General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

PREPARED FOR
EARTH OBSERVATION DIVISION, JSC UNDER
CONTRACT NAS-9-150 ?

LINEAR DIMENSION REDUCTION

AND BAYES CLASSIFICATION

Henry P. Decell, Jr. Department of Mathematics University of Houston Houston, Texas
P.L. Odel:
Programs in Mathematical SciencesUniversity of Texas at DallasRichardson, Texas
\&
William A. CoberlyDepartment of MathematicsUniveristy of TulsaTulsa, Oklahoma
Report \#66

LINEAR DIMENSION REJUCTION

AND bayes Classification

by

Henry P. Dec 311, Jr. 1, P. L. Odell ${ }^{2}$ and William A. Coberly ${ }^{3}$

ABSTRACT

This paper develops an explicit expression for a compression matrix T of smallest possible left dimension k consistent with preserving the n-variate normal Bayes assignment of X to a given one of a finite number of populations and the k-variate Bayes assignment of TX to that population. The Bayes population assignment of X and $T X$ are shown to be equivalent for a compression matrix T explicitly calculated as a function of the means and covariances (known) of the given populations.

1. Mathematics Department, University of Houston
2. Programs in Matheratical Sciences, Univ. of Texas at Dallas
3. Department of Mathematics, University of Tulsa

INTRODUCTION

In this paper π_{j} will denste an n-variate normal population having a priori probability $\pi_{i}>0$ and density $p_{i}(x) ; i=0,1, \ldots, m$. Using recent results [1] that characterize linear sufficient statistics we will devclop an explicit expressiria for a kxn compression ($k \leq n$) matrix T for which, using the Bayes classification procedure [2] , in which costs of misclassification are tacitly assumed equal on all classes, X is assigned to Π_{i} if and only if $T X$ is assigned to Π_{i}. We will further demonstrate that k is the smallest integer ($\leqq n$) for which the latter equivalence is valid and that T can be directly calculated in terms of the known population means and covariance matrices.

The applications which motivate the necessity for compressing or reducing the size of a data vector is summarized very well in a review paper by Laveen Kaval in [3]. Our own interest was motivated by a need to reduce computational requirements in a large area crop inventory project using multidimensional data taken remotely by near earth satellites [4].

In all that follows η_{i} and Σ_{i} will, respectively, denote the mean and covariance matrix of population $\Pi_{i}, \mathbf{i}=0,1, \ldots, m$. It is well known that for each non-singular nxn matrix A and $n x l$ vector α, the Bayes assignment of x to Π_{i} is equivalent to the Bayes assignment of $A(x-\alpha)$ to $\Pi_{\mathfrak{i}}$. We will iater assume that $\eta_{0}=\theta$ and $\Sigma_{0}=1$. This assumption will impose no loss of generality in the results that follow since we may set $\alpha=n_{0}$ and choose A such that $A \varepsilon_{0} A^{T}=1$.
If the latter transformation of variables is necessary, we will not introduce new symbols for the variate $A\left(y-\eta_{0}\right)$, the densities $p_{i}\left(A x-n_{0}\right)$
and their associated means and covariance matrices. Whenever Q is an sxn rank ($s \leq n$) matrix, we will dencte the s-variate normal density of $Q x$ by (for population Π_{i}) $p_{i}(Q x)$.

PRINCIPAL RESULTS

According to [1], let $k(\leq n)$ be the smallest integer for which there exists a linear sufficient statistic ($k \times n$ matrix T) for the family of probability measures having densities $p_{i}(x) ; i=0,1, \ldots, m$. The results in [1] demonstrate that the sufficiency of T is equivalent to the conditions:
(1) $T^{+} T n_{j}=n_{j}$
(2) $T^{+} T\left(\Sigma_{j}-I\right)=\Sigma_{j}-I$

$$
j=0,1, \ldots, m
$$

where $(\cdot)^{+}$denotes the generalized inverse of (\cdot).
Let M be the $n x(n+1) m$ partitioned matrix

$$
M \equiv\left[n_{1}\left|n_{2}\right| \cdots\left|n_{m}\right| \Sigma_{1}-I\left|\Sigma_{2}-I\right| \cdots \mid \Sigma_{m}-1\right]
$$

and let $M=F G$ be a full rank decomposition [5] of M, that is; F is nxk, G is $k x(m+1) m$ and $\operatorname{rank}(F)=\operatorname{rank}(G)=k$. Again, according to [1] and the latter, k must be precisely the smallest integer ($\leq n$) for which a kxn matrix T can be a sufficient statistic for the given family of probability measures.

It is well known [5] that $\mathrm{M}^{+}=\mathrm{G}^{+} \mathrm{F}^{+}$and hence that $\mathrm{MM}^{+}=\mathrm{FF}^{+} . \mathrm{A}$ simple computation reveals that $T \equiv F^{\top}$ satisfies conditions (1) and (2) so that F^{T} is a sufficient statistic (of minimum left dimension) for the given family of probability measures. We have the following theorem.

Theorem 1. Let Π_{i} be an n-variate normal population with a priori probability $\pi_{i}>0$, mean η_{i} and covariance $\Sigma_{i} ; i=0,1, \ldots, m$ (with $\eta_{0}=0, \Sigma_{0}=1$) and let $F G=M \equiv\left[n_{1}\left|n_{2}\right| \cdots\left|n_{m}\right| \Sigma_{1}-I\left|\Sigma_{2}-I\right| \cdots \mid \Sigma_{m}-I\right]$ be a full rank ($=k \leq n$) decomposition of M. Then, the n-variate Bayes procedure assigns x to $\Pi_{\mathbf{i}}$ if and only if the k-variate Bayes procedure assigns $F^{\top} x$ to Π_{i}. Moreover, k is the smallest integer for which there exists a kxn compression matrix T preserving the Bayes assignment of x and $T x$ to $\pi_{i} ; i=0,1, \ldots, m$

Proof: Recall that the n-variate Bayes procedure assigns x to π_{j} if and only if $\pi_{j} p_{j}(x)>\pi_{j} p_{i}(x) ; i=0,7, \ldots$, m : if j (with arbitrary assignment of x to any of the populations Π_{k} for which $\left.\pi_{j} p_{j}(x)=\pi_{k} p_{k}(x)\right)$.

Let R be any ($n-k$) $\times n$ matrix such that $C=R\left(I-F F^{+}\right)$has rank n-k and note that $\pi_{j} p_{j}(x)>\pi_{i} p_{j}(x) ; i=0,1, \ldots, m: i \neq j$ is equivalent to

$$
\pi_{j} p_{j}\left(\left[\frac{F_{C}^{T}}{T}\right] x\right)>\pi_{i} p_{i}\left(\left[{ }_{C}^{F}\right] x\right) ; i=0,1, \ldots, m: i \neq j
$$

For any $q=0,1, \ldots, m$, the n-variate normal density $p_{q}\left(\left[{ }_{C}^{F}\right] x\right)$ has mean $\left[{ }_{C}^{F_{\eta_{q}}^{T}} \eta_{q}\right.$ and covariance matrix:

$$
\left[\begin{array}{ll}
F^{T} \Sigma_{q} F & F^{T} \Sigma_{q} C^{T} \\
C \Sigma_{q} F & C \Sigma_{q} C^{T}
\end{array}\right]
$$

Condition (1) implies $\mathrm{C}_{\mathrm{q}}=0$. Condition (2) implies that $\mathrm{I}-\mathrm{FF}^{\top}$ commutes with Σ_{q} and it follows that $C \Sigma_{q} C^{\top}=C C^{\top}$ and $C \Sigma_{q} F=0$. We may therefore write $p_{q}\left(\left[_{C}^{F^{\top}}\right] x\right)$ as the product of the respective k-variate and (n-k)variate densities $P_{q}\left(F^{\top}\right)$ and $p_{q}\left(C x \mid F^{\top}\right)$, the conditional density of $C x$ given $F^{\top} x$. Since $p_{q}\left(C x \mid F^{\top} x\right)>0$ does not depend upon $q=0,1, \ldots, m$; it follows that the n-variate Bayes assignment of x to $\Pi_{j} ; j=0,1, \ldots, m$, implies the k-variate Bayes assignment $F^{\top} \times$ to Π_{j}. The foregoing arguments are reversible and hence the k-variate Bayes assignment of $F^{\top} s$ to Π_{j} implies the n-variate Bayes assignment of x to Π_{j}, completing the proof of the equivalence. The minimality of k, in the sense that the n-variate
and k-variate Bayes assignments of x and $F^{\top} x$ are preserved, is a consequence of the developments preceding the theorem.

CONCLUDING REMARKS

Clearly the theorem is valid if there is at least one population with mean θ and covariance I, in which case we would label that population Π_{0}. If this is not the case, one would choose some population, say π_{q}, and perform the change of variables $x \rightarrow A\left(x-\eta_{q}\right)$ where $A \Sigma_{q} A^{T}=1$ prior to application of the theorem. The appropriate statistic for compression, in terms of the original variates, would then be $T=F^{T} A^{-1}$.

These results completely characterize the nature of data compression for the Bayes classification procedure in the sense that k is the smallest allowable data compression dimension consistent with preserving Bayes population assignment and, moreover, the theorem provides an explicit expression for the compression matrix T that depends only upon the known population means and covariances. The statistic $T=F^{\top}$ given by the theorem is by no means unique (e.g., for any non singular kxk matrix $B, T \equiv B F^{\top}$ will do! It is also true that there may be more efficient methods for calculating the statistic T (yet to be determined) than the method of filil rank decomposition of M.

It should be noted that the matrix M has an "excellent chance" of having rank equal to n. Even in the case of two populations ($m=2$), there may well be n linearly independent columns among the $2(n+1)$ columns of M and, therefore, no integer $k<n$ and $k \times n$ rank k compression matrix T preserving the Bayes assignment of x and $T x$.

There has been extensive work [6], [7], [8], [9], [10], [11], [12], [13], on determination of compression matrices (of a given rank) based upon criteria that, generally, attempt to describe the relative (to the variate x) "information content" in the variate Tx (e.g., divergence, Bhattacharyya distance, Chernoff bound, principal components, Wilks scatter, etc.) While these criteria provide bases for calculating compression matrices T, they provide little or no means for determining the degradation in probability of misclassification or sensitivity to population assignments.

In sampling situation one may choose to replace the columns of the matrix M by their estimates, that is η_{j} by \bar{x}_{j} and Σ_{j} by s_{j}. The matrix defined by the estimate suggest a compression technique based on the selection of a k dimensional hyperplane which in some sense best fits the range space of matrix

$$
\hat{M}=\left[\bar{x}_{1}\left|x_{2}\right| \cdots\left|\bar{x}_{m}\right| s_{j}-s_{0}|\cdots| s_{m}-s_{0}\right]
$$

where

$$
\bar{x}_{0}=\theta \text { and } S_{0}=I .
$$

We feel that the results in this paper shed some light upon the subject. In future work we intend to extend these results and the results of [1] to a related concept of an "almost sufficient" statistic.

REFERENCES

[1] Peters, B.C., Redner, R., Decell, H.P. Jr., "Characterizations of Linear Sufficient Statistics," submitted to Sankya, A, (1978).
[2] Anderson, T.W., An Introduction to Multivariate Statistical Analysis, John Wiley and Sons, Inc. (1958), pp. 126-152.
[3] Kanal, L., "Patterns in Pattern Recognition: 1968-1974, IEEE Transaction in Pattern Recognition, vol. IT-20, Nov. 1974, pp. 697-722.
[4] Linz, J., Simonett, Ed., Remote Sensing of Environment, AddisonWesley Inc. (1976).
[5] Boullion, T.L., and Odell, P.L., Generalized Inverse Matrices, Wiley-Interscience (1971), F. 11.
[6] deFigueiredo, R.J., "Optimal linear and nonlinear feature extraction based on the minimization of the increased risk of misclassification," in Proc. 2nd Int. Joint Conf. Pattern Recognition, 1974.
[7] Decell, H.P. Jr., and Quierein, J.A., "An iterative approach to the feature selection problem," in Proc. Purdue Univ. Conf. Machine Processing of Remotely Sensed Data, 1972. pp. 3B7-3B12.
[8] Cover, T.M., "Learning in pattern recognition," in Methodologies of Pattern Recognition, S. Watanabe, Ed. New York: Academic 1969, pp. 171-132.
[9] Whitney, A., "A direct method of nonparametric measurement' selection," IEEE Trans. Comput. (Short Notes), vol. C-20, pp. 1100-1103, Sept. i971.
[10] Simon, J.C., Roche, C., and Sabah, G., "On automatic generation of pattern recognition operators," in Proc. 1972 Int. Conf. Cybernetics and Soc., pp. 232-238, IEEE PubT. no. 72 CH06478SMC.
[11] Michael, M., and Lin, W.C., "Experimental study of infurmation measure and inter-intra class distance ratios on feature selection and orderings," IEEE Trans. Syst., Man, Cybern., vol. SMC-3, pp. 172-181, Mar. 1973.
[12] Kailath, T., "The divergence and Bhattacharyya distance measures in signal selection," IEEE Trans. Commun. Technol., vol. COM-15, pp. 52-60, Feb. 1967.
[13] Mucciardi, A.N., and Gose, E.E., "A comparison of seven techniques for choosing subsets of pattern recognition properties," IEEE Trans. Comput., vol. C-20, pp. 1023-1031, Sept. 1971.

