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NOMENCLATURE

a Half pitch dimension, inches (cm)

A Cross sectional area of section defined by half pitch
dimension, a,	 (see fig. 22) at the center cross section
of the panel, inches2 (cm )

b Width of the flat, inches (cm)

C Bead depth, inches (cm)

D Bending or twisting rigidity, LBf-in (N-m)

E Modulus of elasticity, tension, psi (N/m2)

E 
Modulus of elasticity, compression, psi-(H/m2)

FCb Critical2axial compressive stress for bead instability,
psi	 (N/m )

FBb Critical bending stress for bead instability, psi	 (N/m2)

FCF Critical axial	 hurkling load for flat instability,
LBf (N)

I	 Moment of inertia per unit length, XY plane

I	 Moment of inertia per unit length, ^Y plane

L	 panel length,.inches (cm)

NCr	 Critical axial buckling load, LBf (N)

NYCr	
Critical axial buckling load for general instability, LBf
(N)

NYDCr	
Critical axial buckling load for diagonal instability, LBf

(N)

R	 Bead radius, inches (cm)

Rx,Ry,Rz	 Restricted degrees of freedom, rotation

sass	Developed length, inches (cm)
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NOMENCLATURE (continued)

S1 ,S2	Distance, inches (cm)

t	 Bead thickness, inches (cm)

t 
	 Flat thickness, inches (cm)

V V Z	 Coordinate axesA.0.,

x,y,z	 Restricted degrees of freedom, translation

a	 Magnitude of eccentricity

a	 Distance or dimension

c	 Strain,pinches/inch (ucm/cm)

Y	 Shear,strain pinches /i nch (pcm/cm)

6	 Angle, degrees or radians

V	 Poisson's ratio
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Axis
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Refers to ^ direction

Diagonal axis

^Y
	

Diagonal plane

Abbreviations

DT
	

Displacement transducer

HRA
	

Hypersonic Research Airplane

HWTS
	

Hypersonic Wing Test Structure

SC
	

Strain gage
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SUMMARY

The concept of a hypersonic research airplane is one which has

been studied for several years. Early studies included research into

new structural concepts with emphasis placed upon developing the best

cost/weight efficiency, performance and reliability obtainable.

As a part of NASA's continuing research into hypersonics, Dryden

Flight Research Center has been laboratory testing an 85 square foot

(7.9m2 ) hypersonic wing test section of a proposed hypersonic research

airplane. In tests performed to date on the wing test section, the

structure has exceeded all expectations of strength and durability.

The project reported on in this paper has carried the hypersonic

wine test structure project one step further by testing a single

beaded panel to failure. The primary interest was focused upon the

buckling characteristics of the panel under pure compression with

boundary conditions similar to those found in a wing mounted condition.

Three primary phases of analysis are included in the report. These

phases include: Experimental testing of the beaded panel to failure;

finite element structural analysis of the beaded panel with the com-

puter program Nastran; a summary of the semiclassical buckling equations

for the beaded panel under purely compressive loads. Comparisons be-

tween each of the analysis methods is also included.

7-,,77



INTRODUCTION

The Hypersonic Research Airplane
	 in

The concept of a hypersonic research airplane (HRA) is one which

has been studied for several years (ref. 1-10). Early studies included

not only basic conceptual design, but also research into new structural

concepts. This research has provided a portion of the technological

base necessary for future hypersonic developments.

Much of the research done has been devoted to theoretical analysis

of various structural concepts which meet the requirements of a hyper-

sonic airplane. Emphasis has been placed upon developing the best

cost/weight efficiency, performance and reliability obtainable. Weight

efficiency in high performance aircraft is a critical factor explain-

ing the need for a weight efficient structure.

One HRA concept studied by NASA is shown in figure 1. This pro-

posed vehicle would cruise at Mach 8 for five minutes. It is a single

place design with a wing span of 38 feet (11.58m), a length of 101 feet

(30.78m) and an estimated weight of 75,600 pounds (3.36x105 PI). The

wings and tail are hot radiating structures fabricated from super

all oys.

2
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Figure I. Hypersonic research airpZane configuration concept.
Note: Dimensions are in feet and (meters).
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The Hypersonic Wing Test Structure

As part of NASA's continuing research into hypersonics, Dryden

Flight Research Center has been laboratory testing an 85 square foot

(7.9m2 ) hypersonic wind test section, shown in figure 2, of the pro-

posed HRA vehicle. The objectives of this program are to verify ana-

lytical predictions, construction techniques, assembly tec-: piques and

in general to improve flight loads measurement technology.

The hypersonic wing test structure (HIJTS),shown in figure 3, is

made from Ren6 41 (with the exception of the lower leading edge heat

shield panels which are TD Ni Cr) and is capable of operating with

surface temperatures in excess of 1800° F (1250'x). The HWTS employs

corrugated spar and rib webs and beaded skin panels. Aerodynamic

smoothness is accomplished by attaching heat shields over the beaded

panels.

The HWTS carries loads somewhat differently than do conventional

aircraft. Bending loads normally carried by spars in conventional

wing structures are instead carried by the beaded skin panels in the

HWTS. Shear and torque are carried in much the same manner as in con-

ventional wings.

4
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Purpose and Scope of Work

In tests performed to date on the HVJTS, the wing section has

exceeded all expectations of strength and durability. The beaded

panels themselves have performed exceptionally well with no indication

of failure at the maximum room temperature design loads of the HWTS.

The project reported on in this paper has carried the H +TATS test

one step further. A spare beaded panel was tested to failure to ex-

perimentally determine the buckling characteristics of the beaded

panel and compare the results with analysis. The primary interest was

focused upon the buckling characteristics of the panel under pure com-

pression with boundary conditions similar to those found in a wing

mounted condition. The room temperature compression test provided a

significant data point for comparison with design analysis.

This project included three primary phases which are:

1. Experimental testing

2. Finite element structural analysis

3. Semiclassical analysis.

The experimental phase of the project provided a base line for

comparison with the analyses. Strain, deflection and loads data were

recorded during each test. Strain gages were used to monitor strain

distribution, identify maximum stress locations, and for a non-destructive

failure prediction technique known as the force/stiffness (ref. 11)

method. A brief description of the force/stiffness technique is in-

chided in appendix B.

Two methods were used to measure out-of-plane deflections of the

panel while under load. The first technique utilized displacement

01? GD
9P p^^ QUA	 7



transducers (DT's). The second technique used was the Moir6 fringe

(or grid shadow) technique (ref 12). The Moird fringe technique pro-

vided deflection data for the entire panel versus the descrete measure-

ment of the DT. The DT data also provided a check of the Moir6 data.

A brief description of the Moir6 fringe technique is included in appen-

dix C.

'	 The second phase of the project was the finite element structural

analysis of the panel. The stresses, deflections, and buckling char-

.,	 acteristics were calculated with Nastran (ref 13) a finite element

structural analysis computer program.

The third phase of the project included a summary of the semi-

,!'	 classical analysis previously done for the beaded panels. SemicIassi-

cal equations of buckling strength were developed for beaded panels of

-'1	 the type used for this test in references 2, 3, and 4.

8



THE BEADED PANEL. PEST SPECIMEN

Beaded Panel Description

The beaded panel concept meets the requirements of high strength

and weight efficiency required for a hypersonic airplane. The panel,

as shown in figure 4, is 42.9 inches (109 cm) long and 19.1 inches

(48.5 cm) wide. It has seven alternating up and down semicircular

beads separated by about 0.4 inches (l cm) wide flats. The perimeter

of the panel is flat to permit mounting to the spar caps and rib caps

of a wing.

Doublers made from Ren6 41 sheet stock were spot welded to the

ends of the panel on both sides, tripling the nominal thickness of the

ends. These doublers extend about 10.7 inches (27.2 cm) towards the

center of the panel, gradually reducing in thickness as they progress

down the flats. The doublers reduce the possibility of local end

failures and help to distribute the load more uniformly into the panel.

Provisions were made to attach heat shields to the panels at

eight locations two of which are pointed out in figure 4. The remain-

ing six attachment points are symmetric to those shown.

The beaded panel dimensions were derived using a computerized
3

optimization program (ref. 2). The optimization program varied such

parameters as panel length, width, number of beads and thickness to
3

derive a least weight configuration capable of carrying prescribed

mechanical and thermal loads (based upon semiclassical analysis).

Strength interaction curves such as that shown in figure 5, were then

made for each panel configuration. The various combinations of
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Heat shield
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Figure 4. The hypersonic beaded skin panel used for this project.
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Rend 41 Material and Formability Properties

i
Tensile specimens, shown in figure 6, were supplied with the beaded

panels. These specimens and the panels were cut from the same sheet

stock. A number of them were cut in the direction of rolling; an

equal number were cut perpendicular to that direction. Six specimens,

three of each type, were tested in a universal testing machine to ex-

perimentaIly determine the.modulus of elasticity and the 0.2% offset

yield strength of the Rend 41. Figure 7 is a typical stress-strain plot

using test data. The average modulus of elasticity was found to be

30.422x106 psi (2.10x1011 N/m2 ) compared to 31.6xI Q6 psi (2,18x1011 
N/m2 )

17.0
(43.2)

Strain gage

3.0

1.0
(2.5)	 2.o

(5.z)

d

Figure S. Rene" 41 tensile specimen dimensions 0.037
inches (0.094-cm) thick. Dimensions in
inches and (cm).
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as reported in reference 14. Table 1 summarizes the results of the

six tensile specimen tests. In table 2, a number of material properties

are summarized as reported in reference 14.

The beaded panels were formed in a 5 million pound (2.22x107N)

hydraulic press. At least two and sometimes Four anneals were required

before fully developing the bead (ref. 15). The stretch forming process

reduced the thickness of the bead from an original thickness of 0.037

inches (0.094 cm) to about 0.028 inches (0.071 cm).

Due to the extreme hardness of Rend 41, standard hi gh speed steel

drills could not be used. Strict drilling procedures in addition to

cobalt drills had to be used to prevent work hardening the Rend: 41 and

to obtain maximum Iife from the drill bits (ref. 15).

r
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F.

Table 1. Experimentally determined modulus and 0.2% offset; yield

strain of Rend 41.

Specimen Modulus of 0.2% offset

ID Elasticity Yield strain

ibf/in2 (N/cm2 ) -pin/in (ucm/cm)

003-L-8* 30.205x706 6,350

(20.826x106)

003-L-9 30.358x706 6,450

(20.931x706)

003-L-70 30.097x106 6,200

(20.747x106)

003-T-8** 30.668x706 6,250

(21.145x106 )

003-T-9 30.126x706 6,600

(20.771x106)

003-T-10 37.082X106 6,400

(21.430x706)

Average 30.422x106 6,380

(20.975x706)

*L-Longitudinal specimens 	 **T-Transverse specimens

14



Table 2. Material properties of Rend 4I as reported in reference 14.

Property Value

Modulus of elasticity (Tension), E 31.5x105 lbf/in2

(21.8x106 N/cm2)

Modulus of elasticity (Compression), E c 31.6x106 lbf/in2

(21.Sxi06 N/cm2)

Shear modulus, G 12 . l x105 l bf/in2

(8.3xI06 N/cm2)

Density, p .298 lbm/in3

(.008 kg/cm3)

Tensile ultimate strength 185,000 lbf/in2

(127,550 N/cm2)

Tensile yield strength 132,000 lbf/in2

(91,000 N/cm2)

Compressive yield strength 141,000 lbf/in2

(97,200 N/cm2)

Poisson's ratio, v .31

m

K

t

15



PRETEST PREPARATION

Beaded Panel Measurements

Detailed drawings accompanying the beaded panels to NASA specified

the various dimensions of the panel which are summarized in table 3.

Also included in table 3 are the values obtained from direct measure-

ment which vary somewhat from the specifications. The measured values

were used in all analyses of this project.

The buckling characteristics of any structure are affected by

eccentricities. Therefore, measurements were made at over 100 loca-

tions on the beaded panel to determine the magnitude of the manufactur-

ing eccentricities present in the panel. The edge stiffeners (which

will be discussed in a later section) were attached to the panel during

these measurements. The maximum out-of-plane eccentricity of the-panel

was found to be only 0 . 019 inches ( 0.045 m).

a

q

L'
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Table 3. Specified and measured thicknesses of the beaded panel.

0

u

If

Location Specified

thickness

in	 (cm)

Measured
thickness

in NO

% difference

1 .034	 (.086) .0347 (.0881) 2.06

2 .026	 (.066) .0285 (.0724) 9.62

3 .036	 (.091) .0345	 (.0876) 4.17

4 .076	 (.193) .0751	 (.1908) 1.18

5 .110	 (.279) .1091	 (.2771) 0.82

6 .068	 (.173) .0725	 (.1842) 6.62

7 .082	 (.208) .0838	 (.2129) 2.20

1 4
f

19.1	 in
(48.5 cm)

_ 1	
2

'

_

5

r

}

5

-
4

_ 3	 6	 7 8

2

3	 6
r
i	 2

(''~
3	 16	 7	 8

 2
3	 J77r77TO

r	 2

3	 6 17 8

I

42.9 in
(109 cm)
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1.42
(3.1511

-0.85
(2.16)

2.04
(5

—42
(108.5)

>-

Edge Stiffeners

An attempt was made in this project to stiffen the edges of the

panel in a manner which would closely approximate the stiffness con-

ditions of a wing mounted condition. Therefore, the edge stiffeners

which run parallel to the bead as shown in figure 8 were sized with
	 a

the intention of not only preventing local edge failures but also

simulating the stiffness of adjacent spars, and panels in the HWTS.

These stiffeners were made in the shape of Z-sections from annealed

stainless steel and mounted on the heat shield side of the panel as

shown in figure 9.

The Z--sections were designed with the aid of Nastran, a finite

element structural analysis program. Nastran was used in an iterative

manner utilizing two finite element models entitled EDGEI and EDGE2.

Model EDGEI, shown in fi gure 10, consisted of a quarter panel,

Figure 8. Dimensions of the 2-section edge stiffeners made from
annealed stainless steel. Dimensions in inches and (ern).
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Figure 9. Side stiffeners, end supports and stabilizing rod mounted to the beaded panel.



Figure 10. Nastran model EDGE1.
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spar cap, spar web and an adjacent panel assembly. This model was

intended to be a representative section of an actual hypersonic wing.

Model EDGE2, as shown in figure 11, consisted of the same quarter

panel as used in ELDGE1 gut bar elements replaced the spar cap, spar

web and adjacent half panel assembly. The design procedure employed

was to apply identical compressive loads (parallel to the beads) to

both models, then adjust the sizes of the bar elements until the out-

of-plane displacements of model EDGE2 were comparable to model EDGE1.

This procedure provided the dimensions of bar elements which approached

the bending stiffness of the spar cao, spar web and adjacent half

panel assembly.

The results of this iterative procedure are shown in figure 12.

The curves, shown in. figure 12, represent about twenty iterations

and are the best possible correlations obtainable. The Z-sections

were dimensioned on the basis of the computer run of model EDGE2 cor-

responding to the curve shown in figure 12.

21
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Figure 11. Nastran model EDGE2.
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End Supports

The end supports shown mounted on the panel (previously shown

in figure 9) were made from machined flat tool steel bars. The bars

had a rectangular cross section of 1 inch by 0.5 inch (2.54x1.27 cm)

and were flat to within 0.001 inches/inch. When mounted on the panel

the end stiffeners served two functions. They provided a surface

approximately 1.10 inches (2.79 cm) wide (including stiffeners and panel

thickness) through which the load was transferred into the panel and

eliminated warping of the end of the panel.

After the side and end stiffeners were mounted on the panel, the

entire assembly was mounted in a milling machine square with the

cutting tool. The end stiffeners were then milled off narallel with

one another and perpendicular to the beads. This process was necessary

to ensure that bending loads would not be introduced into the panel

due to misaligned ends. The side and end stiffeners were not removed

after this process had been completed.

r
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Strain Gaae Instrumentation

Figures 13 (a) and (b) show the location of the 39 strain gages

mounted on either side of the panel to measure strains. The gages are

mounted on cross sectional lines corresponding to 1/4, 1/3, and 1/2

E	 the panel length. Of the 39 gages, 33 were standard axial gages. The

remaining six gages were grouped into threes and used as equiangular

rosettes [labeled 34 and 37 in figure 13(b)]. All of the gages were

attached using standard strain gage adhesives.

Positioning of Strain Gages on Beads

As discussed in the Semiclassical Buckling Analysis section (later

in this paper),a diagonal mode of local instability which occurs between

two adjacent beads has been suggested as a possible failure mode (ref. 2,

3, 4). For the beaded panels, the buckling load for this mode was de-

termined for a value of 0 2 equal to 12.875° (see fig. 14). Thus the

majority of gages mounted on the beads were mounted at about 12.8 0 off

yl	 of the bead peaks as shown in figure 14. This placed the gages at

locations that would optimize their sensitivity to both the proposed

diagonal and general instability modes.

The strain gages were mounted at three cross sections of the panel

corresponding to 1/2,1/3,and 1/4 panel lengths. The majority of the

gages were mounted on the 1/2 panel cross section, in anticipation of

maximum panel deflection at that location. At the 1/3 and 1/4 panel

cross sections the gages were clustered around the center three beads

[see fig. 13(a) and (b)].
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Figure 14. Location of strain gages mounted on the beads for maximwn
sensivity to the diagonal mode of instability proposed in
the semicZassioaZ analysis. Note: 8 2 	 12.8°.
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Displacement Transducer Instrumentation

Displacement transducers (DT's) were located on panel cross

sections at 1/4, 1/3 and 1/2 panel lengths as were the strain gages.

As shown in figure 15, five DT's were attached at the 1/2 panel cross

section in anticipation of maximum out of plane displacement at that

location. Three additional DT's were placed at the 1/4 panel cross

section and one DT was located at the 1/3 panel cross section. All

nine of these DT's were positioned to measure displacements perpendic-

ular to the plane of the beaded panel. A tenth DT was used to measure

longitudinal compression of the panel.

Moird Fringe Technique Preparations

The photographic material to which the Moird fringe grid lines

were applied was only 0.007 inches (.018 cm) thick (see appendix C).

The plastic was attached to a 0.25x20x42 inch (.62x50.8x106.7 cm)

sheet of plate glass to enable mounting the grid plane in front of the

panel. Mineral oil was used as an adhesive between the glass and the

plastic. Excess oil was squeezed from between the glass and the plas-

tic creating a thin uniform adhesive bond.

The Moir6 fringe glass was supported by aluminum bars which ran

the length of the glass. A 0.25 inch (0.64 cm) groove was cut into

each of the aluminum bars and the glass fitted and glued with silicone

rubber cement into the grooves. The aluminum bars were then attached

to the panel by aluminum brackets such that the Arid was maintained

parallel and at a fixed distance from the ends of the panel. The bottom
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brackets were rigidly attached to the panel and the top ones were

free to slide, thus preventing the glass from taking any load and

possibly breaking, or from deflecting and causing errors in the measure-

ments. The distance from the top of a bead to the surface of the glass

was approximately 0.26 inches (0.64 cm) in the unloaded condition.

Prior to mounting the glass to the panel, the panel was painted white

to create a greater contrast between the dark and light fringes.

The camera film plane was located about 60 inches (152.4 cm)

from the surface of the glass (S 1 in fig. C1 in appendix C). The dis-

tance between the camera and the light source, was 60 inches (152.4 cm)

(S2 in fig. C2 in appendix C).

According to reference 12, it is necessary to use a point source

of light when the field of interest is large. Therefore,.a photo-

graphic flash with a 1 inch by 0.2 inch (2.54.51 cm) iris was used

as a light source for this project. The iris effectively created the

necessary point source of light.. Figure 16 is a photograph of the

entire photographic system in place.

Test Equipment

The panel was tested in a universal compression-tension testing

machine. Figure 17 shows the panel mounted in the machine. The

platens which come into direct contact with the panel were specially

made and machined flat to within 0.001 inches/in. The platens helped

to insure that the load introduced into the panel was purely axial in

nature and that bending loads due to misaligned heads would be elimi-

nated. The bottom platen rested on a spherical seat which insured
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proper alignment with the panel.

Loading rates and magnitude were automatically controlled by a

preprogrammed load schedule, thus maintaining consistency and reli-

ability between tests. A loading rate of 50 lb/sec (220 N/sec) was

used up to 20,000 lb (89,000 N) load and a rate of 25 lb/sec (110 N/sec)

was used above 20,000 lb (89,000 N). Unloading was accomplished at

the rate of 100 lb/sec (445 N/sec). The loading system could be

placed in a hold status at anytime allowing a constant load to be

maintained while taking Moir@ -fringe pictures.

Loads were recorded with a 50,000 pound (222,400 N) load cell,

shown in figure 17, lust above the top platen. The load cell had an

accuracy of 0.1% of full scale or t 50 lb (222 N).

Strain gage, displacement tranducer, and load cell data were all

recorded real time on magnetic tape by the Iaboratory data acquisition

system (ref. 16). Data were recorded at a rate 'of 1 sample/second up

to 20,000 lb (89,000 N) load and at 5 samples/second at loads above

20,000 lb (89,000 N). The data acquisition system also provided real

time displays of force/stiffness data, strains, loads, and out-of-plane

deflections (as measured by displacement transducers).
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Test Procedure

A total of 19 tests were performed on the panel up to the failure
	

i

test of 48,600 pounds (216,184 N). The first two tests were system	 ,` t

checkout tests of 2,000 and 10,000 pounds (8,900 and 44,480 N) respec-

tively. The remaining 17 tests were buildup tests to failure.

A typical test would begin by warming up the testing machine

for 30 minutes. Before loads were applied to the panel, Moird fringe

calibration photographs were taken. In addition, strain gage and dis-

placement transducer zeros were recorded by the data acquisition

system. After data sampling was started at prescribed rates, loads

were applied to the panel. At predetermined load points, the load

was held constant and Moire fringe photographs were taken. This pro-

cess was repeated until the maximum Ioad was reached.
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DISCUSSION OF EXPERIMENTAL RESULTS

Moird Fringe and Displacement Transducer Results

The rloire fringe photographs proved to be extremely useful for

identifying the elastic buckling load and the mode shapes The Moird

frin ge photographs show subtle changes in panel curvature which might

not have been otherwise detected. Experimental data, includin g P?oir6

fringe data, is included in appendix A.

Figure Al(a) is a calibration photo taken while no load was being

applied to the panel. Calibration bars (with different slopes) are shown

in the upper and lower ri ght corners of the panel between the glass and

the panel. The bars were used to verify uniform calibration from end to end.

Note that the beads and flats are all straight in figure Al(a) as indicated

by constant fringe patterns on bead peaks and flats.

Figure Al(b) shows the panel under an applied load of 24,000 pounds

(106,760 N). A very slight curvature of the center two flats is visi-

ble, compressing the sides of the center bead. This inward deflection

is even more apparent at 36,000 pounds (160,140N), as shown in figure

AI(c). The sides of the other beads are similarly compressed inward or

spread outward but to a lessor extent than the center bead. This deflec-

tion represents lateral distortion of the panel across section due to out-

of plane bending.

The first visible indication of elastic buckling of the panel

occurred at 40,000 pounds (177,930 N), as shown i n figure Al(d). The

flat immediately to the left of the center bead has changed its direction

of lateral deflection and is now moving outward, away from the center

bead, instead of its original inward direction. At 42,000 pounds
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(186,825 N),shown in figure Al(e), this change in curvature is distinct,

:r.	 while at 44,000 pounds (195,520 N), shown in figure Al(f), it is quite

pronounced. This mode of buckling is similar to the diagonal mode of

instability discussed later in the semiclassical analysis section.

_	 In figure Al(g) the panel is under an applied load of 48,500 pounds

(215,740 N). Severe curvature of the center bead and the inner most flats

is clearly visible. Finlike figure A1(f) which shows the panel under an

applied load of 44,000 pounds (195,720N) the beads immediately adjacent

to the center bead are beginning to exhibit curvature similar to that

of the center bead. The remaining beads, however, remain relatively

straight. This curvature of the panel center portion suggests that the

center portion of the panel is carrying less of the applied load, having

transferred some of the load to the outer portions of the panel. This

load transfer was further substantiated by the strain gage results

which will be discussed in the next section.

Ultimate panel failure occurred at a load of 48,600 pounds (216,184N).

Figure Al(h) is a Moire fringe photo taken after failure. Figures Al(i)

and (j) are photos of the panel after failure. Permanent deformation

is visible in these photos. These figures show that the panel suffered

catastrophic local failure at the center of the panel. Local failures

are also visible between the fasteners on the panel edges.

Out-of-plane displacement measurements using the Moire fringe tech-

nique were made at 49 locations as shown in figure A2(a). All of the

measurement points were located on the peaks of the seven beads. Note



also plotted. The curvature of these plots indicate that the panel was

loaded eccentrically which caused out-of-plane bending of the panel

even at small lk, s. The eccentric behavior was the result of loading

the panel through the flat end of the panel, rather than the neutral

axis of the panel/side stiffener assembly. The maximum out-of-plane

displacement at a load of 48,500 pounds (215,740 N) was 0.432 inches

(1.097 cm) as shown in figure A2(e). This displacement occurred on the

center bead at point 25 in figure A2(a).

Strain Gage Results

Initial interest in the strain gage results was focused upon the

degree to which uniform loading had been accomplished. Uniform loading,

in this case, refers to a uniform load across the entire width of the

panel. The two rosettes (gages 434 and 437) mounted on the panel flats

provided part of this information by making it possible to resolve the

axial strains into principle strains and principle directions. At.all

load levels the difference between the measured longitudinal strain and

the calculated principle strain was negligible. In addition, the direc-

tion of the principle strains varied by a maximum of only 5° from an

axis parallel to a bead. This small variation indicated that the load

was introduced into the panel in a uniform manner and that there was

virtually no shear. Sample data is shown in table 4 for a load of

20,000 pounds (88,960 N).

Another indication of the uniformity of the load is illustrated

by the data shown in figure 18. This figure shows the strains from

all strain gages recorded at a load of 2,000 pounds (8,900 N). At this
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low load very little bending is present, thus the indicated strain is

due primarily to axial compression. Similar comparisons of strains on

beads at higher loads cannot be made due to the increased effects of

bending. However, strain comparisons can be made of the responses of

gages mounted on flats at higher loads. Figure 19 shows Vie strain

measurements made at four load levels on the flats at the center cross

section. The maximum difference between any two gages at a particular

load is 150 microinches/inch. The data in this figure shows that (1)

the strains are increasing in nearly equal increments with each load

level and (2) that the compressive load is uniform across the beaded

panel cross section up to the onset of elastic buckling (about 40,000

pounds or 177,930 N).

Table 4. Principle strains and their directions at a load of 20,000

pounds (88,960 N). Strains in pinches/inch.

Rosette 34 Rosette 37

measured calculated measured calculated

Leg A -876 E 1 -876 Leg A -864 E 1 -868

Leg B - 25 e2 -252 Leq B - 78 e2
-272

Leg C - 35 y - 12 Leg C + 48 y 145

Principle angle 89.7 0 principle angle 863
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Figure 19. Strain measurements recorded by gages mounted on the
center section of the beaded panet.
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Individual strain gage plo-,.:s are shown in figures A3(a) through

(w) . Most of these plots are nonlinear. These nonlinearities are due

to out-of-plane bending which is the direct result of eccentric loading

of the panel.

This nonlinear load deflection res ponse is typical for most column

structures under compressive load (ref. 17) and is the reason for

the difficulty associated with pinpointing elastic buckling loads from

strain gage plots alone. A column with no eccentricities and concentric

loading would have a load-bending deflection response similar to that

shown in figure 20(a). This figure represents a perfect column under

compressive load, where the column simply compresses until the buckling

load is reached. For a column with eccentricities (or eccentric loading)

the load-bending deflection response is represented by figure 20(b)

	

where a.•	
1

is a measure of the eccentricity and a <a 
2 3
<a etc. Since the

`	 ^ 
+i

beaded panel was eccentrically loaded, the strain gage plots are similar
'i

to figure 20(b). In those cases where the strain gage measured axial

compression plus compressive bending, the resultinq plot is similar to

that shown in figure A3(b). For the case where the gage measured axial



compression plus tensile bending, the plots are similar to that shown

in figure A3(h), (note the reverse curvature). A precise determination

of the buckling load for such plots is difficult because the curves do

not exhibit a pronounced change which identifies buckling. In the case

of the beaded panels, the situation is further complicated by the fact

that the elastic buckling mode, as shown in the Moird fringe photos, has

a lateral component which is perpendicular to the deflection due to the

eccentric loading. The best indication of buckling from the strain gage plots

is given by gages which are mounted on the flats which are relatively

insensitive to out-of-plane deflection (bending), since they are much

closer to the neutral axis of the panel (gages 426 and 428 in figures

A3(q) and (r),for example).

Figure 21 is a plot of the averaqe strains recorded by all of the

gages mounted on the flats (between beads) at the center cross section

of the panel (gages 425, 426, 428, 429, 434, and 437). Up to about

40,000 pounds (177,930 N) the average strain gage response is linear.

This load corresponds to that at which elastic buckling of the center

of the panel occurred as shown in the Moir6 fringe photos. The average

strain at 40,000 pounds (177,930 N) from figure 21 is 1600 microinches/

inch and does not increase appreciatively at loads above 40,000 pounds

(177,930 N).
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Force/Stiffness Results

Force/stiffness plots are shown in figures A4(a) through (j).

With the exception of plots (c) and (j), the curves were extrapolated

to indicated failure loads using a second order Lagrange polynomial

(ref. 18). The accuracy of the predictions are affected by the extra-

polation procedure used i.e., linear, second order, third order, etc.

A second order procedure was used for this project since the curves

extrapolated were generally quadratic in nature.

The most important results of this analysis are shown in figures

A4(c) and W. In these two plots, very pronounced inflections occur
at about 40,000 pounds (177,930 N) as indicated in the figures.

According to reference 11 these inflections indicate changes in the

mode of deflection. More specifically, the inflections are caused by

elastic buckling of the panel which occurred when the flats on either

side of the center bead began moving in the same lateral direction.

Since the inflection points themselves indicate elastic buckling, the

curves were not extrapolated. It should be pointed out that the

significance of these inflections in figures A4(c) and (j) was re-

alized only after correlations between Moire fringe and strain gage

data were made.

Other results of particular interest are the plots of gages at the

center cross section of the panel. Extrapolations.of plots M(a), (b),

(d), (e), and (f) all intersected the load axis at between 50,850 to

55,000 pounds (226,200 to 240,650 N). These indicated buckling loads

are for the mode of deflection associated with out-of-plane deformation



only. Had the panel not failed elastically at 40,000 pounds (177,930 N)

in a mode characterized not only by out-of-plane deflection, but lateral

deflection also, it may have supported loads up to the indicated buckling

load. Force/stiffness predictions from gages mounted at the 1/4 and 1/3

panel lengths ranged from 53,750 to 61,750 pounds (239,I00 to 274,680 N).

The larger predictions came from gage pairs mounted at locations which

were relatively unaffected by the elastic failure which occurred at the

center of the panel. These results point out that the strain gage pairs

must be in close proximity of the -Failure for the most accurate results.

Two points should be made regarding similarities between the experi-

mental results, i.e., modes of deflection, and the modes of instability

suggested by the semiclassical analysis (discussed later in this paper).

One suggested mode of instability used to analyze the panels, is charac-

terized by a lateral deflection corresponding to the lateral deflection

which occurred beginning at 40,000 pounds (177,930 N). In the semiclas-

sical analysis this mode of instability has been called the diagonal mode.

Secondly, the out-of-plane deformation of the panel corresponds to one of

the suggested instability modes in the semiclassical analysis, known as

the general instability mode. The semiclassical analysis section con-

tains a further discussion of the:, suggested modes of instability.
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Edge Stiffener Performance

The edge stiffeners (Z-sections) used to support the edges of the

beaded panel were intended to simulate the stiffness of a wing mounted

condition. The out-of-plane displacements of the center of the beaded

panel edge were compared with similar measurements taken from a panel

mounted in the hypersonic wing test structure. The deflection of the

beaded panel/Z-section edges were larger than the corresponding HWTS

panel edges. Thus, the Z-sections were stiffened with Ixlx42 inch

(2.54x2.54x106.68 cm) steel bars which were bolted to the free edges

of the Z-sections as shown in figure 22. The out-of-plane displacement

of the beaded panel/stiffened Z-section edge (at the center) for a com-

pressive load of 950 lbf/in (1660 N/cm) was 0.0I5 inches (0.033 cm).

The corresponding measurement of the beaded panel mounted in the HWTS

was 0.024 inches (0.061 cm).

The reason for the conservative panel/Z-section deflection are two-

fold. First, an incorrect load level was taken from the HWTS data and

used for comparison purposes. Secondly, the Nastran calculations of

out-of-plane deflections were found to be inadequate (see section on

computer analysis). However, the edge stiffeners did prevent premature

edge failures and in general performed satisfactorily.

It was discovered during the initial tests of the beaded panel,

that the free edges of the Z-sections tended to pull away from one

another 'buckle laterally) under load. To prevent a premature lateral

buckling failure of the Z-sections, 0.5x0.25 inch (1.270.64 cm) steel

straps were used to tie the Z-sections together,as shown in figure 22.
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Summary of Experimental Results

The most important experimental results can be summarized as follows:

	

1.	 The panel was eccentrically loaded (due to the geometry of the

panel)as verified by the Moird fringe and strain gage deflec-

tion data.

	

2.	 Elastic buckling occurred at about 40,000 pounds (177,930 N).

Analysis of the Moird fringe photo shown in figure Al(d) and

the strain gage data shown in -Figure 21 indicate that:

a. The critical axial force per unit width of the panel

at the elastic buckling load of 40,000 pounds (177,930 N)

was 1680 lbf/in (2940 N/cm). This was determined using

the equation

Ncr -- E o 
E	

(A
cr	

a /a)

where Ecr was taken from figure 21 at the elastic buck-

ling load of 40,000 pounds (177,930 N) and is equal to

1600 pinches/inch.

b. The elastic buckling mode involved not only out-of-plane

deformation due to eccentric loadin g , but also included

a lateral deflection characteristic of the diagonal

mode of instability, an instability mode suggested by

the semiclassical analysis. (See figures Al(d), (e),

(f), and (g) for example.)

	

3.	 The ultimate strength of the panel/side stiffener assembly

was 48,600 pounds (216,180 N).

	4.	 The side stiffeners prevented premature side failure and

performed satisfactorily.
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NASTRAN COMPUTER MODEL DESCRIPTIONS AND DISCUSSION OF RESULTS

Introduction

Nasti.,n structural analysis (ref. 13) was used as a tool to com-

pute deflections, stresses and the buckling strength of portions of

the panel as well as the entire panel. Secondly, Nastran was used as
C7

an aid to design the edge stiffeners as previously discussed.

A total of five structural models were made and used in the analy-	 -J

sis process. Models EDGE2 and EDGE3 were 1/4 and 1/2 panel models,

respectively. Each of these models were used to determine the strength,

deflection and buckling characteristics of the beaded panels. The 1/2

panel model EDGE3 was made after the results of the buckling analysis

done with the 1/4 panel model EDGE2 were found to be inadequate. The

remaining three models entitled BEAD, FLAT and DIAL, were used to ana-

lyze instability modes suggested in the semiclassical analysis classi-

fied as bead, flat and diagonal modes of instability, respectively.

The - •esults of the computer analysis done with models EDGE2 and

EDGE3 will be compared with the experimental results previously dis-

cussed. The other three models, BEAD, FLAT and DIAL will be compared

to the semiclassical analysis only.
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Finite Element Model EDGE2: 	 Description

and Results of Analysis

Figure 23 is a computer generated plot of model EDGE2. It is a

quarter panel mode's, and takes advantage of the two lines of symmetry

of the beaded panel. It consisted of 306 elements, 298 grid points and

1443 degrees of freedom. EDGE2 utilized dimensions and thicknesses of

the panel as determined by direct measurements. In addition, the eccen-

tricities which were measured after the edge stiffeners and end supports

had been mounted were also incorporated into the model.

Figure 23 also shows the direction of the loads applied to model

EDGE2. The letters along the sides of the model indicate the restricted

degrees of freedom. For example, x indicates that translation in the

X-direction is restricted, Rx indicates rotation about the X-axis is

restricted. The boundary conditions along the right and lower sides of

the panel were relatively straight forward to define, since the panel

attaches to spar and rib caps at these boundaries. However, the boundary

conditions along the cut edges (lines of symmetry) were not as easy to

formulate. This was especially true of the instability or buckling

analysis. The mode shape prior to testing was expected to be the gen-

eral instability mode (See semiclassical analysis section). Therefore,

the boundary conditions along the cut edges of the panel model were

varied in a trial and error procedure until plots of the buckled shape

resembled the general instability mode.

The results of the buckling analysis performed by model EDGE2 were

`.'	 poor. An elastic buckling load of 31,700 pounds (141,000 N) was calcu-

lated which compares with an actual elastic buckling load of about
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y,z,Rx,Ry,Rz

x,Kz along loaded edge

Figure 23. Finite element buckling model EDGE2. The restricted degrees
of freedom indicated along the sides of the model are for
buck Zing analysis only.
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40,000 ibs (177,930 N). The predicted load was 26% lower than the

actual failure load. This large descrepancy prompted the development

of the 112 panel model, EDGE3. The reason for the large difference be-

tween the results of the buckling analysis utilizing model EDGE2 and

the experimental results is very probably caused by the problems associ-

ated with prescribing boundary conditions along the cut edge of the

model (i.e., the line of symmetry parallel to the center bead).

It should be noted that initially the analysis done with model

EDGE2 was done assuming a perfectly flat structure, i.e., with no eccen-

tricities. however, the difference in results between the analysis

including eccentricities and the analysis without eccentricities was

insignificant.

Finite Element Model EDGE3: Description

and Results of Analysis

Model EDGE3 shown in figure 24 was a full half panel model con-

sisting of 920 elements, 842 grid points and 4591 degrees of freedom.

As in model EDGE2, the dimensions and thicknesses used in model EDGE3

were measured directly from the panel. Measured eccentricities were

not included since previous ex perience with model EDGE2 had shown that

inclusion of the eccentricities had an insignificant effect on the

results of the analysis.

Figure 24 also shows the direction of the loads which were applied

to the panel and the restricted degrees of -Freedom. The same degrees	
I
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Figure 24. Finite eZement, buckling model EDGES. The restricted degrees of freedom indicated along
the sides of the model are for buckling anaZgsis onZg.



of 50,000 pounds (222,400 N). This calculated load compared to an ac-

tual elastic buckling load of about 40,000 pounds (177,930 N) repre-

senting an error of 25%. The magnitude of the error reflects the accu-

racy of the model for the buckling analysis.

The Nastran static analysis program exhibited an inability  to account

for the nonlinear effects of out-of-p l ane bending-with loads applied in

the plane of the panel. Thus comparisons of calculated and experimental

stresses across the entire panel, could only be made at relatively low

loads, where the effects of bending were small. In addition, stress com-

parisons at higher loads could only be made on the flats where the effects

of bending were not predominant. For example, figure 25(a) is a plot of

the stresses at the center cross section of the panel, at a load of

10,000 pounds (44,480 N) using models EDGE2 and EDGE3 as well as the

experimentally derived stresses. At 10,000 pounds (44,480 N) a good cor-

respondence exists between the analysis and experimental results across

the entire panel. However, the experimentally derived stresses on the beads

of the panel are noticeably affected by out-of-plane bending whereas the

computer analysis results are not. Figures 25(b) and (c) are plots of the

stresses at the center cross section at 24,000 and 36,000 pounds (106,750

and 160,140 N), respectively. Pronounced bending effects can be seen in

the experimental results; these effects are not accounted for by Nastran

static analysis (with appliedin-plane loads). On the flats, where bending

has less effect, good comparisons are possible even at the higher loads.

The results of the analysis using these finite element models point

out the need for further research in the area of finite element buckling

analysis for the beaded panels. The development of a full panel model

would be one possibility for further study.
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Figure 25. Comparisons of static stresses computed by finite element models EDGE2 and EDGE3 with experimental
results.
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Finite Element Models BEAD, FIAT and DIAL:

Descriptions and Results of Analysis.

The remaining three Nastran structural models, BEAD, FLAT and

DIAL, were models of an individual panel bead, a flat between beads,

and of a cross section from approximately peak to peak of two adjacent

beads, respectively. These models were used only for comparison pur-
s

poses with semiclassical analysis.

The finite element model BEAD is shown in figure 26. It con-

sisted of 447 :lements, 497 grid points and 1347 degrees of freedom.

Boundary conditions for BEAD were prescribed to simulate simply sup-

ported edges. The restricted degrees of freedom and direction of the

applied loads are shown in figure 26.

The Nastran model FLAT was a model of the flat between two beads.

It was a very simple model consisting of 84 elements, 178 grid points

and 344 degrees of freedom. The boundary conditions used were Uentical

to these shown along the edges of the model BEAD shown in figure 26 and

represented simply supported edges.

The last of the three section models was DIAG which is shown in

figure 27. It consisted of 320 elements, 374 grid points and 1694

degrees of freedom. As in the case of models BEAD and FIAT, the bound-

ary conditions on the edges of DIAG represented simply supported edges.

Each of the foregoing models was loaded in compression parallel to their

1 ong axi s.

The results of the analysis using these three section models were

compared to semiclassical results only, (which will be discussed later)

since no individual section tests were performed. The comparisons are
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Figure 26. Finite element buckling .,rodeZ BEAD. The restricted degrees of freedom indicated represent
simply supported edges.



C

^ad

y>Z,Ry,Rz

rA V.

Figure 27. Finite eZement buck Zing model DIRG. The restricted degrees of freedom indicated represent
simpZy supported edges.

cn



summarized in table 5. The best comparison occurs with the flat in-

stability mode with a difference of 16%. The bead and diagonal modes

exhibit differences of 23% and 58%, respectively. The reason for these

poor comparisons is not known.

Table 5. Comparison of section model buckling results with semi-

classical analysis.

Instability Semiclassical Nastran model percent
mode bucfclin0 Ioad bucklinn load difference

Bead 343,200 1 bf/in 
2
 264, 601 l bf/i n 2 23

(236,600 M/cm2 ) (182,400 N/cm2)

Fiat 687,000 1 bf/i n 2 579,700 1 bf/i n 2 16

(473,600 PI/cm 2 } (399,700 N/cm2}

Oi anonal 42,7no l hf 67,401 I bf 58

(190,000 P!) (299,700 N)
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SEMICLASSICAL ANALYSIS

Introduction

The purpose of this section is to present a summary of the semi-

classical analysis of the beaded panel buckling characteristics given

in references 2, 3, and 4. The four beaded panel buckling modes which.

wereidentified in the references include general instability, flat in-

stability, bead instability and diagonal instability. The diagonal

mode of instability is a localized instability between the peaks of

adjacent beads. In all four instances, semiclassical buckling theory

assuming simply supported edges was used in the analysis. The use of

this simplified approach on a problem with the complexity of a beaded

panel is questionable.

Since this project is concerned solely with compressive loads on

the panels just the pertinent equations will be presented. A more

detailed analysis may be found in references 2, 3 and 4.

Section Properties of the Panel

Prior to examining the four instability modes of the panel, it is

necessary to define a number of section properties to be used in the

various buckling equations. The first of these properties are the

flexural rigidities of the beaded panel with respect to the X, Y and

C axis shown in figure 28. The equations of flexural rigidity for

bending moments along the X and Y axes and twisting of the XY plane

are:
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Figure 28. Section parameters of the beaded panet.
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a Et 

U1 - s  12(T - v2}

D2 = E Ixx
	 (1)

_ s 	 Et3
83	 a 12 1 + v

where I xx is defined as:

Ixx = 
1^3 

[(0.5 + cos 2 61)ei - 0.75 (sin 2e1)}	 (2)

The diagonal mode of instability occurs at a critical value of

6 2 , shown in figure 28, where the area moment of inertia of the diagonal

section is minimum. The flexural rigidity equations about the EY plane

for buckling across the diagonal defined by angle e2 are:

8I=EIU

S	 Eta
d II	

SS 12(1 - v2)

__ sa 	 Eta
812	 d 12(l + v

iU in equation 3 includes only the material within the dimensions
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of 6 and is defined by:

n - ? n	 r^	 n	 q	 n

I	
- I (IXX Cos

20 3 + I ZZ Sin26 3 - IXZ Sin 26 3 )	 t 4)

n	 n	 n

	

and I XX , I ZZ , and 
I 	

are defined as:

I XX = alxx - tR T(0.5 + Cos281)62 - Sin 6 2 (2 Cos 8 1 -0.5 Cos 62)}

2	 2
IZZ , tR{(2 +a 2 )( 8 1 -8 2 ) - 4 (Sin 26 1 -Sin 262) +

+ 2aR(Cos 6 1 - Cos 82) tF b3
	

(5)
24

IXZ = tR2{a(Sin 8 1 - Sin 6 2 ) - 2(Si n2 6 1 - Sin  62) -

- R Cos 61(Cos 81 - Cos e2) - (61 - 62)a Cos 6 1k

Numerical values for equations I through 5 are summarized in table 6.

i
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Tabl a 6. Numerical values of the beaded panel cross section parameters

Section Numerical Section Numerical
Property Value Property Value

D1 49.286 lbf•in D1 5,415 lbf•in

(5.569 N•m) (611.8 N•m)

D2 33.75x104 lbf•in
D11

59.51	 lbf•in

(38.13x704 MN-M) (6.72 N•m)

D3 59102 1bf•in D12 48.88 lbf•in

(6.67 N•m) (5.52 N•m)

1xx
1.109x10-2in4/in Ixx 9.256x10_3 in4/in

(.462 cm4/cm) (.039 cm4/cm)

1 z 1.164x10 2 in4/in I 1.780x104 in4/in

(.484 cm4/cm) (7.409x10-3 cm4/cm)

I xz 1.029x70_2 in4/in

(.428 cm4/cm)
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Semiclassical Buckling Analysis for Pure Compression

Stability equations for the beaded panel may now be summarized.

It is important to reiterate that the equations which follow are based

upon simplified classical theory.

General instability is analyzed by assuming that the entire panel

is a simply supported wide column under compressive load. From refer-

ence 2 the critical axial buckling load is given by:

_ " 7T202
^YCr	 L2

Diagonal instability, a local instability (of the simply supported

panel cross section) between the peaks of adjacent beads is given as

follows:

2	 s
YOCr°	 262 

(D 
II)D12} 

S 
s	

(7)

The critical diagonal buckling load occurs when the diagonal

cross section has a minimum moment of inertia. The angle 6 2 in figure

28 which defines the boundaries of the diagonal cross section, was

varied from 0 to 77.5 degrees in small increments and the critical

buckling load calculated. The results are shown in figure 29 which

is a plot of the diagonal buckling load versus angle 8 2 . Given the

geometry of the beaded panel used in this oroject, the angle 6 2 is

about 12.875 degrees from the peak.

Instability of the flats between the beads is the third mode to

he considgrPd. From reference 2, the compressive buckling formula

(6)

66



60

OX102

90	 rZ
V

Z

w

20	 40	 60

Angle 0 2 , degrees

Z

50

A

ro

0 40
H 

30U

w

1) 0
0

80
b

70 ,0

60
x

50

40

for flat instability, assuming simply supported edges, is .given by:

2
F	 -47r2F	

tF	
(8)

CF 120 - v
2 ) b

Instability of a single simply supported bead cross section is

the final mode to be analyzed. Consideration must be made for the

critical axial compressive stress as well as the critical compressive

stress due to bending. The equations which define this mode (ref. 2)

are respectively:

I

Figure 29. Effects of varying angle 6z on the
diagonal mode of instability.
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.5

i

FCb 
'1 

-0.82 E(t/R)1.19
	 (9)

FBb = -0.77 E(t/R)
1.15
	(10)

On the basis of these equations, the critical buckling loads for the .

beaded panel were determined and are presented in table 7.

Table 7. Semiclassically derived buckling loads

Instability Load Total load

mode l bf/in (N/cm)

General -
MYCr

1818 34,700 lbf

(3200) (154,350 N)

Diagonal -
NYDCr

.2240 42,700 lbf

(3920) (190,000 N)

Flat - FCF - - - - 687,(101 lbf/in 2 

(473,700 N/cm2)

Bead

Axial - FCb - - - - 343,200 lbf/in2

183,400 N/cm2}

Bending - FBb - - - - 372,20 lbf/in2

(256,600 N/cm2)

-i
A

1.:19

d

_,
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COMPARISONS OF EXPERIMENTAL RESULTS

WITH SEMICLASSICAL ANANLSIS

Comparisons can be made between the results of experimental test-

ing and semiclassical analysis. As previously discussed, the critical

elastic buckling load derived from semiclassical analysis was 1,818

LBf/in (3,200 N/cm), the critical mode being general instability.

However, the semiclassical analysis ignores the restraint at the ends

of the panel which the doublers provide. Furthermore, the semiclassi-

cal analysis assumes a constant cross-sectional thickness along the

panel length. Because of these simplifications, it is probable that

the actual buckling load should be higher. The results of the force/

stiffness analysis support that assertion. From figures A4(a), (b),

(d), (e), and (f) the indicated buckling load for general instability

was found to be between 2,660 to 2,880 LBf/in (4,660 to 6,040 N/cm) or

about 37% higher.

The results of the experimental analysis has shown that it was

not general instability which was the critical mode, but a mode which

was similar to the diagonal mode. The buckling load for diagonal in-

stability calculated using the semiclassical analysis was 42,700 pounds

(190,000 N). The results of the test show that the panel underwent

elastic buckling at about 40,000 pounds (177,930 N) in a mode similar

to that assumed by the semiclassical diagonal mode analysis. However,

the test results show that the buckled shape of the beads did not match

the edge conditions assumed in the semiclassical analysis (i.e., the

edites did not remain straight). Therefore, the fairly close agreement

of the buckling loads for this particular panel cannot indicate the

a
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general validity of the semiclassical diagonal mode analysis.

The inadequacies of the semiclassical analyses, point out the

need of more sophisticated analysis such as Nastran or more realistic

semiclassical theory.
A

1P
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SUMMARY OF RESULTS

For purposes of comparison, the primary experimental results will

be reiterated at this point along with a summary of the results of the

finite element and semiclassical analysis.

•	 Experimental Results

1. The panel was eccentrically loaded (due to panel geometry) as

verified by the experimental data.

2. Elastic buckling occurred at a load of about 40,000 pounds

(177,930 N). The critical axial force per unit width of the

panel was 1,680 LBf/in (2,940 N/cm). The elastic buckling load

involved out-of-plane deformation in addition to a lateral de-

flection characteristic of the diagonal mode of instability.

3. The ultimate strength of the panel/side stiffener assembly was

48,600 pounds (216,180 N).

Finite Element and Semiclassical Analysis Results

1. An elastic buckling load of 31,700 pounds (141,000 N) was cal-

culated using finite element model ERGE2, 26% lower than the

actual failure load.

2. An elastic buckling load of 50,000 pounds (222,400 N) was cal-

culated using finite element model EDGE3, 25% higher than the

actual failure Ioad.

3. Both of the models used for static analysis exhibited an inability

to account for the nonlinear effects of out -of-plane bending

with loads applied in the plane of the panel.

4. The results of the finite element buckling analysis done with
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models BEAD, FLAT and DIAL, compared poorly with the semiclassi-

cal results.

S.	 Elastic buckling loads of 34,700 and 42,700 pounds (154,350 and

190.000 H) were calculated for the general and diagonal modes of

instability,respectively. These valuer are Erased upon simplified

semiclassical theory.
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CONCLUSIONS AND RECOMMENDATIONS

The semiclassical analysis used to design the beaded panels is

based-upon some simplifying assumptions. First, the sections used

in the semiclassical analysis were assumed to be simply supported.

However, the test results show that the buckled shape of the panel

did not match the assured edge conditions used in the semiclassical

analysis. Secondly, significant restraint is ignored in the semi-

classical analysis by assuming a constant cross-sectional thickness

along the panel length. Therefore, the fairly close agreement in the

buckling loads, for the diagonal mode in particular, cannot indicate

the general validity of the semiclassical analysis.

The experimental results suggest that the semiclassical analysis

is conservative. It can therefore be concluded that the panel was

conservatively designed and thus heavier than necessary.

On the basis of the results of the semiclassical and finite

element analysis the following recommendations are made:

I.	 The inadequacies of the semiclassical'analvsis point out the need

for more sophisticated analyses. The analysis should include

realistic edge support assumptions as well as the use of accurate

cross-sectional thicknesses in the analyses.

2.	 The results of the finite element buckling analysis compared

poorly with the experimental and semiclassical results. The

reason for the poor comparisons is not precisely known, but is

certainly an area for further research. One possible area for

investigation would be the development of a full panel model for

buckling analysis.
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Finally, several concluding remarks should be made about the test

monitoring techniques used during the tests. The force/stiffness tech-

nique provided unconservative predictions of the elastic buckling

strength of the panel. Furthermore, for the best results the gages

should be in close proximity to the location of the elastic failure.

Secondly, the Moirg fringe technique proved to be extremely useful as

an aid in identifying the mode shapes of the panel. Furthermore, the

Moirg fringe technique made it possible to identify mode shape changes

which might have gone unnoticed based upon strain gage results alone.

The technique also provided an accurate means of measuring out-of-plane

displacements of the entire panel.

6
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APPENDIX A

EXPERIMENTAL DATA

Strain gage locations are indicated on all of

strain gage plots presented in this section, by

two symbols. A closed circle ( e ) is used to

indicate pages on the side of the panel shown.

An open circle ( o) is used to indicate gages

on the opposite side of the panel.
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(e) 42,000 pounds ( 186, 825N) toad. (f) 44,000 pounds (195,720N) toad.

Figure Al. (continued)
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APPENDIX B

The Force/Stiffness Technique
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The Force/Stiffness Technique

'	 The force/stiffness technique is a nondestructive test technique

used to experimentally determine the bucklinq strength of a structure

(ref. 13). This method of nondestructive testing is based upon the out-

of-plane deflection characteristics of a structure under coMoressive.

t	 load.

In figure B1, two strain Qaaes are shown mounted to opposite sides

of a panel which is under a compressive load. Initially, as the load

is increased, both QaQes measure a compressive strain. As the column

deflects to produce the stresses indicated, gaae A measures an addi-

tional compressive component due to bendina and qaqe B measures an

additional tension component due to bendin g . When the output of gage

S is subtracted from sage A, the resulting strain is that due to panel

bendina, only. When the com pressive load is divided by the difference

of the gages and plotted against load, the result is a plot similar to

that shown in figure B1. Theoretically, buckling occurs when the curve

intersects the load axis. Usually the loadin g is stopped before the

curve intersects the load axis and the curve is extrapolated to an in-

dicated (predicted) bucklin g load.
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The Moird Fringe Technique

The second method of measuring out-of-plane displacements of the

panel utilized the Moird fringe technique (ref. 14). This technique is

best described with the aid of fi gures Cl and C2. The Moird fringe
	 4

technique requires the use of a camera, a point source of light, and a-

I
qrid plane, arranged in a manner similar to that shown in fi gure Cl.

The grid plane referred to above is typically made on a sheet of

clear distortion free plastic photographic film. A system of equally

spaced parallel black lines is then applied to the film in densities

ranging up to 5no lines/in (200 lines/cm). The greater the line den-

sity, the greater the sensitivity to out--of-plane displacement.

When light is passed through the grid plane, shadows of the lines

are cast upon the test specimen as shown in figure C2. As the test

specimen deflects out-of-plane (i.e., moves either toward or away from

the grid plane) the shadows appear to move creating frin ges of dark and

light areas. A dark fringe is formed when the shadows from the grid

plane fill the spaces between lines on grid plane. Light areas occur

when the shadow falls directly beneath a grid plane line. A calibra-

tion photo of the beaded panel with no load is shown in figure C3.

Proceeding from a dark fringe through a li ght fringe to another dark

fringe in this figure is equivalent to an out-of-plane distance of

0.048 inches (0.122 cm). Therefore, by selecting a stationary reference	

4

point (for all load conditions) the out-of-plane dimensions (displace-

ments) can be determined. The stationary point selected in this case

was the bottom of the Moird fringe glass assembly where the assembly

122
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was rigidly attached to the panel.

The fringe in the down beads shown in figure C3 became indecern-

`` '̀ a	 able as the beads approached the flats. Therefore, paper stri ps, pointed

out in figure C3 were glued to the panel as shown, in such a manner that
4

the fringes could be counted down to the peak of the bead. Out-of-

plane displacements of the down beads could then be determined.

0
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