General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

nnsn

Technical Memorandum 78090

Theory of Flux Anisotropies in a Guiding Center Plasma (NASA-TM-78090) THECFI CF FIOX ANISCTECPIFS N78-21028 IN A GUIDING CENTER PIASMA (NASA) 19 F BC A02/日F AO1

CSCL 03E
Onclas
G3/90 12572
T. J. Birmingham and T. G. Northrop

FEBRUARY 1978

National Aeronautics and Space Administration Goddard Spece Flight Center Greenbelt. Maryland 20771

THEORY OF FLUX ANISOTROPIES IN A GUIDING CENTER PLASMA

T. J. Birmingham
Laboratory for Extraterrestrial Physics
and
T. G. Northrop
Laboratory for High Energy Astrophysics
Goddard Space Flight Center
Greenbelt, Maryland 20771

February 1978

GODDARD SPACE FLIGHT CENTER

THEORY OF FLUX ANISOTROPIES IN A GUIDING CENTER PLASMA

T. J. Birmingham
Laboratory for Extraterrestrial Physics
and
T. G. Northrop
Laboratory for High Energy Astrophysics

Abstract

Assuming time stationarity of the one particle distribution function f on the scale of the bounce motion of particles in a magnetic field \underline{B}, we expand the Vlasov Equation through $O(\epsilon)$ in the adiabatic parameter $\boldsymbol{\epsilon}$, which is the ratio of particle gyroradius to scale length of the magnetic field. Since f is directly proportional to particle flux $d \Phi / d W d \Omega$ differential in kinetic energy W and solid anole Ω, f is in principle measurable in space experiments, and our analysis is tailored to be explicitly applicable to space problems. To $\mathrm{O}(1), \mathrm{f}$ is gyrotropic: its first velocity moment is (if non-vanishing) parallel to \mathbf{B}, and hence macroscopic parallel flow is included in this term. The $O(\epsilon)$ contribution is non-gyrotropic and macroscopic flow 1 to B plus additional pare!lel flow results from these terms. The degree of non-gyrotropy and hence the amount of cross-field macroscopic tlow depend on the perpendicular component of the electric field E, on curvature and shear in the magnetic field, and on the spatial gradient f_{0}, pitch angle derivative $\partial \mathrm{f}_{0} / \partial \delta$ and speed derivative $\partial \mathrm{f}_{0} / \partial v$ of the lowest order distribution function f_{0}. We also show that the usual expression for the electric field E which produces plasma co-rotation in an axisymmetric system such as a dipole also holds for any non-axisymmetric but rigidly rotating magnetic field pattern, provided the observed magnetic field is used in place of the dipole field.

PHEXGODG PAGE BLANK aOR HIT CONTENTS

Page
ABSTRACT iii
I. INTRODUCTION 1
II. EXPANSION OF VLASOV EQUATION 3
III. THE ELECTRIC FIELD IN A RIGIDLY COROTATING MAGNETOSPHERE 13
REFERENCES 15

THEORY OF FLUX ANISOTROPIES IN A GUIDING CENTER PLASMA

1. INTRODUCTION

We often consider charged particles interacting with the electric and magnetic fields E and B in a magnetospheric environment as behaving adiabatically: time variations are sufficiently slow and spatial variations sufficiently long that individual particles undergo nearly periodic motions. Under adiabatic conditions the Vlasov Equation

$$
\begin{equation*}
\frac{\partial f}{\partial t}+\underline{v} \cdot \nabla f+\frac{q}{m}\left(\underline{E}+\frac{\underline{v} \times \underline{B}}{c}\right) \cdot \frac{\partial f}{\partial \underline{v}}=0 \tag{1}
\end{equation*}
$$

which governs the distribution function $f(\underline{r}, \underline{v}, t)$ of such particles, can be expanded asymptotically in the adiabatic parameter.

In this paper (Section II) we carry out a formal adiabatic expansion of the Vlasov Equation in a manner paralleling that of Hastie et al. [1967], but we tailor it to be more explicitly applicable to space problems, such as the one in the following paper. We do so assuming that f is stationary on the bounce time scale of particles moving in B. We find that f is constrained in form: the dependence of f on λ, the gyrophase angle of \underline{v} with respect to \underline{B}, is related to the spatial gradient ∇f_{0} of the lowest order f, to the derivatives $\partial f_{0} / \partial v$ and $\partial f_{0} / \partial \delta$ with respect to speed and pitch angle respectively, and to the magnitude, curvature, and shear of \underline{B} as well as the magnitude and direction of \underline{E}. This λ-dependence of f is called gyro-anisotropy and leads, for example, to a net particle flow perpendicular to \mathbf{B}.

Given values of \underline{E} and \underline{B} and of the derivatives of f_{0}, our result can be used to calculate f and its velocity space moments for comparison with charged particle measurements. Measurement of the flux of particles $\mathrm{d} \Phi / \mathrm{dWd} \Omega$ differential in energy and solid angle is equivalent to measuring f because of the well known relationship

$$
\begin{equation*}
\frac{\mathrm{d} \Phi}{\mathrm{dWd} \Omega}=\frac{2 \mathrm{fW}}{\mathrm{~m}^{2}} \tag{2}
\end{equation*}
$$

Conversely we may deduce the values of one or more of the sources of gyro-anisotropy, i.e., of the λ-dependence, by examining the phase space variation of measured fluxes. In a subsequent paper, to which this paper is a formal theoretical prelude, we apply this latter approach to Pioneer measurements of energetic protons in Jupiter's magnetosphere.

The electric field \mathbf{E}; hich enforces plasma "corotation" is the most generally agreed upon \underline{E} to which magnetospheric particles are subjected. In Section III we derive for use in our f equation the functional dependence on \underline{r} and t of the corotational E for the case of a magnetic rotor whose magnetic field has no symmetry axis. We require that the magnetic field pattern, whatever it might be, rotate rigidly, so that the field at any time looks like that at an earlier time, but rotated. Our work here is an extension of previous theoretical work of Mestel [1961, 1968].

II. EXPANSION OF VLASOV EQUATION

Let us define a triad of locally orthogonal unit vectors $\hat{e}_{1}(\underline{r}, t), \hat{e}_{2}(\underline{r}, t)$, and $\hat{e}_{3}(\underline{r}, t)$ with $\boldsymbol{E}_{1}=\underline{B} /|\underline{B}|$ and \boldsymbol{e}_{2} and \boldsymbol{E}_{3} oriented arbitrarily (in this paper) in the plane transverse to B. Because we usually measure particle fluxes as functions of the energy and of the direction of the velocity vector, it is convenient to introduce the particle pitch angle

$$
\begin{equation*}
\delta=\cos ^{-1} \frac{\underline{v} \cdot \hat{e}_{1}}{\mid \underline{|v|}} \tag{3}
\end{equation*}
$$

and its gyrophase angle

$$
\begin{equation*}
\lambda=\tan ^{-1} \frac{\underline{\mathbf{v}} \cdot \hat{e}_{3}}{\underline{\mathbf{v}} \cdot \hat{e}_{2}} \tag{4}
\end{equation*}
$$

and to write the Vlasov Equation using v, δ, and λ as variables.

$$
\begin{align*}
& \frac{\partial f(v, \delta, \lambda, \underline{r}, t)}{\partial t}+\underline{v} \cdot \nabla f-\frac{1}{v \sin \delta} \underline{v} \cdot\left(\nabla \hat{e}_{1}\right) \cdot \underline{v} \frac{\partial f}{\partial \delta} \\
& +\frac{\cos \lambda}{v \sin \delta} \underline{v} \cdot\left[\left(\nabla e_{3}\right) \cdot \underline{v}-\tan \lambda\left(\nabla \hat{e}_{2}\right) \cdot \underline{v}\right] \frac{\partial f}{\partial \lambda}+\frac{q}{m}\left[E_{1}\left(\cos \delta \frac{\partial f}{\partial v}-\frac{\sin \delta}{v} \frac{\partial f}{\partial \delta}\right)\right. \\
& +E_{2}\left(\sin \delta \cos \lambda \frac{\partial f}{\partial v}+\frac{\cos \delta \cos \lambda}{v} \frac{\partial f}{\partial \delta}-\frac{\sin \lambda}{v \sin \delta} \frac{\partial f}{\partial \lambda}\right) \\
& \left.+E_{3}\left(\sin \delta \sin \lambda \frac{\partial f}{\partial v}+\frac{\cos \delta \sin \lambda}{v} \frac{\partial f}{\partial \delta}+\frac{\cos \lambda}{v \sin \delta} \frac{\partial f}{\partial \lambda}\right)\right]-\frac{q|\underline{B}|}{m c} \frac{\partial f}{\partial \lambda}=0 \tag{5}
\end{align*}
$$

In Equation (5), E_{1}, E_{2}, and E_{3} are the components of E in the directions of our unit vectors. Note that the spatial gradient $\nabla \mathrm{f}$ in (5) is at constant (v, δ, λ, t) and differs from that at constant \underline{v} because the reference directions ($\hat{e}_{1}, \hat{\mathrm{e}}_{2}$, and $\hat{\mathrm{e}}_{3}$), with respect to which δ and λ are defined, change with \underline{r}. However, f, even though expressed as a function of $\mathrm{v}, \delta, \lambda$, and $\underline{\underline{r}}$ from here on, is still the density in $\underline{\underline{v}} \underline{\mathrm{v}}$ space.

In the adiabatic expression we write

$$
f=f_{0}+f_{1}+\ldots
$$

where successive terms become smaller by the ratio

$$
\frac{f_{n+1}}{f_{n}}=O(e)=O\left(\frac{r_{G}}{L}\right)
$$

of the particle gyroradius $\mathrm{r}_{\mathrm{G}}=\mathrm{v} /(\mathrm{q}|\underline{B}| / \mathrm{mc})=\mathrm{v} / \omega$ to the characteristic scale length L of the magnetic field. Note that $\boldsymbol{\varepsilon}$ depends on particle energy as $W^{\text {/h }}$. In Jupiter's dayside magnetoenhere between 20 and 40 Jovian radii from the planet ϵ is typically $\sim .01$ for a 1 MeV proton. There are magnetospheric regions, however, where B is very weak as in the Earth's tail near the neutral sheet or L is very small as in the current sheet region in Jupiter's dawn meridian (Smith et al. [1976], Goertz et al. [1976]) and adiabatic theory is invalid for a 1 MeV proton.

We make the small electric field assumption that $\underline{E}=O(\epsilon)$ for both the parallel E_{1} and perpendicular components E_{2} and E_{3}. The smallness of E_{1} is necessary in order that particles do not freely accelerate along \mathbf{B}, thereby destroying any semblance of periodicity and adiabaticity. Whether E_{2} and E_{3} are small of $O(\epsilon)$ depends on the ratio of the electric field drift speed $\mathrm{cE}_{1} / \mathrm{B}$ to the particle speed v . In the following paper we take F_{1} to be the electric field which produces corotation and find that this ratio is about $10^{-3} \rho$ for a 1 MeV proton, where ρ is the distance from Jupiter's spin axis in Jovian radii. Since ρ $<50, \mathrm{cE}_{1} / \mathrm{Bv}$ does not exceed .05 , and hence it is indeed permissible to choose E of $\mathrm{O}(\epsilon)$ for the purposes of the following paper.

The relative asymptotic sizes of terms in (5) can now be estimated. A handy device here is to regard the coefficient m / q as carrying an intrinsic weight of ε. All terms in (5) are at largest of $\mathrm{O}(1)$ except the first and last, and to lowest ($1 / \mathrm{\epsilon}$) order

$$
\begin{equation*}
\frac{\partial f_{0}}{\partial t}-\omega \frac{\partial f_{0}}{\partial \lambda}=0 \tag{6}
\end{equation*}
$$

Equation (6) expresses the result that any gyrophase dependence of f_{0} gyrates about \underline{B} at the gyro-frequency ω. We demand stationarity on the gyro-timescale so that
$\partial f_{0} / \partial t=O(1), \partial f_{0} / \partial \lambda \equiv 0$, and $f_{0}=f_{0}(v, \delta, \underline{r}, t)$.
We now demand further that $\partial \mathrm{f} / \partial \mathrm{t}=\mathrm{O}(\boldsymbol{\epsilon})$, i.e., that f be stationary on the time scale of the bounce motion. With this restriction there can be no particle bunches moving along B. The $\mathbf{O}(1)$ contribution to (5) thus becomes

$$
\begin{align*}
\omega \frac{\partial f_{1}}{\partial \lambda}= & \underline{v} \cdot \nabla f_{0}-\frac{1}{v \sin \delta}\left(\underline{v} \cdot \nabla \hat{e}_{1}\right) \cdot \underline{v} \frac{\partial f_{0}}{\partial \delta} \\
& +\frac{q}{m}\left[E_{1}\left(\cos \delta \frac{\partial f_{0}}{\partial v}-\frac{\sin \delta}{v} \frac{\partial f_{0}}{\partial \delta}\right)\right. \\
& \left.+\left(E_{2} \cos \lambda+E_{3} \sin \lambda\right)\left(\sin \delta \frac{\partial f_{0}}{\partial v}+\frac{\cos \delta}{v} \frac{\partial f_{0}}{\partial \delta}\right)\right] \tag{7}
\end{align*}
$$

which may be integrated to yield

$$
\begin{align*}
f_{1}= & f_{1}(v, \delta, \lambda=0, r)+\frac{v}{\omega} \int_{0}^{\lambda} d \lambda^{\prime}\left\{0 \cdot \nabla f_{0}-\frac{1}{\sin \delta}\left(\theta \cdot \nabla e_{1}\right) \cdot v \frac{\partial f_{0}}{\partial \delta}\right. \\
& +\frac{q}{m v}\left[E_{1}\left(\cos \delta \frac{\partial f_{0}}{\partial v}-\frac{\sin \delta}{v} \frac{\partial f_{0}}{\partial \delta}\right)\right. \\
& \left.\left.+\left(E_{2} \cos \lambda^{\prime}+E_{3} \sin \lambda^{\prime}\right)\left(\sin \delta \frac{\partial f_{0}}{\partial v}+\frac{\cos \delta}{v} \frac{\partial f_{0}}{\partial \delta}\right)\right]\right\} \tag{8}
\end{align*}
$$

where $v=\vec{v} / v$. The integration in (8) can be carried out by noting

$$
\hat{v}=\dot{e}_{1} \cos \delta+\sin \delta\left(\hat{e}_{2} \cos \lambda^{\prime}+\dot{e}_{3} \sin \lambda^{\prime}\right)
$$

The result is

$$
\begin{align*}
& f_{1}=f_{1}(v, \delta, \lambda=0, \underline{r})+\frac{v}{\omega} \lambda\left(\left\{\left(\hat{e}_{1} \cdot \nabla f_{0}\right) \cos \delta\right.\right. \\
& -\frac{1}{2} \sin \delta \frac{\partial f_{0}}{\partial \delta}\left[\left(\hat{e}_{2} \cdot \nabla \hat{e}_{1}\right) \cdot \hat{e}_{2}+\left(\dot{e}_{3} \cdot \nabla \hat{e}_{1}\right) \cdot \dot{c}_{3}\right] \\
& \left.+\frac{q E_{1}}{m v}\left(\cos \delta \frac{\partial f_{0}}{\partial v}-\frac{\sin \delta}{v} \frac{\partial f_{0}}{\partial \delta}\right)\right\} \\
& +\left\{\left(\hat{e}_{3} \cdot \nabla f_{0}\right) \sin \delta-\frac{\partial f_{0}}{\partial \delta}\left[\cos \delta\left(\hat{e}_{1} \cdot \nabla \hat{e}_{1}\right) \cdot e_{3}\right.\right. \\
& \left.+\sin \delta \frac{\left(\hat{e}_{2} \cdot \nabla \hat{e}_{1}\right) \cdot \hat{e}_{3}+\left(\hat{e}_{3} \cdot \nabla \hat{e}_{1}\right) \cdot \hat{e}_{2}}{4}\right] \\
& \left.+\frac{q E_{3}}{m v}\left(\sin \delta \frac{\partial f_{0}}{\partial v}+\frac{\cos \delta}{v} \frac{\partial f_{0}}{\partial \delta}\right)\right\} \\
& +\sin \lambda\left[\left(\hat{e}_{2} \cdot \nabla \hat{f}_{0}\right) \sin \delta-\frac{\partial f_{0}}{\partial \delta} \cos \delta\left(\hat{e}_{1} \cdot \nabla \dot{e}_{1}\right) \cdot \hat{e}_{2}\right. \\
& \left.+\frac{q E_{2}}{m v}\left(\sin \delta \frac{\partial f_{0}}{\partial v}+\frac{\cos \delta}{v} \frac{\partial f_{0}}{\partial \delta}\right)\right] \\
& +\cos \lambda\left[-\left(\hat{e}_{3} \cdot \nabla f_{0}\right) \sin \delta+\frac{\partial f_{0}}{\partial \delta} \cos \delta\left(\hat{e}_{1} \cdot \nabla \hat{e}_{1}\right) \cdot \hat{e}_{3}\right. \\
& \left.-\frac{q E_{3}}{m v}\left(\sin \delta \frac{\partial f_{0}}{\partial v}+\frac{\cos \delta}{v} \frac{\partial f_{0}}{\partial \delta}\right)\right) \\
& +\frac{\operatorname{sm} 2 \lambda}{4} \sin \delta \frac{\partial f_{0}}{\partial \delta}\left(-\left(\hat{e}_{2} \cdot \nabla \hat{e}_{1}\right) \cdot \hat{e}_{2}+\left(\dot{c}_{3} \cdot \nabla \hat{e}_{1}\right) \cdot \dot{e}_{3} l\right. \\
& \left.+\frac{\cos 2 \lambda}{4} \sin \delta \frac{\partial f_{0}}{\partial \delta}\left(\left(\hat{e}_{2} \cdot \nabla \hat{e}_{1}\right) \cdot \hat{e}_{3}+\left(\hat{e}_{3} \cdot \nabla \hat{e}_{1}\right) \cdot \hat{e}_{2}\right)\right) \tag{9}
\end{align*}
$$

Since λ is an angle variable, f must be periodic in it. f_{0}, being independent of λ, is clearly so. Everything in Equation (9) for f_{1} is periodic in λ with the exception of the linear terms. We enforce periodicity by constraining f_{0} further so that the corfficient of λ vanishes:

$$
\begin{gather*}
\left(\hat{e}_{1} \cdot \nabla f_{0}\right) \cos \delta-\frac{1}{2} \sin \delta \frac{\partial f_{0}}{\partial \delta}\left[\left(\hat{e}_{2} \cdot \nabla \hat{e}_{1}\right) \cdot \hat{e}_{2}+\left(\hat{e}_{3} \cdot \nabla \hat{e}_{1}\right) \cdot \hat{e}_{3}\right) \\
+\frac{q E_{1}}{m v}\left(\cos \delta \frac{\partial f_{0}}{\partial v}-\frac{\sin \delta}{v} \frac{\partial f_{0}}{\partial \delta}\right) \equiv 0 \tag{10}
\end{gather*}
$$

Now note that

$$
\begin{equation*}
0=\nabla \cdot \underline{B}=\nabla \cdot\left(\hat{e}_{1} B\right)=\hat{e}_{1} \cdot \nabla B+\left[\left(\hat{e}_{2} \cdot \nabla \hat{e}_{1}\right) \cdot \hat{e}_{2}+\left(\hat{e}_{3} \cdot \nabla \hat{e}_{1}\right) \cdot \hat{e}_{3} \mid B\right. \tag{11}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\left(\mathrm{e}_{1} \cdot \nabla \mathrm{f}_{0}\right) \cos \delta+\frac{1}{2} \sin \delta \frac{{\hat{e_{1}}}_{1} \cdot \nabla B}{B} \frac{\partial f_{0}}{\partial \delta}+\frac{q E_{1}}{m v}\left(\cos \delta \frac{\partial f_{0}}{\partial v}-\frac{\sin \delta}{v} \frac{\partial f_{u}}{\partial \delta}\right) \equiv 0 \tag{12}
\end{equation*}
$$

Let us denote $\dot{e}_{1} \cdot \nabla$ by $\partial / \partial s$. Equation (12), being linear in f_{0}, is satisfied by any arbitrary function of the characteristic constants which label flow lines in the $\mathbf{3}$-dimensional $\mathrm{s}, \mathrm{f}, \mathrm{v}$ space. These constants are cbtained by solving the ordinary differential equations

$$
\begin{equation*}
\frac{m v}{q E_{1}} d v=d s=\frac{\cos \delta}{\sin \delta}\left(\frac{1}{2 B} \frac{\partial B}{\partial s}-\frac{q E_{1}}{m v^{2}}\right)^{-1} d \delta \tag{13}
\end{equation*}
$$

From the first pair of these equations comes the parallel energy

$$
\begin{equation*}
K=\frac{m v^{2}}{2}-q \int E_{1} d s \tag{14}
\end{equation*}
$$

as one constant, and from the second pair we find (using 14) the magnetic moment

$$
\begin{equation*}
M=\frac{m v^{2} \sin ^{2} \delta}{2 B} \tag{15}
\end{equation*}
$$

to be a second. The constraint (10) therefore dictates that on any given field line $f_{0}=f_{0}(\mathbf{K}, \mathrm{M})$. Because M is double-valued in δ, separate distributions may be specified for particles moving parallel and antiparallel to \mathbf{B} (Hastie et al. (19671). If the particles are trapped in a magnetic mirror, the stationarity of f requires that these two distributions be the same. However, there are situations, suchoas circulating particles in a toroidal device or particles precipitating at a steady rate in a magnetosphere, where the symmetry need not exist. In addition, the form of the dependence of f_{0} on K and M may differ on different field lines. If we label a field line by the parameters α and β (Northrop [1961]. Stern [1970]) ther $f_{0}=f_{0}(K, M, \alpha, \beta)$.

Note further that the remaining λ-independent terms in (9) can be lumped together by redefiting the arbitrary function f_{1}. Thus, through $\mathcal{O}(6)$,

$$
\begin{aligned}
& f \equiv f_{0}\left(K, M, \alpha, \beta^{\prime}+f_{1}(v, \delta, r)\right. \\
& +\frac{v}{\omega}\left\{\operatorname { s i n } \lambda \left[\left(\hat{c}_{2} \cdot \nabla f_{0}\right) \sin \delta-\frac{\partial f_{0}}{\partial \delta} \cos \delta\left(\dot{c}_{1} \cdot \nabla \dot{c}_{1}\right) \cdot \hat{c}_{2}\right.\right. \\
& \left.+\frac{\mu E_{2}}{m v}\left(\sin \delta \frac{\partial f_{0}}{\partial v}+\frac{\cos \delta}{v} \frac{\partial f_{0}}{\partial \delta}\right)\right) \\
& +\cos \lambda \left\lvert\,-\left(\dot{c}_{3} \cdot \nabla i_{0}\right) \sin \delta+\frac{\partial i_{0}}{a \delta} \cos \delta\left(\dot{c}_{1} \cdot \nabla c_{1}\right) \cdot \dot{c}_{3}\right. \\
& \left.-\frac{q \mathrm{E}_{3}}{m v}\left(\sin \delta \frac{\partial t_{0}}{\partial t}+\frac{\cos \delta}{v} \frac{\partial t_{0}}{\partial \delta}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
& +\sin 2 \lambda \frac{\sin \delta}{4} \frac{\partial \hat{f}_{0}}{\partial \delta}\left[-\left(\hat{e}_{2} \cdot \nabla \hat{e}_{1}\right) \cdot \hat{e}_{2}+\left(\hat{e}_{3} \cdot \nabla \hat{e}_{1}\right) \cdot \dot{e}_{3}\right] \\
& \left.+\cos 2 \lambda \frac{\sin \delta}{4} \frac{\partial f_{0}}{\partial \delta}\left[\left(\hat{e}_{2} \cdot \nabla \hat{e}_{1}\right) \cdot \dot{e}_{3}+\left(\hat{e}_{3} \cdot \nabla \dot{e}_{1}\right) \cdot \dot{e}_{2}\right]\right\} \tag{16}
\end{align*}
$$

Equation (16) is the principa result of this paper. Given $f_{0}+f_{1}$ and the magnetic and electric fields B and E, it alows one to calculate the non-gyrotropy (which contributes, for example, to the cross-field particle flow). The existence of f_{1} means that the gyr: : roic part of f may have a small $O(\epsilon)$ component which depends in an arbitrary f. limited yet further, restrictions on f_{1}, similar to those imposed on f_{0} here, would arise (Hastie et al. [1967]). It should also be noted that because of the redefinition of f_{1}. $f_{0}+f_{1}$ is no loner $f(\lambda=0)$ but is the λ average of f.

It is instrucive to examine velocity space moments of (16) to see the descendants of each term. The density

$$
\begin{equation*}
n=\int d^{3} v f=\int d^{3} v\left(f_{0}+f_{1}\right)=\int d^{3} v f_{0}+O(\epsilon) \tag{17}
\end{equation*}
$$

does not involve any λ-dependent terms. because they integrate to zero. To the macroscopic flow velocity

$$
\begin{aligned}
(v)= & \frac{1}{n} \int d^{3} v \dot{r}_{1} v \cos \delta\left(f_{0}+f_{1}\right) \\
& +\frac{1}{n \omega} \int d^{3} v v^{2} \sin \delta\left\{\dot{e}_{2} \cos ^{2} \lambda \mid-\left(\dot{c}_{3} \cdot \nabla f_{0}\right) \sin \delta\right. \\
& \left.+\frac{\partial f_{0}}{\partial \delta} \cos \delta\left(\hat{e}_{1} \cdot \nabla \dot{e}_{1}\right) \cdot \dot{e}_{3}-\frac{q E_{3}}{m v}\left(\sin \delta \frac{\partial f_{0}}{\partial v}+\frac{\cos \delta}{v} \frac{\partial f_{0}}{\partial \delta}\right) \right\rvert\,
\end{aligned}
$$

$$
\begin{align*}
& +{e_{3}}_{\sin ^{2} \lambda} \lambda\left[\left(\mathrm{e}_{2} \cdot \nabla \mathrm{f}_{0}\right) \sin \delta-\frac{\partial \mathrm{f}_{0}}{\partial \delta} \cos \delta\left(\mathrm{e}_{1} \cdot \nabla \mathrm{e}_{1}\right) \cdot \mathrm{e}_{2}\right. \\
& \left.\left.+\frac{q \mathrm{E}_{2}}{m v}\left(\sin \delta \frac{\partial f_{0}}{\partial v}+\frac{\cos \delta}{v} \frac{\partial f_{0}}{\partial \delta}\right)\right]\right\} \tag{18}
\end{align*}
$$

on the other hand, $f_{0}+f_{1}$ contributes the parallel (to B) component and the $\cos \lambda$ and $\sin \lambda$ terms in f are responsible for the perpendicular fluxes in the e_{2} and \vec{e}_{3} directions respectively. In order that a non-zero $(v) \cdot \hat{e}_{1}$ exist, $\left(f_{0}+f_{1}\right)$ for particles with pitch angles $0<\delta<\pi / 2$ must be different from $\left(f_{0}+f_{1}\right)$ for particles with pitch angles $\pi / 2<\delta<\pi$.

An experimental detector frequently samples only a portion of the 4π steradians through which y may vary. For example, in the Pioneer experiment analyzed in the following paper, the proton detector scans in θ through 2π radians in a plane to which B is arbitrarily inclined. An experimental anisotropy is then obtained from the magnitude and direction of the quantity

$$
\int_{0}^{\infty} d v v^{2} \int_{0}^{2 \pi} d \theta f|v, \delta(\theta), \lambda(\theta)| v(\theta)
$$

The $\cos 2 \lambda$ and $\sin 2 \lambda$ terms in (16), which vanish upon integration over all angles of v, contribute to this "reduced flow velocity" provided the pitch angle distribution of partides is non-uniform so that $\partial \mathrm{f}_{0} / \partial \delta \neq 0$.

The perpendicular flow terms in (18) can be cast into a more familiar form by sone straightforward integrations, integrations by parts, and vector manipulation. Details are omitted because we are interested only in the fate of terms in (18).

$$
\begin{gathered}
\langle v\rangle_{1}=\frac{c E \times B}{B^{2}}+\frac{c}{n q}\left[\frac{\hat{e}_{1}}{B} \times \nabla(M B)-M \grave{e}_{1} \times\left(\hat{e}_{1} \cdot \nabla \hat{e}_{1}\right)\right] \\
(E) \quad\left(\nabla f_{0}\right) \quad\left(\hat{e}_{1} \cdot \nabla \hat{e}_{1}\right)
\end{gathered}
$$

$$
\begin{gather*}
+\frac{m c}{n q B} \hat{e}_{1} \times\left(\hat{e}_{1} \cdot \nabla \hat{e}_{1}\right) \int d^{3} v f_{0} v^{2} \cos ^{2} \delta \\
\left(\hat{e}_{1} \cdot \nabla \hat{e}_{1}\right) \tag{19}
\end{gather*}
$$

where $\underline{M} \equiv-e_{1} M=-\hat{e}_{1}(\mathrm{~m} / 2) \int d^{3} v f_{0} v^{2} \sin ^{2} \delta$ is the magnetic moment per unit volume. Indicated in parentheses under each term is its ancestry in (16) or (18). With a little more manipulation we obtain

$$
\begin{align*}
& \langle\underline{v}\rangle_{1}=\frac{c \underline{c E} \times \underline{B}}{B^{2}}+\frac{M}{n} \frac{c}{q B} \hat{e}_{1} \times \nabla B \\
& (\underline{E}) \quad\left(\nabla f_{0}\right) \\
& +\frac{m c}{q}\left(v_{1}^{2}\right) \hat{e}_{1} \times\left(\hat{e}_{1} \cdot \nabla \hat{e}_{1}\right)+\frac{c}{n q}(\nabla \times M)_{1} \\
& \left(\hat{e}_{1} \cdot \nabla \hat{e}_{1}\right) \quad\left(\nabla \hat{f}_{0}, \hat{e}_{1} \cdot \nabla \hat{e}_{1}\right) \tag{20}
\end{align*}
$$

or

$$
\begin{equation*}
\left\langle\underline{v}_{\perp}=\left\langle\underline{v}_{\operatorname{drif}}\right\rangle+\frac{c}{\mathrm{nq}}\left(\nabla \times{\underset{\sim}{M}}_{\perp}\right.\right. \tag{21}
\end{equation*}
$$

where ($\underline{v}_{\text {drinf }}$) is the average drift velocity of guiding centers. As shown by Northrop [1961], the right hand side of (21) also equals

$$
\frac{\mathrm{c}}{\mathrm{nqB}} \hat{e}_{1} \times\left(\nabla \cdot \underset{=\underset{\sim}{\mathrm{P}})}{ }+\frac{\mathrm{cE} \times \underline{B}}{\mathrm{~B}^{2}}+\frac{\mathrm{mc}}{\mathrm{qB}^{2}} \hat{e}_{1} \times \frac{\mathrm{d}(\underline{\mathrm{v}})}{\mathrm{dt}} .\right.
$$

a result which also follows from the moment equation

$$
\frac{d(v)}{d t}=-\frac{\nabla \cdot \underline{P}}{n m}+\frac{q}{n m}\left(\underline{E}+\frac{1}{c}(v) \times \underline{B}\right) .
$$

$\underset{=}{P}$ being the pressure tensor.

Although it might have been tempting at first sight of (16) to make off-hand identications, such that $\nabla \mathrm{B}$ drifts arise from terms containing $\nabla \mathrm{f}_{0}$, and the curvature drifts from those containing ($\varepsilon \cdot \nabla \hat{e}_{1}$), this is only partially true in that parts of all these terms also lead to the $(\nabla \times M)_{4}$ term. Thus when looking at (16), it is difficult to think in terms of guiding center motion.

III. THE ELECTRIC FIELD IN A RIGIDLY COROTATING MAGNETOSPHERE

As a preliminary to our using Equation (16) in following papers, we present here a short derivation of the form which E must have in order that the magnetospheric plasma corotate. The source of \underline{B} may be finite in size and arbitrary in shape. It is rotating about a fixed axis which we take to define the z-axis of a cylindrical "laboratory" system, so that $\underline{\Omega}=\hat{c}_{2} \Omega$. By rigid corotation we mean that all physical quantities are time invariant when seen by an observer moving with the velocity $\underline{\Omega} \times \underline{\mathbf{r}}$. However, if the magnetic field is not axisymmetric with respect to $\underline{\Omega}$, a $\partial \underline{B} / \partial t$ will exist at every fixed spatial point I in the laboratory coordinate system and have a value (Goldstein [1950], Backus [1956], Birmingham and Northrop [1968])

$$
\begin{align*}
\frac{\partial \underline{B}}{\partial \mathrm{t}} & =\underline{\Omega} \times \underline{\mathrm{B}}-(\underline{\Omega} \times \underline{\mathrm{r}}) \cdot \nabla \underline{B} \\
& =\underline{\Omega} \times \underline{B}-\Omega \frac{\partial \underline{B}}{\partial \phi} \tag{23}
\end{align*}
$$

Maxwell's Curl Equation hence becomes

$$
\begin{equation*}
\nabla \times E=-\frac{1}{c}\left(\underline{\Omega} \times \mathbf{B}-\Omega \frac{\partial \underline{B}}{\partial \phi}\right) \tag{24}
\end{equation*}
$$

Further

$$
\begin{equation*}
E=-\frac{\underline{u} \times \underline{B}}{c} \tag{25}
\end{equation*}
$$

where \underline{u} is the flow velocity of the plasma, assumed to be ideally conducting.
Next we postulate that

$$
\begin{equation*}
\underline{u}=k(r) \hat{e}_{1}+a(\underline{r}) \rho \hat{\phi} \tag{26}
\end{equation*}
$$

so that the plasma flow consists of a component of amplitude (ρ a), to be determined from (24), in the "corotational" direction ($\bar{\phi}$ may have a field-aligned component) plus the arbitrary field-aligned portion $k(\underline{r})$.

Inserting (25) and (26) into (24) and performing the vector differentiations one obtains the equation

$$
\begin{equation*}
\frac{\partial}{\partial \phi}(\mathrm{aB})-\mathrm{a} 2 \times \underline{B}-\rho \dot{\phi} \underline{B} \cdot \nabla \mathrm{a}=\Omega \frac{\partial \underline{B}}{\partial \phi}-\underline{\Omega} \times \underline{B} . \tag{27}
\end{equation*}
$$

Equation (27) is trivially satisfied by $a=$ const. $=\boldsymbol{\Omega}$. The "corotational" electric field \underline{E} thus is

$$
\begin{equation*}
\underline{E}=-\frac{\rho \Omega}{c} \hat{\phi} \times \underline{B} \tag{28}
\end{equation*}
$$

Note that since $k(r)$ in (26) is still arbitrary it could be chosen to be

$$
k=-\rho \Omega \hat{\phi} \cdot \hat{e}_{1}
$$

so that $\underline{\mathbf{u}}$ is totally perpendicular to \underline{B}. Our result (27) has the same form as Mestel's [1961] solution for the case of a rotating azimuthally symmetric magnetosphere whose rotation and magnetic symmetry axes are parallel. The form of the expression for E thus is unchanged by generalizing to this non-axisymmetric geometry. In applications such as in the following paper to Jupiter's magnetosphere, the electric field has not been measured and it is desirable to postulate one in order to reduce the number of unknowns. Although (28) undoubtedly is not exact, it is a stage better than assuming the E which one would have for a magnetic dipole field.

REFERENCES

Backus, G., The external electric field of a rotating magnet, Astrophys. J., 123, 508, 1956.

Birmingham, T. J., and T. G. Northrop, Charged particle energization by an arbitarily moving magnet, J, Geophys. Res. 73, 83, 1968.

Goertz, C. K., D. E. Jones, B. A. Randall, E. J. Smith, and M. F. Thomsen, Evidence for open fied lines in Jupiter's magnetosphere. J. Geophys. Res., 81. 3303, 1076.

Goldstein, H., Classieal Mechanics, Addison Wesley, Reading, Mas., 1950.

Hastie, R. J., J. B. Taylor, and F. A. Has, Adiabatic invariants and the equilibrium of magnetically trapped particles, Anmals of Phys., 41, 302. 1967.

Mestel. L., Note on equatorial acceleration in a magnetic star. Mon. Notic. Roy. Astron. Soc., 122. 473, 1961.

Mestel, L., Magnetic braking by a stellar wind, I, Mon. Notic. Roy, Astron. Soc., 1.38. 359. 1968.

Northrop, T, G., The guiding eenter approximation to charged paftide motion. Anmals of Phys, 15, 79, 1961.

Northrop. T, G., The Adiabatic Motion of Charged Partictes. John Wiley A Sons (Interscience). New York, 1963,

Smith, E. J., L. Davis, Jr., and D. E. Jones. Jupiter's magnetic field and magnetosphere. in Jupiter (edited by T. Gehrels), Univ, of Arizona Press, Tucson, 1976.

Stern, D. P., Buler potentials, Amer. J. of Phys., 38, 404, 1970.

