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ABSTRACT

We consider the acceleration of solar flare protons by cyclotron

damping of intense Alfven wave turbulence in a magnetic trap. The

energy diffusion coefficient D EE is computed for a near-isotropic dir-

tributior of super-Alfvenic protons and a steady-state solution for

the particle spectrum is found for both transit-time and diffusive

losses out of the ends of the trap. The acceleration time to a char-

acteristic energy u 20 Mev/nucl can be as short as 10 sec. On the

basis of phenomenological arguments we infer that the Alfven wave spec-

trum has a ei 2 frequency dependence and that the correlation time of

the turbulence lies in the range 5 x 10 4s' 
` corr ` 5 x 10

-2
 S.



I. INTRODUCTION

Solar flare protons are believed to be accelerated in complex

magnetic; bipolar configurations in active regions. Evidence points to

the idea that acceleration occurs in a second stage process [De Jager,

1969] in contrast to primary energy release of the flare in a first

stage process which is manifest directly in quasi-thermal heating and

non-thernr.l 10-500 Kev electrons [Svestka, 1976]. The association of

Type II radio bursts with proton flares is compatible with the scenario

that a noisy MHD shock is generated soon ( ti 3 rains) after the initiation

of the flash phase and accelerates protons by stochastic processes as it

propagates upwards and away from the flare site [McLean et al., 1971;

Lin and Hudson, 1976]. The shock is certainly energetic enough and

current belief is that Fermi processes are at work in conjuction with

wave-particle scattering to energize protons up to energies > 10 Gev

[Melrose, 1974; Svestka, 1976]. A large part of our theoretical under-

standing of acceleration mechanisms has derived from efforts directed

towards understanding the energization of galactic cosmic rays [Rosen,

1969].

In this paper we will attempt to model the solar proton acceleration

process with a very simple field-plasma configuration which might be

described as a "leaky trap". Energization takes place in the corona

in closed magnetic field structures but allowance is made for particle

losses. As a first step in this direction we have considered only

particle escape along the flux tube to the low solar atmosphere. The

acceleration mechanism is cyclotron damping by super-Alfver., ic protons
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of intense Alfven waves propagating in the trap. This process is

intrinsically stochastic and no adiabatic, Fermi-type mechanism is

invoked for the acceleration.

Davis [1956] gave the earliest description of the effect that a

turbulent state of MHD waves produces a diffusion in pitch anal-Is

towards isotropy. The development of quasi-linear theory [see Kennel

and Englemann, 1966, and their refs.] provided a useful aialytic tool

with which one could address the problem of diffusion in phase-:pace

resulting from turbulent wave-particle interactions. Sturrock [1960,],

using a Fokker-Planck formalism, achieved similar results and thus

fortified our confidence in these methods.

Melrose [1974] demonstrated that the combined effects of stochastic

pitch angle scattering by Alfven waves and Fermi acceleration could

account for the energization of solar flare protons. Th^ source of the

Alfven turbulence was considered to be the non-thermal protons them-

selves which, if sufficiently anisotropic in pitch angle distribution,

would drive an electromagnetic Alfven wave instability. Since the free

energy for the waves is derived from the kinetic energy of the non-

thermal protons in this picture, another, independent, free energy

source must energize the protons (e.g., a Fermi process). In our model

the energy flow is opposite to that of Melrose. We assume that Alfven

turbulence is generated ad hoc by an exciting agency that is flare

related. Using this approach we may eliminate the Fermi mechanism and

consider the acceleration possible from just short wavelength, kv = scp,

2
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Alfven waves which not only scatter in pitch angle but also energize

through crA lisionless damping [Schatzman, 1967; Sturrock, 19741•

The model can be applied to the system described by, for instance,

McLean et al. [1971] in which a localized shock generates Alfven waves

propagating throughout a flux tube. With some modifications, the model

may also be applied to a system like that of Sturrock [1974] in which

protons are accelerated on open field lines by a noisy MHD shock.

However, recent y-ray observations have sug gested that some protons may

be accelerated as early as the impulsive phase. We have, therefore,

concentrated on the consequences of a leaky trap without pinning down

the source of the turbulence or when and how it is generated. If

impulsive phase proton acceleration is confirmed, then we hope our

model may provide insight into the primary energy release mechanism

itself.

In Section II we outline the ingredients of the model and inquire

into the possibility of proton acceleration during primary energy

release. In Section III we derive the energy diffusion coefficient,

DEE , for the cyclotron damping mechanism for a near-isotropic distribu-

tion of super-Alfvenic ions. In Section IV we apply this result to

the leaky trap with either ballistic transit-time losses or diffusive

losses out the ends of the trap. In the final section we summarize

our results and comment on the possibility of flare-generated MHD

standing waves in the trap.

i
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II. MODEL

A. Basic Assumptions

The basic magnetic field configuration we shall consider is that of a

closed loop, bipolar arch structure. We presume that some exciting

agency, that is flare related, generates intense MHD turbulence which

interacts with particles at coronal heights. The closed field lines

serve as a magnetic trap for the non-thermal particles which are stochas-

tically accelerated by the turbulence but are prevented from escaping by

mirror forces arising from the convergence of the mean field _ o towards

the photosphere. The turbulence is assumed to consist of short wavelength

perturbations, a << L, much smaller than any macroscopic scale of the

system; this enables us to use homogeneous quasi-linear theory to gauge

the acceleration efficiency. The dominant interaction with the waves is

considered to be with the wavevector component parallel to % [i.e.,

k,= o] and we, therefore, model the turbulence as an ensemble of parallel-

propagating Alfven waves in the frequency range w0 < w << SIcp , where Qcp

is the proton gyrofrequency and w0 is a low frequency cutoff.

The question of particle phase-space losses is an important one and

different assumptions concerning what loss mechanism prevails will alter

the picture significantly. We shall consider proton energies sufficiently

large that they may be considered collisionless with respect to binary

coulomb interactions [Braginskii, 1965] during the acceleration period.

However, if the protons remain in dense regions sufficiently long, this

deenergization process must be accounted for. We may expect that some

cross-field diffusion of particles out of the trap is likely to occur

during the acceleration period. However, we have chosen to consider what
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may be the fastest loss process: particle escape along the field to the

chromosphere and photosphere. A consequence of our assumption of intense
s

Alfven turbulence (with a predominant magnetic component) is that particles 	 j

i
will be scattered very efficiently in pitch angle and can either stream

out or diffuse out of the acceleration region along the flux tube to the

lower atmosphere. For either case we have scaled the losstime to the

particle ballistic travel time and the diffusion time along the length of

the flux tube. In the first case (transit-tine losses) our model is anal- 	 i
i;

ogous to the process described by Kennel [1969] who considered stochastic

acceleration of electrons in the earth's magnetosphere. In the second

case (diffusive losses) the model incorporates diffusive spatial transport

in the presence of elastic wave collisions [Jokipii, 19711 analogous to

the propagation effect observed in interplanetary space.

B. Applications

The association of Type II radio bursts with proton events observed

at earth suggests that a flare-`.nitiated shock propagates upwards and

accelerates protons. If the shock is the exciting agent of MHD waves,

then our model may be used to compute the acceleration of protons in a

configuration like that proposed by McLean et al. [1971]. It must be

determined, for instance, if the acceleration takes place ahead of or

behind the shock, and the question of how the protons obtain access to

interplanetary field lines must be addressed. If the field lines of the

trap "open up" [Kopp and Pneuman, 1976], 'then particles will be injected

ballistically into the solar wind; but if the field lines remain closed,

but distended, cross-field diffusion effects must occur to exhaust the



trap. Chronologically, this process is an "after effect" of the flare;

that is, subsequent to or during the primary energy release the shock

is formed and proton acceleration begins at times It 3 mins after the

initiation of the flash phase.

However, y-ray observations [Chupp et al., 1973] made by the OSO-7

satellite have indicated that proton acceleration may begin at times coin-

cident with the flash phase onset. Figure 1 is a plot of the Aug. 4, 1972

2.2 Mev y-ray line together with hard x-ray profiles from Van Beck et al.

[1973]. We note that while the maximum of the y-ray flux occurs after

the hard x-ray maximum a not insignificant flux is measured very soon after

onset [Svestka, 1976]. In fart, the flux at 0625 UT is 1/3 of the maximum.

Since there must be a finite acceleration time for the protons to reach

these energies in sufficient number, Figure 1 indicates that, within the

temporal resolution of the instrument and ignoring any nuclear reaction

time delay, a generous upper limit for the acceleration time 'k• 3 mins

(assuming that energization begins at 0622). The acceleration time could

be much less (lOs < Tacc ` 200s) and still be consistent with the non-

thermal 2.2 Mev emission measure reaching a maximum later as more flux

tubes become involved and the acceleration region increases. The measure-

ment at 0622, if real, gives support for a short q,10s acceleration time.

Ramaty et al. [l o'j] interpret a break in the hard x-ray spectrum of

Aug. 4, 1972 at about 500 Kev towards a harder profile at higher energies

as evidence for electrons undergoing second stage acceleration.

6



Since we might expect intense Alfven wave turbulence generated in 	 1

primary energy release mechanisms like, for instance, magnetic field

tearing instabilities [Spicer, 1976], we have, therefore, considered

a parameter regime for the leaky trap that might be applied to plasma-

field conditions in the vicinity of x-ray kernals and their coronal

loops at the time of the impulsive phase. The model, then, can allow

us to infer something about the primary energy release process itself

rather than post-explosion conditions in MHD shocks. Future observations

shruld define clearly the role of magnetic turbulence, especially with

regard to primary energy release, and can test our supposition that

proton acceleration can occur as early as the impulsive phase.
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III. DIFFUSION COEFFICIENT

A. Quasi-linear Theory

We consider a homogeneous plasma in a magnetic field % directed

along the z axis and assume that the turbulence, composed of parallel-

propagating Alfven waves (k l = o) with frequencies in the range

Wo < W = I kI VA << 0cp,	 (1)

can be described by a spectral density

< B 1 /$n > = 2 I^dw & M .
	

(2)
O

VA = Bo/(47rMno)" is the Alfven velocity, Qcp = eBo/Mc is the proton

gyrofrequency, and 	 is the perturbation magnetic field related to the

induced electric field by
V

	

III =	 c If
I I.

The factor of two in equation (2) is to discriminate between waves travel-

ling parallel and antiparallel to 9,,.

It is well known that the temporal evolution of a distribution of

particles, say protons, in response to resonant scattering by Alfven waves,

can be described by a quasi-linear relation [Kennel and Engleman, 1966;

Hall and Sturrock, 1967; Davidson, 1972] which, for k, = o, reduces to

in the non-relativistic regime

"	 a

at V,t) _ -	 _ - avz	f(	 — 
v1 av, (v.i l )	 (4)

av	 z

where

	

4,rzezVz	
kv

I V IQ(w) 

L	

z of	
kv l	 v	 kv

of	 ^( 
k z	 ,	

(5)

MZC2

_ -	 A	 )9	 (1- m a +	 y

	

W av 
C1 - 

w ) l+
	

vzw

V -v	
z^

( g	 z^
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In the frequency range considered, the group velocity is the Alfven speed,	 1

f ^!
IV g I = VA ; v z and v l are unit vectors in velocity space (cylindrical

coordinates', azimuthal symmetry about 6̀
0 

being assumed. The effect of 	 `,f

the finite perturbation electric field (3) is represented in the terms

consisting of the integer 1. The unique relationship between the proton

and the Alfven wave in this interaction is expressed in the cyclotron

resonance condition which is given as

w - kvz = ±nCp	 (6)

the upper (lower) sign taken for the L (R) mode of the Alfven wave. For

k > o the terms L and R also give the polarization of the wave. Equation

(6) indicates that an effective "collision" occurs when the doppler-

shifted wave frequency is the proton's gyrofrequency and the sense of

rotation is the same. 	 3

For the range of parameters we shall consider, V A << card the effect

of the predominantly magnetic wave is to scatter the particles primarily

in pitch angle. It is convenient, therefore, to express (5) in spherical

coordinates. If Cosa = vz/v we have, using (6),

4n 2e zVA S2^ I V9 law	 kvil of	
- kv;

Mzc z	 V - v	
sine ± s2^ Cosa) av + Cosa + Ĉ sine

9	
z^	 p	 P

1 afr	 kv^	 l	 kvl	 l

v ao 
C(sine ± ^cp Cosa v + (Cosa + ^cp sine) el	 (7)

1
l 	l	 1)]

Inspection of (6) indicates that if w << Q Cp , then IvzI >> VA if

resonant scattering is to occur. Protons with Iv z I < VA follow the wave

adiabatically conserving their first invariant u = 
m-
ZvF
i 
during the

9
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oscillation, whereas super-Alfvenic protons can satisfy (6) and are

non-adiabatically scattered, the interaction being sufficiently rapid

(T ti S' - ') so as to violate their first invariant. Equation (6) thencp

permits a useful perturbation expansion [Melrose, 1974]

	

k1Q = 
+1/ vz = + -I 1 +°—' +	 (8)

cp	 1-w/kvz	
vz	 kvz

for particles with velocities IvzI » V A . Retention of the zero order,

term in (8) provides strictly magnetic effects, while the first order

term incorporates effects of a finite electric field due to 	 # o. The

expansion of (7) to zero order yields

I(o) 	
4,r 2e2 V 

^tw)	
1	 of a
	 (9)

	

M2c2 A
	

Icosel 
ae

Any reference to frequency here is incidental since if (2) is given

alternately as

we have the relation

VA it(w)	 (k)	 (11)

and thus (9) can also represent non-adiabatic p itch angle scattering from

stationary magnetic inhomogeneities descvioed by j(k) [Jokipii, 1971].

On the shortest time scale, the turbulence acts to isotropize the

distribution and on a longer time scale 0(v 2/VA2 ) the particles are ener-

gized through stochastic accelerations from ti . 
This results in a diffu-

sion current J (2) which we may conveniently write using the approximation

that the distribution is nearly isotropic from pitch angle scattering and

of = o. Retaining the first order term in (8) provides the second order
ao

term for ^(2) = 0(V2A/v2)



- 47r2e2V 2 	 V singe
1(2) = _	 A A(w) 

A	 of 
v	

(12)

M20.	 vicosel av

and the distribution evolves as

47r2e2V3a	 A sin ge 1 a (	 of
aT f(v,t) _

	

	 ^(w) v av	 (13)
M2C2 ICOSBI V2 av

B. Wave Spectrum

To model the turbulence we assume the spectral density can be

represented by a power law in frequency

6Z( w) =Bo w_6  e(w-wo ) .	 (14)

o(x) is the Heaviside step function which introduces a low frequency

cutoff at wo . It is also implicit in (14) that frequencies do not extend

as high as the proton gyrofrequency. The resonance condition (6) gives

the inverse wave-particle relation

w = JkjVA = Qc 	
'A
	 (15)

p vIcosel

The subsequent steps are straightforward: the spectral density is

normalized to the perturbation field energy density in (2) to determine

so , equations (14) and (15) are inserted into (13) and the equation is

averaged over pitch angles, and the change of variable to energy per nucl

is made.

Generalizing this procedure for an arbitrary ion of ionic charge Ze

and mass AM,the temporal evolution of the differential number density for

any ionic species can be written as

at N(E,t) = D aE En+3/2 aE (	 ) 1
AE

'i

ORIGINAL PAGE IS
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(15)
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where the total number density of the ionic species is given as

N = o °dE N(E)

and	 D = (A/Z)2n-1 Dp

B2/87T	
2n	 EA

Dp = 2ns2cp B
o/8n (2n+1)(2n+3) E

n
P

62
The variable E = 41W = energy/nucl of the species, EA = kMV 2

 = 8nn
0

is the Alfven energy, M = proton mass, and the index n is related

to the wave spectral index by

n = `^(6-1) .	 (20)

The normalization of a(m) introduced the low frequency cutoff wo

into the scaling of the diffusion coefficient and we have written it in

energy units as

Emp ° _^MVA ( "o l z
	

(21)
	

.3;

Emp is related to the maximum energy a proton can achieve in the following

way: if Emp is non-relativistic in value, then E
max,p = E

mp , but if Emp

is relativistic, one must use the relativistic form of the resonance

condition instead of (6) to determine E max ,p. Thus, the maximum energy'

a proton can be accelerated to is
i
(

	E mp	 Emp << 1Gev

Emax,p 	 n	
(22)	 j

Mc'- !A 
 —^	 Emp >> 1 Gev	

10 r
E

Again, so long as we are considering the non-relativistic regime of
i

energies in (16), (21) is used by definition for all values of to
o.

It is of interest to ask what minimum energy (injection energy) of 	 }}
I

electrons is necessary for them to be accelerated by Alfven waves. The

Ul'' 
1^001i	 12 z

(17)

(18)

(19)



resonance condition for electrons with gyrofrequency qce = eBo/mc is

given as

- kvz = + S2ce /Y

which indicates that if ui < Qcp , we have [Sturrock, 1974]

E ini, p=
 EA = %2MVA

m E
A	non-rel

E
ini a	 VA

Mc 2	ultra-rel

These restrictions apply for MHD Alfven waves where w < Qcp . Extension

of the wave spectrum to higher frequencies to include whistler waves

(R mode) or Langmuir waves lowers the electron energy threshold [Melrose,

19741, but is better addressed as a separate problem since the wave

properties are quite different and, phenomenologically, acceleration by

higher frequency waves may be related to first stage acceleration

processes [Hoyng, 19771.

If, instead of energy, one considers a diffusion in the non-relativis-

tic regime of rigidity, R = AMvc/Ze, we have alternatively

	

at N ( R , t ) = K R [ R2n+2 aR (N/ R`) ]	 (25)

where

	

BZ	 2n	 R2
K= A 2	 1/8,r	 A	 (26)

Z 2 cp Bo
/8n (2n+1)(2n+3) R 2mp

C. Physical Interpretation

An interpretation of the physical process leading to equations (4),

(6), and (14) is given in Figure 2. We have decomposed the turbulence

into an ensemble of elemental scattering centers of length x 5 xcorr'

This ensemble is equivalent to the actual situation in that the idealized

(23)

(24)

13



scatterers have the same autocorrelation function as the actual system,

PM =j du)8Me-iWt /[JdJ(w) ]	 (27)

p(x) = f dki(k)e ikx/[Jdki(k) ]	 (28)

From the power spectrum given in (14) we identify (6 > 1)

Tcorr = wo	xcorr = VA Tcorr'
(29)

and Q(k) [or Q (w)] is a measure of the differential number density of

elemental scattering centers of size k -1 ti x 5 xcorr' A super-Alfvenic

proton satisfying the resonance condition (6) can be effectively scattered

as drawn in Figure 2. Particle A sees a component of tl parallel to v

throughout the interaction and is accelerated, while particle B is 1800

out of phase and is decelerated. A collection of random (cyclotron)

phased particles will experience, however, a dispersion in energies.

The acceleration process described here cannot be interpreted as a

stochastic Fermic type. The acceleration mechanism described by Fermi

[1949, 1954] involves an adiabatic process such that the particles' first

and second invariants, ^ = 
mv;

/2B, J =^v li ds, are conserved. Pitch

angle scattering is an ancillary process invoked to counterbalance the

systematic decrease in the particle's pitch angle as it is accelerated

[Davis,1956]. We have described a process where oscillations are suffi-

ciently rapid that they non-adiabatically violate the first invariant.

Energization (or denergization) is concomitant with pitch angle scattering

when w # o and such a process is best interpreted as cyclotron damping

of Alfven waves [Stix, 1962].

I
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IV. CHARACTERISTIC SCALINGS

In order to apply the result of equation (16) to the leaky trap

model, we have considered three problems: a transient solution and a

steady-state solution with transit-time and diffusive losses.

A. Initial Value Problem

Two facts which immediately emerge from injection of (16) is that

the energization time scales as T  
ti El-n and that the solution asymptotes

to a "steady state" N(E) - E-n . The energization time indicates that

n = 1 distinguishes two, quite different, diffusion regimes which favor

acceleration of either high or low energy particles. We shall argue in

this paper that the regime which favors low energy particle acceleration

is more appropriate for solar proton flares and we shall consider the

parameter regime

1 <6 <3 *-+ 0<n<1 .
	

(30)

This statement is equivalent to the expectation that if the power spec-

trum in (14) is sufficiently flat, protons can be accelerated over a

large energy range in the shortest time for a given perturbation field

energy density. Increasing 6 to larger values puts all the energy in

the low frequencies and biases the acceleration in favor of very high

energy particles [Equation (15)].

The homogeneous solution of (16) with the boundary conditions at an

injection energy E  that

f

	
N(Eo ,t) = No , N(E>Eo ,t=O) = 0, N(E ; m ) i 0

15



^1p

A

i^
i

t
^l

is given as	
im

N	 K (E Ew As-)

N(E,t) _	
ss e

s ( E ) p u	 w
o	 Ku (t Eo rs-)

with

p = h(1- 2n )	 = 1 2n	 1/0t

W = li(1-n) > 0	 u = 
2 ^n

If we consider times long enough such that E Eo << 1, the small-

argument form of Ku ( z ) can be used in the denominator and the integral

is evaluated as

2 2w

	

N(E,t) = No r E	

E

Eo ^n r(u,

r(u) 	 )	
(33)

where r(a,x) is the incomplete gamma function [Abromowitz and Stegun, 19701

This function exhibits two different behaviors depending on whether

X = zg 2 E2W >< 1	 (34)

We may approximate the solution as

rE	 n

	

No I E )	
x«1

N(E,t) -	 J	 `	 (35)

No ^LO
	 (%E2E2W)u-1 -'4E2Cw

E ^
	 e	 : x >> 1

ll	 1	 r{u)

The solution changes from a power low at low energies to an exponential

behavior (w>0) at the diffusion front characterized by a break energy,

EB , which depends on time and is defined as x = 1 leading to

1

EB ( t ) = [(1- n ) 2 Dt] 1-n
	

(36)

(31)

(32)

16
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In a subsequent section we shall argue for the feasibility of the

value n	 Anticipating this discussion and defining e B = B^/BD we may

scale the break energy as	

zEB (n=k,t) = 0.61 I ^ 
J	

0— l (
lEGev 1 ( 6x109cm 3 lz

111	 10-z /	 l	 mp ) t	 o	 J

t z Mev/nucl .	 (37)

Time is in units of seconds and our choice of B o and no = background

density corresponds to an Alfven energy of E A s 41.4 Kev. Note also

[Equation 181 that for n = !, reference to Z/A disappears and (37) is valid

for any ionic species. The value 10 Gev for E mp corresponds to Emax p =

4.3 Gev.

B. Steady-State Solution

Assuming that proton acceleration can occur for a period longer than

10 sec, (37) admits the possibility of very efficient proton acceleration,

E  being a measure of the "hardness" of the proton spectrum. A realistic

model should allow for particle losses and phenomenologically we may write

aN = 	a	 n+3/2 a	 N	 N
at O a—E CE	 a—E	 7-	 =0	 (38)

vE	 TOE
S

to describe the time asymptotic evolution of the transient solution (33).

The steady-state solution of (38) should give a meaningful result provided

that the fastest losstime

T = TOES
	

(39)
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can be ascertained. The solution for q = 11(1-n-0) > 0 is

N ( E ) = N ( 
E 

)p Kv(XE9)
	 (40)

o l E  J Kv(aEo)

where

p = k(1-2n) a =	
2

1-n-s
TO

2n+1
(41)

If AE << 1 we may use small argument form for the denominator and

(40) exhibits the following behavior

No (Eo/E) n XEq << 1

N(E)	 = (42)

NN
o —r

(	 ^aE	 )l v -'
p( v )	 oql

IItI 	Eo	 ljz(n-a) e-XEq aEq » 1
l	 E	 J

The steady- state break energy, defined as aE q =	 1,	 is

1

EB = C z(1-n-Q) 2 DTo ]
1-n-0 (43)

C. Transit-Time Losses

In a magnetic field minor geometry, particles with pitch angles

less than the loss cone value

sin2eo = Bo/Bmax	
(44)

can penetrate to a field strength of 
Bmax 

where they may be considered as

lost [through significant denergization processes in the dense chromosphere

and photosphere]. This angle corresponds to a loss cone "volume" of

47r[l-cose o] steradians. If pitch angle scattering occurs rapidly enough

to maintain a significant number of particles in the loss cone, then the
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losstime is estimated to be the transit time along the flux tube with a

weighting factor of the fractional volume of the loss cone [the strong

pitch angle diffusion regime of Kennel, 1969], i.e.,

	

T = (M/2) 11 L(1-coseo)-1 E-^
	

(45)

Transit-time losses lead to a value of 6 = -=s in (39). We note that

if n = k, then the solution (40) behaves at large energies as N(n =-B='i) ti

E-Z e-
"rE-

. Observations made at 1AU have indicated that over a large

range of energies, proton spectra can be fit by an exponential in rigidity,

the fit improving at high energies (n 20OMV = 21Mev) [frcier and Webber,

1963; Van Hollebeke et al., 1975]. An exponential in rigidity is also

consistent with models based on Y-ray observations [Ramaty and Lingenfelter,

1972]. On this basis we argue for the feasibility of the value n =

corresponding to a wave spectral index of 6 = 2.

If we take a coronal field strength of ING and a photospheric field

of 1000G, the loss cone angle eo = 18 0 . Using (45) in (43) gives a steady-

state break energy for transit-time losses of

EB	
(100G ,3[ 10

82	109cm	

IEmp 12 ( 6x1 nocm 3 1

0.1
l Mev/nucl

Bo/Bmax 1

Although (46) gives a reasonable value for the turnover, the scaling

may not be correct.. In the absence of cross-field losses, (45) without

the loss cone weighting factor must be the shortest conceivable time to

deplete the trap. But, for the parameters chosen, the mean free path for

(46)
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pitch angle scattering is much less than the length of the tube. Under

these circumstances, a spatial diffusion along the field to the lower

atmosphere may be more appropriate than losses scaled to the particle

ballistic transit time.

D. Diffusive Losses

If the phase-space distribution function varies along the z direction

and we consider only the effects of pitch angle scattering by waves, then

(4) in zero order can be written as

af
at + vz 9z f ( z ,v,t) = n [ 

Dnn an ]	 (47)

and n = cose. Jokipii [1971] has shown that in the approximation that f

is nearly isotropic, (47) reduces to a diffusion equation for the differ-

ential number density

at N( z ,E,t) = KII 32N
	

(48)
az2

where

i

KII
	 -97 v2 

[lf 
do D

,in ]-1	 (49)

and from (9) we have for protons

D = 4r 2e &,) VA 1-nz	 (50)
nn	 M2C2	 v	 I'il

Substituting the spectral density (14) in the above and generalizing for

an arbitrary ion yields the result

z

I 1 do D	 = D	 A 2n-1 nst
	

8 8,r	 n	
(51)

-i	 nn	 nn - (Z )	 cp 1
	 2n	 E

	

B2/8;r	 2n+1 2n+3 En

	

o	 mp
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and the parallel spatial diffusion coefficient is

K
	 4 E

	

7q
	

(52)
^	 M D	 .

nn

If we consider ions diffusing down both legs of a trap of length L and

L2
estimate from (48) the losstime as Tdiff = TK— + we have

9	 A 2n-1	 2n	 E'rsl

	

Tdiff = 16 ML2 j Z ^	 "s^cp rB 2n+	 n+3 En	 (53)

mp

If n =	 then a = -k and the steady state solution will behave in a

manner similar to the results of the previous section for transit time

losses. Equations (53) and (43) give a turnover for diffusive losses of

E  ( n = z) = 17.2 ( T
OM,	

( EB i 2 ( L	 z (6n0	

J 

(l Emp

l	 \ In" z	^ 109	l	 o	 Emp J

Mev/nucl .	 (54)



V. SUMMARY AND DISCUSSION

We have considered some of the consequences of a turbulent spectrum

of intense Alfven waves propagating along the magnetic field of coronal

flux tubes. The model describes a steady-state situation where a popula-

tion of ions is maintained at a threshold velocity of the Alfven speed

and is scattered in pitch angles by the turbulence towards isotropy

and energized concomitantly through collisionless damping. The accelera-

tion time to ti1OMev energies can be as short as %lOs and the process itself

is limited only by how well the trap can contain the accelerated particles.

The measure of the acceleration efficiency has been gauged by a break

energy of the particle spectrum which characterizes a turnover from a

relatively flat partical spectrum to a rapidly decreasing exponential at

high energies. This break energy is approximately the value at which the

acceleration time equals the loss time.

The primary loss mechanisms which we have considered are transit-

time losses and diffusive losses out of the ends of the flux tube. For

the range of parameters such that the mean-free-path for pitch angle

scattering is small relative to the length of the tube, the diffusive

picture is probably more correct. The question of other losses is impor-

tant and further work is needed to clarify the role of cross-field diffu-

sive effects, especially with regard to how particles obtain access to

interplanetary field lines. However, if the acceleration region consists

of open field lines [Sturrock, 1974] this problem disappear•.

One important conclusion we have drawn is that for a given r.m.s.

magnetic perturbation B 1 the wave power spectrum in (14) must be relatively
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flat (30) if efficient acceleration is to occur. For large values of

the wale spectral index d the diffusion process favors the acceleration

of the very high energy particles which are scattered by the most ener-

getic oscillations near the correlation length of the turbulence; in

this case the energy diffusion coefficient scales as a strong power of

(Eo/Emp ) n [Newman, 1975] indicating that the acceleration of low energy

particles near the injection energy E. is inefficient and holding up

the works. On the basis, of this model proton flares are associated with

both large magnetic field perturbations and flat power spectra (30).

This result is consistent with the findings of La Combe [1977] who con-

sidered particle acceleration in radio galaxies by Alfven waves. We may

also extend the result (19) to include the value s = 1(n=0) for which

the substitution is made in both (19) and (51)

1
2n2n+12n+3 a1 3 lnwmax/wo	

( 55)

In particular, we have shown that the value s = 2 leads to an expo-

nential particle spectrum at high energies that behaves as N ti E- '4
 e '^"E

On the basis of observational indications of this behavior we have assumed

s = 2 as a likely value. For this case, we may also rewrite the results

(52) and (54) in a simple form in terms if the low frequency cutoff w 

and we offer the following speculations on second stage acceleration in

conclusion:

The choice of scaling the diffusion coefficients in terms of the quantity
111 	

Emp (?1) throughout this paper was motivated by the possibility of deter-

mining the correlation time, wo l , from observations of the highest

;`,.
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recorded proton energies. The value taken of Emp = lOGev corresponds

to Emax,p = 4.3 Gev and from (21) we infer a correlation time and

distance of

Tcorr ° 5..x10-4 ( 1
-0^ lZ ( no i ( Ems_1`I sec

l	 o f	 ( 6x109)	l lOGev J

	

E	 (56)
= 1.5 j	 1 (	 m^ l	

kmcorr	 Bo100G ) I lOGev J

It is possible, however, that the correlation time is much longer than

(56) and the much higher proton energies possible are not recorded because

of the rapid decrease in the spectrum (40) at very high energies. Treating

w0 then as a free parameter and taking n = !, we may rewrite in summary

the results for spatial diffusion as [E = B2/g2]

	

B	 1 0

Dnn(n=k) = 8 wo EB 
V
A	

(57)

K	
96 k e R
	

(58)
o

Defining a mean-free-path such that K = 3 v a we have for spatial

diffusion

a( '̂2) = 36 kpEB	 (59)

The energy diffusion coefficient (19) becomes

D (n= ^) = 4 w0 EB EA	 (60)

leading to the temporal break ene;-gy (36) of

EB (n=k, t) = ( 16 )
2 EB EA (t/TCOrr)2	 (61)

ORIGINAL P t 1^1P1y
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and a steady-state break en

EB (n=! )

If we estimate from (16) an

TEE Pi

orgy for diffusive losses of

2048 Wo EB 
ML 2 	(62)

energy diffusion rate

_ TrVA_ T wo E8 . v
	 (63)

we get a result which differs from (61) by a factor of 4 but is equal to

Melrose's [1974] result [see his equation 24 and the discussion following]

Equation (62) may be scaled as

2	 2
EB^)(n='	 = lg (0.055.12 [ 'B	 (64)

1 (	 L	 l Mev/nucl ,
l corr J	 1 J t 10 9cm J

and it is clear that longer correlation times than ( 56) require a larger

E  in proportion to achieve a break energy in the range of 20Mev/nucl.

In fact if we consider that the value (64) for the break energy is typical

we may place the correlation time in the range

	

5x10 `'s < Tcorr < 5x10 2 s	 (65)

where the smaller limit is determined by the parameters given by (56) such

that Emax,p ' 4.3Gev and the larger limit is determined by (64) such that

EB<1.

The limit EB = 1 offers an interesting interpretation in terms of low

frequency MHD standing waves of the trap. If the diffusive scale length

is L/2 and the wavenumbers of the magnetic perturbations take the harmonic

values k = 2,rn/,. where R < L, the break energy for diffusive losses (62

can be written as

EB(n=^) 96 EB 
k 	 ncorr EA

where ko = 2"ncorr/,'y is the dominant wavenumber excited. If we require
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energization of about E B = 103 EA , and suppose that, say, L = 3y, then

the limit F  = 1 is consistent with a low harmonic, ncorr = 6, being

excited during the acceleration. The fundamental frequency, wmin

2TrVA/^ ' gives a greatest upper bound to the correlation time of

T	 < T	 =	 I	 = 0.62 ^ lOOG )(
	

no - )" (	 ) s . (67)
corr	 gub	

` min	 Bo )t 6xl0 9rm 3 J l 109cm

We have in this paper considered the possibility that second stage

acceleration may occur during an/or immediately following the impulsive

phase of proton flares. If primary energy release is associated with

large amplitude Alfven waves self-consistently generated, then (66) admits

the possibility of low harmonic standing waves playing a role in the basic

flare instability. Phenomenologically, we may speculate that the correla-

tion time (65) is related to the pulse width of hard x-ray bursts.

Presently, observations show a fine structure to the bursts consisting

of ti lsec spikes [Svestka, 1976]. The Goddard x-ray spectrometer aboard

the upcoming Solar Maximum Mission (SMM) satellite will have a temporal

resolution 1 0-3 s < T < 10 - 1 s from 20-300 Kev energies. If, indeed,

there is a relation between the Alfven wave correlation time and the hard

x-ray pulse widths, we believe that the chances are good that this instru-

ment will detect fine structure in the range of (65). The University of

New Hampshire/Max Planck Institute gamma ray experiment also aboard SMM,

with a temporal resolution down to 64 ms, should settle the question of

how soon are > 10 Mev protons accelerated.
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FIGURE CAPTIONS

•	 Figure 1. The temporal evolution of the hard x-ray and 2.2 Mev y-ray	
!1

bursts for the August 4, 1972 flare (from Lin and Hudson, 	
I,

1976).'

Figure 2. Resonant interaction of super-Alfvenic protons with a linear

polarized elemental scattering center of length x < xcorr.

The solid line portions of the trajectories indicate posi-

tions on this side of the page. Energization or deenergiza-

tion depends on the cyclotron phase of the test particle.

An average over a random-phased, is-tropic distribution of

particles leads to cyclotron damping of the oscillation.
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