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1 .O SUMMARY 

This  report  describes  the  study  performed by Douglas A i r c r a f t  Company 
(DAC) under National  Aeronautics and  Space Administration (NASA) Contract 
NAS1-13981  Amendment Modif icat ion 2, "Expansion of Fl ight   Simulator Capa- 
b i l i t y   f o r  Study and Solut ion  o f   A i rcraf t   D i rect ional   Contro l  Problems on 
Runways." Pr incipal  DAC contr ibutors t o  t h i s  program were: 
Richard E. Adam, d i g i t a l   a n t i s k i d  implementation;  Paul L. Jernigan, DC-9 
aSrframe  implementation;  Richard A. Storley,  analog  antiskid  implementation; 
John A. McGowan, simulator  coordination; Gary W. K i  bbee, program manager. 

The ob jec t i ve   o f   t h i s   po r t i on  o f  the  contract was t o  develop a DC-9-10 
Runway Directional  Control (RDC) Simulator and supply NASA w i t h  s u f f i c i e n t  
documentation to  dupl icate  the  s imulat ion  at   the  Langley Research  Center. 
A second objective was t o  assess - the  capabi l i ty   of   the  s imulat ion  to be 
used for  training,  operational  studies, and research. 

An ex is t i ng  wide  bodied f l i gh t   s imu la to r  was modif ied  to a DC-9-10 configu- 
rat ion. The simulator was s t ructured  to  use e i the r  a d ig i ta l   sof tware  or  
an analog  hardware antiskid  simulat ion. The d ig i ta l   so f tware   an t isk id  had 
been developed by MCAIR under  the i n i t i a l   p o r t i o n   o f  the NASA contract. It 
furnishes preprogrammed cornering and drag  loads. After  the  total   s imula- 
t i o n  was integrated,  pi lots  evaluated  the  simulat ion i n  lbur phases: 
checkout, validation,  demonstration, and post demonstration. These 
eval ua ti ons i nvol ved 1 andi ngs , rejected  takeoffs and various ground 
maneuvers. A t o t a l   o f  14 pi lots  evaluated  the  simulat ion. The p i l o t s  
represented DAC, FAA, NASA, an a i r l i ne ,  and ALPA. A t o t a l   o f  818 runs were 
conducted during  the  evaluations . Pi lo t   quant i ta t i ve   ra t ings   a re  
summarized i n  Table 1-1. Qua l i t a t i ve l y ,  most pi lots  evaluated  the simu- 
l a t o r  as r e a l i s t i c  and w i t h  good p o t e n t i a l ,   e s p e c i a l l y   f o r   p i l o t   t r a i n i n g  
f o r  adverse runway conditions. The p i lo ts   a l l   prefer red  mot ion  over  no 
motion for  the  simulat ion. The pi lots  general ly  considered  the  d ig i ta l  
an t i sk id  more r e a l i s t i c  than  the  analog  antiskid on h i g h   f r i c t i o n  surfaces 
because they  could  feel  the  motion cue better. However, t h e   d i g i t a l  
an t isk id   d id   no t   per fo rm  rea l i s t i ca l l y  on  degraded surfaces. Most p i l o t s  



preferred the analog  hardware antiskid simulation for low friction runway 
condi t i  ons 

We a t  DAC appreciate  the enthusiastic  participation o f  the  simulator 
evaluation pilots. The  program contributions of Ellis White and Tom Yager 
o f  NASA, Langley  Research  Center  were  instrumental in the success o f  this 
program. 
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CATEGORY CONTROL GROUND 
DURING 

CONTROL  APPROACH 
DIRECTIONAL 

VAL1  DATION 2.87 

I DEMONSTRATIONI  3.50 I 4.89 

c I I 
I I I PROGRAM 

AVERAGES I 3.64 I 3.78 
I I I 

TABLE 1-1 
RDC PILOT  RATING SUMMARY 

1 : Excel l e n t  
10: Major  Deficiencies 

WIND 

2.5 

2.5 

RUNWAY 
REVERSE ’ DECELERATION ROUGHNESS 

BRAKING THRUST 

VISUAL I MOTION I 
2.13 3.10 3.01 3.97 3.26 

2.5 3.67  4.91 

3.01 3.07 3.72 

2.32 3.09  3.49 3.97  3.73 
* 



2.0 I NTRODUCTI ON 

Work accomplished under this contract amendment represents the t h i r d  step 
i n  a NASA program to  study aircraft   directional  control problems on run- 
ways.  Such problems can be caused by slippery runways , crosswinds, reduced 
v i s ib i l i t y ,  extended touchdown points,  excessive  veloci  ty,  insufficient 
directional  control , equipment malfunction, and aircraft   configuration 
constraints and limitations. 

In the past, work has been concentrated on optimizing a i r c r a f t  stopping 
performance, w i t h  less emphasis placed on the equally  cri t ical   directional 
control.  Aircraft performance d u r i n g  takeoff and landing i s  tradit ionally 
explored when the a i r c r a f t  is i n  the f l i g h t  test phase. B u t  by that  point,  
necessary changes are expensive to  incorporate. Moreover, only par t  of 
the directional  control  characteris  tics envelope can  be safely examined 
i n  f l i g h t  test. 

To stucly aircraft   directional  control problems on runways, NASA has been 
sponsoring the development of an effective  simulator  as a design and 
evaluation  tool  for  safely  exploring  aircraft  directional  control and 
braking performance under adverse runway conditions. Once this simulation 
capability is developed, the  potential  applications  include: 

o Aircraft  configuration  trade studies i n  the   a i rc raf t  design phase. 

o Establishing  safe  operational limits fo r  existing a i rc raf t .  

o Optimizing p i l o t  techniques on adverse runways. 

o Defining regulatory requirements f o r   a i r c r a f t  and  runway design. 

o Training p i  lots  for  adverse runway conditions. 

o Acci dent i nves ti gati ons . 
o Incorporation  into 100% simulator  training  simulations. 

The first phase  of the program was t o  define and demonstrate the hardware 
and computer software  necessary t o  expand current f l i g h t  simulator 
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capabili ty  for  study and solution of aircraft   directional  control problems 
on runways . The USAF-MCAIR  F-4 a i r c r a f t  was selected  for this study. 

The MCAIR five-degree-of-freedom motion-base simulator (MBS) was used i n  
combination w i t h  a  six-degree-of-freedom a i r c r a f t  mathematical model t o  
demonstrate the simulation adequacy on dry, wet, flooded, and icy uncrowned 
runways w i t h  s teady  s ta te  and gusty  crosswinds. 

Three F-4 experienced  pilots representing MASA, FAA, and USAF participated 
i n  the 130 approach-touchdown-rollout  demonstration and verified the 
simulation  feasibility. The report   for this contract   effor t  is contained 
i n  Reference 1. 

The second  phase of the program was t o  extend the a i r c r a f t  ground.handling 
simulation technology to  include  simulation of  a j e t  transport and to  
refine the simulator technology to  'include runway  crown, roughness and 
patchy f r i c t ion  effects. Another objective was t o   i n i t i a t e  the development 
of a s k i d  control  braking  system  simulator  to  duplicate combined braked 
and yawed t ire roll i n g  condi tions . The development of the s k i d  control 
braking  system  simulator was i n i  t ia ted by the Hydro-Ai re Division  of Crane 
Company. The DAC DC-9 a i r c r a f t  was selected fo r  this effor t .  The MCAIR 
F-4 a i r c r a f t  (USAF  Model E) was also  included i n  this study. 

The MCAI R f i  ve-degree-of-freedom MBS and the MCAI R fixed base simulator 
(MAG 111) were used i n  combination w i t h  a  six-degree-of-freedom a i r c r a f t  
mathematical model to  demonstrate  simulator adequacy under diverse runway 
friction  conditions and  runway profi less and w i t h  s teady-state and gusty 
crosswinds. Four experienced  pilots representing NASA, FAA, DAC, and USAF 
participated i n  320 landing,  takeoff, and rejected  takeoff  demonstration 
runs i n  March 1976.  They evaluated  both the DC-9 and F-4 simulation 
adequacy. T h i s  contract   effor t  is documented i n  Reference 2. 

The present study was conducted t o  extend the e a r l i e r  work t o  a six-degree- 
of-freedom motion base  transport  cockpit and to  include an actual  real time 
ant iskid simulator. A DC-9-10 simulation was developed such t h a t  this 

,' 5 



analog ant iskid  or  a simplified digital  antiskid  simulation  could be. used. 
. This  simulation was flown from a transport  cockpit mounted  on a six-degree- 
of-freedom moving base. The p i lo t s  who flew the simulation  evaluated both 
antiskid  sinulations w i t h  and without motion. 

NASA w i  11 use the technology devel oped fo r  this program to  construct a 
similar  simulation a t  the Langley Research Center. Volume I1 of this 
final  report  contains the technical  description,. mathematical models, data 
tables,  programing  considerations and equations used for  the DC-9-10 
a i rc raf t   s imula t ion   a t  DAC. 
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3.0 ABBREVIATIONS AND SYMBOLS 

ALPA 
A/s 
DAC 
EP R 
FAA 

FN 
MBS 
MCAI R 
NASA 
PMV 
RDC 
RTO 
USAF 

"MCG 

Air Line Pilot  Association 
Ant i sk id  
Douglas Aircraft Company 
Engine Pressure Ratio 
Federal  Aviation  Administration 
Engine Thrust Level 
Motion  Base Simulator 
McDonnel 1 A i  r c r a f t  Company 
National  Aeronautics and Space Administration 
P i l o t  Metering Valve 
Runway Directional  Control 
Rejected  .Takeoff 
Uni ted  States A i  r Force 
Minimum Control Speed Ground 
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4.0  SIMULATOR  DESCRIPTION 

4.1 PROGRAM LAYOUT 

The simulator developed f o r   t h i s  program was mechanized as shown i n  Figure 
4-1. A j e t   t r anspor t   cockp i t   w i th   v i sua l   d i sp lws  and f l i g h t  instruments 
was mounted  on a six-degree-of-freedom  motion base. Cockpit  control 
deflect ions  provided  inputs  to  the computer which  generated  appropriate 
drive  signals  to  the  motion base, visual scene drive, and instrument  drive. 

One o f  the purposes o f   t h i s  program was t o  compare perfomance  with  the 
an t i sk id  mechanization  developed i n  References 1 and 2 w i t h  performance 
obtained  with a simulator  which used ac tua l   a i rc ra f t   an t isk id  hardware. 
For t h i s  reason  the  simulator was configured so e i t h e r  an analog  hardware 
o r  a d ig i ta l   sof tware  s imulat ion  o f   the  ant isk id   could be used. Detai ls 
o f  how these ant iskid  s imulators  are  incorporated  into  the system are 
shown i n  Figure 4-2. 

When the  simulator was operating i n  the   d ig i t a l   an t i sk id  mode t h e   d i g i t a l  
ant isk i  d was used t o  determi ne drag and cornering  force  for each  main gear 
and nose  gear. When i n  the  analog  antiskid  mde,  the  analog  antiskid was 
used t o  determine  drag and cornering  load  for each  main gear while  the 
drag and cornering  forces  for  the nose gear were calculated  with  the 
d ig i ta l   an t isk id .  

Detai ls  of   the  a i r f rame,  d ig i ta l   ant iskid,   analog  ant iskid,  and cockpit 
are  given i n  Appendices A, B, C, and D respect ive ly   o f  Volume 11. 

4.2 COCKPIT 

The cockpit used fo r   th is   s imu la t ion  was o r i g i n a l l y  a DC-10 cockpi t. 
Figure 4-3  shows the  cockpi t   in ter ior .  Seats f o r   p i l o t ,   f i r s t   o f f i c e r ,  
and observer were provided.  Visual  displays were prov ided  fo r   the   p i lo t  
and f i r s t  officer.  Instruments showing airspeed,  att i tude,  gl ide  slope 
deviation, heading, local izer  deviat ion,  absolute  alt i tude,  radar  alt i tude, 
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and vertical speed were active fo r  the p i l o t  and f i r s t  officer. The p i lo t ' s  
instruments  were configured  as i n  a DC-9 and the first off icer ' s  were  con- 
f i g u r e d  as i n  a DC-10. -The p i lo t ' s  instruments are shown i n  Figure 4-4. 
The column, wheel, and rudder pedals for p i lo t  and f i r s t   o f f i c e r  furnished 
primary f l i g h t  control i n p u t s  t o  the computer. Pitch trim was activated 
by a thumb switch on the   l e f t  horn of the p i l o t ' s  wheel. Nose wheel s teer  
angle was locked i n  the  neutral posit ion (aligned w i t h  the   a i rcraf t  body axis) 
u n t i l  the nose gear had deflected 5.08 centimeters ( 2  inches). For greater 
deflections nose wheel steer  angle was control 1 ed by rudder pedal deflection. 
Left and r i g h t  main gear  brake  application was controlled by toe brake 
deflections. The  hand t i l l e r  nose wheel steer  control handle was not  active. 

The f lap handle  controlled the f lap setting which was either 1 5 O  (RTO's) 
o r  50° ( l and ings )  for this program. The spoi ler  handle  control  led manual 
spoiler position. The handle d i d  no t  move for automatic  spoiler extension 
during landing. 

Two thrust levers and engine pressure ra t io  ( E P R )  gages were active for  
the program. Thrust reverse was control led  by the piggy-back levers. A 
thrust interlock was mechanized tha t  prohi bi  ted appreciable  reverse thrust 
application u n t i  1 the  reverse  buckets were deployed. I t  functioned  as 
follows: When the  thrott les were returned t o  the i d l e  posit ion,  the 
piggy-back levers could be moved only t o  a stop. Th i s  lever movement 
would cause an a h e r  l i g h t  t o  be illuminated which indicated  "buckets i n  
motion." After 1 t o  2 seconds  a  green l i g h t  would l i g h t  and the piggy- 
back stop would be removed a t  which time f u l l  reverse could be applied. 

4.3 MOTIOIY BASE/MOTION DRIVE 

The cockpit is  mounted on a Douglas designed and fabricated  six-axis motion 
simulation system as shown i n  F i g u r e  4-5. T h i s  system employs proprletary 
techniques  to  provide  realistfc motion cues. Six axis motion is provided 
by si x hydraulic  jacks  arranged i n  the configuration developed by the 
Frankl in  Inst i tute .  The motion  base specifications  are  sunarized below. 
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- Axi s Excursion Vel oci ty Accel era  ti on 

Heave f 107 an (2 42 i n )  - + 99 cm/sec (+ - 39 in/sec) 2 1.659 
Sway + 171 cm (f 67.5 i n )  f 170 cm/sec (2 67 in/sec) - + 1.439 
Surge 2 165 cm (f 65 i n )  - + 180 cm/sec (2 71 in/sec) + 1.509 
Roll + 30.7 deg - - + 35;6 deg/sec - + 7.8 rad/sec2 
Pitch f 33.3 deg - + 33.6 deg/sec + 7.0 rad/sec 2 
Yaw f 38.7 deg - + 36.3. deg/sec - + 7.9 rad/sec2 

- 

- 

These figures are  predicated on a total  'moving mass of 9072 kilograms 
(20,000 pounds). The figures f o r  pitch and yaw refer t o  the platform  axis. 
With  the separation between a i r c r a f t  center of gravity and the p i lo t ' s  
position, the pitch and yaw motions appear  primarily  as heave and sway. 

The motion system is controlled by a  minicomputer satellite which implements 
the geometric  transformations , washout algorithms , as given i n  Reference 3 , 
and fai   lsafe  features.  The minicomputer is tied t o  the Sigma 5 computer . 
via a digital  data l i n k .  The minicomputer exercises closed-loop  control 
over the motion system via  digital/analog  converters  to the servo  valves 
and receives feedback data,  via  analog/digital  converters, from l inear  
variable  differential  transformers. 

4.4 ANTISKID BRAKE SYSTEM 

4.4.1 Digital Ant i sk id  System 

The digital   antiskid model used a t  DAC was developed i n  Phase I and 
Phase I1 of this program t o  f u r n i s h  preprogramd ti-re drag and side 
forces ' during ground operation. The model is documented i n  Reference 4. 
For the main gears, the simulation selects a drag and cornering  friction 
coeff ic ient   for  the current aircraf t   veloci ty ,  tire s k i d  angle, and runway 
condition. Three conditions  are  considered: no braking,  partial  braking, 
and braking sufficient to  cause the antiskid  to  cycle. -Unlike a true 
antiskid,  the fr ic t ion  coeff ic ients   are  independent of  past performance. 
The model is also used t o  determine the nose gear tire cornering  force. 
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The tire force  data  base  for the main gears used w i t h  the model  was 
obtained from averaged test  data given i n  Reference 5. Antiskid cycling 
periods,  proportion of time on, and onset o f  antiskid  cycling were obtained 
from Reference 6. The nose gear  data was ultimately  adjusted  to reflect 
results o f  Reference 7. 

4.4.2 Analog Ant isk id  System 

The analog  antiskid system was fmplemented as shown i n  Figure 4-6 . The 
simulation  consists o f  an analog computer and ac tua l .   a i rc raf t  hardware. 
The analog computer solves the equations o f  strut and tire motion. An 
analog computer was selected  to  solve these equations  because  of the high 
frequencies  involved and the simplicity of the hardware interface. 

T h i s  simulation computes a drag and cornering  force  for the current  exact 
tire sl ip speed, aircraft   velocity,  tire s k i d  angle, and  runway condition. 
Since the fr ic t ion  coeff ic ient  is a function of tire speed,  the current 
performance i s  influenced by previous  conditions  because o f  ti r e  iner t ia .  

In the brake system hardware, hydraulic pressure i s  applied  to either strut 
antiski d valve by the p i l o t  metering valves (PMV) . The antiskid  valves 
modulate this pressure to  the brake i n  response to  electrical   signals 
originating i n  the antiskid  control box. Brake pressure is measured  and 
converted to  brake  torque i n  the analog computer c i rcui ts .  The antiski d 
control  valve drive signal i s  computed i n  the controller and is  related  to 
rate  of wheel speed change and time. 

Photographs o f  the antiskid hardware are shown i n  Figure 4-7. This equip- 
ment  was loaned to  DAC f o r  the simulation program by Hydro-Aire Division, 
Crane Company. 

4.5 VISUAL SYSTEM 

The Red.ifon visual  simulator  consists of a model, a servo-driven  television 
camera  and the associated  control  electronics and l i g h t i n g .  Photographs 

11 



of the visual system are shwn i n  Figures  4-8  and 4-9. The model,  which 
consists  of the airport ,  runway,  and surrounding  terrain, is a three- 
dimensional model 13 meters (42.5 feet) long by  4.6 meters (15 feet) wide, 
w i t h  a  scale of 750 t o  1. A 3048 meter (10,000 foot) runway is  located 
i n  the longitudinal  center  of the model. The runway is complete w i t h  
approach l i g h t s ,  strobes, marker and threshold  bars, touchdown zone, 
taxiway, edge, and centerline l i g h t s .  The model is illuminated by a bank 
of fluorescent l i g h t s .  

A television camera i s  mounted on a gantry. The gantry  travels on tracks 
parallel t o  the model to  provide  longitudinal motion. The camera carriage 
i t s e l f  is  driven  in two directions t o  provide la teral  motion  and changes 
i n  a l t i tude.  Servo-driven mirrors and prisms i n  the  optics  of  the camera 
provide rol l ,   p i tch and  yaw. 

The Sigma 5 computer which-solves the equations  of motion is  l inked  t o  a 
control computer which converts  aircraft  cog. coordinates t o  p i l o t ' s  eye 
coordinates and controls camera motion. The camera then "flies" the 
approach as directed from the cockpit. 

The video  signal is  sent to  television monitors which are viewed by the 
p i lo t s  t h r o u g h  collimating lens mounted approximately i n  the plane  of the 
windscreen. The monitors are masked to  give the DC-9 field of vision. 
Specifications  for the visual system are given i n  the following  paragraph. 

The maximum approach distance i s  3.62 kilometers (2.25 miles). The eye 
a1 t i t u d e  range o f  the a i rpor t  model is 221 meters (725 feet) (maximum) t o  
3.4 meters (11 feet) (minimum). Maximum longitudinal and la teral   veloci t ies  
aFe 225 kts and maximum sink ra te  is  610 meters/minute (2000 feet per 
m i n u t e )  . The maximum pitch is - + 24-1/2 degrees; heading and ro l l   a re  
un l  imi ted. Maxi mum angular vel oci ties are  0.75 rad/second  (heading), 
0.5 rad/second ( ro l l  ) , and 1 . 5 rad/second (p i  tch) . Maximum angular 
accelerations  are 0.5 rad/second  (heading) , 1 .O radlsecond ( r o l l )  , and 
3.5 rad/second* (pitch). Angular field of view is 48 degrees horizontal 
(2 24 degrees) and 36 degrees vertical  (+16 degrees ; -20 degrees). 

2 2 
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FIGURE 4-3 COCKPIT  INTERIOR 
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FIGURE 4-4 P I L O T ' S  INSTRUMENTS 
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FIGURE 4-8 OVERALL  VIEW OF VISUAL  SYSTEM 
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FIGURE 4-9 VIEW OF MODEL PROM  APPROACH  DIRECTION 
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5.0 PROGRAM DESCRIPTION 

5.1 PILOTS 

Fourteen p i  1 ots took par t  i n  the .program.  George Jansen , DAC Chief P i lo t  - 
Engineering was only  involved w i t h  the checkout  phase and d i d  not give 
ratings. Each p i l o t   f o r  the validation,  demonstration, and post demon- 
stration  phases, was given the resume form shown i n  F i g u r e  5-1, a NASA 
questionnaire  concerning the motion and visual systems, and the opinion 
form shown i n  Figure 5-2. A sumnary of the p i lo t s '  background compiled 
from the resumes is  given i n  Table 5-1. 

Each p i l o t  flew  several 1 t o  3 hour sessions. An observer and the test 
director rode  the  simulator w i t h  the p i lo t   t o  prompt and record p i l o t  
comnents. Each f l i g h t  followed  a f l i g h t  card which had been prepared 
before  the f l i g h t .  Additional t e s t s  were added when the p i lo t  was not  
sa t i s f ied  w i t h  a run or wanted t o  use a different procedure. The tests 
and configurations  called  for on the f l i g h t  cards  are  tabulated i n  Table 
5-2 . 
Table 5-3 sumnarizes which phase  each p i l o t  flew,  specific f l i g h t  cards 
flown, and the number of runs made. 

5.2 PROCEDURES 

Unless specified  differently on the f l i g h t  cards the runs \ 

follows : 
Mere  made as 

Landing - The p i  l o t  was given the trimmed a i r c r a f t   a t  107 meter (350 

foot) a1 ti tude and 133 k n o t  ICAS. Flaps were a t  50°, spoilers were stowed, 
and thro t t le  set. He flew the  approach w i t h  visual and instrument  aids. 
A t  touchdown spoilers were  deployed automatically and ttie p i l o t  applied 
maximum brakes u n t i  1 the a i r c ra f t  stopped. If thrust reversers were cal led 
for,  normal procedures were  followed w i t h  thrust reduction a t  60 knots. 
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Rejected Takeoff (RTO) - The p i lo t  was given the a i r c r a f t   a t  rest a t  
the end o f  the runway, Flaps were set a t  15O, spoilers were stowed, and 
thro t t les  were a t  idle.  Brakes were applied and throt t les  were set to 
give 1.95 EPR on both engines. The brakes were released and t h e  a i r c ra f t  
accelerated  to 126 knots a t  which time the p i l o t  closed the thro t t le ,  
deployed the 'spoi lers ,  and applied maximum braking u n t i l  the a i r c ra f t  
stopped. I f  thrust reversers were called  for normal procedures were used. 

Turns - The p i lo t  would transit ion from the active runway to  a h i g h  
speed turnoff. 

Minlmum Control Speed Ground (VMCG) - For this maneuver. the nose  gear 
steering was disconnected. The runs were s ta r ted  w i t h  the a i r c r a f t   a t  
rest w i t h  f l a p s   a t  15'  and spoilers stowed. . W i t h  brakes  applied, the 
thrust was set a t  a  value  that would give e i ther  40.9 or 49.8 kilonewtons 
(9 200 or  11 200 pounds) of engine thrust a t  the VMcG speed.  Brakes were 
released and the a i r c r a f t  was accelerated  to the target speed. A t  this 
speed one th ro t t l e  was closed which caused the a i r c ra f t  t o  yaw. As soon 
as the pi  l o t  perceived the yaw, he would a r res t  i t  w i t h  a  hardover  rudder. 

.The maximum lateral  deviation measured from the init ial   deviation was then 
recorded t o  correspond t o  the actual   a i rcraf t  speed when the throttle was 
closed. For the DC-9-10 airplane, VnCG is the speed a t  which the 1 ateral  
deviation is 4.6 meters (15 feet). 

5.3 SYSTEM CHECKOUT 

The system checkout  phase was a series of  development runs conducted t o  
f i n d  and correct  operational probjems w i t h  the  simulation and t o  adjust 
portions of the simulation  to  ' ineet.pilots '   quali tative  cri teria.  T h i s  
phase consisted o f  six days  of pilot  evaluation and  numerous other 
development sessions. Subsystem  checkouts of the aero  software and analog 
antiskid were conducted  independently  as  discussed i n  Appendices A and 
C respecti vely . 
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During the system checkout phase informal f l i g h t  cards were  developed tha t  
would emphasize the particular portion under study. The fol lowing .changes 
were  made t o  the simulation during this phase: 

Nose gear steering - The simulation was started w i t h  the same nose gear 
sensi ti vi  ty as documented i n  Reference 4. The p i  l o t s  f e l t  t ha t  this was 
too sensitive. The value was then  reduced t o  a value i n  agreement w i t h  
Reference 7. The p i  lots st i l l  f e l t  this was too sensitive so the sensi- 
ti v i  ty was reduced another 10%. The sensi ti v i  ty  remained a t  this value 
for the remainder of the checkout and validation. Also, the rate limit 
i n  the nose gear system was replaced by a 1 second lag. 

Digital  antiskid - The logic and the brake toque gain was  changed t o  
obtain ant iskid braking activity when i t  should occur.  Also, the cycling 
frequency and proportion o f  the cycle tha t  the  force was on was changed 
from the values of Reference 4 t o  values of Reference 6 t o  make the motion 
f e l t  i n  the cockpit more realistic. 

Runway roughness - The runway profile used was a 732 meter (2400 foot) 
length of Travis AFB mpeated t o  obtain a 3049 meter (10 000 foot) runway. 
The  same profile had  been  used i n  Reference 2. The p i l o t s  d id  not sense 
enough motion w i t h  the basic profile so the i n p u t  magnitude was increased. 
The p i lo t s  f e l t  t ha t  the acceleration produced w i t h  a factor of two was 
satisfactory. This had also occurred during the runs of Reference 2. 

Since the  basic runway profile had produced similar results i n  two 
independent simulations, an elevation power spectral  density analysis was 
performed w i t h  the factored  data to  determine the relative .roughness of 
the runway compared to  other surfaces. The results  are shown i n  Figure 5-3 
compared t o  data from References 8 and 9. A t  the higher frequencies, the 
factored data was between  "new construction" and "paved runway". The 
unfactored data would result i n  an elevation power spectral density w i t h  a 
magnitude one fourth the factored values or smoother t h a n  "new construc- 
tion". Thus the basic runway is very smooth. 
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Analog an t i sk id  - The analog  antiskid  did  not produce enough motion 
i n  the  cockpit so a change  was  made t o  make the  operation  rougher and 
hence  more i n e f f i c i e n t .  The.  change involved  the  u-slip  curve and i s  
ref lected  in  the  data  presented i n  Appendix C. 

5.4 SYSTEM VALIDATION 

The system val idat ion phase was a se r ies   o f   t es ts   t o  determine  the degree 
of   correlat ion  beween  the  s imulator and the  a i rcraf t .  The areas  checked 
are sunmari zed i n  Table 5-4 t oge the r   w i th   t he   f l i gh t  cards t h a t  were used. 
The p i lo ts   evaluated  the  qual i ta t ive runs by assigning a Cooper r a t i n g   t o  
the runs. During  these  tests  simulator parameters  were  recorded on four  
o r   f i v e  8 channel asci1  lograph  recorders. 

As a resu l t   o f   t he   va l i da t i on  runs  the nose gear s tee r ing   sens i t i v i t y  was 
increased to   the  va lue  that  agrees w i t h  Reference 7. This change was  made 
because both p i   l o t s  thought  the  steering was no t   semi  ti ve  enough. Also 
the one second time constant was reduced t o  one h a l f  second. 

5.5 DEMONSTRATION 

The demonstration phase was a ser ies   o f   tes ts   tha t  were designed t o  
determine  the adequacy o f  t he   d ig i t a l  and analog ant iskid  s imulat ions and 
t o  determine  the need fo r   cockp i t  motion. A f te r   t he   p i l o t s  had flown  the 
fami l ia r i za t ion   card  H; they  f lew  the  d ig i ta l   ant iskid  landing  card I, the 
analog  antiskid  landing  card J , the  dry, wet,  and flooded RTO card L, and 
the  dry and patchy RTO card M. The pi lots  evaluated  the  real ism  of  these 
runs   w i th   the   a i rc ra f t  by assigning a Cooper rating. Only a few no motion 
runs were inc luded  s ince  p i lo ts  had expressed a clear'preference  for  motion, 

An addit ional  card N was added t o  take  the  p lace  o f   the  or ig ina l  no motion 
runs  that  had been planned. This  card was designed: (a) t o  gather 
information about how an t i sk i  d performance and cornering capabi 1 i ty were 
inf luenced by runway roughness, (b) t o  develop p i l o t  technique for   f looded 
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runways , and (c) t o  determine the inf luence  of wet and  flooded runways on 
turning. 

5.6 POST DEMONSTRATION 

The post  demonstration phase was added t o  a the original program t o  permit 
addi t iona l  p i lo t s  selected by NASA and FAA to  eva lua te  the simulation. 
After the f i rs t  three pi lots  had flown the fami l i a r i za t ion   ca rd  H, they 
flew card K which included both d i g i t a l  and ana log   an t i sk id   s imula t ions  
w i t h  and without  motion. A different f a m i l i a r i z a t i o n  card 0 and pos t  
demonstration  card P was developed and used by the remaining s i x  p i  l o t s .  
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RDC SIMULATOR  PILOT  RESUE 

NAME : EWLOYER: 

TEST  PILOT c] OPERATIONAL PILOTO CHECK PILOTO 

TRANSPORT TIME HR. DC-9 T IME HR. SIMULATOR  TIME HR. 

WHEN  WAS THE LAST  TIME YOU HAVE FLOWN A  DC-9 AIRCRAFT 

APPROXIMATE NUMBER WET/FLOODED LANDINGS : 

I N  TRANSPORT AIRCRAFT: 

I N  DC-9 AIRCRAFT: 

I N  OTHER AIRCRAFT: 

HAVE YOU EVER  EXPERIENCED  HYDROPLANNING? 

I F  YES, PLEASE  GIVE APPROXIMATE NUMBER AND AIRCRAFT TYPE 

HAVE YOU EVER  HAD ANY PROBLEMS WITH  AIRCRAFT  DIRECTIONAL CONTROL OR 
STOPPING PERFORMANCE ON THE RUNWAY: 

I F  YES, EXPLAIN: 

FIGURE 5-1 P I L O T  RESUME  FORM 
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HOW WOULD  YOU RATE THE RDC SIMULATION FOR  USE I N  THE FOLLOWING APPLICATIONS? 

APPLICATION ACCEPTABLE MINOR 
NEEDS 

REVISION As I S  

OPTIMIZING  PILOT TECHNIQUES ON ADVERSE RUNWAYS I I 
TRAINING  PILOTS FOR  ADVERSE RUNWAY"CONDITI0NS 

INCORPORATION INTO 100% SIMULATOR  TRAINING  SIMULATIONS 

ACCIDENT  INVESTIGATIONS 

CONFIGURATION TRADE STUD1 ES I N  THE A I  RCRAFT DES1 GN PHASE 

ESTABLISHING  SAFE  OPERATIONAL L I M I T S  FOR EXISTING  AIRCRAFT 

DEFINING REGULATORY REQUIREMENTS FOR AIRCRAFT AND RUNWAY DESIGN 

NEEDS 
MAJOR 
REVISION 

OTHER 

COMMENTS : 

NAME 

FIGURE 5-2 PILOT  OPINION FORM 



TABLE 5-1 
RDC SIMULATOR PILOT RESUME SUMMARY 

I PILOT I 1 
WET/ FLOODED 1 

I TYPE LANDINGS 
-lI 

I - 
: &  
1 0  

y i  
n cn 

E; , 3 i 2  

31 +I-- RCI-I 

.-.I 

~ 800 

2500 
X 8600 

3400 
2500 
8000 
500 

X 

5000 
2000 

12000 x 
6000 

12000 x 
8000 

e /I m 

NAME 
m w  
l r :  

XFi 
600 

" 

" 

150 130 
10 3 

" 

125 25 0 Yes 

90 90 90 Yes 
0 0 0 No - 

TI 
- 

1 E! - 
2000  2000 

" 

4any;r 200 ' s T T  100 
4 Yes 

I 100 250 
:312 ' 7/31/77 
500 x 30 Yes C I Dave Wiebracht DAC I !I X 21  76 

D I Joe Tymczyszyn Eij-f 
FAA 

50 
0 E I Perry Deal 

F I Ernie  Southerland 900 " Ron  Wei n e r t  

40 
300 q 

FAA 

3000 50 I Current I John A l t ree  
3 Sal  Nucci 0 50 I 50 ; 1 Al;nE;;P;ngham 

Jim Busbee 

2500 
200 2 I 8/76 

I 

0 I 1/77 100 



TABLE 5-2 

FLIGHT CARD TEST  CONDITIONS 

30 

6 TYPE B CONDITION 

I 1 I 

CARD 
OB JE CTI VES 



TABLE 5-2 (Continued) 

FLIGHT CARD TEST  CONDITIONS 

CARD 
OB JE C T I  VES 

QUALITATIVE RTO 
VAL1 DATION 

QUALITATIVE TURN 
EVALUATION 

FAMI L I  ARI  ZATI ON  FOR 
DEMONSTRATION AND 
POST DEMONSTRATION 

DENINSTRATION APPROACH 
AND LANDING  WITH 
DIGITAL  ANTISKI D 

31 
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1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
i 
i 
i 
i 
i 
i 
i 

1 

1 
1 
1 
1 

, I  
1 
1 
1 
1 
1 

C 
2 

6 
B 

9 
10 
11 
12 
~3 
14 
15 
IC  
I7 
18 
19 
!O 
!1 
!2 
!3 
!4 
!5 
!6 

- 

7 
2 
3 
4 
5 
6 
7 

9 
IO 
I1  
12 
13 
' 4  
5 
6 
7 
8 
9 

a 

- 

J RUN 
TYPE 

TABLE $2 ( C o n t i n u e d )  

FLIGHT CARD TEST  CONDITIONS 

I I I 

w CARD 
OB JE C T I  VES 

A < a 
-0  
-Id ;? 

DEMONSTRATION APPROACH 
AND LANDING  WITH 
DIGITAL  ANTISKID B 

B 
B 
B 
B 
D 
B 
B 
B 
B 
B 
B 

:I D I 
DEMONSTRATION APPROACH 
AND LANDING  WITH 
ANALOG ANTISKI D a 
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TABLE 5-2 (Continued) 
FLIGHT CARD TEST  CONDITIONS 

1-• 
2 .  
3 .  
4 .  
5 .  
6 .  
7 .  
8 .  
9. 

I O  
I1 . 
12 
13. 
14. 
15. 
I6 @ 
I7 
18. 
19. 
20 
21 
22 
23 
24 0 
25 0 
26 

B 

3 
cI RUNWAY WINDS CON DI TI ON 

CARD 
OB JECTI VES 

DEMONSTRATION APPROACH 
AND LANDING  WITH 
ANALOG ANTISKI D 

POST  DEMONSTRATION 
RUNS 

- 
DEM~NSTRATION RTO'S 
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- 
d z 
ZOCS 
-a, =3cc 

4. 
5. 
6. 
7. 
8 .  
9. 

10 a 
11 . 
12 a 
13 
14 
15 
16 
17 
18 
19 a 
20 a 
21 0 
22 a 
23 

25 
26 
27 
28 
1. 
2. 
3. 

5. 
6. 

8 .  
9 .  

10 

24 e 

4e 

'7 e 

1 

I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 

TABLE 5-2 (Continued) 

FLIGHT CARD TEST  CONDITIONS 

r 
RUN''AY WINDS . DECEL 2 A/S CARD 

:ON DI T I  ON OB JE C T I  VES 

DEMONSTRATI ON RTO I S 

RTO S 



I 

TABLE 5-2 (Con ti nued) 

FLIGHT CARD TEST  CONDITIONS 
. . "" 

WINDS CARD 
OBJECT1 VES 

t 
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5 
2 

2 
3 
4 
5 
G 
7 

9 
0 
1 
2 
3 
4 
5 
6 
7 
3 
9 
'0 
1 
'2 
3 

2 

- 

a 

- 

RUN 
TYPE 

I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
! 

RUNN AY 
CONDITION 

TABLE 5-2 (Concluded) 
FLIGHT CARD TEST  CONDITIONS 

11 NDS 

t 
DE CE J 

I t 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
! 

7 CARD 
OB JECTI  VES 

POST DEMONSTRATION 
RWS 
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P I  LOT 

lyddane 
~~ ~ 

Wiebracht 

lymczyszyn 

Deal 

Southerland 

Arms trong 

Weinert 

A1 tree 

I Passingham 

I T  
Bugbee 

TABLE 5-3 
S U M R Y  OF RDC P I  LOT RUNS 

93 I 283 I 336 
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6.0  RESULTS AND DISCUSSION 

6.1 CHECKOUT RUNS 

6.1.1 Checkout Sumnary 

During  the  checkout phase several changes to   the  s imulator  were implemented. 
I n  the  f inal   conf igurat ion,   the nose gear s tee r ing   sens i t i v i t y  and time 
constant were acceptable,  the  cockpit  motion  with  the  analog  antiskid was 
acceptable, and the  cockpi t   mot ion  wi th  the  d ig i ta l   ant iskid was sat is-  
factory. The VMCG t es t   resu l t s  were acceptable. The d i g i t a l   a n t i s k i d  
dry  stop  distances were shorter than t h e   a c t u a l   a i r c r a f t   f l i g h t   t e s t  data 
and the analog ant isk id   dry   resul ts  were  longer. The subsystem  checkouts 
o f   t he  aero  software and an t isk id  were acceptable. 

6.1.2 VMcG Tests 

The VMcG test   resul ts  obtained a t  the  conclusion o f  the  checkout phase are 
p l o t t e d   i n   F i g u r e  6-1. These resu l ts  were obtained  during no-motion 
operat ion  wi th a non- test   p i lo t .  It was ant ic ipated (and l a t e r  proven) 
tha t   the  performance  would be bet ter   dur ing  the  va l idat ion phase  where 
motion  would  be act ive and a t e s t   p i l o t  would  perform  the  test. 

6.1.3 Deceleration Performance 

Distance based average decelerations  from brakes-on are  tabulated i n  
Table 6-1. For  the  dry runs, t he   d ig i t a l   resu l t s  were better  than  the 
a i r c r a f t  and the  analog  results were no t  as good as the   a i rc ra f t .  The 
d i g i t a l  performance  improved s l i g h t l y   w i t h  runway roughness while  the 
analog  performance degraded signi f icant ly.   This  t rend was also observed 
fo r   t he  wet runs. 

For the  wet  runs  both  the  digital and analog  performed be t te r  than the 
a i rcraf t .  The reason f o r   t h i s   i s   t h a t   t h e   f r i c t i o n   c o e f f i c i e n t s  
experienced by t h e   a i r c r a f t  were lower  than  those used i n  the  simulation. 
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For this condition  both  antiskid  simulations used the damp results from 
Reference 5. 

The damp condition was achieved by sweeping the standing  water from the 
track. However, for   the   a i rc raf t  tests, there was standing  water on the 
pavement surface. The average measured water depth fo r  these runs was 
.064 cm (.025 inch). 

During the checkout  phase the p i lo t s  commented tha t  the motion experienced 
i n  the cockpit w i t h  the analog  antiskid was not  as  violent  as i t  was i n  
the a i rc raf t .  These comnents persisted even a f t e r  a change had 
been made t o  the analog  simulation t o  make the operation more abrupt . 
To investigate these p i l o t  conments relative  to  cockpit  motion, computer 
generated  longitudinal  accelerat'ions were recorded and  compared t o  
measured aircraft  longitudinal  accelerations. T h i s  comparison i s  shown 
i n  Figure 6-2. The accelerations of  both the analog and digi ta l  simula- 
tions were much  more violent than the aircraf t .  T h i s  suggested tha t  the 
simulator  cockpit motion m a y  not be strong enough. T h i s  possibi l i ty  was 
verified subsequently dur ing  the  post  demonstration phase when motion base 
cockpit  floor  accelerations were analyzed. These results are  discussed 
i n  Section 6.4.2. 

6.2 VAL1 DATI ON RUNS 

6.2.1  Sumnary ~~ of  Validation Results 

The VMcG results were acceptably  related  to f l i g h t  test results fo r  both 
the digi ta l  and analog  antiskid  simulations. The deceleration performance 
e x h i b i t e d  the same t r ends  as  noted i n  the checkout phase. The averaged 
ratings  for each category ranged fran 2 t o  4 fo r  1  andi ngs and RTO's . Both 
pi lots comnented t ha t  the nose gear steering was too insensitive, tha t  
wind response was not  as expected, and tha t  no motion degraded the simu- 
lation. After the validation runs, the nose gear steering was changed t o  
make i t  more sensitive. 
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6.2.2 Quantitative Data Correlation 

The VHcG results f o r  the d ig i ta l  and analog antiskid  simulations  are shown 
i n  Figures 6-3 and  6-4. Both sets of  data showed relatively  large devia- 
tions from the fa i r ed   a i r c ra f t   da t a   a t  90 knots w i t h  the higher  power 
setting. This is due t o   p i l o t  technique. .The time between the th ro t t l e  
chop  and hardover rudder application was 1/2 second f o r  the analog run 
that  correlated well and 1-3/4 second fo r  the analog run tha t  d i d  not 
correlate we1 1. For the digital  simulation  the  corresponding time was 
1-1/2 second. The corresponding time for  the actual f l i g h t  test averaged 
1/2 second for  a1 1 runs. 

The deceleration results are p l o t t e d  i n  Figures 6-5 and 6-6. The data is 
plotted  as  distance t o  stop versus velocity squared. With these 
coordinates,  constant  deceleration  plots  as a s t ra ight  line. The digi ta l  
dry results correlated well . The dry  analog results do not  correlate as 
well w i t h  the a i rc raf t .  T h i s  is  probably due t o  the change tha t  was  made 
to  the analog  antiskid  to make the cockpit  longitudinal motion rougher. 
The change made to  the u-slip curve t o  make the operation  rougher,  also 
made the antiskid  operation more inefficient. 

Both the digital  and analog  antiskid performance for  the wet condition 
resulted i n  shorter stopping  distance than the actual f l i g h t  t e s t  performance 
fo r  the same reason  discussed i n  the checkout section. Both simulations 
also showed the same trends w i t h  runway roughness as was exhib i ted  dur ing  
the checkout phase. 

6.2.3 Qualitative  Pilot  Evaluation 

The validation  pilots  evaluated  the  simulation  qualitatively for approach 
and landings and RTO's. The ra t ing   c r i te r ia  shown i n  F igure  6-7 was used. 
The ratings  are  tabulated i n  Tables 6-2 and 6-3. 
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In Table 6-2 Lyddane rated the wind law on run 7 because he f e l t  the g u s t  
model  was not  realist ic.  He also  rated  braking  deceleration on the same 
run low because there was  no sound cue f o r  thrust reverse. Kni ckerbocker 
rated runway roughness low on run 12  because i t  was a no motion run which 
he fe l t  was unrealisttc. 

In Table 6-3 Lyddane rated  braking  deceleration poor on run 7 because the 
a i r c ra f t  went off the end of the runway. During these runs the spoiler 
handle  signal d i d  not  cause  spoiler deployment. Thus when the p i lo t  
actuated the spoiler  handle, the l i f t  was not k i l l e d  and only low brake 
forces  could be developed. This  caused  long a i r c ra f t  runouts. Kni ckerbocker 
comnted   t ha t  the result would be expected i f  spoilers d i d  not deploy. 

The p i  lo t s  who took par t  i n  the program made numerous  comments during the 
runs. A sumnary of the often  repeated comnents and those  that  provided 
i n s i g h t  are  listed i n  Table 6-4. Note tha t  both  validation  pilots ( A  and 
B) agreed tha t  the directional  control  and/or  steering time constant was 
too  long. They also both commented that  the weathercocking  and/or wind 
response was not  as  expected and tha t  no motion degraded the simulation. 

.The pi lots '  responses to  the questionnaire mentioned i n  section 5.1 are 
tabulated i n  Table 6-5. Knickerbocker commented tha t  the antiskid  cycling 
effect was not  strong enough  and tha t  the visual d i s p l a y  gave the sensation 
of ski ddi ng si deways . 
6.3 DEMONSTRATION RUNS 

6.3.1  Summary of Demonstration Results 

The demonstration pilots '   quali tative average  ratings were as  follows: 
control dur ing  approach - 3.5, ground directional  control - 4.9,  runway 
roughness - 2.5, braking  deceleration - 4.9, and visual - 3.7. Both 
p i lo t s  comnented tha t  there was  an unexpected a i r c ra f t  response a t  61 
meters (200 feet) a1 ti tude, tha t  the low speed wet friction  coefficients 
should be greater,   that  no motion degrades the simulation, and that  the 
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visual  display gave the  impression  of  skidding sideways. It was v e r i f i e d  
that  stop  distance  with  the  analog  antiskid degrades with  increasing  run- 
way roughness. Also, with  the  analog  ant iskid on flooded runwaysr the 
wheels would  completely  lock up and  cause loss of   d i rec t iona l   con t ro l  . 
6.3.2 P i l o t   qua l i t a t i ve   Eva lua t i on  

". . 

The demonstration p i l o t   qua l i t a t i ve   ra t i ngs   a re   t abu la ted   i n  Table 6-60 
The categor ies  of  ground direct ional   control  and braking  deceleration  are 
rated low.  The p i l o t s '  comments serve to  explain  their   object ions.  

Comments regarding  direct ional  control : 

Wiebracht - "Direct ional   control   at  speeds below 80 knots i s  'loose'. 
I n i t i a l  rudder  input (nose steering) i s   n o t  met w i t h  an appropriate 
response - more i npu t   resu l t s   i n   t oo  much response and over~ont ro l l ing . '~  

Tymczyswn - "Fr ic t ion  coef f ic ient   too low a t  speeds below 90 knots 
wet  and/or  flooded - apparent by heading contro l   lag and  seems a funct ion 
o f  rudder  only - ei ther   that   or   excess ive  lag i n  visual  drive system." 

Comnts  regard i  ng braking response: 

Wiebracht - "Braking response good  on dry/wet runways b u t   i n   t h e  low 
speed regime when brakes  would become e f fec t i ve  on a wet o r  even flooded 
runway, the  feel ing i s  one o f   s l i d d i n g  on ice." 

Tymczyszyn - "F r i c t i on   coe f f i c i en t   un rea l i s t i ca l l y  low below 90 knots 
wet o r  flooded." 

6.3.3 Typical  Simulation Runs 

Typical  data  that was recorded  during  the  demonstration i s  presented i n  
Figures 6-8 t h ru  6-15. Data f o r  RTO's are  given i n  Figures 6-8 th ru  6-11. 
Figures 6-12 t h ru  6-15 present  data for   typical   landings. The RTO's can 
be broken down i n t o   t h r e e   p a r t s :   t h e   i n i t i a l   p o r t i o n   o f   t h e   r u n   i s  where 
the power i s  set,  the second phase i s  the  accelerat ion  port ion, and then 
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the deceleration phase. The landings  are  characterized by an approach 
and impact  followed by the rol lout  w i t h  deceleration. 

In the RTO of Figure 6-8 note how a t  50 seconds the brake pedal position 
traces show that  the p i l o t  modulated the brakes. The Left MLG Drag  Load 
shows tha t  the antiskid q u i t  cycling a t  this po in t .  

In Figure 6-9 the  pi lot  d i d  not modulate the brakes. Note how the Left 
MLG Drag  Load shows releases followed by a gradual  reapplication  of 
pressure. T h i s  is  character is t iz  of the analog antiskid  simulation and is 
contrasted w i t h  the digital  simulation  that has a fu l l  application followed 
by a ful l  release  cycle. The cog.  longitudinal  acceleration  trace was 
inoperative  for this run. 

Figures  6-10 and  6-11 are thrust reverser runs w i t h  reverse thrust applied 
a t  35 and 42 seconds respectfully. Both runs show a definite  reduction 
i n  cog.  longitudinal  acceleration when the thrust reverse is  removed. 

For the 1  andings , the Distance Beyond  Touchdawn traces a1 1 show i n i  t i a l  
deflections  prior t o  touchdown. The trace is  reset t o  zero a t  touchdown 
and reads  correctly  throughout the remainder  of the run .  T h i s  is a 
character is t ic  of  the way i n  which the parameter was calculated. 

Note i n  Figure 6-15 tha t  on the f1.ooded  runway (water depth 1 cm [.4 inch]), 
hydroplanning  occurred a t  the beginning of the r u n  and the wheels d i d  not 
spin-up throughout the run .  This  reduced the cornering  force  to zero. The 
digital   antiski d does not  exhibit this lockup characterist ic.  Test data i n  
References 5 and 6 show tha t  this will occur i f  there is enough water on the 
runway. 

6.3.4 Special Runs ( F l i q h t  Card N) 

Runs were made to  investigate the e f fec t  of  runway roughness on the analog 
simulator on stop performance tha t  was apparent dur ing  the checkout and 
validation runs. A ser ies  of analog  antiskid RTO's were made w i t h  
variable runway roughness. On each run the pavement profile was mul t ip l ied  
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by a constant. The constant ranged from zero t o  2.5. Standard roughness 
for the program was 2.0. 

The results of  these tests are.presented i n  Figure 6-16  and show a 
definite  trend of decreasing perfor'ioance w i t h  increasing roughness. The 
reason for this is that  the a n t i s k i d  respon'ds quickly t o  a s k i d  and then 
slowly  reapplies  brake  pressure. On a rough runway the t i r e  normal load 
osci l la tes  about the mean and the s k i d  is more a p t  t o  happen when the load 
is l i g h t .  The an t i sk id  then  reduces the pressure and as the  pressure i s  
reapplied slowly, i t cannot  take  advantage of the  time when the normal load 
is  high .  

As noted i n  Figure 6-15, the analog antiskid simulation would n o t  prevent 
wheel lockups on flooded runways when fu l l  brake  pressure was applied. 
This condition would lead t o  d i  rectional  control problems because of the 
loss of t i r e  cornering  force. A ser ies  of RTO's were made t o  investigate 
how p i l o t s  cope w i t h  this condition. The p i l o t  made the run f i rs t  using 
maximum brake application. The next run was w i t h  the p i l o t  modulating  the 
brakes. The next run was brake modulation and thrust  reverse. There was 
a steady 15 k t s  cross wind for a l l  runs. Both analog and digital  an t i sk id  
simulations were used. 

The results  are  tabulated i n  Table 6-7. The normal b r a k i n g  technique 
produced smal ler devi a t i  ons from the runway centerline and smal l e r  heading 
deviations than the maximum b r a k i n g  technique. The average  decelerations 
were about the same. Use of thrust reversers  resulted i n  less  centerline 
deviation b u t  larger heading  deviations. The deceleration w i t h  thrust  
reverse was significantly  better than with brakes only. 

To show the performance degradation t h a t  resul  ts when spoi 1 ers do not 
deploy, landings  were made w i  thout  spoi 1 e r  deployment on a wet runway t o  
compare to similar landings with spoilers. The results showed that  when 
the  spoilers were not  deployed,  the aircraft  deceleration was reduced by 
33 percent w i t h  the d i g i t a l  an t i sk id  simulation and 42 percent w i t h  the 
analog. 
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A1 1 p i lo t s  who took pa r t  i n  this program were asked t o  complete the opinion 
form Shawn i n  Figure 5-2. The sumnary  of the results is shown i n  Table 
6-8. Wiebracht commented tha t  there is considerable  training benefit w i t h  
the simulator  as is. He recommended extensive revisions i n  applications 5, 
6, and 7 i n  order to incorporate  accurate  quantitative  data. 

6.4 POST DEMONSTRATION .RUNS 

6.4.1  Sumnary of  Post Demonstration Runs 

The post  demonstration  pilots  rated the simulation  as  follows:  Control 
during approach 3.8, Ground directional  control 3.6, Braking deceleration 
3.0, Visual 3.7, Motion 3.0. The pi lots '  conment most often made  was that  
no motion degraded the simulation. 

6.4.2 Pi lo t  Evaluation 

The qual i ta t ive numerical ratings  are  tabulated i n  Table 6-9. These 
ratings  are sumnarized i n  Table 6-10, w i t h  the operational  pilots l is ted 
separately from the non-operational pilots.  The operational  pilots  rated 
the  simul a tor  better i n  the areas o f  control dur ing  approach, ground 
directional  control, and braking  deceleration. 

C o m n t s  expressed by a t  l ea s t  two line p i lo t s  during the runs concerned 
the f ol 1 owi ng areas : 

During approach - Abnormal requirement o f  pitch change a t  61 meters 
(200 feet). Depth perception  deficient below 15.2 meters (50 feet). 

On the ground - Directional  control good b u t  too sensitive a t  low speed. 
Wind effects on  hand1 i ng apparent. Runway roughness was realist ic.   Lateral  
motion was deficient. No motion degraded the simulation. The d ig i ta l  
antiskid  brake  cycling was apparent and was a good representation  for  dry 
braking. 
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I t  i s  interesting t o  note tha t  the comment about  weathercocking or  wind 
response not being  as  expected made several times by  many pi lots  was n o t  
made  by a line p i l o t .  

The post  demonstration  pilots'  responses t o  the NASA questionnaire  are 
included i n  Table 6-5. All pilots f e l t  the vertical  field of view was 
suff ic ient .  Most thought that  the  horizontal f ield of view was adequate 
although a number mentioned that  peripheral  vision cues would help. The 
f ixed  focus was of l i t t l e  concern. Most f e l t  t ha t  the visual  scene d i d  
n o t  give good a l t i tude,  sink ra te ,  and f l a r e  cues. The majority of the 
p i l o t s  f e l t   t h a t  motion improves sensing of deceleration and sk id .  Most 
f e l t  that   the  lateral  o r  longitudinal motion cues were deficient.  Several 
noticed  lags i n  the  visual. 

The post  demonstrati on p i  l o t s '  responses t o  the opinion form of Figure 5-2 
are  included i n  Table 6-8. Southerland  expressing the FAA composite 
commented that  proper  directional  control  sensitivity is required i n  order 
to  use the simulator t o  optimize p i l o t  technique on adverse runways.  The 
addition of sound is needed i n  order  to use the simulator i n  training 
p i  lots fo r  adverse runway condi ti ons . Passingham remarked that  the 
simulation  appears t o  be a potential  asset  for  training,  especially on 
contaminated runways. 

In order  to  investigate comments that   the   pi lots  were making relat ive t o  
the cockpi t motion defi ciency w i  t h  the analog ant is  k i  d, actual  accel  erati ons 
of the cockpit were recorded t o  compare w i t h  the theoretical computer 
generated  accelerations and actual  aircraft   data.  Figure'.6-17 shows 
(a)   a i rc raf t  longi t u d i  nal accelerations recorded d u r i n g  a maximum per- 
formance stop  (Reference 61, (b)  longitudinal  accelerations  calculated i n  
the equations  of motion for  the simulation, and (c)  actual simulator 
cockpit  longitudinal  accelerations. Bugbee  was the p i  l o t   f o r  these runs. 

The cockpit  accelerations  for the digital   antiskid  are  greater than  those 
of the analog. The character of the computed digital  acceleration is 
total ly   different  than the aircraf t .  The character of the computed analog 
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a c c e l e r a t i o n   i s   s i m i l a r   t o   t h e   a i r c r a f t   b u t   t h e  magnitude o f  the  releases 
are  too  severe.  There  appears  to be  an accelerat ion  reduct ion between the 
computer  and the  cockpit   of   about 5. Because o f  t ime  restr ic t ions , the 
reason f o r   t h i s   r e s u l t  was not  determined. 

i 
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TABLE 6-1 
CHECKOUT RESULTS 

RUNWAY 
SURFACE 

CONDITION 

Wet 

Distance based  average  decelerations between 
brakes-on and full  stop 

AIRCRAFT  RESULTS 
(REFERENCE 6) 1 SIMULATION  RESULTS - 
RUN 

L_I_ 

62 

63 

64 

65 

- 
66A 

67 

70 

71 

DECEL2 RUNWAY D I   G I   T A L  
M/SEC 

ANALOG 

( FT/SEC2) 
P ROFI LE M/SEC  DECE)  M/SEC  DECEL2 

(FT/SEC ) (FT/SEC ) - I I I 

3.87 I I 
(12.7) 
3.75 
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3.51 

Rough 4,02 I 9.3) (1  3.2) 
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I I I 
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A/C tes t   da ta   a t  Edwards  AFB,  F1 t. 63 (Ref. 6 ) "c( b-- 1 sec 

Dig i ta l   ant isk id ,  rough runway "c( +- 1 sec 

Analog antiskid, rough runway -4 + 1 sec 

FIGURE 6-2 LONGITUDINAL  ACCELERATION  DURING  BRAKING,  CHECKOUT 
PHASE,  COMPARED  TO  AIRCRAFT  TEST  DATA, DRY RUNWAY 
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1524 - Simulator 
Pilot:  Knickerbocker 
Flt. card  D 

- - - A/C test  data @ Edwards  AFB 
(Ref. 6, Fig; 21) 
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2 914 - Runway  condi ti on 
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0 

FIGURE 6-5 BRAKING  .PERFORMANCE,  SIMULATOR VS. AIRCRAFT  TEST 
DATA, LANDINGS,  DIGITAL  ANTISKID  SYSTEM 
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FIGURE 6-6 BRAKING PERFORMANCE, SIMULATOR V S .  AIRCRAFT TEST 
DATA, LANDINGS, ANALOG ANTISKID SYSTEM 
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""""1 ADEQUACY OR REQUIRED FOR SELECTED  OPERATION  TASK F A T I  
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Oeficiencies 
Warrant 

Improvement 
- Deficiencies 

Very Objectionable but 
Tolerable  Deficiencies 
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I Improvement I 
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Mandatory 1-4 . Major Deficiencies 10 

FIGURE 6-7 P ILOT  RATING  CRITERIA 
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TABLE 6-2 
VAL1  DATION P I  LOT  QUAL1  TAT1 VE RATI HGS 
FLIGHT CARD  E:  APPROACH AND LANDING 

P I  LOT RATI NG 
A - KNI CKERBOCKER 
B - LY DDANE 1 - EXCELLENT 

10 - POOR 

GROUND 
D I  RECTI ONAL 

CONTROL 
THRUST 
RE VE RSE 

RUNWAY 
ROUGHNESS 

A  B 

2 
2 

2 

7 
2  2 
2  2 
2  2 
2  2 
2  2 
2 2 
2  2 
2 2 
2  2 
2 

2.42 

2.21 

2.00 

BRAKING 
IECELERATION WIND 

A B 

2 
8 2 
3 

2 3 
2 3 
2 
2 

3 

2.00 4.00 

VISUAL MOT1 ON 

- 
B 

- 
B 
- 

3 
2 
5 
6 
5 
8 
3 
3 
3 
5 

- 
4.30 - 

- 
A 
- 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 

2.09 
- 
- 

- 
A 
- 

2 
2 
3 
3 
3 

3 

B b ' A  

3 

6 2' 
3 4 2 
3 3 

3 6 3 
3 2 3 
3  3  3 
3  3  3 
5  2 
5 6 2 
2 6 2 
2 3 2 
2 

2.45 3.09  4.20 

A 

4 
4 
4 
4 
4 
4 
4 
3 
3 
3 
3 
3 

3.58 

- 

- 
- 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

f 

2 3 
2  3 
2  2 
2 
2 2 
2  2 
3  2 
2  3 
2  3 
2 3 
2  3 

5 
6 
6 
6 
3 

- 
5.20 - 

4 1  

2.67 - 2.25 11 2.60 

2.43 3.00 3.02 I 3.65 3.20 3.94 



TABLE 6-3 
VAL I DATION P I  LOT Q UAL I TAT1 VE RAT1 N GS 

FLIGHT CARD F: REJECTED  TAKEOFF 

RATING I 
~ 

1 - EXCELLENT 
10 - POOR 

P I  LOT 

A - KNICKERBOCKER 
B - LYDDANE 

r 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

GROUND 
DIRECTIONAL 

CONTROL 
VISUAL RUNWAY 

ROUGHNESS 
BRAKING 

IECELERATION 
THRUST 
REVERSE 

A '  B 

3 5 
3 5 
3 
3 

3.00  5.00 

4.00 

WIND 

- 
A 

2 
3 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

- 

- 

I- 
" 

2.08 2.0C 

- 
B - 
3 
4 
3 
4 
4 
4 
9 
4 

A 
I 

B - 
3 
3 
3 
3 
3 
3 
3 
3 

B 
- 

2 

2 
2 
2 

A 
- 

2 

2 

2 
2 

2.00 

A 

2 
3 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

- 
A 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

3.00 

- 

7 

- 

B 

3 
3 
3 
2 
2 
2 
2 
2 

B 
- 
2 
2 
2 
2 
2 
2 
2 
2 

A 
- 

2 
4 
2 
2 
2 
2 
2 
2 
2 
3 
2 
2 - 

B 
- 
3 
3 
3 
3 
3 
3 
3 
3 

- 
3.00 - 

i- 

2.25 4.38 

2 
4 
4 
4 
4 
5 
5 
5 
5 
6 
4 
3 

2.00 - 2.08  3.00 

2.54 
1 

4.25 2.38 

3.32 3.00 2.00 2.04 3.32 



TABLE 6-4 
PILOT COMMENT SUMMARY - PILOT -~ - 

COmENT A B C D E F G H I J K L H  "_""""~~ -~ """" "~ " 

1. BENDING GLIDE SLOPE,  HINDSHEAR,  GROWD  EFFECT, OR FLOAT AT 200 FT ALTITUDE 
2. AIRCRAFT NOT  TRIFWED, TRIM SLUGGISH, OR TRIM DIFFERENT THAN AIRCRAFT. 

m e  5. DIECTIONAL CONTROL INSENSITIVE OR TIME CONSTANT  TOO  LONG. 
em 4. AIRCRAFT FLIGHT CHARACTERISTICS GOOD. 
e e 0 .  3. AIRCRAFT TOO SENSITIVE TO PILOT CONTROL  AND HIND DURING APPROACH. 

e e e 

6. DIRECTIONAL CONTROL  TOO SENSITIVE. e e m  a 
7. DIRECTIONAL CONTROL  TOO SENSITIVE AT LOW SPEED, K R I W T  HIGH SPEED. . me 
8. DIECTIONAL CoKiROL TOO SENSITIVE DURING  ACCELERATION, ALRIGHT DECELERATION. e em 
9. NOSE  WHEEL STEERING I S  TOO SENSITIVE. e e em 
IO. AIRCRAFT RESPONSE  TO HINDS ON R W A Y  TOO SENSITIVE. e m  e 

11. DIRECTIONAL CONTROL  GOOD. me e e me 
12. WEATHERCOCK OR WIND  RESPONSE  NOT AS EXPECTED. m e  e e e e  
13. COULD FEEL EFFECT OF HINDS ON AIRCRAFT HANDLING. e e e e e e e e m e e e e  
14. HIND GUST  HDDEL  NOT AEQUATELY EPFESENTED. e m  
15. DIGITAL  ANTISKID BRAKE CYCLING IS APPARENT. e e m e e e e e e e e e e  

16. DIGITAL  ANTISKID GOOD REPRESENTATIOH FOR  DRY BRAKING e e e e e e e e e e e e e  
17. DIECTIONAL CONTROL  OVEEHOOTS. e m  e 
18. WOULD  USE STEERING TILLER. e e 
19. REALISTIC BRAKING. em e 
!O. LOY  SPEED  WET COEFFICIENT SHOULD  BE  GREATER. e m  

!l. GUSTS POOR. e e e  
!2. HINDS REALISTIC me e 
!3. ANTISKID TOO  ROUGH OR TOO WCH COCKPIT VERTICAL MDTION. 
!4. JERKINESS OF DIGITAL ANTISKID HOE REALISTIC. 
!5. BOTH M I S K I M  NOT  JERKY  ENOUGH. e 

q e I  14 j.ll:~l~l 
!6. FEELING OF  PATCHY  RWWAY CONDITION I S  GOOD. e e e  e 0 

!7. ANALOG ANTISKID MORE APPROPRIATE  FOR  WET. e e e  e e 
18. ROUGHNESS I S  REALISTIC OR .SMOOTHNESS I S  WREALISTIC. e e a m e e e e e m e e e  
19. EXPECT  SMIOTHER RIDE FOR WET/FLOOED R W A Y  BRAKING. m e  
IO. THRUST E K R S E  LEVER DETAIL NOT LIKE AIRCRAFT. e e 

11. THRUST REVEEE OPERATION  SATISFACTORY. 0 e 
12. ECELERATION AT LOW SPEED I S  NOT HIGH ENOUGH. e e  em e 
13. NO WTION #GRADES  THE SIWLATION. emmeme e e e e e e  
14. TOO WCH VERTICAL mTION WRING BRAKING. e e 
15. LONGITUDINAL ClTTIffl DEFICIENT. e m  0 

5. COULD  NOT FEEL NOSE  GEAR HIT. 
:7. SOHETIELS COULD FEEL NOSE  GEAR HIT, OTHER T I E S  COUD NOT. e e em 
18. DIGITAL  ANTISKID  FRICTION COEFFICIENT TOO HIGH FOR FLOOED RUNWAY. me 
9. LATERAL  MOTION I S  DEFICIENT. e m e  e ~ 

0. VISUAL GIVES I W E S S I O N  OF SKIDDING SIEHAYS. m e  e mi 

1. PERIPHERAL DISPLAY HOULD  HELP. 
2. DEPTH  PERCEPTION OR VISUAL HEIGHT CUE DEFICIENT BELOW 50 FT. e e e e  
3. VISUAL I M G E   I S  FUZZY. a 
4. LAG I N  VISUAL. 
5. V I S W  SPEED  CUE  .VAGUE  AT LOW SPEED. 
6. NOISE CUES  WOULD  HELP. em 

e e  a e e e e  

- 

~~ 

-~ - - 
e m  e 

"____  "" - ~ ~ ~" 
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TMLE 6-5 
PILOT QESTIONNNE S W R Y  
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TABLE 6-6 
DEMONSTRATION P I  LOT  QUAL1  TAT1 VE RAT1 NGS 

P I  LOT  RAT1 N GS 
C - WIEBRACHT 
D - TYMCZYSZYN 

1 - EXCELLENT 
10 - POOR 

CONTROL 

CONTROL APPROACH 
D I   R E C T I  ONAL DURING 

GROUND BRAKING. 
DECELERATION VISUAL 

C D C D C D C D 

I - LANDING  DIGITAL 4 ANTISKID 3 3 4 5 5 4.5 5 

. 4 J - LANDINGANALOG 
ANTISKI  D 3 3 4 5.5 6 4.5 6 

L - RTO-DRY, WET, 
FLOODED 6 3 5 3.0 5 4.0 

I 

M - RTO-DRY I 

PATCHY 3.5 3 4.5 

4.0 3.L 4.3  4.5 5.3 4.1 5.7 3.0 

1 ~ 315 I 4.9 I 4.9 I 3.7 
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FIGURE 6-9 TYPICAL DRY RTO, -BRAKES ONLY, 
WIEBRAOlT, RUN-L'I ' 
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FIGURE 6-9 CONCLUDED 
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FIGURE 6-10 TYPICAL WET RTO, BRAKES AND REVERSERS, DIGITAL ANTISKID, 
PILOT - WIEBRACHT,  RUN-L17 
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FIGURE 6-11 TYPICAL WET  RTO,  BRAKES AND REVERSERS, ANALOG ANTISKID, 
PILOT - WIEBRACHT,  Run-L18 
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FIGURE 6-13 TYPICAL PATCHY UNSYMMETRIC  LANDING BRAKES ONLY, ANALOG 
ANTISKID,  PILOT - WIEBRACHT, RUN-318 
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FIGURE 6-15 TYPICAL FLOODED LANDING, BRAKES  AND REVERSEK, ANALOG ANTISKID, 
PILOT - WIEBRACHT, RUN422 
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TABLE 6-7 
PILOT  TECHNIQUE FOR FLOODED RUNWAY 

15KT CROSSWIND 

P I L O T  
C - WIEBRACHT 
D - TYMCZYSZYM 

MAXIMUM CENTER 
L INE  DEVIATION 
M (FT) 

MAXIMUM HEADIN( 
DEV I AT1 ON 
(DEG) 

AVERAGE 
DE CE LE  RAT1 ON 

( FT/SEC2) 

MAXI MUM  CE NTE  R 
L INE  DEVIATION 
M (FT) 

MAXIMUM HEADIN( 
DEVIATION 

M/SEC* 

( D m  

AVERAGE 
DECEL5RATIOfl 
M/SEC 
( FT/SEC~) 

P I L O T  PROCEDURE 

NORMAL 
MAXI MUM NORMAL BRAKING 
BRAKING  BRAKING AND THRUST 

REVERSE 

C 

6.1 
(20) 

6 

3.16 
(10.38) 

2.4 
( 8 )  

9-1 /2 

2.38 
(7.80) 

D 

4.3 
(14) 

2.98 
(9.77) 

12 

2.13 
(6.99) 
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TABLE 6-8 

SUMNRY OF PILOT  OPINION OF SIMULATION  APPLICATION 

P I  LOT 
C - WIEBRACHT 
D - TYMCZYSNN 

FAA - FAA COMPOS1 TE I - ALTREE 
H - WEINERT K - PASSINGHAM 

ACCEPTABLE 
As I S  

NEEDS 
MAJOR M I  NOR 
NEEDS 

APPLICATION 
REVISION-  REVISION 

1 

INCORPORATION INTO 100% SIMULATOR TRAINING 3 

C,FAA,H,I ,K D TRAINING  PILOTS FOR  ADVERSE  RUNWAY CONDITIONS 2 

FAA C,D,FAA,H,I  ,K OPTIMIZING  PILOT TECHNIQUE ON ADVERSE. RUNWAYS 

S I  MULATI ONS C,D,FAA,H ,I FAA 

I I 1 D, FAA I C,F”,K I 4 I ACCIDENT INVESTIGATIONS 

6 ESTABLISHING SAFE  OPERATIONAL L I M I T S  FOR 
EX1  ST1 NG A I  RCRAFT D,FAA,H ,I ,K C, FAA 

7 DEFINING REGULATORY REQUIREMENTS FOR 
AIRCRAFT AND  RUNWAY DESIGN FAA,H ,I c, FAA. 



TABLE 6-9 

POST  DEMONSTRATION PILOT  QUALITATIVE  RATING 

I 

F 6 H I J K L M  

P10 

P13 
P14 
P15 

P18 
P19 

5  1.5  3.5 
K 5 5 5 3 2  2  6 3.5 
K 2 6 5 3 2  2  6  3.5 
K 3 6 5 3 2  2  6 3.5 

3 2  2 6 3.5 
3 2  2 4.5 3.5 

K 8 6 5 3 2  2  4.5 3.5 
3 2  2 4.5 3.5 
3 2  2  4.5  3 

110 6  5  3  2 2 4':5 3 
4 2  2 4.5 3 
4 2  2 4.5 3 

K12 6  5 4 2 2  4.5 3 
Ill 6 5 4 2 2  4.5  3 
K 9 6 5 4 2  2 4.5 3 

4 2 2 4.5 3 
4 2  3 4.5 3 
2 2  3 4.5 3 

15.9  5.0  3.4  2.0  2.1  4.9  3.2 

I 3.8 

V I S U M  mow 

F G H I J K L H  F C H I J K L #  F G H I J K L M   F G H I J K L M  

5 1,s' 5 1.5 5 1.5 
5 3 3 2 '  3 3.5 4 3 2 4 4 2 . 5 2  3 5 2   5 2 3  . 5  3 3 2 3 3.5 
6 4 3 2  3 

3 2  3 4 4 2  3 3.5 
2  3  2 4 4 2 . 5 2  5 3.5 2 5.5 5  2  3 3 . 5 5 3 3 2  3 4 6 4 4 2  3 
2  3  2 4 4 2 . 5 2  5 5 ' 2  5.5  5  2 3 3 . 5 5 3 3 2  3 3 

3,  2 4 5 2.5 2 3.5 2  5.5  5 4 3 3 2   3 1 4  4 2  3  3 3.5 
3 2.  4 4 2.5 2 3.5 2 5.5 5  2  3 

4 2  3 3 3.5 , 3 2 .   3 1 3  3.5 2  5.5  5 4 3 3  2 4 b 2 . 5 2  
6  4.5 4 3 3 3 3 . 5  4 3'-  2 4 3 2.5 2 7 3.5  2  5.5  5 4 3 5  3 3 2 3 1 4  

4 2  3  3 3.5 3 2   3 1 3  

4 3  2 4 5 2 . 5 2  4 4 2 5 . 5 5  3 3 '  5 3 3 2  3 2 3 ,  6 4.5 3  2 3 3 3  
4 3  2 ' 4  5 2.5 2 4 4 2 5 . 5 5  3  3 5 3 3 2   3 2 3  6 4.5 3  2 3 3 3  
4 3  2 4 5 2 . 5 2  4 4 2 5 . 5 5  4 3  5 3 3 2   3 2 3  6 4.5 3  2 3 3 3  

3 2 4 5 2 . 5 2  4 2 5 . 5 5  4 3 3 2   3 2 3  3 3  3  3 3.5 
A 3  2 4 5 2 . 5 2  4 3.5 2 5.5 5 4 3 5  3  3  2 3 2 3  6 4.5 4 2  3 3 3 . 5  

3  2 4 5 2 . 5 2  3.5 2 5.5 5 4 3 3 2   3 2 3  4 2  3  3  3.5 
3  2 4 1 2 . 5 2  3.5  2  5.5  5 4 3 

3 2   3 3 3  

2 2 2  3 2  3 3  
2  2 4 5 2 . 5 2  2 2 5 . 5 5  3  3 3 2   3 2 3  3 3   3 3 3  

. 2  2 4 5 2.5 2 2 2 5 . 5 5  3  3 3 2   3 2 3   3 3  3  3 3.5 
2  2 4 5 2 . 5 ' 2  2 2 5 . 5 5  3  3 3 2   3 2 3  3 3  3  3 3.5 
2  2 4 5 2 . 5 2  2 2 5 . 5 5  3 3 4 2   3 2 3   4 3  3 3 3.5 
2  2 4 5 2 . 5 2  2.5 2 5.5 5  3  3 2.5 2 3 2 3  2.5  2 3 3 3  
2  2 4 5 2 . 5 2  2.5 2 5.5 5  3  3 3 2   3 2 3  3 3   3 3 3  
3  2 4 5 2 . 5 2  4 2  5.5  5 3- 3 3 2   3 2 3  

5.9 4.2  3.5  2.3  3.0  3.0  3.2 3.5 2.7 2.0 4.0 4.8 2.5  2.0 4.0 3.4 2.0  5.5 5.0 3.2  3.0 5.0  3.0  3.1  2.0  3.0  1.8  3.2 

3.6 3.1 3.7 3.0 



1: .... 

TABLE 6-10 
POST DEMONSTRATION PILOT  QUALITATIVE RATING 

OPERATIONAL  PILOT  RATINGS COMPARED TO  NON-OPERATIONAL  RATINGS 

OPERATIONAL  PILOTS  NON-OPERATIONAL  PILOTS 
H -  
I -  
K -  

WEINERT F - SOUMERLAND 
ALTREE G . - ARMSTRONG 
PASSINGHAM L - ERDMAN 

1 M - BUGBEE 

CONTROL 

CONTROL APP ROACH 
DURING 

GROUND 
DECELERATION VISUAL MOT1 ON 

OPERATIONAL 
P I  LOT 2.5 3.2 3.5 2.7 2.9 

NON- 
OPERATIONAL 2.7 3.4 3.2 4.1 4.7 

P I LOT 
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8 )  Landing, d ig i ta l   ant iskfd  

C) Landing,  analog antiskid 

: : : : : : : : : ~ : : : ~ : : : C : ? : t - t ! l : : : : ! : : : : : : : : : : : : : : ~  

B R M S  a 

FIGURE 6-17 AIRCRAFT, COMPUTED, AND COCKPIT ACCELERATIONS 
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7.0 CONCLUDING REMARKS 

7.1  MOTION BASE SIMULATOR 

A l l  p i lo t s  who flew both w i t h  and without motion commented that runs 
without motion were degraded. One p i l o t  commented t h a t  lack  of motion 
during the fl ight  portion was less disconcerting  than  lack  of motion on 
the ground. These comnents support the conclusion t h a t  motion is required 
for a r e a l i s t i c  runway directional  control  simulation. 

Some p i  l o t s  noted  a deficiency  of  lateral and longitudinal cues. The re  is  
a known low gain i n  the simulator i n  the lateral   direction which may 
partially  explain the la te ra l  motion.. However, this condition does not 
e x i s t  i n  the 1 ongi t ud i  nal d i  recti on. Two studies are  recommended to  
determine the cause:  (1) Conduct an-end-to-end  frequency  response between 
the i n p u t s  to  the motion drive sys tem and the cockpi t accelerations, 
(2) Review the motion drive equations  to determine i f  they compromise the 
motion when the plane is  on the ground. 

7.2 VISUAL  SYSTEM 

Many p i lo t s  comnented about the i l lusion of sk idding  sideways tha t  the 
visual system presented. There are  several  possible  explanations  for this. 
One is  tha t  the lateral  visual cues are good  and the longitudinal  visual 
cues are  poor. During the VMcG tests' the pilot 's  estimate  of h i s  la teral  
deviation was very  close  to the actual value. B u t  when a p i lo t  was asked 
to  estimate his speed on the runway from visual  cues  only, he wasn't 
accurate due to  lack of  peripheral cues. The strong  lateral  cue combined 
w i t h  a weak longitudinal cue may give the i 1 lusion  of  skidding sideways. 

A second possible  explanation  could be the result of a deficient la te ra l  
motion cue. I f  the acceleration cues don't accompany the visual cue, the 
i l lus ion  o f  skidding sideways may be apparent. 
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Some pilots commented about the fuzziness of the visual scene. This could 
be a  fixed focus phenomenon. 

Several pilots comnented about difficulty w i t h  .depth perception. This 
could be related t o  the lack of peripheral cues. One pilot comnented t h a t  
this cue is difficult even i n  reality. Some pilots d i d  notice a time lag 
i n  the visual scene. 

7 . 3 AI RCRAFT SI MULATI ON 

The  comment t h a t  the ground directional control was too sens i tive was made 
a number  of times. A.good qualitative  validation is needed t o  investigate 
this. However, no f l ight  test  da ta  exists  for comparison. 

Another  comment  made several times was t h a t  a pilot would  make an i n p u t ,  
observe t h a t  the i n i  ti a1 response was n o t  enough, add more i n p u t ,  and  then 
the  simulation would over  respond. Possible reasons  could be lags i n  the 
visual system or an improper steering simulation. 

The add i t ion  of sound was ' suggested several times. The p i  lots wanted t o  
hear the nose gear thump down and the sound of engines d u r i n g  thrust 
reverse. 

7 . 4 EN VI RON MENTAL SI MULATI ON 

The  runway roughness  produced realistic cockpit motions. klhen runs were 
made on smooth pavement the result was unrealistic. 

The g u s t  and wind response was n o t  as expected for some p i  lots. The gus t  
model  was for  light turbulence and there was not time dur ing  the program 
t o  try other condi tions. 
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7.5 ANTISKID BRAKE SYSTEM SIMULATION 

Many .pilots f e l t  tha t  the motion cue from the digital   antis,  

- 

cl gave better 
representation of cockpit feel than the analog system. A possible reason 
f o r  this may be tha t  the motion gain was so low tha t  only the digi ta l  could 
drive i t  hard enough. Then i f  the motion gain would be increased, the 
digi ta l  would be too severe. 

More importantly, the digital   antiskid was too simplified to  give proper 
results. The  main case i n  point is the  flooded  condition. On this surface 
the digital   antiskid gave l i t t l e  directional  control problems while the 
p i  l o t  had his hands f u l l  w i t h  the analog. The reason is tha t  the digi ta l  
antiskid system does not r e f l ec t  hydroplanning  conditions  as does the 
analog anti s k i d  sys tem. 

7.6 USES OF THE SIMULATOR 

The pilots'  opinion of the uses for  the simulator  are  tabulated i n  Table 
6-8. The use of  the simulator for adverse runwqy  training  rated the 
highest. Some p i  l o t s  comnented a f t e r  runs on flooded runways tha t  i t was 
a very good training  experience. Use of the simulator  for  other purposes 
requires  acquisition,  incorporation, and validation of directional  control 
f l i g h t  t e s t  data. Also sound would help. 

7.7 GENERAL 

In the preparation of this report, emphasis has been placed on h i g h l i g h t i n g  
the constructive  cri t ical  comments  made  by the p i  lots. T h i s  was done so 
tha t  future programs could  address these criticisms and thus take  another 
step forward i n  developing  simulator  capability  necessary  for  aircraft 
ground handling on runways. To allay any possible  negative  impression  that 
this technique can produce, the following cments  re la t ive   to  the simulation 
are  .included: 
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Dave Wiebracht - "The overall feeling is tha t  this program i s  a  great step 
forward i n  simulation i n  an area which has been almost  .totally.  lacking 
i n  past  simulators. The f l a r e ,  touchdown  and rollout  simulation  (or 
lack  of) is  the greatest   constraint   to  total   training i n  a  simulator. 
B u t  more than that,  a new dimension of training is possible  to  enable 
fnexperienced p i l o t s   t o  become familiar w i t h  hydroplanning and reverser 
characterist ics on wet runways w i t h  crosswinds. A most needed area of 
training. today." 

George Jansen - "Felt pretty good a l l  the way around. Toward the end of 
the run, I p u t  i n  r i g h t  rudder to  get a 20 foot  deviation then l e f t  
rudder and i t  came back well. Digital  antiskid was  good - about  as 
representative  as i t  ever will be." 

Nick Knickerbocker - "Good simulation of going  through  something wet and 
then b i t i n g  in to  the dry. Overall tha t  was a  pretty good run." 

George  Lyddane - "Good deceleration - a  1 i t t l e  jerky  especially a t  the 
slow speeds.  Pleased w i t h  overall braking.  Tracking is good - landed 
t o  the l e f t  and  was able  to  correct w i t h .  brakes - antiskid  cycling 
representative." 

Joe Tyrnczyszyn - "Great - I liked tha t  - tha t  run  was the most r e a l i s t i c  
run, tha t  was  good - I liked the added deceleration w i t h  the reversers. 
Most r e a l i s t i c  runway roughness profile. Program progress  excellent. 
Knees and ankles tired a f t e r  23 runs .'I 

Perry Deal - "Whole t h i n g  from s t a r t   t o  f i n i s h  very r e a l i s t i c  - has 
everythi ng . 'I 

Ernie Southerland - "Good cycling on antiskid, Good model." 

Don Armstrong - "Excellent  presentation of  flooded  landing response." 



Ron Weinert - "Real feeling of runway - seems overly rough a t  times. 
Reality better than  anything I have seen. Runway is a tad rough b u t  
representative." 

Jack A1 tree - "This simulator has good potential  for use i n  a1 1 areas 
mentioned for  possible use." 

Sal Nucci - "Fantastic  training  experience." 

Alan Passingham - "Directional  control i s  rea l i s t ic   for   a i rc raf t .  RDC 
simulati on  would appear t o  be a potential   asset   for  training purposes. 
Our operations  frequently  experience contaminated runways  and so RDC 
simulation would be very  valuable." 

Ken Erdman - "1 've never experienced .this condition before." 

Jim Bugbee - "When landing on flooded runway I needed more he igh t  and 
speed ca l l s  - psychologically I was i n  an airplane." 

7.8 AUTHOR'S CLOSURE 

The objectives of the program have been met. The development and success- 
f u l  evaluation o f  the simulator represents a substantial step forward i n  
the development of simulator  capability  necessary  to  study and solve  air-  
c r a f t  ground handling problems on runways. 

The simulator i n  its present configuration can be used to   t r a in   p i lo t s   fo r  
adverse runway operations. Some evaluation p i  l o t s  experienced  conditions 
they had never encountered  previously, and now have a better idea of what 
to  expect. 

The simulator can also be used f o r  development of less subtle elements of 
p i l o t  technique as was demonstrated by the flooded runway analog runs. 



The simulator can also be  used to assess operational procedures  such as 
the 70 k t  turn maneuver. 

Of course,  there  are  areas where  improvements  can  be  made, b u t  the  simulator 
can  be  used i n  i t s  present configuration for many meaningful  purposes.. 

94 



8.0 CRITIQUE AND RECOWENDATIONS 

Incorporation  of the following  suggestions would  improve the overall 
results of a similar program. 

Procedure 

(a) The number of different  cases should be minimized. Numerous different  
cases tend t o  confuse the results. 

(b) Develop more specific  questions  for  pilots  that can  be answered yes 
or no and, i f  no, why. 

(c) Develop a better  quali tative  rating system. The variation of 
numerical ratings were too  large. 

(d)  Record all   data on magnetic  tape. T h i s  would allow  convenient 
storage,  access, and duplication. 

Simulation 

(a) The digital   antiskid is inadequate i n  certain  areas and needs 
redevel opmen t 

(b)  More f l i g h t  test data i s  required for  correlation of directional 
control performance. 

(c) A study of the motion and motion drive system is needed to  f i n d  the 
reason tha t  the motion was deficient  for  operation on the ground. 

(e) .Expansion jo in ts  need t o  be added t o  the model for off-centerline 
v i  sua1 cues. 
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Studies 

(a) A study  should be made  by conducting runs w i t h  reduced v is ib i l i ty .  
This would simulate a typical landing where l i t t l e  peripheral  vision 
i s avai 1 ab1 e. 

(b) A study t o  determine the minimum nose gear  static  load required t o  
maintain  .directional  control would be i n t e r e s t i n g .  

(c) Another interesting  study would be the impact t ha t  nose gear  braking 
has on aircraft   directional  control.  
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