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ABSTRACT

This paper develops an explicit expression for a compression
matrix T of smallest possible left dimension k consistent with
preserving the n-variate normal Bayes assignment of X to a given
one of a finite number of populations and the k-variate Bayes
assignment of TX to that population. The Bayes population assignment
of X and TX are shown to be equivalent for a compression matrix T
explicitly calculated as a function of the means and covariances
(known) of the given populations.

1. Mathematics Department, University of Houston
2. Programs in Mathematical Sciences, Univ. of Texas at Dallas
3. Department of Mathematics, University of Tulsa

This work was partially supported by Johnson Space Center
Contract'NAS-9-15000.



INTRODUCTION

In this paper 
ni
 will demote an n-variate normal population

having a ZaMi probability ni >0 and density p i (x); i=0,1,...,m.

Using recent results (1] that characterize linear sufficient statistics

we will develop an explicit expressir;, for a kxn compression (k=n)

matrix T for which, using the Bayes classification procedure [2]

in which costs of misclassification are tacitly assumed equal on all

classes, X is assigned to IIi if and only if TX is assigned to Il i . We

will further demonstrate that k is the smallest integer (<n) for

which the latter equivalence is valid and that T can be directly

calculated in terms of the known population means and covariance matrices.

The applications which motivate the necessity for compressing or

reducing the size of a data vector is summarized very well in a review

paper by Laveen Kaval in [3]. Our own interest was motivated by a

need to reduce computational requirements in a large area crop inven-

tory project using multidimensional data taken remotely by near earth

satellites [4].

In all that follows ni and Ei will, respectively, denote the

mean and covariance matrix of population II i , i=0,1,...,m. It is well

known that for each non-singular nxn matrix A and nxl vector a, the

Bayes assignment of x to II i is equivalent to the Bayes assignment of

A(x-a) to II i . We will later assume that no 0 and E. = I. This assump-

tion will impose no loss of generality in the results that follow since

we may set a=n, and choose A such that AEoAT=I.

If the latter transformation of variables is necessary, we will not

introduce new symbols for the variate A(X-n o ), the densities pi(Ax-no)



and their associated means and covariance matrices. Whenever Q is

an sxn rank (s<n) matrix, we will denote the s-variate normal

density of Qx by (for population li i ) pi(Qx).

PRINCIPAL RESULTS

According to [11, let k(<n) be the smallest integer for which

there exists a linear sufficient statistic (kxn matrix T) for the family

of probability measures having densities p i (x); i=0,1, ..., m. The

results in [1] demonstrate that the sufficiency of T is equivalent

to the conditions:

(1) T+Tnj = nj
J=0.1,.... m

(2) T+T(E
j
-I) = Ej-I

where (•)+ denotes the generalized inverse of (•).

Let M be the nx(n+l)m partitioned matrix

M	 [nl^n2^...^nm^El2_I^...1Em-I]

and let M='G be a full rank decomposition [5] of M, that is; F is nxk,

G is kx(m+l)m and rank (F) = rank (G) = k. Again, according to [1] and

the latter, k must be precisely the smallest integer (<n) for which

a kxn matrix T can be a sufficient statistic for the given family

of probability measures.

It is well known [5] that M +=G+F+ and hence that MM+=FF+ . A

simple computation reveals that T=FT satisfies conditions (1) and (2)

so that FT is a sufficient statistic (of minimum left dimension) for

the given family of probability measures We have the following

theorem.



Theorem 1. Let H i be an n-variate normal population with a

priori probability n i >0, mean n i and covariance E i ; i=0,1,-•-,m

(with no =e , ro I) and let FG=M=[n,ITO. ••Inm IE
l -I1E 2-I I ••• I Em- 1 I

be a full rank ( = k<n) decomposition of M. Then, the n-variate

Bayes procedure assigns x to 
H  

if and only if the k-variate Bayes pro-

cedure assigns FTx to II i . Moreover, k is the smallest integer for

which there exists a kxn compression matrix T preserving the Bayes

assignment of x and Tx to Ty i=0, 1, ..., m

Proof: Recall that the n-variate Bayes procedure assigns x to

nj if and only if nj pj (x)>n i p i (x) ; i=0,1,...,m: V i (with arbitrary

assignment of x to any of the populations IIkfor which nj pj (x) = n kp k (x) ).

Let R be any (n-k) x n matrix such that C = R(I-FF *) has rank

n-k and note that Tnjpj (x) > n i pj (x); i=0,1,...,m: i#j is equivalent to

njpj([F) x ) > n i p i ([F ]x); i=0,1,...,m: i^j
T

For any q=O,l .... ,m, the n-variate normal density p q([C lx) has mean
T

[^ nql and covariance matrix:
q

FTEgF	 FTEgCT

[CXqF	CEgCT

Condition (1) implies Cnq o. Condition (2) implies that I-FFT commutes

with Eq and it follows that CE gCT=CCT and CE gF = o. We may therefore

write pq ([^TIx) as the product of the respective k-variate and (n-k)-

variate densities pq (FTx) and pq (CxIFTx), the conditional density of Cx

giver. FTx. Since pq (CxIFTx)>0 does not depend upon q = 0 1 It ..., m;

it follows that the n-variate Bayes assignment of x to IIi; j =0,1,..., m,

implies the k-variate Bayes assignment F Tx to Rj . The foregoing arguments

are reversible and hence the k-variate Bayes assignment of F Ts to IIj

implies the n-variate Bayes assignment of x to II j , completing the proof of

the equivalence. The minimality of k, in the sense that the n-variate



and k-variate Bayes assignments of x and F Tx are preserved, is a con-

sequence of the developments preceding the theorem.

CONCLUDING REMARKS

Clearly the theorem is valid if there is at least one population

with mean 0 and covariance I, in which case we would label that

population %. If this is not the case, one would choose some

population, say w q, and perform the change of variables x-+A(x-nq)

where AEgAT= I prior to application of the theorem. The appropriate

statistic for compression, in terms of the original variates, would

then be T=FTA-1.

These results completely characterize the nature of data

compression for the Bayes classification procedure in the sense

that k is the smallest allowable data compression dimension consis-

tent with preserving Bayes population assignment and, moreover, the

theorem provides an explicit expression for the compression matrix T

that depends only upon the known population means and covariances.

The statistic T=FT given by the theorem is by no means unique (e.g.,

for any non singular kxk matrix B, T_BF T will do! It is also true

that there may be more efficient methods for calculating the

statistic T (yet to be determined) than the method of fill rank

decomposition of M.

It should be noted that the matrix M has an "excellent chance"

of having rank equal to n. Even in the case of two populations (m=2),

there may well be n linearly independent columns among the 2(n+l) columns

of M and, therefore, no integer k<n and kxn rank k compression matrix T

preserving the Bayes assignment of x and Tx. .



There has been extensive work [61,[ 71,[81,[91,[101,[111,[121,[131,

on determination of compression matrices (of a given rank) based upon

criteria that, generally, attempt to describe the relative (to the

variate x) "information content" in the variate Tx (e.g., divergence,

Bhattacharyya distance, Chernoff bound, principal components, Wilks

scatter, etc.) White these criteria provide base q for calculating

compression matrices T, they provide little or no means for determining

the degradation in probability of misclassification or sensitivity to

population assignments.

In sampling situation one may choose to replace the columns of the

matrix M by their estimates, that is nj by zj and Ej by Sj . The matrix

defined by the estimate suggest a compression technique based on the selec-

tion of a k dimensional hyperplane which in some sense best fits the

range space of matrix

M = [xlIx21 ... IXmISj_SoI ... ISM-Sol
where

RO=E) and So=I.

We feel that the results in this paper shed some light upon the

subject. In future work we intend to extend these results and the results

of [1] to a related concept of an "almost sufficient" statistic.
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