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I. INTRODUCTION

In all early Hartree-Fock-Slater (HFS) calculations l,2 of radiation-

less transition rates in atoms with an inner-shell hole, frozen orbitals

have been assumed. The wave function of the continuum electron is

calculated in the VN-1 potential of the initial configuration, as though

the continuum electron sees the same potential as the bound electrons

in the initial state. In this approximation, the exchange potential used

in finding the continuum wave function is the average exchange potential

of the bound electrons, and not the exchange potential between bound and

continuum electrons.

Calculations that include the frozen-orbital approximation have been

reasonably successful in predicting probabilities of energetic Auger

transitions. 
1,2 

For Coster-Kronig and super Coster-Kronig transitions,

on the other hand, in which the continuum-electron ener gy is usually quite

low, large discrepancies are found between existing theoretical results

and measured rates. 
3-7 

It is of interest to examine to what extent these

perplexing discrepancies can be ascribed to the neglect of exchange and

relaxation effects. Exchange has indeed been found to be significant in

low-energy electron scattering from atoms  and in photoionization near

threshold, g and its influence on low-energy radiationless transitions

has recently been noted by McGuire. 4 In this paper, we report on an

investigation of exchange and relaxation effects in low-energy Coster-

Kronig and super Coster-Kronig transitions, applied specifically to

transitions that deexcite the [3p] vacancy state of atomic Zn.
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II. THEORY

In frozen-orbital HFS calculations 2-6 of the Auger transition

probability, the wave function of the continuum electron is calculated

in the same potential as that of the bound electrons. The radial equation

then is

L- d T +
	 r2 l 	-	 2r + V(r ) } pez(r) 

= EP ER (r),	 (1)

where the potential is

V(r) = 2
-J

`^	 q(na) 0̂ (nknzIr) - 6 CIIn Ip (r)11 1/3	 (2)ng 

The quantities Xkk (nzn 1 z'1r) are defined 10 as

r	 tk	 frk
k (nRn'u'Ir) =	 0 PnR (r) rk+l pn ix (t)dt +PnR(t)tk+f Pn'F.'(t)dt.

r	 (3)

Here,	 p(r) is the spherically averaged total electronic charge density.

The Slater exchange potential [the last term in V(r)] is the "average"

exchange potential for the bound electrons and does not represent the

exchange interaction between bound and continuum electrons. The Slater

exchange term introduces an attractive potential that pulls the continuum

electron inward. The effect of this term on super Coster-Kronig rates is

discussed in Sec. V.

We now proceed to derive the Hartree-Fock (HF) equation for the

continuum electron which contains the correct exchange interaction between
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bound and continuum electrons.

The wave functions of the initial and final states of the atom are

assumed to be represented by linear combinations of Slater determinants

with normalized spin orbitals. In LS coupling, the wave functions are

characterized by the total orbital (L) and total spin (S) quantum numbers.

For the specific examples considered here, in which super Coster-Kronig

and Coster-Kronig processes fill a 3p-shell vacancy in atomic Zn, the

transitions can be described as follows:

ls 22s22p63s 2 3p 53d 1o4s 2 2P ls 22s22p63s23p63d5 (SCLC )c2' 2P, e'=1,3,5

and

ls 22s22p63s 23p53d 104s 2 2P+1s 22s 22p63s 23p63d
94s l (S C 'LC ')e2' 2P, 0=1,3.

Here, cz' denotes the energy and orbital angular momentum of the Auger

electron in the continuum.

We calculate the initial- and final-state wave functions by the

HF approach. We assume that the core of the final-state atom is unaffected

by the ex' continuum electron. For the bound electrons, the HF equations

for the radial wave functions can be constructed following the standard

procedure.
11,12

 The HF equation for the continuum state is obtained

following Seaton's method.13

The final state is formed by adding an electron to the unperturbed

atom with N bound electrons and nuclear charge Z. The antisymmetric

(N+1)-electron wave function can be expanded in terms of basis Functions

which are completely antisymmetric under interchange of the coordinates of

a pair of bound electrons:
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N+1

w(r3 IX) _	
(-1)N+1-i(N+l)-1/2y(I'IX-i,zi)i
	 (4a)

i=1

Y(rjX -i^zi) 

= T(rlX-i'ri°i) 

Frrr i )	 (4b)

i

Here, X -i denotes all the coordinates of the N+1 electrons, except those

of the i th electron; F r (r) is the radial wave function of the continuum

electron, andr i , o f are the angular and spin coordinates of the i th electron,

respectively. The complete set of quantum numbers required to specify

the atomic system in the state ,) is r1 = a
j
Li SJ ej R

i
LSMLMS . The system of

bound atomic electrons is characterized by aj Lj Sj , and the continuum

electron, by ciRj.

The HF equation for the continuum state can be obtained 13 from

jT*(rIX-(N+1),r
	 °N+1)['{-EIGT(rIX-(N+1),x"N+1)-NT(r,X-N,

	

 x W (N+l)dr
N+l daN+1 = 0

'	(5)

Upon integrating over angular coordinates and summing over spin, we find

for the radial equation of the continuum electron

J2

	2
	 + r + k2 Fr (rN+l ) - 2VrrFr(rN+l)

N+1

dr2	 rN+l	 N+1

- 2Wrr (rN+1 ) - 1 sRRj X XZj PnR (r) = 0,	 (6)

R

where a ppJ is the off-diagonal Lagrange multiplier, and we have
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SN

	

Vrr(rN+1) =	 w*(rIX-(N+t)rN+1°N+1) ^, r 	
W (r,X-(N+1)rN+1'N+l)

i=1	
N+1,1

x dX-(N+l)dpN+l
dON+1	 (6a)

and

Wrr(rN+l) _ -NrN+1 I 
Y*(rjX-(N+l)r M+I

aN+I
)[H-E]Y(rlX-Nx N )dX-('+')

x drrN+I dON+1 •	(6b)

The direct term V ri, and the exchange term Wrr were evaluated by the

method of Hartree lo and Racah, 14 and the results were checked aqainst other

existing calculations. 15,16

We shall work out the specific cases of 3p-3d 2ct'(t' = 1,3,5) and

3p-3d4set' (0 = 1,3) radiationless transitions in atomic Zn. For these

transitions, V rr and Wrr can be expressed as follows.

V rr = E q(nt)^yN(ntntlr) + 42 (3d3d1r) + b ^
U" 

(3d3djr)	 (7)

	

nR	
(f 

and

Wrr = -[2(2t'+1T
IE

 q(ns)Tk,(nsck'lr)P(ns)

r	

ns 

-	 i[3A,'/(2t'+1)(2t'-1)]

np l

	
^t'-1(npct'jr)P(nP)

111

+[( 3t'+I)/(2t'+3)(2t'+1)]	 t +,(npez'lr)P(npJ

-c L 1-2 
(3dez'lr)P(3d) - d 1.Lt,(3det'jr)P(3d)

-eItt'+2(3det'jr)P(3d) - f Tt ,(4set'jr)P(4s).	 (8)
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Here, the sum in V P , extends over all occupied shells (i.e., Is, 2s,

2p, ...) in the final atom, after the Auger transition. The number of

electrons in a shell nk is denoted by q(nz). We have ns = Is, 2s, 3s,

4s and np = 2p, 3p. The radial wave function of the ne bound electron

in the final atom is P(nz). The coefficients a, b, c, d, e, f are given

in Table I.

In deriving Eqs. (6), (7), and (8), it has been assumed that the

orbitals are mutually orthogonal. This assumption involves no loss of

generality for the continuum wave functions, because there is no open

shell in the final atom having the same orbital symmetry as the continuum

electron. In Eq. (3), terms with off-diagonal Lagrange multipliers are

added in the HF equation for the ep continuum electron to insure ortho-

gonality.

Using the orthogonality requirement, one can obtain the off-diagonal

Lagrange multipliers 17 a2p,Lp and a3p, p from the HF equation for the

continuum electron [Eq. (3)] and the HF equations for the 2p and 3p bound

electrons of the final atom. The expression for a np,ep is

Anp,ep = a'R
1 (np3d;3dcp) + b'R3(np3d;3dep)

+ c'R2 (np3d;ep3d) + d'R l (n;4s;4scp),	 (9)

where we have np = 2p or 3p, and

((	 r k
Rk (n 1 R 1 n 2 R2 ;n 3'3 n4

 4)P 	
r

(r2 ) <k+l	
Pn3z3(r1)Pn4R4(r2)dr1dr2

JJ 

is the generalized Slater integral. The coefficients a', b', c', and d' are

listed in Table II.
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III. THE RADIATIONLESS TRANSITION PROBABILITY

From Wentzel's ansatz, 18 the radiationless transition probability

is given by the familiar formula of perturbation theory,

wfi "_ 2 1<Tf IH-EIY i >1 2 ,	 (10)

where the continuum wave function has been normalized to represent one

electron ejected per unit time.
19,20

 To take into account the effect

of relaxation, we calculate the initial and final bound states separately

in accordance with their respective hole configurations. The lack of

orthogonality between initial and final electron orbitals with the same

orbital symmetry causes the expression for the Auger transition probability

to contain more terms than in the usual frozen-orbital theory.
21 ' 22

 For

the 3p-3d2 ek and 3p-3d4sEk transitions in atomic Zn, however, there are

no contributions from the one-electron operator because of the orthogonality

of the angular parts of the wave functions.

The radiationless transition rates for Zn 3p-shell super Coster-Kronig

OP-M
2
 ex)and Coster-Kronig (3p-30 set) transitions, including the effect

of relaxation, are given by the following expressions.

wfi ( 3p+3d2 ) =	 Ai-2I K1 `3p'ek1 r12 13d 2 - [<2p'ekIr1213d2> < 3p'12p/

+(p'Ir12I3d2/ `e2 I 3p>6k1+C2p'3pIIr12I3d2>^ ek12P, 6211

x (quantity of order one) + ... 1
2

	

01)
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with

K I = <ls' Ils> 2<2s' I2s> 2 <2p' 12p> 6 <3s' 13s> 2 <3p' 13p> 5 <3d 1 13d> R <4s 4s>2

+ smaller terms containing two or more exchange overlap integrals.

wfi (3p^3d4s) = t -2 1

 K2 <3p I ctI rl 13d4s> - [<2p I ckI rL I3d4s>
12	 12

x {3p 2p> + <3p' 2 I r 	 Ws>(ctI3p% 6R1
12	 2

+<3p'ckl r1 I30s>^3s I 145)Ix (quantity of order one) t ... I 	 (12)
'	 I

with

K2 = Cl s' (l s> 2 <2s' 12s > 2 <2p' 12p>6 <3s' 13s `2 <3p 3p > 5 <3d' 13d> 9 <4s' 14s>

+ smaller terms containing two or more exchange overlap integrals.

In the present calculations we neglect terms with one or more exchange

overlap integrals, such as <3p'12p> , <ckj3p> . Then the radiationless

transition rates become

wfi (3p-'3d 2 ) =.15 2K12 Qp'cX rl I3d2> 
2	

(13)
12

and

wfi (3p^+3d4s ) = hl -2 K2 2 I<3p' eR I r, I3d4s> 
12	

(14)
12

The two-electron Auger matrix elements, expressed in terms of

generalized slater integrals, were calculated using Racah algebra.14

The relevant expressions
21,22

 are given in Table III.

IV. NUMERICAL METHOD

The initial and final bound-state wave functions were calculated

with Froese-Fischer's Hartree-Fock program. 
12 

An iterative procedure was
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used to solve the HF equations for the continuum state, the first solution

being obtained by ignoring the exchange terms. The iterations were continued

until the maximum relative error in the wave functions became less than

10-4 , In general, the solutions converged to this extent within 6

iterations for cf and eh states, and within 20 iterations for cp

states. This convergence criterion was found to lead to consistency

to four significant figures in the Auger radial matrix element.

The 3p-shell super Coster-Kronig and Coster-Kroniq transition energies

were calculated as well with the Froese-Fischer HF program, 12 including

relaxation. The calculated energies are compared with experimental results

in Table IV.

V. RESULTS AND DISCUSSION

A. Frozen-orbital approximation

In order to study the sensitivity of the super Coster-Kronig

transition probability on wave functions and energy,
4,23

 we have calculated

these transition probabilities on the basis of several frozen-orbital models.

To distinguish various models, we shall use N to denote the number of

bound electrons in a neutral atom (i.e., N=Z). Results for the Zn 3p-

3d2 ( 3 F; l G)ef transitions are shown in Fig. 1. To calculate the rates

labeled "HF V
N-1

", initial-configuration HF bound-state wave functions were

used for both initial and final bound states; the continuum wave function

was calculated in the VN-1 potential of the (singly ionized) initial



configuration, without exchange. The "HF VN " rates were calculated by

a similar procedure, the only difference being that the HF bound-state

wave functions of the neutral atom were used. The "HFS V N-1" rates were

calculated with Herman-Skillman 24 HFS wave functions for the initial hole

state, employed for both the initial and final bound states; the continuum

wave function here is the solution of Eq. (1) with V(r) [Eq. (2)] taken

to be the average potential for the initial state.

It is clear from Fig. 1 that tiie Zn 3p-3d 2 ( 3 F; 1 G)cf transitions

are quite sensitive to the transition energy and to the details of the

wave functions. The frozen HFS V N-1 rates, for example, are much larger

than those derived for the HF VN-1 model. Most of this difference can be

attributed to the fact that V(r) [Eq. (1)] in the HFS V N-1 model contains

the wrong exchange term.

B. Exchange and relaxation effects on 3p-shell Coster-Kronig and super

Coster-Kronig transitions in Zn

To investigate how exchange affects the transition rates, calculations

were performed with different continuum wave functions. The continuum wave

functions were found by solving Eq. (6) (1) neglecting the exchange term

Wrr' and 
(2) including the exchange term W rr . In Figs. 2 and 3 we have

plotted the continuum wave functions for 3p-3d
2 ( 1 G)cf and 3p-3d2(1S)cp

transitions, respectively; the transition energy was taken to be 42 eV

in both cases, equal to the average observed energy. 25 Also shown in Figs.

2 and 3 is the HF 3d wave function of the final atom.
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It can be noted in Fig. 2 that there is very little cancellation

in the overlap between 3d and cf wave functions. The 3p-3d 2 ( 3F)ef and

3p-3d
2

( 1 G)cf rates are therefore large and very sensitive to energy and

wave functions. By contrast, Fig. 3 shows that in 3p-3d
2

( I S;3P;10)tp

transitions strong cancellation occurs in the overlap between 3d and F.p

wave functions. These transition rates are therefore small. The inclusion

of exchange is seen to pull the continuum wave function in toward the origin,

causing the 3d 2cf transition probabilities to be increased by . 6 01) (Fig. 2),

while the 3d 2 ( 1 S)cp rate is reduced by -7% (Fig. 3). The effect of

exchange becomes less pronounced as the Auger energy increases.

Using HF instead of HFS bou,id-state wave functions in the HF continu,,?:

equation and in Auger transition probability calculations reduces the

transition rates by only -3% for e = 42 eV (Fig. 4).

Relaxation is found to affect the transition rates substantially.

Relaxation is taken into account by discarding the frozen-orbital approxi-

mation and using HF bound-state wave functions corresponding to the appropriate

(different) initial and final states in the calculations. The exchange

overlap integrals, such as (2p'13p> , <cpl3p> , in Eqs. (11) and (12) are

all found to be s 10-3 , so that terms involving these integrals could

,justifiably be neglected. For the overlap correction factors we find

K1 =0.9239 and K2=0.9895. In Fig. 4, the 3p-3d
2

( 1 G)cf transition probabilities

are shown, as calculated with continuum wave functions in the V N-2 potential

and with different bound-state wave functions. Relaxation is seen to reduce

these transition rates by -20%.
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Also included in Fig. 4 4te results (labeled "HFS VN-2") that were

obtained with HFS initial-configuration bound-state wave functions and

with a continuum wave function that is the solution of Eq. (1) with V(r)

[Eq. (2)] being the average potential of the final two-hole configuration.

Once again, these HFS results are much larger than the rates calculated

by other mtthods, due to the error in the exchange term in V(r) of Eq. (2).

C. Zn M2,3-level width

The 3p-level widths of Zn, calculated with different wave functions,

.^# ,e listed in Table V. Average experimental Auger energies of Zn vapor25

were used in the calculations. The experimental 
M2,3 

level width 25 of

atomic Zn is listed for comparison. The agreement between the HF VN-1

frozen-orbital result with experiment is probably accidental. Results

from the relaxed HF model, which can be considered more realistic, agree

better with experiment than HFS results but still are 50") too large.

Transition rates to various final states, calculated with the

relaxed HF model, are indicated in Table VI.

VI. CONCLUSION

In HFS calculations of radiationless transition rates, the assumption

that the continuum electron sees the same potential as the bound electrons

can cause a large error in low-energy Coster-Kronig and super Coster-Kronig

cases. The HF approach including relaxation removes some but not all of

the discrepancy with experiment.
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The effect of configuration interaction among discrete states on

3p-shell Coster-Kronig and super Coster-Kronig transitions of Zn

has been found to be small. 4 The importance of the final-state channel

interactions has recently been pointed out by Howat et al. 
26 

Calculations

to include the channel interactions are in progress.
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TABLE I. Coefficients a, ...0 f in Eqs. (7) and (8).

Final hole state

Configuration Term V a b c d e f

3d2 1S p 0 0 0 8/15 12/35 0

3d2 3p p -1/5 0 0 -7/30 6/35 0

3d2
1D

p 3/35 0 0 13/30 102/245 0

3d2 1D f 24/245 -8/147 215 27/451 50/231 0

3d2 3F f -3/35 1/21 -6/35 2/105 50/231 0

3d2
1G

f -55/147 -13/147 -12/35 46/245 50/231 0

3d2
1G

h -8/21 -2/21 -47/380 50/429 21/143 0

'3d4s
1D

p -1/5 0 0 1/3 3/7 0

3d4s 3D p -1/5 0 0 -1/3 3/7 -1/3
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TABLE II. Coefficients a', ..., d' in Eq. (9).

Final	 hole state

Configuration Term
a' b' c' d'

3d2 is 0 0 0 0

3p
-23/15 -12/35 2/5 0

1D
-1/5 36/245 -6/35 0

3d4s
1D -8/15 3/35 2/5 0

3D -28/15 3/35 2/5 -2/3
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TABLE III. The 3p-3d 2eR' and 3p-3d4seR' radiationless transition

probabilities, in LS coupling, in terms of radial integrals.

Final hole state

Configuration	 Term	

to
	 Transition probability

3d2	is	 1	
113 Rl (3pep3d3d) + 1 R 3 (3pep3d3d)l2

	

3P	 5 3 R
l (3pep3d3d) + y R3(3pep3d3d)12

	

iD	
13
Rl (3pep3d3d) + 1 R3 (3pep3d3d)l2

3d2	
iD	
31	 Ri (3pef3d3d) + I R3 (3pef3d3d)I2

3F
i
5 ^- 3 Rl (3pef3d3d) + 1 R3(3pef3d3d)l2

	

iG	
^J 3 R

l (3pef3d3d) + 1 R3(3pcf3d3d)IZ

3d2	
1G	

5	 R R3(3peh3d3d)l2

3d4s	
iD	

1	 i-9jRl(3pep3d4s) + R1(3pep4s3d)I2

	

3D	
IIRl(3pep3d4s) - Rl(3pep4s3d)I2

3d4s	
iD	

3	 21i R3 (3pef3d4s) + 3 Rl(3pef4s3d)l2

	

3D	
21- 

1 
R3 (3pef3d4s) + 3 Rl(3pef4s3d)l2
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TABLE IV. The 3p-shell super Coster-Kronig and Coster-Kronig

transition energies o° atomic Zn.

Final state
	

Energy (eV)

Configuration Term
	

Theory	 Experimenta

3d8	 1S
	

40.26

3p	
46.97

1D	
47.49
	

42.2

3F	
50.02

1G	
46.07

3d94s	 1D
	

63.62
59.0

30
	

64.14

aMeasurements on Zn vapor, Ref. 25.
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TABLE V. Zn M2,3 level width

Method	 Width (eV)

Theory: HFS VH-1 3.25

Theory: HFS VN-2 4.49

Theory: HF V
N-1

1.83

Theory: HF VN 1.20

Theory: Relaxed HF	 2.93

Experiment 	 2.1+0.2

aRef. 25.
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TABLE VI. Theoretical 2n 3p-shell super Coster-Kronig and Coster-Kronig

transition probabilities according to the relaxed HF model.

Transition Final term
Transition rate
(milli atomic units)

3p-3d3dep is 0.838

3p 0.575

1 D 0.740

3p-3d3def 1D
8.389

3F 26.637

1 G 61.370

3p-3d3deh iG
0.021

3p-3d4sep
1D

4.690

3D 3.651

3p-3d4scf I 0.606

30 0.048
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Figure Captions

FIG. 1. Probabilities of the 3p-3d
2 ( 3

F; 1 G)cf transitions in atomic

Zn, according to frozen-orbital calculations with various wave functions and

potentials: Hartree-Fock in the singly ionized (0 -1 ) and neutral-atom

(VH ) potential, and Hartree-Fock-Slater in the V
H-1 

potential. To illustrate

energy dependence of these rates, the transition energy is treated as a

variable. The measured average transition energy is 42 eV (Ref. 25).

FIG. 2. The Hartree-Fock bound-state 3d radial wave function of atomic

Zn and the cf HF continuum wave function, calculated in the potential of the

final atomic state, with and without the exchange term Wrr in Eq. (6).

FIG. 3. The HF 3d bound-state radial wave function of Zn and the ep

HF continuum wave function, calculated with and without the exchange term

Wrr in Eq. (6).

FIG. 4. Theoretical 3p-3d 2 ( 1 G)cf radiationless transition probabilities,

as a function of Auger energy, calculated according to various models. Relaxed

Hartree-Fock, frozen Hartree-Fock, and frozen Hartree-Fock-Slater bound-state

wave functions are used, all three with a Hartree-Fock continuum wave function

in the VH-2 potential of the doubly ionized final-state atom, with and without

exchange between continuum and bound electrons (Eq. 6). Only for the top

curve (diamonds), the continuum electron is described by a Hartree-Fock-Slater

wave function [Eqs. (1) and (2)].
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