeris data
 

provided by NASA for initial orbital estimates of each arc. Data
 

editing procedures were designed and performed on the observation
 

data prior to SARRA processing. These included, primarily, an
 

automatic rejection of gross error indicated by the residual altimetry
 

parameter in the SL-2 EREP format and a three-sigma criterion edit
 

after a ninth order polynomial data fit.
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The approach taken inthis experiment was to process the
 

passes through SARRA and examine the behavior of the minimized resid

uals. Since Pass Four extended over the Puerto Rico Trench vicinity,
 

the residuals were examined particularly for undulations in that
 

area. The residuals after SARRA adjustment are shown in Figure 8.
 

A sudden drop in the residuals is immediately noticed 126 seconds
 

from epoch. This section of the pass was extracted and processed
 

again with only the observation occurring over this region. The
 

residuals after adjustment are shown in Figure 9. This residual
 

profile was plotted on a figure (Figure 10) reproduced from previous
 

comparison of SL-2 versus gravimetric geoid (Vincent, Strange, Marsh).
 

The residuals of Pass Nine are presented in Figure 11.
 

The residuals show no abrupt changes that would indicate any possible
 

sharp geoid undulation. There is a gradual but smooth variation
 

throughout the pass of approximately 7.0 meters that may be due to a
 

combination of geoid undulation and sea state variations.
 

The importance of this experiment was simply to gain exper

ience with the SARRA program with real observation data and to illus

trate the sensitivity of the program in-detecting geoid undulations.
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3.4 Preliminary Reduction of GEOS-3 Altimetry Data Over
 
the North Atlantic Ocean
 

Some preliminary reductions were performed with GEOS-3
 

altimetric observations concentrated over the western portion of
 

the North Atlantic Ocean. The observational data was provided to
 

AFGL by NASA and consisted of 112 passes (Figure 12). These data
 

sets provided an opportunity to test the basic mathematical models
 

used to represent the geoid surface. The results of these reduc

tions were presented at the American Geophysical Union (AGU) fall
 

meeting held in December 1976 at San Francisco.
 

The distribution of this data set was not adequate for a
 

geoid undulation determination of the entire North Atlantic and was
 

not suitably located for the detailed examination of such fine fea

tures as the Puerto Rico Trench. However, it did provide adequate
 

data to evaluate the performance of SARRA computer program in an
 

operational environment and demonstrate the potential accuracy of
 

the approach.
 

The short arc approach to these reductions may be visualized
 

along the following lines:
 

(a) reference orbits accurate to approximateLy
 
20 meters may be obtained from routine
 
global tracking;
 

(b) the reference orbits are divided into sub
arcs, situated over oceanic regions and are 
Limited in Length to no more than a quarter 
revolution;
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(C) each sub-arc is treated as an independent orbit
 
with the epoch at mid-arc having a state vector
 
subject to a priori constraints consistent with
 
the estimated accuracy of the reference orbits; 

(d) 	 observational equations are formed from satellite 
altimetric measurements for each sub-arc for the 
mathematical model chosen to represent the oceanic 
geoid;
 

(e) the adjustment simultaneously recovers the coef
ficients of the geoid surface model and revised
 
estimates of the state vectors for all sub-arcs
 
(which are united in numbeA). 

3.4.1 Unknowns and Constraints Used in the Reductions. The SARRA
 

program is designed to determine surface coefficients as designated
 

by nodal points that lie within the boundaries of a dense selection
 

of height measurements. In addition to determining the coefficients
 

of each nodal point, the program solves the six orbital parameters
 

for each arc.
 

The orbit parameters were assumed subject to a priori
 

constraints of 20.0 meters in position and .005 m/sec in velocity.
 

The a priori standard error was assumed to be 1.0 meter for all
 

altimetric measurements.
 

During the initial preprocessing of the GEOS-3 data,
 

certain characteristics were identified for editing criteria. The
 

first editing level automatically examined altimetry measurements
 

for gross errors that occurred from data handling procedures, such
 

as tape parity errors and measurement identification problems. -The
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second editing procedure was to examine the altimeter measurements for
 

continuity and to eliminate abrupt point to point changes. The final
 

editing is based on a three-sigma criteria when compared to a polynomial
 

smoothing function.
 

3.4.2 Results. The reduction of GEOS-3 altimetric measurements
 

over the North Atlantic included data from 112 passes. The surface
 

grid formed by these passes was dense in the western portion, and very
 

sparse in the northern. It did not extend to the southeastern portion
 

of the North Atlantic. Figure 22 illustrates the surface geometry of the
 

GEOS-3 ground tracks. The figure also reflects the nodal selection
 

used for this reduction. Due to the variations in data densities
 

from one area to the other, a proper value for k (Equation 1,Section
 

3.2) had to be determined for representing the entire North Atlantic
 

grid. Itwas found to be important that the choice of 6 = ka bear
 

a balanced relationship to the typical spacing of the nodes. The
 

more closely spaced the nodes, the smaller the logical choice for S.
 

This allows the surface in the vicinity of any given data point to
 

be determined predominantly by those kernel functions of nearby nodes
 

and yet prevents any one node from exerting total dominance.
 

Figure 13 shows contours of the derived geoid undulations
 

using the multiquadric function approach. In general, the entire
 

geoid agrees favorably with the Marsh and Chang gravimetric geoid,
 

especially in the western portion of the area where the data density
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ismuch greater. The area with less data, such as the northern
 

part of this region, did not reflect the full geoid detail shown
 

by the gravimetric geoid used for this comparison. The rms of
 

the residuals of the altimetric measurements after the adjustment
 

was 1.8 meters.
 

Geoidal profiles derived from two passes of GEOS-3
 

altimeter data have been compared with the Marsh detailed gravi

metric geoid. The geoidal comparisons are shown in Figures 14
 

and 15. As can be noted in both figures, the relative shape
 

agreement for both passes is excellent.
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4.1 

SECTION 4
 

MATHEMATICAL SURFACE MODELS
 

As stated earlier, the model originally used in SARRA
 

for representing the oceanic geoid, was a derivation of the spheroidal
 

multiquadric analysis developed by Hardy (1972). This model provides
 

convenient flexibility when processing data collected over extremely
 

small surface areas with a dense set of measurement data. It is
 

independent of spherical harmonic representation of the geoid, thereby,
 

eliminating the requirement to solve for high order and degree spherical
 

harmonic coefficients. However, in the course of preliminary data
 

processing of GEOS-3 altimetric data, it became evident that the
 

observation data was very sparse in certain areas of the North Atlantic
 

Ocean. Therefore, another model, namely the covariance function by
 

Heis-kamen and Moritz was investigated and implemented into the SARRA
 

computer program to provide more flexibility when processing sparse
 

sets of data.
 

The Covariance Function
 

The detail derivation of the covariance function as applied
 

in the SARRA computer program may be found in Appendix A of this re

port. The expression for the partial derivative matrix is defined
 

here for the formation of normal equation.
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The covariance function D(p) for geoid undulations is
 

obtained by averaging the product N N1 over the unit sphere,
 

D(p) = M{NNI}; (1) 

N and N' in this expression are the geoid undulations at any two 

points separated by the symbol N indicating the average over the 

unit sphere, namely 

N {.}f.)dcr,
 

where a represents the surface of this sphere and dc is the element
 

of surface area. The covariance function may be expressed as (Heiskanen
 

and Moritz, 1967):
 

D(q) d, Pn (cos 4),
 

n=2 (2)
 

Where
 

-2 (3)
R2 n anm):m (Ac4 As-~= znn) 

the quantities dn are called "degree variances" for geoid undulation
 

and Am are the corrections to the a priori coefficients of the
 

spherical harmonic expansion of the geopotential. The parameter R
 

is the mean radius of the earth and G isthe mean gravity of the
 

earth's surface. By 4: 0, we have from (2)by substitution
 

D(O) E dn (2')
 
n=2
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4.2 

The weighted sum of covariance functions between point 

Pi and a number of selected nodal points Pi gives the undulation 

at i : = D 

where cj are the weights which must be determined and ij is the
 

spherical distance between Pi and Pj.
 

The Spheriodal Multiquadric Model
 

The expression for the geoidal model expressed in terms
 

of the spheroidal multiquadric functions is the same equation (4)
 

above. The only difference is the replacement of the covariance
 

function D(bpj) with the "kernal function" of the form
 

C.. = r.
-Lj aUIx9 - x1j + ka)' + (jY9 - Yjj + ka) + (1z, - zj1 + ka)2J (1) 

Where
 

Xgi = Xsi- H cos 4i cos Xii 


Ygi = Ysi - Hi cos i sin Xi
 

Zgi :Zs - Hi sin i
 

37
 



And
 

Hi = Altimetry measurement of the geoid point 

ri=7 Geocentric radius to the geoidal point Xgi, Ygi, Zgi
 

ka = An arbitrary fraction of the semi-major axis a
 

Xj, Y1, Z1 = arbitrarily specified nodes.
 

Xsi, Ysi, Zsi = geocentric coordinates of the ith
 
sub-satellite point
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SECTION 5
 

FORMATION AND SOLUTION OF THE NORMAL EQUATIONS
 

The observation equation for a single pass is taken from
 

equation (13) of Appendix A and written as follows:
 

I( ' r ) X 

Vi - D( ) . ., D(1j),...] 6(X ... 2)o 

dc
1
 

dc
 

X --- , + (R-r -Hk+dz ). (1) 
dx 

jz
 

where 

Vi = residual 

RL = initial estimate of the radial distance to the sub-satellite point 

di = small quantity to correct for non-geocentric direction of the 
altimetry measurement
 

dci = coefficient matrix of nodes
 

dx,.. .dz = coefficient matrix of orbit parameters
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Here the subscripts i and j refer to the tth sub-satellite
 

point and the jth node of a single pass. Later the subscript k will
 

th

be introduced to refer to the kt arc. The "kernal function",
 

D( ,j), is selected by input to be either the covariance function
 

or the multiquadric function to represent the geoid surface as
 

described above (Section 4.1, 4.2).
 

Equation (1)is written in terms of the matrix of partial
 

derivatives for the tth altimetry measurement point in the form.
 

F.
= ___ ](2)
 
Where
 

oh = standard error of the altimeter measurement
 

Bi taken from equation (1)as (3)
 

Bz = [D(Zi) D(•) . . . DC ) . D( )] 

Where
 

n = number of nodal points
 

B. __rB (4)
 

a,(X, ...z)o
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The partials with respect to the orbital parameters have
 

been refined by BZaha (1976) which introduced a faster convergence
 

in the adjustment and in most cases removed the need for iterating
 

the solution. The detailed description of the parameters in (4)
 

may be found in Appendix A. 

The discrepancy term is defined by: 

Ei = R{ - ri - Hi + di . (5) 

The normal equations for the Kth arc are written as: 

=
Nk ck (6) 

where m
 

k =' BT Bz 

T 
Ck = i BBi i 

6k = correction vector
 

and
 

m = number of altimeter measurements in the kth arc.
 

The normal equations generated by this arc may be written
 

in the matrix form
 

k ]N]k LN 
Introducing a priori orbital constraints for the kth arc
 

leads to the following system of normal equations.
 

41
 



Nk -ffk k [, (8) 

KT ~ [ k]i+ 

Where 

= the inverse of the covariance matrix of the 

a priori values of the state vector. 

the difference between the a priori values of
 

the state vector and the values currently being
 

employed as current approximations. Initially,
 

may be considered zero for the first iteration.
 

The expansion of equation (8)isnow introduced for the
 

arcs.
simultaneous reductions of all adjustable parameters for all 


N K1 N2 . . . . . . . S 
- ")
- - - - -'- - 

6I 

I 62 

I 

N + 

" 
S(w" + t) '- '2 
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in which 

NN (10) 

km= I
 

k

k=1
 

The solution of the normal equations t9) involves n unknowns
 

(one for each node) plus six for each arc. The number of arcs, s,
 

in a solution may grow to several thousand, thereby, creating a large
 

system with rank, r = n + 6s. The solution to this large system of
 

normal equations is made practical by virtue of exploiting the patterned
 

characteristics. Full details of derivation may be found inBrown (1958)
 

or in Brown, Trotter (1969). The computational steps follow.
 

Compute the auxiliaries for the kth pass
 

NT (11)
Qk = (N + ) 

(6,n) (6,6) (6,n)
 

Rk Nk Qk (12)
 

(n,n) (n,6) (6,n)
 

Sk Nft Rk (13)
 

(n,n) (n,n) (n,n)
 

:k : c - Qe tc -

ok -wk Vk
) 

k14)1) 

(n,1) (n,1) (n,6) t6,1) (6,6) (6,1) 
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As the Sk and Fmatrices are formed for each pass, they are summed
 

into the matrices S and T by
 

S S& (15)
S S
 

k=i 

and
 

S 

T Ck (16) 
k=7
 

The solution for the geoidal coefficients is computed by
 

6: S 1.
 S-1

(17)

(n,l)(ui,n)(n,l) 


The solution 6k for the adjusted corrections to the state vector
 

for the kth arc is computed by
 

6= (Nk + hk)' C4 - *w " ) - Qk 6k. (18) 

The error propagation for a given geoid point may be
 

computed by
 

= aI- (B..5'S. T) (19) 

where the Bp partial derivative matrix is computed for the corres

ponding 4, X as in equation (3). 
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SECTION 
6
 

ANALYSIS OF RESIDUALS
 

Careful pass-by pass examination of the plotted altimeter
 

residuals can be made in order to uncover any localized systematic
 

effects signifying insufficiently modelled geoid undulati-ons. This
 

is especially important to areas corresponding to known bathymetric
 

and surface features such as the Puerto Rico Trench, the Mid-Atlantic
 

Ridge, sea mounts, etc. Where indicated from analysis of residuals,
 

additional nodes can be introduced at appropriate locales. The
 

process of nodal densification for more detailed local definition
 

of the geoid will exercise supplementary observations from any
 

additional 	passes that may be available over that area.
 

Altimeter residuals will reflect not only unmodelled
 

geoid undulations, as just discussed, but also various quasi

systematic trends attributable to ocean dynamics such as tides,
 

wind stress, swells, currents, etc. With the exception of currents,
 

such phenomena are ephemeral or cyclic and thus, random over a
 

sufficiently large number of passes. Except near shore lines, their
 

amplitudes are generally less than one meter and will have only a
 

slight influence on the geoid recovery. Although the residuals
 

obtained following nodal densification contain a wealth of infor

mation, it is beyond the scope of this contract to subject the
 

residuals to such a detailed analysis.
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This section will present the procedures that may be pur

sued in facilitating the ultimate residual analysis. As thousands
 

of passes have been processed with the computer program SARRA over
 

a course'of months or even years, a very stable data base of normal
 

equations and coefficients of the geoid surface will be established.
 

As new observation data is collected (especially in regard to SEASAT A),
 

one only has to form the normals of the new passes and sum them into
 

the accumulated normals saved in the data base in order to update
 

the solution.
 

Once the geoid coefficients become sufficiently stable
 

(meaning additional measurement makes insignificant changes to the
 

geoid), we may 'treat the geoid coefficients as being perfectly
 

known and process individual passes for detail residual analysis.
 

The only adjustable parameters are the six state vector parameters
 

(X0 y, Z, X, Y, Z). This leads to a simple adjustment that could
 

be processed on a mini-computer or a hardwired microprocessor
 

requiring less than 1000 words of memory. Itcould even be envis

ioned as a real time monitoring processor with the appropriate com

munication and transmission interface,
 

The solution of the single pass may be accomplished as
 

follows:
 

the .observation equation is written as
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-(1)
 

d (R- rf)i d X + [R-r-+ d - H]. 
d (X, Y, Z, X, Yd Z
 

d 
d 

Ld 

where all parameters are identical to those described in Section 4.
 

The matrix of partial derivations of the .tth altimeter measurement
 

is
 

" -d (R - r ) 

d (X, Y, Z-, Y,Z) 
(2) 

the discrepancy term 

E. = R -r + di -Hi + ri (3) 

The geoid parameter, ri , is computed from the geoid.
 

coefficients,6, equation (18,Section 5) saved-from.the data base (previous
 

SARRA reduction) and partials, Bi , of the geoid parameters for the
 

2th measurement. The Bz matrix is computed and formed ,by the same
 

process as in Section 4.1, equation (2)or Section 4.2, equation (I),
 

depending on which model was used to represent the geoid surface in
 

the master reduction. The solution for ri is
 

r = B (4) 

(1,1) (1,n) (n,l) 
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where
 

n = 	number of nodes used in the master reduction
 

and the partials, Bi, are computed for all nodes in
 

the master solution.
 

The 	normal equations are written inmatrix form as
 

= C 	 (5) 

where
 

m 

=Z
 

6 dX
 
dY 

-dZl 

dXl
 
dYl
 

and 

m = number of observations for the arc. 

Inorder to make the above solution determinable for 6, the orbital 

constraints must be applied as in Section 5. 

Equation (5), above, ismodified to accommodate orbital 

constraints in the form 

S+ 	 )c W 4(6) 
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Since the value for 
 is normally zero unless some correction is
 

known in regard to the state vector, the solution for 6 becomes
 

6 = N + c 
(7)


(6,14 (6,6), (6,1)
 

By substitutifg 6 into equation (1), we solve for the residuals,
 

r, for all points on the arc. These could be output to plot displays
 

on a CRT type monitor.
 

The above process requires minimal computer core requirements
 

and the largest matrix required is (6,6) for the N and w matrix. The
 

processing time would also be minimal.
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7.1 

SECTION 7
 

FINAL REDUCTIONS OF THE NORTH ATLANTIC OCEANIC GEOID
 

The major objective of this effort was to develop the
 

appropriate computer software for reducing altimetric observations
 

and to apply this software in the determination of the North Atlantic
 

oceanic geoid. The initial coverage was expected'to be similar
 

to that depicted in Figure 1 and become more densified as more
 

observations were made by GEOS-3. However, the availability of
 

data did not provide the desired coverage over the entire North
 

Atlantic, nor the density in key areas outside the calibration
 

area. This data set provides enough coverage (see Figure 16) for
 

an extensive testing of the capabilities of the software system in
 

detecting and modelling detail features.
 

The final reductions are essentially extensions to the
 

preliminary reductions presented in Section 3.4
 

Unknowns and Constraints Used in the'Reductions
 

The same set of nodal points, data and orbital constraints
 

were used for both the spheroidal multiquadric and the covariance
 

function models. The number of nodes used was 47 and the number of
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7.2 

passes was 236. This resulted to a total of 1463 unknowns (6x
 

passes + nodes) that were recovered simultaneously. The constraints
 

exercised for the state vectors in terms of north, east and up were
 

a = 20.0 meters 
n 

Ce = 20.0 meters 

aU = 20.0 meters
 

a. = .010 meters/second

n 

(Y = .010 meters/second
 

a = .010 meters/second.
 

These orbital constraints are chosen to be relaxed enough to accom

modate expected errors in the generated state vectors. The alti

metric observations were treated as subject to 1.0 meter error (one
 

sigma) for the adjustments and error propagation.
 

The selection of nodal positions are illustrated by Figure 16.
 

Reduction Results
 

The reduction of the GEOS-3 altimetric measurements
 

include data from 236 passes of GEOS-3 over the North Atlantic.
 

The surface grid formed by the ground track of these passes was
 

very dense inthe western portion and sparse elsewhere. Figure 16
 

illustrates the surface geometry of the grid.
 

51
 



80 I I I 

-J 

cm 

-100 -90 -80 -70 -60 -60 -40 -30 -20 -10 0 

LONGITUDE (NEST) 
FIGURE 16. Ground Track of Satellite Passes over the North Atlantic Ocean 



It has been experienced (reference 11) in previous appli

cations of the spheroidal multiquadric model that a proper choice
 

of 6 = ka (Equation 1, Section 3.2) is important in keeping a bal

anced relationship to the typical spacing of the nodes. The constant
 

6 controls the degree of correlation between nodes and as the value
 

of 6 decreases, the correlation between nodes decreases (see refer

ence i). The present reductions varied in data density from one
 

portion of the North Atlantic to another, thereby, making the choice
 

for 6 a compromise between the dense arid sparse areas. This is prob

ably the primary weakness of the use of the multiquadric model. How

ever, provided uniform grid, adequate density and the proper selection
 

of 6, the geoid surface can be measured to a high degree of local detail.
 

Figures 17 and 18 represent the geoid contours from the re

ductions utilizing the covariance functions and multiquadric-models,
 

respectively. The two contours generally agree to about one to two
 

meters in the very dense portion of the North Atlantic. The less
 

dense portion of the North Atlantic differs by as much as ten meters.
 

When compared to the Marsh and Chang geometric geoid, it appears that
 

the reduction using the covariance function agrees more favorably,
 

although, the reduction using the multiquadric model showed better
 

agreement in some of the more densely grided areas.
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7.3 

The geoid contours that are presented in Figures 17 and 18,
 

are automatically generated by evaluating the nodal coefficients
 

obtained from the adjustment for a set of coordinates destributed
 

throughout the observed area.
 

'Residual and ProfileAnalysis
 

Once the coefficients of the nodal points are determined,
 

the residuals are computed along each arc for-evaluating the point
 

to point fit of the observations to the adjustment. As stated in
 

Section 6, these residuals reflect certain unmodelled surface fea

tures in addition to the random noise of the altimetric observations.
 

No attempt will be made in this report to evaluate the meaning of
 

these residuals since it is beyond the scope of this contract.
 

In addition to computing residuals, the SARRA computer
 

programs computes geoid profiles along each arc. These profiles and
 

the residuals are saved on a magnetic tape or disc during the SARRA
 

adjustment and on option may be plotted for a graphic display. The
 

residuals and geoid profiles of a few selected passes are presented
 

in Figures 19 through 27 as examples.
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8.1 

SECTION 8
 

PRE AND POST PROCESSING AUXILIARY PROGRAMS FOR
 

SARRA REDUCTION OF SATELLITE ALTIMETRY DATA
 

Several computer programs were developed under this contract
 

to perform editing (pre-processor) prior to SARRA reduction and dis

play (plots) results after the SARRA reduction. The pre-processor
 

served to edit raw altimetric measurements on both a gross error
 

and on a statistical basis. In addition to editing the data, the
 

pre-processor also provides a means of computing a mid-arc state
 

vector, given the sub-satellite position. This was required
 

to process some data provided'by NASA where only , X and h were
 

given. The plot program serves
 

(a) to plot satellite ground tracks of
 
available data,
 

(b) plot contour map of resulting geoid,
 

(c) geoid profiles along a given arc,
 

and
 

(d) residuals from the adjustment.
 

Pre-processor and Data Noise Filter
 

Pre-processing and editing (PREP) of GEOS-3 altimetric
 

data is designed as a three-level automatic computer editing effort.
 

The raw data is first edited for "gross" errors. The second step
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is to examine the data for continuity and eliminate abrupt changes.
 

The third level of editing rejects data, either smoothed or unsmoothed,
 

that have standard deviations greater than some specified criterion.
 

The editing is accomplished in three steps,
 

(1) comparing altimetricmeasurements with a 
reasonable expected range of possible heights
 
(h)for gross error such as parity errors;
 

(2) continuity is detected by comparing the change
 
in the measured altimetry (Ah) between successive 
data points with the corresponding change in time 
(At). This is a measure of the altimetry rate 
(R)which is a smooth function. If the altimetry
 
rate exceeds the maximum value, the point is
 
rejected. The maximum for h may be estimated
 
emperically from several sets of GEOS-C altimetry
 
data.
 

(3) The third e...v.. ng rejects data based
 
upon an input sigma criterion. The criterion
 
will be based upon realistic expected accuracy
 
of the GEOS-3 altimeter measurements.
 

The criterion chosen in step 3 should be a little relaxed
 

to make sure that points are not rejected that truly reflect some
 

surface details that are normal sea state variations.
 

In addition to editing measurement data, the pre-processor
 

can compute a mid-arc state vector when the ephemeris is provided
 

with the altimetric data tape in the form of latitude, longitude
 

and height. The following computational steps are implemented in
 

the pre-processor.
 

The procedure followed in computing a mid-arc state
 

vector for each pass, was to compute Cartesian coordinates from
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the provided geographic coordinates. These coordinates were
 

computed by
 

N= a/(1- e2 sin 2 ) 2
Li] 
1 

[CN+h) cos hcos Ak 

= (N+h) cos 4 sin 

z [N(1"-e2) .+ h) sin 0S] 

Where 	 a = the earth semi,-major axis
 

e = eccentricity of earth
 

A fifth order polynomial fit to these coordinates was performed
 

in order to reduce the effect of the above truncation error and
 

to provide a means for computing velocity components.
 

The general polynomial expression is given by,
 

Xi = a + alti + a2 t? . . . ant 

The equation written in matrix form for all i is expressed by:
 

1 1 ...t ao
 

2n 
X2 I t2t2 ...
t2 	 a
 

Xi 	 1 tit? .*..t7n
 

1 	 n 
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Substituting C for the X. vector, B for the t ' matrix and S for
 

the at vector, yields
 

C = BS. 

The least squares solution (with unit weight matri) for the
 

coefficient vector .S is
 

S = (BT B)1 BTc. 

The nth order polynomial equation is evaluated at mid-arc time,
 

to where
 

to - t ) 1 2 

The velocity component at to, X, is computed from the first
 

derivative of position by
 

= 0 = a1 +2 a2to +3 at+nantn
 
at
o ,
 

This procedure is repeated for the Y, Y and Z, Z
 

components. All altimeter observation times (ti) are initial

ized with respect to mid-arc by
 

tto= t k- to
 

The velocity components corrected for the earth rotation are
 

computed from
 

*=x -'"PY 
zo 0
 

Yo = Y0 + TX0 

O =ZO "
 

to obtain inertial components (T= earth rotation rate). 
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8.2 

The resulting state vector representing the orbit at
 

mid-arc (X0, YO, Z0 , x0, Yo and Zo) is input to the SARRA program
 

with 	the appropriate constraints.
 

Post 	SARRA Plot Programs
 

The plot program provides the capability of producing satellite
 

ground track plots, geoid contours and either geoid profiles or
 

residual profiles. Additionally, the land features superimposes on
 

the ground track and the contours. Initially, the land outline was
 

read 	from maps and input into the program plots. This was later
 

replaced at AFGL by a magnetic tape containing the digitized shore

line 	coordinates. Each plot is described as follows:
 

(a) Giound Tack Plot. This program plots the
 
ground track of satellite passes over the
 
North Atlantic from a given sub-satellite
 
latitude and longtitude. Additional paral
lels and meridians may be selected with
 
program input parameters.- The ground track
 
plots may be contained within the North
 
Atlantic data boundaries as shown in 
Figure 28. 

(b) 	 Contouk P&P.U. Contours of either the 
standard deviations-or-the actual geoid 
heights may be plotted. The standard
 
deviations are computed from the covari
ance matrix from the SARRA reductions.
 
The geoid heights are computed from the
 
surface coefficients saved from the
 
SARRA solution.. In either case, the
 
coutations are performed for a grid
 
of surface points. -The generated
 
grid is contained within the bound
aries of the observed geoid and the
 
boundaries of the North Atlantic.
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(c) RQiduat6. The altimeter observation
 
residuals (measwred minu- computed 
height) obtainedfrom the SARR4 
reductions are plotted for the pur
pose of visually reviewing measure
ment characteristics. The residual
 
profile plot provides imrediatedis
play of altimeter measurements noise
 
and such oceanic details as sea state
 
variations.
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Figure 28. North Atlantic Data Rejection Limits
 



APPENDIX A
 

The use of the Covariance Function in the Short Arc Reduction
 
of Radar Altimetry Program
 

The following derivation of the covariance function and its
 

application to the modelling of geoid surface in the SARRA computer pro

gram was developed by Dr. Georges Blaha of DBA Systems, Inc. under a
 

special investigation. The results of Blaha's investigation is re

produced as an appendix for detailed reference material regarding
 

Section 4 of this report.
 

Covariance Function for Geoid Undulations
 

The covariance function for geoid undulations (N)is derived
 

from the basic formula
 

i--f-~'M 2 m. o sm~ i X sn) 1nm

M=o
n-2
where 


R - is the mean earth radius (R 6371 km),
 

y - is the mean value of gravity (y = 979.8 gal),
 

, - are the geocentric latitude and longitude of
 
the point associated with N:
 

the other overbars indicate that we are dealing with "fully normalized"
 

harmonics. We have (m t 0):
 

Po (sin ) n (sin Y=J!TV p (sin ), 

(n+m) !P (sin~-'2 (2 +1) 
 PP (sin ), 
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PU (sin q) and Pnm (sin w)being called Legendre's polynomials and
 

associated Legendre functions, respectively. Furthermore,
 

(n (2)
 

where
 

AC A C o/42n +1, ()
 

and where 

A Cn - is the correction to the reference C* 
ono
 

(tO be mentioned) in order to obtain Co
 
AC =- ,
 

nm um
 

the coefficients Co Cmnf Sam are sometimes called "conventional C's
 

and where
 

It has to be emphasized that equation (1) is valid for the reference
 

ellipsoid having the seame mass and the same potentia'l as the geoid. This 
the ceoeficiReen Cen 3 Sytm aGre someim calld"cneni:a 

A Cscondition is fulfilled by the "mean earth ellipsoid" which in theory
 

shares with the actual earth two additional parameters (tn = rotation rate 
It ha to be3 emhsie eqain(4bi)aidfrteeeec10hat
and ,J2= -C20 ). The pertinent constants of the mean earth ellipsoid in 

C* = -6.1 x 10 3 (4c) 
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the other C* are essentially zero (already C* is very small and is
 
no 60
 

sometimes neglected).
 

In what follows we shall be dealing with overbarred coefficients
 

related to their conventional counterparts by the factors shown in the
 

equations (3). Adopting the mean earth ellipsoid as the reference
 

ellipsoid, we thus have in agreement with the equations (4):
 

"
 C = -.484194 x i0 , 	 (5a) 

6a6
C 6017x10(c
-.


In 	analogy with previous notati ons (conventional case), we write
 

A	-C20 = C2o - Cd- (6a) 

"C40= 1o- C401 (6b) 

- O,86c 

AC 60 =U 6 	 (6c)
 

For all the other A C we have essentially (even if m = 0):nm 

A d - C;nm (7a) 

all A Inm are in fact Sm themselves, namely
 

=
-
ASnm "S 	 (7b)S. 

The covariance function D (*) for geoid undulations is obtained by
 

averaging the product N N' over the unit sphere,
 

D (*) = M i3 N'3 ; (8) 

N and N' in this expression are the geoid undulations at any two points 

separated by the spherical distance 4 and the symbol M indicates the 

average over the unit sphere, namely 
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M(1ff()do,
 

where a represents the surface of this sphere and do is the element of
 

surface area. It can be shown that the covariance function in (8)may
 

be expressed from (1) as follows:
 

D => dn an(COS (,9) 

n=2
 

where
 
n 

R2-2+ -2 (0nU G2 (n- 1)Z (A rm +A ;)
 
"=O
 

the quantities d are called "degree variances" for geoid undulations.
 
n 

If ' = 0, we have from (9): 

D(O) = Y' d . (9') 

n=2 

In the program SARRA, the covariance function serves to express
 

the geoid undulation (Ni) at a geoidal point Pi as a function of
 

parameters cj at selected nodes Pj:
 

Ni =D (*~ij) cj ,(i 

where ijis the spherical distance between Pi and Pj. The overall
 

adjustment model in SRRA can be written as
 

Hi = Ri - ri + di,
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where
 

Ri - is the radial distance (from the coordinate origin 0) to
 
the satellite point Si,
 

ri - is the radial distance to the subsatellite point Pi
 

Hi - is the satellite altimetry observation (distance Si P.).
 

The small unadjustable quantity d. accounts for the fact that 0, P, and
 

S i do not lie on a straight line; it is not needed explicitly. The
 

parameters cj from (11) enter into the adjustment process through the
 

model equation
 

ri = r + Nj,
 

where r! is the radial distance to the reference ellipsoid (it is computed
 

from i). The remaining parameters are the state vector components;
 

these parameters are always weighted. The adjustment model in SARRA may
 

thus be written symbolically as follows:
 

( - ) +i R (state vector parameters) - Ni (cj parameters) - r! d. (12) 

When performing partial differentiation of this equation with respect to
 

the parameters, it sho61d be kept in mind that c in r{ (p) depends tb a 

certain extent on the state vector parameters. (See reference 10 for a 

detailed discussion.) 

2
*r = a/l a sij , a and e being the usual ellipsoidal parameters 
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inX urcer LU jUVhI LAM UUbeLV4L UL CCLUaL±UtlL LLUW k iL) we uUuuce 

(R. - r!)b 0 0 ,
i d, + H+ ± ±+ (state vector par.) d (state vec. par.) 

0 

pr 
(c. par.)
 

where vi is the residual, i is the observed altimetry and "o" denotes
 

the approximate (initial) values of parameters or functions of such
 

parameters. The state vector parameters are X, Y, Z., X, Y Z in the
 

"Earth Fixed" (E.F.) coordinate system; the adjustment in SARRA is
 

effectuated in this system. From (11) we have
 

SN.
I = ID (.
(aj par.)ooli D (* )Io...
 

due to the linearity in (11), one can take
 

0 

=0
c 


and thus
 

o
N = 0, 

which is in fact used in SARRA.
 

The observation ecuation is then written as follows:
 

v, [D (,i1),...,0 D (*ij), ...l I+ X"') x 

dc 

.. + (R - r Hb + d . (13) 

dx 
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With self-explanatory notations this equation is presented as
 

Vi aai + 1iV (14a) 

where
 

b
 

r RRi - H I +I d.. (14c) 

The term I is sometimes called "discrepancy term". The quantity r.b
 
1. 

can either be computed as in (14c), or it can be computed as the distance
 

OP from the coordinates of the point Pi depicted in Figure 1. This is
 

in fact the procedure used in SRRA. i
 

i b ..."observed"geoid
 

0 ...ellipsoid
 

Figure 1
 

By joining together individual observation equations along one short
 

are, the resulting set can be written in matrix notations as follows:
 

V= A + L.
 

Similar procedure would apply for other arcs in an adjustment; each vector
 

would now contain a different set of state vector parameters (besides
 

the common set of cj parameters). All these sets would finally be joined
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1000 N=21 

"'\N=6 

500

N=2 

100 

-200 

-300 

FIGURE 2: COVARIANCE FUNCTION FOR GEOID UNDULATIONS 
ASSOCIATED WITH DEGREES TRUNCATION N=Z, N=6, 
AND N=21 
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into one large system of observation equations, and adjusted. However,
 

the main purpose of this brief exposition of the SARRA adjustment model
 

has been to show the role of the covariance function D (*). We have seen
 

how to compute this function from potential coefficients. We shall next
 

discuss some practical problems associated with its application.
 

If a set of potential coefficients (C's and S's) is given complete
 

through a certain degree n = N, the covariance function D (*) may be
 

constructed for varying values fr (between 0 and 2w) according to the
 

equations (9'), (9). In fact, Figure 2 depicts three cases of the
 

covariance function D (*); they correspond to the truncations N = 2,
 

N = 6 and N = 21Y 
associated with a reasonable set of coefficients
 

complete through the degree and order (21,21). The figure reveals that
 

the greatest contribution to the value of the covariance function comes
 

from the lower degree and order coefficients; there is a small difference
 

between D (*) for N = 6 and N = 21 and there would be practically no
 

difference if N = 15 and N = 21 were considered. On the other hand
 

it appears that if, for example, a given (6,6) model were to replace
 

the reference ellipsoid, the corresponding covariance function of new
 

"undulations" would exhibit sharp and distinct features which would vary
 

substantially for different degrees of truncation (up to a relatively
 

large n = N). It is felt that such an approach would be much more
 

sensitive to local geoidal features than is the use of the covariance
 

function D (4). In contrast to using D (*), such a 'modified covariance
 

function" would greatly reduce the influence of distant nodal points (e.g.
 

when * > 300) on the value of the "undulation" at observation points.
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