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SUMMARY

The problem of eigenvalue assignment in a linear time-invariant system
using output feedback is considered. New sufficient conditions are derived to
assign an almost arbitrary set of minimum (n,m + r - 1) distinet eigenvalues
where n, m, and r are the number of states, inputs, and outputs, respec-
tively. These conditions precisely identify .the class of systems where such an
assignment is impossible. The synthesis technique also highlights the freedom
in selection of closed-loop eigenvectors under output feedback. The utility of
eigenvalue/eigenvector assignment in transient response shaping is illustrated
by the design of a controller for the lateral dynamics of an aircraft.

INTRODUCTION

Control system design based on eigenvalue or pole assignment has received
a great deal of attention in the literature. It is well known that for a con-
trollable system, if state variable feedback is employed, all eigenvalues can be
assigned (ref. 1). Also it is known that for multi-input systems, the feedback
law assigning a given set of eigenvalues is not unique and that different con-
trol laws can yield identical eigenvalues while yielding radically different
eigenvectors. Since the eigenvectors determine the influence of each eigenvalue
on each state variable response, failure to use the multi-input design freedom
fully may result in undesirable mode coupling and other poor transient behavior.
For n-state feedback systems, it has been shown (ref. 2) that with m inputs,
in addition to the assignment of all n eigenvalues, up to m entries in each
eigenvector can be arbitrarily assigned. However, the problem of eigenvalue
assignment using output feedback instead of state feedback has not yet been com-
pletely resolved. The problem of determining conditions under which all eigen-
values of a system can be arbitrarily assigned to a system under output feedback
has been investigated in references 3 and 4. Bounds on the number of states, in
terms of number of inputs, outputs, controllability, and observability indices
are established for complete pole assignability. Reference 5 shows that for a
system with r outputs, if mr > n then the system is pole-assignable provided
the feedback gain elements are allowed to be complex numbers. References 6 and
7 address the converse problem: given a controllable, observable system, how
many eigenvalues can be arbitrarily assigned to the system. In general, it is
concluded (ref. 7) that minimum (n,m + r - 1) eigenvalues can "almost" always
be assigned to the system using output feedback. The qualification "almost" was
introduced to cover classes of systems where such an assignment is impossible.
In effect, the analysis in reference 7 does not precisely determine the condi-
tions under which (m + r - 1) eigenvalues cannot be assigned to the system.

This report considers the problem of determining the number of eigenvalues
assignable to a given system. By formulating an eigenvalue/eigenvector assign-
ment problem, sufficient conditions required for the assignment of minimum
(n,m + r - 1) eigenvalues are derived. These conditions precisely identify



the class of systems which can be assigned only d eigenvalues, where maximum
(myr) <d < (m+r - 1). The new formulation permits the development of an
algorithm to assign (m + r - 1) eigenvalues. 1In addition, (r - 1) eigenvectors
can be partially assigned with, at most, m entries in each vector arbitrarily
chosen. In the event n > (m + r - 1), various synthesis alternatives to stabi-
lize the system are also investigated since in this case all system eigenvalues
cannot be assigned. The counter example of reference 7 is used to demonstrate
the utility of the new sufficient conditions in identifying systems which cannot
be assigned (m + r - 1) eigenvalues. Finally, the advantage of both eigenvalue
and eigenvector assignments in response shaping is illustrated by designing a
controller to meet the lateral handling qualities specifications for an aircraft.

SYMBOLS

Values are given in SI and U.S. Customary Units. Calculations were made in
U.S. Customary Units.

A system matrix

A€RMD n xn real matrix A

ay lateral acceleration, m/sec? (ft/sec2)

B input matrix

c measurement matrix

c measurement vector

D matrix used in equation (45)

p(k) matrices defined by equation (BY4)

d,i,j,k,t indices

ej vector defined in notation (1) in appendix B
F matrix defined by equation (9)

fj(k'1) vector defined by step 3(a) of appendix B

G matrix defined by equation (10)
gj(k) vector defined by step 3(a) of appendix B
H; matrices used in equation (23) and derived by substituting equa-

tion (6) into equation (7)
hj(k=1)  vector defined by step 3(a) of appendix B
Iindex (index)tD order identity matrix
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Je (ﬁ(ki> j is an element of index set A(K)
K feedback matrix

Ly matrices used in equation (23) and derived by substituting equa-
tion (6) into equation (7)

L feedback vector defined by equation (17)

M(k) M(k-1) M(1)  patrices defined by notation (6) in appendix B

m number of inputs

max maximum value

min minimum value

N matrix defined by equation (13)

n number of states

P matrix used in equation (46) and defined immediately afterward
p roll rate, deg/sec

Q(k=1) (1) matrices defined by equation (B3)

Q(0) matrix defined by notation (3) in appendix B

q feedback vector defined by equation (18)

r number of outputs

S matrix defined by equation (8)

s vector defined immediately prior to equation (20)
Tg,Tq transformation matrices defined where used

u input vector defined by equation (2)

\') modal matrix (matrix of eigenvectors)

v(r) matrix used in equation (12)

V,Vi eigenvectors

W vector used in equation (6); a partition of v

X state vector defined by equations (1)

X € R n x 1 real vector X



output vector defined by equations (1)

y
Z(r),Z(t) matrices containing the vectors 2zj; i =1tor and 1 to t,
respectively

Z vector used in equation (6); a partition of v

B sideslip, deg

A(1),At(1),Ar(1),A(k) set of indices defined in appendix B

Ga aileron angular deflection, deg

Gk determinant defined in step 1 of appendix B

Sp rudder angular deflection, deg

EXk,ezk perturbed quantities defined in step 1 and step 4 of appendix B,
respectively

6 vector defined by notation (6) in appendix B

An, Ay diagonal eigenvalue matrices used in equations (12) and (B6),
respectively

A,Ai,A, eigenvalues

€,N,H1,Ho vectors defined by equations (21)

Ok scalar defined by notation (4) in appendix B

¢ bank angle, deg

¢ yaw rate, deg/sec

Superscripts:

-1 matrix inverse

~,7,-,% transformed quantity

Upper case letters of the alphabet indicate matrices; matrix subscripts
indicate partitioned quantities. Dot over a quantity denotes derivative with
respect to time. Prime denotes transpose.

Consider a linear, time invariant, multivariable, controllable, observable

system

EIGENVALUE/EIGENVECTOR ASSIGNMENT FORMULATION




X Ax + Bu

GD)
Cx

y

where x € R, u € RM, y € RI', and B and C are full rank; and for a non-
trivial problem formulation, assume m,r > 1 and m,r < n. The problem is to
find a control law of the form

u = Ky (2)

in order to assign arbitrary eigenvalues for the closed-loop system. To indi-
cate clearly the freedom available in the selection of closed-loop eigenvalues
and eigenvectors under output feedback, the measurement matrix C 1is assumed
to be in a special canonical form:

¢ = [C1: Cp] A

Iy
Cq1 = .
L O
(3)
"o T
Co = .
.—c_.

c=[1 1...1]]
Here, t =r -1, Cq1 € Rrxt, o e rI*n-t  and I, denotes a tth order identity

matrix. Appendix A details a procedure for reducing any system (C,A,B) to this
special form.

The closed-loop system matrix (A + BKC) after applying feedback law (2)
satisfies

(A + BKC)vy = Ajvy (i=1,2, .. .,n) u)
where A; is the ith eigenvalue and v; 1s the corresponding eigenvector. The
eigenvalue/eigenvector assignment problem is to determine the number of eigen-
values in equation (4) that can be arbitrarily assigned and to determine the

freedom available in the selection of the associated eigenvectors.

In order to see what freedom exists in the choice of eigenvectors, write
equation (4) in partitioned form as

A - Bg2 B4
oo |+ | . J|KCHY vy = Aqvyi (5)

A21 . B2z Ba



where Aqq,Bq € R®*M  and B¢ is nonsingular. Since B is full rank, the non-
singularity of B4 can be assured, if necessary, by reordering the state vari-
ables in equations (1). Completing the multiplication of the partitioned
matrices and some algebraic operations (ref. 8) permits equation (5) to be
expressed as a set of constraints on the selection of eigenvectors. For clarity
of presentation, these relations are detailed only for real eigenvalues. Exten-
sion to complex conjugate pairs in quasi-diagonal form yielding real eigenvector
pairs is straightforward (ref. 8).

For real eigenvalues

[AMpep - Flw = [G + AS]z (6)
[A1 + BeKC]v = Az (7)
where A is the eigenvalue, V' = [z' : w'|; v 1is the eigenvector with
z € RO, and
S = B2B1'1 (8)
F = Ayp - SAqp (9)
G = Axq - SAqq (10)
A1 = [A11 M A'|2] (11)

Equation (6) represents an underdetermined system of n - m equations in n
unknowns. Thus m eigenvector entries corresponding to the z-vector can be
chosen arbitrarily provided A does not coincide with the spectrum of F.
Examination of equation (7) reveals that at least r eigenvalues and r eigen-
vectors satisfying equation (6) can be assigned to the system in equations (1)
by the feedback matrix

z - B1—1[z(r')j\r - A1V(r’)] [cy(r)] -1 (12)

where A, is the diagonal matrix of r eigenvalues and z(r) ana v(r)
have the form T(r) = [ﬁ1 L 1 B I 1 (where ti are vectors). The
solution to equation (12) is .guaranteed provided the eigenvalues/eigenvectors
are chosen to insure the nonsingularity of [CV(P)]. It should be noted that
in the case of state variable feedback (C = I,), all n eigenvalues can be
assigned to the system provided the modal matrix (matrix of eigenvectors)
V= [v1 :Vp : ... :Vy] is nonsingular. An algorithm which constructs such
a nonsingular V is detailed in reference 8. Appendix B extends this algo-
rithm to guarantee the nonsingularity of [CV(P'E.

Notice that by carrying out this analysis on the dual system (B',A',C'),
it can be shown that m eigenvalues can be assigned to the system. This analy-
sis yields the following well-known result (ref. 9).
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Lemma 1: For system (C,A,B), max(m,r) eigenvalues can be
assigned using output feedback.

The analysis so far indicates that only max(m,r) eigenvalues can be
assigned to the system using output feedback. However, by sacrificing some
degree of freedom in the selection of the associated eigenvectors it is possible
to extend the number of eigenvalues that can be assigned to min(n,m + r - 1)
as is shown in the following section.

ALGORITHM TO ASSIGN MINIMUM (n,m + r - 1) EIGENVALUES

The basic approach in the development of this algorithm is to construct the
output feedback law in equation (2) as a sum of two feedbacks (K + K). The
first feedback (K) assigns t eigenvalues, and the second feedback assigns
additional min(m,n -~ t) eigenvalues while ensuring the protection of the ¢t
eigenvalues already assigned. The construction procedure yields a set of suf-
ficient conditions for assigning min(n,m + r ~ 1) eigenvalues. These condi-
tions also help characterize the class of systems which cannot be assigned
min(n,m + r - 1) eigenvalues. Finally, some design freedom still exists to
partially assign (r - 1) eigenvectors.

Step 1:
Assign t eigenvalues and corresponding eigenvectors to the system in
equations (1) and form the matrix

N=|... =[v]:v2:...:v] (13)

with Nq € RE*Y and nonsingular. Appendix B details a procedure to construct
N. Let K be the nonunique feedback (eq. (B6)) corresponding to this assign-
ment. Then the closed-loop matrix is

A = A + BKC (1)
Step 2:

Apply a coordinate transformation

(c,i,B) > (cTq,T1~'AT¢,T4-1B)

where
Ny . O
R D (15)
Np + Tneg



The transformed system has the form

A = 7
Ay . B2 B1
=] . ... &+ . .]u
A N (16)
0 . Az Bo
y = [C1 : 02]}/\{ J

where A, € Rt*t is the diagonal matrix of eigenvalues assigned in step 1. It
should be noted that Cp is invariant under the transformation Tj.

Step 3:

In order to assign additional eigenvalues to the system of equations (16)
while protecting t eigenvalues (Ay) already assigned, the second feedback (K)
is restricted to be of unity rank of the form K = q%' with q € Rm, & € Rr,
and % is chosen so that

21[6:cp) = [0 c] 17
Now q must be chosen so that
[ﬁzg + 1§2ch (18)
is assigned min(m,n - t) eigenvalues.
Since (A22,ﬁ2) is controllable, the following result holds:

Theorem 1: The single output subsystem (e A22,B2) can be
assigned min(m,n - t) eigenvalues if and only if (a) (c,App)
is observable and (b) By is full rank.

Theorem 1 follows directly from lemma 1. Further, conditions (a) and (b)
restrict the admissible set of eigenvalue/eigenvector assignments in step 1.
For conceptual convenience, these parametric restrictions are formulated in
terms of controllability conditions of a fictitious dynamic system in the state
variable representation.

After matrix operations in equations (14) and (16) have been performed,
the submatrix Apss can be written as

ﬁgz = [A22 + BZﬁCZJ + ﬁz[A12 + B1ﬁC2] (19)

where ﬁg = -N2N1'1. Transposing equation (19) and writing KCZ = se¢, § € RN
yields

‘.

A22 = Aéz + C'S'Bé + A%Zﬁé + C'S'B’Iﬁé (20)




Equation (20) can now be looked upon as a system matrix derived by applying
feedback to the dynamic system

£ = ApoE + AjpUq + c'up

(21)
n = BéE_, + Bh.l1

Ys_lith £ € Rn-t, n € RM, U1 € Rt, Up € R1, U1 = ﬁég, Up = s'n, and
No = -NpN¢~T.

From equations (21) it can be shown that conditions (a) and (b) of theorem 1
are equivalent to the following conditions: (e¢) Bp = Bo + NpBy and is full

rank; (d) {ﬁAéZ + A{gﬁé},ci} is controllable. Conditions (e¢) and (d) clearly

indicate the restriction on selection of the eigenvector parameters ﬁZ in
step 1. This yilelds the following sufficient conditions:

Theorem 2: The system (C,A,B) can be assigned

min(n,m + r - 1) eigenvalues arbitrarily close to the
desired set if the first t eigenvalues and eigenvectors
in step 1 are chosen so that

I Ny is nonsingular
II B, = By + NoB; and is full rank
ITI {[Aéz + A{zﬁzj,c'} is controllable

"Arbitrarily close" in theorem 2 indicates that slight perturbations in
eigenvalue specifications may be needed in the following situations:

(i) Assigned eigenvalues coincide with the spectrum of F (appendix B).

(ii) An exact combination of eigenvalue/eigenvector specifications in
step 1 may not yield a nonsingular Ny (appendix B).

(iii) Coincident spectrum situation similar to situation (i) exists for
the subsystem eigenvalue assignment of theorem 1.

Condition I is required to guarantee the existence of the transformation
T1 1in step 2. This condition can be explicitly included in the synthesis pro-
cedure as detailed in appendix B. Condition III is obtained from the property
that for system (eqs. (21)), the class of feedback from input uq should be
restricted so that the controllability of the feedback system with respect to
the input yp 1is preserved. Conditions II and III yield nonlineag algebraic
constraints for the elements of the eigenvector parameter matrix N, and thus,
in general, can only be used as test conditions for each assignment in step 1.
However, example 1 of the section entitled "Numerical Examples" shows how these
conditions can be explicitly checked.



Step 4:

If theorem 2 holds, _min(m,n - t) eigenvalues can be assigned to the sin-
gle output system (c,A55,B5) by the feedback q derived from lemma 1.

Step 5:
The composite feedback law
us= (K + ﬁ)y (22)

assigns min(n,m + r - 1) eigenvalues to the system.

ASSIGNING n EIGENVALUES

The development so far has revealed that for systems where n > (m + r - 1),
all system eigenvalues cannot usually be assigned. However, by using equa-
tions (6) and (7), it is possible to derive conditions for assigning all eigen-
values of the system as follows.

If the eigenvalues to be assigned are noncoincident with the spectrum of
F (if necessary, by a perturbation in specification), then equation (6) can be
explicitly solved for the w-vector and substituted into equation (7). This sub-
stitution yields a set of homogeneous equations of the form

[Hi + BiKLj|z; = 0 (i=1,2, ..., n (23)

where Hj and Lji are readily derived. Then equation (23) has a nontrivial
solution if and only if

rank [Hj + B1KLi] <m for all i (21)

A set of n nonlinear equations in the m,r parameters of the gain
matrix K can be derived by setting the appropriate determinant in equation (24)
equal to zero. However, no general conclusions can be drawn regarding the exis-
tence of the solution.

An alternative approach not involving solution of nonlinear equations is to
assign t eigenvalues as in equation (14) and to attempt to assign the remain-
ing (n - t) eigenvalues approximately to the subsystem in equation (18) using
the condition in equation (24). In this case, a set of (n - t) linear equations
in m unknowns results, and a least-squares solution can be obtained. The
foregoing discussions assume that r 2 m if necessary by considering the dual
system.

10




NUMERICAL EXAMPLES
Example 1

Consider the system described in reference 7 where

— ~\

0 1 0 0
o 0o o o
A =

0 0 0 1

_0 0 0 0_

o 0]

(25)

_ 1 0 ?
B =

0 0

0 15
_ 1 0 0 0
C =

0 0 1 0

%

Reduce the system (25) to the special form of equations (1) by ordering state
variables as (xq,x3,Xp,x)) to make C, nonsingular (appendix A) and by apply-
ing the coordinate” transformation (C,A,B) > (CTg,To~'ATg,Tg~1B) where

1 0 0 0

0o 1 1 1
Tg = (26)

11




to yield

_ N
0o 0o 1 o0
0o 0 0 1
A =
0O 0 0 O
0 0 0 0]
[0 0] | (27)
-1 -1
B =
1 0
Y 1]
1 0 0 0
C =
o 1 1 1
- 4

From equation (6) it can be shown that the closed-loop eigenvectors satisfy

A 0/ino =\ (1 -2 n3_

- (28)
0 Al ng 1 0 ny

where the eigenvalue is A and the eigenvector is
v=1o(n np n3 ny) (29)

From theorem 2, condition I, nq # 0; therefore, choose n4q = 1 without loss
of generality. Then, Np = (-np -n3 -ny)'. Condition II is met for all
choices of N, since Bj = 0. Condition III implies that

0 0 0 1]
-np -nz  -nyl,l1 (30)
1 0 0| (1

should be controllable. For the controllability matrix in equation (30) to be
of full rank, the eigenvector parameters in equation (28) must satisfy

npng - ny + n32 + ngny # 0 (31)
By direct substitution equation (31) is seen to be violated by all admis-

sible selections in equation (28). Thus, the system cannot be assigned
(m+r - 1) = 3 eigenvalues. Indeed, only two eigenvalues can be assigned to

12




this system (ref. 7). However, the previous analyses (refs. 3 and 7) do not
precisely lead to this conclusion.

Example 2

Consider the system described by (ref. T)

(0 1 o‘w
A=1[0 0 1
0 0 o
1 0
_ S (32)
B = i1 0
L
N B R
C =
o 1 0
Y,

It is required to assign eigenvalues close to -1, -2, and -5. The system (32)

can be reduced to the form of equations (1) by following the procedure in appen-
dix A as

Step 1: Measurement matrix is in the desired form with éa nonsingular.
Step 2: Apply coordinate transformation

(C,A,B) + (CTg,Tp~1ATg,To~1B)

where
1 0 0
Tg = (0 1 1 (33)
0 0 1

13



yielding

(34)

1 0 0
C =
0 1 1)

The system (34) is in the required canonical form of equations (1). The closed-
loop eigenvector constraints in equations (34) can be derived by identifying the
respective matrices in equations (8) to (10) as

1 0
B1 =

0 -1
S = (1 -1)
F=20
G = (0 -1)

and equation (6) yields

z2

Z1
Aw = [)\ H —(1 + A):l [. . .} (35)

Equation (35) indicates that zq and 2z, can be arbitrarily chosen, provided
A # 0. Now, applying the algorithm to assign (m + r - 1) eigenvalues yields
the following synthesis sequence.

Step 1:

Assign X = -1. From appendix B, case II, At(1) = <E}, and this implies
zq1 # 0 in equation (35). (Condition I, theorem 2.) One acceptable assignment
is

14




N=(Q1 1 1) (36)

and a nonunique feedback gain corresponding to this assignment from equa-
tion (B6) is

. -1 -1
K = (37)
0 1

The closed-loop system matrix of equation (14) is

-1 0 0
A=]l0 -1 o0 (38)
-1 0 0
Step 2:
Transform the system to the canonical form of equations (16) using
1 . 0 0]
Ty = . (39)
17 .1 0
1 . 0 1]
to yield
-1 0 o’w
A =
0 -1 0
L 0] 0 0]
- 0
> (40)
B =
-1 -1
- O 1__
L[ 0 O
C =
2 11

15



From equations (21) we can form the dynamic system

, 0 o "1 17 )
£ = g + Hq + Ho
100 | 1] 1
(41)
0 1 [ 1]
n = £ + Hq
-1 1 | 0 y

with
-up = (1 DE, wp = (-1 n

Since feedback from Uq does not affect the controllability of system (41)
with respect to U, the subsystem i1s pole assignable from condition III of
theorem 2. Further, the assignment in step 1 satisfies condition II since ﬁz
is nonsingular. Thus theorem 2 holds.

Step 3:

Choose &' = (-2 1). This choice protects A = -1 assigned in step 1.
It now remains to choose q so that K = q' assigns the eigenvalues AZ = =2
and Az = -5.
Step 4:

Assign Ap = -2, A3 = -5 to the single output subsystem in equation (18)

where
A _1 0
A22 =
Lo 0]

. -1 -1 (42)
5, - { ]
0 1]

~
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with feedback

6 | A
q =
-10!
5 (43)
K = | [-2 1]
| 16
- ./

Step 5:

The feedback law of the form of equation (22) is given by

-1 =1 -12 6
u = + y (44)
|0 1 20 -10

and assigns the eigenvalues -1, -2, and -5 to the system (eq. (32)).

ATRCRAFT LATERAL CONTROL DESIGN

The advantage of combined control of closed-loop eigenvalues and eigenvec-
tors using state variable feedback has been investigated in reference 10. The
utility of the output feedback extensions developed in this report will now be
illustrated through the design of a lateral controller for an aircraft.

The linear perturbation model for the lateral motions of an aircraft can
be modeled as

% = Ax + Bu
B (45)
y = Cx + Du

where x 1is the state vector of roll rate p, yaw rate ¢, sideslip B, and
bank angle ¢, respectively. The control vector of aileron 65 and rudder

§r angular deflections is u. Roll rate p, yaw rate 1V, and lateral accelera-
tion a constitute the output vector y. All angles are in degrees, rates in
deg/sec, and acceleration in m/sec? (ft/sec?).

The respective matrices in equations (U45) for a fighter aircraft at an alti-

tude of 6096 m (20 000 ft), a Mach number of 0.67, and an angle of attack of
3.45° are given by

17
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-3.79 0.04 -52 0
-0.14 ~0.36 4,24 0

4 =
0.06 -1 -0.27 0.05

L1 0.06 0 0 |
25  9.83]

N 1.42 4.2

B =
0.01 0.05
Y 0
T 0 0 0

C = 0 1 0 0
|-0.13 -0.06 -3.42 0
0 0

D=1 o 0
|1.03 -0.27

where the elements of the matrices are approximated to two significant digits.

Since the output vector in equations (U45) is derived as a linear combina-
tion of both state variables and control inputs, the closed-loop system after
applying feedback u = K*y takes the form

b (A + BKC)x + BPu

(46)

(C + DKC)x + DPu

y

where P = [im - K*ﬁ]:1 and K = PK* is the equivalent output feedback matrix
obtained by setting D = 0. Thus, the algorithms developed earlier for systems
with D = 0 are applicable to systems of the form of equations (45), provided
P exists.

Then the feedback gain K* is computed by using the relation

K* = K[I + k]~ (47)

18



Direct matrix manipulations show that the inverse in equation (47) exists if P
exists.

The handling qualities specifications (ref. 11) imply that the lateral air-
craft dynamics should be composed of two weakly coupled subsystems. Roll rate
and bank angle constitute the first subsystem and display predominantly the roll
subsidence and spiral modes. The second subsystem is characterized by a well-
damped Dutch roll mode defining the yaw rate and sideslip motions. These speci-
fications can now be formulated as an eigenvalue/eigenvector assignment problem.

Table I summarizes the modal characteristies of the free aircraft. From
the table it is seen that the Dutch roll mode is very lightly damped and appears
dominantly in the response of the roll variables p and ¢ as evidenced by
dominant entries in the corresponding eigenvector pair. Thus, the eigenvalue/
eigenvector modification requires that the closed-loop system have the modes
and mode-variable associations of table II. (In tables I to III, Jj = V=1.)

TABLE I.- MODAL CHARACTERISTICS OF FREE AIRCRAFT

Eigenvalue of -
Eigenvector
components -3.70 ~0.35 + j2.66 | =0.03
(Roll subsidence) (Dutch roll) (Spiral)
P ~0.964 -0.403 0.829 -0.032
P -. 041 -.096 -.131 .04k
B -.002 .069 -.034 .002
7¢ .261 .324 112 .998

TABLE II.~ DESIRED MODAL SPECIFICATIONS

B Mode Eigenvalue Dominant response vafiable
Roll subsidence -6 Réll ra£ér
Dutch roll -1.0 + jJ0.2 Yaw rate and sideslip
Spiral ~0.01 Bank angle

19



The output feedback analysis in the main text shows that all system eigen-
values can be assigned since n =m+ r - 1 and only two eigenvectors (t) can
be assigned with at most two (m) entries in each vector arbitrarily chosen. The
eigenvector freedom available was used to control the structure of the eigenvec-
tor pair corresponding to the Dutch roll mode to effect the desired yaw rate
and sideslip dominance. The modal coupling matrices D(k) (eq. (BY)) aid in
the selection of the Dutch roll mode to yield the appropriate eigenvector forms.
The four eigenvector entries that were freely chosen corresponded to the roll
rate and yaw rate components of the real eigenvector pair associated with the
Dutch roll mode. Since gain magnitude constraints cannot be explicitly included
into the synthesis algorithm, the design parameters have to be iteratively modi-
fied to meet gain limit requirements. After some design iterations, a compro-
mise design yielded the modal characteristics summarized in table III. For
example, it was noted that the Dutch roll mode damping could not be reduced (to
improve ¥ and B responses) without violating feedback gain limits which were
set at unity for this analysis. The design yielded a feedback gain matrix K
(eq. (47)) as

-0.19 -0.2 -0.66

-0.16 0.19 -0.6

TABLE III.- MODAL CHARACTERISTICS OF FEEDBACK AUGMENTED AIRCRAFT

Eigenvalue of -
Eigenvector
components -6 -1.0 + j0.20 -0.011
(Roll subsidence) | (Dutch roll) (Spiral)
p 0.986 0.01 0.02 -0.013
P .009 35 .53 -.031
B -.007 .25 .72 -.082
B -.165 -.05 .05 -.996 |

Table IITI illustrates that the closed-loop eigenvectors have approached
the desired mode-decoupled structure. In particular, the desired modification
achieved in the eigenvector pair corresponding to the Dutch roll mode should be
noted. The improvement in transient response characteristies using the feedback
controller is illustrated in figure 1. The response curves demonstrate that the
cross coupling between the roll axis (p,$) and yaw axis (¥,B) has been signifi-
cantly reduced.
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CONCLUDING REMARKS

New sufficient conditions to assign minimum (n,m + r - 1) eigenvalues by
means of output feedback have been derived. In general, in addition to the
assignment of minimum (n,m + r - 1) eigenvalues, (r - 1) eigenvectors can be
partially assigned with at most m entries in each vector arbitrarily chosen.
The utility of assigning both eigenvalues and eigenvectors for response modifi-
cation is illustrated by designing a feedback controller for the lateral dynam-
ies of an aircraft. The synthesis algorithm is computationally simple and
involves only the solution of a linear system of equations.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

December 19, 1977
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APPENDIX A

REDUCTION OF (C,A,B) TO CANONICAL FORM

Consider the given system of the form

X = A% + Bu
- (A1)
Cx

y
Step 1:

Reorder the state variables (if necessary) so that the measurement matrix (
is of the form

Ca (G : G (82)

where Ca € RI'*' and nonsingular. It should be noted that the dimensions
of the partitioned matrices in equation (A2) are different from those in
equations (3).

Step 2:

Apply a coordinate transformation

X = Tox (43)
where
G -1 6. -1(En - E)
Ca G~ 1(&, - Cs
Tg = e e e e e e e e (Al)
0 In-r
_ _ 0
and Cg € RP*O-I' and Cg = |. . .| with c¢ as defined in equations (3). The
c

transformed system

X (T0-1ET0)X + T0‘1§u

(A5)
y = aTox

has the desired form of equations (1).
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APPENDIX B

EIGENVALUE/EIGENVECTOR SELECTION PROCEDURE

For completeness of presentation, an existing algorithm (ref. 8) developed
for eigenvalue/eigenvector assignment using state variable feedback is detailed
in this appendix. Extensions are made to adopt the algorithm for the output
feedback cases discussed in the main text.

SPECTRAL SYNTHESIS ALGORITHM

A direct way of constructing a nonsingular modal matrix is to generate the
eigenvectors which satisfy equation (6) sequentially and insure that they do
not lie in the eigenspace generated by the vectors already synthesized. The
algorithm presented accomplishes this construction while constantly testing to
insure that the set of eigenvectors is a linearly independent set to a degree
determined by a numerical tolerance parameter set by the designer. For clarity
of presentation the algorithm is detailed for real eigenvalue assignments. The
following notations are used throughout the algorithm presentation:

(n €j is an n-vector with jth entry equal to 1 and all other entries
equal to zero.

(2) vﬂ = [zﬂ : wﬁ] is the kth eigenvector, where 3z, 1is designer
specified.

(3) vk(k'1) = Q(k‘1)Vk, where Q(O) = I, and Q(i), i # 0, is defined in
(7) which follows.

(4) V-k(k‘1) is the jth entry of Vk(k‘1) and for convenience of nota-
tion is denoted Oy.

(5) A(1)  is the set of indices (1, 2, . . ., n).

(6) M(k), an elementary upper triangular matrix of order n and index 1,
takes the form

MK) = 1, - Be] (B1)

with e36 =0 and 6 is chosen so that

MKy, (k=1) < okej, J € {A(k§> (B2)
where A(K)  is a subset of A1) (defined in (5)) containing the indices not
already used in the construction of the matrices M(1 , M 2 s v e ey M(k-1
M(kK)  can be constructed if and only if o 2 0 (ref. 8).

(1) Qlk=1) = M(k‘1),M(k'2), C e m(1) (B3)
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APPENDIX B

The algorithm is now accomplished by completing steps 1 to 4 for
k=1, 2, .. ., n and by computing the feedback gains from equation (12)

using C = Ij.
Step 1:
For A = Ay, compute &y = det [AkIn-m - F]

(a) if &8y = 0, perturb Ap to [Ak + ekkj and repeat the calculation of

Sk
(b) if &y # 0, proceed to step 2.
Step 2:
Compute
p(k) - MkInom - FI71[G + AS] (BY)
Step 3:

For some Jj € {A(ki>,
(a) Compute l:gj(k)]' = f'j(k—1) + h.(k—1)D(k) Wher-e [f.(k—1) H hj(k—1):,
is the jth row of the transformation matrix Q(k—1); gj(k € RM  and
hj(k-1) e r1x(n-m)
(b) Compute
]
O = [gj(k)J Zy (B5)

(i) if oy # 0, compute w = D(k)zk and M(X) (from eq. (B2)) and
return to step 1 for the next value of k.

(ii) if oy = 0, select another j € <A(ki> and return to step 3(a).
(1ii) if og = 0 for all j e {a(k)}, go to step .
Step 4:

For some J € {A(k)},

(a) if g-(k) # 0, perturb 2z, to (zy + €zy) to make oy # 0, compute
Wk and M(k), and return to step 1 for the next value of k.

(b) if gj(k) = 0, select another j € {A(ki> and return to step 4(a).

(e) if gj(k) = 0 for all j & {A(kf}, perturb Ax to (Ag + €Ay) and
return to step 1.
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APPENDIX B
The following observations can be made regarding the algorithm as outlined.

(i) Extension of the algorithm to assign complex eigenvalues is straight-
forward (ref. 8).

(ii) If some of the eigenvalues of A coincide with those of F, either
a perturbation can be made in the eigenvalue specification as in step 1, or
special eigenvector structures can be derived by noting that equation (6) has
a solution for z; = 0 (ref. 8).

(iii) The iterative procedure in part ii of step 3(b) attempts to meet
exact eigenvalue/eigenvector specifications. In step 4(b) an attempt is made
to meet exact Ay specifications with slightly relaxed zy specifications.
The test in step 4(c) indicates that the A, specification implied that the
corresponding vy lies in the eigenspace already generated. The test thus
demands an eigenvalue perturbation.

(iv) The Oy Pprovide a good measure of the linear independence between
eigenvectors, if all vectors are normalized to a standard basis. Since the
determinant of the modal matrix V is given by the product of the Oy,

(k @1, 2, . . ., n), the numerical ill conditioning of V for inversion can
be effectively controlled by setting a tolerance on the 0y.

OUTPUT FEEDBACK EXTENSIONS

Since the distribution matrix C is already in the special canonical form,
generating linearly independent vectors to guarantee existence of feedback
matrices in equations (12) and (14) is simply achieved by restricting the admis-
sible pivotal indices A(k) (eq. (B2)) in the spectral synthesis algorithm as
follows.

Case I: Computing K, Equation (12)

In equation (5), 1let AP(1) be the set of r column indices correspond-
ing to the r 1linearly independent columns of C(Ir). Then apply the spec-
tral synthesis algorithm using Ar(1) instead of AQ (notation (5)) for
ka1, 2, .. ., r. This application guarantees the invertibility of CV\T
in equation (12).

Case II: Computing K, Equation (14)

In equation (5), let At(1) be the set of t column indices not contain-
in% the vector ¢ (eqs. (3)). Then apply the spectral synthesis algorithm using
At 1) instead of A{1) (notation (5)) for k = 1, 2, . . ., t. This applica-
tion guarantees the nonsingularity of N7 (eq. (13)). Further, since in this
case CN is rank t, the feedback matrix K (eq. (14)), computed using the
relation

Ron = By=1[2(t)ny - aqN] (B6)
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eigenvalues, is not unique. However, a minimum norm least-squares

solution for K can be computed using the pseudo inverse of CN.
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Figure 1.- Comparison of free aircraft and augmented aircraft response to roll
rate and sideslip step disturbances. A indicates free aircraft response
and B corresponds to augmented aircraft response.
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