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INVESTIGATION OF GROUND REFLECTION AND IMPEDANCE
FROM FLYOVER NOISE MEASUREMENTS '

Robert L. Chapkis and Alan H. Marsh

INTRODUCTION

1

All outdoor measurements of sound pressures from a stationary or a moving'
source will be affected by ;ound‘waves reflected from the ground surfaces.
The reflected waves interfere, constructively and destructively, with the .
sound waves traveling directly from the source to the microphone. The magni-
tude and frequency of the interference effects are functions of the geometrical
relationships betﬁeen the source, microphone, and ground plane; of the speed
(or Mach number) of the source if it is moving; and the specific acoustical
impedance of the ground surface (i.e., the complex ratio of the sound pressure

to the particle velocity of a sound wave at a point on the surface).

For aircraft noise, ground reflection and ground impedance phenomena are
an important consideration because of the effects of the interference patterns
on measurements or predictions of the spectrum of the signal. Indeed, the
size of noise exposure contours around airports is critically dependent on the
assumed ground attenuation factor which is related to the specific acoustical

impedance of the local terrain where the sound waves are reflected.

Ground reflection effects are not, of course, the only phenomenon in-
fluencing the measurements of aircraft noise. As the sound waves propagate
from the source(s) of noise on an airplane, the acoustical energy is reduced
by atmospheric absorption effects — effects that are a function of the temp-
erature, pressure, and humidity of the air and the frequency of the sound.
The path of a sound wave will be diffracted (bent) by temperature and wind
gradients. Sound waves can also be scattered in various directions by the
velocity and temperature fluctuations associated with atmospheric turbulence.

~

During 1974, the Federal Aviation Administration (FAA) became concerned
~about the affects of sound propagation phenomena on measurements of aircraft

" flyover noise.- The FAA arranged to obtain measurements of aircraft flydver



noise levels in an extensive series of tests in October and November 1974. The
October tests were conducted at Fresno Air Terminal in Fresno, California. The
November tests were conducted at Yuma International Airport in Yuma, Arizona.
McCollough and True, reference 1, and True, reference 2, describe the FAA pro-

gram and report results of studies of atmospheric absorption phenomena.

The NASA Langley Research Center assisted the FAA in conducting the tests
by providing instruments and test personnel. NASA personnel decided to enrich
the FAA program by installing additional microphones to acquire data that
could be used to study ground reflection phenomena in noise measured by micro-
phones at different heighﬁs above different ground surfaces. A total of six
microphones were used. NASA personnel have studied some of the test data and
have presented results concerned with the effects of atmospheric absorption
and microphone height on the measured noise levels, see Hosier and Hilton,

reference 3.

Data were availablé from the six microphones at 0.5-second intervals
throughout the duration of each aircraft flyover. A total of approximately
270 runs was made on various days with a variety of meteorological conditioms.
A representative set of data was selected from the large sample of available

data for the analyses described in this report.

Some ground-surface acoustical impedance data have been obtained with an
impedance tube or by probing the sound. field in front of a loudspeaker aimed
at the ground, see Dickinson, references 4 and 5. Ventres, Myles, and Ver,
reference 6, used a correlation technique in their studies of the acoustical
impedance of ground surfaces. In 1974 and 1975, the A-21 Committee of the
Society of Automotive Engineers reviewed the available data and theories and
developed an Aerospace Information Report, reference 7, with a recommended
procedure for assessing ground reflection effects from stationary noise sources.
Embleton, Piercy, and Olson, reference 8, present the results of analytical
and experimental studies of outdoor sound propagation over surfaces with finite
acoustical impedance. Norum and Liu, reference 9, conducted an experiment
with a moving acoustic monopolé-source and compared their measurements with
calculations made with a wide range of assumed values for ground impedance.
Two recent reviews of the state of the art in ground impedance-and reflection

effects are given in papers by Oncley, reference 10, and by Piercy, Embleton,



and Sutherland, reference 11. Knowledge of the acoustical impedance of the
ground surface is a common requirement in application of any of the theoretical
models to practical problems of outdoor sound propagation. Most of the

available data only provide impedance values over a limited range of frequency.-

The goal of the study described in this report was to deduce the acoustic-
al impedances of the concrete and spaded soil surfaces beneath four of the
six microphones by examining the spectra from ail six microphones on the
basis of ground reflection theory. As will be shown later in the report, the
measured data and the .analyses showed that aircraft flyover noise spectra are
rather insensitive to changes in ground impedance for the sound propagation
angles for which data were obtained. Neverthéless, by incorporating reason-
able impedance models, ground reflectionvtheory was able to explain many of
the observed differences between sound pressure levels measured by the
different microphdnes at most of the timés throughout the duration of the
flyover. Invthe remainder of this report we describe the tests that were
conducted and the data that were available to study. The analytical basis for

the investigations is presented followed by a discussion of the results.



SYMBOLS

[All dimensional quantities have SI units]

e speed of sound

Ci cosine integrai

£ frequency‘

fi geometric mean frequency of 1/3-octave band

Af " bandwidth of 1/3-octave band

FL focal length of camera used to photograph test éirplane
h microphone height
“H- airplane height

i VEL

IL image length in phoﬁograph of test airplane

IRIG Inter-Range Instrumentation Group

') distance from point on the ground below the microphone to the point

where the incident sound wave reflects from the ground

M airplane Mach number, V/c

AN difference between the sound pressure level measured above a
reflecting surface and the free-field level at the same location

(equation 3)

OL. © object length or true length of aircraft component in photographs
to determine height overhead

P sound pressure

P . sound pressure at microphone

mic

Q complex reflection coefficient; Q.= iQ] eld

|Q] absolute magnitude of the reflection coefficient

r path length of direct ray from a stationary sound source (figure 7)
r' - path length of reflected ray from a stationary sound noise (figure 7)
Ar for a stationary sound source, thé difference between reflected-ray

path length -and direct-ray path length (figure 7); Ar = r' - ¢



Rl

8"

<>

real part of complex impedance; also the path length of the direct
ray from the position of a moving sound source at the retarded
time t -~ (R/c) to the microphone (figure 10)

path length of the direct ray from the position of a moving image
sound source at the retarded time t - (R'/c) to the microphone
(figure 10)

for a stationary sound source, the ratio of path length of direct
ray to path length of reflected ray; s = r/r'

For a moving sound source, the ratio defined by (R/R')[(1-M cos 8)/
(1-M cos 8")] '

sine integral

time ' .-
retarded time for emission of sound from the source; te = t - (R/c)
retarded time for emission from the image source; té =t - (R'/c)

time after IRIG start time

airplane speed

spectral density of mean-squared sound pressure
horizontal distance from source to microphone (figure 10)
complex impedance; Z = R + iy

constant in equation 3; o = 0.7275 for 1/3-octave-band analysis

constant in equation 3; B8 6.3252 for 1/3-octave-band analysis
phase of reflection coefficient

angle between the horizontal and the direct ray from the source at
the retarded time t - (R/c) (figure 10)

angle between the horizontal and the ray from the image source at the
retarded time t - (R'/c) (figure 10)

wavelength of sound

density of air

imaginary part of complex impedance

incident~ray grazing angle at the ground surface (figure 7)

time average or mean value



TEST ARRANGEMENTS AND GENERAL PROCEDURES

As mentioned in the Introduction, attempts were made to record noise data
for a total of approximately 270 rums at the Fresno and Yuma test sites. To
- limit somewhat the choices for the data to be analyzed, it was decided to

select runs only from those recorded at Fresno.

At Yuma, the tests were ail conducted at night or in the early morning
hours (2200 to 0600 hours) because a test objective was ﬁo acquire data when
there was a nocturnal wind shear aloft. Since airplane tfacking was by means
‘of polaroid photographs, there was larger inherent error in the height data
from Yuma because of the requirement to scale the distance between the streak
left by the wingtip lights. Furthermore, the microphones 'over the runway'
were along the edge of the runway in line with the runway lights. The winds
were higher at Yuma than at Fresno where the wind was generally calm. At
Fresno, the 'over-the-runway' microphones were on the centerline of a lS.ZFm—j
wide concrete taxiway so that the surface under the microphone was uniquely de-

fined and the same for all reflected waves impinging on the microphorne.

The general layout of the Fresno Air Terminal is shown in figure 1. The
airport is located about 11 km northeast of downtown Fresno. It is at a field
elevation of approximately 101 m above mean sea level. The airport serves the
central San Joaquin valley. Commercial air-carrier jet transports, business
jets, and the California Air National Guard use the 2932-m~long by 46-m~wide
paved and lighted runway 11L/29R. General-aviation aircraft use the 904-m-—

long by 23-m~wide paved and lighted runway 11R/29L.

The flyover noise- tests were conducted by flying over the centerline of
the essentially unused taxiway B to the north of the aétive runways. A series
of nominally level flights was flown in a racetrack or figure 8 pattern. The
prevailing wind, when there is wind, is from the northwest (i.e., from a
compass heading of 290 degrees). There were no lights along the taxiway and
no asphalt or macadam shoulder along the edge of the concrete. The ground
surface along the edge of the taxiway had been scraped clear of weeds and was
relatively -smooth and flat. The ground was rather hard and compact. The soil
was a sandy loam with an unknown moisture content although it was probably

quite dyy after a typical long, hot summer with little or no rain.



APPROXIMATE LOCATIONS
FOR MICROPHONES

Ty

TAXIWAY B

MAGNETI(
NORTH
24
YR

Figure 1.-Generalllayout of Fresno Air Terminal.

The six microphones were placed in two groups of three on, and to the
north of, the taxiway as indicated by the circled regions in figure 1.

Microphones 1, 2, and 3 were in one group; microphones 4, 5, and 6 were in
g o ’

the cother group.

The FAA test plan involved two different test airplanes, a McDonnell
Douglas series 10 DC-5 and a McDonnell Douglas model 61 DC-8. Only a relative-
1y few runs were recorded using the DC-8 and it was decided to further limit
the selection to only the data recorded using the DC-9-10 test airplane.
Moreover, it was decided to omit runs where the DC-9 was deliberately flown
over the turbulence in the wake of the DC-8. Additional culling of the avail-
able data was performed by FAA and NASA personnel in their previous analyses
of the Fresno/Yuma data. The process of limiting the analyses to the best
samples of DC-9 flyovers at Fresno resulted in a set of 92 rums, out of the

270, from which a subset of data was selected for the analyses in this repert.

-~



- Figure 2 shows a 3-view of a DC-9-10 airplane. The principal dimensions
are indicated. The wingspan was the dimension usually used in calculating
airplane height becauée it was seen in true perspective when the photograph
‘was taken at the time when the airplane was overhead and the airplane actually
was flying in level flight along the taxiway centerline. The fuselage length
was available as an alternative to the wingspan, but was seldom used because of
the foreshortening produced by the nose-up or nose-down attitude during most

of the flyovers.
DATA ACQUISITION
Microphones

'Tﬁ? six microphones were located on, and to the north side of, taxiway B
according to the arrangement shown in figure.3. The two microphone stations
were separated by‘'a distance of approximately 595 m. Microphones 1 and 4 were
at a height of 1.2 m and on the centerline of the concrete taxiway. Micro-
phones 2 and 5 were flush in a l-m-sq painted plywood groundboard. Microphbnes
3 and 6 were at a height of 1.2 m in the center of a 6-m-dia circle of spaded
soil. The data from microphones 1 and 4 and 3 and 6 contain the effects of
ground reflections in the measufed spectra and were the data of most interest.
The data from the flush-mounted microphonés were used to determine the spectral
shape of free field sound pressure levels. Note that microphones 2 and 5 and 3
and 6 were not quite symmetrically placed relative to the distance from the
taxiway centerline. Photographic views of the three types of microphone

locations are given in figure 4.

The microphones were 1/2-inch-diameter air-dielectric capacitor types.
The centerline microphones and the two microphones over spaded soil were
oriented for grazing incidence throughout the flyovers under the assumption
that the airplane always flew along the taxiway centerline with no lateral

deviation for the duration of the airplane noise signal.

Table 1 lists general test information for the test airplane and the
microphones. The coordinate system used to define the microphone locations
has the origin at the point on the taxiway below microphone 1. Note that all

heights are above ground level.
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Figure 3.-Microphone locations on and to the side of taxiway B.

Windscreens were placed around the microphones at all times. Reticulated
polyurethane foam balls were used around microphones 1, 3, 4, and 6. Special

cheesecloth windscreens were used around the flush microphones at locations 2
and 5.

Data Recording System

‘The signals from the six microphones were recorded simultaneously on one
l4—channel FM instrumentation-grade magnetic tape recorder. Operational
amplifiers were used after the cathode-follower microphone preamplifiers and

the microphohe power supplies to provide sufficient current to drive the

10



(a) OVERALL VIEW OF ONE SET OF THREE MICROPHONES

(b) 1.2m OVER CONCRETE TAXIWAY

Figure 4.- Views of microphone locations.
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{c) FLUSH IN 1-m-SQ PLYWOOD BOARD

(d) 1.2m OVER RANDOMLY SPADED SOIL

Figure 4.-Concluded.
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microphone signal cables. The cables were as long as 457 m.

The tape recorder complied with the standards of the Inter-Range Instru-
mentation Group (IRIG) and used 25.4-mm-wide tape on 36.56~cm—diameter reels

operated at 76.2 cm/s with IRIG intermediate-band electronics.

Table 2 lists the principal components of the acoustical data-acquisition
system. The quartz coating on the diaphragms of the microphones provided in-
creased protection against arcing noise when the moisture content in the air

was high, at the expense of reduced sensitivity.

Acoustical sensitivity checks were made at a frequency of 250 Hz using a

pistonphone producing a nominal sound pressure level of 124 dB re 20 pPa.

Checks of the frequency response of -the data system after the microphone
were made by recording the output of a random noise generator producing a pink
noise spectrum, i.e., one with a pressure spectrum level slope of -1 dB per
1/3-octave band or a flat sound pressure level spectrum after analysis in

1/3-octave bands.

Recordings of ambient noise were obtained by starting the tape recorder
in advance of the initial increase of the airplane noise signal above the

ambient level.

A time code was recorded on one of the data channels for use in data

processing and to permit determination of airplane groundspeed. -

Note that all acoustical data were recorded without -any pre-emphasis
boost of the high-frequency signals before the recorder. The‘recording system
gain was set to yield an dptimum recording level, safely beiow the distortion
limit, for the maximum signal strength. The lack of pre-emphasis, the use of
1/2-1inch microphones, and the available signal-to-noise ratio of the recorder
limited the amount of high-frequency déta at all times throughout the flyover
and the amount of low-level data at any frequency at times before or after

the time of the maximum signal.
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Airplane Position Data

Polaroid cameras of known focal length were mdunted.on stands on the
taxiway centerline and near microphones 1 and 4. The cameras were pointed
straight’up. The plane of the film was approximaﬁély 1 m above the ground plane
and thus gave airplane héights approximately equal to the height over micro-
phones 1 and 4 at the time of closest approach, which was usually the overhead
vpoéition because runs were selected where the image of the airplane was as
close as possible to the center of the picture in order to eliminate rums with

lateral deviation from the nominal straight flight path.

~ Photographs were taken by an operator who watched the airplane and
triggered the shutter when he judged the airplane to be at the point of closesf
approach. Triggering the shutter also activated an electric signal which was
recorded as a direct-current pulse on the magnetic tape recorder. The accuracy
and reliability of this system proved to be adequate although some problems
were noted with pictures being taken too early, or too late, or not at all.
"Also, the operator occasionally was unable to, or failed to, coat the print
with the gel and the image faded and became badly scratched. For some rums,’
one, or both, of the pulsé trigger signals was not activated and time
synchronizétion was lost. Some photégraphs were not properly or adequateiy
identified. "Fortunately, several repeat runs were made for each nominal

test condition and a valid sample of useful data was easily obtained.

Airplane heights were scaled from the pictures by NASA personnel by
measuring the image length for the longest dimension seen in true perspective,
usually the wingspan as noted earlier. The airplane height above the plane

of the film, or above the height of microphones 1 and 4, was then found from

H = (FL x OL)/IL

where H is airplane height in meters, OL is the object length in ﬁeters (27.24
m for the wingspan of the DC-9-10), FL is the focal length of the camera (when
set at-infinity) in mm, and IL is the image length in mm of the object in the
photograph. The focal length of the cameras was 152.4 mm. Since two photo-
graphs were taken for each.run, there were several hundred pictures.to

catalog and read. ‘ .
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Engine and Airplane Dat.a>

No on-board system was used for automatic and ¢ontinuous recording of
time-synchronized engine and airplane data. It was considered adequate to
have a cockpit observer monitor and note on a daily log sheet the readings of

various cockpit instruments.

The test procedure was for the pilot to align the airplane with the taxi-
way, set the throttle, airspeed, and airplane configuration to the nominal or
target values for the runm, and then make no further adjustments until well
past the second microphone. Thus, assuming the flight was actually level and
straight, the use of hand-annotated cockpit logs should have provided adequate
records, which they did for most cases. Examination of several log sheets
revealed the benefit of experience as the tests proceeded and the records

became more complete and more detailed.

The engine-aﬁd airplane data available from the cockpit logs consisted
of: the airplane heading, the nominal altitude from the radio altimeter;
airplane pitch angle, flap'deflection angle, landing gear position (up or
down), takeoff gross weight,.initial fuel weight, weight of the fuel remaining,
ram (total) air temperature, and the indicated values of engine pressure ratio,
exhaust gas temperature, and 10w—§ressure shaft rotational speed for each
engine. Ehgine thrust was, of course, not measured but could be estimated
from manufacturer-supplied power setting curves for the indicated engine
pressure ratio, air temperature, and airspeed. Knowledge of engine thrust was

not required for this study and was therefore not estimated.

Since airspeed is an important»parameter in the analysis, the airplane's
speed was calculated using the time interval between the leading edges of the
pulses recorded on the tape recorder when the photographs were triggered. The
speed (groundspeed) was calculated by dividing the distance (595 m) by the
time interval., Airplane Mach number was calculated by assuming that the
groundspeed and the airspeed were equal (the winds were calm to negligible at
the ground and aloft during the noise testing) and determining the speed of
sound at the nominal height of the airplane from the air temperature measured
by the meteorological test airplane and interpolated to the nominal time of

the flyover noise test.
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To control airspeed, all flights were flown with,the'landing gear extend-

ed.  Flaps were deflected as required.
Meteorological Data

Meteorological data (air temperature ahd relative humidity) were measured
at a height of 1.2 m by stationary instruments. A propeller-powered light
aircraft was used to sample the air temperature and relative humidity as a
function ef height above ground level starting at a height of 30.5 m and con-

tinuing to a height of 915 m at increments of 30.5 m.

Meteorological data were sampled periodically throughout the day at times
close to the times of the flyover noise tests. Linear interpolation was used

to estimate data at the time of the noise tests.

Station barometric pressure was read hourly by National Weather Service
personnel at the Fresno Air Terminal. WNo vertical profiles of air pressure
were measured. Linear interpolation was also used to estimate the pressure.

at the time of the noise tests.

‘ Measurements of air temperature, relative humidity, and air pressure were
obtained in order to provide a general indication of the atmospheric conditioms.
The meteorological conditions of the atmosphere have important effects on sound
propagation from the source to the receiver. However, except for the possible
effects of freezing or baking and the resulting hardéning or drying out of the
soil under microphones 3 and 6 and for thermal ‘gradients and temperature
fluctuations in the layer of air near the ground surface where wave reflections
occur, it was not considered necessary to do more than to note the availability
of the meteorological data. The'air'temperature—was-always above 0°C-and -the

weather was generally warm and dry.

‘Wind data were not available. During any test, the wind speed was always

negligible.
DATA SELECTION

The Fresno flight tests were conducted in the period from 14 to 25

October 1974. The initial efforts to screen and select runs for analysis

18



resultad in a list of 92 rums as mentioned earlier. The listing of the 92

runs is given in table 3 according to weather condition. The primary variables
are the nominal or target height of the test airplane, the nominal or target
value of referred thrust per engine, the nominal or target airspeed, and the
weather. The descriptions of the weather and the nominal airplane/engine
parameters were taken from raference 1. The description of 'baseline' in
'table 3 signifies a near-standard temperature lapse rate, air temperature and
relative humidity within the limits of Part 36 of the Federal Aviation Regula-
tions, and calm wind at any height from the ground to a height greater than
the height of the test airplane. The Fresno tests were run during the day and

in the evening from 0700 to 2300 hours.

Since it was not feasible or - necessary to examine more than a fraction of
rhe available data, the following ground rules were used to select the rums :o

be studied.

e From inspection of the polaroid airplane-positioning photographs,
eliminate those runs where the airplane was significantly left or right of the

taxiway centerline. .

e Eliminate runs where data from any of the six acoustic data channels

were missing or suspectad of being poor quality.

¢ Concentrate on runs with baseline meteorological conditions in order
to avoid the refraction effects occurring as the sound waves propagate through

temperature inversioms.

e Concentrate on runs made well after sunrise and before sunset to avoid
the scattering and refraction problems associated with the thermal gradients

at these times.
e Omit any runs made after sunset.

e Concentrate on runs at the nominal heights of 152 and 335 m and at the
higher engine power settings in order to have data with the best signal-to-noise

.ratio over as wide a range as possible of frequency and angle of incidence.

19
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e Favor rums at the lower airspeed in order to minimize moving source

effects.

e Eliminate runs where the data logs and other test records indicated
there was a good possibility of interfering noise signals from the operation
of other aircraft such as commercial jets, helicopters, and Air National Guard

F-106 airplanes.

e Eliminate runs where a photograph was missing or where other important

test parameters were not available.

e Include some repeat runs to help establish a measure of confidence in

the results.

e Favor rumns where valid pre- and post=-acoustical sensitivity and system
frequency response calibrations were available. Eliminate runs where neither

pre- or post-run calibrations were available.

The result of applying these groundrules or guidelines to the set of 92
runs inm table 3 was the selection of the 39 runs shown in table 4. For each
grouping of data there were two, three, or four runs. There were five groups
at the nominal height of 152 m, five at 335 m, and three at 610 m. Ten of the
thirteen groups were for the mid power setting, two at the highest, and one at
the lowest. Eleven of the thirteen groups were at the lower airspeed, two at
the higher airspeed. Most of the tests occurred in the late morning or early
afternoon hours. Low inversions were present for only two of the thirteen

groups.

To appreciate the scope of the data provided by the 39 runs in table 4,
assume that the desired coverage of propagation angles requires a set of twenty
four 1/3-octave-band sound pressure levels every 0.5 second from each of the
six microphones locations for a duration of 30 seconds [60 time samples] for
the 152-m flyovers,'of 55 seconds [110 time samples] for the 335-m flyovers,
and of 75 seconds [150 time samples] for the 610-m flyovers. This arithmetic
givés 300 samples of 1/3-octave-band data from the 152-m flyovers, 550 samples
from the 335-m flyovers, and 450 samples from the 610-m flyovers — or 1300
samples per microphone. For the six microphones, the total set of data would

be 7800 samples or a grand total of approximately 187,200 sound pressure level
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values. There would be even more numbers if overall or A-weighted levels were
to be included. Even though considerable data loss was anticipated because of
interference from ambient or background noise, there still was more than enough
information available from the rﬁns listed in table 4 to conduct the intended

study of ground reflection and impedance.
DATA PROCESSING

Discussions of the availability of consistent and reliable flyover noise
data from the Fresno/Yuma tests were held with NASA and FAA personnel prior to
initiating this study of ground reflection and ground impedance. Although
some data had been analyzed and processed for the objectives of the tests (see
references 1, 2, and 3), the consensus of opinion was that re—analysis and
re-processing of selected runs was mandatory to obtain a complete set of con-
sistent data. The Noise Technology Laboratory of The Boeing Company in
Seattle, Washington was selected to analyze and process the analog tape

recordings under subcontract.

The original analég tape recordings containing the flyover noise signals,
time code signals, overhead timing pulses from the polaroid cameras, and
acoustic sensitivity and system frequency response calibrations were obtained
from NASA along with information on windscreen and microphone frequency-response
corrections. NASA personnel also provided guidance on which of the pre-run or
post-run calibrations should be used for each of the 39 data rums. Airplane
position data, copies of the cockpit log records for engine and airplane

performance data, and meteorological data were also provided by NASA.

Microphone and system frequency response corrections used in processing

the data are given in Appendix A.

A schematic diagfam of the major éomponents in the Boeing data-reduction/
data-processing system is given in figure 5. Table 5 lists the particular
instruments used tb accomplish the functions in figure 5. The objective of
the data ﬁrocessing was to produce 24 1/3-octave-band sound pressure levels
(50 to 10,000 Hz) at half-second intervals over the duration of the aircraft
noise signal for each of the six microphones from each of the 39 rumns of

table 4. The sound pressure levels were to be.referenced to 20 micropascals
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ANALOG DATA . 1/3-OCTAVE <+ 12-BIT DIGITAL
TAPE > SELECTOR = REAL-TIME DIGITAL _ t=M  TAPE
REPRODUCER UNIT ANALYZER COMPUTER RECORDER
TIMECODE CONTROL
»  READER TERMINAL
COMPONENTS OF DATA REDUCTION SYSTEM
DIGITAL 16-BIT DIGITAL
TAPE > DIGITAL TAPE
REPRODUCER COMPUTER RECORDER
' 3 L
CONTROL ELECTROSTATIC
TERMINAL PRINTER

COMPONENTS OF DATA PROCESSING SYSTEM

Figure 5.-System components for reduction and processing of flyover noise data.




DATA

Table 5. - Components of systems for reduction_ and
processing of flyover noise data

REDUCTION

DATA

BELL & HOWELL MODEL VR 3400 ANALOG FM TAPE REPRODUCER -
BOEING DATA SELECTOR AND TAPE CONTROL UNIT
GEN RAD MODEL 1921 1/3—OCTAVE—BAND REAL-TIME ANALYZER

ASTRODATA MODEL 5400 TIMECODE READER

DIGITAL EQUIPMENT CORP. MODEL PDP 8/1 12-BIT DIGITAL COMPUTER

ASR-35 TELETYPE TERMINAL FOR SYSTEM CONTROL

DIGITAL EQUIPMENT CORP. MODEL DEC TU20 DIGITAL TAPE RECORDER

PROCESSING

PERTEC MODEL 8840-8-45 DIGITAL TAPE REPRODUCER/RECORDER
PRIME MODEL 400 16-BIT DIGITAL COMPUTER
TEKTRONIX MODEL 4014 TEﬁﬁINAL FOR SYSTEM CONTROL

GOULD MODEL 5000 ELECTROSTATIC PRINTER

25



and corrected for all known sources of error.

The computer that controlled the data-reduction system reduired specifica-
tion of the IRIG time code at the desired instant for beginning the digitization.
The IRIG start time for digitization (in hours, minutes, and seconds) was
determined from the IRIG time for the overhead timing marks and an estimate of
the time of occurrence of the sound signal at a selected sound propagation

angle prior to the overhead time. The desired duration of the data sample was
calculated from the time for a selected sound proPagatibn angle after overhead.
,The calculated start and stop times assumed that the tape recording had been
started well before the beginning of the airplane noise signal and had con-

tinued well after the airplane had passed overhead.

The IRIG times associated with the leading edges of the overhead event
pulses were determined by displaying the recorded time code and event pulse.
signals on a dual-channel oscillograph. A total of 78 overhead times (two for

each of the 39 runs) was determined in this way.

From the geometry of the tests, figure 6, the time when a sound signal is
received at a microphone under the flight path can be related to the sound
emission or sound propagation angle 6. The angle y denotes the position. of
the airplane on the flight path at the time the sound emitted at an earlier
time (angle 8) reaches the microphone. The airplane is considered to be a
point sound source moving with speed V and subsonic Mach number M along the
level flight path at a height H above the microphone. Angles are measured
from the nose of the airplane relative to the flight path (or to the

horizontal).

"The time is assumed to be equal to zero when the airplane is directly
overhead, i.e., when vy = 90°. The time is positive for y > 90° and negative

for y < 90°.

For the geometry in figure 6, it is readily shown that the relation

between airplane position angle and sound emission angle is given by

tan y = (cot 8 - M esc 9)_1 (1)

from which it follows that the relation between sound reception time and
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FLIGHT PATH

\— MICROPHONE

Figure 6.-Geometrical relationships for relating sound emission angle 8
to sound reception time at the microphone.

sound emission angle is

(H/V) (M csc 6 - cot 6). @
When vy = 90° and t = 0, then 8 = c:os—l M.

In order to determine in advance what the desired IRIG start times and
digitizing durations should be, it was arbitrarily decided to attempt to
obtain data between sound emission angles of 10° and 170°, assuming valid data
were on the tape for this range of angles or recording times. Airplane speeds
were calculated from the 595-m distance between the microphones or cameras
and the duration between event markers on the oscillograph traces. Airplane
heights were supplied by NASA. Airplane Mach numbers were determined from

the calculated airplane speeds and an assumed speed of sound of 342 m/s.

The results of these calculations are shown below.
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Start time relative
to IRIG time at

Run numbers overheadJ sec_ Duration, sec

112, 113, 115, 117, 216,

218, 219, 365, 366 =40 | 100
118, 121, 122, 123, 211,

212, 214, 215, 315, 316, -30 ) 70

319, 360, 361, 362, 371,

373, 374 '

376, 378, 379 - -15 | 35
272, 274, 275, 292, 295, -10 _ 25

321, 322, 326, 358, 359,

In practice, it turned out that most of the recordings were either started
too late or cut off too soon to adhere to the calculated start and stop times
shown above. While the Boeing personnel attempted to comply with the desired
start and duration timés? the actual times were significantly different,
especially for the runs at the nominal 335-m and 610-m heights. Contamination
' of the data by high ambient noise levels also plagued many of the data samples

at times before or after overhead.

Once the operator had made a judgment of the best IRIG start time and
digiﬁizing duration for a particulér run, the digital computer in the data re-
duction system (see figure 5) automatically started the analysis at the
beginning of the first half—second'sémplé. Digitizing times on the Boeing
system always began at the start of each half-second data sample.l The actual
integration or averaging period was 495 ms; a period of 5 ms was required to
read out the set of 24 sound pressure levels to the digital magnetic tape

recorder and to get set to digitize another set of 24 levels.

The digital magnetic tape recording resulting from the data reduction
step contained the indicated 1/3-octave-band sound pressure at the half-second
intervals, the system frequency-response correction factors, the correction
for acoustical sensitivity (i.e., the difference between 124.0 dB and the
indicated band level for the 250-Hz tone), recording gain settings for the data
and the acoustic calibration, and event identification such as run number and

IRIG start time.
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Ambient noise levels were digitized from a sample of the recording prior
to the IRIG start time for the beginning of the aircraft noise signal. The
ambient noise levels (as well as the 124-dB, 250-Hz calibration tone) were

integrated (time averaged) for an 8-second period.

During the data-reduction process, it became necessary to abort the
attempt to acquire data for rums 365 and 366. For both of these runs the
original analog tape recording was started when the airplane was almost
overhead. There was no usable sample of ambient noise and most of the
before-overhead data was lost. Thus, data were obtained for only 37 of the

39 runs in table 4.

In processing the data, the operator entered, via the computer control
terminal, the commands to read a set of data from the digital magnetic tape,
to adjust the indicated levels for differences in gain and level of the
250-Hz calibration tonme, and to incorporate the frequency-response correction
factors. Overall sound pressure levels and A-weighted sound levels were cal-
culated for each half-second set of 1/3-octave-band sound pressure levels.
The computer also read the 1/3-octave-band sound pressure levels for the
ambient noise recording and determined adjustments for amEient noise inter-
ference for each set of data. Additional identifying information was also
entered at the control terminal. The computer then controlled the output
to a second digital magnetic tape recording and to a tabulation on the

electrostatic printer.

No additional smoothing or averaging of the data, beyond that incorporated
in the 495-ms period of digital integration by the Gen Rad 1921 real time
analyzer in the data reduction system, was included during data processing.

No running average of two or three half-second data samples was used to
simulate a highly damped meter. For the objective of the present study, it
was considered appropriate that each half-second data sample represent just
data in that half-second for optimum correlation with the position of the

airplane at the midpoint of the half-second period.

The procedure used to adjust the data for ambient noise interference
was to subtract the mean—square pressure of the ambient noise level from the

mean-square pressure of the contaminated noise signal when the indicated sound



pressure level for the data was between 5 and 10 dB more than the correspond-

ing level of ambient noise. For levels less than 5 dB above the corresponding
ambient noise levels, it was not felt that any reliable ambient noise adjust-
-ment could be made and the output in that band was set to a predetermined

negligible level.

No pre-emphasis adjustments were included because none were used during

data acquisition.

The output data were provided to the precision of the nearest tenth of a
decibel. The accuracy of each sound pressure level value, however, is estimat-
ed to be approximately + 0.5 to + 1.0 dB. The resolution of the Gen Rad
analyzer is + 0.25 dB. The accuracy of the pistonphone calibrator is at best
+ 0.2 dB. The repeatability and internal consistency of the data for the 37
runs, however, are considered to be very .good as confirmed by the analyses

presented in subsequent sections.

The digital output data tape was 12.7-mm-wide with 9 data tracks, a pack-
ing density of 800 bits per inch, and odd parity. The information was stored
on the tape using the character set defined by the EBCDIC (extended binary
coded- decimal interchange code) system. This format is compatible with the

tape drives of most large-scale digital computers.

The tabulated output was printed on 8 1/2 x 11 inch paper_by the electro-
static printer. A sample of data for one microphone from run 295 is given in
table 6. Note the value of -350.0 dB chosen for the negligible sound pressure
level when the level of ambient noise contamination was too high. Appendix B
contains the associated airplane, engine, and meteorological data for each of
the 37 runs that were finally processed. Table B20 gives the data correspond-

ing to the sound pressure levels in table 6.
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THEORY OF GROUND REFLECTION EFFECTS

In order to interpret. the ground reflection effects in the DC-9 flyover
noise measurements it was necessary to use results from ground reflection
theory. Theoretical predictions of ground reflection effects for static noise
sources have been rather'well developed, at least for idealized situationms.
However, few theoretical investigations have been conducted for mo#ing noise
sources above a reflecting surface. In the following sections we review re-
sults from ground reflection theory for static noise sources and then present

new analyses of the effects of source motion on ground reflection phenomena.
Static Noise Sources

The importance of ground reflection effects in the analysis of sound
measurements has been recognized for some time. A number of theoretical
studies have investigated various aspects of the problem such as effects of
finite ground impedance dnd near-grazing wave-incidence angles. A good list
of references related to these studies is given in reference 10. Reference 7
also has an extensive bibliography of related studies. The studies (all for
static sound sources) showed that large distortions of the free-field sound
spectra can be caused by ground reflections. The magnitude of the distortioms
depends on the heights of the source and receiver, the distance between the
two, the acoustical characteristics of the reflecting sufface, and the frequency

‘of the sound.

\

The spectral distortions can be analyzed by considering the signal receiv-
ed by a microphone as the summation of a direct wave from the sound source
plus a wave reflected from the surface. The geometrical relationships are
shown in figure 7. The mean square pressure at the microphone depends on the
parameters Ar/A, s = r/r', and a reflection coefficient Q according to the

following . equation

sin (uézﬁ

AN = 10 log,q [1 +'(s'|Q|)2'+ 2 (s|q]) cos (B i—r - 8)1. (3)

@ )

The equation gives the difference AN between the sound pressure level measured

above a reflecting surface (i.e., the direct plus the reﬁlected signals) and
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Figure 7.- Geometry for ground reflection analysis for stationary source.

the free-field level at the same location with no reflecting surface (i.e.,

the direct signal alone).

The constants o and B have the . following definitions for constant-percent-

age-bandwidth filters

a = 2m AE/2f 5 8 = 27 [1+ (Af/Zfi)z]l/z

where Af is the bandwidth of an ideal filter and fi is its geomeﬁric mean

frequency.

1/6 _ ,-1/6

For ideal 1/3-octave-bands, Af/fi = - and o and B have the

following values
) e = 0.7275; B = 6.3252.

The wavelength of the sound is A, the quantity Ar is the difference r'-r be-
tween the reflected and the direct path lengths, and the reflection coefficient

Q= |Q|e16 is related to the acoustical impedance Z of the ground surface.

The magnitude of Q is the ratio of the magnitude of the reflected wave to
that of the incident wave at the point of reflection. The phase ¢ is the
difference in the phases of the reflected and incident waves. The relation

between the reflection coefficient Q and the specific acoustical impedance Z
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of the reflecting surface is given by the following expression which is wvalid

for a locally reacting surface and an incident plane wave

Q = |q|e!® = (2 sin ¥ - pc)/(Z sin ¥ + pc) %)

where Z = R+ix and R is the resistive and x the reactive part of the impedance,
i =V-1, p is the density of air, c is the speed of sound, and the product pc

is the characteristic impedance of the air.

Experimentaliy determined values of the impedance of grass—covered flat
ground have been reported by Embleton, Piercy and Olson (ref. 8). Their data
serve as a useful gauge which can be used to measure and help interpret the
results of the present program. In order to make their impedance data con-
venient to use imn calculations, the following equations were fitted to the

data in figure 8 of reference 8

R/pc = 1 + 16 (100/£)°"°

yJoc = =25 (100/£)2® (5)

Plots of the normalized resistance and reactance as determined from equation 5
are given in figure 8. Absolute value and phase of the reflection coefficient
were calculated from equation 4 and are plotted in figure 9. Note that because
of the assumption that the ground surface is 'locally reacting', the impedance

Z is not a function of grazing angle ¢ while the reflection coefficient Q is.

Knowledge of the reflection coefficient together with sound-source height
and microphone height and distance from the source is sufficient information

for calculating spectral distortions due to ground reflection using equation 3.
Moving Noise Sources

Since the sound source for these experiments was a moving DC-9 airplane,
it was desirable to consider the effects of sound source motion on ground re-
flection phenomena. Sound source motion affects the measured sound pressure
level for two reasons. First of all, since sound travels with a finite speed,
the sound received at a microphone at a time t was emitted from a different
location than the instantaneous location of the source at the time t, see
figure 6. Retarded time effects must be taken into account for moving-source

ground-reflection problems.
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‘The second effect of source motion on ground reflection phenomena is
caused by the fact that the pressure signal received at a microphone must be

time averaged in order to obtain sound pressure levels. For long averaging

‘times or high source speeds, the source may move a significant distance during

the time used for the averaging period. Therefore the geometrical relation-
ships between the source and microphones which determine the sound pressure
level also change. Those effects must also be considered for ground reflec-

tion problems.

We will now consider how retarded time effects influence ground reflec-

tion phenomena.

In order to sée some of the basic features of the problem we shall con-
sider the least complicated problem of a monépole source moving with a con-
stant speed V at a fixed height H above a perfectly reflecting surface. For
that casé, the reflecting surface can be replaced by an image source also
moving with a speed V or Mach ﬂumber M = V/c, where c¢ 1is the speed of sound

in the atmosphere (see figure 10).

The sound pressure measured with a microphone located a distance h above
the surface at a time t 1is given by the sum of the sound pressures due to the
real source and the image source. Héwever,>we must account for the fact that
the signal received at the microphone at time t was emitted by the real
source at the retarded emission time tg =t - (R/c) and by the image source at
the retarded emission time t; =t - (R'"/c) where R and R' are the slant dis-
tances between the microphone and the source and image source, respectively,

at the respective retarded times. From figure 10, these distances are given

by

R = ix + Vx2 + (1) (8eh)2/ (1-d) 6)

and R' = O + Vx2 + (1-M) (s 2}/ (o) )

For subsonic source Mach numbers, only the plus sign in front of the
square root is allowable. For supersonic Mach numbérs, both signs are allow-
able. Only subsonic cases -are considered here because the most-urgent need
is for a method applicable to noise measurements made during takeoff and

landing when airplanes would by flying subsonically. Supersonic Mach numbers
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‘would be applicable, for example, to a sound source convected at supersonic
speeds in the exhaust of an afterburning engine for a supersonic jet transport

and for engine test stand measurements of jet noise.

The sound pressure at the microphone is given by the following expression:

| p(t -~ (R/c)) p (t - (R'/c))
p.., (t) = + (8)
mie R (1-M cos 6)2 R' (1-M cos 6')2

where p (t - (R/c)) and p (t - (R'/c)) are the strengths of the source and
image source, respectively, at the respective retarded times, and c is
assumed constant. The factors (1-M cos 6)2 and (1-M cos 6‘)2 account for the
effects‘of'”cbnvec;ive amplification" due to the fact that the sources are

moving, see reference 12.

The mean-square pressure is obtained by squaring the expression for
Pmic(t) and taking the time average. Denoting time averages by <> and per-

forming the calculation yields

) p? (£ - (®/c) 2t - R/
<p ., (&) >=¢< - >+ < >
mLe R? (1-M cos 5)4 R'%2 (1-M cos 8")%

p (t = (R/c)) p (£ = (R"/c))
+2< 3 > 9
RR' (1-M cos 8)° (1-M cos 6'")

Equation 9 poses the problem of defining a time average when R, R', 6,
and 6' are all functions of time. This problem deserves further study.
~However, for the present'let‘uS“assume that R, R', 8, and 8' can be taken to

be approximately constant over the averaging period, and that the sound source

strength is statistically stationary. The mean-square pressure at the micro-

phone then becomes

< pz(t) >

2
2 < p (t) >
< p-, (t) > = +
mic R® (1-M cos )% R'Z (1-M cos 8"
<p (t)p (£t - [(R"-R)/c]) >

+ 2 5 5 - (10)
RR' (1-M cos 6)° (1-M cos 8'")
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The first term in equation 10 is the free-field mean-square pressure at
the location of the microphone. The ratio of the mean—-square pressure at the

microphone to the free-field mean-square pressure is

e ,
. (t)>/———P (£) > -1 + 52+ 93 <p(t) p (t_T)>/<p2(t)> (11)
mic
{(1-M cos 9) .
_ R ,1-M cos 6 = R'-R "< p(t) p (t=1)> _ OI W(f) cos 2wTf df
where § = 4, (E:E—ESE—ET) == 5 = 2=
. <p () > of W(f) df

and W(f) is the spectral density of the mean squared sound pressure.

The important parameter T = (R'-R)/c can be determined from the following

expression from equations 6 and 7

J;’" + (1-M) () - x2 + (-3 (B-n)?

l—M2

R'-R - (12)

For M = 0, the expression for R'-R reduces to the result for a static source at

the position defined in figure 10 for time t

2

R \/xz + (H+h)2 x° + (H—h)z. (13)

When the sound source is located at a shallow angle with respect to a micro-
+
phone, the quantity (l—M ) (H h)2 will be much less than unity. Then from

equation 12 the expression for R'-R can be approximated by

R'-R = 2hH/x (14)

independent of Mach number!

Furthermore, for shallow propagation angles € the quantity S is approxi-
" mately equal to unity. Also, if W(f) is taken to be a constant, implying a
white noise spectra, then equation 11 depends only on the quantity (R'-R)/A
where A is the wavelength of the sound. Thus, equation 11 is itself indepen-
dent of Mach number and depends only on source heigﬁt, microphone height, and

the instantaneous location of the source at the horizontal distance x from the

mlcroghone




The latter result is surprising since one might intuitively expect that,
if a static-source theory were to be used to compute, approximately, ground
reflection effects for a moving source, the static source should be located at
" the position where it was at the retarded time t - (R/c) and not ét the instan-
taneous position at time t. The expression for R'-R obtained by locating a
static source at the position of the moving source at the retarded time
t - (R/c) instead of at the instantaneous position of the moving source at

time t is, from figure 10 and equation 14 with distance x replaced by x + MR,

R'-R = 2hH/(xHR) = 20H/[(14M)x] = (1-M) (2hH)/x. 15)

Although this analysis indicates that for shallow angles the ''correct"
éxpression for R'-R is given by equation 14 rather than equation 15, the ex-
perimental data show that better results are obtained by locating the source
at the retarded-time position father than the instantaneous—time position

when calculating values for AN.

We will now consider the effect caused by the changing of source position
during the time period during which the sound pressure signal is averaged.
That effect will be considered éeparately from the retarded time effects by
considering the problem of a source moving at a very low Mach number — low
enough such that retarded time effects are negligible. The averaging time for
‘the pressure signal, however, is assumed to be large enough so that the source
has moved a significant distance during that time. Refering to figure 11,
position A is the position of the source at the end of a time interval.
If the source were not moving at- all, and located at position A, then the
change in the sound pressure level from the free-field value would be given by
‘equation 3 where the path length difference Ar is the value at position A,
i.e., Ar = (Ar)A. The effects of the source position changing with time are
determined from the time-averaged value of AN in equation 3 as the source moves
from A-to B.  To simplify the determination of the time-averaged AN, we first
make the approximations that the ratio s is equal to unity (generally an ex-
cellent approximation) and that the magnitude |Q| and phase § of the reflection
coefficient are constant, i.e., they do not change as the source moves over
the path from A to B. Then from equation 3 the average value of AN is given

by the following equation:
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: 2 2 ‘
<AN> = 10 log,, 1+ |Q|° + (At/A)B¥iQ%AI/l)A I] (16)

(Ar/X)
WhereI=f B sin (abr/A)

cos [(BAT/A)-61 d(Ar/A)
(Ar/X)A (aAr/A) _

After expanding the cosine term, the integral can be evaluated in closed
form in terms of sine and cosine integrals Si and Ci, see reference 13. The

resulting expression is

D= SRS (sillsre) (D)) - Sil(B) D)) - SLIG-) (B ] + Sl () 65), 1)

+ 228 e[ (pra) E5) ] - CLl(BH)ED),] - Cil (=) G ] + Cil(B-a) G5), 13(17)
Sample calculations were made using equations 16 and 17 for an airplane
sound source on the flight path and moving with the velocity appropriate to
run 272. For half-second averaging time, values of <AN> calculated using
equation 16 and 17 agreed within 0.2 dB with values of AN calculated from
equation 3 for the midpoint of the half-second interval, However, significant

differences would be found for 1 1/2-second averaging times. For the lcnger
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averaging time, source motion damps out the pattern of spectral peaks and valleys

produced by ground reflections, particularly at high frequencies.
DETERMINATION OF GROUND IMPEDANCE

One method of determining the acoustical impedance of the sﬁaded ground
beneath microphones 3 and 6 would be to use the procedure presented in reference
7. That method finds the phase angle & of the reflection coefficient by
determining, from the measured spectra, the frequencies at which spectral
peaks and valleys occur due to constructive and destructive interference be-
tween the incident and reflected waves. According to equation 3 the minima
occur, to an excellent approximation, when cos [(BAr/A - 8] = - 1 or [(BAr/))
- 8] = namr, where n = l; 3, 5 »++. Similarly, reflection peaks occur when
[(BAr/r) - 8] = 2mw, where m =0, 1, 2, +++. Those relations and the measured
spectra determine the reflection coefficient as a function of frequency. For
example, the first null in a measured spectrum due to ground reflection occurs
for n = 1 or for [(BAr/A) - 8] = m. Since Ar is determined cqmpletely'by the
aircraft location and the microphone height and the value of X corresponding\
to the center frequency of the band containing the first null can be obtained
by inspection of the measured épectrum, the value of § can be determined at
the center frequency of the band containing the first null. By repeating the
process for the second and third nulls, for the first, second and third peaks,
and for other aircraft locations (other values of Ar), values of § would be
obtained at a number of frequencies. A plot of § versus frequency could thus

be obtained for the particular reflecting surface around the microphone.

Having obtained §, the magnitude of the reflection coefficient |Q| as a
function of frequency would be obtained by comparing the spectra measured with
the microphone over concrete with the spectra measured with the microphone

over spaded ground.

The calculations would proceed as follows. For a microphone over a per-
fect reflector (concrete) the phase § is zero for all frequencies and the
magnitﬁde of the reflection coefficient lQ| is unity, by definition. Therefore,
from equation 3 for the microphone over concrete, the sound pressure level

difference is
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AN_ = 10 log o {1 +s° +2s {[sin (abr/M)1/(abr/\)} cos (8ar/M)}  (18)

and for the microphone over spaded soil the difference is

| _ N 2
AN = 10 leg {1+ (lesls)

+ (2 lo__|s) ([sin (abr/A)]1/(abx/N)} cos [(BAT/A) -6 1) (19)

where IQSs‘ is the magnitude of the reflection coefficient and 5ss the phase
change at the spaded soil surface. Subtracting equation 19 from equation 18

yields
AN_ - AN__ = 10 log,, {1 + s + 25 {[sin (a0r/A)]/(abT/A)} cos (Bar/\)}
- 10 log {1 + (les[s)z.
+ (2l ) {Isin (aaz/A)1/ (abx/M)} cos [(Bar/A) =5 1} (20)

The only unknown in equation 20 is lQSS[ since Sss has been obtained previously,
Ar is known from the position of the airplane and the microphone height, and
the sound pressure levels at the ;wo microphones are available from the measur-
ed data to determine ANc - ANSS. Thus, equation 20 would, theoretigally,

enable one to calculate IQSSI for the spaded soil beneath the microphone as a
function of frequency. The impedance Z would then be calculated using

equation 4.

Although the procedure described above for determining IQSSI and ass
appeared useful, an examination of the measured data showed that the method
would not work in practice. For the accuracy with which the noise produced by
the complex and moving aircraft noise source was measured, the measured
differences in sound pressure level were generally too small for reliable and
repeatable calculations by the above method. As an example of the problems
encountered, the measured sound pressure level differences were consistently
not the same at the same grazing angle prior to and after overhead. As
another example, the 1/3-octave-band spectfa from microphones 3 and 6 over
'spaded soil and microphones 1 and 4 over concrete were not consistently the

same for the same grazing angle in a given flyover.
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Furthermore, it turned out that the changes in spectra caused by ground
reflections were insensitive to large changes in ground impedance.. The
insensitivity became apparent from calculations of the expected differences
between the sound pressure levels measured by the microphones over concrete
and those measured by the microphones over spaded soil. The results of the
calculations are shown later in this report. The calculations were made using
different assumed impedance models for spaded soil which differed from each
other by a factor of about 16 for the resistance and a factor of 3.6 for the

reactance.

As an example of the problem caused by this insensitivity to large changes
in the acoustical impedance of the ground surfaces, there was no apparent
difference between the frequencies of the interference nulls in the spectra
from the microphones over concrete and over spaded soil. Therefore, it was
impossible to obtain the plotjof dss versus frequency that is required to

apply the method described above.

As an alternative to attempting to apply the method of reference 7 as

' -described above, we investigated the idea of choosing an impedance model,
calgulating the expected behavior of a microphone over a surface of that
impédanCe, and then comparing the results with the measured data. This idea
was ultimately adopted for analysis of the data.  As will be showmn later in
this report, the insemsitivity to changes in the ground impedaﬁce made it
impossible to deduce precise values of ground impedance by the method of
comparing calculations based on various impedance models against experimental
results. It was shown, however, that calculations based on an impedance
model appropriate for grass-covered ground (figure 8) agreed well in general

with the measurements.
_SELECT.ION OF RUNS FOR DETAILED ANALYSIS

The 37 flyover-noise runs processed for this study can be categorized
into three groups according to the nominally constant height of the flyovers.
Seven of the runs were flown at an actual height above ground level of about
625 m. Seventeen runs were flown at a height of about 350 m, and the remain-

ing 13 were -flown at a height of about 160 m.
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It was important for the purposes of this study to have data for a Qide
‘angular range of the airplane. However only the lowest height runs had a high
enough signal-to-noise ratio to provide useful data at shallow angleé.

- Therefore, the analysis efforts were concentrated on the group of 13 lowest-

height runs.

In order to analyze the large amount of available data, a computer pro-
gram was written to produce. line-printer plots of the sound pressure level
spectra from the six microphones. Data from three microphones were plotted on
each page. Thus, spectra from microphones 1, 2, and 3 were plotted together
and spectra from microphomnes 4, 5, and 6 were plotted together. Plots were
obtained for each half-second time interval for every one of the thirteen

runs, a total of about 1300 plots.

Since each page contained three plots — one for a microphone over the
concrete taxiway, one for a microphone over spaded ground, and one for-a
ground—-level microphone on a plywood board — it was easy to spot trends and
relationships among the three spectra. For example, inspection of the spectral
plots revealed that the microphone 1 and microphone 3 spectra were generally
close to each other as were the spectra from microphones 4 and 6. Thus, although
the general trend from examination of all 1300 spectral comparison plots was
that the microphones over concrete measured slightly higher sound pressure
levels than the microphones over spaded.ground, the differences were in-
sufficient to make an accurate determination of the impedance of the spaded
ground as noted in the previous section. Nevertheless, as will be shown later,
~the general trends were consistent with predictions of ground reflection
theory based on the impedance model described in the section of this report omn

theory of ground reflection effects. :

However, in some instances there were large differences between the spectra
measured with the microphones over concrete and those measured with the micro-
phones over spaded ground. The largest differences occurred primarily for
times when the airplane was at a shallow angle with respect to the microphones
and in the high frequency region of the spectra. The magnitude of the
differences in sound pressure level often changed drastically from one half-

second time interval to another.
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Because it would be impractical, énd not especially useful, to present
all of the data from all thirteen of the runs here, we instead will present
typical data to illustrate the main conclusions.‘ A typical set of data is
that from run 272. Most of the data shown will be from that run, but data
from other rums will illustrate some of the shallow-angle, high-frequency

anomalies that the data sometimes exhibited.
ANALYSIS AND RESULTS
Geometrical Re]ationshiﬁs

Before looking at the flyover noise data, it is useful to first point out
some important geometrical parameters of the tests. The geometry connected
with a flyover above the taxiway centerline is shown in figure 12. The base
of the l.2-m-high microphone stand is at the center of a spaded-ground circle.
The center is at a‘distance'dM = 23 m from the taxiway centerline. The ground
around the microphone.was spaded within a circular region having a radius of
3 m. An important geometrical parameter is the location éf the point where the
incident wave r%flects off of the ground. The distance & from the center of

the spaded dirt circle to that point is given by the following equation
2 = h cot ¥ (21)

For a micrbphone height h = 1.2 m and for a distance 2 = 3 m (the radius
of the spaded-ground éircle) the value of the grazing angle ¢y is about y = 22
degrees. Thus for posiﬁions of the airplane such that ¢ is less than 22
degrees, the incident wave reflects off of the unspaded surface outside the

spaded circle.

The distance dR of the reflection point from the centerline of the taxi-
way is also of interest. The surprising result was that dR is given by the

following equation
dR'= (H/ (B+h)] dM (22)

independent of the angle ! Since the height H of the airplane is much greater
than the microphone height h, the distance dR is almost.equal to the distance

dM.
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Figure 12.-Geometry of ground reflection phenomena for off-axis microphones.

In the discussions that follow, the loc#tion of the airplane is described
by the grazing angle ¥. Unless otherwise'stated, the angle Y is the grazing
angle at the retarded time t - (R/c) and not at the time t. For run 272, the
variation of ¥ with time is shown in figure 13. The other important geometric-
al parameter for ground reflection effects is the pathlength difference. For
run 272, the variation of the pathlength difference with time is shown in
figure 14. Again, the pathlength difference is determined for the position of
the airplane at the retarded time t - (R/c) and not at the instantaneous time
t. Note that the reflected wave hits within the spaded-soil region around
microphones 3 or 6 only for times after IRIG start of between 6 and 17 seconds.

- Outside of that time range for the conditions of run 272, the angle ¢ is less
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‘than 22 degrees and the wave reflects from the unspaded ground outside the

3-m-radius circle.
Typical Measured Spectra

In order to determine the consistency of the flyover noise data, compari-
sons were made between spectra measured at the two sets of microphones located
595 m apart. Figure 15 illustrates such a comparison. The microphone symbols
“on these and subsequent plots illustrate the surface under the microphone.

The two spectra in each plot were determined from measurements made at two
different relative times T for two different microphones during a single run.
The relative times were chosen so that the airplane was in approximately the
same position with respect to the two microphones at the two times, i.e., for
approximately the same grazing angle. For example, figure 15(a) shows two
spectra. One was obtained from measurements made at microphone 1 when the
“airplane position was such that the grazing angle ¢ with respect to the micro-
phone 1 location was 82 degrees. The second spectrum was obtained from
measurements made with microphone 4, which was 595 m away from microphone 1,
during the same run. However, the time when the measurements were made at
microphone 4 was such that the grazing angle with respect to the microphone 4
location was 90 degrees. It was not possible to obtain spectra for exactly the
same grazing angles since data were only available at half-second time

intervals.

It can be seen from figure 15 that generally the data from the two sets
of microphones were quire consistent, both for microphones 1 and 4 (the micro-
phones over concfete) and for microphones 3 and 6 (the microphones over spaded
soil). There were, however, exceptional cases. For example, figure 15(g)
shows large differences in the sound pressure levels, in a number of bands,
between microphones 1 and 4.  But figure 15(h) shows that, at the same relative
time, the spectra from microphones 3 and 6 were close together, except for the
levels in the 80 Hz band. The large differences did not occur if the microphone
4 spectra used for comparison were taken 0.5 s later, as seen by comparing
figures 15(e) and 15(g). The improvement was not as noticeable for the

comparisons using the microphone 6 spectra, see figures 15(f) and 15(h).
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In order to compare the spectra from the microphones over concrete with
the spectra from the ﬁicrophones over spaded soil, data from all four 1.2-m-
high microphones are plotted together in figure 16. The plots generally show
“only small-differences between the spectra from the microphones over concrete
. and from the microphones over spaded dirt. In fact, even for the small-angle
case shown in figure 16(e) there‘was little difference between the two sets of
spectra. ‘Note that for that case, the angle ¢ was less than 22 degrees so the
reflected wave hit the ground outside of the spaded region. For the smallest
angle case, shown in figure 16(f), however, there were large differences
between the spectra for the two sets of microphones, especially in the higher

frequency bands.
Comparison of Measured and Calculated Spectra

According to ground reflection theory (equation 3) the ground-level
microphones mounted on the plywood boards should measure souAd pressure levels
that are about 6 dB above the free~field levels for all frequenc§ bands. A
(That result is of course an.idealization for a infinitely large plywood board
of infinite impedance;) Furthermore, ground reflection theory cén be used to
calculate the diffe;ence between the free-field spectra and the spectra actual-
ly measured by l.2-m~high microphones, provided the impedance of the surface
‘beneath the microphones is known. Furthermore, the spectral measurements shown
previously indicated that the impedancé‘does not have a large effect on the

spectral behavior even for rather shallow grazing angles.

As a test of the practicality of obtaining free-field data from measure-
‘ments made with a microphone above a reflecting surface, calculations were
made using equation 3. An infinite impedance reflecting surface was assumed
for the calculations and the differences between the free-field sound pressure
levels and sound pressure levels, at microﬁhone 1 were calculated. Then, using
the assumption that the board mounted microphones actually did measure sound
pressure levels 6 dB above the free-field‘valués; the sound pressure levels
from microphone 2 were calculated. Comparisons of the calculated and measured
spectra are shown in . figure 17. The calculated spectra agreed well with the

measured spectra for a large range of grazing angles.
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The geometriéal parameters used in equation‘3 for the calculations were
based on the position of the airplane at the retarded time t - (R/c), and not.
on the instantaneous position of the airplane.  The calculated spectrum shown

“in figure 17(c), which was done for parameters based on the instantaneous
position of the airplane, did not agree as well with the measurements. This
latter result is contrary to what would be expected on the basis of the moving
source. analysis described previously. The reason for the discrepancy is not

known.
Other Measured Spectra

Althpugh the majority of the measured spectra from the thirteen runs were
consistent in the sense described earlier, and although the majority of the
data showed only small differences between the microphone 1 and 4 data and the
microphone 3 and 6 data, there were a large number of exceptions: We will now

- show some examples of '"exceptional" data.

Figure 18 shows the same type of spectral compariéon\for run 295 as was
shown in figure 15 for run 272. It can be seen that there were some fairly
large différences between the spectra from microphones 3 and 6 especially for
the shallow-angle case shown in figures 18(c) and 18(d). A possible explana-
tion for the differences is the inaccuracy of the airplane positioning data.
The airplane may not really have been at the same relative location with re-
spect to the two sets of microphones when the comparisons were made. Indeed,
if the microphoné 4 and microphone 6 spectra used for comparison with the
microphone 1 and microphone 3 SPectra were for times one half-second later
than for the comparison of figure 18, better agreement was obtained for the
shallow-anglé case as seen by comparing the spectra in figures 19(a). and 19.(b)
‘with those in figures 18(c) and 18(d). However, the agreement became worse
for the more-nearly-overhead case — compare figures 19(c) and 19(d) with

figures 18(a) and 18(b).
Time Variation of Spectral Differences

Rapid variations with time sometimes occurred for the differences
between the sound pressure levels at microphones 1 and 3 and between those at

micréphones 4 and 6. The rapid variations usually occurred for shallow
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grazing angles. Figure 20 illustrates the type of changes that occurred over
a period of three successive half-second time intervals. These data are from

a third run of the set of thirteen low-height rumns, i.e., run 379.

In order to more thoroughly investigate the time variation of sound
pressure level differences during a run, individual 1/3-octave bands were
chosen for detailed analysis. The differences between the sound pressure
levels measured at microphones 1 and 3 were calculated for 1/3~octave band
center frequencies of 125, 250, 500, 1000, and 2000 Hz for each half-second
sample of data from run 272. In additiom, calculations of the differences,
based on the impedance model in figure 8, were made using equation 3. The
calculations were made by the following procedure: first, the geometrical
parameters § and Ar were calculated at the midpoint of each half-second time
interval. Next, equation 3 used to calculate AN for a microphone over an
infinite impedance surface; 'Equation 3 was then used again to calculate AN
for a miérophone over a surface having an impedance given by equation 5. The
differences betweén the two sets of values of AN were the final results

desired.

Plots of the measured differences in sound pressure level and the calcula-
ted differences are given in figure 21. The circles indicate the experimental
data pointé and the solid lines the calculated results. In interpreting the
data, it should be kept in mind that, in actuality, the impedance of the
surface relevant to microphone 3 was not uniform. That was because the ground
around microphone 3 was spaded in a 3-m-radius circular region,_and ;he-rest
of the ground was undisturbed. As pointed out earlier, the reflected wave was
inside the spaded-ground region only for times after IRIG start of between 6
and 17 seconds. Nevertheless, the calculations showed that ground reflection
effects can account for some of the rapid changes in'differences between the
sound pressure levels measured at microphones 1 and 3, see, for example, the
agreement between calculated and measured changes for the time between 17 and
24 seconds for the 250-Hz data in figure 21(b) and for the time between. 0 and
4 seconds for the 1000~Hz data in‘figure 21(d). ‘However, there were also large
oscillations in the differences that did not appear to be caused by impedance
differences. Atmospheric turbulence near the ground may have a significant
effect on the measured differences for shallow—aﬁéle sound propagation, since

thermally induced turbulence over the concrete taxiway might be quite different
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than that over the ground surface around microphone 3. Additional research

is required to quantify the potential role of turbulence.

Sensitivity of Spectral Differences to Ground Impedance

To illustrate the sensitivity — or insensitivity — of ground reflection
effects to changes in the complex ground impedance, calculations of spectral
differences were done using a model ground impedance greatly different from

the model ground impedance shown in figure 8.

As pointed out by Piercy, Embleton, and Sutherland (reference 11),
measurements of the acoustical impedance of ground surfaces are scarce. A
substantial amount of impedance data are available only for grass-covered
ground. Other surfaces Suqh as a stubble field and the ground under a pine

plantation appear to have impedances similar to that of grass.

Those observations led to our choosing the model ground impedance shown
in figure 8. As mentioned earlier, that impedance model was based on measure—

ments of the impedance of grass—covered ground.

The lowest value of normalized ground impedance reported in the litera-
ture is Z/pc = 0.5 - 3.5i at a frequency of 300 Hz. That value was deduced
by Aylor (reference 14) from his measurements of the excess attenuation of
sound propagated over disced soil. We now specify an impedance model which
was constructed to yield Aylor's measured value of the impedance of disced
soil at 300 Hz. The normalized resistance and reactance were calculated

according to the following equations

R/pc = (100/£)°"6

-7 (100/f)9'6 (23)

x/ec
Equation 23 yields much smaller absolute values of resistance and reactance

than does equation 5, as can be seen from the plots in figure 22.

Based on the impedance model of equation 23, calculations were made of
- the expected differences between the sound pressure levels measured by

microphone 1 and microphone 3. The calculated curves are shown in figure 23,
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R/pc or x/pc
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along with the measured differences. Comparison of the two calculated curves

with the data shows that the impedance model of equation 5 gave results that

“agreed better with measured values than did the impedance model of equation

23. However, it must be kept iﬁ mind'that the reflected waves only impinged
on the spaded ground region around microphone 3 for times aftter IRIG start of
between 6 and 17 seconds. Restricting the comparisons to that time interval,
we find that, except for the 125-Hz band, the impedance model of equation 5

is only margihally superior to‘that of equation 23. Thus, calculations using
widely different wvalues of impedance, showed only small differences in sound
pressure levels, particularly for the high frequencies (i.e., large values of
Ar/)). Norum and Liu (reference 9) also found from their experiments that

the relative insemsitivity of ground reflection phenomena to surface ‘

impedance precluded a quantitative determination of impedance.
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CONCLUSIONS

Analysis of DC-9-10 flyovér noise measurements from microphones at a
1.2-m height over a concrete surface, at a 1.2-m height over spaded soil, and
flush in a plywood groundboard led to the following conclusions concerning
ground reflection effects on the spectrum of the sound pressure and the

acoustical impedance of the concrete and spaded soil surfaces.

1. Classical ground reflection theory (equation 3) for stationary noise
sources (with the source located at a pesition éorresponding to the time of
sound emission and not the time of sound reception) coupled with physically
reasonable assumptions (see conclusions 3 and 4) for the complex acoustical
- impedance of the groun& surface below a microphone can be used to calculate
spectral differences between the free field and measured 1/3-octave-band

noise levels,

2. Except for data recorded at shallow grazing angles prior to, or
after, the time of closest approach, there were no significant and consistent
differences betwéen the sound pressure spectra measured over concrete and
ovef the.épaded—SOil surfaces, a result attributed to the insensitivity of

the ground reflection coefficient to large changes in ground impedance.

3. The irregularities caused by ground reflections in the spectra
measured by the microphones over concrete were usually calculated within 2 dB.
(figure 17) by assuming the specific acoustical impedance of concrete to be

that of a perfect reflector, i.e., infinite.

4. The irregularities caused by ground reflections in the spectra measur-
- ed by thé microphones over spaded soil were calculated reasqnably well -
(figure 21) by assuming the specific acoustical impedance of the spaded soil to
be that of an analytical model developed here for the measured impedance of

grass—-covered soil, see equation 5.

5. The analytical mefhod used for describing ground reflection effects
was successful in removing irregularities caused by ground reflections in the
-spectra measured by the 1.2-m-high microphones over concrete and spaded soil
and producing equivalent free-field spectra that agreed with free-field

spectré‘meaSured by the flush-mounted groundboard microphones.
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6. Two new analyses were-developed during this study to describe the
effects of source motion on ground reflection phenomena. The first analysis
considered the dynamic (Mach number) effects of source motion. The second
analysis considered effects caused by relative position changes between
the moving source and a microphone during the time averaging period used to

obtain sound pressure levels.

7. The first analysis indicated that if a static source theory is used
to compute, approximately, ground reflection effects for a moving source the
sound path lengths should be calculated assuming the source was located on
the airplane flight path at the position corresponding to the time when the
sound was. received at the microphone and not the time when the sound was
emitted. - This result was not confirmed by the measured data. The best compari-
sons between measured and calculated data weré obtained when the sound source
was located where it would have been at the time the sound was emitted, i.e.,
at a position behind the instantaneous position of the airplane on the flight

path.

8. Relative position changes between source and microphone during the
half-second averaging time produced negligible changes in the spectra. If
the averaging'time had been 1.5 seconds instead of 0.5 seconds, the effects
of source translation during the averaging time would have caused sigﬁificant

effects on the measured spectra.

9. The method of determining thé phase of the ground-surface reflection
‘coefficient from the frequencies of the maxima and minima of the spectral
irregularities introduced by ground reflections could not be applied to
these flyover noise measurements because of the usually small differences
between the spectra measured over concrete and the spectra measured over the
spaded soil. Without knowledge of the phase of the reflection coefficient
as a function of frequency, it is not possible to make a direct determination

of the acoustical impedance.

10. At shallow propagation. angles, large differences between the spectra
measured over concrete and over spaded soil were observed. These differences
varied rapidly with time. Ground reflection theory could account for some

but not all of the observed differences. Additional research is needed to
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determine the cause of these large differences.

DyTec Engineering, Inc.
Huntington Beach, California

22 February 1978
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APPENDIX A

MICROPHONE AND SYSTEM FREQUENCY-
RESPONSE CORRECTIONS

Microphone frequency response corrections at the nominal center frequencies
of the 1/3-octave bands between 50 and 10,000 Hz were determined as the alge-
braic sum of thé windscreen correction, the microphone's pressure response
correction, and the microphone diffraction correction at the angle of incidence
appropriate for the microphone location. Windscreen corrections for the foam-
ball windscreens were read from Bruel & Kjaer product information literature.
Microphone pressure response corrections were read from recent electrostatic
actuator calibration curves for the particular microphone cartridge used at
each of the six locations. Microphone diffraction corrections were read from
Bruel & Kjaer product information literature for the 1/2-inch~diameter micro-

phones mounted on the 1/2-inch-diameter preamplifiers.

For the special NASA fabricated cheesecloth windscreens used around,the-
flush groundboard microphones at locations 2 and 5, it was assumed that the
windscreen correction was negligible at all frequencies in the range of
interest. A random incidence diffraction correction was also considered to

be appropriate for the flush microphones.

Tables Al to A6 list the microphone corrections that were developed for
the six locatioms. The corrections are in decibels relative to the response
at 250 Hz in the flat region of the microphone frequency curve. The correc-

‘tions are to be added algebraically to the system frequency response

corrections.

The total frequency response corrections for the complete data-acquisition/
data-processing system were determined for each of the six channels as the sum
of the microphohe frequency response corrections from tables Al to A6, and the
applicable system frequency response corrections developed from the pink noise
calibrations recorded before and after the data recordings. The pink—noise
system frequency response corrections were calculated by examining the indi-
cated 1/3-octave-band sound pressure levels obtained from the real time
analyzer for each pink noise calibration. Since there was a 20 to 30-second

sample of pink noise data, a l6-second integration time was used for each
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1/3-octave band. The correction factors were again read relative to the re-
sponse at 250 Hz in the flattest portion of the system frequency response.

The repeatability of the pink noise system-frequency-response corrections was

- well within the best that could be expected (namely, + 0.5 dB) for all bands

except the band centered at 63 Hz.

Inspection of the data tapes and several of the pink noise calibrations
revealed that there must have been an anomalous hum problem at the 60-Hz
frequency of the 115-volt alternating-current power used at the test site to -
operate the random noise generator. The hum signal introduced large, spurious
negative response corrections in the 63-Hz band for two of the calibration
signals that were to be used in the middle of the set of 39 runs. Because of
the good repeatability of the response corrections in the other 23 bands, it
was decided to develop a single set of system frequency response corrections
as the average of four sets of corrections from calibrations made at the
beginning, middle, aﬁd end of the set of 39 runs. For the 63-Hz band, the
average ignored tﬁe spurious readings and was determined from corrections

from two calibrations.

Tables A7 to Al2 list the pink-noise frequency-response corrections, the
mlcrophone response corrections, and the total correction factors for the
complete data—acquisition/data—processing system. The total response

correction factors were stored in the memory of the computer and added

~algebraically to the indicated sound pressure levels to determine the final

values of corrected sound pressure level for the six microphone locations

for all runms.
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TABLE A7. ~ SYSTEM FREQUENCY RESPONSE CORRECTIONS FOR MICROPHONE CHANNEL 1.
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TABLE A10. - SYSTEM FREQUENCY RESPONSE CORRECTIONS FOR MICROPHONE -CHANNEL 4
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TABLE All. - SYSTEM FREQUENCY RESPONSE CORRECTIONS FOR MICROPHONE CHANNEL 5
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TABLE Al12. ~ SYSTEM FREQUENCY K RESPONSE CORRECTIONS FOR MICROPHONE CHANNEL 6
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APPENDIX B
ENGINE, AIRPLANE, AND METEOROLOGICAL DATA

This appendix contains tabulated values of the engine, airplane, and
meteorological data associated with the sound pressure levels for each of

the 37 runs.

The value shown for airspeed was determined from the distance between the
two cameras located on the taxiway between microphones 1 and 4 and from the

time interval between the times when the airplane photographs were taken.

The nominal temperature at thé airplane and the nominal temperature and
relative humidity at the micfophones were determined by interpolating the
available meteorological profile data to the time of the flyover noise test
and the height of the airplane. The nominal sound speed was determined from
the nominal air temperature. The nominal airplame Mach number was calculated

from the nominal airspeed and nominal sound speed.

The airplane heights over microphones 1 and 4 were determined from the
height data supplied by NASA after adjustment for the correct wingspan of the
DC-9-10 airplane.

The other airplane and engine data were read from copies of the cockpit

data logs. No engine thrust data were available.

Barometric pressure at a height of 10 m was interpolated to the times of
_the tests from station pressures supplied by National Weather Service personnel
at Fresno Air Terminal and were referenced to a standard atmospheric pressure

of 101.325 kPa.
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