NASA Contractor Report 145255

ESTIMATION OF THE SEA SURFACE'S TWO-SCALE BACKSCATTER PARAMETERS

```
(NASA-2?-145255) ESTIMATICN CF THE SFA N78-2CS4E
SUREA. - ; IGC-SCAIE EACKSCATTEF FAFAPETEFS
(Wentz , Frark J.) and Asscciates) 1<E E EC
:07/PF RC1 CSCI 20F Onclas
G3/74 CS47E
```

Frank J. Wentz

FRAiIK J. IENTZ A:ID ASSOCIATES
San Francisco, CA 04$] 03$

NASA Contract NAS1-14775
March 1978

National Aeronatics and:
Space Administration
Langley Research Center Hamplori Virgimia 23665

ACKNOWLEDGEMENTS

[^0]
Abstract

The relationship between the sea-surface normalized radar cross section and the friction velocity vector is determined using a parametric two-scale scattering model. The model parameters are found from a nonlinear maximum likelihood estimation. The estimation is based on the AAFE aircraft scatterometer measurements and the sea-surface anemometer measurements collected during the JONSWAP ' 75 experiment. The estimates of the ten model parameters converge to realistic values that are in good agreement with the available oceanographic data. The ras discrepancy between the model and the cross section measurements is 0.7 dB , which is the rms sum of a 0.3 dB average measurement error and a 0.6 dB modeling error.

page
Introduction 1
The Coometeric Optics NRCS and the Bragg NRCS for Backscattering 3
The Two-Scale Roughness Distributions 8
Maximum Likelihood Estimation of the NRCS Function 12
Results and Conclusions 19
Appendix A 24
Appendix B 97
.sppendix C 118
References 122

Introduction

Abstract

Satellite microwave scatterometers offer a unique opportunity to gather high-quality, real-time data on the wind field over the world's oceans. The scatterometer directly measures the normalized radar cross section (NRCS) of the sea surface. The correlation between the NRCS and the surface wind vector has long been known [Skolnik, 1970]. However, until recently the lack of accurate NRCS measurements for a variety of viewing angles and wind-sea states has prohibited the quantification of this correlation. The data collected during the NASA Langley Research Center's . Ivance Application Flight Experiment (AAFE) [Jones, Schroeder, and Mitchell, 1978] now provides the means to precisely determine this correlation.

In this report, a maximum likelihood estimation technique in conjunction with a two-scale scattering model is used to determine the relationship between the NRCS and the surface wind vector. The surface wind vector is expressed in terms of a friction velocity vector \vec{U}_{*} pointing in the upwind direction. The vector formulation for the two-scale scattering model is presented in the first section. The formulation contains two distributions that characterize the sea-surface roughness. These are the slope probability density function (pdf) for the large-scale sea waves and the wavenumber spectrum for the small-scale waves. The large-scale (small-scale) waves are those having wavelengths greater (smaller) than the radiation wavelength. In the second section the distributions are expressed in parametric form, with the model parameters being directly related to oceanographic observables. The non-1inear maximum likelihood estimation of the model parameters is described in the third section. The estimation is based

on the AAFE aircraft scatterometer measurements and the sea-surface anemometer measurements collected during the JONSWAP '75 experiment. The last section contains the results of the estimation and the conclusions. Appendix A contains computer printer plots showing both the NRCS measured during the JONSWAP ' 75 experiment and the NRCS computed from the model. Tables of the NRCS versus friction velocity, incidence angle, relative azimuth angle, and polarization appear in Appendix B. A list of symbols and abbreviations is given in Appendix C.

The results are very encouraging. Ten model parameters are estimated, and in all cases the estimates, which are not constrained by a priori information, converge to realistic values that are in good agreement with the available oceanographic data. The rms discrepancy between the model NRCS and the 1491 JONSWAP ' 75 measurements is 0.7 dB , which is the rms sum of a 0.3 dB average measurement error and a 0.6 dB modeling error.

The Geometric Optics NRCS and the Bragg NRCS for Backscattering

The NRCS model is based on the two-scale scattering theory. In particular, the footprint of the incident radiation is segmented into regions having dimensions large compared to the radiation wavelength. These regions will in general be tilted with respect to the mean surface across the footprint. A tilt probability is assigned, and the overall NRCS is found by antegrating over the regional NRCS weighted by the tilt probability and a geometric factor necessary to ensure energy conservation. Furthermore, the NRCS for a particular region depends upon the wavenumber spectrum of the sea-surface roughness within the region. This dependenre is due to Bragg scattering by sea waves having wavenumbers similar to the radiation wavenumber.

The formulas for the bistatic NRCS are given by Wentz [1977]. We now consider the special case of backscattering in which the radiation is scattered back towards the source. In terms of the incident and scattered propagation unic vectors, \vec{k}_{i} and \vec{k}_{s}, this special case is specified by

$$
\begin{equation*}
\vec{k}_{s}=-\vec{k}_{i} \tag{1}
\end{equation*}
$$

Under condition (1) the bistatic formulas for the NRCS take the form

$$
\begin{equation*}
\sigma^{0}\left(\vec{k}_{i}, \vec{E}_{i} ;-\vec{k}_{i}, \vec{E}_{s} ; \vec{N}\right)=\sigma_{g}^{0}\left(\vec{k}_{i}, \vec{E}_{i} ;-\vec{k}_{i}, \vec{E}_{s} ; \vec{N}\right)+r_{b}^{\prime \prime}\left(\vec{k}_{i}, \vec{E}_{i} ;-\vec{k}_{i}, \vec{E}_{s} ; \vec{N}\right) \tag{2}
\end{equation*}
$$

The two terms represent the geometric-optics NRCS and the Bragg NRCS. Vectors \vec{E}_{i} and \vec{E}_{s} are the incident and scattered polarization unit vectors: and \vec{N} is the unit normal to t., mean sea surface subtended by the radar footprint.

$$
\begin{equation*}
\sigma_{g}^{0}\left(\vec{k}_{i}, \vec{E}_{i} ;-\vec{k}_{i}, \vec{E}_{g} ; \vec{N}\right)=\pi\left(-\vec{k}_{i} \cdot \vec{N}^{-1} P_{n}\left(-\vec{k}_{i}\right) S_{g}\left(\vec{k}_{i}, \vec{E}_{i} ;-\vec{k}_{i}, \vec{E}_{g} ;-\vec{k}_{i}\right)\right. \tag{3}
\end{equation*}
$$

where $P_{n}\left(-\vec{k}_{i}\right)$ is the probability density function (pdf) for the regional surface normal unit vector $\overrightarrow{\mathbf{n}}$ evaluated at $\overrightarrow{\mathbf{n}}=-\overrightarrow{\mathbf{k}}_{\mathbf{i}}$. The scattering function $S_{g}(\cdots)$ is a modification of the Fresnel power reflection coefficient for normal incidence and accounts for the reduction in reflected power due to Bragg scattering. It is a product of second order perturbation theory and hence is a complicated function to compute. In order to simplify the treatment, we do not directly compute it but rather let it be an additional parameter, denoted by R, to be estimated from experimental data. The shadowing function is not included in (3) nor in the subsequent equations because it is essentially unity for the incidence angles out to 70°.

The Eragg NRCS is

$$
\begin{align*}
& \sigma_{b}^{o}\left(\vec{k}_{i}, \vec{E}_{i} ;-\vec{k}_{i}, \vec{E}_{s} ; \vec{N}\right)=\int_{4 \pi} d \vec{n}_{n}(\vec{n}) G\left(\vec{k}_{i}, \vec{E}_{i} ;-\vec{k}_{i}, \vec{E}_{s} ; \vec{n}\right) \tag{4}\\
& G\left(\vec{k}_{i}, \vec{E}_{i} ;-\vec{k}_{i}, \vec{E}_{s} ; \vec{n}\right)=16 \pi k^{4} u\left(-\vec{k}_{i} \cdot \vec{n}^{\prime}\right)\left(\vec{n} \cdot \vec{N}^{\prime}\right)^{-2}\left(-\vec{k}_{i} \cdot \vec{n}^{\prime}\right)^{4} F\left(\vec{k}_{b}, \vec{n}^{\prime}\right) S_{b}\left(\vec{k}_{i}, \vec{E}_{i} ;-\vec{k}_{i}, \vec{E}_{s} ; \vec{n}\right) \tag{5}
\end{align*}
$$

where the integral is over all differential solid angles $d \vec{n}$. The quantity k is the radiation wavenumber and $u(\cdots)$ is the unit step function. The wavenumber spectrum of the sea-surface roughness within a region having a normal \vec{n} is denoted by $F\left(\vec{k}_{b}, \vec{n}\right)$, with \vec{k}_{b} being the Bragg vector wavenumber.

$$
\begin{equation*}
\vec{k}_{b}=2 k\left[\left(\vec{n} \cdot \vec{k}_{1}\right) \vec{n}-\vec{k}_{i}\right] \tag{6}
\end{equation*}
$$

The magnitude k_{b} of \vec{k}_{b} is

$$
\begin{equation*}
k_{b}=2 k\left[1-\left(\vec{n} \cdot \vec{k}_{1}\right)^{2}\right]^{\frac{1}{2}} \tag{7}
\end{equation*}
$$

The wavemmber spectrum is normalized such that its integral over all vector wavenumbers is equal to the mean squared elevation variation. The remaining term in (5) is the Bragg scattering function and is given by the following expressions:

$$
\begin{align*}
& S_{b}\left(\vec{k}_{i}, \vec{E}_{i} ;-\vec{k}_{i}, \vec{E}_{s} ; \vec{n}^{\prime}\right)=\left|\left(\vec{E}_{i} \cdot \vec{e}_{v}\right)\left(\vec{E}_{s}^{*} \cdot \vec{e}_{v}\right) \alpha_{v v}^{b}-\left(\vec{E}_{i} \cdot \vec{e}_{h}\right)\left(\vec{E}_{s}^{*} \cdot \vec{e}_{h}\right) \alpha_{h h}^{b}\right|^{2} \tag{8}\\
& \alpha_{h h}^{b}=(1-\varepsilon) /\left[\cos \theta_{i}+\left(\varepsilon-\sin ^{2} \theta_{i}\right)^{\frac{3}{2}}\right]^{2} \tag{9}\\
& \alpha_{v v}^{b}=(\varepsilon-1)\left(\varepsilon \sin ^{2} \theta_{i}+\varepsilon-\sin ^{2} \theta_{i}\right) /\left[\varepsilon \cos \theta_{i}+\left(\varepsilon-\sin ^{2} \theta_{i}\right)^{\frac{1}{2}}\right]^{2} \tag{10}
\end{align*}
$$

$\vec{e}_{h}=\vec{k}_{i} \times \vec{n} /\left|\vec{k}_{i} \times \vec{n}\right|$

$$
\begin{equation*}
\vec{e}_{v}=\vec{k}_{i} \times \vec{e}_{h} \tag{12}
\end{equation*}
$$

ORIGINAL PAGE IS
OF POOR QUALITY
where * denotes complex conjugate. The quantitv ε is the relative permittivity of the air-sea interface and θ_{i} is the angle made by the incident propagation vector and the regional normal.

$$
\begin{equation*}
\cos O_{i}=-\vec{k}_{i} \cdot \vec{n} \tag{13}
\end{equation*}
$$

For a radiation wavenumber of $2.91 \mathrm{~cm}^{-1}$, the relative permittivity is the complex number (40.1, -39.3) [Porter illil We.nt\%. 1971].

The above equaticns for the Bragg NRCS are based on the application of perturbation theory to Maxwell's equations [Rice, 1951]. In the case of backscattering, the perturbation theory requires that the radiation wavelength be large compared to the rms elevation variation of that portion of the wavenumber spectrum $F(\vec{\kappa}, \vec{n})$ which is responsible for the backscattering, i.e., $k \sim \kappa_{b}$, where k is the magnitude of \vec{k}. Equation (7) shows that for the case of no tilting when $\vec{n}=\vec{N}$, the Bragg wavenumber is

$$
\begin{equation*}
k_{b}=2 k \sin \theta_{i} \tag{14}
\end{equation*}
$$

where θ_{i} is the incidence angle given by

$$
\begin{equation*}
\cos \theta_{i}=-\vec{k}_{i} \cdot \vec{N} \tag{15}
\end{equation*}
$$

For incidence angles greater than 40°, calculations show that the capillary waves having a wivenumber similar to k_{b} satisfy the small-scale perturbation requirement. However, for small incidence angles the requirement is not met because of the rapid increase in the capillary wave amplitude with decreasing k_{b}. Thus the Bragg scattering theory should begin to breakdown at some incidence angle θ_{b} less than 40°.

Although the exact nature of the breakdown is not known, the experimental data do show that the NRCS experiences a smooth transition between the Bragg region and the small-angle region where geometric optics scattering dominates. We assume that for angles smaller than θ_{b} the Bragg scattering zarchanism becomes less efficient, and as a result the contribution of the Bragg NRCS to the total NRCS diminishes with decreasing θ_{i}. In particular, we require that the Bragg NRCS and its first derivative with respect
to θ_{i} go to zero at $\theta_{1}=0$. The smooth transition shown by the experimental data indicates that the cutoff to zero is not abrupt, but rather the Bragg NRCS merges with the geometric optics NRCS. In view of this and the above requirements, we choose the following function to represent the Bragg NRCS for $\theta_{i}<\theta_{b}$:

$$
\sigma_{b}^{0}\left(\vec{k}_{i}, \vec{E}_{i} ;-\vec{k}_{i}, \vec{E}_{s} ; \vec{N}\right)=\beta \tan ^{2} \theta_{i} \exp \left(-\tau \tan ^{2} \theta_{i}\right), \quad \theta_{i}<\theta_{b}
$$

For $\theta_{i} \geq \theta_{b}$ equations (4) through (13) are assumed valid. The coefficients 3 and t are fixed by requiring $\sigma_{b}^{0}(\ldots)$ and its first derivative with respect to θ_{i} to be continuous at $\theta_{i}=\theta_{b}$.

As the surface roughness increases, the breakdown point θ_{b} also increases because a larger portion of the wavenumber spectrum violates the small-scale perturbation requirement. We use the total rms regional slope $\overline{\mathrm{S}}$ as defined in the next section as an indicator of surface roughness and assume the following relationship holds:

$$
\begin{equation*}
\tan \theta_{b}=t \bar{S} \tag{17}
\end{equation*}
$$

where t is a parameter to be estimated from the experimental data. It should be emphasized that (16) and (17) are purely empirical. .ther techaiques for modeling the Rrang NRCS at small incidence angles were tried, but with less success.

The Two-Scale Roughness Distributions

In the NRCS model the sea-surface roughness is characterized by two distributions: (1) the pdf $P_{n}(\vec{n})$ for the rugional surface normals and (2) the wavenumber spectrum $F(\vec{\kappa}, \vec{n})$ for the roughness within a region having a mean normal \vec{n}. The pdf $P_{n}(\vec{n})$ is specified in terms of the pdf $P_{s}\left(S_{u}, S_{c}\right)$ for the regional upwind and crosswind slopes, S_{u} and S_{c}. The slope pdf is assumed to be a Gaussian [Cox and Munk, [956] having zero mean, wero correlation, and standard deviations \bar{S}_{u} and \bar{S}_{c} for the upwind and $c_{A} . h^{i}$ d slopes. It is related to the normal Ddf by

$$
\begin{align*}
P_{n}(\vec{n}) & =(\vec{n} \cdot \vec{N})^{-3} P_{s}\left(S_{u} \cdot S_{c}\right) \tag{18}\\
S_{u} & =-\vec{n} \cdot \vec{U}_{*} /\left[U_{*}^{\prime}(\vec{n} \cdot \vec{N})\right] \tag{19}\\
S_{c} & =-\vec{n} \cdot \vec{N}^{\prime} \vec{\Gamma}_{*} /\left[U_{*}(\vec{n} \cdot \vec{N})\right] \tag{20}
\end{align*}
$$

The vector \vec{U}_{*} is the friction velocity vector pointing upwind and U_{*} is its magnitude in $\mathrm{cm} / \mathrm{sec}$. The factor $(\overrightarrow{\mathrm{n}} \cdot \overrightarrow{\mathrm{N}})^{-3}$ is the Jacobian relating the differential area $d S_{u} d S_{c}$ to the differential solid angle $d \vec{n}$.

The total rms slope $\bar{S}=\left(\bar{S}_{u}^{2}+\bar{S}_{c}^{2}\right)^{\frac{2}{2}}$ is highly correlated with the friction velocio \{Cox and Munk, 1956: Wentz, 1977\}. The correlation is assumed to have the form

$$
\begin{equation*}
\bar{s}=s_{0}+s_{1} \log l_{*} \tag{21}
\end{equation*}
$$

The upwind and crossuind rms slopes are then given by

$$
\begin{gather*}
\bar{S}_{u}=\bar{\rho}_{/}\left(1+\rho^{2}\right)^{\frac{1}{2}} \tag{22}\\
\bar{S}_{c}=\rho \bar{S}_{u} \tag{23}
\end{gather*}
$$

where ρ is the ratio between \bar{S}_{c} and \bar{S}_{u}. The parameters ρ, s_{o}, and s_{1} are to be estimated from experimental data.

The Bragg NRCS for large incidence :ngles is given by an integral over $P_{n}(\vec{n})$, as is shown by (4). In terms of differentials the relationship between $\mathrm{P}_{\mathrm{n}}(\vec{n})$ and $\mathrm{P}_{\mathrm{s}}\left(\mathrm{S}_{\mathrm{u}}, \mathrm{S}_{\mathrm{c}}\right)$ is

$$
\begin{equation*}
\overrightarrow{d r} P_{n}(\vec{n})=d S_{u} d S_{c} P_{s}\left(S_{u}, S_{c}\right) \tag{24}
\end{equation*}
$$

The integral is evaluated by substituting (24) into (4) and then applying the method of steepest descent. This procedure results in the following expression.

$$
\begin{equation*}
v_{b}^{\partial}\left(\vec{k}_{i}, \vec{E}_{i} ;-\vec{k}_{i}, \vec{E}_{s} ; \vec{N}\right)=-:\left(\vec{k}_{i}, \vec{E}_{i} ;-\vec{k}_{i}, \vec{E}_{s} ; \vec{N}\right)+\frac{3}{2} \sum_{i=1}^{L} G\left[\vec{k}_{i}, \vec{E}_{i} ;-\vec{k}_{i}, \vec{E}_{s} ; \vec{n}_{u}\left(s_{u}^{\ell}, s_{c}^{\ell}\right)\right] \tag{25}
\end{equation*}
$$

where $c \cdot \cdot)$ is given by (5) and $\vec{n}(\cdot . \cdot)$ is the function for calculating the surfare normil from the surface slones.

$$
\begin{equation*}
\vec{n}\left(S_{u}, S_{c}\right)=\left[-S_{u} \dot{V}_{*} / u_{*}-S_{c}\left(\vec{N}_{*} \overrightarrow{\|}_{*}\right) / v *+\vec{N}\right] /\left(1+S_{u}^{2}+S_{c}^{2}\right)^{\frac{3}{2}} \tag{26}
\end{equation*}
$$

The set of slopes, $\left\{S_{11}^{\vee}\right\}$ and $\left\{S_{c}^{\ell}\right\}$, appearing as argumerts in (25) are $\left\{\bar{S}_{u},-\bar{S}_{u}, 0,0\right\}$ and $\left\{0,0, \ddot{S}_{c},-\bar{S}_{\underline{a}}\right\}$ respectivo $1 y$.

Abstract

The portion of the wavenumber spectrum $\mathrm{F}^{\prime *}$ i) responsible for Bragg backscattering is those vavenumbers that are similar to the radiation wavenumber. The radiation vavenusber for the NRCS measurements to be considered in the next sections is $2.91 \mathrm{~cm}^{-1}$, and hence $F(\vec{k}, \vec{n})$ corresponds to the capillary sea wavenumber spectrum. The capillary spectru exhibits a power law dependence on wavenumber [Mitsuyasu and Honda, 1974]. Furthermore, we assume that the spectrum is symetric about the projection of the friction velocity vector $\overrightarrow{\mathrm{U}}_{*}$ onto the plane orthogonal to $\overrightarrow{\mathrm{n}}$, and we retain only the zeroth-order and first-order directional harmonics. Under these assumptions the spectrua takes the form

$$
\begin{equation*}
F(\vec{x}, \vec{n})=A_{m}\left(\kappa_{m} f^{\prime}\right)^{q}\left(1+A_{r} \cos 2 w\right)\left(1+B S_{u} / \bar{S}_{u}\right) \tag{27}
\end{equation*}
$$

The leading term A_{m} is the zeroth-order harmonic of the wavenumber spectrum at the point of minimum phase speed given by $\kappa_{m}=3.63 \mathrm{~cm}^{-1}$. The exponent 4 is the power law, and A_{r} is the ratio of the first-order harmonic to the zeroth-order harmonic and is assumed independent of K. The quantity Ψ is the angle between $\vec{\kappa}$ and the projection of the friction velocity vector \vec{U}_{*} ente the plane orthogonal to \vec{n}.

$$
\begin{equation*}
\cos \Psi=\vec{k} \cdot \vec{n} \times\left(\vec{U}_{*} \times \vec{n}\right) /\left\{\kappa \mid \vec{n} \times\left(\vec{U}_{*} \times \vec{n}\right)\right\} \tag{28}
\end{equation*}
$$

The straining of capillary waves by the orbital motion of larger waves is accounted for in (27) by the third term in the parentheses. This term wei ${ }^{\prime *}$: the spectrum according to the upwind regional slope S_{u}. A pozitive straining coefficient B means that regions on the downind slope of a large wave have a higher capillary spertrum than regions on the urwind slope.

Wavetank and radar experiments [Mitsuyasu and Honda, 1974; Wentz, 1977] indicate that the capillary amplitude A_{m} increases ipproximately as the square of U_{*}. In view of this the following correlation between A_{m} and U_{*} is assumed:

$$
\begin{equation*}
\log A_{m}=a_{0}+a_{1} \log U_{*} \tag{29}
\end{equation*}
$$

where $A_{\mathbf{m}}$ is in cm^{4}. The parameters a_{0} and a_{1} along with q, A_{r}. and B are to be estimated from experimental data.

Maximum Likelihood Estimation of the NRCS Function

Abstract

The NRCS function defined in the previous two sections contains ten unknown model parameters, which are listed in Table 1 appearing in the next section. The values for these parameters are found using th. technique of maximum likelihood estimation. The estimation is based on the aircraft 13.9 GHz scatterometer measurements and the sea-surface anemometer measurements collected during the JONSWAP ' 75 experiment. The aircraft flew an assortment of straight lines and circles over 36 different wind-sea states. We let $\sigma_{i j}$ denote the actual synoptic NRCS corresponding to the j th measurement of the ith wind-sea state. The actual synoptic friction velocity and wind direction for the ith wind-sea state are denoted by U_{i} and X_{i}. The usual superscript 0 on σ and subscript $*$ on U are deleted to abbreviate the notation. The sea-surface NRCS is then

$$
\begin{equation*}
\sigma_{i j}=f_{i j}\left(U_{i}, X_{i},\{p\}_{\mu}\right) \tag{30}
\end{equation*}
$$

where $f_{i j}(\cdots)$ is the NRCS function discussed in the r evious sections. The subscripts ij on fimplicitly denote the incident propagation vector, the mean sea-surface normal, and the polarization for the ith,fth measurement. These three parameters are assumed to be exactly known. The elements of the set $\{p\}_{\mu}$ are the unknown model parameters, where the subscript μ denctes the number of elements in the set and in this case equals 10 . Implicit in (30) is the assumption of a perfect model. The effect of the mode ${ }^{\text {ing }}$ error on the estimation is discussed at the end of this section. The unknowns that are to be estimated are the model par.ımeters $\{p\}_{\mu}$, the friction velocities $\{U\}_{v}$, and the wind directions $\{x\}_{u}$, where v

Indicates the number of wind-sea states and equals 36 . The measurements on which the estimations are to be based are the NRCS measurements $\{\bar{\sigma}\}_{\eta}$, the friction velocity measurements $\{\bar{U}\}$ $\{\bar{x}\}_{\nu}$. The number η of the NRCS measurements equals 767 for vertical polarization and 724 for horizontal polarization. The bar is used to denote measured quantities as opposed to their actual values. The total parameter set is then

$$
\begin{equation*}
\{x\}_{\mu+2 v}=\{p\}_{\mu}+\{u\}_{v}+\{x\}_{v} \tag{31}
\end{equation*}
$$

and the total measurement set is

$$
\begin{equation*}
\{y\}_{n+2 v}=\{\bar{\sigma}\}_{n}+\{\overline{\mathrm{u}}\}_{v}+\{\bar{x}\}_{v} \tag{32}
\end{equation*}
$$

For the case being considered the number η of NRCS measurements is much greater than the number μ of model parameters, and hence the estimation system is over-determined.

The most complete statistical description of the unknowi arameter set $\{x\}_{m}, m=\mu+2 v$, is the conditional probability density that the parameters are within the neighborhood $\left\{l^{\prime} x\right\}_{m}$ of $\{x\}_{m}$, given the measurement set $\{y\}_{n}, n=n+2 v$. The probability density is given by the following extension of Baves' equation:

$$
\begin{equation*}
P\left(\{x\}_{m} \mid\{y\}_{n}\right)=\frac{P\left(\{x\}_{m}\right) \prod_{t=1}^{n} P\left(y_{l} \mid\{x\}_{m},\{y\}_{t-1}\right)}{\int\{d x\}_{m} P\left(\{x\}_{m}\right) \prod_{t=1}^{n} P\left(y_{l} \mid\{x\}_{m},\{y\}_{t-1}\right)} \tag{33}
\end{equation*}
$$

The maximum 1 ikelinood estimation of the parameter set $\{x\}_{m}$ is defined as the sit for which $P\left(\{x\}_{m} \mid\{y\}_{n}\right)$ is a maximum.

Thrir conditions are imposed to simplify the problem:

1. No a priori information is available on the parameter set; i.e., $P\left(\{x\}_{m}\right)$ is a uniform distribution over $\{x\}_{m}$ space.
2. The noise from one measurement to the next is uncorrelated; i.e., the probability of measurement y_{i} depends only on the noise of the ith measurement and on the actual value of the measured quantity.
3. The measurement noise is Gaussian distributed. Chi-square tests indicate that the error structure in the NRCS measurements and in the friction velocity measurements is closer to log-normal than normal. In view of this, the NRCS and the friction velocities are expressed in terms of logarithms for estimation purposes, while the wind directions are expressed in degrees.

Inder these three assumptions (33) takes the form

$$
\begin{align*}
& P(\{x\} \mid\{y\})=\frac{\exp [-g(\{x\},\{y\})]}{\int[d x\} \exp [-g(\{x\},\{y\})]} \tag{34}\\
& \therefore\left(\therefore \because, j y_{j}\right)=\sum_{i=1}^{v}\left(\frac{\left(\bar{u}_{i}-u_{i}\right)^{2}}{2 \Delta u_{i}^{2}}+\frac{\left(\bar{x}_{i}-x_{i}\right)^{2}}{2 \Delta x_{i}^{2}}+\sum_{j=1}^{\xi_{i}\left[\bar{\sigma}_{i j}-f_{i j}\left(u_{i}, x_{i},(p\}\right)\right]^{2}}\right) 2 \tag{35}
\end{align*}
$$

where $\Delta U_{i}, \Delta y_{i}$, and $\Delta G_{i j}$ are the standard deviations (sd) in the friction ruiccirv, wind direction, and NRCS measurements, \bar{U}_{i}, \bar{x}_{i}, and "ij"

The integer ξ_{i} is the number of NRCS measurements of the ith wind-sea state. The set subscripts indicating the number of elements are deleted in (35) and in the subsequent equations in order to simplify the notation.

The NRCS function $f_{i j}(\cdots)$ is nonlinear. However, before treating the nonlinear problem, it is instructive to consider the simpler situation in which the function is linear in terms of U_{i}, X_{i}, and the model parameters \{p\}. In this case $P(\{x\} \mid\{y\})$ is a multivariate Gaussian distribution. The maximum likelihood estimation of the Ith parameter X_{I} is the mean value of the parameter, and is given by

$$
\begin{equation*}
\left\langle x_{I}\right\rangle=\int\{d x\} x_{I} P(\{x\} \mid\{y\}) \tag{36}
\end{equation*}
$$

It should be noted that the set $\{\langle x\rangle\}$ of mean values is also the set for which $P(\{x\} \mid\{y\})$ is a maximum. The evaluation of (36) is equivalent to finding the least-squares solution to (35). In particular, we use Householder orthogonal transformations [Bierman, 1977] to solve the leastsquares problem and to obtain $\left\langle X_{I}\right\rangle$. This method of orthogonal transformations also vields the covariance $C_{I J}$ between the parameters X_{I} and x_{J}. In terms of probabilities the covariance is

$$
\begin{equation*}
C_{I J}=\int\{d x\}\left(x_{I}-\left\langle x_{I}\right\rangle\right)\left(x_{J}-\left\langle x_{J}\right\rangle\right) P(\{x\} \mid\{y\}) \tag{37}
\end{equation*}
$$

The nonlinearity of the model function is treated iteratively by solving for the set of parameters that maximizes $P(\{x\} \mid\{y\})$. This is accomplished by expanding $f_{i j}(\cdots)$ in a first order Taylor's series about a first-guess set of friction velocities, wind directions, and model parameters. The first guesses for the friction velocities and wind directions are the
anemometer measurements, $\{\overline{\mathrm{V}}\}$ and $\{\bar{X}\}$. The specification of the first-guess set of model parameters is discussed in the next section. The partial derivatives in the Taylor's series are numerically evaluated as finite differences. This linearized version of the NRCS function is then substituted into (35), and equations (36) and (37) are solved using orthogonal transformations. Another Taylor's series is then constructed with the newly calculated set $\{\langle x\rangle\}$ of mean parameters being the base of the expansion. This procedure is continued until the series of sets $\{\langle x\rangle\}$ converges.

In practice, exact convergence is not achieved because of numerical noise, possibly due in a large part to the use of finite differences. After about 7 iterations the fluctuation in a given parameter from one iteration to the next is of the order of the computed sd for that parameter. Seven more iterations show that these fluctuations have approximately a zero mean. In other words the computed parameter set seems to be confined to within a region in $\{x\}$ space having dimensions of the order of the computed sd. The results discussed in the next section are based on the parameter set and the associated covariances computed after 14 iterations.

The computation of the parameter set and the associated covariances requires that the sd sets $\{\Delta U\},\{\Delta X\}$, and $\{\Delta \sigma\}$ be specified. For the first iteration each element of $\{\Delta U\}$ is set to 0.5 dB and each element of $\{\Delta x\}$ is set to 10°. These values are typical of the errors inherent in the objective wind field analysis used to specify $\{\bar{U}\}$ and $\{\bar{x}\}$. Each NRCS measurement represents an average of about 5 to 10 independent samples. The sampling error is calculated by dividing the sd of the samples by the squar root of the number of samples. These sampling errors, which typically are about 0.3 dB , are then used to specify $\{\Delta \sigma\}$ for the first iteration.

After the first iteration the sd of the differences between all the estimated friction velocities and the measured values is computed. This calculated sd is then used to specify $\{\Delta U\}$ for the next iteration. The set $\{\Delta x\}$ is updated in the same way. The procedure is repeated for each iteration. After 14 iterations the friction velocity and wind direction sd converge to values of 0.9 dB and 9°, respectively. These computed sd are in good agreement with the first-guess values of 0.5 dB and 10°.

The updating of the set $\{\Delta \sigma\}$ requires that the modeling error be computed. After the first iteration, we compute the variance of the difference between the measured NRCS $\bar{\sigma}_{i j}$ and the NRCS $\tilde{j}_{i j}$ computed from the estimated parameters. This computed variance is the sum of two components, one due to measurement errors and the other due to modeling errors, and is given by

$$
\begin{equation*}
(1 / n) \sum_{i=1}^{\nu} \sum_{j=1}^{\xi_{i}}\left(\sigma_{i j}-\bar{\sigma}_{i j}\right)^{2}=(1 / n) \sum_{i=1}^{\because} \sum_{j=1}^{\xi_{i}}\left(\Delta \sigma_{i j}^{2}\right)_{\text {mea }}+\left(\Delta \sigma_{i j}^{2}\right)_{\bmod } \tag{38}
\end{equation*}
$$

where η is the total number of measurements. The measurement variance ($\left.\Delta \sigma_{i j}^{2}\right)_{\text {mea }}$ equals the square of the sampling error. The model variance ($\left.\Delta \sigma_{i j}^{2}\right)_{\text {mod }}$ is found from (38) by assuming that it is constant for each measurement.

$$
\begin{equation*}
\left(\Delta \sigma^{2}\right)_{\bmod }=(1 / \eta) \sum_{i=1}^{\nu} \sum_{j=1}^{E_{i}}\left("_{i j}-\bar{i}_{i j}\right)^{?}-\left(1 \sigma_{i j}\right)_{\operatorname{mea}} \tag{39}
\end{equation*}
$$

The variance $\Delta \sigma_{i j}^{2}$ for the next iteration is then assumed equal to the sum of the measurement variance and the model fori.inco.

$$
\begin{equation*}
\Delta \sigma_{i j}^{2}=\left(\Delta \sigma_{i j}^{2}\right)_{\text {mea }}+\left(\Delta \sigma^{2}\right)_{\bmod } \tag{40}
\end{equation*}
$$

This procedure is repeated for each iteration. After 14 iterations the sd $(\Delta \sigma)_{\text {mod }}$ of the modeling error converges to a value of about 0.6 dB .

Results and Conclusions

As mentioned in the previous section, the non-linear estimation of the model parameters requires a.t initial, first-guess for the set of parameters. The first guess must be realistic if the estimation technique is to converge. No a priori information on the model parameters is assumed and as a result the parameters are free to vary from the first-guess values.

The initial values that are used appear in Table 1. The power reflection coefficient R is set equal to the Fresnel power reflectivity of sea water for normal incidence. At a wavenumber of $2.91 \mathrm{~cm}^{-1}$, the reflectivity is about 0.61, depending slightly on the water temperature. As a first guess, we assume that the Bragg scattering mechanism begins to break down at incidence angles in the vicinity of 30°. Under this assumption, the breakdown parameter t takes a value of 3 . The parameters s_{0}, s_{1}, and ρ appearing in the regional slope pdf are initialized to the values derived from Cox and Munk's [1956] sun glitter observations of a clear sea surface. The first guesses for the regression coefficients a_{0} and a_{1} for the capillary spectrum amplitude are found from Mitsuyasu and Honda's [1974] measurements of the capillary spectrum in a wind-wave channel. The narameter A_{r} is the ratio of the first-order to the zeroth-order directional harmonic of the wavenumber spectrum. The relationship between A_{r} and the ratio ρ of the crosswind to the upwind rms slope is

$$
A_{r}=2\left(1-n^{2}\right) /\left(1+n^{2}\right)
$$

The first guess A_{r} is found by substituting the first-guess r irito (41). The capillary spectrum power law q is initialized to Phillips' |1966] value of

TABLE 1. ESTIMATED NRCS MODEL PARAMETERS

Parameters	First Guess	Horizontal Polarization Estimate		Vertical Polarization Estimate	
		Mean	Sd	Mean	Sd
R	0.6090	0.4425	0.0100	0.4095	0.0099
t	3.0000	3.6126	0.1033	3.8253	0.1007
s	0.0492	0.0612	0.0034	0.0540	0.0035
s_{1}	0.1160	0.0872	0.0026	0.0926	0.0029
ρ	0.8660	0.9661	0.0038	0.9701	0.0044
a_{0}	-8.4300	-9.3980	0.2954	-10.2008	0.3508
a_{1}	2.2500	2.8226	0.2079	3.2113	0.2465
A_{r}	0.2860	0.4649	0.0099	0.6356	0.0077
9	4.0000	4.4970	0.1759	5.3281	0.1671
B	0.0010	0.4932	0.0138	0.2447	0.0217

4 for an idealized capillary spectrum. Because of the lack of information on the straining coefficient B, we simply assign to it a value near zero. That is to say, we initially assume that no straining occurs.

Separate estimates are done for horizontal and vertical polarizations. The parameters are independent of polarization, and hence the estimates for the two polarizations should agree. In general, the agreement is fairly good with the one exception noted below. In Table 1 the estimated mean and standard deviation (sd) for each parameter are listed.

The estimate of the power reflection coefficient R is one third less than the Fresnel power reflectivity. This decrease is in accordance with the two-scale scattering theory, which predicts that the capiliary waves scatter power away from the specular direction. The estimate of the parameter t indicates that the Bragg scattering mechanism begins to break down and becomes less efficient for incidence angles ranging from 30° to 40°, depending on and increasing with surface roughness.

The regional slope pdf parameters s_{0}, s_{1}, and ρ are in fair agreement with the first-guess values derived from Cox and Munk's sun glitter data. It should be noted that our slope pdf excludes the shorter capillary waves and that Cox and Nunk's pdf does not. A noticeable disagreement occurs betheen Mitsuyasu and Honda's capillary amplitude regression coefficients a_{0} and a_{1} and the values estimated from the scatterometer measurements. The scatterometer data indicatc a steeper increase of capillary wave amplitude with increasing friction velocity. This disagreement is probably due in part to the scatterometer data being limited to calm and moderate wind-sea states. We expect that the inclusion of rougher wind-sea states will tend :o flatten the estimated capillary amplitude versus friction velocity relationship. The capillary amplitude derived from the horizont.il polarization
data is larger than that derived from the verticai polarization data. We feel that the apparent inconsistency is due to wave crest; that backscatter horizontal polarized radiation but not vertical polarized radiation [Kalmykov and Pustovoytenko, 1976]. This backscattering adds to the Bragg backscatter, making the capillary amplitude seem larger than it actually is.

The capillary anisotropy ratio A_{r} is larger than that derived from the Cox and Munk data. It appears as if the short capillary waves are particularly anisotropic. The estimated power law q is greater than ti.e val ef 4 for a pure capillary spectrum. The larger value is most likely due to viscous attenuation, which is an important process for the capillarv waves being viewed by the scatterometer [Kinsman, 1965]. The estia f the straining coefficient B has a positive value, and this indicat , iat the capillary spectrum is higher on the downind slope of the larger waves. This result is in agreement with Keller and Wright's [1975] wave tank experiment.

Once all the NRCS model parameters have been determined, the NRCS function for a given polarization is expressible in terms of three va: iables: :he friction velocity U_{*}, the incidence angle θ_{i}, and the relative azimuth angle ϕ_{r} between the friction velocity vector $\overrightarrow{\mathrm{t}}_{*}$ and the projection of the incident propagation vector \vec{k}_{i} onto the mean sea surface having a normal. \vec{N}.

$$
\begin{equation*}
\cos \phi_{r}=\vec{N} \times\left(\vec{k}_{1} \times \vec{N}\right) \cdot \vec{U}_{*} /\left[\left|\vec{N} \times\left(\vec{k}_{1} \times \vec{N}\right)\right| U_{*}\right] \tag{42}
\end{equation*}
$$

The NRCS function is then simply denoted $f\left(\theta_{i}, \phi_{r}, U_{*}\right)$.
Appendix A contains computer printer plots showing both the NRCS measured during the JONSWAP ' $/ 5$ experiment and the theormcical NRCS computed from $\mathrm{f}\left(\theta_{i}, \phi_{r}, U_{*}\right)$. For each polarization, 36 different wind-sea states
were ohnerved, ranging in friction velocities from $13 \mathrm{~cm} / \mathrm{sec}$ to $53 \mathrm{~cm} / \mathrm{sec}$. The firt: set of 36 plots is for horizontal polarization, and the second set is: lur vertical polarization. Each set is ordered according to increasing friction velocity. The plots of the NRCS vcrsus incidence angle correspond to the straight line aircraft flight., and the plot; of the NRCS versus azimuth angle correspond to the circle flights. The overali agreement between the measurements a id the theory is excellent. The rms discrepancy is 0.7 dB , which is t.'e rms sum of the 0.3 dB measurement sampling error and the 0.6 dB modeling error. We are particularly pleased with how well the model reproduces the upwind-downwind asymmetry in the circle plots. in the model, this asymmetry is due solely to the straining of the capillary waves ${ }^{v} \mathrm{y}$ the orbital motion of the underlying larger waves. Also, the model closely tracks the experimental data through the incidence angle region trom 15° to 30°. This region corresponds to the transition from geometric-optics scattering to Bragg scattering.

The NRCS function $f\left(\theta_{1}, \phi_{F}, U_{*}\right)$ is sbulaied in Appendix B. Each page corresponds to a particular friction velocity and polarization. The incidence angle e_{i} ranges from 0° to 70° in 2° steps. The relative azimuth angle *r rages from 0° to 180° in 10° st. is. The full 0° to 360° range need not be shown becalusc $f\left(A_{i},{ }_{r}, U_{*}\right)$ is an even function of p_{r}. The range in friction vel ity is from $5 \mathrm{~cm} / \mathrm{sec}$ to $50 \mathrm{~cm} / \mathrm{sec}$, in $5 \mathrm{c} / \mathrm{n} / \mathrm{sec}$ steds.

APPENDIX A

Computer Printer Plots of the Theoretical NRCS and The Measured NRCS

FRE UUENCY - 13.9 GHZ HORIZONTAL POLARIZATION
FRICTION VELOCITY - 14.8 CMISEC
WIND OUT OF 152. DEGREES EAST OF NORTH
RELATIVE AZIMUTH ANGLE - 63. DEG

NRCS VERSUS INCIDENCE ANGLE

FREQUENCY 13.9 GHZ
HORIZONTAL POLARIZATION
FRICTION VELOCITY - 15.6 CMISEC UIND DUT DF 5I. DEGREES EAST OF NDRTH RELATIVE AZIMUTH ANGLE - 10. DEG

FRE QUENCY - 13.9 GH 2
HORIZONTAL POLARIZATION FRICTION VELOCITY - 16.8 CM/SEC WIND OUT OF 151. DEGREES EAST OF NORTH RELATIVE AZIMUTH ANGLE: 22. DEG

NRCS VERSUS INCIDENCE ANGLE

FREOUENCY - 13.9 GHZ
HORIZONTAL POLARIZATION
FRICTION VELOCITY• 17.4 CM/SEC WIND OUT OF GI. DEGREES EAST OF NORTH RELATIVE AZIMUTH ANGLE - 90. DEG

NRCS VERSUS INCIDENCE ANGLE

FREQUENCY - 13.9 6HZ
HORIZONTAL POLARIZATION
FRICTION VELOCITY - 18.1 CMISEC WINC OUT OF 148. DEGREES EAST OF NORTH

RELATIVE AZIMUTH ANGLE 20. DEG

0. 10. 20. 30. 40. 50. 30.

INCIDENCE ANGLE (DEG)

NRCS VERSUS INCIDENGE ANGLE

FREQUENCY - 13.9 GHZ
HORIZONTAL POLARIZATION
FRICTION VELOCITY 21.5 CMISEC
WIND DUT OF 46. DEGREES EAST OF NORTH
RELATIVE AZJMUIH ANGLE 175. DEG

NRCS VERSUS IMCIDENCE ANGLE

FREQUENCY - 13.9 GHZ
HORIZONTAL POLARIZATION
FRICTION VELOCITY- 24.1 CMISEC WIND DUT OF 191. DEGREES EAST OF NORTH RELATIVE AZIMUTH ANGLE - 103. DEG


```
                            NRCS VERSUS INCIDENCE ANGLE
                            FREQUENCY = 13.9 GHZ
                    HORIZONTAL POLARIZATION
            FRICTION VELOCITY - 29.7 CM/SEC
WINO OUT OF 227. DEGREES EAST OF NORTH
RELATIVE AZIMUTH ANGLE - 77. DEG
```


macs versus incidence angle

FREQUENEY - 13.9 GHZ
MBRIZONTAL POLAKIZATEON FRICTION VELDCITY - $30.8 \mathrm{CM} / 5 E C$ WINO BUT OF 231. DEGREES EAST OF NORTH
relative azimuth angle - 267. beg

NRCS VERSUS INCIDENCE ANGLE

FREQUENCY $=13.9 \mathrm{GHZ}$ HORIZOATAL POLARIZATION FRICTION VELOCITY - 34.3 CM/SEC WIND OUT DF 181. DEGREES EAST OF NORTH RELATIVE AZIMUTH ANGLE 2I. DEG

NRCS VERSUS INCIDENCE ANGLE

FREOUENCY 13.9 GHZ
HORIZONTAL POLARIZATION
FRICTION VELOCITY - 35.1 CM/SEC

IIND DUT OF 185. DEGREES EAST OF NORTH

 RELATIVE AZIMUTH ANGLE - 153. DEG

INCIDENCE ANGLE (OEGI

NRCS VERSUS INCIDENCE ANGLE

FREOUENCY - 13.9 GHZ
HORIZONTAL POLARIZATION
FRICTION VELDCITY - 35.7 CM/SEC
WIND OUT OF 189. DEGREES EAST DF NDRTH relative azimuth angle e 69. oEg

NRCS VERSUS INCIOENCE ANGLE

FREQLENCY = 13.9 GHZ
HORIZONTAL POLARIZATION
FRICTION VELOCITY 37.1 CM/SEC
WIND OUT OF 230. DEGREES EAST OF NORTH RELATIVE AZIMUTH ANGLE O. DEG

INCIDENCE ANGLE (DEG)
nrCs versus incidence angle

FREQUENCY = 13.9 GHZ
HORIZONTAL POLARIZATION
FRICTION :ELOCITY - 30.3 CM/SEC WIND OUT OF 189. DEGREES EAST OF NORTH relative azimuth angle - 27. deg

NRCS VERSUS INCIDENCE ANGLE

FREQUENCY - 13.9 GHT
HORIZONTAL POLARIZATION
FRICTION VELDCITY 38.6 GMISEC WIND CUT OF 228. DEGREES EAST OF NORTH
pelative azimuth angle - 176. deg


```
                    FREOUENCY - 13.9 GHZ
                    HORIZONTAL POLARILATION
                    FKICTION VELOCITY - 14.2 CM/SEC
                    WINO QUT OF 162. DEGREES EAST OF NORTM
                INCIDENCE ANGLE - 20. DEG
NRCS (1)
0. 30. 60. 90. 120. 150. 100. 210. 240. 27n. 300. 380. 360.
RADAR AZIMUTH ANGLE EAST FROM NORTH
```

FREQUENCY - 13.9 GHZ HORIZONTAL POLARIZATION FRICIION VELDCITY - 16.5 CMISEC WIND OUT OF 157. DEGREES EAST DF NORTH INCIDENCE ANGLE - SO. DEG

flight line run
 JONSWAP 75 DATA - X
NRCS
1081
-2.0
-2.5
-3.0
-3.5
-4.0
-4.5
-5.0
-5.5
-6.0
-6.5
-7.0
-7.5
-8.0
-8.5
-9.0
-9.5
-10.0
-10.5
-11.0
-11.5
-12.0
-12.5
-13.0
-13.5
-14.0
-14.5
-15.0
-15.5
-16.0
-16.5
-17.0
-2.0
2.
-3.0
-4.0
-4.5
-5.0
-6.0
-6.5
-7.5
-8.0
-8.5
-9.0
-10.0
-10.5
-11.0
-11.5
-22.5
-13.0
-13.5
-14.0
-15.0
-16.0
-16.5
-17.0

MRCS VERSUS ALIMUIH aNGLE
 FREQUENCY - 13.9 GHZ
 HORIZONTAL POLARIZATION
 FRICTION VELOCITY - 18.2 CM/SEC
 WIND OUT OF 51. DEGREES EAST OF NORTH
 INCIDENCE ANGLE 20. DEG

```
            MRCS vekSUS alImuIH angle
```

 \(14 \quad 4 \quad 1\)
 \(\theta * \theta * * x \theta * * *\)
 -xex \(\times \times \quad \times x \neq \phi\)
 \(x \neq x * x \in x \neq x \bullet x * x *\)

$x \quad x \notin x \oplus x \bullet x \bullet x \notin x \bullet \notin \bullet^{x}$

$x \quad x$
0. 30. 60. 90. 220. 150. 180. 210. 240. 270. 300. 330. 360.
RADAR AZIMUTH ANGLE EAST FROM NORTH

NRCS VERSUS AZIMUTH ANGLE

FREQUENCY - 13.9 GHZ HORIZONTAL POLARIZATION FRICTION VELOCITY - $21.8 \mathrm{CM} / 5 E C$ WIND OUP OF 201. DEGREES EAST OF NORTH INCIDENCE ANGLE 20. DEG

0. 30. 60. 90. 120. 150. 180. 210. 240. 270. 300. 330. 360. RADAR AZIMUTH ANGLE EAST FROM NORTH

FREQUENCY - 13.9 GHZ

HORIZONTAL POLARIZATION
FRICTION VELOCITY 25.2 CM/SEC WIND OUT DF 203. DEGREES EAST OF NORTH INCIDENCE ANGLE -40. DEG

0. 30. 60. 90. 120. 150. 180. 210. 240. 270. 300. 330. 360. RADAR AZIMUTH ANGLE EAST FROM NORTH

NRCS VERSUS AZIMUTH ANGLE
FREQUENCY - 13.9 GHZ
HORIZONTAL POLARIZATION
FRICTION VELOCITY Q Z7-G CM/SEC
WINO OUT OF 245. DEGREES EAST OF NORTH
NRCS VERSUS AZIMUTH ANGLE
FREQUENCY - 13.9 GHZ
HORIZONTAL POLARIZATION
FRICTION VELOCITY Q Z7-G CM/SEC
WINO OUT OF 245. DEGREES EAST OF NORTH
NRCS VERSUS AZIMUTH ANGLE
FREQUENCY - 13.9 GHZ
HORIZONTAL POLARIZATION
FRICTION VELOCITY Q Z7-G CM/SEC
WINO OUT OF 245. DEGREES EAST OF NORTH
NRCS VERSUS AZIMUTH ANGLE
FREQUENCY - 13.9 GHZ
HORIZONTAL POLARIZATION
FRICTION VELOCITY Q Z7-G CM/SEC
WINO OUT OF 245. DEGREES EAST OF NORTH INCIDENCE ANGLE - 40. DEG

NRC S
(DE)
-16.0
-16.5
-17.0
-17.5
-18.0
-18.5
-19.0
-9.5

- 20.0
-20.5
-21.0
-21.5
-22.0
-22.5
-23.0
-23.5
-24.0
-24.5
-25.0
-25.5
-26.0
- 26.5
-27.0
-27.5
-28.0
-28.5
-29.0
-29.5
-30.0
- 3C. 5
-31.0

```
                            tiight line run
                            19 4 12
```


0. 30. 60. 90. 120. 150. 180. 210. 240. 270. 300. 330. 360. RADAR AZIMUTH ANGLE EAST FROM NORTH

FREOUENCY - 23.9 GHZ
HORIZONTAL POLARIZATION
FRICIION VELOCITY - 27.8 CM/SEC
WINO OUT QF 240. DEGREES EAST OF NDRTH
INCIDENCE ANGLE - 20. DEG

0. 30. 60. 90. 120. 150. 180. 210. 240. 270. 300. 330. 360. RADAR AZIMUTH ANGLE EAST FROM NORTH

NRCS VERSUS AZIMUTH ANGLE

FREOUENCY - 13.9 GHZ
HORIZONTAL POLARIZATION
FRICTION VELOCITY - 28.4 CMISEC
WIND DUT OF 55. DEGREES EAST OF NORTH
INCIDENCE ANGLE 65. DEG

$$
-32.5
$$

$$
-33.0
$$

$$
-33.5
$$

$$
-34.0
$$

$$
\begin{aligned}
& -34.5 \\
& -35.0
\end{aligned}
$$

$$
-35.5
$$

$$
\begin{aligned}
& -3507 \\
& -36.0
\end{aligned}
$$

$$
\begin{aligned}
& -36.0 \\
& -36.5
\end{aligned}
$$

$$
-37.0
$$

$$
-37.5
$$

$$
-38.0
$$

$$
-38.5
$$

$$
-39.0
$$

$$
-39.5
$$

$$
-40.0
$$

$$
-40.5
$$

$$
-41.0
$$

$$
-41.5
$$

$$
-42.0
$$

$$
-42.5
$$

$$
-43.0
$$

$$
-43.5
$$

$$
-44.0
$$

$$
-44.5
$$

$$
-45.0
$$

$$
-45.5
$$

$$
-46.0
$$

flight line run

THEORY - ***** JONSWAP 75 DATA - X

0. 30. 60. 70. 120. 150. 180. 210. 240. 270. 300. 330. 360.

RADAR AZIMUTH ANGLE EAST FROM NORTH

```
                        FREOUENCY = 13.9 GHZ
                        HORIZONTAL POLARIZATION
                    FRICTION VELOCITY - 29.1 CM/SEC
WIND OUT OF 244. DEGREES EAST OF NORTH
                        INCIOENCE ANGLE 65. DEG
```


THEORY = *****
JONSWAP 75 DATA $=X$
-30.0
-30.5
-31.6
-31.5
-32.0
-32.5
-33.0
-33.5
-34.0
-34.5
-35.0
-35.5
-36.0
-36.5
-37.0
$-3 / .5$
-38.0
-38.5
-39.0
-39.5
-40.0
-40.5
-41.0
-41.5
-42.0
-42.5
-43.0
-43.5
-44.0
-44.5
-45.0

RADAR AZIMUTH ANGLE EAST FROM NORTH

NRCS VERSUS AZIMUTH ANGLE

FREOUENCY = 13.9 GHZ
HORIZONTAL POLARIZATION
FRICTION VELOCITY = 30.7 CM/SEC
WIND OUT OF 239. DEGREES EAST OF NORTH INCIDENCE ANGLE 30. DEG

$$
\begin{aligned}
& \text { NRCS } \\
& 1081 \\
& -7.0 \\
& -7.5 \\
& -8.0 \\
& -8.5 \\
& -9.0 \\
& -9.5 \\
& -10.0 \\
& -10.5 \\
& -11.0 \\
& -11.5 \\
& -12.0 \\
& -12.5 \\
& -13.0 \\
& -13.5 \\
& -14.0 \\
& -14.5 \\
& -15.0 \\
& -15.5 \\
& -16.0 \\
& -16.5 \\
& -17.0 \\
& -27.5 \\
& -18.0 \\
& -18.5 \\
& -19.0 \\
& -19.5 \\
& -20.0 \\
& -20.5 \\
& -21.0 \\
& -21.5 \\
& -22.0
\end{aligned}
$$


```
                                    JONSWAP 75 DATA = X
```

0. 30. 60. 90. 120. 150. 180. 210. 240. 270. 300. 330. 360. RADAR AIIMUTH ANGLE EAST FROM NORTH

> FREQUENGY G 23.9 GHZ HORIZONTAL POLARIZATION
> FRICTION VELOCITY E 30.9 CM/SEC WIND TUY OF IBS. DEGREES EAST OF NORTH INCIDENCE ANGLE $20 . ~ D E G ~$

0. 30. 60. 90. 120. 150. 180. 210. 240. 270. 300. 390. 360. radar azimuth angle east from north

FREOUENCY - 13.9 GHZ HORIZONTAL POLARIZATION FRICTION VELOCITY - 32.6 CMISEC INCIDENCE ANGLE - 65. DEG
0. 30. 60. 90. 120. 150. 180. 210. 240. 270. 300. 330. 360. RADAR AZIMUTH ANGLE EAST FROM NORTH

FREOUENCY 13.9 GHZ
HORIZONTAL POLARIZATION
FRICTION VELOCITY - $33.5 \mathrm{CM} / \mathrm{C}^{2} \mathrm{C}$
WIND OUT OF 206. DEGREES EAST OF NORTH
INCIDENCE ANGLE -20. DEG

NRCS
(08)
.5
0.0
-5
-1.0
-1.5
-2.0
-2.5
-3.0
-3.5
-4.0
-4.5
-5.0
-5.5
-6.0
-6.5
-7.0
-7.5
-8.0
-8.5
-9.0
-9.5
-10.0
-10.5
-11.0
-11.5
-12.0
-12.5
-13.0
-13.5
-1400
flight line run
$17 \quad 4 \quad 1$
 JONSWAP 75 DATA - X

x x x x
x x x x
*****x
*****x

x*x0 xx
x*x0 xx
x**
x**

X XO*** O\&- X* X
X XO*** O\&- X* X

x x x x
x x x x
x x
x x
0. 30. 60. 90. 120. 150. 180. 210. 240. 273. 300. 330. 360.
RADAR AZIMUTH ANGLE EAST FROM NOPTH

NRGS VERSUS AZIMUTH ANGLE

FREQUENCY $=13.9 \mathrm{GHZ}$ HORIZONTAL POLARIZATION FRICTION VELOCITY E 33.8 CM/SEC WINO OUT OF 190. DEGREES EAST OF NORTH INCIDENCE ANGLE -40. DEG

FREQUENCY - 23.9 GHZ
HORIZONTAL POLARIZATION
FRICTION VELOCITY 37.5 CMISEC WIND OUT OF 208. DEGREES EAST OF NORTH

INCIDENCE ANGLE - 4O. DEG

0. 30. 60. 90. 120. 150. 180. 210. 240. 270. 300. 330. 360.

RADAR AZIMUTH ANGLE EAST FROM NORTH

FRE OUENCY - 13.9 GHZ HORIZONTAL POLARIZATION
FRICTION VELOCITY - 53.2 CM/SEC WIND OUT OF 200. DEGREES EAST OF NORTH INCIDENCE ANGLE 65. DEG

flight line run

THEORY - **** JONSWAP 75 DATA - X
$17 \quad 4 \quad 11$

0. 30. 60. 90. 220. 150. 280. 210. 240. 270. 300. 330. 360.

RADAR AZIMUTH ANGLE EAST FROM NORTH
nRCS VERSUS INCIOENCE ANGLE

FREQUENEY - 13.9 GHZ
VERTICAL POLARIZATION
FRICTION VELOCITY - 13.4 CNISEC
WIND OUT DF 140. DEGREES EAST OF NORTH
relative azlmuth angle - 104. Deg

FREQUENCY - 23.9 GHZ
VERTICAL POLARIZATION
FRICTION VELOCITY 15.9 CM/SEC
WIND OUT OF 15T. DEGREES EAST OF NDRTH
RELATIVE AZIMUTH ANGLE 59. DEG

NRCS
(DB)
16.
14.
12.
12.
10.
10.
8.
6.
4. 2. 0.
-2. -2.
-4.

- ϵ_{0}
-8.
-10.
-12 .
-14.
-16.
-18 .
-20 .
-22.
-24.
-26 .
-28.
-30.
-32.
-34.
-36.
$-3=0$
-40 .
-42.
-44.
-46.

```
NRCS VERSUS INCIDENCE ANGLE
```

FREQUENCY - 13.9 GHZ
VERTICAL POLARIZATION
FRICTION VELOCITY * 16.3 CM/SEC
RELATIVE AZIMUTH ANGLE 10. DEG

```

0. 10. 20. 30. 40. 30. 30.
```

```
                    FREQUENCY - 13.9 GHZ
```

 FREQUENCY - 13.9 GHZ
 VERTICAL POLARIZATION
 VERTICAL POLARIZATION
 FRICTION VELOCITY - 16.3 CM/SEC
 FRICTION VELOCITY - 16.3 CM/SEC
 WINO DUT OF 51. DEGREES EAST OF NORTH
WINO DUT OF 51. DEGREES EAST OF NORTH
RELATIVE AZIMUTH ANGLE : 10. DEG

```
            RELATIVE AZIMUTH ANGLE : 10. DEG
```

```
                                    0000*
```

```
                                    0000*
```


INCIDENCE ANGLE (DEG)

FREQUENCY - 13.9 6HZ
VERTICAL POLARIZATION
FRICTION VELOCITY. 18.5 CMISEC

WIND OUT OF 145. DEGREES EAST OF NORTH

RELATIVE AZIMUTH ANGLE - 17. DEG

nRCS versus incidence angle

```
                    FREOUENCY = 13.9 GHZ
                    VERTICAL POLARIZATIDN
                FRICTION VELOCITY - 21.4 CMISEC
            WIND OUT OF 49. DEGREES EAST OF NORTH
                RELATIVE AZIMUTH ANGLE - 172. DEG
```



```
INCIDENCE ANGLE (DEG)
```

NRCS
(08)
16.
14. 14. 12.
10. 16.
8. 6. 4. 4. 0.
-2.
-2.
-4.
-12.
-14.
-16 .
-18.
-20.

- 22.
- 24.
- ?e.
-2 5
-30.
-32.
-34 .
- á。
- 35.

-40 .
-42.
-44 .
-46 .

FRE QUENCY - 13.9 GHZ
VERTICAL POLARIZATION
FRICTIUN VELOCITY - 24.4 CM/SEC WIND DUT OF 109 Q DEGREES EAST OF NORTH RELATIVE AZIMUTH ANGLE - 105. DEG

nRCS VERSUS INCIDENCE ANG.E

```
                                    OH+40t+4
                                    -0****
80
60
70.
INCIDENCE ANGLE (DEG)
```

FREQUENCY 13.9 GHZ
VERTICAL POLARIZATION
FRICTION VELOEITY－ 30.1 CMISEC
WIND OUT OF 226．DEGREES EAST OF NDRTH RELATIVE AZIMUTH ANGLE－76．DEG

flight line run
 JONSWAP 75 DATA X

－X $\boldsymbol{\bullet}$ 中虫

－ 0

$x \oplus$
由

40
－ \boldsymbol{p}°

$\bullet \bullet$

－+0.
$x \in \oplus-00$
－000＊00
－虫日电
$+00$
0．10．20．30．40．30．30．30．

NRCS VERSUS INCIDENCE ANGLE

FREQUENCY－ 13.9 GHZ
VERTICAL POLARIZATION
FRICTION VELOCITY－ 33.7 CM／SEC WIND OUT OF 187．DEGREES EAST OF NORTH RELATIVE AZIMUTH ANGLE 155．DEG


```
                                    THEORY - * * 車食
                                    JONSWAP 75 OATA. K
- 又**も中車
    -*古*
        x***
            #**
                X*0
                    **
                    *-x**0
                                    -**
                                    0* X*
                                    -4000x
                                    40000
```



```
                                    -******
0.
10.
20.
30.
40.
50.
60.
70．
```

INCIOENCE ANGLE COEGI

```

FREQUENCY - 13.96 Hz
VERTICAL POLARIZATION
FRICTION VELOCITY - 34.8 CM/SEC WIND OUT OF 177. DEGREES EAST OF NORTH RELATIVE AZIMUTH ANGLE - 25. DEG


NRCS VERSUS INCIDENCE ANGLE

FREQUENCY - 13.96 HZ
VERTICAL POLARIZATION
FRICTION VELOCITY - 35.0 CM/SEC WIND OUT OF 187. DEGREES EAST OF NQRTH RELATIVE AZIMUTH ANGLE GT. DEG

```

```
                        FREQUENCY - 13.9 GHZ
```

```
                        FREQUENCY - 13.9 GHZ
                        VERTICAL POLARIZATION
                        VERTICAL POLARIZATION
            FRICTION VELOCITY - 37.0 CM/SEC
            FRICTION VELOCITY - 37.0 CM/SEC
                WIND OUT OF 188. DEGREES EAST OF NORTH
                WIND OUT OF 188. DEGREES EAST OF NORTH
                RELATIVE AZIMUTH ANGLE - 10. DEG
```

 RELATIVE AZIMUTH ANGLE - 10. DEG
    ``` JONSWAP 75 DATA \(x\)
1734
```

0．20．20．30．40．30．30．

```
- X*中***
```

- X*中***
-0x0
-0x0
\&0
\&0
-*
-*
\#
\#
**
**
+00
+00
\#00x**
\#00x**
-0\bullet
-0\bullet
-***
-***
xe0e0
xe0e0
**)
**)
00000*
00000*
-***手种

```
                                    -***手种
```



```
                INCIDENGE ANGLE CDEGI
```

```
                INCIDENGE ANGLE CDEGI
```

NRCS
（08）
16.

140
12.
10.
8.

6
4
2.
0.
－2．
－4．
－6．
－9．
-16.
-12.
-14.
-16.
-18.
－20．
－ 22.
-24.
26.
-28.
-30.
－32．
-34.
-36 ．
-36.
-40.
-42.
-44.
-46.

NRCS VERSUS INCIDENCE ANGLE

FREQUENCY - 13.9 GHZ VERTICAL POLARIZATION
FRICTICN VELOCITY - 39.6 CM/SEC

WIND OUT OF 289. DEGREES EAST OF NORTH
 RELATIVE AZIMUTH ANGLE : 161. DEG

FREQUENCY - 13.9 GH2 VERTICAL PGLARIZATION
FRICTION VELOCITY - 15.3 CMISEC
WIND OUT OF 159. DEGREES EAST OF NORTH INCIDENCF:IGLE - 20. DEG

0. 30. 60. 90. 120. 150. 180. 210. 240. 270. 300. 330. 360. RADAR AZIMUTH ANGLE EAST FROM NORTH
nrcs versus azimuth angle

FREOUENCY - 13.9 GHZ
VERTICAL PDLARIZATION
FRICTION VELOCITY - 19.1 CM/SEC
WIND OUT OF 50. OEGREES EAST OF NORTH
INCIDENCE ANGLE 20. DEG

0. 30. 60. 90. 120. 150. 180. 210. 240. 270. 300. 330. 360. RADAR AZIMUTH ANGLE EAST FROM NORTH

FREQUENCY - 13.9 GHZ
 VERTICAL POLARIZATION
 FRICTION VELJCITY - $20.3 \mathrm{CM} / \mathrm{SEC}$
 WIND OUT OF 46. DEGREES EAST OF NORTH
 INCIDENCE ANGLE - 4O. DEG

0. 30. 60. 90. 120. 150. 180. 210. 240. 270. 300. 330. 360.
radar azimuth angle east from north

FREQUENCY - 13.9 GHZ
VERTICAL POLARIZATEON
FRICTION VELOCITY 20.3 CM/SEC WIND DUT OF 158. DEGREES EAST OF NORTH INCIDENCE ANGLE -50. DEG

0. 30. 60. 90. 120. 150. 180. 210. 240. 270. 300. 330. 360. RADAR AZ:MUTH ANGLE EAST FROM NORTH

```
FREQUENCY -13.9 GHZ VERTICAL POLARIZATION
FRICTION VELOCITY E 20.4 CHISEC
WIND OUT OF 155. DEGREES EAST OF NORTH
INCIDENCE ANGLE -40. DEG
```


0. 30. 60. 90. 120. 150. 180. 210. 240. 270. 300. 330. 360. RADAR AZIMUTH ANGLE EGET FROM NORTH

```
            NRCS VERSUS AZIMUTH ANGLE
FREOUENCY 13.9 GHZ
VERTICAL POLARIZATION
FRICTION VELOCITY 21.5 CMISEC
WINO OUT OF 198．OEGREES EAST OF NORTH
INCIDENCE ANGLE－20．DEG
```

 JONSNAD 75 DATA •X


```
\(x x^{x} x^{x}\)
```



``` \(x\)－\(x\) 电
\(x\)
```

NRCS
（DB）
-1.0
-1.5 -2.0
-2.5
$-3 . C$
-3.5
-4.0
$\begin{aligned} & -4.0 \\ & -4.5\end{aligned} x^{x} \times$
-5.0
-5.5
-6.0
-6.5
-7.0
-7.5
-8.0
-8.5 －9．0 -9.0
-9.5 -10.0
-20.5
-11.0
-12.5
-12.0
-12.5
-13.0
-13.3
-14.0
-14.5
$-i 5.0$
-15.5
-16.0
－中車中且日中

0．30．60．90．120．150．280．210．240．270．300．330．360． RADAR AZIMUTH ANGLE EAST FROM NORTH

FREQUENCY - 13.9 GHZ
VERTICAL POLARIZATION
FRICTION VELOCITY 23.1 CMISEC
WINO OUT OF 5i. DEGREES EAST OF NORTH
INCIDENCE ANGLE -65. DEG

0. 30. 60. 90. 120. 150. 180. 210. 240. 270. 300. 330. 360. RADAR AZIMUTH ANGLE EAST FROM NORTH

```
```

 NRGS VERSUS AZIMUTH ANGLE
    ```
```

```
                    NRGS VERSUS AZIMUTH ANGLE
```

FREQUENCY - 13.9 GHZ
VERTICAL POLARIZATION
FRICTION VELOCITY - 25.9 CM/SEC WIND OUT OF 202. DEGREES EAST OF NORTH INCIDENCE ANGLE -40. DEG

```
                    IDENCE ANGLE © 40. DEG
```

 IDENCE ANGLE © 40. DEG
 flight line run
$16 \quad 4 \quad 9$

```

``` JONSWAP 75 DATA \(x\)
```



```
\(x\)
0. 30. 60. 90. 120. 150. 180. 210. 240. 270. 300. 330. 360. RADAR AZIMUTH ANGLE EAST FROM NORTH
```

NRCS
(DB)
$-14.0$
$-14.5$
$-15.0$
$-15.5$
$-16.0$
$-16.5$
$-17.0$
$-17.5$
$-18.0$
$-18.5$
$-19.0$
$-19.5$
$-20.0$
$-20.5$
$-21.0$
$-21.5$
$-22.0$
$-22.5$
$-23.0$
$-23.5$
$-24.0$
$-24.5$
$-25.0$
$\cdot 25.5$

- ? $t .0$
- ? : - 5
- :
$\because:-5$
$-28.2$ $-28.5$ -29.0

> FREQUENCY © 1309 GHZ
> VERTIGAL POLARIZATION
> FRICTION VELOCITY 26.8 CM/SEC WIND OUT OF 243 OEGREES EAST OF NDRTH INCIDENCE ANGLE 2O. DEG

0. 30. 60. 90. 120. 150. 180. 210. 240. 270. 300. 330. 360. RADAR AZIMUTH ANGLE EAST FROM NORTH

NRCS VERSUS AZIMUTH ANGLE

FREOUENCY - 13.9 GHZ VERTICAL POLARIZATION FRICTION VELOCITY - 27.8 CM/SEC
WIND OUT OF 245. DEGREES EAST OF NDRTH
INCIDENCE ANGLE - 4O. DEG
1081
-13.0
-13.5
-14.0
-14.5
-15.0
-15.5
-16.0
-16.5
-17.0
-17.5
-18.0
-18.5
-16.6
-19.5
-24.0
-20.5
-21.6
-21.5
-22.0
-22.5
-23.0
-23.5
-24.0
-24.5
-25.0
-25.5
-26.0
-26.5
-27.0
-27.5
-28.0
flight line run

## THEORY * **** JONSWAP 75 DATA • $X$




0. 30. 60. 90. 120. 150. 180. 210. 240. 270. 300. 330. 360. RAOAR AZIMUTH ANGLE EAST FROM NORTM

FREQUENCY $=13.9$ GHZ
VERTICAL POLARIZATION
FRICTION VELOCITY 29.9 CM/SEC
WIND OUT OF 183. DEGREES EAST OF NORTH INCIDENCE ANGLE 20. DEG

0. 30. 60. 90. 120. 150. 180. 210. 240. 270. 300. 330. 360. RADAR AZIMUTH ANGLE EAST FROM NORTH

## NRCS VERSUS AZIMUTH ANGLE


0. 30. 60. 90. 120. 250. 180. 210. 240. 270. 300. 330. 360. RADAR AZIMUTH ANGLE EAST FROM NORTH

FREQUENCY 3.3 GHZ VERTICAL POLARIZATION FRICTION VELOCITY－ 32.0 CM／SEC WIND OUT GF 24世．DEGREES EAST OF NORTH INCIDENCE ANGLE－65．DEG

NRCS
（DB）
$-20.0$
$-20.5$
$-21.0$
$-21.5$
$-22.0$
$-22.5$
$-23.0$
$-23.5$
$-24.0$
$-24.5$
$-25.0$
－2こ． 5
－？ 6.0
－2t． 5
$-27 . C$
$-27.5$
$-2 b \cdot 0$
$-20.3$
$-29.0$
－こと． 5
－ $3 C . i$
－jC． 5
－3：．
$-\therefore \therefore 5$
$-3<\cdot l$
$-32.5$
$-33.0$
$-33.5$
$-34.0$
$-34.5$
$-35.0$


NRCS VERSUS aZImUTh angle

FREQUENCY - 13.9 GHZ
VERTICAL POLARIZATION
FRICTION VELOCITY 33.1 CMISEC
WIND OUT OF 236. DEGREES EAST OF NORTH
INCIDENCE ANGLE - 30. DEG



F!SEOUENCY O 13.9 GHZ
VERTICAL POLARIZATION
FRIETION VELOCITY - 33.2 CMISEC
WINO OUT EF 207. DEGREES EAST OF NORTH
INCIDENEE ANGLE 20. DEG

0. 30. 60. 90. 120. 150. 180. 210. 240. 270. 300. 330. 360. RADAR AZIMUTH ANGLE EAST FROM NORTH

NRCS VERSUS AZIMUTH ANGLE

FREQUENCY 13.9 GHZ
VERTICAL POLARIZATION
FRICTION VELOCITY $33.5 \mathrm{CM} / \mathrm{SEC}$ WIND DUT OF 191. DEGREES EAST OF NORTH INCIDENCE ANGLE - 40. DEG
(CB)
$-10.0$
$-16.5$
$-11.0$
$-11.5$
$-12.0$
$-12.5$
$-13.0$
$-13.5$
$-14.0$
$-14.5$
$-15.0$
$-15.5$

- 16.0
$-16.5$
$-17.0$
$-17.5$
$-18.0$
$-18.5$
$-19.0$
$-19.5$
$-20.0$
$-20.5$
-21.0
$-21.5$
$-22.0$
$-22.5$
$-23.0$
$-23.5$
$-24.0$
$-24.5$
- 25.0
flight line run
$18 \quad 4 \quad 6$

THEDRY - ***** JONSWAP 75 DATA e $X$

$* x^{\bullet} x \bullet x *$

*
***
$x \neq x$


0. 30. 60. 90. 120. 150. 180. 210. 240. 270. 300. 330. 360. RADAR AZIMUTH ANGLE EAST FROM NORTH

FREOUENCY - 13.9 GHZ
VERTICAL POLARIZATION
FRICTION VELBCITY 36.1 CMISEC WIND OUT OF 2O8. DEGREES EAST OF NDRTM INCIDENCE ANGLE 40 . DEG
NRCS
1081
-9.0
-9.5
-10.0
-10.5
-11.0
-11.5
-12.0
-12.5
-13.0
-13.5
-14.0
-14.5
-15.0
-15.5
-16.0
-16.5
-17.0
-17.5
-18.0
-10.5
-19.0
-19.5
-20.0
-25.5
-21.0
-21.5
-22.0
-22.5
-23.0
-23.5
-24.0

0. 30. 60. 90. 120. 150. 180. 210. 240. 270. 300. 330. 360. RADAR AZIMUTH ANGLE EASY FROM NORTH

NRCS VERSUS AZIMUTH ANGLE

FREQUENEY ： 13.9 6HZ VERTICAL POLARIZATION FRICTION VELOCITY－42．7 CMISEC WIND OUT OF 198．DEGREES EAST OF NORTH INCIDFNCE ANGLE 65．OEG


0．30．60．90．120．150．180．210．240．270．300．330．360． ZADAR AZIMUTH ANGLE EAST FROM NORTH

FREQUENCY - 13.9 6HZ
VERTICAL POLARIZATION
FRICTION VELOCITY. 44.2 CM/SEC WIND OUT OF 211. DEGREES EAST OF NORTH INCIDENCE ANGLE -65. DEE


THEDRY - ****
JONSNAP 75 DATA - X
 RADAR AZIMUTH ANGLE EAST FROM NORTH

## APPENDIX B

TABLES OF THE THFOPFTICAL NRCS

| NC IDENCE GLE COEGI | 0.0 | 10.0 | 20.0 | 30.0 | 40.0 | 50.0 | 80.0 | $\begin{gathered} \text { RELAYI } \\ 70.0 \end{gathered}$ | $\begin{array}{cc} \text { [VEAZ] } \\ \text { BO. } \end{array}$ | $\mathrm{IMUTH}_{90.0}$ | $\begin{gathered} \text { ANCLE } \\ 0 \quad 800.0 \end{gathered}$ | $\begin{aligned} & (D E G) \\ & 110,0 \end{aligned}$ | 120.0 | 130.0 | 140.0 | 250.0 | 160.0 | 170.0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 14.7 | 14.7 | 14.7 | 14.7 | 14.7 | 14.7 | 14.7 | 14.7 | 14.7 | 14.7 | 14.7 | 14.7 | 14.7 | 14.7 | 14.7 | 14.7 | 14.7 | 14.7 | 6.7 |
| 2.c | 14.4 | 14.4 | 14.4 | 14.4 | 14.4 | 14.4 | 14.4 | 14.4 | 14.4 | 14.4 | 4 14.4 | 14.4 | 14.4 | 14.4 | 14.4 | 14.4 | 14.4 | 24.4 | 14.4 |
| 4.0 | 13.4 | 13.4 | 23.4 | 13.4 | 13.4 | 13.3 | 13.3 | 13.3 | 13.3 | 13.3 | 13.3 | 13.3 | 13.3 | 13.3 | 13.3 | 23.4 | 13.4 | 23.4 | 13.6 |
| 6.0 | 21.7 | 11.7 | 11.7 | 11.7 | 11.6 | 12.6 | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | 28.5 | 11.5 | 12.6 | 11.6 | 11.7 | 11.7 | 22.7 | 81.7 |
| 8.0 | 9.3 | 9.3 | 9.3 | 9.2 | 9.2 | 9.1 | 9.0 | 9.0 | 9.0 | 8.9 | 9.0 | 9.0 | 9.0 | 9.1 | 9.2 | 9.2 | 9.3 | 9.3 |  |
| 10.0 | 6.2 | 6.2 | 6.2 | 6.1 | 6.0 | 5.9 | 5.8 | 5.7 | 5.6 | 5.6 | 5.6 | 5.7 | 5.8 | 5.9 | 6.0 | 6.1 | 6.2 | 6.2 | b. |
| 12.0 | 2.6 | 2.4 | 2.3 | 2.2 | 2.0 | 1.9 | 1.7 | 1.6 | 1.3 | 1.5 | 1.5 | 2.6 | 1.7 | 2.9 | 2.0 | 2.2 | 2.3 | 2.4 | 2 |
| 14.0 | -2.2 | -2.2 | -2.4 | -2.5 | -2.7 | -3.0 | -3.2 | -3.3 | -3.4 | -3.5 | -3.4 | -3.3 | -3.2 | -3.0 | -2.7 | -2.5 | -2.4 | -2.3 | -2.2 |
| 16.0 | -7.5 | -7.7 | -7.9 | -8.0 | -3.3 | -8.6 | -8.9 | -2.1 | -9.3 | -9.3 | -9.3 | -9.1 | -8.9 | -8.8 | -8.4 | -8.1 | -7.9 | -7.7 | -7.7 |
| 28.0 | -13.7 | -13.7 | -14.0 | $-14.3$ | -14.7 | -15.1 | -13.5 | $-15.8$ | -15.0 | $-16.0$ | -16.0 | -15.8 | -15.5 | -15.2 | $-14.8$ | -24.5 | 14.2 | 7.7 |  |
| 20.0 | -14.7 | -20.0 | -22.3 | $-2 C . c$ | -21.4 | -21.9 | -22.4 | -22.9 | - 23. ? | -23.3 | -33.2 | -23.0 | -22.8 | -22.2 | -21.8 | -21.4 | -21.2 | -20.8 |  |
| 22.0 | -24.9 | -2E.1 | -25.5 | -2e.z | -27.0 | -27.7 | -20.4 | $-29.1$ | -27.5 | -29.8 | -29.6 | -29.3 | -28.9 | -28.5 | -28.1 | -27.8 | -27.5 | $-27.2$ | -27.2 |
| 24.0 | -2e. 2 | -26.4 | -25.9 | -29.t | -30.4 | -31.3 | -32.1 | -32.9 | -33.5 | -33.8 | -33.7 | -33.3 | -32.9 | -32.5 | -32.2 | -32.0 | - 31.7 | -31.5 | -31.5 |
| 26.0 | -30.5 | $-36.7$ | -31.1 | -31.8 | -32.7 | -33.5 | -34.4 | -35.3 | -35.9 | -36.2 | -36.1 | -35.7 | -35.3 | -34.9 | -34.6 | -34.4 | -34. 2 | -34.0 | -34.0 |
| 28.0 | -32.6 | -32.6 | -33.0 | -33.7 | -34.5 | -35.4 | -3t. 3 | -37.1 | -37.8 | -38.1 | -38.0 | -37.6 | -37.1 | -36.7 | -36.4 | $-36.2$ | -36.0 | -35.8 | -35.8 |
| 30.0 | -34.1 | -34.3 | -34.7 | -35.3 | -36.1 | -37.0 | -37.9 | -38.9 | -39.5 | -79.8 | -39.7 | -39.3 | -39.8 | -38.4 | -38.0 | -37.8 | -37.6 | -37.4 | 37 |
| 32.0 | -35.9 | -3b.9 | $-36.3$ | -jt. 9 | -37.7 | -3.0.6 | -36.5 | -4n.4 | -4.1.1 | -41.4 | -41.3 | -40.9 | -40.4 | -39.9 | $-39.6$ | $-39.3$ | -39.1 | -38.9 | -38. |
| 34.0 | -37.3 | -37.4 | -27.8 | - 39.4 | -37.2 | -40.1 | -41.0 | -41.9 | -42.6 | -42.9 | -42.6 | -42.4 | -41.9 | -41.4 | -41.0 | -40.7 | -40.5 | -40.4 | -40.3 |
| 3 BC c | -35.3 | -38.9 | -3:.3 |  | -4ue | -41.5 | -42.4 | -43.3 | -44.0 | -44.3 | -44.2 | -43.8 | -43.3 | -42.8 | -42.4 | -42.1 | -41.9 | -41.7 | 1.7 |
| $3 \equiv .6$ | -46. 2 | $-4 C .3$ | -40.7 | $-4.1 .2$ | -42.0 | -42.9 | -43.8 | -44.7 | -45.4 | $-45.7$ | -45.6 | -45.2 | -44.7 | -44.2 | -43.8 | -43.4 | -43.2 | -43. 1 | 3.0 |
| 40.0 | -41.5 | -42.7 | -42.0 | -42.6 | -43.3 | -44.2 | -45.1 | -4h. 0 | -4 4.7 | -47.1 | -47.0 | -46.6 | -46.0 | -45.5 | -45.1 | -44.7 | -44.5 | -44.4 | -44.8 |
| 42.0 | -42.8 | -43-0 | $-43.3$ | $-43.9$ | -44.6 | -45.5 | -46.4 | $-47.3$ | -48.0 | -48.4 | -48.3 | -47.9 | -47.3 | -46.0 | -46.4 | -46.0 | -45.8 | -45.6 | 5. |
| 44.0 | -44.1 | -44.2 | -44.0 | -45.1 | -45.9 | $-46.7$ | -47.7 | $-49.6$ | $-49.3$ | -49.6 | -49.6 | $-49.1$ | -48.6 | $-48.1$ | -47.6 | -47.3 | -47.0 | -46.9 | 6.8 |
| 46.0 | -45.4 | -45.5 | -45.A | -46 | -47.1 | -4*.0 | -48.9 | -49. ${ }^{\text {a }}$ | -51.6 | -50.7 | -5c. 9 | -50.4 | -49.9 | -49.3 | -40.9 | $-48.5$ | -48.3 | -48.1 | -48.2 |
| 48.0 | -54.6 | - 6.6 | -47.1 | -47.6 | -4y. 3 | -4c. 2 | -50.1 | -51.1 | -51.8 | -52.1 | -52.1 | -51.7 | -51.1 | -56.0 | -50.2 | -49.7 | -49.5 | -49.3 | 49. |
| 50.0 | -47.7 | -45.0 | -4c. 3 | -46.9 | -4:0.5 | -5u.4 | -51.4 | -59.3 | -53.9 | -53.\% | -32.3 | -52.9 | -52.4 | -51.8 | -51.3 | $-51.0$ | -50.7 | $-50.6$ | -50.5 |
| 52.0 | -46.1 | -45.2 | $-59.5$ | -56.0 | -5:-4 | -5 1.6 | -52.6 | -53.5 | -54.2 | -54.6 | -54.5 | $-54.1$ | -53.6 | $-53.0$ | $-52.6$ | $-52.2$ | -52.0 | $-51.8$ | -51.8 |
| 54.0 50.0 | -50.3 -51.5 | -54.4 | -20.1 | -52.3 | -52.0 | -52.8 | -53.6 | $-14.7$ | -55.5 | -55.8 | -55.8 | -55.4 | -54.8 | -54.3 | -53.8 | -53.5 | -53.2 | -53.0 | -53.0 |
| 56.0 50.0 | -51.5 | -51.6 | -52.0 | -52.5 | -53.2 | -54.1 | $-55.0$ | -5n.0 | $-56.7$ | -57.1 | -57.0 | -56.6 | -56.1 | -55.6 | $-55.1$ | $-54.7$ | -54.5 | -54.3 | -54.3 |
| 50.0 | -52.8 | -52.9 | -53.2 | -53.7 | -54.4 | $-55.3$ | - 58.3 | -57.? | -58.0 | -50.3 | -58.3 | -57.9 | -57.4 | -56.8 | -56.4 | -56.0 | -55.8 | -55.6 | -55.3 |
| $60.0$ | -54.0 | -54.2 | -54.5 | -55.0 | -55.7 | -56.6 | -57.5 | -59.5 | -59.2 | -59.6 | -59.0 | -59.2 | $-58.7$ | $-58.2$ | $-57.7$ | $-57.3$ | $-57.1$ | -56.0 | -56.9 |
| $\begin{aligned} & 62.0 \\ & 64.0 \end{aligned}$ | -55.3 -5.7 | -55.5 -56.0 | -55.0 -57.1 | -50.3 -57.0 | -57.0 -55.3 | -57.9 | -58.8 -60.2 | -59.8 -61.1 | -60.6 | -61.0 -62.3 | -60.9 | -60.6 | -60.1 | -59.5 | -59.1 -60.5 | -58.7 -60.7 | -58.4 | -58.3 | -58.2 |
| ce.c | -ヵも. 1 | $\rightarrow 3.2$ | -58.5 | -58.0 | -39.7 | -63.6 | -61.6 | -67.5 | - -B 3.8 | -62 | -62 | 62 |  |  |  |  |  |  |  |
| 68.0 | -59.5 | -59.t | -59.9 | -05.4 | -51.2 | -62.0 | -63.0 | -64.0 | -64.8 | -65.2 | -65.2 | -64.9 | -64.4 | 63 | -61.9 | -63.1 |  |  |  |
| 70.0 | -81.0 | -61.1 | -61.4 | -62.0 | -62.7 | -63.6 | -64.5 | 5 | -66.3 | 8 | 8 |  |  |  |  |  |  |  |  |


|  | 13. | 13.0 | . 0 | 3.0 | . | . 0 | 13.7 | 13.0 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12.8 | 12.8 | 12.8 | 12.0 | 12.8 | 12.8 | 2.8 | 12.8 | 12.9 | 2.8 | 12.8 | 12.8 | 12.8 |  |  |  |  |  |  |
| 12.1 | 12 | 12 | 1 |  | 12.1 | 12. | 17. |  |  | 12.1 | 12. |  |  | 2 | 2 |  | 12.1 | 12.1 |
| 1.0 | 11.0 | 11 |  |  | 0 | 0.9 | 10.9 | 10.9 | 6. | 10.9 | 10.9 | 10. | 20.9 | 11. | 11 | 21.0 | 21.0 | 22.0 |
|  | 9.4 |  |  | 9.3 | 9. | 9.2 | 9.2 | 9.2 | 9.2 | 9.2 | 9.2 | 9.2 | 9.3 | 9.3 | , |  |  |  |
| 7.4 | 7.4 | 7.3 | 7.3 | 7.2 | 7.1 | 7.1 | 7.7 | . 0 | 7.0 | 7.0 | 7.0 | 7.1 | 7.1 | 7.2 | 7.3 | 7.3 | 7.4 |  |
| 4.8 | 4.8 | - | 7 | 4.6 | . 5 | 4.4 | . 3 | 4.2 | 4.2 | 4.2 | 4.3 |  | . 5 | 4.6 | 4.7 |  |  |  |
| 1. | 1 | 206 |  |  | 1.2 |  |  |  | -9 |  | 1.0 | 1.1 |  |  |  |  | 1.7 |  |
| 1.9 | 1. | 2.0 | 2.2 | 2.3 | 2.6 |  | 2.9 | . 0 | 3.0 | 0 | 2.9 | -2. | 2.6 | 2. | -2.2 | 2.0 | -1.9 | 1.9 |
| -5.9 | -t.c |  |  | 6 | 9 | -7.2 | . 4 | -7.5 | -7.5 |  |  | 7 |  | \% |  | -6.3 |  |  |
| 10.4 | - 0. | -10.7 | 12.0 | -11.4 | -12.7 | -12.1 | -1?.4 | -12.6 | -12.6 | -12.6 | -12.4 | -12.2 | -11.9 | -11.6 | 11.3 | 11 | 10. |  |
| 16.7 | -14.t | -15.2 | -15.7 | -16. 2 | -15.7 | -17.2 | -17.6 | -17.9 | -18.0 | -17.9 | - 7.7 | -17.4 | -17.1 | -16.7 | 16 | -16.2 | 15.9 |  |
| $1 \mathrm{c} \cdot 3$ | -15.5 | -18.9 | -15.6 | -2. 3 | 1.0 | 7 | 2. | -22.7 | ? | -22. | -22 | -22. | -21.8 | -21.5 | -21.2 | -20 | -20. |  |
| $2 C .8$ | -2:0 | -2 | -22.3 | $-23.2$ | -24.0 | 24.8 | $-25.5$ | $-26.1$ | $-26.3$ | $-26.2$ | $-25.9$ | $-25.5$ | -25.2 | $-24.9$ | $-24.7$ | -24 | 24 |  |
| 22.9 | -23.1 | 23.6 | -24.3 | -25.2 | -26.1 | -26.9 | -27.7 | -29.4 | -28.7 | -20.6 | -28.2 | -27.8 | -27.5 | -27.2 | -27.0 | 20 | 26 |  |
| -24.8 | -25.0 | -25.4 | -26.1 | -27.0 | -27.9 | -28.8 | -29.6 | -3n. 3 | -30.6 | -30.5 | -30.1 | -29.7 | -29.3 | -29.1 | 28 | -28.7 | -28 | 28.4 |
| -26.5 | -20.6 | -27.1 | -27.8 | $-28.0$ | -29.5 | -30.4 | $-31.3$ | - 31.9 | -32.3 | 32.2 | -31.8 | 1.3 | 31 | -30 | 3 | $-30.2$ | -30.1 |  |
| -2E. 1 | -29.2 | -2 |  | -3 | 31.0 | -31 | -32 | -33 | -33.8 | -32.7 | -33. | -32.9 | - 32 | -32.2 | -31.9 | 31 | 31 |  |
| 28.6 | -29.7 | -30 | -311.0 | -31.6 | 32.4 | -33.4 | -34.3 | -35.0 | $-35.3$ | $-35.2$ | -34.8 | -34.3 | -33.9 | -33.6 | -33.3 | 33 | 33 |  |
| 0 | -31.1 | -31.5 | $-52 \cdot 2$ | -32.9 | -33.4 | -34.3 | $-35.7$ | $-36.4$ | $-36.7$ | - 36.6 | $-36.2$ | $-35.7$ | $-35.3$ | . 9 | 7 | -34.5 | -34.3 |  |
| 4 | $-32.5$ | -32.9 | $-33.5$ | -34.3 | $-35.2$ | $-36.1$ | $-37.0$ | $-37.7$ | -38.1 | 38.0 | -37.6 | -37.2 |  |  | -36.0 | -35.0 | -35.6 |  |
|  | $\begin{aligned} & -33.8 \\ & -35.1 \end{aligned}$ |  |  |  |  | $\begin{aligned} & -37.4 \\ & -38.7 \end{aligned}$ |  | $-37.3$ $-40.3$ |  |  |  |  |  |  |  |  |  |  |
|  | $\begin{aligned} & -35 . \\ & -35 . \end{aligned}$ | -35.5 -36.8 | -37.3 | $\begin{array}{r} -36.8 \\ -38.1 \end{array}$ | -39.0 | $\begin{array}{r} -38 \\ -39 \end{array}$ |  | $-4$ |  | 44.6 |  |  |  |  | -38.5 -39.8 |  |  |  |
| -37.5 | -37.t | $-36.0$ | -38.6 | -39 | 40.2 | 41 | 42 | 47 | 43 | 3 | . 7 | -42.2 | -41.7 | 1 | -41.0 | -39.5 | 40.6 |  |
| 38.8 | -33.7 | -3 \%. 2 | -39. | -4C.5 | 42.4 | 42.4 | 4.3 .3 | -44. 3 | $4{ }^{4}$ | 44.3 | . 0 | 43.5 | 43 |  | -42.2 | -42.0 | 41 |  |
| 4 C .0 | -40.1 | -4c.4 | 41.0 | +1.7 | 42.6 | 43 | 42.5 | 45 |  |  |  | 44 | 44 | 4 | 43 | 30 | 43 |  |
| 41.2 | -41. 2 | 41.6 | 42.2 | 42.9 | -43.8 |  | 45.7 | 45. | 46 | 8 | 6.5 | -45. | 45.4 | -45.0 | -44.7 | -44. | 44. |  |
| 4 | -42.5 | 42.8 | - | -44.1 | 45.0 | -46.0 | -9 | 47.7 | 48.1 | -48.1 | -47.7 | -47.2 | -46.7 | -46.3 | -45.9 | 45. | 45. |  |
| - | 43 | -44.1 | -44.6 | -45.4 | 46.2 | -47.2 | 4. ${ }^{49}$ | 48.9 | -49.3 | -44.3 | -49.0 | -46.5 | 48.0 | -47.5 | -47.2 | 47. | 46 |  |
|  | -45.0 | -45.3 | -43.9 | -46.6 | 47.5 | -48.5 | 49.4 | -50.2 | -53.6 | -50.6 | -50.3 | -49.8 | 49.3 | -48.8 | -40.5 | 48. |  |  |
| 46.2 | -46.3 | -46.6 | -47.2 | -47.9 | 48.8 | 49.7 | 50.7 | -51.5 | -51.9 | -51.9 | -51.6 | -51.1 | -50.6 | -50.2 | 49.8 |  |  |  |
| 47.5 | -47.6 | -47.9 | -4t.5 | -49.2 | 50.1 | -51.0 | 3?.0 | -52.9 | -53.3 | 53.3 | -52.9 | -52.4 | -51.9 | -51.5 | -51.2 | -51.0 | -50. |  |
|  |  |  | -49.8 | -50.5 | - 4 | 2.4 | 3.4 | -54.? | 54.6 | 54.7 | 4.3 | -53.9 | -53.4 | -52.9 | -52.6 | -52.4 | -52. |  |
|  | $-50.3$ | -50.7 | 51.2 | -51.9 | 2.8 | -53.8 | 54.4 | $-55.6$ | 6. 1 | 6.1 | 5.8 | -55.3 | -54.8 | -54.4 | -54.1 | 53.9 | 53.7 | 7 |
|  |  |  |  |  |  |  |  | 1 |  | -57.6 | -57.3 | -56.9 | 6.4 | 6.0 | -55.6 |  |  |  |

nRCS taple in decibels

> FREOUFNCY $13.9 G H Z$
> MORIZONAL POLARIZATIO:
> FRICTION VELOCITY $15.0 \mathrm{CM} / \mathrm{SEC}$

| INCIDENCE ANGLE（DEG） | 6.0 | 10.0 | 20.0 | 30．0 | 40．0 | 50.0 | 60．0 | $\begin{gathered} \text { RELATII } \\ 70.0 \end{gathered}$ | $\begin{gathered} \text { IVF } 42 I \\ 80.0 \end{gathered}$ | $\begin{aligned} & \text { IMUTH } \\ & 90.0 \end{aligned}$ | $\begin{aligned} & \text { ANGLE } \\ & 100.0 \end{aligned}$ | $\begin{aligned} & \{D E G) \\ & 110.0 \end{aligned}$ | 120.0 | 230.0 | 140.0 | 150.0 | 260.0 | 170.0 | 280.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 12.2 | 12.2 | 12.2 | 12.2 | 12.2 | 12.2 | 12.2 | 12.2 | $1 ? .2$ | 12.2 | 12.2 | 12.2 | 12.2 | 22.2 | 12.2 | 12.2 | 12.2 | 12.2 | ． 2 |
| 2.0 | 12.6 | 12.0 | 12.0 | 12.0 | 12.0 | 12.0 | 12.0 | 12.0 | 17.0 | 12.0 | 12.0 | 12.0 | 12.0 | 12.0 | 12.0 | 22.0 | 12.0 | 12.0 | 12.0 |
| 4.0 | 11.5 | 12.5 | 11.4 | 12.4 | 12.4 | 11.4 | 11.4 | 21.4 | 21.4 | 11.4 | 11.4 | 11.4 | 11.4 | 11.4 | 11.4 | 11.4 | 11.4 | 12.5 | 21.5 |
| 6.0 | 10.5 | 16.5 | 1C． 5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.4 | 10.4 | 10.4 | 10.4 | 2C．4 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 |
| 8.0 | 9.3 | 9.3 | 9.2 | 9.2 | 4.2 | 9.1 | 9.1 | 9.1 | 9.0 | 9.0 | 9.0 | 9.1 | 9.1 | 9.1 | 9.2 | 9.2 | 9.2 | 9.3 | 9.3 |
| 10.0 | 7.6 | 7.6 | 7.5 | 7.5 | 7.4 | 7.4 | 7.3 | 7.3 | 7．？ | 7.2 | 7.2 | 7.3 | 7.3 | 7.4 | 7.4 | 7.5 | 7.5 | 7.6 | 7.6 |
| 12.0 | 5.5 | 5.5 | 5.5 | 5.4 | 5.3 | 5.2 | 5.1 | 5.1 | 5.0 | 5.0 | 5.0 | 5.1 | 5.1 | 5.2 | 5.3 | 5.4 | 5.4 | 5.5 | 5.5 |
| 14.0 | 3.0 | 3.0 | 2.9 | 2.8 | 2.7 | 2.6 | 2.5 | 2.4 | 2.3 | 2.3 | 2.3 | 2.4 | 2.5 | 2.6 | 2.7 | 2.8 | 2.9 | 3.0 | 3.0 |
| 16.0 | ． 1 | ． 2 | ． 0 | 1 | 3 | －． 5 | － 6 | －． 8 | 8 | －． 9 | －． 8 | －． 8 | 6 | ． 5 | － 3 | ． 2 | －． 1 | － 0 | － |
| 18.0 | －3．1 | －3．2 | －3．3 | －3．5 | －3．8 | －4．0 | －4．2 | －4．4 | －4．5 | －4．5 | －4．5 | －4．4 | －4．2 | －4．0 | －3．8 | －3．7 | －3．5 | －3．4 | －3．8 |
| 20.0 | $-6.7$ | －6．8 | －7．0 | －7．3 | －7．6 | －7．9 | －8．2 | －9．4 | －9．8 | －8．7 | －6．6 | －8．5 | －8．3 | －8．0 | －7．8 | －7．6 | 7.4 | －7．2 | －7．2 |
| 22.0 | －16．3 | －16．4 | －10，7 | －11．1 | －11．6 | －12．1 | －12．4 | $-12.8$ | $-13.0$ | －13．1 | －13．0 | －12．9 | －12．6 | －22．3 | －12．1 | －11．8 | －11．5 | －21．4 | －12．3 |
| 26.6 | －13．4 | －13．6 | $-14.0$ | －14．6 | －15．3 | －15．9 | －16．4 | $-15.7$ | $-17.3$ | －17．4 | －17．3 | $-17.1$ | －16．8 | －16．5 | $-16.2$ | －15．9 | $-15.7$ | $-15.5$ | －15．4 |
| 26.0 | －15．0 | $-16.6$ | $-2 t .5$ | －17．2 | －18．0 | －18．8 | －19．5 | －20．？ | －27．7 | －20．9 | －20．8 | －20．5 | －20．1 | － 29.9 | －19．6 | －19．4 | －19．1 | －18．9 | －18．8 |
| 20.0 | －17．6 | －17．8 | －1ة． 3 | －19．1 | －20．0 | －20．8 | －21．6 | －27．4 | －23．0 | －23．3 | －23．2 | －22．8 | －22．4 | －22．2 | －22．0 | －21．8 | －21．5 | －21．3 | －21．2 |
| 36.0 | $-29.3$ | －19．4 | －2C．0 | －20．7 | －21．6 | －22．5 | －23．4 | －24．1 | －24．8 | －25．1 | －25．0 | －24．6 | －24．2 | －23．9 | －23．7 | －23．5 | －23．3 | －23．1 | －23．2 |
| 32.0 | －21．0 | －21．2 | $-21.7$ | －22．4 | $-23.3$ | $-24.2$ | －25．0 | －25．9 | $-23.5$ | $-26.9$ | －26．8 | －26．4 | －26．0 | －25．6 | －25．4 | $-25.2$ | $-25.0$ | －24．8 | －24．8 |
| 34.0 | －22．6 | $-22.6$ | $-23.3$ | $-24.0$ | －24．8 | －25．7 | －26．6 | －27．4 | $-29.1$ | －7月．5 | －28．4 | －28．0 | －27．5 | －27．2 | $-26.9$ | $-26.7$ | $-26.5$ | －26．4 | $-26.3$ |
| 36.6 | －24．2 | $-24.3$ | －27．3 | －25．4 | －2t．3 | －27．1 | － 24.1 | －29．9 | －77．b | － 50.0 | －29．9 | －29．5 | －27．0 | －28．7 | －28．4 | －28．1 | －27．9 | －27．8 | －27．7 |
| 38.0 | －25．0 | －25．8 | －26．2 | －2i． 8 | －27．6 | $-2 \% .5$ | －29．5 | $-3 n \cdot 3$ | －31．0 | －31．4 | －31．3 | －30．9 | － 30.5 | －30．1 | －29．7 | －29．5 | $-29.3$ | －29．2 | $-29.3$ |
| 40.0 | －27．0 | $-27.2$ | －27．0 | －28．2 | －29．3 | －29．9 | $-32.8$ | －31．7 | $-32.4$ | $-32.8$ | －32．7 | $-32.3$ | －31．8 | －31．4 | －31．1 | －30．0 | $-30.6$ | －30．5 | －30．4 |
| 42.0 | $-26.9$ | $-28.5$ | $-28.9$ | $-27.5$ | －30．3 | －32．2 | －32．1 | －33．0 | $-37.7$ | $-34.1$ | －34．0 | － 33.6 | －33．2 | －32．7 | －32．4 | －32．1 | －31．9 | $-31.8$ | －31．7 |
| 44.0 | $-29.7$ | $-29.8$ | －30．2 | －30．8 | －31．6 | $-32.4$ | －33．4 | $-34.3$ | $-35.0$ | $-25.4$ | $-35 \cdot 3$ | $-34.9$ | －34．5 | －34．0 | －33．6 | $-33.4$ | $-33.2$ | －33．0 | $-33.0$ |
| 46.0 | －30．7 | $-31.1$ | －31．4 | $-32.0$ | －32．8 | －33．7 | －34．6 | －35．5 | －36．3 | $-36.7$ | －3t．6 | －36．2 | $-35.7$ | $-35.3$ | －34．9 | －34．6 | －34．4 | －34．3 | －34．2 |
| 48.0 | －32．2 | $-32.3$ | $-32.7$ | $-33.3$ | －34．0 | $-34.9$ | －31．9 | $-35.7$ | －77．5 | －37．9 | －37．8 | $-37.5$ | －37．0 | －36．5 | $-36.1$ | $-35.8$ | － 35.6 | $-35.5$ | $-35.4$ |
| 50.0 | －33．4 | －33．5 | －33．9 | －3． 5 | －35．2 | －36．1 | $-37 \cdot 1$ | －38．7 | －38．月 | －39．1 | －39．1 | －39．7 | $-38.2$ | －37．8 | －37．4 | －37．1 | －36．8 | －36．－ | －36．7 |
| 52.0 | －34．3 | －34．0 | －35．1 | －35．7 | －36．4 | －37．3 | －3リ．3 | －37．？ | $-47.0$ | $-40.4$ | － $4 \mathrm{C} \cdot 3$ | －40．0 | －39．5 | $-39.0$ | －35．6 | $-38.3$ | －3F． 1 | －37．9 | －37．9 |
| 54.0 | －35．9 | －36．0 | $-39.3$ | $-36.9$ | $-37.6$ | －38．5 | －37．5 | $-47.4$ | $-41.2$ | $-41.6$ | －41．0 | －41．2 | －40．7 | $-40.2$ | －39．8 | －39．5 | $-39.3$ | $-39.2$ | $-39.1$ |
| 50.0 | －37．1 | $-37.2$ | －37．5 | －38．1 | － 38.8 | －39．7 | －40．7 | －41．7 | －4．9．4 | －42．18 | －42．8 | －42．4 | －42．0 | －41．5 | －41．1 | $-40.7$ | －40．5 | －40．4 | $-40.3$ |
| 58.0 | －38．3 | －38．4 | －38．8 | －39．3 | －40．1 | －40．9 | －41．9 | －47．9 | －43．7 | －44．1 | －44．0 | －43．7 | －43．2 | －42．7 | －42．3 | －42．0 | －41．8 | －42．6 | －42．6 |
| 6 CO .0 | $-3.15$ | －39．7 | －40．0 | －40．5 | －41．3 | －4．2．2 | －43．2 | $-44.1$ | $-44.9$ | $-45.3$ | －45．3 | $-45.0$ | －44．5 | －44．0 | $-43.6$ | －43．3 | $-43.2$ | －42．9 | $-42.9$ |
| 62.0 | －40．9 | －40．9 | －42．3 | －41．8 | －42．5 | －4 1.4 | －44．4 | －45．4 | $-44.2$ | $-46.6$ | －4C．6 | －46．3 | －45．8 | －45．3 | －44．9 | －44．6 | －440！ | －64．2 | $-46.2$ |
| 64.6 | $-42.1$ | $-4202$ | $-42.5$ | $-43.2$ | －43．8 | －44．7 | －45．7 | $-46.7$ | $-47.5$ | $-47.9$ | －47．9 | $-47.0$ | －47．2 | $-46.7$ | －46． 2 | －45．9 | －45．7 | －45．9 | －45．5 |
| 66.0 | －43．6 | －43．5 | －43．9 | －44．4 | －45．1 | $-46.0$ | $-47.0$ | －48．0 | $-48.8$ | $-49.3$ | $-49.3$ | $-4 \div 0$ | －48．5 | －48．0 | $-47.6$ | $-47.3$ | $-47.1$ | －47． 3 | －46．9 |
| 68.0 | －44．3 | －44．9 | －45．3 | －45．6 | －46．5 | $-47.4$ | $-48.4$ | －49．4 | $-59.2$ | $-50.7$ | $-56.7$ | $-50.4$ | －50．0 | $-49.5$ | $-49.1$ | $-48.8$ | $-48.6$ | $-48.4$ | $-40.4$ |
| 70.0 | －46．3 | －46．4 | －46．7 | －47．2 | －48．0 | －48．8 | －49．8 | －50．8 | －51．7 | －52．2 | －52．2 |  |  |  | －50．6 | －50．3 | －50．1 | －50．0 | －49．9 |

NRCS TAGLE IN DECIBELS

| TNEIDENCE ANGLE (OEG) | 0.0 | 10.0 | 20.0 | 20.0 | 40.0 | 50.0 | 60.0 | $\begin{gathered} \text { RELATII } \\ 70.0 \end{gathered}$ | $\begin{gathered} \text { IVE AzII } \\ 80.0 \end{gathered}$ | IMUTH AN <br> 90.0 | $\begin{aligned} & \text { ANGLE } \\ & 100.0 \end{aligned}$ | $\begin{aligned} & (D E G) \\ & 110.0 \end{aligned}$ | 120.0 | 130.0 | 140.0 | 150.0 | 160.0 | 270.0 | 260.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 12.6 | 11.6 | 11.6 | 11.6 | 21.6 | 11.6 | 11.6 | 11.6 | 11.6 | 11.6 | 11.6 | 11.6 | 11.6 | 11.6 | 11.6 | 11.6 | 11.6 | 12.6 | 11.6 |
| 2.0 | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | 21.5 | 21.5 | 11.4 | 21.4 | 12.4 | 12.4 | 21.4 | 11.5 | 11.5 | 11.5 | 21.5 | 11.5 | 11.5 | 12.5 |
| 4.0 | 11.3 | 11.0 | 11.2 | 11.0 | 11.0 | 11.0 | 11.0 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 11.0 | 11.0 | 11.0 | 11.0 | 11.0 | 11.0 | 12.0 |
| 6.0 | 10.2 | 10.2 | 10.2 | 10.2 | 10.2 | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 | 10.2 | 10.2 | 10.2 | 10.2 |
| 8.0 | 9.1 | 9.1 | 9.1 | 9.0 | 4.0 | 9.0 | 0.9 | 9.9 | 9.9 | 8.9 | 8.9 | 8.9 | 8.9 | 9.0 | 9.0 | 9.0 | 9.1 | 9.1 | 9.2 |
| 10.0 | 7.6 | 7.6 | 7.6 | 7.5 | 7.5 | 7.4 | 7.4 | 7.3 | 7.3 | 7.3 | 7.3 | 7.3 | 7.4 | 7.4 | 7.5 | 7.5 | 7.6 | 7.6 | 7.6 |
| 12.0 | 5.8 | 5.8 | 5.8 | 5.7 | 5.6 | 5.5 | 5.5 | 5.4 | 5.4 | 5.4 | 5.4 | 5.4 | 5.5 | 5.5 | 5.6 | 5.7 | 5.7 | 5.8 | 5.8 |
| 14.0 | 3.7 | 3.7 | 3.0 | 3.5 | 3.4 | 3.3 | 3.2 | 3.1 | 3.0 | 3.3 | 3.0 | 3.1 | 3.2 | 3.3 | 3.4 | 3.5 | 3.5 | 3.6 | 3.6 |
| 16.0 | 1.2 | 1.2 | 1.1 | . 4 | . 8 | .6 | . 5 | . 4 | . 3 | 2 | 3 | - 3 | . 5 | . 6 | . 7 | . 9 | 1.0 | 2.0 | 1.2 |
| 18.0 | -2.0 | -1.7 | -2.8 | -2.0 | -2.2 | -2.4 | -2.6 | -2.8 | -2.9 | -2.9 | -2.9 | -2.8 | -2.7 | -2.5 | -2.3 | -2.2 | -2.0 | -1.9 | -1.9 |
| 20.0 | -4. 7 | -4.7 | -4.7 | -5.2 | -5.5 | -5.8 | -6.1 | -6.3 | -3.5 | -6.5 | -6.5 | -6.3 | -6.2 | -6.0 | $-5.7$ | -5.5 | -5.4 | -5.2 | -5.2 |
| 22.0 | -7.7 | -7.8 | -8. 1 | -8.5 | -4.0 | -9.4 | -9.8 | -10.1 | -10.3 | -10.4 | -10.3 | -10.1 | -9.9 | -9.7 | -9.4 | -9.2 | -9.0 | -8.8 | -8.8 |
| 24.0 | -10.4 | -10.5 | -11.0 | -11.6 | -12.2 | -12.8 | -13.3 | -13.7 | -14.0 | -14.2 | -14.1 | -13.9 | -13.0 | -13.3 | -13.1 | -22.8 | -12.6 | -12.4 | -12.3 |
| 26.0 | -12.5 | $-12.7$ | $-13.2$ | -13.9 | -14.7 | $-15.5$ | $-16.1$ | -16.7 | $-17.2$ | -17.4 | $-17.3$ | -17.0 | -16.7 | -16.4 | -16.2 | $-16.0$ | -15.7 | $-25.5$ | -15.4 |
| 20.0 | -14.1 | $-14.3$ | -14.9 | -15.7 | -1e. 5 | -17.4 | -18.1 | -18.8 | -19.4 | -19.7 | -19.6 | -19.2 | -18.9 | -18.6 | -18.5 | -18.3 | -18.0 | -17.8 | -17.7 |
| 30.0 | -15.6 | -15.7 | -16.3 | -17.1 | -18.6 | -18.9 | $-19.7$ | -20.5 | -21.1 | -21.4 | -21.3 | -20.9 | -20.6 | -20.3 | -20.1 | -19.9 | -19.7 | $-19.5$ | -19.4 |
| 32.0 | $-17.1$ | -17.3 | -17.8 | $-18.0$ | $-14.5$ | -23.4 | $-21.2$ | $-22.0$ | -2, 7 | -23.0 | -22.9 | -22.5 | -22.1 | -21.9 | -21.7 | $-21.5$ | $-21.3$ | $-21.1$ | $-21.0$ |
| 34.0 | $-18.7$ | $-18.9$ | -19.4 | -20.2 | -21.0 | -21.9 | -22.8 | $-23.6$ | -24.3 | $-24.6$ | $-24.5$ | $-24.2$ | -23.8 | -23.4 | -23.2 | $-23.0$ | -22.8 | $-22.6$ | $-22.6$ |
| 36.0 | -20.3 | -20.5 | -20.9 | -21.6 | -22.5 | -23.4 | $-24.3$ | -25.1 | -25.8 | -26.2 | -26.1 | -25.7 | -25.3 | -24.9 | -24.7 | $-24.4$ | $-24.2$ | -24.1 | -24.0 |
| 38.0 | -21.3 | -21.9 | -22.4 | -23.1 | -23.9 | -24.8 | -25.7 | -26.6 | -27.3 | - 27.6 | -27.5 | -27.1 | -26.7 | -26.3 | -26.0 | -25.8 | -25.6 | -25.5 | -25.4 |
| 40.0 | -23.2 | -23.3 | -23.8 | $-24.4$ | $-25.2$ | $-26.1$ | -27.1 | $-7.9$ | $-24.6$ | -29.0 | $-28.9$ | $-28.5$ | $-28.1$ | -27.7 | -27.4 | $-27.1$ | -26.9 | -26.8 | -26.8 |
| 42.0 | $-24.5$ | $-24.7$ | -25.1 | $-25.7$ | $-20.5$ | $-27.4$ | -2E.4 | $-2: 03$ | $-39.0$ | -30.3 | $-30.3$ | $-29.9$ | -29.4 | $-29.0$ | -28.7 | $-28.4$ | $-28.2$ | $-2 \theta \cdot 1$ | $-28.0$ |
| 44.0 | -25.9 | -26.0 | $-26.4$ | -27.0 | -27.8 | -25.7 | $-29.6$ | -30.6 | -31.3 | -31.0 | -31.6 | -31.2 | -30.7 | -30.3 | -29.9 | -29.7 | $-29.5$ | -29.4 | $-29.3$ |
| 46.0 | -27.1 | -27.3 | -27.7 | $-23.3$ | $-29.0$ | -29.9 | $-30.9$ | -31.8 | $-32.5$ | -32.9 | -32.8 | $-32.5$ | -32.0 | $-31.6$ | $-31.2$ | $-30.9$ | $-30.7$ | -30.6 | -30.5 |
| 48.0 | -28.4 | -28.5 | -28.9 | $-27.5$ | -30.3 | $-31.2$ | $-32 \cdot 1$ | $-33.1$ | -33.8 | -34.2 | -34.1 | -33.7 | -33.3 | -32.8 | -32,4 | $-32 \cdot 2$ | $-31.9$ | -31.8 | $-31.8$ |
| 50.0 | -29.6 | -29.8 | -30.1 | -30.7 | -31.5 | -32.4 | -33.3 | -34.3 | -35.0 | -35.4 | -35.3 | -35.0 | -34.5 | $-34.0$ | -33.7 | $-33.4$ | -33.2 | -33.0 | -33.0 |
| 52.0 | -30.9 | -31.0 | -31.3 | -31.9 | -32.7 | -33.6 | -34.5 | -35.5 | $-36 \cdot ?$ | $-36.6$ | -36.6 | -36.2 | $-35.7$ | $-35.3$ | -34.9 | $-34.6$ | -34.4 | $-34.3$ | -34.2 |
| 54.0 56.0 | -32.1 | $\begin{aligned} & -32.2 \\ & -33.4 \end{aligned}$ | $\begin{aligned} & -32.5 \\ & -33.8 \end{aligned}$ | $\begin{aligned} & -33.1 \\ & -34.3 \end{aligned}$ | $\begin{aligned} & -33.9 \\ & -35.2 \end{aligned}$ | -34.8 | -33.7 -36.9 | -36.7 -37.9 | $\begin{aligned} & -37.4 \\ & -39.4 \end{aligned}$ | -37.8 -39.1 | -37.8 -39.0 | -37.5 | $-37.0$ | -36.5 -37.7 | -36.1 | -35.8 -37 | -35.6 | -35.5 | -35.4 |
| 58.0 58.0 | -33.3 -34.5 | -33.4 | $-33.8$ | $-34.3$ | -35.2 | -36.0 | $-36.9$ | -37.9 | $-39.7$ | -39.1 | -39.0 | -38.7 | -38.2 | -37.7 | -37.3 | $-37.0$ | $-36.8$ | -36.7 | -36.7 |
| 58.0 | -34.5 | $-34.6$ | $-35.0$ | $-35.5$ | -3t. 3 | -37.2 | -38.2 | $-39.1$ | $-39.9$ | $-40.3$ | -40.3 | -40.0 | -39.5 | -39.0 | $-38.6$ | $-38.3$ | -38.1 | -38.0 | -37.9 |
| $60.0$ | -35.7 | -34.9 -37.1 | -3t.2 | -38.8 | -37.5 -38.7 | -39.4 | -39.4 | -40.3 -41.8 | $\begin{aligned} & -41.1 \\ & -4>04 \end{aligned}$ | -41.6 | -41.6 | -41.2 | -40.7 | -40.3 | -34.9 | -39.6 | -39.3 -40.6 | -39.2 | -39.2 |
| 62.6 64.0 | -37.0 -36.3 | -37.1 -38.4 | -37.5 -32.7 | -38.0 -37.3 | -38.7 -40.0 | -39.0 -40.9 | $\begin{aligned} & -40.6 \\ & -41.8 \end{aligned}$ | $\begin{aligned} & -41.0 \\ & -67.9 \end{aligned}$ | $\begin{aligned} & -47.4 \\ & -49.9 \end{aligned}$ | $\begin{aligned} & -42.8 \\ & -44.1 \end{aligned}$ | $\begin{aligned} & -42.8 \\ & -44.2 \end{aligned}$ | $\begin{aligned} & -42.5 \\ & -43.8 \end{aligned}$ | $\begin{aligned} & -42.0 \\ & -43.4 \end{aligned}$ | $\begin{aligned} & -41.6 \\ & -42.9 \end{aligned}$ | -41.2 -42.5 | $\begin{aligned} & -40.9 \\ & -42.2 \end{aligned}$ | $\begin{aligned} & -40.6 \\ & -42.0 \end{aligned}$ | -40.5 | -40.5 |
| t6.0 | -35.6 | -39.7 | -40.0 | -40.6 | -41.3 | -42.2 | -43.2 | -44.2 | -45.0 | -45.5 | -45.5 | -45.2 | -44.7 | -44.3 | -43.9 | -43.6 | -43.4 | -43.2 | -43.2 |
| 68.0 | -41.0 | -41.2 | -41.4 | -42.0 | -42.7 | -43.6 | -44.6 | -45.6 | -46.4 | -46.9 | -46.9 | -46.6 | -46.2 | -45.7 | -45.3 | -45.0 | -44.8 | -44.7 | -44.6 |
| 70.0 | -42.6 | -42.5 | -42.8 | -43.4 | -44.1 | -45.0 | -4E. 0 | -47.0 | -47.8 | -48.3 | -48.4 | -48.1 | -47.6 | -47.2 | -46.8 | -46.5 | -46.3 | -46.2 | -46.1 |


| INC IDENCE ANGLE (DEG) | 0.0 | 10.0 | 20.0 | 30.0 | 46.0 | 20.0 | 60.0 | $\begin{gathered} \text { RELATIV } \\ 70.0 \end{gathered}$ | $\begin{aligned} & \text { TVE } 4211 \\ & 80.0 \end{aligned}$ | $\begin{gathered} \text { IMUTH } \\ 90.0 \end{gathered}$ | $\begin{aligned} & \text { ANGLE } \\ & , \quad 100.0 \end{aligned}$ | $\begin{aligned} & \text { CDEG } \\ & 0120.0 \end{aligned}$ | 220.0 | 230.0 | 140.0 | 130.0 | 160.0 | 270.0 | 280.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 11.2 | 11.2 | 12.2 | 11.2 | 12.2 | 11.2 | 11.2 | 11.2 | 11.2 | 11.2 | 11.2 | 12.2 | 11.2 | 11.2 | 21.2 | 11.2 | 11.2 | 11.2 | 11.2 |
| 2.0 | 11.1 | 11.2 | 11.1 | 11.1 | 22.1 | 11.1 | 11.2 | 21.1 | 11.1 | 12.1 | 12.l | 12.1 | 11.2 | 11.1 | 11.1 | 11.: | 12.1 | 11.1 | 21.1 |
| 4.0 | 16.6 | 10.6 | 10.0 | 10.2 | 10.6 | 10.0 | 10.6 | 20.6 | 10.6 | 10.5 | 10.6 | 10.5 | 10.6 | 10.6 | 10.6 | 10.6 | 10.6 | 10.6 | 10.6 |
| t. 0 | 9.9 | 9.9 | 9.9 | 9.9 | 9.7 | 3.9 | 9.8 | 9.8 | 9.8 | 9.8 | 9.8 | 9.8 | 9.8 | 9.9 | 9.9 | 4.9 | 9.9 | 9.9 | 9.9 |
| 8.0 | 8.9 | 8.9 | 8.9 | 0.9 | 8.8 | 8.8 | 8.8 | B. 8 | 9.7 | 8.7 | 8.7 | 8.8 | 8.8 | 8.8 | 0.8 | 6.9 | 0.9 | 8.9 | 8.9 |
| 1C.0 | 7.6 | 7.6 | 7.6 | 7.5 | 7.5 | 7.4 | 7.4 | 7.3 | 7.3 | 7.3 | 7.3 | 7.3 | 7.4 | 7.4 | 7.5 | 7.5 | 7.6 | 7.6 | 7.6 |
| 12.0 | 6.0 | 6.0 | 5.9 | 5.9 | 5.8 | 5.7 | 5.7 | 5.6 | 5.6 | 5.6 | 5.6 | 5.6 | 5.7 | 5.7 | 5.8 | 3.9 | 5.9 | 5.9 | 6.0 |
| 24.0 | 4.1 | 4.1 | 4.0 | 3.9 | 3.8 | 3.7 | 3.6 | 3.5 | 3.5 | 3.4 | 3.5 | 3.5 | 3.6 | 3.7 | 3.8 | 3.9 | 3.9 | 4.0 | 4.0 |
| 16.0 | 1.9 | 1.8 | 1.7 | 1.6 | 1.4 | 1.3 | 1.2 | 1.0 | 1.0 | - 9 | 1.0 | 2.0 | 1.1 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | 1.7 |
| 10.6 | -. 6 | 7 | -. 8 | -1.0 | -1.2 | -1.4 | -1.6 | -1.7 | -1.9 | -1.9 | -1.9 | -2.0 | -2.7 | -1.5 | -1.4 | -1.2 | -3. 2 | -2.0 | -. 9 |
| 26.0 | -3.3 | -3.4 | -3.0 | $-3.9$ | -4.2 | -4.5 | -4.7 | -4.9 | -5.1 | -5.1 | -5.1 | $-500$ | -4.8 | -4.6 | -4.4 | -4.2 | -4.2 | -3.9 | -3.9 |
| 22.6 | -5.7 | -6.0 | -t. 3 | -6.ci | -7.2 | -7.6 | -8.0 | -4.7 | -5.5 | -8.6 | -8.5 | -6.3 | -3.: | -7.9 | -7.7 | -7.5 | -7.3 | -7.1 | -7. 1 |
| 24.6 | -0. 2 | -8.4 | -3.5 | -9.4 | -10.0 | $-10.6$ | -11.2 | -11.9 | -11.8 | -12.0 | -11.9 | -11.7 | -11.4 | -11.2 | -11.0 | -10.7 | -10.5 | -10.3 | -10.2 |
| 20.0 | -1c. 1 | -10.3 | -10.0 | -12.5 | -12.3 | -13.0 | -13.7 | $-14.2$ | -14.7 | -14.9 | -14.8 | -14.5 | -14.2 | -14.0 | -13.8 | -13.6 | -13.3 | -13.1 | -13.0 |
| 28.0 | -11.5 | -11.7 | -12.3 | -13.1 | -14.0 | -14.8 | -15.5 | $-1307$ | -16.8 | -17.1 | -16.9 | -16.6 | -16.3 | -10.1 | -15.9 | -15.7 | -15.4 | -15.2 | -15.1 |
| 30.0 | -12.3 | $-13.0$ | $-13.6$ | $-14.4$ | $-15.3$ | $-1 \epsilon .2$ | -17.0 | -17.7 | -19.3 | -18.6 | -18.5 | -18.2 | -17.0 | -17.6 | -17.4 | -17.3 | -17.0 | -16.8 | -16.7 |
| 32.0 | $-14.2$ | -14.4 | -14.9 | $-15.7$ | -10.0 | -17.5 | -1a.3 | $-12.1$ | -17.8 | $-20.1$ | $-20.0$ | $-19.6$ | $-17.3$ | $-19.0$ | -18.8 | -19.6 | -19.4 | $-18.2$ | $-18.1$ |
| 34.0 | -15.3 | -1. | -16.5 | $-17.2$ | -2. 1 | -17.0 | -19.9 | $-20.7$ | -21.3 | -71.7 | -2i.6 | -21.2 | -29.8 | -20.5 | $-20.3$ | $-20.2$ | -29.9 | $-19.7$ | $-19.7$ |
| 36.0 | -17.3 | -17.5 | $-13.0$ | - 16.7 | -15.6 | -20. 5 | -21.4 | -22.? | $-23.9$ | $-73.2$ | -23.1 | -22.7 | -22.3 | -22.0 | -21.8 | -21.6 | -21.4 | -21.2 | -21.1 |
| 38.0 | -18.9 | $-14.0$ | -19.4 | -20.1 | - 21.0 | -21.9 | $-27.8$ | -2?.6 | -24.3 | $-74.7$ | -24.6 | $-24.2$ | -23.8 | -23.4 | $-23.2$ | -22.9 | -22.7 | -22.6 | $-22.5$ |
| 40.6 | $-20.2$ | -2C.4 | $-20.0$ | $-21.5$ | -22.3 | $-23.2$ | -24.1 | $-25.2$ | $-29.7$ | - 76.1 | -26.0 | -25.6 | -25.2 | -24.8 | $-24.5$ | -24.3 | -24.1 | -23.9 | $-23.9$ |
| $42.0$ | $-21.6$ | $-21.7$ | $-22.2$ | $-22.8$ | $-23.0$ | $-24.5$ | $-25.5$ | $-25.3$ | $-27.1$ | -27.4 | -27.3 | $-27.0$ | -26.5 | -26.1 | -25.8 | -25.6 | -25.4 | -25.2 | $-25.2$ |
| $44.0$ | $-22.9$ $\begin{aligned} & -\ll 0 y \\ & -240 \end{aligned}$ | $-23.1$ | $-23.5$ | $-24.1$ | -24.7 | -25.8 | $-26.7$ | $-27.6$ | $-79.4$ | -28.7 | -28.7 | $-28.3$ | -27.8 | -27.4 | $-27.1$ | -20.8 | $-26.6$ | $-26.5$ | $-26.5$ |
| $46.0$ | $\begin{aligned} & -24.2 \\ & -25.5 \end{aligned}$ | $-24.3$ | $-24.7$ | $-25.3$ | $-26.1$ | -27.0 | -28.0 | $-24.9$ | $-29.3$ | -30.0 | -29.9 | $-29.6$ | -29.1 | -28.7 | - 28.3 | -28.1 | -27.9 | -27.7 | $-27.7$ |
| $48.0$ | $-25.5$ | $-25.6$ | $-23.0$ | -26.6 | $-27.4$ | $-28.3$ | $-29.2$ | $-30.1$ | $-30.9$ | $-31.2$ | -31.2 | $-30.8$ | -30.4 | -29.9 | -29.6 | $-29.3$ | $-27.1$ | -29.0 | -28.9 |
| 50.0 | -26.7 | -25.8 | $-27.2$ | -27.8 | $-28.6$ | -29.5 | - 36.4 | $-31.4$ | -37.1 | -32.5 | -32.4 | -32.1 | $-31.6$ | -31.2 | -30.8 | -30.5 | -30.3 | $-30.2$ | -30.1 |
| 52.0 | -27.9 | -28.0 | -28.4 | -29.0 | -29.8 | -30.7 | -31.6 | -32.6 | $-33.3$ | $-33.7$ | -33.7 | $-33.3$ | $-32.8$ | -32.4 | -32.0 | -31.7 | $-31.5$ | -31.4 | -31.4 |
| 54.0 | $-24.1$ | $-29.3$ | -29.6 | -3.J.2 | - 31.3 | -31.9 | -32.8 | -33.8 | $-34.5$ | -34.9 | -34.9 | -34.6 | $-34.1$ | -33.6 | $-33.2$ | -32.9 | -32.7 | -32.6 | -32.6 |
| $5 \pm .0$ | -30.3 | $-30.5$ | -30.8 | -31.4 | -32.1 | -33.0 | -34.0 | -35.0 | -35.7 | -36.2 | -36.1 | -35.8 | -35.3 | -34.9 | $-34 \cdot 5$ | -34.2 | $-34.0$ | -33.8 | $-33.8$ |
| $50.0$ | $-31.6$ | -31.7 | -32.0 -33.3 | -32.6 | -33.4 | $-34.3$ | -35.2 -36.5 | $-33.2$ | $-37.0$ | -37.4 | -37.4 | $-37.0$ | $-36.6$ | $-36.1$ | $-35.7$ | $-35.4$ | -35.2 | -35.1 | -35.0 -36.3 |
| $\begin{aligned} & E=0 \\ & 62 . C \end{aligned}$ | $\begin{aligned} & -32.8 \\ & -34.0 \end{aligned}$ | $\begin{aligned} & -32.9 \\ & -34.2 \end{aligned}$ | $\begin{aligned} & -33.3 \\ & -34.5 \end{aligned}$ | $\begin{aligned} & -33.0 \\ & -35.1 \end{aligned}$ | $\begin{aligned} & -34.6 \\ & -35.8 \end{aligned}$ | $\begin{aligned} & -35.5 \\ & -36.7 \end{aligned}$ | $\begin{aligned} & -36.5 \\ & -37.7 \end{aligned}$ | $\begin{aligned} & -37.4 \\ & -38.7 \end{aligned}$ | $\begin{aligned} & -38.2 \\ & -30.5 \end{aligned}$ | $\begin{aligned} & -38.6 \\ & -39.9 \end{aligned}$ | $\begin{aligned} & -38.6 \\ & -39.9 \end{aligned}$ | $\begin{aligned} & -38.3 \\ & -39.6 \end{aligned}$ | $\begin{aligned} & -37.8 \\ & -39.1 \end{aligned}$ | $\begin{array}{r} -37.4 \\ -38.7 \end{array}$ | $\begin{aligned} & -37.0 \\ & -38.3 \end{aligned}$ | $\begin{aligned} & -36.7 \\ & -38.0 \end{aligned}$ | $\begin{array}{r} -36.5 \\ -37.8 \end{array}$ | $\begin{aligned} & -36.3 \\ & -37.6 \end{aligned}$ | -36.3 -37.6 |
| $\begin{aligned} & 62.6 \\ & 64.6 \end{aligned}$ | $\begin{aligned} & -34.0 \\ & -35.3 \end{aligned}$ | $\begin{aligned} & -34.2 \\ & -35.4 \end{aligned}$ | $\begin{aligned} & -34.5 \\ & -35.8 \end{aligned}$ | $\begin{aligned} & -35.1 \\ & -36.3 \end{aligned}$ | $\begin{aligned} & -35.8 \\ & -37.1 \end{aligned}$ | $\begin{aligned} & -36.7 \\ & -39.0 \end{aligned}$ | $\begin{aligned} & -37.7 \\ & -39.0 \end{aligned}$ | $\begin{array}{r} -38.7 \\ -39.9 \end{array}$ | $\begin{aligned} & -3 n .5 \\ & -47.7 \end{aligned}$ | $\begin{aligned} & -39.9 \\ & -61 . ? \end{aligned}$ | $\begin{aligned} & -39.9 \\ & -61, ? \end{aligned}$ | $-39.6$ | $\begin{aligned} & -39.1 \\ & -4 C .4 \end{aligned}$ | $\begin{aligned} & -38.7 \\ & -40.0 \end{aligned}$ | $\begin{aligned} & -30.3 \\ & -200 . \end{aligned}$ | $\begin{aligned} & -38.0 \\ & -20 \end{aligned}$ | -37.8 -39.2 | -37.6 -38.9 | 37.6 38.9 |
| 66.0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | -40.9 | -40.6 |  | -40.3 |  |
| 68.0 | -38.0 | -38.1 | -30.4 | $-39.0$ | -39.7 | -40.6 | -41.6 | -42.6 | -43.4 | -43.9 | -44.0 | -43.7 | -43.2 | -42.7 | -42.3 | -42.0 | -41.8 | -41.7 | -41.7 |
| 73.0 | -39.6 | $-39.5$ | $-39.8$ | -40.4 | -41.1 | -42.0 | -43.0 | -44.0 | -44.9 | -45.3 | -45.4 | -45.1 | -44.7 | -44.2 | -43.8 | -43.5 | -43.3 | -43.2 | -43.2 |

NRCS TAGLE IN DECIBELS

FRECUENCY 13.9 GHZ
HORIZONTAL POLARIZATION
FRICTION VELOCITY- 30.0 CMISEC

| INCIDENCE ANGLE ITEG | c. 0 | 10.0 | 20.0 | 30.0 | 40.0 | 50.0 | 60.0 | $\begin{aligned} & \text { REL ATI I } \\ & 70.0 \end{aligned}$ | $\begin{gathered} \text { IVE } A ? I \\ 00.0 \end{gathered}$ | $\begin{aligned} & 4 \cup \gamma H \\ & 90.0 \end{aligned}$ | $\begin{aligned} & \text { ANGLE } \\ & 100.0 \end{aligned}$ | $\begin{aligned} & (D E G) \\ & 110.0 \end{aligned}$ | 120.0 | 130.0 | 140.0 | 150.0 | 160.0 | 170.0 | 180.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 20.9 | 20.9 | 10.9 | 10.9 | 10.9 | 10.9 |
| 2.0 | 10.8 | 10.8 | 20.8 | 10.8 | 10.8 | 10.7 | 10.7 | 10.7 | 10.7 | 10.7 | 10.7 | 10.7 | 10.7 | 10.7 | 10.8 | 10.8 | 10.8 | 10.8 | 10.8 |
| 4.0 | 16.4 | 10.4 | 10.4 | 10.4 | 14.3 | 10.3 | 20.3 | 19.3 | 13.3 | 10.3 | 10.3 | 10.3 | 10.3 | 10.3 | 20.3 | 10.4 | 10.4 | 20.4 | 10.4 |
| 6.0 | 9.7 | 9.7 | 9.7 | 9.7 | 9.7 | 9.6 | 9.6 | 7.5 | 9.6 | 9.6 | 9.6 | 9.6 | 9.6 | 9.6 | 9.7 | 9.7 | 9.7 | 9.7 | 9.7 |
| 8.0 | 8. ${ }^{\text {c }}$ | 8.8 | 8.6 | 8.7 | 6.7 | 8.7 | 8.6 | 8.6 | *. 6 | 0.6 | 8.6 | 8.6 | 8.6 | 8.7 | 8.7 | 8.7 | 8.7 | 8.8 | 8.8 |
| 13.0 | 7.6 | 7.6 | 7.5 | 7.5 | 7.5 | 7.4 | 7.4 | 7.3 | 7.3 | 7.3 | 7.3 | 7.3 | 7.4 | 7.4 | 7.4 | 7.5 | 7.5 | 7.5 | 7.6 |
| 12.0 | 6.1 | 6.1 | t. 1 | 6.0 | 5.9 | 5.8 | 5.8 | 5.7 | 5.7 | 5.7 | 5.7 | 5.7 | 5.8 | 5.8 | 5.9 | 6.0 | 6.0 | 6.0 | 6.1 |
| 14.0 | 4.4 | 4.3 | 4.3 | 4.2 | 4.1 | 4.0 | 3.9 | 3. B | 3.7 | 3.7 | 3.7 | 3.8 | 3.9 | 3.9 | 4.0 | 4.1 | 4.2 | 4.2 | 4.2 |
| 16.0 | 2.4 | 2.3 | 2.2 | 2.1 | 1.9 | 1.8 | 1.6 | 1.5 | 1.5 | 1.4 | 1.5 | 1.5 | 1.6 | 1.7 | 1.8 | 2.0 | 2.0 | 2.2 | 2.1 |
| 18.5 | . 1 | . 1 | 1 | 3 | 5 | . 7 | -. 9 | $-1.0$ | -1.2 | -1.2 | -1.2 | -1.1 | -. 9 |  | -. 7 | -. 5 | -. 4 | -. 3 | -. 3 |
| 20.0 | -2.2 | -2.3 | -2.t | -2.9 | -3.2 | -3.5 | -3.7 | -3.9 | -4.1 | -4.1 | -4.1 | -4.0 | -3.8 | -3.6 | -3.5 | -3.3 | -3.1 | -3.0 | -3.0 |
| 22.0 | -4.3 | -4.7 | -5.0 | -5.4 | -5.9 | -6. 3 | -0.6 | -6.9 | -7.1 | -7.2 | -7.2 | -7.0 | -6.8 | -6.6 | -6.4 | -6.2 | -6.0 | -5.9 | -5.8 |
| 24.0 | -t. 6 | -t. 7 | -7.2 | -7.4 | -8.4 | -9.0 | -9.4 | $-9.9$ | -10.2 | -10.3 | -16.2 | -10.0 | -9.8 | -9.6 | -9.4 | -9.1 | -8.9 | -8.7 | -6.7 |
| 26.0 | -8.2 | -8.4 | -5.7 | $-4.7$ | -16.b | -12.2 | $-11.8$ | -17.3 | -1?. 8 | -13.0 | -i2.9 | -12.6 | -12.3 | -12.2 | -12.9 | $-11.7$ | -11.5 | $-22.2$ | $-11.2$ |
| 28.0 | $-9.5$ | $-9.7$ | $-10.3$ | -11.1 | -12.0 | -12.8 | -13.5 | -14.2 | $-14.7$ | $-15.0$ | $-14.9$ | -14.6 | $-14.2$ | $-14.0$ | -13.9 | $-13.7$ | -13.4 | -13.2 | -13.1 |
| 3 CO | -10.7 | -10.9 | $-11.5$ | $-12.3$ | $-13.2$ | $-14.1$ | -14.0 | $-15.9$ | $-13.2$ | $-16.5$ | -14.4 | $-16.0$ | -15.7 | -15.5 | -15.3 | $-25.1$ | -14.9 | $-14.7$ | -14.6 |
| 32.0 | -12.9 | -12.1 | $-12.7$ | $-13.5$ | $-54.4$ | -15.3 | -16.1 | $-16.7$ | $-17.5$ | -17.8 | $-17.7$ | $-17.3$ | $-17.0$ | -16.8 | -16.6 | -16.4 | -16.2 | -26.0 | -15.9 |
| 34.0 | -23.3 | -13.5 | -14.0 | -14.8 | -15.7 | $-16.6$ | -17.5 | $-19.3$ | $-17.9$ | -19.2 | -19.1 | -18.8 | -18.4 | $-18.1$ | -17.9 | -17.8 | -17.5 | $-27.4$ | -17.3 |
| 36.0 | $-14.9$ | $-15.1$ | $-15.6$ | -16.3 | $-17.2$ | -18.1 | $-19.0$ | $-19.9$ | -29.5 | -26.8 | $-20.7$ | $-20.3$ | -19.9 | -19.6 | -19.4 | $-19.2$ | $-19.0$ | $-28.9$ | -18.8 |
| 36.0 | -1t.4 | -1t. 6 | -17.0 | -17.7 | $-2 E .6$ | $-: 17.5$ | -20.4 | -21.2 | -21.9 | -22.3 | -22.2 | -21.8 | -21.4 | -21.2 | -20.3 | -23.6 | -20.4 | -2C.2 | -20.2 |
| 40.0 | -17. | -18.0 | -18.4 | -19.1 | -19.9 | -20.8 | -21.8 | $-22.6$ | $-23.3$ | -23.7 | -23.6 | -23.2 | -22,8 | -22.4 | $-22.1$ | -21.9 | $-21.7$ | -21.6 | -21.5 |
| 42.0 | $-19.2$ | -19.3 | -19.8 | $-20.4$ | $-21.2$ | -22.1 | -23.1 | -24.9 | $-24.7$ | -25.0 | -24.9 | $-24.6$ | $-24.1$ | -23.8 | $-23.5$ | $-23.2$ | -23.0 | -22.9 | -22.8 |
| 44.0 | -20.5 | -20.6 | -21.2 | -21.7 | -22.5 | $-23.4$ | -24.4 | $-25.3$ | $-26.0$ | -26.3 | -2t.3 | -25.9 | $-25.5$ | -25.0 | -24.7 | $-24.5$ | -24.3 | -24.2 | -24. 1 |
| $46.0$ | $-21.8$ | -21.9 | -22.3 | $-23.0$ | $-23.8$ | -24.7 | $-25.6$ | $26.5$ | $-27.2$ | -27.6 | -27.6 | $-27.2$ | $-26.7$ | -26.3 | -26.0 | $-25.7$ | -25.5 | $-25.4$ | -25.4 |
| 42.0 | -23.0 | -23.2 | -23.6 | -24.2 | -25.0 | -25.9 | $-26.6$ | -7.8 | -29.5 | -28.9 | -28.8 | -28.5 | $-28.0$ | -27.6 | $-27.2$ | $-27.0$ | -26.8 | -26.6 | -26.6 |
| 50.0 | $-24.3$ | -24.4 | -24.8 | -25.4 | -26.2 | $-27.1$ | -28.0 | $-23.9$ | -29.7 | $-30.1$ | $-30.1$ | -29.7 | $-29.2$ | -28.8 | -28.4 | $-28.2$ | $-28.0$ | $-27.9$ | $-27.8$ |
| 52.0 | -25.5 | -25.6 | -2t.0 | -2t. 6 | -27.4 | -28.3 | -29.2 | -3).? | $-39.9$ | -31.3 | $-31.3$ | -30.9 | -30.5 | -30.0 | $-29.7$ | $-29.4$ | -29.2 | -29.1 | -29.0 |
| 54.0 | -26.7 | -20.0 | -27.2 | -27.8 | -29.6 | $-29.5$ | -30,4 | $-31.4$ | $-32.2$ | $-32.6$ | $-32.5$ | -32.2 | $-31.7$ | $-31.3$ | -30.9 | -30.6 | -30.4 | $-30 \cdot 3$ | -30.2 |
| 56.0 | $-27.9$ | -28.1 | -28.4 | $-29.0$ | -29.8 | $-30.7$ | - 21.6 | -32.6 | -33.4 | -33.8 | -33.8 | -33.4 | -32.9 | $-32.5$ | -32.1 | -31.8 | -31.6 | -31.5 | -32.5 |
| 58.0 | -25.2 | -29.3 | -29.6 | -30.2 | -31.0 | -31.8 | -32.8 | -33.8 | -34.6 | -35.0 | -35.0 | -34.7 | - 34.2 | -33.7 | -33.3 | -33.2 | -32.9 | $-32.7$ | -32.7 |
| 60.0 | -36.4 | -30.5 | -30.9 | $-31.4$ | $-32.2$ | $-33.1$ | -34.1 | -35.0 | $-35.8$ | -36.2 | -36.2 | -35.9 | -35.5 | -35.0 | -34.6 | $-34.3$ | $-34.1$ | $-34.0$ | -33.9 |
| 62.0 | -31.6 | -31.7 | -32.1 | $-32.7$ | $-33.4$ | $-34.3$ | -35.3 | -36.3 | $-37.1$ | -37.5 | -37.5 | $-37.2$ | $-36.7$ | -36.3 | $-35.9$ | $-35.6$ | $-35.4$ | -35.3 | $-35.2$ |
| 64.0 | - 52.9 | -33.0 | -33.4 | -33.9 | $-34.7$ | -35.6 | -36.6 | -37.5 | -38.3 | -38.8 | -38.8 | -38.5 | $-38.0$ | $-37.6$ | $-37.2$ | $-36.9$ | $-36.7$ | -36.6 | -36.5 |
| 66.0 | -34.2 | -34.3 | $-34.7$ | $-35 \cdot 2$ | $-30.0$ | $-36.9$ | $-37.8$ | $-39.9$ | $-39.7$ | $-40.1$ | $-40.2$ | $-39.8$ | $-39.4$ | -38.9 | $-38.5$ | $-38.2$ | -38.0 | -37.9 | -37.9 |
| 68.0 70.0 | -35.6 -37.0 | -35.7 -37.2 | $\begin{aligned} & -36.0 \\ & -37.4 \end{aligned}$ | $\begin{aligned} & -36.5 \\ & -37.9 \end{aligned}$ | $\begin{aligned} & -37.3 \\ & -38.7 \end{aligned}$ | $\begin{aligned} & -3 e .2 \\ & -39.6 \end{aligned}$ | $\begin{aligned} & -39.2 \\ & -40.6 \end{aligned}$ | $\begin{aligned} & -40.2 \\ & -41.6 \end{aligned}$ | $\begin{aligned} & -41.0 \\ & -42.4 \end{aligned}$ | $\begin{aligned} & -41.5 \\ & -42.9 \end{aligned}$ | $\begin{aligned} & -41.5 \\ & -43.0 \end{aligned}$ | $\begin{aligned} & -41.2 \\ & -42.7 \end{aligned}$ | -40.8 | -40.3 | $\begin{aligned} & -99.9 \\ & -41.4 \end{aligned}$ | $\begin{aligned} & -39.6 \\ & -42.8 \end{aligned}$ | $\begin{aligned} & -39.4 \\ & -40.9 \end{aligned}$ | $\begin{aligned} & -39.3 \\ & -40.8 \end{aligned}$ | $\begin{array}{r} -39.3 \\ -40.7 \end{array}$ |


| inctidence angle toess | $0 \cdot 0$ | 10.0 | 20.0 | 30.0 | 40.0 | 50.0 | 60.0 | $\begin{aligned} & \text { RELATI } \\ & 70.0 \end{aligned}$ | $\begin{gathered} \text { IVE AZI } \\ 00.0 \end{gathered}$ | $\begin{aligned} & \text { IMUTH } \\ & 90.0 \end{aligned}$ | $\begin{aligned} & \text { MNGLE } \\ & 0 \quad 100.0 \end{aligned}$ | $\begin{aligned} & (D E G) \\ & 110.0 \end{aligned}$ | 120.0 | 130.0 | 140.0 | 150.0 | 160.0 | 170.0 | 180.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 10.6 | 10.6 | 10.6 | 10.6 | 10.6 | 20.6 | 10.6 | 10.6 | 13.6 | 10.6 | 10.6 | 20.6 | 10.6 | 10.6 | 10.6 | 10.6 | 10.6 | 10.6. | 10.6 |
| 2.0 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 20.5 | 20.5 | 20.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 20.5 | 20.5 | 20.5 |
| 4.0 | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 | 20.1 | 10.2 | 20.1 | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 | 20.1 | 10.1 | 10.1 | 10.1 | 20.1 |
| 6.0 | 9.5 | 9.5 | 9.5 | 9.5 | 4.5 | 9.5 | 9.5 | 9.4 | 9.4 | 9.4 | 9.4 | 9.4 | 9.4 | 9.5 | 9.5 | 9.3 | 9.5 | 9.5 | 9.5 |
| 9.0 | 8.7 | 6.7 | 8.6 | 8.6 | E. 6 | 8.6 | 0.5 | 9.5 | 8.5 | 6.5 | 0.5 | 8.5 | 0.5 | 8.6 | 0.6 | e. 6 | 8.6 | 8.6 | 8.6 |
| 10.0 | 7.6 | 7.5 | 7.5 | 7.5 | 7.4 | 7.4 | 7.3 | 7.3 | 7.3 | 7.3 | 7.3 | 7.3 | 7.3 | 7.4 | 7.4 | 7.4 | 7.5 | 7.5 | 7.5 |
| 12.0 | 6.2 | 6.2 | 6.1 | 6.1 | 0.6 | 5.9 | 5.8 | 5.8 | 5.8 | 5.7 | 5.8 | 5.8 | 5.8 | 5.9 | 6.0 | 6.0 | 6.1 | 6.1 | 6.2 |
| 14.0 | 4.6 | 4.5 | 4.5 | 4.4 | 4.3 | 4.2 | 4.1 | 4.1 | 3.9 | 3.9 | 3.9 | 4.0 | 4.1 | 4.1 | 4.2 | 4.3 | 4.4 | 4.4 | 4.4 |
| 16.0 | 2.7 | 2.7 | 2.6 | 2.4 | 2.3 | 2.1 | 2.0 | 1.9 | 1.8 | 1.8 | 1.8 | 1.9 | 2.0 | 2.1 | 2.2 | 2.3 | 2.4 | 2.4 | 2.5 |
| 18.0 | . 7 | - 6 | . 5 | - 3 | - 0 | $-.2$ | , | 5 | . 6 | -. 6 | -. 6 | -. 5 | -. 4 | -. 3 | -. 1 | - $=0$ | . 1 | -2 | 2 |
| 20.0 | -1.4 | -1.5 | -1.7 | -2.1 | -2.4 | -2.7 | -2.9 | -3.1 | -3.3 | -3.3 | -3.3 | -3.2 | -3.0 | -2.9 | -2.7 | -2.6 | -2.4 | -2.3 | -2.2 |
| 22.0 | -5.4 | -3.6 | -3.9 | $-4.4$ | -4.9 | -:. 3 | $-5.6$ | -9.9 | -5.2 | - 6.2 | -t. 2 | -6.0 | -5.8 | -5.6 | -5.6 | -5.3 | -5.2 | -4:9 | -4.9 |
| 24.0 | -5.2 | -5.4 | -5.4 | -t.s | $-7.1$ | -7.7 | -5. 2 | -9.6 | -9.9 | -9.0 | -e.9 | -8.7 | -8.5 | $-8.3$ | -8. 1 | -7.9 | -7.7 | -7.5 | -7.4 |
| 26.0 | -6.7 | -6.9 | -7.4 | -i. 2 | $-9.0$ | -9.7 | -10.3 | $-10.9$ | -11.2 | -11.5 | -11.4 | $-12.1$ | -10.0 | -10.6 | -16.4 | - 20.2 | -10.0 | -9.8 | -9.7 |
| 20.0 | -7.8 | -8.0 | -8.6 | -8.5 | $-12.3$ | $-11.1$ | -11.9 | $-17.5$ | $-17.0$ | -13.3 | $-13 . i$ | , 2.9 | -12.6 | -12.4 | -12.2 | -12.0 | -11.8 | -11.6 | -12.5 |
| 30.0 32.0 | -8.9 -16.0 | -9.1 -12.2 | -4.7 -10.4 | -10.5 -11.6 | -11.5 -12.0 | -12.3 -13.4 | -13.1 -14.2 | -13.8 $-15 . n$ | -14.4 -15.6 | -14.7 -15.9 | -14.8 -15.8 | -i 7.2 | -13.9 -15.1 | -23.7 | -13.6 -14.8 | -13.4 -14.6 | -13.2 -14.6 | -12.9 | -12.8 |
| 32.0 34.0 | -1C.0 | -ic.2 $-i 1.5$ | -10.4 -12.1 | -11.6 | $-12 . \%$ -12.6 | -13.4 | -14.2 -15.5 | -15.0 -16.3 | -15.6 -16.9 | -15.9 -17.2 | -15.8 -17.1 | -15.5 -16.8 | -15.1 | -14.9 -16.2 | -14.8 | -14.6 -15.8 | -14.4 -15.6 | -14.1 -15.4 | -14.0 -15.3 |
| 34.0 36.0 | -11.3 | -11.5 | -12.1 | -12.7 | -13.8 | -14.6 | -13.5 | -16.3 | -16.9 | -17.2 | -17.1 | -16.8 | -16.4 | -16.2 | -16.0 | -13.0 | -15.6 | $-15.6$ | $-15.3$ |
| 36.0 38.0 | -1203 | -: 3.6 | \% | -14.3 | - 2.62 | -15.1 -7.5 | -16.9 | -17.7 | -18.4 | -11.7 | -18.6 | -18.3 | -17.9 | -17.6 | -17.4 | -17.2 | $-17.0$ | -16.8 -18.8 | -16.8 |
| 38.0 42.0 | -i6. $-25 . j$ | -」.6. | -15.4 | -i7.1 | $-i 6 . t$ $-i 7.4$ | -18.8 | -18.7 | -20.6 | -17.9 | -21.6 | -21.0 | -17.8 -21.2 | -19.4 | -19.0 | -10.8 -20.2 | -28.6 -19.9 | -10.4 -19.7 | -18.2 -19.6 | -10.2 -19.5 |
| 42.0 | -17.1 | -17.3 | -17.7 | - 15.4 | $-19.2$ | -20.1 | -21. 1 | -21.9 | -22.6 | -23.0 | -22.9 | -22.6 | -22.1 | -21.8 | -21.5 | -21.2 | -21.0 | -20.9 | $-20.9$ |
| 44.6 | $-16.5$ | -11.t | -19.0 | -17.7 | -26.5 | -21.4 | -22.3 | -23.2 | -24.0 | $-24.3$ | -24.2 | -23.9 | -23.4 | -23.1 | -22.7 | -22.5 | -22.3 | $-22.2$ | -22.1 |
| 4t.l | -14.5 | -19.9 | -20.3 | -20.9 | -21.7 | -22.6 | -23.6 | -24.5 | -75.2 | -25.6 | -25.5 | -25.2 | -24.7 | -24.3 | -24.0 | -23.7 | -23.6 | -23.4 | -23.4 |
| $4 \mathrm{E} \cdot \mathrm{c}$ | -21.0 | $-2 i .2$ | -21.6 | $-22.2$ | $-23.0$ | $-23.9$ | -24.8 | $-25.7$ | $-26.5$ | -26.9 | $-26.8$ | -26.4 | $-26.0$ | $-25.6$ | $-25.2$ | $-25.0$ | -24.0 | -24.7 | -24.6 |
| 50.0 | -22.3 | -22.4 | -22.3 | -22.4 | -24.2 | -25.1 | -26.0 | -27.0 | $-27.7$ | $-28.1$ | -28.0 | -27.7 | -27.2 | -26.8 | -26.5 | -26.2 | $-26.0$ | -25.9 | $-25.8$ |
| 52.0 | -25.5 | -23.6 | -ミ6.C | -24.6 | $-25.4$ | $-26.3$ | -27.2 | $-29.2$ | -28.9 | $-29.3$ | -27.3 | -28.9 | -28.5 | -28.0 | $-27.7$ | -27.4 | -27.2 | $-27.1$ | $-27.0$ |
| 54.0 | -24.7 | -24.E | -25.2 | -25.6 | $-2 t \cdot t$ | -27.5 | -28.4 | -29.4 | -39.1 | - 36.5 | -34.5 | - 30.2 | -29.7 | $-29.3$ | -28.9 | -28.6 | -20.4 | -20.3 | $-28.2$ |
| 56.0 | -25.9 | -26.0 | -26.4 | -27.0 | -27.7 | -28.6 | -29.6 | $-30.6$ | $-21 \cdot 3$ | -31.8 | $-31.7$ | -31.4 | -30.9 | $-30.5$ | $-30.1$ | $-29.0$ | -29.6 | $-29.5$ | $-29.5$ |
| 50.0 60.0 | -27.1 | -27.2 -28.5 | -27.3 | -25.2 | -25.7 | $-27.8$ | -30.8 | $-31.9$ | $-32 \cdot 6$ | $-33.0$ | $-33.0$ | -32.6 | -32.2 | -31.7 | -31.3 | $-31.1$ | -30.9 | -30.7 | -30.7 |
| 60.0 | -26.3 | -28.5 -29.7 | $-2 E .6$ | -29.4 | -30.2 | -32.0 | $-32.0$ | $-33.0$ | $-37.0$ | $-34.2$ | $=34.2$ | -33.9 | -33.4 | $-33.0$ | -32.0 | -32.3 | -32.8 | -32.0 | -31.9 |
| E2.0 | -29.6 -30.9 | -29.7 -31.0 | -30.1 -31.3 | -30.6 | -31.4 | -32.3 -33.5 | -33.3 | $-34.2$ | $-35.0$ | -35.5 | -35.5 | $-35.2$ | -34.7 | $-34 \cdot 3$ | -33.9 | -33.6 | $-33.4$ | $-33.3$ | $-33.2$ |
| t6.0 | -30.9 | -31.0 -32.3 | -31.3 -32.6 | -31.9 .33 .2 | -32.6 | -33.5 -34.8 | -34.5 | -35.5 -36.8 | -36.3 | -36.8 | -36.8 -38.1 | -36.5 | $-36.0$ | -35.6 | -35.2 | -34.9 | -34.7 | $-34.6$ | -34.5 |
| 6E.0 | -32.2 | -32.3 | -32.6 | -33.2 | -33.9 | -34.8 | -3:.8 | -36.8 | -37.6 | -36.1 | -3e. 1 | -37.8 | -37.4 | -36.9 | -36.5 | -36.2 | -36.0 | -35.9 | -35.9 |
| 68.5 70.0 | -33.5 -34.9 | -33.6 -35.0 | -33.9 -35.3 | -34.5 -35.8 | -35.2 -36.6 | -36.1 -37.5 | -37.1 -38.5 | -39.2 -39.5 | -39.0 | -39.4 | -39.5 -40.9 | -39.2 | -38.7 | $-38.3$ | -37.9 | -37.0 | $-37.4$ | $-37 \cdot 3$ | $-37.2$ |
|  |  |  |  |  |  |  |  |  |  |  | -40. | -40. | 40. | -39.7 | -39.3 | -3900 | -38.8 | -30.7 | -38.7 |

nrcs tarle in deciaels

> FREOUENCY 13.9 GHZ
> HORIZNTAL PDLARIZATION
> FRICTION VELOCITY 40.0 CH/SEC

INCIDENCE
ANGLE (DEG)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
16.0
18.0
26.0
22.0
24.0
26.0
26.0
35.0
32.0
34.0
36.0
$3 E .0$
40.0
42.0
44.0
46.0
48.0
$5 C .0$
52.0
54.0
54.0
58.0
60.0
62.0
64.0
64.0
$6 E .0$
70.6

| 10.4 | 30.4 | 10.4 | 10.4 | 10.4 | 10.4 | 10.4 | 17.4 | 17.4 | 10.4 | 10.4 | 10.4 | 10.4 | 20.4 | 20.4 | 10.4 | 10.4 | 10.4 | 10.4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20.3 | 10.3 | 10.3 | 10.3 | 10.3 | 10.3 | 10.3 | 10.3 | 1n.3 | 10.3 | 10.3 | 10.3 | 10.3 | 20.3 | 10.3 | 10.3 | 20.3 | 10.3 | 20.3 |
| 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 |
| 9.4 | 9.4 | 4 | 3 | 4.3 | 9.3 | 9.3 | 9.3 | 9.3 | 9.3 | 9.3 | 9.3 | 9.3 | 9.3 | 9.3 | 9.3 | 9.3 | 9.4 | 4 |
| A. 6 | 8.6 | 8.5 | 8.5 | 8.5 | 8.5 | 8.4 | 9.4 | 9.4 | 8.4 | 8.4 | 8.4 | 8.4 | 8.4 | 8.5 | 8.5 | 8.5 | 8.5 | . 5 |
| 7.5 | 7.5 | 7.5 | 7.4 | 7.4 | 7.3 | 7.3 | 7.3 | 7.2 | 7.2 | 7.2 | 7.3 | 7.3 | 7.3 | 7.4 | 7.4 | 7.4 | 7.5 | 7.5 |
| 6.3 | 6.2 | 6.2 | 6.1 | 6.0 | 6.0 | 5.9 | $5 . A$ | 5.8 | 5.8 | 5.B | 5.8 | 5.9 | 5.9 | 6.0 | 6.1 | 6.1 | 6.1 | 6.1 |
| 4.7 | 4.7 | 4.6 | 4.5 | 4.4 | 4.3 | 4.2 | 4.2 | 4.1 | 4.1 | 4.2 | 4.1 | 4.2 | 4.3 | 4.4 | 4.4 | 4.5 | 4.5 | 4.6 |
| 3.0 | 3.0 | 2.9 | 2.7 | 2.6 | 2.4 | 2.3 | $2 . ?$ | 2.1 | 3.1 | 2.2 | 2.2 | 2.3 | 2.3 | 2.4 | 2.5 | 2.6 | 2.7 | 2.7 |
| 1.2 | 1.1 | . 9 | . 7 | . 5 | - 3 | . 1 | 1 | 2 | -. 2 | . 2 | -. 1 | . 0 | . 2 | . 3 | 4 | 5 | 6 | 6 |
| . 7 | S | 1.1 | -2.4 | -2.8 | -2.1 | -2.3 | -2.9 | -2.7 | -8.7 7 | -2.7 | -2.6 | -2.4 | -2.3 | -2.1 | -2.0 | -1.8 | -2.7 | 7 |
| -2.5 | -2.7 | -3.0 | -3.5 | -4.0 | -4.4 | -4.8 | -5.1 | -5.3 | -2.4 | -5.3 | -5.2 | -5.0 | -4.8 | -4.6 | -4.5 | 4.3 | -6. 8 | -4.2 |
| -4.1 | -4.3 | -4.7 | -5.4 | - 1.0 | -6.5 | -7.1 | -7. 5 | -7.8 | -6.0 | -7.9 | -7.7 | -7.4 | -7.2 | -7.1 | -6.9 | -6. | -6. | -6 |
| -5.4 | -5.6 | -5.1 | $-6.9$ | $-7.7$ | - 2.4 | -9.0 | -7.5 | $-15.0$ | -10.2 | -10.1 | -9.8 | -9.5 | -9.4 | -9.2 | -9.0 | -8. | -8.5 | -8.5 |
| -5.4 | - 6.0 | -7.2 | -9.1 | - 5.0 | -7.8 | -1C.4 | $-11.1$ | $-11.5$ | -11.9 | -11.: | , 11.5 | -11.2 | -11.0 | -10.8 | $-20.7$ | -20.4 | -10.2 | 10.1 |
| - 1 | -7.6 | -8.2 | -9.1 | -10.0 | -10.8 | -11.6 | $-12.3$ | $-12.9$ | $-13.2$ | $-13.1$ | $-12.7$ | -12.4 | -12.2 | -12.1 | -12.9 | $-11.7$ | -11.6 | -11.3 |
| -8.4 | -8.6 | -9.2 | -10.1 | -11.0 | $-11.9$ | - 12.6 | $-13.4$ | -14.0 | -14.3 | -14.2 | - 13.9 | -13.5 | -13.3 | -13.2 | -13.0 | -12.8 | -12. | -12.5 |
| -9.6 | -9.8 | -10.4 | -11.2 | -12.1 | -13.0 | -13.8 | $-14.6$ | -15.? | -15.6 | -15.5 | -85.1 | -14.7 | -14.5 | -14.3 | -14.2 | -14.0 | -13.7 | . 7 |
| -2:. 3 | -11.2 | -12.8 | $-12.5$ | $-13.4$ | $-14.3$ | $-15.2$ | $-16.0$ | $-15.6$ | $-17.0$ | -16.9 | -16.5 | -16.1 | -15.9 | -i5.7 | -15.5 | -15.3 | $-15.1$ | -15.0 |
| -12.5 | - 12.7 | $-13.2$ | -1'.0 | $-14.8$ | -15.7 | - 2.66 | -17.4 | -12.1 | -18.5 | -18.4 | $-28.0$ | -17.6 | -17.3 | -17.1 | -16.9 | -16.7 | $-16.5$ | -16.4 |
| -14.0 | -14.1 | -1\%.6 | -15.3 | $-15.2$ | -17.1 | $-1 \mathrm{H.O}$ | $-13.8$ | $-19.5$ | $-19.9$ | $-19.8$ | -19.4 | -19.0 | -18.7 | -18.4 | -16.2 | $-18.0$ | -17.9 | 7.8 |
| -15.4 | -15.5 | -16.0 | -1t.7 | $-37.5$ | -18.4 | -19.3 | $-21.2$ | $-21.9$ | -21.2 | -21.2 | $-20.8$ | -20.4 | -20.0 | -19.7 | $-19.5$ | -18.3 | -19.2 | -19.1 |
| -1t.7 | -10.0 | $-17 \cdot 3$ | -17.9 | -16.5 | $-19.7$ | $-20.6$ | -21.5 | $-2 ? .2$ | -22.6 | -22.5 | -22.1 | $-21.7$ | -21.3 | -21.0 | -20.8 | -20.6 | -20.5 | 20.4 |
| $-18.0$ | $-+5.1$ | $-18.5$ | -17.2 | $-2 r .0$ | -20.9 | -21.9 | -27. 8 | $-21.5$ | -23.3 | -23.8 | -23.4 | -23.0 | -22.6 | $-22.3$ | $-22.0$ | -21.8 | $-21.7$ | 21.7 |
| -19.2 | -i9.4 | $-19.3$ | -20.4 | -21.2 | $-22.1$ | -23.1 | -24.0 | -24.7 | - 25.1 | -25.1 | $-24.7$ | $-24.2$ | $-23.8$ | -23.5 | -23.3 | -23.1 | -22.9 | -22.9 |
| -20.5 | -20.6 | -21.0 -22.0 | -21.6 | -22.4 | -23.3 | -24.3 | $-25.7$ | -2h.0 | $-26.3$ | -26.3 | -26.0 | -25.5 | -25.1 | $-24.7$ | $-24.5$ | $-24.3$ | $-24.1$ | 24.8 |
| -21.7 | $-21 . E$ -23.1 | -22.2 | -22.6 | -23.6 | -24. | -25.5 | -2h. | -27.2 | -27.6 | -27.5 | -27.2 | $-26.7$ | -26.3 -27.5 | -25.9 | -25.7 | -25.5 | $-25.4$ | -25.3 |
| -22.1 | -23.1 -34.3 | -24.6 | -24.0 | -26.6 | -23.7 -26.9 | -26.7 -27.9 | -27.6 $-28 . A$ | -20.6 | -28.0 -30.0 | -28.8 -30.0 | -28.4 -29.7 | -28.0 -29.2 | -27.5 -28.7 | -27.2 | -26.9 | -26.7 | -26.6 | 6.5 |
| -25.6 | -25.5 | $-25.8$ | -25.4 | $-27.2$ | $-24.1$ | -2,. 1 | $-37.0$ | $-30.8$ | -31.2 | -31.2 | -30.9 | -39.2 | -28.7 -30.0 | -29.6 | -29.3 | -20.1 | 27 | 27.7 |
| -2t.6 | -2c.7 | -27.2 | -27.6 | -27.4 | -27.3 | -3c. 3 | -31.? | -3>.n | - 72.5 | -37.5 | -32.1 | -31.7 | -31.2 | -30.9 | -30.6 | -30.4 | -30.3 | -36. 2 |
| -27.8 | -27.7 | -28.3 | $-2 E .9$ | -29.5 | -30.5 | -31.5 | $-27.5$ | -3:. 3 | $-33.7$ | -33.7 | -33.4 | - 33.0 | -32.5 | - 3 ei 1 | -31.0 | -31.6 | -31.9 | -31.g |
| -29.1 | -29.2 | -29.5 | -30.1 | -36.\% | $-31.8$ | -3<. 8 | -33.7 | -34.5 | $-35.0$ | - 35.0 | -34.7 | -14.1 | - 31.8 | -14.4 | -31.1 | -9:.9 | -3i.9 | -3208 |
| -30.4 | -3c. 5 | -30.8 | -31.4 | -2.1 | -3 3.6 | -34.0 | -38.7 | -19.! | $-76.3$ | -3c. 3 | -1e.n | - 35.0 | -35.1 | $\cdots+1$ | - 34.4 | 36.7 | 34.1 | -1401 |
| -31.7 | -31.8 | -32.2 | -32.7 | -33. | $-34.4$ | 35.4 | 35.4 | \%1.? | 37.7 | -:7.1 | -31.4 | 11.6 | 34.03 | $11_{1}+1$ | -13.A | 3\%.4 | \$7. 4 |  |
| 33 | 33.2 | -33 | 34 | -34.8 | . 7 | 36 | 7 |  |  |  |  | -38.4 |  |  |  |  |  |  |

nrCs table in dectbels

## FREOUENCY - 13.9 GHZ horizontal polarization <br> fRICTION VELOCITY - 45.0 CH/SEC

| INCIDENCE ANGLE (DEG) | 0.0 | 10.0 | 20.0 | 30.0 | 40.0 | 50.0 | 60.0 | $\begin{aligned} & \text { RELATIV } \\ & 70.0 \end{aligned}$ | $\begin{gathered} \text { IVE ALI } \\ 8 \supset .0 \end{gathered}$ | $\begin{aligned} & \text { IMUTH } \\ & 90.0 \end{aligned}$ | $\begin{aligned} & \text { ANGLE } \\ & 100.0 \end{aligned}$ | $\begin{aligned} & (0 E G) \\ & 110.0 \end{aligned}$ | 120.0 | 130.0 | 140.0 | 156.0 | 260.0 | 170.0 | 180.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 10.2 | 10.2 | 10.2 | 10.2 | 10.2 | 10.2 | 10.2 | 10.2 | 10.2 | 10.2 | 10.2 | 10.2 | 10.2 | 10.2 | 10.2 | 10.2 | 10.2 | 10.2 | 10.2 |
| 2.0 | 10.2 | 20.1 | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 | 20.1 | 10.1 | 20.1 | 10.1 | 20.1 |
| 4.0 | 9. 8 | 9.8 | 9.8 | 9.1 | 9.6 | 9.8 | 9.7 | 9.7 | 9.7 | 9.7 | 9.7 | 9.7 | 9.7 | 9.7 | 9.8 | 9.8 | 9.8 | 9.8 | 9.8 |
| 6.0 | 9.2 | 9.2 | 9.2 | 9.2 | S. 2 | 9.2 | 9.2 | 9.1 | 9.1 | 9.1 | 9.1 | 9.1 | $\cdots \cdot 2$ | 9.2 | 9.2 | 9.2 | 9.2 | 9.2 | 9.2 |
| 8.0 | 8.5 | 6.5 | 8.4 | 8.4 | 8.4 | 8.4 | 8.3 | 8.3 | 8.3 | 8.3 | 8.3 | 8.3 | 8.3 | 8.4 | 8.4 | 8.4 | 8.4 | 8.4 | 8.4 |
| 20.0 | 7.5 | 7.5 | 7.4 | 7.4 | 7.3 | 7.3 | 7.3 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.3 | 7.3 | 7.3 | 7.4 | 7.4 | 7.4 | 7.4 |
| 12.0 | 6.3 | 6.3 | 6.2 | 6.1 | 6.1 | 6.0 | 5.9 | 5.9 | 5.8 | 5.8 | $5 \cdot 8$ | 5.9 | 5.9 | 6.0 | 6.0 | 6.1 | 6.1 | 6.2 | 6.2 |
| 14.0 | 4.9 | 4.9 | 4.8 | 4.7 | 4.5 | 4.4 | 4.4 | 4.3 | 4.2 | 4.2 | 4.2 | 4.3 | 4.3 | 4.4 | 4.5 | 4.5 | 4.6 | 4.7 | 4.7 |
| 16.0 | 3.3 | 3.3 | 3.1 | 3.0 | 2.6 | 2.6 | 2.5 | 2.4 | 2.3 | 2.3 | 2.3 | 2.4 | 2.5 | 2.6 | 2.7 | 2.8 | 2.9 | 2.9 | 2.9 |
| 18.0 | 1.6 | 1.5 | 1.6 | 1.1 | - 9 | . 6 | . 5 | - 3 | 2 | . 2 | . 2 | - 3 | 4 | . 5 | . 6 | 7 | -9 | 9 | 1.0 |
| 20.0 | -. 1 | 2 | -. 5 | . 9 | $-1.2$ | -1.5 | -1.8 | -?.0 | -2.1 | -2.2 | -2.2 | -2.0 | -1.9 | -1.8 | -1.6 | -1.5 | -8.3 | -1.2 | -1.2 |
| 22.0 | -1.7 | -i.9 | -2.3 | -2.5 | -3.3 | -3.7 | -4.0 | -4.3 | -4.6 | -4.7 | -4.5 | - 0 | -4.3 | . 1 | -4.0 | -3.8 | -3.6 | -3.4 | -3.4 |
| 24.0 | -3.1 | -3.3 | \% | -4.4 | . 1 | -5.7 | -6.1 | -h.t | 6.9 | -7.0 | -7.0 | -6.8 | -6.5 | -6.4 | -6. 2 | -6.0 | -5.0 | -5.6 | -5.5 |
| 26.0 | -4.2 | -4.4 | -5.2 | -5.8 | -4.6 | -7.3 | -7.9 | -9.4 | - 3 | -9.1 | -9.0 | -6.7 | -3.5 | -8.3 | -3.1 | -9.0 | -7.7 | -7.5 | -7.4 |
| 28.0 | -5.2 | -5.4 | -6.0 | -6.9 | -7.7 | -8.5 | -9.2 | -9.7 | -13.4 | -10.7 | -10.6 | -10.2 | -9.9 | -9.8 | -9.7 | -9.5 | -9.2 | -9.0 | -8.9 |
| 30.0 | -6.1 | -t. 3 | -6.9 | -7.8 | -8.7 | -9.5 | -10.3 | -11.0 | -11.6 | -11.9 | -11.8 | -11.4 | -11.1 | -10.9 | -12.8 | -10.7 | -10.t | -1C.? | -10.1 |
| 32.0 | -7.0 | -7. 2 | -7.0 | -6.7 | -9.5 | -10.5 | -11.3 | -12.7 | -1?.6 | -13.0 | -12.8 | -12.5 | -12.2 | -12.0 | -11.9 | -1:.7 | -12. | -11.2 | -11.1 |
| 34.0 | -8.1 | -5.3 | -5.\% | $-4.7$ | -10.7 | -11.5 | -12.4 | -13.1 | -13.9 | -14.1 | -14.0 | -13.6 | -13.3 | -13.1 | -12.7 | - $5: 7$ | -12.5 | -12.3 | $-12.2$ |
| 36.0 | -9.5 | -7.7 | -1 1.2 | -12.0 | -11.9 | -12.5 | -13.6 | -14.4 | -15.1 | - 5.4 | -15.j | -15.0 | -14.3 | $-14.3$ | -14. | -1-.c | -i3.8 | -13.5 | -13.5 |
| 33.6 | $-11.2$ | -12.1 | -12.7 | - 22.4 | $- \pm 3.3$ | $-14.2$ | -i5.1 | $-15.9$ | -10.6 | -16.9 | -16.8 | -16.5 | -16.1 | -25. | - 15.6 | -15.4 | -15.2 | $-15.0$ | -14.9 |
| 45.5 | -12.4 | -12.t | -13.1 | -13.3 | -14.0 | -15.5 | -16.4 | -17.3 | -13.0 | $-18.3$ | $-18.2$ | -17.9 | -17.5 | -17.1 | -16.7 | -26.7 | - 16.5 | -16.3 | $-16.3$ |
| 42.5 | $-i 3.3$ -15.1 | -14.0 | -14.4 | $-15.1$ | -16.0 | -16.9 | -17.8 | $-18.6$ | -19.3 | $-19.7$ | -19.6 | -18.3 -20.6 | -18.8 | -18.5 | -1 0.2 | -18.0 -19 | -17.8 | -17.7 | -17.6 -18.9 |
| $44 . C$ | $-25.1$ | -15.3 | -15.7 | -16.4 | -17.2 | -18.1 | -19.1 | -19.9 | $-2.07$ | -21.3 | -20.9 | -20.6 | -20.2 | $-19.8$ | $-19.5$ | $-14.3$ | -19.1 | $-18.9$ | $-18.9$ |
| $\begin{aligned} & 46.0 \\ & 45.0 \end{aligned}$ | -16.6 -17.7 | -16.6 -17.6 | -17.0 -1.2 | -17.7 | -18.5 | -19.4 -20.6 | -20.3 | -21.? | -21.9 | -22.3 -23.6 | $-22.2$ | -21.9 | -21.4 | -21.1 | -20.8 | -20.5 | -20.3 | $-2 C .2$ | -20.1 |
| $\begin{aligned} & 45.0 \\ & 50.0 \end{aligned}$ | -17.7 -28.7 | $-17 . t$ -19.1 | -15.2 -19.5 | -18.9 | -19.7 -26.7 | -20.6 | -21.5 | -22.5 -23.7 | -23.2 | -23.6 -24.9 | $-23.5$ | $-23.2$ | -22.7 | -22.3 | -22.0 | -2i.7 | -21.5 | -21.4 | -21.4 |
| 50.0 | $-{ }^{2} \cdot 7$ | -19.1 | -19.5 | -26.1 | -26.7 | -21.8 | -22.8 | -23.7 | -24.4 | -24.9 | -24.8 | -24.4 | -24.0 | -23.5 | -23.2 | -23.0 | -22.8 | -22.6 | -22.6 |
| 52.0 | $-20.2$ | -2C. 3 | -2c. 7 | -21.3 | -22.1 | -23.0 | -24.0 | $-24.9$ | -25.6 | -26.0 | -26.0 | -二5.7 | -25.2 | -24.0 | -24.4 | -24.2 | -24.0 | -23.8 | -23.8 |
| 54.0 | -22.4 | -21.5 | -21.9 | -22.5 | -23.3 | -24.2 | -25.1 | -25.1 | -2h.8 | -27.2 | -27.2 | -26.9 | -26.4 | -26.0 | -25.6 | -25.4 | -25.2 | -25.0 | -25.0 |
| 56.0 | -22.6 | -22.7 | -23.1 | -23.7 | $-24.5$ | -25.4 | -26.3 | -27.3 | -29.1 | -78.5 | -28.5 | -28.1 | -27.7 | -27.2 | -26.9 | -26.t | -26.4 | $-26.3$ | -26.2 |
| 58.0 | -23.8 | -23.9 | -24.3 | -24.9 | -25.6 | -26.5 | -27.5 | -29.5 | -29.3 | -79.7 | -29.7 | -29.4 | -28.9 | -28.4 | -28.1 | -27.8 | -27.6 | -27.5 | -27.4 |
| CC.C | -25.0 | -25.1 | -25.5 | -26.1 | -26.8 | -27.7 | -28.7 | -29.7 | -39 5 | -30.9 | -30.9 | -30.6 | -30.1 | -29.7 | -29.3 | -29.c | -28.8 | $-28.7$ | -28.7 |
| 62.0 | -26.3 | -26.4 | -26.7 | -27.3 | -28.1 | -29.0 | - 30.0 | -30.9 | - 31.7 | -32.2 | -32.2 | -31.9 | -32.4 | -31.0 | -30.6 | -30.3 | -30.1 | -30.0 | -29.9 |
| 64.0 | -27.5 | -27.6 | -20.0 | $-28.6$ | $-29.3$ | -30.2 | -31.2 | $-3 ? .2$ | -33.0 | -33.4 | -33.5 | -33.2 | -32.7 | -32.2 | -31.9 | -31.0 | -31.4 | -21.3 | $-31.2$ |
| 66.0 | -28.8 | -28.9 | -29.3 | -29.8 | -30.6 | $-31.5$ | $-32.5$ | -3i.5 | $-34.3$ | $-34.8$ | $-34.8$ | $-34.9$ | $-34.0$ | $-33.6$ | $-33.2$ | $-32.9$ | $-32.7$ | $-32.6$ | -32.5 |
| $68.0$ | $-30.1$ | $-30.3$ | $-30.6$ | $-31.1$ | $-3 i .9$ | -32.8 | -33.8 | -34.8 | $-35.6$ | -36.1 | -36.1 | $-35.8$ | -35.4 | -34.9 | $-34.5$ | $-34 \cdot 3$ | $-34.1$ | -33.9 | -33.9 |
| 70.0 | $-31$ | $-31$ | $-32$ | $-3$ | -3 | - |  | $-36.2$ |  |  |  |  |  |  |  |  |  |  |  |

relative mitmuth angle ldeg
$0.010 .0 \quad 20.0 \quad 30.0 \quad 40.0 \quad 50.0 \quad 60.0 \quad 70.0 \quad 80.0 \quad 90.0 \quad 100.0110 .0 .120 .0 \quad 130.0 \quad 140.0 \quad 150.0 \quad 160.0170 .0180 .0$

| 10.0 | 10.0 | 10.0 | 20.0 | 10.0 | 10.0 | 10.0 | 2.9.0 | 10.0 | 10.0 | 10.0 | 20.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10 | 10.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9.9 | 9.9 | 9.9 | 9.9 | 8.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9. | 9.9 |
| 9. | 9. | 9.6 | 9.0. | 9.6 | 9.6 | 9.6 | 9.6 | 9.5 | 9.6 | 9.6 | 9.5 | 9.6 | 9.6 | 9.6 | 9.6 | 9.6 | 9.6 | 9.6 |
| 9.1 | 9.1 | 9.1 | 9.1 | 9.1 | 9.1 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.1 | 9.1 | 9.1 | 9.1 | 9.1 |
| 8.4 | 0.4 | 8.4 | 8.3 | 8.3 | 8.3 | 8.2 | 8.2 | 9.2 | 8.2 | 8.2 | 8.2 | 8.2 | 8.3 | 8.3 | 8.3 | 8.3 | $0 \cdot 3$ | 8.3 |
| 7.5 | 7.5 | 7.4 | 7.4 | 7.3 | 7.3 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.3 | 7.3 | 7.4 | 7.4 | 7.4 |
| 6.3 | 6.3 | 6.3 | 6.2 | 6.1 | 6.0 | 6.0 | 5.9 | 5.9 | 5.9 | 5.9 | 5.5 | 5.9 | 6.0 | 6.0 | 6.1 | 6.1 | 6.2 | 6.2 |
| 5.0 | 5.0 | 4.9 | 4.8 | 4.7 | 4.5 | 4.5 | 4.4 | 4.3 | $4 \cdot 3$ | 4.3 | 4.4 | 4.4 | 4.5 | 4.6 | 4.8 | 4.7 | 4.7 | 4.8 |
| 3.6 | 3.5 | 3.4 | 3.2 | 3.0 | 2.9 | 2.7 | 2.6 | 2.5 | 2.5 | 2.5 | 2.6 | 2.7 | 2.8 | 2.9 | 2.9 | 3.0 | 3.1 | 3.2 |
| 2.3 | 1.9 | 2.7 | 1.4 | 1.2 | 1.0 | - 8 | . 6 | . 5 | . 5 | . 5 | . 6 | . 7 | . 8 | . 9 | 1.0 | 1.1 | 1.2 | 2.3 |
| . 4 | - 3 | - 0 |  | 7 | -1.0 | -1.3 | -1.5 | -1.7 | -1.8 | -2.7 | -1.6 | -2.4 | -1.3 | -1.2 | -1.0 |  |  | -. 7 |
| -2.0 | $-1.2$ | -1.6 | -2.1 | -2.0 | -3.0 | -3.4 | -3.7 | -4.0 | -4.1 | -4.0 | -3.8 | -3.7 | -3.5 | -3.4 | -3.2 | -3.0 | -2.9 | -2.8 |
| -2.2 | -2.4 | -2.9 | -3.6 | -4.3 | -4.9 | -5.3 | -5.8 | -4.1 | -6.3 | -6.2 | -6.0 | -5.7 | -5.6 | -5.4 | -5.3 | -5.0 | -4.8 | -4.8 |
| -3.2 | -3.4 | -4.0 | -4.8 | -5.6 | -8.3 | -6.9 | -7.5 | -7.9 | -8.1 | -8.0 | -7.8 | -7.5 | -7.3 | -7.2 | -7.0 | -0.8 | -6.6 | -6.5 |
| -4. 2 | -4.3 | -4.9 | -5.e | -6.7 | -7.5 | -8.2 | -R.e | $-9.3$ | -9.6 | -9.5 | -9.2 | -8.9 | -8.7 | -8.6 | -8.4 | -8.2 | -7.9 | -7.8 |
| -4.7 | -5.2 | -5.7 | -0.6 | -7.6 | -8.4 | -9.1 | -9.9 | -10.4 | -10.7 | -10.6 | -10.3 | -10.0 | -9.8 | -9.7 | -9.5 | -9.3 | -9.0 | 8.9 |
| - -8.8 | -6.0 | -6.6 | -7. 5 | -8.4 | -9.3 | -15.1 | $-1 n .8$ | -11.4 | $-11.7$ | -12.6 | -11.3 | -10.9 | -10.8 | -10.6 | -19.5 | -10.2 | -10. | -9.9 |
| - 3.8 | -7.i | -7.6 | $-4.5$ | -9.4 | $-10.3$ | -11.1 | -11.A | -12.5 | -12.5 | -12.7 | $-12.3$ | -12.0 | -11.8 | -11.7 | -11.5 | -11.3 | -11.0 | -10.9 |
| -E. 1 | -8.3 | -8.8 | -9.6 | -15.5 | -11.4 | -17.3 | $-13.2$ | $-13.7$ | $-14.0$ | -14.0 | $-13.6$ | $-13.2$ | $-13.0$ | -12.8 | $-12.6$ | -12.4 | -12.2 | -12.1 |
| . 6 | -9.7 | -10.3 | -11.0 | -11.9 | -12.8 | $-13.7$ | -14.5 | -15.2 | -15.5 | -15.4 | -15.1 | -14.7 | -14.4 | -14.2 | -14.0 | -13.8 | - 13.6 | -13.5 |
| -11.3 | -11.2 | -11.7 | -12.4 | -13.3 | -14.2 | -15.1 | -15.9 | -16.6 | -16.9 | -16.9 | -16.5 | $-16.1$ | -15.8 | $-15.5$ | $-15.3$ | -15.1 | -15.0 | -14.9 |
| -12.4 | -12.0 | -13.0 | -13.7 | -14.6 | -15.5 | -16.4 | $-17.2$ | -17.9 | -19.3 | -18.2 | $-17.9$ | -17.5 | -17.1 | -16.9 | $-16.6$ | -16.4 | -16.3 | $-16.2$ |
| $\begin{aligned} & -13.7 \\ & -15.0 \end{aligned}$ | -13.9 | -14.3 | -15.0 | -15.8 | -15.8 | -17.7 | -18.6 -10.8 | -19.3 $-2 n .6$ | -19.6 | -19.6 | $-19.2$ | -18.8 | -18.4 | -18.1 | -17.9 | $-17.7$ | -17.6 | -17.5 |
| -15.0 | -15.2 -16.4 | -15.6 -16.9 | $-1 t .3$ -17.5 | -17.1 -18.3 | -18.0 -19.2 | -16.9 -20.2 | -19.8 | -2才.6 | -20.9 | -20.9 | -20.5 | -20. | -19.7 | -19.4 | -19.2 | $-19.0$ | -18.9 | -18.8 |
| -17.5 | -17.7 | -19.1 | -18.7 | $-19.5$ | -20.4 | -21.4 | -2?.3 | -? 3 | -? 2 . | -23.4 | -21.8 | -22 | 2 | 2 | 20.4 21.6 |  | -20.1 | 20.0 21.2 |
| -19.3 | -18.9 | $-19.3$ | -19.5 | -20.7 | -21.0 | -22.6 | -23.5 | -74.3 | - 24.7 | -24.6 | -24.3 | -23.0 | -23.4 | -23.1 | -22.9 | 22.6 | 22.5 | 22.4 |
| -20.3 | -20.1 | -20.3 | -21.1 | -22.9 | -22.8 | $-23.8$ | -24.7 | -25.5 | -25.9 | -2!.8 | -25.5 | -25.1 | -24.6 | -24.3 | -24.0 | $-23.8$ | -23.7 | -23.6 |
| -21.2 | $-21.3$ | -21.7 | -22.3 | -23.1 | -24.0 | $-25.0$ | -25.9 | -26.7 | -27.1 | -27.1 | -26.7 | -26.3 | -25.8 | -25.5 | -25.2 | -25.0 | $-24.9$ | -24.9 |
| -22.4 | -22.5 | -22.9 | -23.5 | $-24.3$ | -25.2 | -26.1 | -27.1 | -77.9 | -28.3 | $-28.3$ | -29.0 | -27.5 | -27.1 | -26.7 | -26.4 | -26.2 | -26.1 | -26.1 |
| -23.6 | $-23.8$ | -24.1 | -24.7 | -25.5 | -26.: | -27.3 | $-2 A \cdot 3$ | -20.1 | -29.5 | -2F.5 | -29.2 | -28.8 | $-28.3$ | -27.9 | -27.7 | -27.5 | -27.4 | $-27.3$ |
| -26.9 | -25.0 | -25.3 | -75.9 | -2t. 7 | -27.6 | -28.0 | $-20.5$ | -31.3 | -30.8 | -30.8 | -30.5 | -3J.0 | $-29.6$ | $-29.2$ | -28.9 | -28.7 | 28.6 | 28.6 |
| -2t. 1 | -20.2 | -20.6 | -. 7.2 | -27.9 | -20.8 | -29.8 | -30.9 | -31.6 | -32.1 | -32.1 | -31.8 | -31.3 | -30.9 | $-30.5$ | -30.2 | -30.0 | -29.9 | $-29.8$ |
| -27.4 | -27.5 | -27.\% | -28.4 | $-29.2$ | -30.1 | -31.1 | -32.1 | -32.9 | -33.4 | -33.4 | -33.1 | -32.6 | -32.2 | -31.9 | - 31.5 | -31.3 | -31.2 | -31.2 |
| $-28.7$ | $-28.8$ | $-29.2$ | -29.7 | $-36.5$ | $-31.4$ | -32.4 | -33.4 | -34.2 | -34.7 | -34.7 | -34.4 | -34.0 | -33.5 | -33.1 | -32.9 | -32.7 | -32.6 | -32.5 |
| -30.1 | -30.2 | $-30.6$ | -31.2 | -31.8 | $-32.7$ | -33.8 | -34.8 | -35.6 | -36.1 | -36.1 | -35.9 | -35.4 | -34.9 | -34.5 | -34.3 | -34.1 | -34.0 | -33.9 |


| INC IOENCE ANGLE（DEG） | 0.0 | 10.0 | 20.0 | 30.1 | 40.0 | 50.0 | 60.0 | $\begin{aligned} & \text { RELAT } \\ & 70.0 \end{aligned}$ | $\begin{gathered} \text { EVE Az: } \\ 80.0 \end{gathered}$ | IMUTH 90.0 | $\begin{gathered} \text { ANGLE } \\ 0200.0 \end{gathered}$ | $\begin{aligned} & (D E G) \\ & 110.0 \end{aligned}$ | 120.0 | 130.0 | 140．0 | 150．0 | 160．0 | 170.0 | 180．0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 14.6 | 14.6 | 14.6 | 14.6 | 14.6 | 14.6 | 14.6 | 14.6 | 14.6 | 24.6 | 14.6 | 14.6 | 14.6 | 14.6 | 14.6 | 14.6 | 14.6 | 14.6 | 4.6 |
| 2.0 | 14.3 | 14.3 | 14.3 | 14.3 | 14.3 | 14.3 | 14.3 | 14.3 | 14.3 | 14.3 | 14．3 | 14.3 | 14.3 | 14.3 | 14.3 | 14.3 | 14.3 | 24.3 | 14．3 |
| 4.0 | 13.2 | 13.2 | 13.2 | 13.2 | 13.2 | 13.2 | 13.1 | 13.1 | 13.1 | 13.1 | 13.1 | 13.1 | 13.1 | 13.2 | 13.2 | 13.2 | 13.2 | 13.2 | 13.2 |
| 6.0 | 11.4 | 11.4 | 11.4 | 12.6 | 11.3 | 11.3 | 11.3 | 11.2 | 11.2 | 11.2 | 21.2 | 11.2 | 12.3 | 11.3 | 12.3 | 11.4 | 11.4 | 11.4 | 11.4 |
| 8.0 | 8.7 | 8.9 | 8.9 | 8.8 | 8.7 | 8.7 | 8.6 | 8.6 | 8.5 | 8.5 | 8 8.5 | 8.6 | 8.6 | 0.7 | 8.7 | 8.8 | 8.9 | 8.9 | 0．9 |
| 10.0 | 5.6 | $5 \cdot 6$ | 5.5 | 5.5 | 5.4 | 5.3 | 5.2 | 5.1 | 5.0 | 5.0 | 5.0 | 5.1 | 5.2 | 5.3 | 5.4 | 5.5 | 5.5 | 5.6 | 5.6 |
| 12.0 | 1.5 | 1.5 | 1.4 | 1.3 | 1.2 | 1.0 | ． 9 | ． 8 | ． 7 | ． 7 | 7 － 7 | － 8 | －9 | 1.0 | 1.2 | 2.3 | 1.4 | 1.5 | 1.5 |
| 14.0 | －3．4 | －3．4 | －3．5 | －3．7 | －3．9 | 4.1 | 4.3 | －4．4 | －4．6 | －4．6 | －4．6 | －4．4 | －4． 3 | －4．1 | －3．9 | －3．7 | －3．6 | －3．4 | 3.4 |
| 16.0 | －9．2 | －9．2 | －8．4 | －9．6 | －9．8 | －10．1 | 10.4 | －10．6 | －10．1 | －10．8 | －20．7 | －1．1．6 | －10．4 | －10．1 | －9．9 | －9．6 | －9．4 | －9．3 | －9．2 |
| 18.0 | －15．7 | － 25.7 | －15．9 | －1t． 3 | －16．t | －17．0 | －17．3 | －27．6 | －17． | －17．9 | －17．8 | －17．6 | －17．4 | －17．0 | $-16.7$ | －16．3 | －16．1 | －15．9 | $-15.8$ |
| 20.0 | －22．2 | －22．3 | $-22.7$ | －23．2 | －23．7 | －24．3 | $-24.8$ | －25．3 | －29．N | －25．7 | － 25.6 | －25．3 | －24．8 | －24．4 | －23．9 | $-23.5$ | －23．1 | －22．0 | －22．7 |
| 22.0 | －27．2 | －27．3 | －27．8 | －28．6 | $-29.4$ | －33．2 | －31．0 | －31．8 | －32．5 | －32．8 | － 32.5 | －31．9 | －31．2 | $-30.5$ | － 30.0 | －29．4 | $-28.9$ | －28．5 | $-28.4$ |
| 24.0 | －30．1 | －30．3 | －30．8 | －31．6 | －32．5 | －33．5 | －3 5 | －35．6 | －3A．5 | －36．9 | －36．5 | －35．6 | －34．7 | －34．0 | －33．3 | $-32.7$ | －32．2 | －31．8 | －31．7 |
| $\cdots$ | 52． 2 | －32，4 | －32．9 | $-33.6$ | $-34.5$ | $-3 j .6$ | －3．．． 7 | －37．8 | －38．8 | －39．2 | －-38.8 | －37．9 | －36．9 | －36．1 | －35．4 | －34．8 | －34．3 | －33．9 | －33．8 |
| 2：－0 | －34．0 | －36．1 | －34．6 | －35．3 | －36．2 | －37．2 | －4 | －39．6 | －40．6 | $-41.0$ | $-40.5$ | －39．6 | －38．6 | －37．7 | －37．0 | －36 | $-35.9$ | －35．6 | －35．5 |
| $30.0$ | $-35.5$ | $-35.7$ | －36．1 | $-36.8$ | －37．7 | $-38.7$ | $-30.9$ | －41．1 | $-42+1$ | －42．5 | －42．1 | －41．1 | －40．1 | $-39.2$ | －38．4 | $-37.8$ | $-37.3$ | $-37.0$ | －36．9 |
| 32.0 | －36．7 | －37．1 | $-37.5$ | $-38.2$ | $-39.0$ | －40．1 | $-41.2$ | －42．\％ | －43．5 | －43．9 | －43．4 | －42．5 | －41．4 | －40．5 | $-39.7$ | $-39.1$ | $-38.6$ | －38．3 | $-38.2$ |
| 34.0 | －38．2 | $-3 E .3$ | $-39.7$ | －39．4 | －40．2 | －41．3 | －42．5 | －43．7 | －44．7 | －45．1 | －44．7 | －43．7 | －42．7 | －4）．7 | －40．9 | $-40.3$ | $-39.8$ | －39．5 | $-39.4$ |
| 30.0 | －30．4 | －39．5 | －39．9 | －40．5 | －41．3 | －42．4 | －43． | －${ }^{\prime \prime}$－${ }^{\text {a }}$ | －45．9 | －46．3 | －45．8 | －44．8 | －43．8 | －42．8 | －42．0 | $-41.3$ | $-40.8$ | －40．6 | $-40.5$ |
| 38.0 | －40．4 | －40．5 | －40．9 | －42．5 | －42．4 | －43．4 | －44，0 | －45．7 | －46．9 | －47．3 | －46．8 | $-45.9$ | －44．8 | －43．8 | －42．9 | －4．2．3 | $-41.8$ | －41．5 | －41．4 |
| 40.0 | $-4104$ | －41．5 | －41．9 | －42．5 | －43．3 | －44．3 | $-45.5$ | －46．8 | －47．8 | $-48.2$ | －-47.8 | －46．8 | －45．7 | －44．7 | －43．8 | －43．2 | $-42.7$ | －42．4 | －42．3 |
| 42.0 | － 22.3 | －42．4 | －42．7 | －43．3 | －44． 2 | $-45.2$ | －46．4 | $-47.7$ | －48．7 | －49．1 | －48．7 | －47．7 | －46．6 | －45．5 | －44．7 | －44．0 | $-43.5$ | －43．3 | $-43.2$ |
| 44.0 | －43．1 | －83． | －4．-4.5 | －4．？ | －： 0 | $-46.2$ | －47．2 | －40．5 | －6n．5 | $-4.9$ | －49．3 | －48． | －47．4 | －4t．3 | －45．5 | －44．8 | $-44.3$ | $-44.0$ | －43．9 |
|  | －4．3．1 | －44．0 | －4．4．3 | －4\％．\％ | ， | －4．2．7 | －4c．u | －47．？ | －52．3 | －5i． 7 | - | －49．2 | －69．1 | －47．1 | －43．2 | －4\％．5 | $-45.0$ | －44．7 | －44．7 |
| $4: 0$ | $-44.0$ | $-44.7$ | - - |  |  | －：1．j | －45．7 | －49．7 | －51．7 | － 11.4 | $-\leq \subset . \partial$ | $-49.9$ | $-4000$ | －47．7 | －46．9 | －40．2 | $-43.7$ | $-45.4$ | －45． 3 |
| シ¢．J | $-4: . ?$ | $-42.4$ | $-45 . i$ | －in． 3 | －7．1 | －6． 1 | －45．0 | －31．5 | －5．．6 | $-5<1$ | $-5+2$ | $-50.0$ | －49．5 | －48．4 | $-47.5$ | －46．8 | －45．4 | －46． 1 | －46．c |
| －2．J | －45．t | ¢ | 4．${ }^{\text {a }}$ | －40．9 | $-41.7$ | $-4.1 .7$ | －49．9 | －E1．？ | － 5 ？． 3 | －52．7 | －52．2 | －51．？ | －50．1 | －49．0 | $-48 \cdot 1$ | $-47.4$ | －67．0 | －46．7 | －46．6 |
| 54.0 | －65－5 | －ic．6 | －45．4 | －：7．： | －4id．$\frac{2}{}$ | －47．3 | －51．5 | －： 1.9 | －5？．？ | $-53.3$ | －52．9 | －51．8 | －50．7 | －47．6 | $-48.7$ | $-48.0$ | －47．5 | －47．3 | －47．2 |
| 号が， | $\cdots 1.1$ | －47．c | －47．5 | $-4.4$ | －4r． 9 | －4＊9？ | $-\therefore 1.1$ | －57．4 | －5， 5 | －5j．${ }^{5}$ | －53．4 | $-52.4$ | $-51.3$ | $-1.8 .2$ | $-47 .$ | －48．0 | －49．1 | －47．8 | －47．7 |
| 56： | $\cdots ?$ | －47． | － 7.0 | －4r． 7 | －59．5 | - | $-51.2$ | －5？．9 | －5：．0 | －54．4 | $-5,4.0$ | －53．0 | －51．8 | －50．7 | $-49 .$ | －49．2 | －49．7 | －48． | －48．3 |
| だっこ | $\cdots$ | - | $\because$ | －4． 2 | －л． | －21．3 | $-\leq 2.2$ | $-53.5$ | $-54.6$ | $-5.0$ | $-540$ | $-5.0$ | $-52.4$ | －51．3 | －5．5．4 | －49．7 | －47．2 | －48．c | －48．8 |
| くこ．： | －：？ | - - | $0 \leq$ | －4．0？ | －6．3 | －52．0 | $-52.0$ | －54． 3 | －55．1 | －55．3 | －5¢．1 | －54．2 | －52．） | －61．0 | －50．9 | $-50.3$ | －45．8 | －49．5 | －48．4 |
| 04.6 | －45． 2 | －51．4 | －4．07 | －5i．j | －51． 1 | －52．1 | －53．3 | －54．6 | $-55.7$ | －56．1 | －55．7 | $-54.7$ | $-53.3$ | －52．4 | －51．5 | －50．8 | $-50.3$ | －5c．0 | －49．9 |
| $\begin{aligned} & 60.0 \\ & 09.0 \end{aligned}$ | $\begin{aligned} & -49.9 \\ & -56.4 \end{aligned}$ | $\begin{aligned} & -50.0 \\ & -50.5 \end{aligned}$ | $-50.3$ $-50 \cdot 3$ | $-50.8$ | $-51.6$ | $-52.7$ | $-33.9$ | $-35.1$ | －55．2 | $-56.7$ | －50．3 | $-55.3$ | $-54.1$ | －53．0 | －52．？ | －51．4 | －50．9 | －50．6 | －50．5 |
| $\begin{aligned} & 09.0 \\ & 75.0 \end{aligned}$ | $\begin{aligned} & -5 \mathrm{C.} \\ & -51.0 \end{aligned}$ | $\begin{aligned} & -50.5 \\ & -52.1 \end{aligned}$ | $\begin{aligned} & -50.9 \\ & -51.5 \end{aligned}$ | $\begin{aligned} & -52.4 \\ & -52.0 \end{aligned}$ | $\begin{aligned} & -52.2 \\ & -52.8 \end{aligned}$ | $\begin{aligned} & -53.2 \\ & -53.8 \end{aligned}$ | $-54.4$ | $-55.7$ | －56．8 | －57．3 | -56.9 -57 | －55．9 | －54．7 | $-53.6$ | $-52.7$ | $-52.0$ | $-51.5$ | $-51.2$ | －51．1 |
| $75.0$ | $-51.0$ | $-51.1$ | $-51.5$ | －52．0 | －52．8 | $-53.8$ | －55．1 | －56．3 | －57．4 | －57．9 | －57．5 | －56．5 | －55．3 | $-54.3$ | －53．4 | －52．7 | $-52.2$ | －51．9 | －51．0 |


|  |  |  |  |  |  |  |  | table <br> OUENCY <br> ICAL PO <br> VI.OC I | $\begin{aligned} & \text { IN DEC } \\ & \text { PGISO } \\ & \text { OTYRIZ } \end{aligned}$ | $\begin{aligned} & \text { CIOELS } \\ & \begin{array}{l} 9 \text { GHZ } \\ 17804 \\ 10.0 \end{array} \end{aligned}$ | A/SEC |  |  |  |  |  |  | $\begin{aligned} & 0 \\ & 6 \\ & 6 \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IMCIDENCE INGLE (OEG) | 0.0 | 10.0 | 30.0 | 30.0 | 40.0 | 50.0 | 00.0 | $\begin{gathered} \text { RELATIV } \\ 70.0 \end{gathered}$ | $\begin{gathered} \text { Ive } 1281 \\ 00.0 \end{gathered}$ | Mult | $\begin{aligned} & \text { ANGLE } \\ & 100.0 \end{aligned}$ | $\begin{aligned} & 10861 \\ & 120.0 \end{aligned}$ | 220.0 | 180.0 | 140.0 | 180.0 | 100.0 | 270.0 | $100.0$ |
| 0.0 | 12.8 | 12.8 | 12.8 | 12.8 | 12.8 | 12.8 | 12.8 | 12.0 | 12.8 | 12.8 | 12.0 | 12.0 | 12.8 | 22.0 | 12.8 |  |  |  |  |
| 2.0 | 12.6 | 12.6 | 12.8 | 12.6 | 12.6 | 12.6 | 12.6 | 12.6 | 12.6 | 22.6 | 12.6 | 12.6 | 22.0 | 8280 | 1208 2206 | 22.8 | 12.8 12.6 | 12.8 22.6 |  |
| 4.0 | 12.7 | 11.9 | 12.9 | 11.9 | 11.9 | 11.9 | 11.8 | 11.8 | 11.8 | 18.0 | 18.0 | 11.8 | 11.8 | 18.9 | 11.9 | 12.8 | 11.9 | 1206 11.9 | 11.9 |
| 6.0 | 10.7 | 10.7 | 10.7 | 10.7 | 10.7 | 10.7 | 10.6 | 10.6 | 10.6 | 10.6 | 10.6 | 20.6 | 20.6 | 20.7 | 20.7 | 20.7 | 20.7 | 20.7 | 80.7 |
| 0.0 | 9.1 | 9.1 | 9.1 | 9.0 | 9.0 | 9.0 | 8.9 | 0.9 | 8.9 | 8.9 | 8.9 | 0.9 | 0.9 | 9.0 | 9.0 | 9.0 | 0.1 | 9.2 | 9.2 |
| 10.0 | 7.0 | 7.0 | 6.9 | 6.9 | 0.8 | 6.7 | 6.7 | 6.6 | 6.6 | 6.6 | 6.6 | 6.6 | 6.7 | 4.7 | 6.0 | 6.9 | 6.9 | 7.0 | 7.0 |
| 1200 | 4.3 | 4.3 | $4 \cdot 3$ | 4.2 | 4.1 | $4 \cdot 4$ | 3.9 | 3.9 | 3.8 | 3.0 | 3.8 | 3.8 | 3.9 | 4.0 | 4.1 | 6.2 | 4.3 | 4.3 | 4.8 |
| 34.0 | :0, | 1.1 | - 102 | - 1.0 | -it | -. -7 | -. 6 | -? | -9.4 | - 4 | . 4 | . 5 | . 6 | . 7 | . 8 | 1.6 | 1.1 | 1. 1. | 1.8 |
| 16.0 15.0 | -こ." | -2.e | -7.7 | -2.8 | $-3.0$ | $-7.2$ | - -1.6 | -?.9 | -9.6 | - ? 0 | -9.0 | -3.5 | -3.4 | -3.2 | -3.0 | -2.0 | -2.7 | -2.8 | -2.6 |
| 150.0 | -1.1. | -e.i | -71.? | -7.2 | -7.4 | -7.7 | -7.r | -n.1 | -A.? | -1.03 | -E.? | - $\mathrm{H}^{-18}$ | -7.4 | -7.1 | -7.3 | $-1.2$ | -7.8 | -6.9 | -6.9 |
| 22.0 | -110j |  | -110? | -i?.u | $-: 7.4$ $-i 7.4$ | -12.1 -17.4 | -33.0 | -17.3 | -13.5 -19.1 | -13.1 -19.2 | -13.\% | - ${ }^{\text {c }} 1$ | $-13 . c$ | $-12.8$ | -12.5 -17.7 | -1: ${ }^{-17}$ | -12.5 | -12.7 | -12.7 |
| ? 4.0 | -150'J | -1.: | - 21.0 | - $\mathrm{B} \mathrm{l}, \mathrm{C}$ | -21.7 | -22.4 | -23.1 | -27.A | -19.8 -76.4 | -1702 -7406 | -19.1 | -23.0 | -13.3 -23.3 | -1508 -29.7 | -17.7 -22.2 | -17.3 -21.7 | -1609 -28.3 | -20.7 -20.7 | 10.0 20.8 |
| it.o | -21. | -? 2.1 | -ccon | -23.4 | -24.9 | -25.? | $-2 e .2$ | -27.1 | -3n.7 | -? 3 - | -28.0 | -2\%.2 | -ib. | -2. -7 | -2501 | -24.0 | -28.3 -24.3 | -20.7 $-\geq 3.5$ | -20.8 -23.5 |
| -7.0 | -1: | -? $\mathrm{O}_{1}$ | -24. |  | $-20.0$ | -87.6 | -2H.3 | $-27.1$ | -?n-1 | - 3 ). $\%$ | -2c.1 | -24.2 | -29.3 | -27.5 | -2A.9 | -26.3 | -2!.7 | -2:. | -23.8 |
| 3vec | -c: -1 | - $-: 3$ | -35.7 | - 3.30 | $-3 \%$ - | -2t.0 | -24.7 | - $3 \mathrm{C}, \mathrm{A}$ | -31.9 | -32.2 | -31.8 | -30.0 | $-2+18$ | -29.1 | -20.4 | -27.3 | -27.3 | -2t.g | $-24.8$ |
| 3206 | - | - Et, | -27.9 | $-2 \times 1$ | $-24.6$ | -3C.J | $-51.1$ | -32.3 | -33.3 | -33.1 | $-3 \leq 2$ | -32.3 | - 31.3 | - 3 C. 5 | $-29.8$ | -27.1 | $-28.6$ | -2: 3 | $-20.2$ |
| 34.0 | -2i. -2 | -? | -3 -2.6 | -27.3 | -? -2 | -31.2 | -22.4 | - 33.6 | -34.6 | - 35.0 | -34.6 | -33.6 | -32.0 | -31.7 | $-31.0$ | -30.4 | -29.9 | -20.5 | -29.4 |
| ¢ 300 | -27.2 -36.3 | -? -30. | -2\%0\% | -310.5 | -3, ${ }^{-3} 4$ | -35.4 -33.4 | -33.0 -3406 | -34.3 | -35.9 | -35.2 | -3:.7 | -34.8 | -33.0 | -32.8 | -32.1 | -31.5 | -31.0 | -30.7 | $-30.6$ |
| 3 - ¢ | -36.3 | -? - $_{\text {- }}^{\text {cos }}$ | -370'0 | -31.5 | -3<04 | -33.4 -24.4 | $-34.6$ | $-35 \cdot 2$ | -36.9 | -37.3 | -36.9 | - 35.9 | - 34.8 | $-33.9$ | $-33.1$ | -32.5 | -32.0 | -32.7 | -32.6 |
| 42.3 | -34.9 -32.3 | -3.0. | -3.0. | -3?.: | -3i.4 | -24.4 -3.03 | -32.6 -4.5 | -34.9 | -17.9 -74.9 | -38.3 -39.2 | -37.8 -30.7 | -36.9 -37.4 | -35.8 -30.7 | -3408 -3807 | -34.0 | -33.4 -34 | -32.9 | -32.6 | -32.5 |
| 44., | -j:0: | - $3: 0$ | -3200 | - 3.4 | -: $: 1$ | - j ¢. 1 | -77.3 | -33.6 | -37. 3 | -40.15 | -3.07 -39.0 | -37.4 -30.0 | -30.7 | -320.7 -30.5 | -34.9 -35.7 |  |  | -33.5 -34.3 | -33.4 -34.2 |
| 45.0 | $-39.7$ | -3401 | -34.4 | $-35.0$ | $-3: 04$ | -36.9 | - 58.1 | -39.4 | -4r.4 | -40.3 | -46.4 | -39.4 | -30.3 | -36.8 -37.3 | -35.7 -30.4 | -35.0 | -3400 -35.3 | -3603 | -3402 -34.9 |
| 49.0 | -34.7 | -34.8 | -35.2 | $-39.8$ | - 26.6 | -37.3 | -3. 8 | $-4 n .1$ | -49.1 | $-1.1 .5$ | -43.1 | -40.1 | -39.0 | -30.0 | -37.1 | -35.8 | -36.0 -36.0 | -3E.0 | -38.6 |
| 50.0 52.0 | -35.4 -36.0 | -35.5 -36.1 | -35.8 -35.5 | -36.4 -37.1 | -37.3 -37.0 | -38.3 -38.0 | -39.5 | -40.8 | -4.0s | -42.2 | $-42.8$ | -40.8 | -37.7 | -3A.6 | -37.8 | -37.8 | -36.6 | -3t.4 | -36.8 |
| 52.0 56.0 | -36.0 -30.0 | -36.1 -36.8 | -33.5 -37.1 | -37.1 -31.7 | -37.9 -38.5 | -38.9 -37.5 | -40.1 -40.8 | -41.4 | -42.5 | -42.? | -42.4 | -41.4 | -40.3 | -39.8 -39.9 | -38.0 | -37.7 | -37.3 | -37.0 | -16.9 |
| S.0.0 | -37.2 | -37.4 | -37.7 | -35.3 | -39.1 | -4c. 2 | -41.3 | -42,6 | -43.1 -4.9 | -43.5 -44.1 | -43.1 -43.7 | -42.1 | -40.9 | -39.7 -40.5 | -39.0 -32.6 | -36.3 $-3 n .9$ | -37.8 -37.4 | -37.6 -38.1 | -37.8 -38.0 |
| SE.O | -3103 | -37.9 | -39.3 | - $2 \vdots .9$ | - - 9.1 | -42.7 | -41.9 | -49.? | -44. 3 | -44.7 | -4.4.2 | -41.2 | -47.1 | -41.0 | -410. | -37.g | $-3 n+4$ -80.11 | $-3 n .1$ -17.7 | -88.9 |
| t-0 | - $3=0$ | -30.5 | -3i. 3 | -3:.4 | $\cdots-\frac{2}{}$ | -41.3 | -42.3 | -42.7 | $-44.9$ | -45.2 | -44.9 | -4:30 | -42.1 | -41. ${ }^{\text {a }}$ | -40.7 | - 00.0 | -1\% | - 37.8 | - 90.8 |
| t2.0 | $-3 \geq .7$ | -36.1 | -39.6 | -40.0 | -40.g | -41.6 | -43.0 | -44.3-4 | -45.4 | -43.8 | -4\%.4 | -44.4 | -1.3.2 | -42.2 | -41.1 | -40.0 | -411.1 | - 14. 1 | -98.7 |
| 04.0 | -35.5 | -39.6 | -30.9 | -40.5 | -4:. 3 | -42.4 | -43.0 | -44.9 9 | -45.7 | -46.4 | -41.0 | -45.0 | -43.0 | -42.7 | -41.0 | -41.0' | -4u. | 40.4 | - 10.8 |
| 66.0 | -4C.: | -40.2 | -40.3 | -4.1.1 | -42.7 | -42.9 | $-44.1$ | -45.4 | -43.5 | -47.0 | -46.5 | -45.9 | -44.4 | -43. 3 | -42.4 | -4i.1 | -41.1 | 41.0 | -00.0 |
| 68.0 | -40.3 | -40.7 | -41.1 | -4i.7 | -42.3 | -43.9 | -44.7 | $-46.0$ | -47.1 | -47.6 | -47.2 | -46.2 | -45.0 | -43.9 | -43.1 | -4:-4 | -4. 1.9 | -1.6 | -41.3 |
| 70.0 | -41.2 | -41.3 | -41.7 | -42.3 | -43.1 | -44.1 | -45.3 | -46.6 | -47.7 | -40.2 | -47.8 | -40.8 | -45.7 | -4406 | $-4.3 .7$ | -43.0 | - +2.0 | -42.3 | - +2.2 |

## nacs tanle in decibels

## FRE OUENCY - 13.96 Hz <br> 

| INCIDENCE NGLE (DEGI | 0.0 | 10.0 | 20.0 | 30.0 | 40.0 | 50.0 | 60.0 | $\begin{aligned} & \text { RELATI } \\ & 70.0 \end{aligned}$ | $\begin{gathered} \text { IVE A2 } \\ 80.0 \end{gathered}$ | $\begin{aligned} & \text { IMUTH } \\ & 90.0 \end{aligned}$ | $\begin{aligned} & \text { ANGLE } \\ & 100.0 \end{aligned}$ | $\begin{aligned} & 10 E G 1 \\ & \$ 10.0 \end{aligned}$ | 120.0 | 130.0 | 140.0 | 150.0 | 860.9 | 70.0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 21.9 | 11.9 | 12.9 | 11.9 | 11.9 | 11.9 | 11.9 | 11.9 | 11.9 | 11.9 | 11.9 | 21.9 | 12.9 | 12.0 | 21.9 | 11.9 | 1.9 | 1.9 | 1.9 |
| 2.0 | 12.7 | 11.7 | 11.7 | 11.7 | 11.7 | 11.7 | 11.7 | 11.7 | 11.7 | 12.7 | 12.7 | 18.7 | 12.9 | 11.9 | 12.7 | 18.7 | 11.7 | 18.7 | 81.7 |
| 4.0 | 11.2 | 11.2 | 11.1 | 11.1 | 11.3 | 12.1 | 11.1 | 18.1 | 21.1 | 11.1 | 28.1 | 11.1 | 11.1 | 18.1 | 11.1 | 21.2 | 21.1 | 21.2 | 12.2 |
| $t \cdot 6$ | 10.2 | 10.2 | 10.2 | 10.2 | 10.2 | 10.2 | 10.1 | 20.1 | 10.1 | 10.2 | 20.1 | 10.1 | 10.1 | 20.2 | 30.2 | 20.2 | 10.2 | 20.2 | 10.2 |
| 8.0 | 8.9 | 8.9 | 8.9 | 8.9 | 8.8 | 8.8 | 8.8 | 8.7 | 0.7 | 0.7 | 8.7 | 8.7 | 8.8 | 8.8 | 6. 8 | 8.9 | 0.9 | 0.9 | 0.9 |
| 20.0 | 7.2 | 7.2 | 7.2 | 7.1 | 7.1 | 7.0 | 7.0 | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 | 7.0 | 7.0 | 7.2 | 7.1 | 7.2 | 7.2 | . 2 |
| 12.0 | 5.1 | $5 \cdot 1$ | 5.1 | 5.6 | 4.4 | 4.8 | 4.8 | 4.7 | 4.7 | 4.6 | 4.7 | 4.7 | 4.0 | 4.8 | 4.9 | 5.0 | 5.2 | 5.1 | 5.1 |
| 14.0 | 2.6 | 2.5 | 2.5 | 2.4 | 2.3 | 2.2 | 2.1 | 2.0 | 1.9 | 1.9 | 1.9 | 2.0 | 2.1 | $2 \cdot 2$ | 2.3 | 2.4 | 2.8 | 2.5 | 2.6 |
| 16.0 | 4 | 4 |  | 6 |  |  | -1.1 | -1.2 | -1.3 | -2.3 | -1.3 | -3.2 | -1.1 |  |  | , |  |  |  |
| 16.0 | -3.3 | -3.8 | -3.9 | 1 | -4.3 | -4.5 | -4.7 | -4.9 | -5.0 | -5.0 | -5.0 | -4.9 | -4.7 | -4.5 | -4.3 | -4.1 |  | -3.9 | -3.9 |
| 20.0 | -7.4 | -7.5 | -7.7 | -5.0 | -8.2 | -8.5 | -8.8 | -7.0 | -9.2 | -9.2 | -9.2 | -9.0 | -8.0 | -8.6 | -8.3 | -8.1 | -7.9 | -7.7 | -7.7 |
| 22.0 | -11.1 | -11.3 | -11.6 | -12.0 | -12.6 | -12.8 | $-13.2$ | -13.9 | -i3.8 | -13.9 | -13.6 | -13.5 | $-13.2$ | -12.9 | $-12.6$ | -12.3 | - 12.0 | -11.0 | -11.7 |
| 24.0 | $-14.3$ | -14.5 | $-14.9$ | -15.5 | $-16.2$ | -16.8 | -17.4 | -17.9 | -18.3 | -18.5 | -18.3 | -17.9 | -17.5 | -17.0 | -26.6 | $-16.2$ | -15. | $-25.4$ | -19.3 |
| 26.0 | -16.5 | $-16.7$ | -87.3 | $-12.0$ | -18.9 | -19.7 | $-23.5$ | $-21.3$ | $-22.0$ | $-22.3$ | -22.0 | -21.3 | -20.7 | -20.1 | -19. | $-19.1$ | -18.5 | -28.1 | -10.0 |
| $\begin{aligned} & 28.0 \\ & 30.0 \end{aligned}$ | $\begin{aligned} & -17.9 \\ & -19.2 \end{aligned}$ | -10.2 -19.4 | -18.8 -20.0 | -19.6 -20.8 | -20.5 -21.8 | -21.5 -22.8 | -22.4 -23.8 | -23.4 | -24.3 -25.8 | -24.7 -26.2 | -24.3 -25.8 | -23.5 | -22.6 | -22.0 | - 21.4 | -20.8 | -20.2 | -19.8 | -19.7 |
| $\begin{aligned} & 30.0 \\ & 32.0 \end{aligned}$ | $\begin{aligned} & -19.2 \\ & -20.6 \end{aligned}$ | $\begin{aligned} & -19.4 \\ & -20.8 \end{aligned}$ | -20.0 -21.3 | -20.8 -22.1 | -21.8 -23.1 | -22.8 -24.1 | -23.8 -25.1 | -24.8 -26.2 | -25.8 -27.2 | -26.2 -27.6 | -25.8 | -24.9 | -24.0 | -23.3 -24.6 | -22.6 | -22.0 -23.8 | -21.8 -22.8 | -21.8 | -20.0 |
| 34.0 | -22.0 | -22.2 | $-22.7$ | -23.4 | -24.1 -24.3 | -25.4 | -25.1 -26.5 | -26.2 | -27.2 -28.6 | -27.6 -29.0 | -27.2 -28.6 | -26.3 -2.7 .6 | -25.3 -26.7 | -24. | -23. | -23.8 -24.5 | -22.8 -24.0 | -22.6 -23.7 | 22.2 23.6 |
| 36.0 | -23.3 | -23.4 | -23.9 | -24.6 | -23.5 | -26.5 | -27.7 | -20.9 | -27.9 | -30.3 | -29.8 | -28.9 | -27.9 | -27.0 | -26.3 | -25.7 | $-25.2$ | -24.8 | $-24.7$ |
| 3 e .0 | -24.4 | -24.0 | -220 | -25.7 | -2c.t | -27.1 | -? P . 8 | $-37.9$ | $-31.0$ | - 31.4 | -3c.9 | -30.0 | -29.0 | -28. | -27.3 | -26.7 | -26. 2 | -25.0 | -25.8 |
| 43.0 | -28.9 | -ciob 6 | -2e.0 | -26.7 | $-27.6$ | -20.c | $-39.8$ | $-31.0$ | -3?-0 | - 72.4 | -32.4 | -31.0 | - 30.0 | -29.0 | -28.3 | -27.6 | -27.2 | $-2 \mathrm{H} \cdot 9$ | -26.7 |
| 42.0 | -2t.4 | -20.5 | -27.0 | $-27.6$ | -2t.3 | -74.5 | -30.7 | -31.9 | -37.9 | $-3.3 .3$ | -32.9 | -31.9 | -30.? | -29.7 | $-29.1$ | -. 1.5 | -28.0 | $-27.7$ | $-27.6$ |
| 44.0 | -27.3 | -27.4 | -27.8 | -29.1 | $-24.3$ | -30.4 | -31.5 | -??.9 | $-33.9$ | -34.2 | -33.8 | -32.8 | -31.7 | -30.7 | -29.9 | $-29.3$ | $-28.8$ | $-20.5$ | -2f.4 |
| 4S.0 | -2゙も.1 | -28.2 | -28.6 | -29.3 | -3c.1 | - 31.1 | -32.3 | -33.6 | -34.6 | -75.0 | -34.6 | - 33.6 | $-32.5$ | -32.5 | $-30.7$ | -30.1 | -29.6 | -25.3 | -29.2 |
| CE.O | -2¢.9 | -39.6 -35.7 | -29.4 -30.1 | -33.0 | -30.8 | -31.9 | -33.1 -33.0 | -34.3 | -35.4 | $-15.8$ | $-35.3$ | - 34.3 | -33.2 | -32.2 | -31.4 | -32.8 | -30.3 | -30.0 | -29.9 |
| SC.0 | -29.6 -36.3 | -? ${ }_{\text {- }} 8.7$ | -30.1 | -31.7 -31.3 | -31.5 | -32.6 | -33.8 -34.4 | $-3 \% \cdot 7$ | -36.1 | $-36.5$ | -36.0 | -35.0 | -33.9 | -32.9 | -32.1 | -31.4 | -33.9 | $-30.7$ | $-30.6$ |
| $\begin{aligned} & \$ 2.6 \\ & 54.6 \end{aligned}$ | $\begin{aligned} & -3 C_{0}^{2} \\ & -3 C_{0} \end{aligned}$ | $\begin{aligned} & -3 C .4 \\ & -31.1 \end{aligned}$ | $\begin{aligned} & -30.7 \\ & -31.4 \end{aligned}$ | -31.3 -52.0 | -32.2 $-3<.8$ | -33.2 -33.6 | -34.4 -35.0 | -35.7 -34.3 | -34.7 -37.4 | -37.1 | -36.7 -47.3 | -35.7 | -34.6 | -33.6 | -32.7 | -32.0 | -31.6 | -32.3 | -31.2 |
| S0. | -: ${ }^{\text {a }} 5$ | -3i. 6 | -32.0 | -32.t | -33.4 | -34.4 | -35.c | -34.3 | -27.4 | -37.8 | 37.3 -37.8 | -36.3 -36.9 | -35.2 -35.8 | -34.2 -34.8 | -33.8 -33.9 | -82.7 -33.2 | -32.2 | -31 | 1.8 |
| E.C. | -3i.1 | -3ic. 2 | -32.5 | -33.1 | -33.7 | -35.0 | -3n. 2 | -37.5 | -39.5 | -39.0 | -36.5 | -37.5 | - 36.4 | -35.3 | -34.5 | -33.8 | -33. | -33.0 | -32.9 |
| to.. | -35.6 | -32.6 | -33.1 | -33.7 | -34.5 | -35.5 | -36.8 | -39.0 | -39.1 | -39.5 | -39.1 | -38.1 | -37.0 | -35.9 | -35.0 | -34.4 | $-33.9$ | -33.8 | -33.5 |
| t2.l | $-33.2$ | -:2. 3 | -33.7 | -34.2 | -35.1 | -36. | -37.3 | $-39.6$ | -37.7 | -40.1 | -39.7 | -38.7 | -37.5 | -36.5 | -35.6 | -34.9 | -34.5 | -34.2 | -34.1 |
| t4.0 | -33.8 | -33.9 | -34.2 | -34.t | -35.6 | -36.t | -37.9 | -37.2 | -40.2 | -40.7 | -40.3 | -39.3 | -38.1 | -37.1 | -36.2 | -35.5 | $-35.0$ | -34.7 | -34.7 |
| t6.6 | -34.3 | -34.4 | -34.8 | -35.4 | -36.2 | -37.2 | -38.4 | -39.7 | -40.9 | -42.3 | -40.9 | -39.9 | -38.7 | 37.7 | -36.e | -36.1 | -35.6 | -35.3 | -35.3 |
| E8.0 | -34.9 | -35.0 | -35.4 | -35.9 | -3t. 8 | -37.8 | -39.0 | -43.3 | -41.4 | -42.9 | -42.5 | -40.5 | -39.3 | -38.3 | -37. | -36.7 | -36.3 | 36.0 | 35.9 |
| 70.0 | -35.5 | -35.6 | -36.0 | -36.6 | - 37.4 | -30.4 | -39.6 | -40.9 | -42.0 | -42.5 | -42.1 | -41.2 | -40.0 | -39.0 | -38.8 | -37.4 | -36.0 | -36.7 | -86.6 |

FREOUENCY - 13.9 6HZ
VERTICAL POLARIZATION
FRICTION VELOCITY 20.0 CM/SEC

| INCIDENCE ANGLE CDEGI | 0.0 | 16.0 | 20.0 | 30.0 | 40.0 | 50.0 | 60.0 | $\begin{gathered} \text { RELATIU } \\ 70.0 \end{gathered}$ | $\begin{gathered} \text { IVE } 121 \\ 80.0 \end{gathered}$ | $\boldsymbol{i m u T h}_{90.0}$ | $\begin{aligned} & \text { ANGLE } \\ & 100.0 \end{aligned}$ | $\begin{aligned} & \text { CDEG1 } \\ & 210.0 \end{aligned}$ | 220.0 | 130.0 | 140.0 | 250.0 | 160.0 | 270.0 | 180.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 11.3 | 11.3 | 11.3 | 11.3 | 11.3 | 11.3 | 11.3 | 11.3 | 11.3 | 11.3 | 11.3 | 11.3 | 11.3 | 12.3 | 12.3 | 21.3 | 11.3 | 12.3 | 81.3 |
| 2.0 | 12.1 | 11.1 | 11.1 | 11.1 | 11.1 | 11.1 | 11.1 | 11.1 | 11.1 | 11.1 | 21.1 | 18.1 | 12.8 | 21.2 | 18.1 | 11.2 | 12.2 | 12.1 | 18.1 |
| 4.0 | 10.7 | 10.7 | 10.7 | 10.6 | 10.6 | 10.6 | 10.6 | 20.6 | 10.8 | 10.6 | 10.6 | 10.6 | 20.6 | 20.6 | 10.6 | 10.6 | 10.7 | 10.7 | 80.7 |
| 6.0 | 9.9 | 9.9 | 9.8 | $0 \cdot 8$ | 9.9 | 9.8 | 9.8 | 9.9 | 9.8 | 9.8 | 9.8 | 9.8 | 9.8 | 9.8 | 9.8 | 9.8 | 9.8 | 9.9 | 9.9 |
| 0.0 | 0.7 | 8.7 | 8.7 | 8.7 | 8.7 | 0.6 | 8.6 | 8.6 | - 0.6 | 0.6 | 8.6 | 0.6 | 8.6 | 0.6 | 0.7 | 0.7 | 8.7 | 0.7 | 0.7 |
| 10.0 | 7.3 | 7.3 | 7.2 | 7.2 | 7.1 | 7.1 | 7.1 | 7.0 | 7.9 | 7.0 | 7.0 | 7.0 | 7.1 | 7.1 | 7.1 |  |  |  |  |
| 12.0 | 5.5 | 5.4 | 5.4 | 5.3 | 5.3 | 5.2 | 5.2 | 5.1 | 5.0 | 8.0 | 5.0 | 5.1 | 5.1 | 5.2 | 5.3 | 5.3 | 5.4 | $5 \cdot 4$ |  |
| 24.0 | 3.3 | 3.3 | 3.2 | 3.2 | 3.0 | 2.9 | 2.8 | 2.8 | 2.7 | 2.7 | 2.7 | 2.8 | 2.8 | 2.9 | 3.0 | 8.8 | 3.2 | 3.2 |  |
| 16.0 | . 7 | . 7 | . 6 | . 5 | . 4 | . 2 | $\bullet 1$ | . 0 | -0.1 | -. 2 | - 01 | . 0 | $\bigcirc \cdot 1$ | -2 | 0.4 | . .5 | . 6 | - 6 | . 7 |
| 20.0 | -2.1 | -2.2 | -2.3 | -2.5 | -2.7 | -2,8 | -3.0 | -3.2 | -3.3 | -3.3 | -3.3 | -3.2 | -3.0 | -2.9 | -2.7 | -2.5 | -2.4 | -2.3 | 3 |
| 20 | -5.2 | -5.3 | -5.3 | -5.8 | -6.0 | -6.3 | -6.5 | -6.7 | -6.9 | -6.9 | -6.7 | $\therefore 7$ | -6. 5 | -6.3 | -6. 2 | -5.9 | -5.7 | -5.6 | -5.5 |
| 22.6 | -8.4 | -8.5 | -8.8 | -9.2 | -9.6 | -9.9 | -10.3 | -10.6 | -10.8 | -10.9 | -10.8 | -20.6 | -10.3 | -10.0 | -9.6 | -9.5 | -9.2 | -9.0 | 9 |
| 24.0 | -11.0 | $-11.2$ | -11.6 | -12.2 | -12.9 | -13.4 | $-13.9$ | -14.4 | -14.A | $-15.0$ | -19.8 | -14.4 | -1400 | - 33.6 | -13.2 | -12.0 | -12.5 | 12. | 12.0 |
| 26.0 | -13.0 | $-13.2$ | -13.7 | -14.5 | -13.3 | -16.1 | -16.8 | -17.6 | $-18.2$ | $-18.5$ | -18.2 | -17.6 | -17.0 | -16.5 | -16.0 | -15.5 | -15.0 | -14.6 | -14.4 |
| 28.0 | -14.3 | -14.5 | $-15.1$ | -16.0 | -16.9 | -17.9 | $-18.7$ | $-19.6$ | $-20.5$ | $-20.8$ | -20.4 | -19.6 | $-18.9$ | $-28.3$ | -17.7 | $-17.8$ | -16.6 | -16.1 | -16.0 |
| 30.0 | -15.3 | -15.5 | $-16.1$ | $-17.0$ | -18.0 | $-18.9$ | -19.9 | $-20.7$ | -21.9 | $-22.3$ | $-21.9$ | $-21.0$ | -20.1 | -19.4 | -10.8 | -18.2 | -17.7 | -17.2 | -87.8 |
| 32.0 34.0 | $\begin{aligned} & -16.4 \\ & -17.7 \end{aligned}$ | -16.6 | -17.2 | -19.0 | -19.0 -20.2 | $-23.0$ | -21.0 -22.0 | -22.1 | -23.1 -24.6 | $-23.5$ | $-23.0$ | $-22.1$ | $-21.2$ | $-20.5$ | -19.9 | $-19.3$ | $-10.7$ | $-28.3$ | $-18.8$ |
| $\begin{aligned} & 34.0 \\ & 36.0 \end{aligned}$ | $\begin{aligned} & -17.7 \\ & -19.0 \end{aligned}$ | -17.9 -19.2 | -18.4 -19.7 | -19.2 -20.4 | -20.2 | -21.2 -22.4 | -22.2 -23.5 | -23.4 -24.4 | -24.4 -25.6 | -24.8 | -24.3 | -23.4 | $-22.5$ | -21.7 | -21.0 | -20.4 | -19.9 | -19.3 | -19.4 |
| $\begin{aligned} & 36.0 \\ & 38.0 \end{aligned}$ | $\begin{aligned} & -19.0 \\ & -20.2 \end{aligned}$ | -19.2 -20.4 | -18.7 -20.8 | -20.4 | -22.6 | -22.4 | -23.5 | -26.6 | -25.6 | -26.0 | -25.6 | -24.7 | -23.7 | -22.9 | $-22.2$ | -21.5 | -21.0 | -20.7 | 20.6 |
| 40.0 | -21.3 | -21.4 | -21.9 | -22.8 | -22.4 | -23 | -2 | -25.0 | -28.8 -27.8 | -27.2 -28.2 | -26.7 -27.8 | -25.8 | -24.8 | -23.9 | -23.2 | -22. | -22.8 | -21.8 | -22.6 |
| 42.0 | -22.2 | -22.4 | -22.3 | -23.5 | -24.4 | -25.4 | -26.6 | $-27.9$ | $-27.8$ | -29.2 | -28.7 | -27.8 | -26.7 | -25.8 | -25.0 | -24.4 | -23.9 | -23.6 |  |
| 44.0 | -23.1 | $-23.3$ | -23.7 | $-24.3$ | -25.2 | $-26.2$ | -27.4 | $-28.7$ | $-29.7$ | -30.1 | -29.6 | -28.7 | -27.6 | -26.7 | -25.9 | -25.2 | $-24.8$ | -24. | 2308 24.6 |
| 46.0 | -24.0 | -24.1 | -24.5 | -25.1 | -26.0 | -27.0 | -28.2 | $-29.5$ | -30.9 | -30.9 | -30.5 | -29.5 | -28.4 | -27.4 | -26.6 | -26.0 | $-25.5$ | - 25.2 | 25.1 |
| 49.0 | -24.7 | $-24.9$ | -25.3 | -25.9 | -26.7 | -27.8 | -29.0 | -30.? | -31.3 | -31.7 | -31.2 | -30.2 | -29.2 | -28.2 | -27.3 | -26.7 | -26.2 | -25.0 | -25.8 |
| 50.0 | -25.5 | -25.6 | -26.0 | $-26.6$ | -27.4 | -28.5 | -29.7 | $-30.9$ | -32.0 | $-32.4$ | -31.9 | -31.0 | $-29.9$ | $-28.9$ | -28.0 | -27.4 | -26.9 | -26.6 | -26.8 |
| 52.0 | -20.1 | -26.3 | -26.6 | $-27 \cdot 3$ | $-28.1$ | -2\%.1 | -30.3 | -31.6 | -32.6 | -33.0 | -32.6 | -31.6 | -30.5 | -20.5 | -28.7 | $-28.0$ | -27.5 | $-27.2$ | -27.8 |
| 54.0 | $-21.3$ | -28.9 | $-27.3$ | -27.9 | $-28.7$ | $-29.7$ | -31.0 | $-32.2$ | $-33.3$ | -33.7 | -33.2 | -32.3 | -32.1 | -30.1 | $-29.3$ | $-28.6$ | $-23.1$ | -27.9 | -27.8 |
| Et.0 | -. 7.4 | -27.5 | -27.7 | -28.5 | -29.3 | -39.3 | -31.6 | -32.0 | -33.9 | -34.3 | -33.9 | -32.9 | -31.8 | -30.7 | -29.9 | -29.2 | $-28.7$ | -23.4 | -26.3 |
| 58.0 | -28.0 | $-28.1$ | -28.5 | -29.1 | -29.9 | -30.9 | -32.1 | $-33.4$ | $-34.5$ | $-34.9$ | -34.5 | -33.5 | $-32.3$ | -31.3 | -30.4 | -29.0 | -29.3 | -29.0 | $-28.9$ |
| CO.0 | -28.6 -29.1 | $-28.7$ | -29.0 -29.6 | -29.6 -30.2 | -30.4 | -31.5 | -32.7 | $-34 i$ | $-35 \cdot 0$ | $-35.5$ | $-35.0$ | -34.1 | -32.9 | -31.9 | -31.0 | $-30.3$ | $-29.9$ | $-29.6$ | $-29.5$ |
| 62.0 64.0 | -29.1 | -29.2 -29.8 | -29.6 -30.2 | -30.2 -30.7 | -31.0 | -32.0 | -33.3 -33.8 | $-34 .$ | $\begin{aligned} & -35.6 \\ & -36.2 \end{aligned}$ | -36.1 -36.6 | -35.6 | -34.6 | -33.5 | -32.5 | -31.6 | -30.9 | -30.4 | -30.2 | $-30.1$ |
| C6.0 | -28.7 -30.3 | $\begin{aligned} & -29.8 \\ & -30.6 \end{aligned}$ | -30.2 -30.7 | -30.7 -31.3 | -31.6 | -32.6 -33.2 | -33.8 -34.4 | -35.1 | -36.2 | -36.6 | -36.2 | -35.2 | -34.1 | -33.0 | -32.2 | -31.5 | $-31.0$ | -30.7 | -30.6 |
| 03.0 | -36.8 | - 31.0 | -31.3 | -31.9 | -32.7 | -33.2 -33.7 | -3500 | -35.7 -35.3 | -36.8 | -37.2 -37.8 |  | - 15.8 -36.5 | -34 | -33 | 32 | -32.8 -32.7 | 31 | 31 | 1.2 |
| 70.6 | -31.4 | -31.6 | -31.9 | -32.5 | -33.3 | -34.4 | -35.6 | -36.9 | -38.0 | -38.5 | -38.1 | -37.1 | -36.0 | -35.0 | -34.4 | 32.7 33.4 | 32.3 -33.0 | 32.7 | 32.6 |


| INCIDENCE ANCLE (DEG) | 0.3 | 10.0 | 20.0 | 30.0 | 40.0 | 50.0 | 60.0 | $\begin{gathered} \text { REL } 471 \\ 70.0 \end{gathered}$ | $\begin{gathered} \text { IVE A } 21 \\ 80.0 \end{gathered}$ | $\begin{gathered} \text { ImUTH } \\ 90.0 \end{gathered}$ | $\begin{aligned} & \text { ANGLE } \\ & \text { ICO.0 } \end{aligned}$ | $\begin{aligned} & (D E G) \\ & 120.0 \end{aligned}$ | 120.0 | 130.0 | 240.0 | 150.0 | 160.0 | 170.0 | 180.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.0 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 14.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.7 | 10.9 | 10.9 |
| 2.0 | 10.7 | 10.7 | 10.7 | 10.7 | 16.7 | 10.7 | 10.7 | 10.7 | 12.7 | 10.7 | 10.7 | 10.7 | 10.7 | 10.7 | 10.7 | 10.7 | 20.7 | 10.7 | 20.7 |
| 4.0 | 20.3 | 10.3 | 10.3 | 10.3 | 10.3 | 10.3 | 10.3 | 10.3 | 20.2 | 1.8 .2 | 10.2 | 10.3 | 10.3 | 10.3 | 20.3 | 20.3 | 20.3 | 10.3 | 10.3 |
| 6.0 | 9.6 | 9.6 | 9.6 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 | 0.5 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 | 0.5 | 9.6 | 9.6 | 9.6 |
| 9.0 | 8.6 | 8.6 | 0.5 | 0.5 | 6.5 | 8.5 | 8.4 | 6. 4 | 8.4 | 8.4 | 6.4 | 3.4 | 8.4 | 8.5 | 0.5 | 8.5 | 0.5 | 0.6 | $0 \cdot 6$ |
| 13.0 | 7.3 | 7.2 | 7.2 | 7.2 | 7.1 | 7.1 | 7.1 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.1 | 7.1 | 7.1 | 7.2 | 7.2 | 7.2 | 7.2 |
| 12.0 | 5.0 | 5.6 | 5.0 | 5.5 | 5.5 | 5.4 | 2.3 | 5.3 | 5.2 | 5.2 | 5.2 | 5.3 | 5.3 | 5.4 | 5.5 | 5.5 | 5.6 | 5.6 | 5.6 |
| 14.0 | 3.7 | 3.7 | 3.4 | 3.5 | 3.4 | 3.3 | 3.3 | 3.2 | 3.1 | 3.1 | 3.1 | 3.2 | 3.3 | 3.3 | 3.4 | 3.5 | 3.6 | 3.6 | 3.7 |
| 16.0 | 1.4 | 1.4 | 1.3 | 1.2 | 1.1 | 2.0 | . 8 | .7 | . 7 | . 6 | . 7 | .7 | -8 | . 9 | 1.1 | 1.2 | 1.3 | 1.3 | 1.4 |
| 18.0 | $-1.1$ | -1.1 | - 3.3 | - 1.4 | -1.6 | - 1.8 | $-2.0$ | $-2.1$ | $-2.2$ | -2.2 | -2.2 | -2.1 | $-2.0$ | -2.8 | -1.7 | -1.5 | -1.4 | -2.3 | -2.2 |
| 2 C 0 | -3.8 | -3.9 | -4. 2 | -4.3 | -4.5 | -4.8 | -9.1 | -5.3 | -5.4 | -5.5 | -5.4 | -5.3 | -5.1 | -4.9 | -4.7 | -4.5 | -4. 3 | -4.2 | -4.2 |
| 22.0 | -6.4 | -6.6 | -6.9 | -7.3 | -7.7 | -8.1 | -8.4 | -3.7 | -8.9 | -9.0 | -8.9 | -3.7 | -8.4 | -8.2 | -7.9 | -7.6 | -7.3 | -7.2 | -7.1 |
| 24.0 | $-8.7$ | -8.9 | -9.3 | -9.9 | $-10.6$ | $-11.1$ | - 11.6 | -12.1 | -12.5 | -22.6 | -12.5 | $-12.1$ | $-81.7$ | $-11.3$ | - 21.0 | -10.8 | -20.2 | -9.9 | -9.8 |
| 23.0 | -20.4 | $-10.6$ | $-11.2$ | -1.i. 9 | $-12.8$ | $-13.5$ | -14.2 | -14.9 | $-15.5$ | -15.8 | $-15.5$ | -14.9 | $-14.3$ | -13.8 | $-23.4$ | -12.9 | -12.4 | $-12.0$ | -11.9 |
| 29.0 | -21.5 | -11.8 | -12.4 | $-13.2$ | $-14.2$ | -15.1 | -15.9 | $-16.8$ | -17.6 | $-10.3$ | $-17.6$ | $-16.8$ | $-86.1$ | -15.5 | $-25.0$ | -14.4 | -13.9 | -13.4 | $-13.2$ |
| 30.0 | -12.4 | $-12.7$ | -13.3 | -14.2 | -15.1 | -16.1 | -17.0 | $-28.0$ | -19.0 | -19.4 | -18.9 | $-12.1$ | -17.2 | -16.6 | -16.0 | -15.4 | - 24.8 | -14.4 | -14.2 |
| 32.0 | -13.4 | -13.6 | -14.2 -15.2 | -15.0 | -16.0 | $-17.0$ | $-18.0$ | $-19.0$ | $-27.0$ | -20.4 | -20.0 | -19.1 | -18.2 | -17.5 | -15.9 | -16.3 | $-15.7$ | $-15.3$ | $-15.1$ |
| 34.0 36.0 | -14.4 | -14.0 | -15.2 -16.4 | -16.0 -17.2 | -17.0 | -18.0 -29.1 | -19.0 -20.2 | -20.1 -21.4 | -21.1 -22.3 | -21.5 -22.8 | -21.1 | -20.1 | -19.2 | -18.5 -19.6 | -27.8 | -17.2 -18.3 | -18.7 | -16.3 -1705 | -16.8 -17.3 |
| 36.0 38.0 | -15.7 | -15.9 -17.1 | -16.4 -17.6 | -17.2 -18.3 | -18.1 -19.2 | -29.2 -20.3 | -20.2 -21.4 | -21.4 -22.5 | -22.3 -23.5 | -22.8 -23.9 | -22.3 -23.5 | -21.4 -22.5 | -29.4 -21.6 | -19.6 -20.7 | -19.0 | -18.3 -19.4 | -17.8 -18.9 | -17.5 -18.5 | -17.3 -18.4 |
| 40.0 | -18.0 | $-18.2$ | -18.6 | $-27.3$ | $-25.2$ | -21.3 | -22.4 | $-23.6$ | -24.6 | -25.0 | -24.5 | -23.6 | -22.6 | -21.7 | -21. | -19.4 | -18.9 | -16.5 -29.5 | 18.4 29.4 |
| 42.0 | -19.3 | $-19.1$ | $-19 . t$ | -2~.3 | -2: 22 | -22. 2 | -22.3 | -24.5 | -25.6 | - 76.0 | -25.5 | -24.6 | -23.5 | -22.6 | -21.9 | -21.3 | -20.8 | -20.5 | -20.3 |
| 44.0 | -19.9 | -20.0 | $-26.5$ | -22.1 | -22.0 | -23.1 | -24.2 | -25.4 | -2h.9 | -78.9 | -2t.4 | -25.5 | -24.4 | -23.5 | -22.7 | -22.1 | -21.6 | -21.3 | -21.2 |
| 46.0 | -20.7 | -20.9 | -21.3 | -22.0 | -22.9 | -2こ.9 | $-25.0$ | -26.3 | -27.3 | -27.7 | $-27.2$ | -26.3 | -25.2 | -24.3 | -23.5 | -22.8 | -22.4 | -22.1 | -22.0 |
| 42.0 | -21.5 | -21.7 | -22.1 | -22.7 | -23.6 | $-24.6$ | -25.8 | -27.0 | $-28.1$ | $-28.5$ | -20.0 | -27.1 | -26.0 | -25.0 | -24.2 | -23.6 | -23.2 | $-22.8$ | -22.7 |
| 53.0 | -22.3 | -22.4 | -22.8 | -23.4 | -24.3 | -25.3 | -26.5 | $-27.7$ | $-28.8$ | $-29.2$ | -28.7 | -27.8 | -28.7 | -25.7 | -24.9 | $-24.2$ | -23.8 | 23.5 | -23.4 |
| 52.0 | -22.9 | $-23.1$ | -23.5 | $-24.1$ | -26.09 | -26.0 | $-27.2$ | -28.4 | $-29.5$ | -29.9 | -29.4 | -28.5 | -27.4 | -26.4 | -25.5 | -24.9 | -24.4 | $-24.1$ | -24.0 |
| 54.0 | -23.6 | -23.7 | $-24.1$ | -24.7 | -25.6 | -26.6 | -27.8 | $-29.1$ | -30.1 | -30.5 | -30.1 | -29.1 | $-28.0$ | $-27.0$ | -26.1 | $-25.5$ | $-25.0$ | $-24.7$ | -24.6 |
| $5 E .3$ | $-24.2$ | -24.3 | $-24.7$ | -25.3 | -28.2 | -27.2 | - $=8.4$ | $-29.7$ | $-30.7$ | $-3 \geq-1$ | -30.7 | $-29.7$ | -28.6 | -27.6 | $-26.7$ | -26.1 | -25.6 | $-25.3$ | $-25.2$ |
| $\begin{aligned} & 5=0 \\ & 00.0 \end{aligned}$ | $\begin{aligned} & -24.8 \\ & -25.4 \end{aligned}$ | $\begin{aligned} & -24.9 \\ & -25.5 \end{aligned}$ | -25.3 -25.9 | -25.9 -26.5 | $\begin{aligned} & -28.7 \\ & -27.3 \end{aligned}$ | $\begin{aligned} & -27 \cdot 1 \\ & -26 \cdot 3 \end{aligned}$ | -27.0 -29.6 | $-3 n \cdot 3$ $-3 ¢ .8$ | -31.3 -31.9 | $\begin{array}{r} -32.7 \\ -32.3 \end{array}$ | $\begin{aligned} & -31.3 \\ & -31.0 \end{aligned}$ | -50.3 -30.9 | -24.2 -29.8 | -28.2 -28.8 | -27.3 -27.9 | -25.7 | -26.2 | -25.9 -26.5 | -25.0 -28.4 |
| $\begin{aligned} & 60.0 \\ & 62.0 \end{aligned}$ | $\begin{aligned} & -25.4 \\ & -26.0 \end{aligned}$ | $\begin{aligned} & -25.5 \\ & -26.1 \end{aligned}$ | -25.9 -26.4 | -20.5 -27.0 | -27.3 -27.9 | -26.3 -28.9 | -29.6 -30.1 | -36.8 -31.4 | -31.9 -32.5 | -32.3 -32.9 | -31.9 -32.5 | -30.9 -31.5 | -29.8 -30.4 | -28.8 -29.3 | -27.9 -28.5 | -27.2 -27.8 | -20.8 -27.3 | -26.5 -27.0 | -26.4 -26.9 |
| 64.0 | -6\% 5 | -26.6 | -27.0 | -27.6 | -20.4 | -29.5 | - 30.7 | -32.0 | -33.0 | -32.5 | $-33.1$ | -32.1 | -32.0 | -29.9 | -29.1 | -28.4 | -27.9 | -27.6 | -27.5 |
| 66.0 | -27.1 | -27.2 | -27.6 | $-28.2$ | -29.0 | $-30.0$ | -31.2 | -32.5 | -33.6 | -34.1 | -33.7 | -32.7 | - 31.6 | -30.5 | -29.7 | -29.0 | -28.5 | -28.2 | $-28.8$ |
| E8.0 | $-27.7$ | -27.8 | $-28.2$ | $-28.7$ | -29.6 | -30.0 | -31.8 | -33.2 | $-34.2$ | $-34.7$ | -34.3 | -33.3 | - 32.2 | -31.2 | -30.3 | -29.6 | -29.2 | -28.9 | $-28.8$ |
| 70.0 | $-28.3$ | -28.4 | -28.8 | -29.4 | -30.2 | -31.2 | -32.5 | $-33.8$ | -34.9 | $-35.4$ | -35.0 | -34.0 | -32.8 | -31.9 | -31.0 | -30.3 | -29.9 | -29.6 | -29.5 |

## nRCS table in decibels

## FREOUENCY - 13.8 6Hz VERTICAL POLARIZATION FRICTION VELOCTTY $30.0 \mathrm{CM} / \mathrm{SEC}$

| INC IDENCE ANGLE TDEG) | 0.0 | 10.0 | co.0 | 30.0 | 40.0 | 50.9 | 60.0 | $\begin{gathered} \text { RELATT } \\ 70.0 \end{gathered}$ | $\begin{gathered} \text { TVE AzI } \\ 80.0 \end{gathered}$ | $\begin{gathered} \text { IMUTH } \\ 90.0 \end{gathered}$ | ANGLE $100.0$ | $\begin{aligned} & (5 \approx G) \\ & 0 \\ & 110.0 \end{aligned}$ | 120.0 | 130.0 | 140.0 | 250.0 | 260 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 10.5 | 10.5 | 10.5 | 10.5 | 20.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 20.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 |  |  |
| 2.0 | 0.4 | 10.4 | 10.4 | 10.4 | 10.4 | 10.4 | 10.4 | 10.4 | 10.4 | 10.4 | 10.4 | 10.4 | 10.4 | 10.4 | 10.4 | 20.4 | 10.4 | 20.4 | 10.4 |
| 4.0 | 16.0 | 10.0 | 10.0 |  | 16.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 20.0 | 10.0 | 20.0 | 10.0 | 10.0 | 80.0 |
| 6.0 | 9.3 | 9.3 | 9.3 | 9 | 9.3 | 9.3 | 9.3 | 9.3 | 9.3 | 9.3 | 9 9.3 | 9.3 | 9.3 | 9.3 | $0 \cdot 3$ | 9.3 | 9.3 | 9.3 | 9.3 |
| 8.0 | 8.4 | 8.4 | 8.4 | 6.4 | 8.3 | 8.3 | 8.3 | $\cdot .3$ | 9.3 | 8.3 | 8.3 | R. 3 | 8.3 | 8.3 | 8.3 | 8.4 | 8.4 | 8.6 | 0.4 |
| 1 l .0 | 7.2 | $7 \cdot 2$ | 7.2 | 7.1 | 7.1 | 7.1 | 7.0 | 70 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.2 | 7.1 | 7.1 | 7.2 | 7.2 | 7.2 |
| 22.0 | 5.7 | 5.7 | 5.7 | 5.6 | . 6.6 | 5.5 | 5.4 | 5.9 | 5.4 | 5.4 | 5.4 | 5.4 | 5.4 | 5.5 | 5.6 | 5.6 | 5.7 | 5.7 | 5.7 |
| 14.0 | 4.0 | 4.0 | 3.9 | $3 . \varepsilon$ | 3.7 | 3.6 | 3.6 | 3.5 | 3.4 | 3.4 | 3.4 | 3.5 | 3.5 | 3.6 | 3.7 | 3.8 | 3.8 | 3.9 | 3.9 |
| 16.0 | 1.9 | 1.9 | 1.8 | 1.7 | 1.6 | 1.4 | 1.3 | 1.2 | 1.2 | 1.1 | 2.2 | 1.2 | 1.3 | 2.4 | 2.5 | 1.7 | 10 | 1.8 | 1.0 |
| 18.0 | -. 3 | -0.4 | -. 5 | -.7 |  | -1.1 | -1.2 | -1.3 | -1.4 | -1.5 | -1.4 | -1.3 | -1.2 | -2.2 | - 2.9 | 2.7 | - 6.8 | 108 -85 | -. 5 |
| 20.0 | -2.7 | -2.8 | -3.0 | -3.3 | - 3.6 | -3.8 | -4.0 | -4.? | -4.4 | -4.4 | -4.4 | -4.2 | -4.2 | -3.9 | -3.7 | -3.5 | -3.3 | -3. 8 | -3.1 |
| 22.0 | -E.? | -E. ${ }^{\text {d }}$ | -5.5 | -5.9 | -6. 3 | -6.7 | -7.0 | -7.3 | -7.6 | -7.6 | -7.5 | -7.3 | -7.1 | -6.8 | -6.5 | -6. 3 | -6.0 | -5.8 | -5.7 |
| 24.0 | -7.: | -7.: | -7. F | -8.2 | -8.8 | -9.4 | -9.9 | $-10.3$ | -17.7 | -10.9 | -1:, | ..v. 3 | -9.9 | -9.6 | -9.2 | -8.9 | - H .5 | -8.8 | -8.2 |
| 20.0 | -E.V | -9.9.6 | - 5.2 | $-10.6$ | -11.6 | -11.5 | $-12.2$ | $-17.9$ | -11.5 | $-13.7$ | -1玉., | $-22.9$ | -12.3 | -12.8 | -11.4 | $-10.9$ | $-20.4$ | -10.0 | -9.0 |
| 20.0 | -7.4 $-: 6.1$ | -8.6 -10.4 | -10.2 -12.0 | -11.1 -11.9 | -12.0 -12.9 | -12.9 -13.8 | -13.7 -14.7 | -14.6 | -15.4 | -15.8 | -25.4 | -14.6 | -13.9 -14.9 | -13.3 -14.3 | -12.8 | -12.3 | -11.7 -12 | $-11.3$ | 12.1 |
| 32.0 | -1く.7 | -11.2 | -1i.0 | -12.7 | -13.6 | - 14.8 | - 15.8 | -15.7 -14.6 | -16.6 -17.6 | -17.0 -18.0 | - | -15.7 -16.6 | -14.9 -15.8 | -14.3 | -13.8 | -13.2 | -12.6 | -12.1 | 12.0 |
| 34.0 | -12.7 | -12.1 | $-12.7$ | $-13.5$ | -14.5 | -15.5 | -16.5 | -17.3 | -18.5 | -18.9 | - 28.5 | -17.6 | -16.7 |  |  |  |  |  |  |
| 3e.c | $-13.0$ | $-13.2$ | -13.8 | $-14.6$ | -15.5 | -16.5 | -17.6 | -18.7 | $-19.7$ | -20.1 | -19.6 | -10.7 | -17.8 | $-17.0$ | - 26.3 | -15.7 | -15. | 13.8 14.8 | 13. |
| 35.2 | -14.2 | $-14.4$ | -14.8 | $-15.7$ | -16.0 | -17.6 | - 39.7 | $-19.9$ | -20.8 | $-21.3$ | -20.8 | -19.9 | -18.9 | -18.1 | -17.4 | -16.8 | -16.3 | 19.9 | 25. |
| 4 Cu | -15.3 | -15.5 | -16.0 | $-16.7$ | -17.6 | -1a.6 | $-19.8$ | -20.9 | - 21.1 .9 | -22.3 | -21.9 | -20.9 | -20.0 | -19.1 | $-18.4$ | -17.8 | -17.3 | -16.9 | -16.8 |
| 42.6 | -1t.3 | $-16.5$ | $-17.0$ | $-17.7$ | -12.6 | $-17.6$ | -20.7 | -21.9 | -22.9 | $-23.3$ | -22.9 | -22.9 | -20.9 | -20.0 | -29.3 | -18.7 | $-18.2$ | $-17.8$ | $-87.7$ |
| 44.0 | -17.3 | -17.4 | $-17.9$ | $-18.5$ | $-19.4$ | -20.5 | -21.6 | -22.8 | -23.3 | -24.2 | -23.8 | -22.8 | $-21.8$ | -20.9 | -20.1 | $-29.5$ | $-20.0$ | -10.7 | -18.6 |
| 46.6 | -1E.1 | -18.3 | $-18.7$ | -19.4 | $-20.2$ | $-21.3$ | $-22.4$ | $-23.6$ | $-24.7$ | $-25.1$ | -24.6 | $-23.7$ | $-22.6$ | -21.7 | -20.9 | -20.3 | -19.8 | -19.5 | 19.4 |
| 40.0 50.0 | -15.9 -19.6 | -19.0 -19.8 | -19.5 -20.2 | -20.1 -20.8 | -22.0 -21.7 | $-22.0$ | $-23.2$ | -24.4 | -25.5 | -25.9 | -25.4 | -24.4 | -23.4 | -22.4 | $-21.6$ | $-21.0$ | -20.5 | -20.2 | 20.1 |
| $50.0$ | -19.6 -20.3 | -19.8 -20.5 | -20.2 -20.9 | -20.6 -21.5 | -21.7 -22.3 | -22.7 -23.4 | -23.9 | -25.1 | -26.2 | -26.6 | $-26.1$ | $-25.2$ | -24.1 | -23.1 | -22.3 | -21.7 | $-21.2$ | -20.9 | -20.8 |
| $52.0$ | -20.3 | -20.5 -21.1 | -20.9 | -21.5 | $-22.3$ | -23.4 | -24.6 | -25.A | -28.9 | $-27.3$ | -26.8 | -25.9 | -24.8 | -23.8 | $-23.0$ | $-22.3$ | -21.8 | -21.5 | -21.4 |
| 54.0 56.0 | -21.0 | -21.1 -21.7 | -21.5 | -22.1 | $-23.0$ | -24.0 | -25.2 | -2h.5 | $-27.5$ | -27.9 | $-27.5$ | $-26.5$ | -25.4 | -24.4 | $-23.6$ | -22.0 | -22.9 | -22.2 | -22.2 |
| 56.0 58.0 | $-2: 08$ -88.2 | -21.7 -22.3 | -22.1 -22.7 | -22.7 -23.3 | -23.0 -24.2 | -24.6 | -25.8 -20.4 | -27.1 -27.7 | $-2 A .8$ -28.8 | -29.6 -29.2 | -28.1 | -27.1 | -2.6.0 | -25.0 | $-24.2$ | -23.3 | -23.0 | -22.0 | -22.7 |
| 60.0 | -22.8 | $-22.9$ | -23.3 | -23.9 | -24.7 | -25.9 | -27.0 | -29.3 | -29.3 | -29.8 |  | -28 | -27 | 26 | 3 | 24 | -21 | -73.3 |  |
| 62.0 | -23.4 | -23.5 | -23.9 | -24.5 | -25.3 | -26.3 | -27.5 | -29.9 | -72.7 | - 70.3 | -27.9 | -28.9 | -27.8 | -26.2 | -29.9 | -240 | 24 | 23 |  |
| 64.0 | -23.7 | -24.1 | -24.4 | -25.0 | -25.0 | -26.7 | -2b. 1 | -29.4 | -30.9 | -30.\% | -30.5 | -29.9 | - 2 - 0.6 | -87.4 | - 2 h, 5 | -89. | -1. |  |  |
| 66.0 | -24.9 | $-24.6$ | $-25.0$ | -25.0 | -26.4 | -27.5 | $-28.7$ | -3n.n | -31.1 | -31.9 | -31.1 | -80.1 | - 72.0 | -i0.0 | -27.1 | -8nay | - ycos | $8{ }^{8}$ | - Eter |
| 68.0 | -25.1 | $-25.2$ | -25.0 | -26.2 | -27.0 | $-24.0$ | $-24.3$ | -30.6 | -31.7 | -32.1 | -31.7 | -30.0 | - 20.7 | -20.0 | -27.8 | -8101 | -28.04 |  | - $\mathrm{Le}_{3}$ |
| 70.\% | -25.7 | -25.0 | -26.2 | -26.8 | -27.6 | $-20.7$ | -29.9 | -31.? | -32.3 | -32.0 | -32.4 | -32.9 | -30. 8 | -24.5 | -20.3 | -27.6 | -2103 | 27.1 | - 81.0 |

nRES TAGLE IN OECTBELS

FREOUENCY - 13.9 6HZ
VERTICAL POLARIZATION
FRICTION VELOCITY 35.0 CH/SEC

| INC IOENCE ANGLE (OEG) | 0.0 | 10.0 | 20.0 | -0.0 | 40.0 | 30.1 | 60.0 | $\begin{gathered} \text { RELATIT } \\ 70.0 \end{gathered}$ | $\begin{gathered} \text { IVE AZI } \\ 80.0 \end{gathered}$ | $\begin{aligned} & 1 \text { MUTH } \\ & 90.0 \end{aligned}$ | $\begin{aligned} & \triangle N G L E \\ & 100.0 \end{aligned}$ | $\begin{aligned} & (D E G) \\ & 120.0 \end{aligned}$ | 120.0 | 130.0 | 140.0 | 250.0 | 200.0 | 70 | 80.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 10.2 | 10.2 | 10.2 | 10.2 | 10.2 | 20.2 | 10.2 | 10.2 | 10.2 | 20.2 | 10.2 | 20.2 | 10.2 | 20.2 | 10.2 | 10.2 | 10.2 | 10.2 | 10.2 |
| 2.0 | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 | 20.1 | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 | 20.2 |
| 4.0 | 9.8 | 9.8 | 9.7 | 9.7 | 9.7 | 9.7 | 9.7 | 9.7 | 0.7 | 9.7 | 9.7 | 9.7 | 9.7 | 9.7 | 9.7 | 9.7 | 9.7 | 9.7 | 9.8 |
| 0.0 | 9.1 | 9.1 | 9.1 | 9.1 | 9.1 | 9.1 | 9.1 | 9.1 | 9.1 | 9.1 | 9.1 | 9.1 | 9.1 | 9.1 | 9.1 | 9.1 | 9.2 | 9.1 | 9.1 |
| 8.0 | 8.3 | 0.3 | 8. 3 | a. 2 | 8.2 | 0.2 | 0.2 | $0 \cdot 1$ | 8.1 | 8.1 | 0.1 | 8.1 | 8.2 | 8.2 | 8.2 | 8.2 | 8.3 | 6.3 | 0.3 |
| 10.0 | 7.2 | 7.2 | 7.1 | 7.1 | 7.1 | 7.0 | 7.0 | 7.0 | 6.9 | 6.9 | 6.9 | 7.0 | 7.0 | 7.0 | 7.8 | 7.1 | 7.1 | 7.1 | 7.2 |
| 12.0 | 5.3 | 5.8 | 5.8 | 5.7 | 5.6 | 5.6 | 5.5 | 5.5 | 5.4 | 5.4 | 5.4 | 5.5 | 5.5 | 5.6 | 5.6 | 8.7 | . 9 | 5.8 | 5.8 |
| 14.0 | 4.2 | $4 \cdot 2$ | $4 \cdot 1$ | 4.0 | 3.9 | 3.8 | 3.8 | 3.7 | 3.6 | 3.6 | 3.6 | 3.7 | 3.8 | 3.8 | 3.9 | 4.0 | 4.1 | 4.1 | 4.2 |
| 10.0 | 2.3 | 2.3 | 2.2 | 2.1 | 1.7 | 1.8 | 1.7 | 1.6 | 2.5 | 1.5 | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 | 2.1 | 2.2 | 2.2 |
| 18.0 | $\bullet 3$ | -2 | -1 | -2. 1 | -. 3 | -. 5 | -.6 | --A | -. 9 | -. 9 | -. -9 | -. 0 | -. 7 | -. 5 | -0. 4 | -. 2 | -. 21 | -0 | 2.2 |
| 20.0 | -1.8 | -1.9 | -2.1 | -2.4 | $-2.7$ | $-3.0$ | -3.2 | -3.4 | -3.6 | $-3.7$ | -3.6 | -3.4 | -3.3 | -3.1 | -2.9 | -2.7 | -2.5 | -2.3 | $\cdot 3$ |
| 22.0 | -3.3 | -4.0 | -4.3 | -4.6 | -5. 2 | -5.2 | -2.9 | -6.2 | -6.5 | -6.6 | -6.5 | . -4.3 | -6.0 | -5.7 | -5.5 | -5.2 | -4.9 | -4.7 | -4.6 |
| 24.0 | -5.5 | -5.7 | -0.2 | -6. | -7.4 | -5.0 | -6. 5 | -9.0 | -9.4 | -9.5 | -9.4 | . 9.0 | -8.6 | -8.2 | -7.9 | -7.5 | -7.1 | -6.8 | -6. 7 |
| 26.0 | $-6.7$ | -t. 3 | -7.5 | $-2.3$ | $-4.1$ | -9.9 | $-10.5$ | -11.? | -11.8 | -12.1 | $-11.8$ | $-11.2$ | $-1 c .7$ | -10.2 | -9.8 | -9.3 | -8.8 | -8.4 | -8.2 |
| 20.0 | -7.6 | -7.9 | -द.4 | -i. ${ }^{-10}$ | -1c.3 | -11.1 | -11.9 | -17.0 | - 23.6 | -13.9 | $-13.6$ | -12.8 | -12.1 | -11.6 | $-11.1$ | $-10.5$ | -9.9 | -9.9 | -9.3 |
| 36.0 | -8.2 | -8. -9 | -7.8 | $-10.8$ | -11.0 | -11.7 | -12.0 | -13.8 | -14.7 | $-15.1$ | $-14.7$ | -13.8 | -13.0 | -12.4 | $-11.9$ | $-11.3$ | $-80.7$ | $-10.2$ | $-10.1$ |
| 32.0 36.0 | -3.9 | $-9.2$ | -20.t | -10.7 | -11.7 | -12.6 | -13.6 | -14.6 | -15.6 | $-16.0$ | $-15.5$ | $-14.6$ | -13.8 | -13.1 | -12.6 | $-12.0$ | -11.4 | -20.9 | -10.8 |
| 36.0 | -5.8 | -15. | -10.t | -11.4 | -12.4 | -13.4 | -14.4 | $-25.4$ | $-16.4$ | -16.8 | $-16.4$ | $-15.5$ | -14.6 | -13.9 | -13.3 | $-12.7$ | $-12.1$ | -11.7 | $-11.5$ |
| 3 tar | -1c.3 | -11.6 | -11.5 | -12.4 | -13.3 | -14.3 | -15.3 | -16.4 | -17.4 -19.4 | -17.8 | -17.4 | -26.9 | $-15.5$ | $-14.8$ | $-14.2$ | - 13.8 | $-13.0$ | -12.6 | $-82.5$ |
| $3 \therefore .5$ -0.0 | -1E.j | -12.1 -12.2 | -12.7 | -13.5 -14.5 | -14.4 | -15.4 | -16.5 -17.5 | -17.6 -19.7 | -18.6 -19.7 | -19.0 -70.1 | -18.5 -17.6 | -17.0 -18.7 | -16.7 -17.7 | -15.9 | -15.2 -16.2 | -14.6 | -14.1 -15.8 | -13.7 -14.7 | -13.6 -14.6 |
| - 4 | -12.1 $-: 4.2$ | -12.2 -14.3 | -i -14.7 | -14.5 | -15.4 | -1t.4 | -17.5 -18.5 | -19.7 -29.7 | -19.7 -79.7 | -20.1 -21.1 | -17.6 -20.6 | -18.7 -19.7 | -17.7 -15.7 | -16.9 -17.8 | -16.2 | -15.6 -16.5 | - 25.1 | -24.7 -15.8 | -14.6 |
| 44.0 | -150. | $-15.2$ | -15.6 | -16.3 | -17.2 | -18.2 | -17.4 | -20.6 | -21.6 | -21.1 | -20.6 | -19.7 | -15.7 | -17.8 | -17.1 | -16.5 -27.3 | -16.8 -16.8 | -15.8 -16.5 | -15.8 -16.4 |
| 45.6 | -15.9 | -it.0 | -16.5 | -17.1 | -18.0 | -19.1 | $-2 c .2$ | -21.4 | -27.5 | -22.9 | -22.4 | -21.5 | -20.4 | -19.5 | -18.7 | -18.1 | $-17.6$ | -17.3 | -17.2 |
| 48.0 | -16.7 | -10.8 | -17.2 | -17.9 | -16.6 | -19.8 | -21.0 | -27.2 | $-23.2$ | - 3.3 .6 | -23.2 | -22.2 | -21.2 | -20.2 | -19.4 | -10.8 | -18.3 | -28.0 | -17.9 |
| 50.0 | -17.4 | -17.6 | $-18.0$ | $-14.6$ | -14.5 | -20.5 | -21.7 | $-22.9$ | -24.n | -2.4.4 | -23.9 | -23.0 | -21.9 | -20.9 | $-20.1$ | $-29.5$ | $-19.0$ | $-18.7$ | $-10.6$ |
| 52.0 | -12.1 | $-13.3$ | -12.7 | $-17.3$ | -26.2 | -21.2 | $-22.4$ | $-23.6$ | $-24.7$ | -25.1 | -24.6 | $-23.7$ | -22.6 | -21.6 | $-20.6$ | -20.1 | $-10.7$ | $-29.4$ | -19.3 |
| 54.0 | -15.3 | $-15.8$ | $-1.03$ | -17.9 | -2C.3 | -21.8 | -23.0 | $-24.3$ | $-25.3$ | $-25.7$ | -25.3 | $-24.3$ | -23.2 | $-72.2$ | -21.4 | -20.8 | $-20.3$ | $-20.0$ | $-19.9$ |
| 56.0 | - 29.4 | $-15.6$ | -1.1.7 | $-2 \mathrm{~V} \cdot 6$ | -21.4 | -22.4 | -23.6 | $-24.9$ | $-26.0$ | -26.4 | -25.9 | $-25.0$ | -23.9 | -22.8 | $-22.0$ | $-21.4$ | $-20.9$ | $-20.6$ | $-20.5$ |
| \%e.0 | -2C.0 | -20.2 | -20.5 | -21.1 | -22.0 | $-23.0$ | $-24.2$ | $-25.5$ | -26.6 | - 27.0 | $-26.6$ | $-25.0$ | $-24.5$ | $-23.4$ | -22.6 | -21.9 | $-21.5$ | -21.2 | -21.1 |
| CC.O | $-20.6$ | $-20.7$ | $-21.1$ | -21.7 | -22.0 | $-23.6$ | $-24.8$ | -26.1 | $-27.1$ | -27.6 | -27.1 | -26.2 | $-25.1$ | $-24.0$ | $-23.2$ | -22.9 | $-22.0$ | $-21.6$ | $-21.7$ |
| $\begin{aligned} & \epsilon 2.6 \\ & 64.0 \end{aligned}$ | $\begin{aligned} & -21.2 \\ & -21.8 \end{aligned}$ | $\begin{aligned} & -21.3 \\ & -21.9 \end{aligned}$ | -21.1 | -22.3 | -23.1 -23.7 | -24.2 | -25.4 | -26.7 | $-27.7$ | -28.2 | -27.7 -28.3 | -26.8 | -25.6 | -24.6 | $-23.8$ | -23.1 | $-22.6$ | $-22.3$ | $-22.2$ |
| $\begin{aligned} & 64.0 \\ & 66.0 \end{aligned}$ | $\begin{aligned} & -21.6 \\ & -22.3 \end{aligned}$ | $\begin{aligned} & -21.9 \\ & -22.5 \end{aligned}$ | -22.2 | $\begin{aligned} & -22.8 \\ & -23.4 \end{aligned}$ | -23.7 -24.2 | -24.7 | -25.9 | -27.2 | -29.3 -28.9 | -28.8 | -28.3 -20.0 | -27.4 | $-26.2$ | -25.2 | -24.4 | -23.7 | $-23.2$ | $-22.9$ | $-22.8$ |
| 68.0 | -22.9 | -22.5 -23.0 |  |  | -24.0 | -25.3 -25.9 | -26.5 | -27.8 | -28.9 -29.5 | -29.4 -30.0 | -29 | -28 | 26 | 25 | -25.0 | -24.3 -25.0 |  |  |  |
| 70.0 | -23.5 | $-23.0$ | $-24.0$ | $-24.6$ | -25.4 | -26.3 | $-27.7$ | -29.0 | -29.4 -30.2 | -30.6 | -29.6 -30.3 | -28.0 -29.3 | -28.2 | -27.2 | -26.3 | -25.9 | -2s.2 | -24.9 | -24.2 -24.8 |

61

| INC IOENCE ANGLE（DEG） | 0.0 | 10.0 | 20.0 | 30.0 | 40.0 | 50.0 | 60.0 | $\begin{aligned} & \text { PELATI } \\ & 70.0 \end{aligned}$ | $\begin{gathered} \text { TVE azi } \\ 80.0 \end{gathered}$ | $\begin{array}{r} \text { IMUTh } \\ 90.0 \end{array}$ | $\begin{aligned} & \text { ANGLE } \\ & 200.0 \end{aligned}$ | $\begin{aligned} & 10 E 61 \\ & 210.0 \end{aligned}$ | 120.0 | 130.0 | 140.0 | 250.0 | 160．0 | 270.0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
| 2.0 | 8.9 | 9.9 | 9.7 | 2.9 | 9.7 | 9.9 | 9.9 | 9.7 | 9.9 | 9.9 | 4.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 |
| 4.0 | 9.5 | 9.5 | 9.5 | 9.5 | 4.5 | 9.5 | 4.5 | 9.5 | 9.5 | 4.5 | 9.5 | 9.5 | 9.9 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 | 0.5 |
| 6.0 | 9.0 | 9.0 | 9.0 | 9.0 | 0.9 | 0.9 | e．9 | 8.9 | 5.7 | 8.9 | 8.9 | 8.9 | 8.9 | 8.9 | 8.9 | 9.0 | 9.0 | 9.0 | 9.0 |
| 8.0 | E． 2 | 9.2 | 0.2 | 9.1 | 6.2 | $8 \cdot 1$ | 8.1 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.1 | $8 \cdot 1$ | 6.1 | 6.1 | 0.1 | 8.2 | 0.2 |
| 10.0 | 7.1 | 7.1 | 7.1 | $7 \cdot 1$ | 7.0 | 7.0 | 6.9 | 6.9 | 6.9 | 8.9 | 6.9 | 6.9 | 6.9 | 7.0 | 7.0 | 7.0 | 7.1 | 7.1 | 7.1 |
| 12.0 | 5.9 | 5.9 | 3.9 | 5.7 | 5.7 | 5.6 | 5.6 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.6 | 5.6 | 5.7 | 5.7 | 9.6 | 5.8 | 5.8 |
| 14.0 | 4.4 | 4.3 | 4.3 | 4.2 | 4.2 | 4.0 | 3.9 | 3.8 | 3.9 | 3.6 | 3.8 | 3.8 | 3.9 | 4.0 | 4.1 | 4.8 | 4.2 | 4.3 | 4.3 |
| 16.0 | 2.7 | 2.6 | 2.5 | 2.4 | 2.2 | 2.1 | 2.0 | 1.9 | 1.9 | 1.8 | 1.8 | 1.9 | 2.0 | 2.2 | $2 \cdot 2$ | 2.3 | 2.4 | 2.5 | 2.5 |
| 16.0 20.0 | －1．9 | －-7 | －1．6 | －1．4 | －2 2 | －0．0 | －． 2 | －． 3 | －． 4 | －． 5 | －． 4 | －． 3 | －． 2 | －． 1 | ． 2 | ． 2 | －4 | ． 5 | ． 5 |
| 20.0 22.0 | $-1.1$ | －1．2 | －1．4 | -1.4 -3.8 | $-2.1$ | $-2.3$ | －2．6 | －2．3 | －3．0 | －3．0 | －3．0 | $-2.8$ | －2．6 | －2．4 | －2．2 | $-2.0$ | －1．8 | $-2.7$ | －2．6 |
| 22.0 24.0 | －2．3 | －3．5 | －3．4 | －3．8 | －4．3 | -4.7 -6.8 | -5.0 -7.3 | －5．4 | $-5.6$ | －5．7 | －5．6 | －5．4 | －5．1 | －4．8 | －4．6 | －4．3 | －4．0 | $-3.8$ | $-3.7$ |
| 26.0 | －5．3 | －5．5 | －6． 2 | －6．9 | －7．8 | －6．8 | -7.3 -9.2 | -7.8 -9.9 | -4.3 -17.5 | -8.4 -10.7 | -8.2 -10.5 | 8 | －7．4 | －7．1 | －6．8 | －6．6 | －6．0 | －5．6 | －5．5 |
| 20.0 | －6． 2 | －8．3 | －t．${ }^{\text {ct }}$ | －7．8 | －セ．9 | －7．6 | －10．6 | －11．3 | －12．1 | －12．4 | －10．3 | －19．9 | -9.3 -30.6 | -8.9 -10.1 | -8.6 -9.6 | -8.0 -9.0 | －7．4 | －7．0 | －6．9 |
| 35.0 | － 6.5 | $-6.7$ | －7．5 | －5．4 | $-6.4$ | －10．3 | －11．2 | $-17.2$ | －13．1 | －13．3 | －13．1 | －12．2 | －11．4 | －10．8 | $-10.3$ | －8．7 | －9．1 | －8．5 | －8．0 |
| $32 . ?$ | －7． 2 | －7． | －2． 2 | －－． 2 | －20．0 | －11．0 | $-: 1.9$ | $-17.7$ | $-17.9$ | $-14.3$ | －17． | －12．9 | －12．1 | －11．5 | －10．9 | －10．3 | －9．7 | －-8.2 | －0． 0 |
| 36． | －：\％ | - －？ | －-1 | －3．7 | －1C． 7 | $-11.6$ | －12．0 | $-13.7$ | －14．6 | －15．0 | －14．6 | －13．7 | －12．8 | －12．2 | $-21.5$ | $-10.9$ | －10．4 | －9．9 | －9．7 |
| $\vdots 6.0$ $3=0$ | －\％－\％ | －7． | －1．7 | －12．5 | －11．9 | $-12.5$ | $-13.9$ | $-14.9$ | －15．5 | －15．0 | －15．5 | －14．6 | $-23.7$ | －12．9 | $-22.3$ | －11．7 | $-12.2$ | －10．7 | 10.6 |
| 3.6 40.0 | $-1 C .0$ -12.2 | -10.2 -12.3 | -10.7 -12.7 | -11.5 -12.6 | -12.5 -13.5 | -13.5 -14.5 | -14.5 -15.6 | －15．6 | -16.0 -17.7 | $-17.0$ | －1t．6 | －15．7 | -13.7 -14.7 -15.8 | －13．9 | －2．3 | -12.7 -12.7 | -12.2 -12.1 | －1c．7 | 10.6 11.6 |
| 42.2 | －12．8 | －12．3 | － | -12.6 -13.5 | -13.5 -14.4 | -14.5 -15.5 | －15．6 | -16.7 -17.7 | -17.7 -18.7 | -12.1 -19.1 | －17．7 | －16．8 | －15．8 | －15．0 | －24．3 | －13．7 | $-83.2$ | －12．0 | 12.7 |
| 44.0 | －13．1 | －13．2 | $-13.7$ | －14．4 | －15．3 | －16．3 | －17．5 | －19．7 | －19．7 | －20．1 | －18．6 | －17．8 | －17． | －16 | －16 | －14．6 | －14．1 | －13．7 | 6 |
| $4 E .0$ | －14．0 | －14．1 | －14．5 | －i5．2 | $-16.1$ | －17．2 | －17．3 | －17．5 | －23．5 | －20．9 | －2r．， 5 | －17．5 | － 18.5 | －17．6 | －16．8 | －16．2 | $-15.7$ | －15．6 | －15．3 |
| 45.0 | －24． | －14．7 | －15．3 | －iちゃ | －169 | －：7．9 | －17．1 | －20．3 | －71．3 | －21．7 | －21．3 | －20．3 | －17．3 | －10．3 | －27．6 | －36．9 |  |  |  |
| 50.6 | －i： | －15．7 | －16．1 | －10．7 | －17．6 | － $2: 06$ | －1\％．8 | －21．3 | －72．1 | －22．5 | $-22.0$ | －71．1 | －20．0 | －19．0 | －1e．3 | －17．6 | －87．8 | －10．1 | －26．0 |
| 52.0 | －1t．2 | －16．4 | －15．3 | －17．4 | $-1 \div 3$ | －17．3 | －20．5 | －71．7 | －2？．9 | $-23.2$ | $-22.7$ | －22．8 | $-20.7$ | －19．7 | －10．0 | －18．3 | －27．8 | －17．9 | －26．-17.4 |
| －4．0 | －16．7 | －17．0 | －17．4 | －12．0 | $-1.7$ | $-11 . \%$ | － 21.1 | －27．4 | －73．4 | －23．4 | －23．4 | －22．4 | －71．3 | －20．4 | －19．5 | －10．0 | －14．8 | －19．1 | － 20.0 |
| 56.0 $s E .0$ | -17.5 $-1=01$ | $-17.7$ | －． 2 | -12.7 -17.3 | －1\％-20 | －29．9 | －21．7 | －23．0 | －24．1 | －74．9 | －24．0 | －23．1 | $-27.0$ | －21．0 | －20．1 | －1v． 3 | $-14.0$ | －10．1 | －19．＊ |
| CE．C | $-2=01$ $-i 5.7$ | －15．3 | －25．0 | －17．3 | $-2<.1$ -26.7 | -21.1 -21.7 | － 22.3 | -23.8 -24.2 | －74．7 | －2： 11 | －24．7 | -23.7 -24.3 | -22.6 -23.2 | －21．6 | $-20.1$ | －20．1 | －14． | －19．8 | -10.2 -19.0 |
| 52.6 | －150． | －： 4.4 | －17．$=$ | －？ －$^{4}$ | －21．2 | $-22.3$ | －23．8 | －24．8 | －25．8 | －2e．3 | －2：． | －24．3 | -23.2 -23.8 | -2.2 -22.7 | -21.3 -21.9 | －20．7 | -20.2 -20.8 | -19.8 -20.5 | 19.6 20.4 |
| t4．0 | －15．7 | －26．0 | －20．6 | －21．0 | －2．． 3 | － 22.8 | －24．1 | －25．3 | －76．04 | －26．＇4 | －＜1． 5 | －25．5 | －24．4 | $-23.3$ | $-22.5$ | －21．8 | －21．4 | －21．8 | －21．0 |
| ct．c | －2C．4 | －20．6 | －26．\％ | －21．0 | －2＜．4 | －23．4 | －24．6 | $-25.8$ | －27．0 | －27．5 | －27．1 | －26．1 | －25．0 | $-24.0$ | $-23.1$ | －22．4 | －22．0 | $-21.7$ | －21．6 |
| ¢＝．c | －21．0 | －21．2 | －21．3 | $-22.1$ | $-22.9$ | $-24.0$ | $-25.2$ | $-26.5$ | －27．6 | $-28.1$ | $-27.7$ | $-26.7$ | －25．6 | －24．6 | $-23.8$ | －23．1 | $-22.6$ | $-22.3$ | $-22.3$ |
| 72.0 | －21．6 | －22．0 | －22．1 | －22．7 | －23．6 | －24．6 | －25．9 | －27．2 | －28．3 | －28．8 | －28．4 | －27．4 | －26．3 | －25．3 | $-24.5$ | －23．8 | $-23.3$ | －23．1 | －23．0 |

hRCS TABLE IN DECIAELS

## FREOUENCY - 13.9 GHZ FRICTION VELDCITY. $45.0 \mathrm{CM} / \mathrm{SEC}$

| INCIDENCE ANGLE (DEG) | 0. | 10.0 | 20.0 | 30.0 | 40.0 | 50.0 | 60.0 | $\begin{gathered} \text { RELAIII } \\ 70.0 \end{gathered}$ | $\begin{gathered} \text { IVE Az1 } \\ 80.0 \end{gathered}$ | $\begin{array}{r} \text { IHUTH } \\ 90.0 \end{array}$ | $\begin{aligned} & \text { ANGLE } \\ & 100.0 \end{aligned}$ | $\begin{aligned} & (D E G) \\ & 120.0 \end{aligned}$ | 220.0 | 130.0 | 140.0 | 156.0 | 180.0 | 170.0 | 180.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 9.8 | 5.8 | 9.8 | 9.8 | 9.8 | 9.8 | 9.8 | 9.8 | 9.8 | 9.8 | 9.8 | 9.8 | 9.8 | 9.8 | 9.8 | 9.8 | 9.8 | 9.8 | 9.8 |
| 2.0 | 9.7 | 9.8 | 9.7 | 9.7 | 9.7 | 9.7 | 9.7 | 9.7 | 9.7 | 9.7 | 9.7 | 9.7 | 9.7 | 9.7 | 9.7 | 9.7 | 9.7 | 9.7 | 9.7 |
| 4.0 | 9.4 | 9.4 | 9.4 | 9.4 | 9.4 | 9.3 | 9.3 | 9.3 | 9.3 | 9.3 | 9.3 | 9.3 | 9.3 | 9.3 | 9.4 | 9.4 | 9.4 | 9.4 | 9.4 |
| 6.0 | 8.8 | 0.8 | 6.8 | 0.6 | 6.8 | 0.8 | 0.8 | a.8 | 0.8 | 8.7 | 8.8 | 8.8 | 8.8 | 8.8 | 8.8 | 8.8 | 8.8 | 8.8 | 8.8 |
| 8.0 | 3.1 | 8.2 | 8.1 | 0.0 | 8.0 | 8.0 | 8.0 | 7.9 | 7.9 | 7.9 | 7.9 | 7.9 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 0.1 | 0.2 |
| 10.0 | 7.1 | 7.1 | 7.1 | 7.0 | 7.0 | 6.9 | 6.9 | 6.9 | 6.8 | 6.8 | 6.8 | 6.9 | 0.9 | 6.9 | 7.0 | 7.0 | 7.0 | 7.1 | 7.2 |
| 12.0 | 5.7 | 5.9 | 5.5 | 5.6 | 5.7 | 5.6 | 5.8 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.6 | $5 \cdot 6$ | 5.7 | 5.7 | 5.8 | 5.8 | 5.8 |
| : 4.0 | 4.5 | 4.5 | 4.4 | 4.3 | 4.2 | 4.1 | 4.3 | 4.0 | 3.9 | 3.9 | 3.9 | 4.0 | 4.0 | 4.1 | 4.2 | 4.3 | 4.3 | 4.4 | 4.4 |
| 26.0 | 2.9 | 2.9 | 2.8 | 2.6 | 2.5 | 2.3 | 2.2 | 2.1 | 2.0 | 2.0 | 2.0 | 2.1 | 2.2 | 2.3 | 2.4 | 2.5 | 2.6 | 2.7 | 2.7 |
| 19.0 | 1.3 | 1.2 | 2.0 | . 8 | - 5 | - 3 | . 2 | -0 | -. 1 | -. 1 | -. 1 | - 0 | . 2 | - 3 | -4 | . 6 | . 7 | . 9 | . 9 |
| 2 C 0 | -. 4 | -. 5 | -. 8 | -2.2 | -1.5 | -1.8 | -2.0 | -2.3 | -2.4 | -2.5 | -2.4 | -2.3 | -2.1 | -1.9 | -1.7 | -2.5 | -1.3 | -1.1 | -1.0 |
| 22.0 | -2.0 | -2.1 | -2.5 | -3.0 | $-3.5$ | -3.9 | -4.3 | -4.6 | -4.9 | $-5.0$ | -4.9 | -4.6 | -4.4 | -4.1 | -3.8 | -3.5 | -3.2 | -3.0 | -2.0 |
| 24.0 | -3.2 | -3.4 | -3.9 | -4.6 | -5. 3 | -5.9 | -6.4 | -6.9 | -7. 3 | -7.3 | -7. 3 | -6.9 | -6.5 | -6.1 | -5.8 | -5.4 | -5.0 | -4.6 | -4.5 |
| 26.0 | -4.1 | -4.3 | -4.9 | -5.7 | - 8.6 | -7.3 | -8.0 | -9.7 | -9.3 | -9.6 | -9.3 | -8.7 | -8.1 | -7.7 | -7.3 | -6.8 | -6. 3 | -5.8 | -9.7 |
| 25.0 | -4.7 | -4.9 | -5.6 | -6.5 | -7.4 | -8.3 | -9.1 | -9.9 | -11.7 | -1:.1 | -10.7 | -10.0 | -9.3 | -8.7 | -8.3 | -7.7 | -7. 2 | -6.7 | -6.5 |
| 30.0 | -5.2 | -5.4 | -6. 0.1 | -7.0 | -8.0 | -8.9 | $-9.0$ | -17.8 | -11.7 | $-12.1$ | -11.7 | -10.0 | $-10.0$ | -9.4 | -8.9 | -8.3 | -7.7 | -7.2 | -7.2 |
| 32.0 | -5.7 | -6.0 | -6.6 | -7.6 | -8.5 | -9.3 | -10.4 | -11.4 | -12.4 | -12.8 | -12.3 | -12.5 | -10.6 | -10.0 | -8.4 | -8.9 | -8. 2 | -7.8 | -7.6 |
| 34.0 | -0.4 | -6.0 | -7.3 | -8.2 | -9.1 | -10.1 | -11.1 | -12.1 | -13.1 | -13.5 | -13.0 | -12.1 | -11.3 | -10.6 | -10.0 | -7.4 | -8.8 | -8.4 | -8.2 |
| 36.0 | -7.2 | -7.4 | -8.0 | -9.9 | -9.9 | -10.8 | -11.0 | $-12.9$ | $-13.9$ | -14.3 | -13.9 | -12.9 | - 12.0 | -11.3 | -10.7 | -10.1 | -9.6 | -9.1 | -9.0 |
| 38.0 | -8.2 | -8.4 | -9.0 | -9.8 | -1C. 8 | -11.0 | -12.8 | -13.9 | -11.09 | -15.3 | -14.9 | -13.9 | -13.0 | -12.3 | -21.6 | -12.0 | -10.5 | $-10.1$ | -9.9 |
| 40.0 | -6.4 | -4.8 | $-16.1$ | $-10.9$ | -11.8 | -12.8 | $-13.9$ | -15.0 | $-15.0$ | -15.4 | -16.0 | -25.0 | -14.1 | $-13.3$ | -12.6 | -12.0 | -11.5 | -11.2 | -11.0 |
| 42.0 | $\begin{aligned} & -10.8 \\ & -11.4 \end{aligned}$ | -10.6 | -12.1 -12.0 | -11.8 -12.7 | -1.2 .7 -13.6 | -13.8 -14.6 | -14.9 | -14.0 -17.0 | $-17.0$ | -17.4 | -17.0 | -13.1 | -15.1 | -14.2 | -13.5 | -12.9 | -12.4 | -12.0 | -11.0 |
|  | -11.4 | -12.8 | -12.0 -12.8 | -12.7 -13.6 | -13.6 14.4 | -14.6 -15.5 | -15.0 | -17.0 -17.8 | -19.0 -18.8 | -18.4 | -17.9 | -17.0 -17.8 | -16.0 | $-i 5.1$ -15.9 | -14.4 | -13.7 -14.5 | -13.2 | -12.9 | -12.0 |
| 4 C .0 | -13.1 | -13.2 | -13.6 | -14.3 | -15.2 | -15.5 | -18.6 | -17.8 | -18.8 -17.6 | -19.2 -20.0 | -18.8 | -17.8 -18.6 | -16.8 | -15.9 -16.7 | -15.2 -15.9 | -14.5 | -14.0 -14.8 | -13.7 -14.5 | -1306 -14.4 |
| $\leq 0.0$ | -13.3 | -14.0 | -14.4 | -15.0 | -15.9 | -17.0 | -16.1 | -12.4 | -2.3.4 | -20.8 | -20.4 | -17.4 | -18.3 | -17.4 | -10.6 | -16.0 | $-15.3$ | $-15.2$ | -15.1 |
| 52.0 | -14.3 | -14.7 | -15.1 | -15.7 | -16.6 | -17.6 | -18.0 | -20.1 | -21.1 | -21.5 | -21.1 | -20.1 | -17.0 | -18.1 | -17.2 | -16.6 | -16.1 | -15.8 | -25.7 |
| 54.9 | -15.2 | - 15.3 | -15.7 | -13.4 | -17.2 | $-18.3$ | $-19.5$ | $-29.7$ | $-21.8$ | -22.2 | $-21.7$ | -20.8 | $-19.7$ | -18.7 | -1:.9 | -27.? | $-16.8$ | -16.5 | -16.4 |
| $5: \%$ | -15.9 | $-16.0$ | -16.4 | -: 7.0 | -17.8 | -18.9 | -20.1 | $-21.3$ | -22.4 | -72.8 | -22.4 | -21.4 | -20.3 | -19.3 | -10.5 | -27.8 | -17.4 | -17.1 | -17.0 |
| $5: \%$ | $-16.5$ | $-15.8$ | -17.0 | -17.6 | - 18.4 | $-19.5$ | -20.7 | -21.9 | $-23.0$ | -23.4 | -23.0 | -2<.J | -20.9 | -17.9 | -19.1 | -18.4 | -17.9 | $-17.7$ | - 27.6 |
| ¢5-2 | -17.9 | -17.2 | $-17.5$ | $-18.2$ | $-17.0$ | -20.0 | -21.3 | -22.5 | $-23.5$ | $-24.0$ | -23.6 | $-22.6$ | -21.5 | -20.5 | -19.7 | -19.0 | -18.5 | -18.2 | -10.1 |
| 62.0 | -17.6 | $-17.7$ | $-18.1$ | $-18.7$ | -19.6 | -20.6 | -21.8 | -23.1 | -24.2 | -24.6 | -24.2 | $-23.2$ | -22.1 | $-21.1$ | -20.2 | -19.6 | $-19.8$ | -18.8 | $-20.7$ |
| 64.0 | $-18.2$ | $-10.3$ | $-18.7$ | $-28.3$ | -20.1 | -21.2 | -22.4 | -23.7 | $-24.8$ | -25.2 | -24.8 | -23.8 | -22.7 | -21.7 | -20.8 | -20.2 | -19.7 | -19.6 | -19.3 |
| 66.0 | -18.0 | $-16.9$ | $-14.3$ | $-17.9$ | -20.7 | $-21.7$ | $-23.0$ | $-24.3$ | -25.4 | -25.8 | -25.4 | -24.4 | -23.3 | $-22.3$ | -21.5 | -20.8 | $-20.3$ | -20.1 | -20.0 |
| $\begin{aligned} & 60.0 \\ & 7 C .0 \end{aligned}$ | -19.4 -20.0 | -19.5 -20.1 | -19.9 | -20.5 | -21.3 | -22.3 | -23.6 | -24.9 | -26.0 | -26.4 | $-26.1$ | $-25.1$ | -24.0 | $-23.0$ | -22.1 | -21.5 | -21.0 | -20.7 | -20.6 |
|  | -20.0 | -20.1 | -20.5 | -21.1 | -21.9 | $-23.0$ | -24.2 | -25.5 | -26.6 | -27.1 | -26.7 | $-25.8$ | -24.7 | $-23.7$ | $-22.8$ | -22.2 | -21.7 | -21.4 | -21.3 |

ngCs table Im decibels

## FRECUFNEY - 13.9 GH2 <br> VERTICAL POLARIZATION <br> FRICIION VELOCITY - 50.0 CMISEC

| INC IOENCE ANGLE (OEG) | 0.0 | 10.6 | 20.0 | 30.0 | 40.0 | 50.0 | 60.0 | $\begin{gathered} \text { RELATI } \\ 70.0 \end{gathered}$ | $\begin{gathered} \text { IVE } 12 \mathrm{I} \\ 00.0 \end{gathered}$ | IMUTH 90.0 | $\begin{aligned} & \text { ANGLE } \\ & 100.0 \end{aligned}$ | $\begin{aligned} & (0 \in 6) \\ & 116.0 \end{aligned}$ | 120.0 | 130.0 | 140.0 | 150.0 | 160.0 | 170.0 | 180.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 9.6 | 9.5 | 9.6 | 9.6 | 9.6 | 9.6 | 9.6 | 9.6 | 9.6 | 9.6 | - 9.6 | 9.6 | 9.6 | 9.6 | 9.6 | 9.6 | 9.6 | 9.6 | . 6 |
| 2.0 | 9.5 | 4.5 | 9.5 | 7.5 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 |
| 4.3 | 9.2 | 8.2 | 9.2 | 9.2 | 9.2 | 9.2 | 9.2 | 9.2 | 9.2 | 9.2 | 9.2 | 9.2 | 9.2 | 9.2 | 9.2 | 9.2 | 9.2 | 9.2 | 9.2 |
| 6.0 | 8.7 | $\varepsilon .7$ | 0.7 | 8.7 | 8.7 | 8.7 | 8.6 | 8.6 | 8.8 | 8.6 | 8.6 | 8.6 | 8.6 | 8.7 | 8.7 | 8.7 | 8.7 | 8.7 | 0.7 |
| 8.0 | 8.0 | 8.0 | 0.0 | 7.9 | 7.7 | 7.9 | 7.9 | 7.8 | 7.8 | 7.8 | 7.8 | 7.8 | 7.9 | 7.9 | 7.9 | 7.9 | 7.9 | 0.0 | 6.0 |
| 1 c .0 | 7.1 | 7.1 | 7.0 | 7.0 | 6.9 | 6.9 | 6.9 | 6.8 | 6.8 | 6.8 | 6.8 | 6.8 | 6.9 | 6.9 | 6.9 | 7.0 | 7.0 | 7.0 | 7.0 |
| 12.0 | 6.5 | 5.9 | 5.9 | 5.8 | 5.7 | 5.7 | 5.6 | 9.6 | 5.5 | 5.5 | 5.5 | 5.6 | 5.6 | 5.7 | 5.7 | 5.8 | 5.0 | 5.9 | 5.9 |
| 14.6 | 4.7 | 4.6 | 4.5 | 4.4 | 4.3 | 4.2 | 4.1 | 4.1 | 4.0 | 4.0 | 4.0 | 4.1 | 4.1 | 4.2 | 4.3 | 4.4 | 4.4 | 4.5 | . 5 |
| 15.0 | 3.2 | 3.1 | 3.0 | 2.8 | 2.7 | 2.5 | 2.4 | 2.3 | 2.2 | 2.2 | 2.2 | 2.3 | 2.4 | 2.5 | 2.6 | 2.7 | 2.8 | 2.9 | 3.0 |
| 1E.0 | 1.7 | 1.6 | 1.4 | 1.1 | . 9 | . 7 | - 5 | . 3 | . 2 |  | . 2 | - 3 | . 5 | . 6 | - 8 | . 9 | 1.1 | 1.2 | 1.3 |
| 20.0 | . 2 | - 0 | -. 3 | -. 6 | -1.0 | -1.3 | -1.6 | -1.8 | -2.0 | -2.1 | -2.0 | -1.8 | -1.6 | -1.4 | -1.2 | -1.0 | -. 8 | $\cdots$ | . 5 |
| 22.0 | -1.2 | -2.3 | -1.8 | -2.3 | -2.8 | -3.3 | -3.6 | -4.0 | -4.3 | -4.4 | -4.3 | . 0 | -3.7 | -3.4 | -3.2 | -2.9 | -2.5 | -2.3 | -2.2 |
| 24.0 | -2.2 | -2.4 | -3.0 | -3.7 | -4.4 | -5.0 | -5.5 | -6.0 | -5.5 | -6.7 | -6.5 | - 1.0 | -5.6 | -5.2 | -4.9 | -4.5 | -4.8 | -3.7 | -3.6 |
| 28.0 | -3.6 | -3.2 | -3.8 | -4.7 | -5.5 | -6.3 | -6.9 | -7.6 | -2.3 | -8.6 | -8.3 | -7.7 | -7.1 | -6.6 | -6.2 | -5.7 | -5.2 | -4.8 | -4.6 |
| 25.0 | -3.5, | -3.7 | -6.4 | -5.3 | -6. 3 | -7.1 | -7.9 | -3.8 | -9.6 | -9.7 | -9.6 | - C .8 | -8.1 | -7.6 | -7.1 | -6.6 | -6.0 | -5.5 | -5.3 |
| 32.0 | -3.7 | -4.2 | -4.9 | -5.8 | -6.8 | -7.7 | -8.6 | $-3.5$ | -10.4 | -10.8 | -10.4 | -9.5 | -8.8 | -8.2 | -7.7 | -7.1 | -6.5 | -6.0 | -5.0 |
| 32.0 | -4.4 | -4.7 | $-5.3$ | -6.3 | $-7.3$ | $-8.2$ | $-9.1$ | $-10.1$ | -11.1 | $-11.5$ | -11.0 | $-10.1$ | -9.3 | -8.7 | -8.2 | -7.6 | -7.0 | -6.5 | -6.3 |
| 34.0 | -5.0 | -5.3 | -5.9 | -6.8 | -7.0 | -8.7 | -9.7 | -10.7 | -11.7 | -12.2 | -11.7 | -10.8 | -9.9 | -9.2 | -8.7 | -8. 1 | -7.5 | -7.0 | -6.8 |
| 36.0 38.0 | -5.8 -6.7 | -6.0 | -6.6 -7.5 | -7.5 -8.3 | -8.4 | -9.4 | -10.4 | -11.3 | $-12.4$ | -12.9 | -12.4 | -11.5 | -10.6 | -9.9 | $-9.3$ | -8.7 | -8.1 | -7.7 | -7.5 |
| 36.0 40.0 | -6.7 -7.9 | -6.9 -8.0 | -7.5 -8.6 | -8.3 -9.3 | -9.3 $-: 7.3$ | -10.3 -11.3 | -11.3 -12.6 | -12.4 -13.5 | -13.4 -14.5 | -13.8 -16.9 | -13.3 | -12.4 | -11.5 | -10.8 | -10.1 | -9.5 | -9.0 | -8.6 | -8.4 |
| 42.0 | -9.9 | -9.2 | -7.6 | -10.3 | -11.2 | -:2.3 | $-13.3$ | -14.5 | -15.5 | -15.9 | -15.3 | -13.5 -14.5 | -12.0 | -12. | -12. | 11 | 10 |  |  |
| 44.0 | -9.8 | -1.0 0 | -11. 5 | -11.2 | -12.1 | -13.1 | $-14.3$ | -15.4 | -15.4 | -16.8 | -1:04 | -15.5 | -14.5 | -13.6 | -12.9 | -12.3 | $-11.7$ | -11.4 | 12.3 |
| 40.0 | -1C.7 | -1C.9 | -11.3 | -12.0 | -12.9 | $-14.0$ | $-21.1$ | $-16.3$ | -17.3 | -17.7 | -17.3 | -16.3 | -15.3 | -14.4 | $-13.7$ | $-13.0$ | $-22.5$ | $-12.2$ | -12.1 |
| 48.0 | -14.5 | -11.7 | -12.1 | -12.8 | -13.7 | $-14.7$ | -15.9 | -17.1 | -19.1 | -18.5 | -18.1 | -17.1 | -16.1 | $-15.2$ | -14.4 | -13.8 | $-23.3$ | -13.0 | -12.9 |
| 50.0 | -12.3 | $-12.5$ | -12.9 | $-13.5$ | -14.4 | -15.5 | -16.6 | -17.9 | -19.9 | -19.3 | -18.8 | -17.9 | -16.8 | -15.9 | -15.1 | -14.5 | -14.0 | $-13.7$ | -13.6 |
| S2.0 | -13.0 | -13.2 | -13.6 | $-14.2$ | -15.1 | -16.1 | -17.3 | -19.6 | -17.h | -20.0 | -19.6 | -18.6 | -17.5 | $-16.6$ | -15.8 | $-15.1$ | $-24.6$ | -14.3 | -24.2 |
| 54.6 | $-13.7$ | -13.a | $-14.2$ | -14.9 | -15.7 | -15.8 | $-18.0$ | $-17.2$ | $-2 n .3$ | -20.7 | $-20.2$ | -19.3 | -18.2 | -17.2 | -16.4 | -15.7 | -15.3 | -25.0 | -14.9 |
| \$6.0 | -14.3 | -14.5 | -14.9 | -15.5 | $-1 t .3$ | -17.4 | $-18.6$ | -19.9 | -29.9 | -21.3 | -20.9 | -18.9 | -18.6 | -17.8 | -17.0 | -18.4 | -15.9 | -15.6 | -15.9 |
| 5 E .0 | -1:0 | $-15.1$ | -15.5 | -16.! | -15.7 | - 18.0 | $-19.2$ | $-2 C .3$ | $-21.5$ | $-21.9$ | -2. 9 | -20.5 | -19.4 | -19.4 | -17.6 | -16.9 | -16.9 | $-16.2$ | -16.1 |
| to. 0 | -15.5 | -15.7 | -16. 2 | -16.7 | -17.5 | -19.6 | -19.8 | -2i00 | -22.1 | $-22.5$ | -22.1 | -21.1 | -20.0 | -19.0 | $-18.2$ | -17.5 | -17.1 | -16.8 | $-16.7$ |
| 62.6 | $-2 t .1$ | $-16.3$ | -10.6 | $-17.2$ | $-16.1$ | $-19.1$ | $-20.3$ | -21.6 | $-22.7$ | $-23.1$ | -22.7 | $-21.7$ | -20.6 | -15.6 | -18.8 | -23.1 | -17.6 | -17.4 | -17.3 |
| 64.1 66.0 | $\begin{aligned} & -16.7 \\ & -17.3 \end{aligned}$ | -16.0 -17.4 | -17.2 -17.8 | $\begin{aligned} & -17.8 \\ & -18.4 \end{aligned}$ | -18.6 -19.2 | -19.7 -20.3 | -20.9 -21.5 | -22.2 -22.8 | -23.3 -23.9 | -23.7 | -23.3 -23.9 | -22.3 -23.0 | - 21.2 | -20.2 -20.8 | -19.6 -20.0 | -18.7 -19.3 | -18.2 -18.0 | -18.0 | -17.9 |
| $\begin{aligned} & 66.0 \\ & 68.0 \end{aligned}$ | $\begin{aligned} & -17.3 \\ & -17.9 \end{aligned}$ | $\begin{aligned} & -17.4 \\ & -28.0 \end{aligned}$ | $\begin{aligned} & -17.8 \\ & -18.4 \end{aligned}$ | $\begin{aligned} & -18.4 \\ & -19.0 \end{aligned}$ | $\begin{aligned} & -19.2 \\ & -19.8 \end{aligned}$ | -20.3 -20.9 | -21.5 -22.1 | -22.8 -23.4 | -23.9 -24.9 | -24.3 | -23.9 -24.6 | -23.0 -23.6 | -21.9 | -20.8 | -20.0 | -19.3 | -18.9 -19.5 | -18.0 -19.2 | -18.5 |
| 70.0 | -10.5 | $-18.6$ | $-19.0$ | $-19.6$ | -20.4 | $-21.5$ | $-22.7$ | $-24.0$ | -25.1 | -25.6 | -25.3 | -24.3 | -23.2 | -22.2 | -21.4 | -20.7 | -20.2 | 20.0 | -19.9 |

## APPENDIX C

## LIST OF SYMBOLS AND ABBREVIATIONS

$a_{0}$
$a_{1}$
$\mathrm{A}_{\mathrm{m}}$
$\mathrm{A}_{\mathbf{r}}$

AAFE

B
$C_{\text {IJ }}$
$\mathrm{d} \vec{n}$
$d S_{u}{ }^{d S}$
$d x$
$\vec{e}_{h}$
$\vec{e}_{v}$
$\vec{E}_{i}$
$\vec{F}_{s}$
f(••)
$f_{i j}(\cdots)$
$F(\cdots) \quad$ regional capillary wavenumber spectrum, in $\mathrm{cm}^{4}$
$g(\cdots)$
G(...) Bragg scatterin¢ intergrand
1 index denoting wind-sea state
I first index denoting generalized parameter
j index domoting NRCS measurement

| J | second index denoting generailized parameter |
| :---: | :---: |
| JONSWAP | Joint North Atlantic Sea Wave Project |
| k | radiation wavenumber, in $\mathrm{cm}^{-1}$ |
| $\vec{k}_{i}$ | incident propagation unit vector |
| $\vec{k}_{s}$ | scattered propagation unit vector |
| $\ell$ | sumation index for steepest descent calculation |
| m | total number of generalized parameters |
| n | total number of generalized measurements |
| $\vec{n}$ | regional surface-normal unit vector |
| $\overrightarrow{\mathrm{n}}(\cdots)$ | regional surface-normal unit vector function |
| त | unit normal to mean sea surface subtended by the radar footprint |
| NRCS | normalized radar cross section |
| P | NRCS model parameter |
| P(...) | generalized probability density function |
| $\mathrm{P}_{\mathrm{n}}(\cdots)$ | probability density function for the regional surface normal $\vec{n}$ |
| $\mathrm{P}_{\mathrm{s}}(\cdots)$ | probability density function for the regional surface slopes |
| pdf | probability density function |
| 9 | power law for capillary wavenumber spectrum |
| R | power reflection coefficient, equals $S_{g}(\cdots)$ |
| rms | root mean squared |
| $s_{0}$ | first regression parameter for total rms slope $\overline{\mathrm{S}}$ |
| $s_{1}$ | second regrossion parameter for total rms slo, ${ }^{\text {a }}$ |
| $\overline{3}$ | total rms regional slope |
| $s_{b}(\cdots)$ | Bragg scattering function |
| $\mathrm{S}_{\mathrm{c}}$ | crosswind regional surface slope |
| $\bar{S}_{C}$ | rms crosswind regional surface slope |
| $\mathrm{s}_{\mathrm{c}}^{\ell}$ | crosswind surface slopes for steepest descent calculation |


| $S_{g}(\cdots)$ | geometric-optics scattering. runction |
| :---: | :---: |
| $S_{u}$ | upwind regional surface slopre |
| $\bar{S}_{u}$ | rms upwind regional surfice slope |
| $\mathrm{s}_{\mathrm{u}}^{\ell}$ | upwind surface slopes for steepest descent calculation |
| sd | standard deviation |
| t | Bragg scattering breakdown parameter |
| $u(\cdots)$ | unit step function |
| U | actual friction velocity, in logarithm of $\mathrm{cm} / \mathrm{sec}$ |
| $\bar{U}$ | measured friction velocity, in logarithm of $\mathrm{cm} / \mathrm{sec}$ |
| U* $^{\text {* }}$ | friction velocity, ragnitude of $\vec{U}_{*}$, in $\mathrm{cm} / \mathrm{sec}$ |
| $\overrightarrow{\mathrm{t}}_{*}$ | friction velocitr vector pointing upwind, in cm/sec |
| x | generalized parameter |
| $y$ | generalized measurement |
| $\mathrm{s}_{\mathrm{hh}}^{\mathrm{b}}$ | horizontal polarization Bragg backscatter matrix element |
| $a_{v}^{b}$ | vertical polarization Bragg backscatter matrix element |
| 5 | first splire parameter |
| dU | standard deviation in friction velocity measurement, in |
|  | logarithm of $\mathrm{cm} / \mathrm{sec}$ |
| $\therefore 0$ | standard deviation in the NRCS, in logarithm |
| $\pm x$ | standard deviation in wind direction measurement, in degrees |
| $\varepsilon$ | relative permittivity of the air-sea interface |
| 7 | num'er of NRCS measurements |
| $\theta_{h}$ | incidence angle for Brags scattering breakdown |
| ${ }^{8} 1$ | incidence angle |
| $Q_{i}$ | regional incidence angle |
| $\mathfrak{}$ | Index denoting generalized measurement |
| k | capillary wavenumber, magnitude of $k$, in $\mathrm{cm}^{-1}$ |


| $\vec{\kappa}$ | capillary vector wavenumber, in $\mathrm{cm}^{-1}$ |
| :---: | :---: |
| ${ }^{k}$ | Bragg wavenumber, magnitude of $\vec{\kappa}_{b}$, in $\mathrm{cm}^{-1}$ |
| $\vec{k}_{b}$ | Bras: vector wavenumber, in $\mathrm{rm}^{-1}$ |
| ${ }_{\text {Km }}$ | capillary wavenumber corresponding to minimum phase speed, $\sim 3.63 \mathrm{~cm}^{-1}$ |
| $\mu$ | number of NRCS model parameters |
| $\checkmark$ | number of wind-sea states |
| $5_{i}$ | number of NRCS measurements fur ith wind-sea state |
| $\pi$ | $3.14 \cdots$ |
| 0 | ratio of the rms crosswind to upwind surface slopes |
| $\checkmark$ | actual normalized radar cross section, in logarithm |
| $\bar{c}$ | measured normalized radar cross section, in logarithm |
| $z^{\circ}(\cdots)$ | total normalized radar cross section, in ratio |
| $3_{b}^{0}(\cdots)$ | Bragg normalized radar cross section, in ratio |
| $\mathrm{s}_{\mathrm{g}}^{0}(\cdots)$ | geometric-optics normalized radar cross section, in ratic |
| : | second spline parameter |
| *r | relative azimuth angle |
| x | actual wind direction, in degrees |
| $\bar{\square}$ | measured wind direction, in degrees |
|  | polar angle for capillary wavenumber spectrum |

## REFERENCES

Bierman, G. J., Factorization Methods for Discrete Sequential Estimation,
Academic Press, New York, 1977.

Cox, C., and W. Munk. Slopes of the sea surface deduced from photographs of sun glitter, Bul. Scripps Inst. Oceanog. 6, 401-488, 1956.

Jones, $\mathrm{K} . \mathrm{L} ., \mathrm{L} . \mathrm{C} . \operatorname{Schroeder,~and~J.~L.~Mitchell,~Aircraft~measurements~}$ of the anisctropic microwave scattering signature over the ocean for the 1975 JONSWAP and 976 East Coast Mission, NASA Technical Memorandum 78646 , 1978.

Kalmykov, A. I., and V. V. Pustovoytenke, On polarization features of radio signais scattered from the sea surface at small grazing angles, J. Geophysical Research 81, 1960-1964, 1976.

Keller, W. C., anc J. W. Wright, Modulation of microwave scattering and the straining of wind-generated waves, Radic Science 10, 193-147, 1975. Kinsman, Rlair, Wind Waves, Prentice Hall, New Jersev, " 965.

Yitsurasu, H., and T. Honda. The high frequencr spectrum of wind-generated waves, J. Oceanog. Soc. of Japa:. ^2, 185-10s, 1974.

Phillips, O. M. The Dynamics of the Veper Ocean. Cambridge lniversity
Press. London, 196f.
Porter. R. A., and F. J. lienta, Nicrowave radiometric study of ocean sur ace Characteristios, Contractor Report 1-351+0. Sit. Environ. Satell. Sorv., SOA. Washington, DC, July 1971.

Sice. S. $\quad$., Reflection of electromagnetio aves from slightly rough surfaces, Commun. Fure App1. Math. 4 . 151-378, 1951.

Siolnik. M. I., A.. : Handhook, MoGrak Hill, New York, lojo.
hentz. F. J., A two-scale seatorine model with application tw the JoNSWAP



[^0]:    He are especially grateful to $U$. L. Itonc:s and L. C. Schroeder of the NASA Langley Research Center for their support and assistance throughout this research. Furthermore, we thank K. Hasselmann of the Max Planck Institute for Meteorology for supplying the JONSWAP ' 75 wind-field analysis. Finally, we wish to acknowledge the assistance of G. J. Bierman of the Jet Propulsion Laboratory in the area of parameter estimation techniques.

