NASA TECHNICAL MEMORANDUM

NASA TM-75259

DETERMINATION OF CARBON BY THE OXIDATION-REDUCTION REACTION WITH CHROMIUM

L. Mashkovich and A. F. Kuteynikov

(NASA-TM-75259) DETERMINATION OF CARBON BY N78-19230 THE OXIDATION REDUCTION REACTION WITH CHROMIUM (National Aeronautics and Space Administration) 9 p HC A02/MF A01 CSCL 07D Unclas G3/25 08653

> Translation of "Opredeleniye ugleroda po okislitel'novosstanovitel'noy reaktsii s khromon", In: Sovremennyye metody khimicheskogo i spektral'nogo analiza materialov, (Modern Methods of Chemical and Spectral Analysis of "Materials) 1967, pp. 217-220

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D.C. 20546 MARCH 1978

STANDARD TITLE PAGE

1. Report No.						
<u>L NASA TM-75259</u>	2. Government Ac	cession No.	3. Recipient's Catal	log No.		
4. Tetle and Subtitle	· · · · · · · · · · · · · · · · · · ·		5. Report Date			
			March 19	78		
DATION REDUCTION	6. Performing Organi //	ization Code				
7. Author(s)			8. Performing Organ	ization Report No.		
L. Masnkovich and	<u>nikov</u>	0. Work Unit No.				
	•	1	1. Contract or Grant	No.		
9. Performing Organization Name and	Address		NASw-2790			
Leo Kanner Associa	ates, Redwo	bod City, h	13. Type of Report and Period Covered			
California 94063			Tranglati	072		
12 Secondaria Access Name and Adda		TI MIDIAUI	.011			
National Accession	500 2 M-					
stration, Washing	National Aeronautics and Space Admini- stration, Washington, D.C. 20546					
15. Supplementary Notes		······································	<u>ئ</u> ار			
Translation of "Oprede	eleniye ugler	oda po okisli	tel 'no-			
. vosstanovitel 'noy real	utsii s khron	ion". In: So	Wremennvve			
metody khimicheskogo :	i spektral'no	go analiza ma	terialov.	1		
(Modern Methods of Che	emical and Sp	ectral Analys	is of Materia	als)		
<u>1967, pp. 217-220</u>				······		
•	•					
Free carbon was determined in silicon and boron carbides in ash, oxides, and other materials by oxidation to carbon dioxide with a mixture of $K_2Cr_2O_7 + H_2SO_4$. The determin- ation was made from the amount of Cr(VI) consumed, by adding excess Mohr's salt and titrating with a standard solution of KMnO ₄ . The amount of Cr(VI) self-reduced was determined in a blank test. Optimum oxidation conditions were achieved when the volumes of 5% $K_2Cr_2O_7$ and H_2SO_4 were equal. The mixture was boiled for 1-2 hours using a reflex condenser. The volume should not be reduced, in order to avoid an increase in the sulfuric acid concen- tration. The relative error was 4-7% for 0.005-0.04 g C and $\leq 3.5\%$ for 0.1 g C.						
Free carbon was de in ash, oxides, ar dioxide with a min ation was made fro adding excess Mohr solution of KMnOy. determined in a bl were achieved wher were equal. The m a reflex condenser order to avoid an tration. The rela C and ≤ 3.5% for C	etermined i ad other ma ture of K ₂ om the amou t's salt an The amou ank test. the volum ixture was . The vol increase i ative error .1 g C.	n silicon a terials by Cr ₂ 0 ₇ + H ₂ S int of Cr(VI d titrating of Cr(VI Optimum ox es of 5% K ₂ boiled for ume should n the sulfu was 4-7% f	and boron can oxidation 0_4 . The de) consumed ; with a stand ; or 0,005-0. ; 0,005-0.	arbides to carbon etermin- , by andard uced was nditions H_SO ₄ using uced, in oncen- .04.g		
 Free carbon was de in ash, oxides, ar dioxide with a min ation was made from adding excess Mohr solution of KMnOy. determined in a bl were achieved where were equal. The ma reflex condenser order to avoid an tration. The relation of a reflex for C 17. Key Words (Selected by Author(s)) 	etermined i ad other ma ture of K ₂ om the amou 's salt an The amou ank test. the volum ixture was '. The volum increase i tive error .1 g C.	n silicon a terials by Cr207 + H2S int of Cr(VI d titrating int of Cr(VI Optimum ox es of 5% K2 boiled for ume should n the sulfu was 4-7% f	and boron ca oxidation 04. The de) consumed ; with a sta) self-redu- idation con Cr ₂ 07 and H 1-2 hours not be redu- ric acid co or 0.005-0.	arbides to carbon etermin- , by andard uced was nditions H_SO ₄ using uced, in oncen- .04 .g		
 Free carbon was de in ash, oxides, ar dioxide with a min ation was made from adding excess Mohr solution of KMnOy. determined in a bluere achieved where were equal. The mareflex condenser order to avoid an tration. The related and ≤ 3.5% for 6 17. Key Words (Selected by Author(s)) 	etermined i nd other ma sture of K ₂ om the amou 's salt an The amou ank test. The volum ixture was '. The volum increase i tive error .1 g C.	n silicon a terials by Cr ₂ 0 ₇ + H ₂ S Int of Cr(VI d titrating int of Cr(VI Optimum ox les of 5% K ₂ boiled for ume should n the sulfu was 4-7% f	and boron ca oxidation 04. The de) consumed ; with a sta) self-redu- idation con Cr2 07 and H 1-2 hours not be redu- ric acid co or 0.005-0.	arbides to carbon etermin- , by andard uced was nditions H ₂ SO ₄ using uced, in oncen- .04.g		
 Free carbon was de in ash, oxides, ar dioxide with a min ation was made from adding excess Mohr solution of KMnO4. determined in a bluere achieved where were equal. The mareflex condenser order to avoid an tration. The relation of a reflex for C 17. Key Words (Selected by Author(s)) 	etermined i ad other ma sture of K ₂ om the amou 's salt an The amou ank test. Inthe volum ixture was '. The volum increase i ative error .1 g C.	n silicon a terials by Cr _z 0 ₇ + H _z S int of Cr(VI d titrating int of Cr(VI Optimum ox les of 5% K _z boiled for ume should n the sulfu was 4-7% f	nd boron ca oxidation 04. The da) consumed ; with a sta) self-reduced idation con Cr ₂ 07 and H 1-2 hours not be reduced or 0.005-0.	arbides to carbon etermin- , by andard uced was nditions H_SO4 using uced, in oncen- .04 g		
 Free carbon was de in ash, oxides, ar dioxide with a min ation was made from adding excess Mohr solution of KMnOy. determined in a bl were achieved wher were equal. The ma reflex condenser order to avoid an tration. The related of a conder to avoid an tration. The related and ≤ 3.5% for 0 17. Key Words (Selected by Author(s)) 	etermined i nd other ma ture of K ₂ om the amou 's salt an The amou ank test. the volum ixture was '. The vol increase i tive error .1 g C.	n silicon a terials by Cr ₂ 0 ₇ + H ₂ S int of Cr(VI d titrating int of Cr(VI Optimum ox boiled for ume should n the sulfu was 4-7% f	nd boron ca oxidation 04. The de) consumed ; with a sta) self-redu- idation con Cr ₂ 07 and H 1-2 hours not be redu- ric acid co or 0.005-0.	arbides to carbon etermin- , by andard uced was nditions H_SO4 using uced, in oncen- .04.g		
 Free carbon was de in ash, oxides, ar dioxide with a min ation was made from adding excess Mohr solution of KMnOy. determined in a bl were achieved wher were equal. The mareflex condenser order to avoid an tration. The related and ≤ 3.5% for 0 17. Key Words (Selected by Author(s)) 	etermined i ad other ma sture of K ₂ om the amou 's salt an The amou ank test. the volum ixture was '. The volum increase i tive error .1 g C.	n silicon a terials by Cr207 + H2S int of Cr(VI d titrating int of Cr(VI Optimum ox boiled for ume should n the sulfu was 4-7% f	and boron ca oxidation 04. The de) consumed ; with a sta) self-redu- idation con Cr ₂ 07 and H 1-2 hours not be redu- ric acid co or 0.005-0.	arbides to carbon etermin- , by andard uced was nditions H_SO ₄ using uced, in oncen- .04.g		
 Free carbon was de in ash, oxides, ar dioxide with a min ation was made from adding excess Mohr solution of KMnO4. determined in a bluere achieved where were equal. The mareflex condenser order to avoid an tration. The relation of a condex 3.5% for 0 17. Key Words (Selected by Author(s)) 	etermined i ad other ma sture of K ₂ om the amou 's salt an The amou ank test. The volum ixture was . The volum ixture was . The volum increase i ative error .1 g C.	n silicon a terials by Cr ₂ 0 ₇ + H ₂ S int of Cr(VI id titrating int of Cr(VI Optimum ox boiled for ume should n the sulfu was 4-7% f	and boron ca oxidation O ₄ . The da) consumed ; with a sta) self-reduced idation con Cr ₂ O ₇ and H 1-2 hours not be reduced ric acid co or 0.005-0.	arbides to carbon etermin- , by andard uced was nditions H_SO4 using uced, in oncen- .04 g		
 Free carbon was de in ash, oxides, ar dioxide with a min ation was made from adding excess Mohr solution of KMnO4. determined in a bluere achieved where were equal. The matrice areflex condenser order to avoid an tration. The relation of and ≤ 3.5% for 0 17. Key Words (Selected by Author(s)) 19. Security Classif. (of this report) 	20. Security Clease	n silicon a terials by Cr ₂ 0 ₇ + H ₂ S int of Cr(VI d titrating int of Cr(VI Optimum ox boiled for ume should n the sulfu was 4-7% f	and boron ca oxidation O ₄ . The de) consumed ; with a sta) self-reduced idation con Cr ₂ O ₇ and H 1-2 hours not be reduced ric acid co or 0.005-0.	arbides to carbon etermin- , by andard uced was nditions H_SO ₄ using uced, in oncen- .04.g		

DETERMINATION OF CARBON BY THE OXIDATION-REDUCTION REACTION WITH CHROMIUM

L. Mashkovich and A. F. Kuteynikov

A method is developed for determining carbon according to the reaction with a mixture of potassium bichromate and sulfuric acid, by means of the determination of reduced chromium. The method is used for determining carbon in materials containing boron carbide, silicon carbide, and fluoroplastic.

In order to determine free carbon in materials containing chemically stable carbides, methods are used which are based on the capability of free carbon to be oxidized to a dioxide by various oxidants and mixtures of them [1].

Corleis developed the principle of the method of damp oxidation of carbon and used it to determine combined carbon. The procedure is based on the dissolving of cast irons, steels, iron, and ferroalloys in a mixture of $H_2SO_4 + CuSO_4 + H_2CrO_4$ with the absorption of CO_2 by soda lime [2]. The mechanism of the reaction is expressed [2, 3] by the equation 3C + $2K_2Cr_2O_7 + 8H_2SO_4 = 2K_2SO_4 + 2Cr_2(SO_4)_3 + 3CO_2 + 8H_2O.$

Carbon black, coal, coke, and graphite behave differently toward oxidants, with graphite being the most stable.

We tested the oxidizing capacity of a number of mixtures with respect to different types of graphite and to the compounds which are contained in the materials being studied. It was established that the chromium mixture $H_2SO_4 + K_2Cr_2O_7$

*Numbers in the margin indicate pagination in the foreign text.

/217*

is the most suitable. It oxidizes carbon completely and does not affect silicon carbide, boron carbide, fluoroplastic, ash, oxides, and silicon. The chromium mixture was used earlier [4, 5] for oxidizing free carbon in B_{μ} , with absorption of carbon dioxide by asbestos or barite.

We propose a method for determining carbon, based on the determination of the chromium consumed in oxidation.

The method was tested on spectrally pure graphite, using a mixture with various chromium and sulfuric acid contents for oxidation. An increase in acidity accelerates the process of oxidation of the carbon (Fig. 1), but at the same time assists self-reduction of the chromium (Fig. 2). This phenomenon was observed in a blank test, <u>i.e.</u> through heating of the mixture without carbon. Self-reduction of chromium disturbs the stoichiometric character of the reaction and causes errors in the determination of carbon by chromium.

Comparison of the obtained results made it possible to establish the optimal composition of the mixture and the oxidation conditions under which the oxidation-reduction reaction between carbon and chromium occurs stoichiometrically. This mixture should consist of a 5% solution of potassium bichromate and concentrated sulfuric acid in a 1:1 ratio. An increase in the chromium concentration, with heating and subsequent cooling, leads to the precipitation of $K_2 Cr_2 O_7$ crystals. It is necessary to conduct the heating without reducing the volume, so as not to increase the sulfuric acid concentration.

The given mixture oxidizes 1 g of graphite in 2-2.5 hours. In this case, the amount of self-reduced chromium is $\sim 0.3\%$. Taking this amount into account according to a blank test, one may preclude error or reduce it to a minimum. /219

Fig. 1. Dependence of the rate of oxidation of free carbon on the sulfuric acid concentration in the chromium mixture:

1-0.01 g C_F, 2-0.05 g C_F, 3-1.00 g C_F

Fig. 2. Effect of boiling time and composition of chromium mixture on the reduction of chromium in the blank test. Curves 1-4 correspond to the ratio of H_2SO_4 (1.84): 10% $K_2Cr_2O_7$ = 1:4; 1:2; 1:1; 2:1.

Given in Table 1 are the results of determining spectrally pure carbon using chromium. The relative error of determination was 4-7% for 0.005-0.04 g C and $\leq 3.5\%$ for 0.1 g C. The time of a single determination was 20-30 minutes. This method makes

TABLE 1

RESULTS	OF THE	E DE!	FERMINATI	ON OF	CARBON	ACCORDING	TO
THE	OXIDA	TON	REACTION	WITH	CHROMIU	M (n=10)	

а Колнчество	В Расход С	г (VI), ліг — (е: _{Найдено} С	f _{Ошабка}	
графита, <i>ме</i>	С рассчитано по реакции	d найдено	- גע גע	% (отн.)	
5,0 10,0 20,0 40,0 60,0 80,0 100,0	28,9 57,8 115,7 231,1 346,7 462,2 577,8	30,5 58,7 118,1 231,6 344,3 449,7 579,0	5,3 10,2 20,4 40,1 60,0 77,8 100,2	5,6 2,0 2,0 0,25 0 2,75 0,20	

Key:	a.	Amount of graphite, mg	
	Ъ.	Consumption of Cr(VI),	
		mg	

c. Calculated according to the reaction

d. Found

e. C found, mg

f. Error, % (relative)

it possible to determine from several to dozens of per cents of carbon, and may be recommended for the analysis of materials containing oxides, ash, silicon, fluoroplastic, boron carbide, and silicon carbide.

A 0.1-2 g sample of the material, finely divided to -150 +200 mesh, was processed by boiling with a 5% solution of potassium bichromate, accurately measured with a buret, and with the same amount of concentrated sulfuric acid. The processing was conducted in a conical flask of 200-300 m/ volume with a ground reflux condenser for 1-2 hours. A blank test was performed at the same time. After dissolving, the

<u>/220</u>

4

contents of the flask, with the precipitate, were transferred to a 250 ml volumetric flask.

If necessary, the precipitate was filtered through a glass filter and weighed.

A 0.05 n. solution of Mohr's salt, the excess of which was back-titrated with 0.05 n. potassium permanganate, was added from a buret to the aliquot portion (25/250 for the sample and 5/250 for the blank test) [6]. The carbon content was calculated according to the formula

$$X = \frac{A \cdot 100}{5,78a} \%, \quad 1$$

where A is the sample in g; 5.78 is the amount of Cr(VI) going into the oxidation of 1 g of carbon; A is the amount of Cr(VI) going to the oxidation of $C_{\mathcal{F}}$ in the sample; $A = B_{\mathcal{I}} - B$ ($B_{\mathcal{I}}$ and B are the amounts of Cr(VI) taken for oxidation and remaining after oxidation of carbon).

The developed method was tested on artificial mixtures and production samples. The most reliable results were obtained with a content of > 1% C in the sample. The results are given in Table 2.

RESULTS	OF DETERMINING FRE	ECA	RBON BY	DIFFERE	NT METHODS
	а Исследуемый материал	He Con	С предлагаемым способом	Найдено С _{СВ} . 9 С выжигання	и Г газообъемным методом [6]
Ĭ		0 - ∞ ≪18	10,60		10,07
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	1,34 61,47	1,20 61,10	1,27
	$N_{2} = 3 \dots \dots$		67,02 81,44	67,7 82,1	
	$0,18 \ge SiC+0,12 \le C$ $0,18 \ge SiC+0,02 \ge C$ B-Si-C	10	* 10,13 63,75	9,85 44,82	9,96 62,62
-	Фторопласт ЈФторопласт + графит:	0	00,00	<u> </u>	
	$\begin{array}{c} 0,9 \ z + 0,1 \ z \ C \ \dots \ \\ 0,92 \ z + 0,08 \ z \ C \ \dots \ \\ N \ge 1 \ \dots \ \\ \end{array}$	10 8 50	9,86 7,94 50,30		
	№ 2	50 65	52,10 66,80	· · · · · · · · · · · · · · · · · · ·	

TABLE 2

5

- Key: a. Material being studied b. C_F content, % c. C_F found, % d. By the proposed method e. By the roasting method
- f. By the gas volume method [6]

•

.

g. Boron carbide h. Graphite + SiC i. Fluoroplastic j. Fluoroplastic + graphite

REFERENCES

- 1. <u>Analiz tugoplavkikh soedinenii</u> [Analysis of High-Melting-Point Compounds], Metallurgizdat (1962).
- 2. Corleis, E., Stahl und Eisen, 14, 1894, 589.
- 3. Lendel', G., <u>et al.</u>, <u>Analiz chernykh metallov</u> [Analysis of Ferrous Metals], Goskhimizdat, 182 (1934).
- 4. Meerson, G.A., Samsonov, G.V., <u>Zavodskaya laboratoriya</u> <u>XVI</u>/12 (1950).
- 5. Kitakhara, Asakhara, Atodi, RZhKhim, No. 78324 (1959).
- 6. Dymov, A.M., <u>Tekhnicheskii analiz rud i metallov</u> [Technical Analysis of Ores and Metals], Metallurgizdat, 194 (1949).