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THEORY OF FLUX ANISOTROPIES IN A GUIDING CENTER PLASMA

T. J. Birmingham
Laboratory for Extraterrestrial Physics
and
T. G. Northrop
Laboratory for High Energy Astrophysics

ABSTRACT

Assuming time stationarity of the one particle distribution function f
on the scale of the bounce motion of particles in a magnetic field B, we
expand the Vlasov Equation through O(e) in the adiabatic parameter €,
which is the ratio of particle gyroradius to scale length of the magnetic
field. Since f is directly proportional to particle flux dd/dWdS2 differential
in kinetic energy W and solid anele £, f is in principle measurable in space
experiments, and our analysis is tailored to be explicitly applicable to
space problems. To O(1), f is gyrotropic; its first velocity moment is (if
non-vanishing) parallel to B, and hence macroscopic parallel flow is
included in this term. The O(e) contribution is non-gyrotropic and
macroscopic flow L to B plus additional parrliel flow results from these
terms. The degree of non-gyrotropy and hence the amount of cross-field
macroscopic tlow depend on the perpendicular component of the electric
field E, on curvature and shear in the magnetic field, and on the spatial
gradient f, pitch angle derivative 9f,/08 and speed derivative 9f,/dv of
the lowest order distribution function f;,. We also show that the usual
expression for the electric field E which produces plusma co-rotation in an
axisymmetric system such as a dipole also holds for any non-axisymmetric
but rigidly rotating magnetic field pattern, provided the observed magnetic

field is used in place of the dipole field.
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THEORY OF FLUX ANISOTROPIES IN A GUIDING CENTER PLASMA

I INTRODUCTION
 We often consider charged patticles interacting with the electric and magnetic fields
E and B in a magnetospheric environment as behaving adiabatically: time variations are

sufficiently slow and sgatial variations sufficiently long that individual particles undergo

nearly periodic xﬁotions. Under adiabatic conditions the Vlasov Equation

of q vXB of
"a—t"'_"_‘Vf'l';(E S )'—a—v-—ﬁ, ¢))

which governs the distribution function f(r, v, t) of such particles, can be expanded
asymptotically in the adiabatic parameter.

In this paper (Section 1I) we carry out a formal adiabatic expansion of the Vlasov
Equation in a manner paralleling that of Hastie et al. [1967], but we tailor it to be mors
explicitly applicable to space problems, such as the one in the following paper. We do so
assuming that f is stationary on the bounce time scale of particles moving in B. We find
that f is constrained in form: the dependence of f on A, the gyrophase angle of v with
respect to B, is related to the spatial gradient yf, of the lowest order f, to the deriva-
tives 9f,/0v and afo/ 98 with respect to speed and pitch angle respectively, and to the
magnitude, curvature, and shear of B as well as the magnitude and direction of E. This
A-dependence of f is called gyro-anisotropy and leads, for example, to a net particle flow
perpendicular to B.

Given values of E and B and of the derivatives of f,, our result can be used to cal-
culate f and its velocity space moments for comparison with charged particle measure-
ments. Measurement of the flux of particles db/dWdS2 differential in energy and solid

angle is equivalent to measuring f because of the well known relationship

dé 2fW

———— T e——

dWdQ  m? (2)




Conversely we may deduce the values of one or more of the sources of gyro-anisotropy,
i.e., of the A-dependence, by examining the phase space variation of measured fluxes. In
a subsequent paper, to which this paper is a formal theoretical prelude, we apply this latter
approach to Pioneer measurements of energetic protons in Jupiter’s magnetosphere.

The electric field E vhich enforces plasma “corotation™ is the most generally agreed
upon E to which magnetospheric particles are subjected. In Section Il we derive for use
_ in our f equation the functional dependence on r and t of the corotational E for the
case of a magnetic rotor whose magnetic field has no symmetry axis. We require that the
magnetic field pattern, whatever it might be, rotate rigidly, so that the field at any time
lIooks like that at an earlier time, but rotated. Qur work here is an extension of previous

theoretical work of Mestel [1961, 1968].
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I. EXPANSION OF VLASOV EQUATION

Let us define a triad of locally orthogonal unit vectors & (1, t), &,(r, t), and &,(r, t)
" with él = _§ll§! and &, and &, oriented arbitrarily (in this paper) in the plane transverse

to B. Because we usually measure particle fluxes as functions of the energy and of the

direction of the velocity vector, it is convenient to introduce the particle pitch angle

v'él

5§ =cos! =
: vl
anditsgyrgphaseangle
v
A = tan’! -
Yy

and to write the Vlasov Equation using v, §, and \ as variables,

of(v,8,A, 1, t) 1 of
+ . - ' . aam—
at Yoo Y ) Y

cos A of q of sind
+ . . - é . — — —
v Y V&) v - tanh(Vey) - v] > [13.l (cos 8 ™ -

( of cos d cosA of sin af)
+E. s —_ — e —— —
2 \sindcosh = v 3  vsind 2A
( of cos Ssink of COsA af) qIBl af
+ in§sin\ — + ———— — ¢ ~ )] - ——— =
Ey | sin 8sind v v 96  vsind mc 9\

3)

@

af)
3

5)

In Equation (5), E,, E,, and E, are the components of E in the directions of our unit

vectors. Note that the spatial gradient y f in (5) is at constant (v, §, A, t) and differs from

that at constant v because the reference directions ¢,, &y, and &,), with respect to which

b and X\ are defined, change with r. However, f, even though expressed as a function of

v, §, A, and r from here on, is still the density in r, v space.
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In the adiabatic expression we write
f=f +f +...

where successive terms become smaller by the ratio

f T,
L O(e) = Q(..E.)
f, L,

of the particle gyroradius r; = v/(q|Bl/mc) = v/w to the characteristic scale length L of
the magnetic field. Note that € depends on particle energy as W?. In Jupiter's dayside
magnetosnhere between 20 and 40 Jovian radii from the planet € is typically ~.01 for a
1 MeV proton. There are magnetospheric regions, however, where B is very weak as in
the Earth’s tail near the neutral sheet or L is very small as in the current sheet region in
Jupiter's dawn meridian (Smith et al. [1976], Goertz et al. [1976]) and adiabatic theory
is invalid for a 1 MeV proton.

We make the small electric field assumption that E = O(e) for both the parallel E,
and perpendicular components E, and E;. The smallness of E, is necessary in order that
particles do not freely accelerate along B, thereby destroying any semblance of periodicity
and adiabaticity. Whether E, and E, are small of O(e) depends on the ratio of the elec-
tric field drift speed cEl/B to the particle speed v. In the following paper we take E to
be the electric ficld which produces corotation and find that this ratio is about 1073 p for a
1 MeV proton, where p is the distance from Jupiter's spin axis in Jovian radii. Since p
<50, cE,/Bv does not exceed .08, and hence it is indeed permissible to choose E of O(e)
for the purposes of the following paper.

The relative asymptotic sizes of terms in (5) can now be estimated. A handy device
here is to regard the coefficient in/q as carrying an intrinsic weight of €. All terms in (5)

are at largest of O(1) except the first and last, and to lowest (1/¢) order
aHy, Ay

—_— - we— =0
at Y (6)



Equation (6) expresses the result that any gyrophase dependence of fo gyrates about B
~ at the gyro-frequency w. We demand stationarity on the gyro-timescale so that
afy /ot = O(1), 3fy/ON =0, and £, = f,(v, §, 1, 1).

We now demand further that 3f/3t = O(e), i.e., that f be stationary on the time scale
of the bounce motion. With this restriction there can be no particle bunches moving
along B. The O(1) contribution to (5) thus becomes

31‘1 i of,
) m—— = 9 ¥, - 2R A —
O RAL Takry AL LN A 7
of sin § af)
0 0
Yw [Ei (";‘B“T‘ v
/ : afa cos § ai‘o
+ (E2 cosA + E, sin?\) sin§ — + —)
av ¥ as (?)

which may be integrated to yicld

, Voo ( P af,
f, = f,(v.6.A =0, 1) +§5 AN 40 -Vl = (7 - V) - 0
Q

q (A, sind A,
+— |E, (c@s& —_———— —)

my v ¥ a8
i i 3f0 cos 8 ara) .
+ (E2 COos\ + E3 sin?\') (siﬂﬁ K + 7%‘ 55— { &)

where ¥ = _\?! v. The integration in (8) can be carried out by noting

v =@ cosd +sind (¢, cosX + & sinl)




The result is

v
fi = f(v.8,A=0, 1) + — *{lé; * VE,) cos 8
- W
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| Since A is an angle variable, f must be periodic in it. fj, being independent of A, is
~ clearly so. Everything in Equation (9) for f, is periodic in A with the exception of the
linear terms. We enforce periodicity by constraining f;, further so that the coefficient of
A vanishes:

1 afa
¢, *Vl’)casé—? sin§ — [(éz'Vél)'ég+(é3-Vél)'é3}
qE, / aof, sind of,
+—— b — - — —] = :
mv cos v v 8, 0 Q)

Now note that

0=V B=V-@B =¢§ *VB+[(& V&) ¢+ V) &IB (D

and thus
: " VB 3fy, g, ( o, sind afd)
[ 'Vfr)"mé-t—'"é-—-————*-—— COS —— = — — |= (12
i 0.¥ 2 sin B Y mv cOs ™ v 2% | 0 (l )

Let us denote &, * V by 3/3s. Equation (12), being linear in €, is satisfied by any
arbitrary function of the charactenistic constants which label flow lines in the 3-dimensional

s, 8, v space. These constants are cbtained by solving the ordinary differential equations

mv cosb/ 1 B gk \"
—dvsds s —— | = o= -] db (13
€, siné(za 3 mvz) (13)

From the first pair of these equations comes the parallel energy

k-—-m::—q E, ds (14)




as one constant, and from the second pair we find (using 14) the magnetic moment

mvlsin? §

ME T

to be a second. The constraint (10) therefore dictates that on any given field line
fo = fﬂ(‘K, M). Because M is double-valued in §, separate distributions may be specified
for particles moving parallel and antiparallel to B (Hastie et al. [1967]). If the particles
are trapped in a magnetic mirror, the stationarity of { requires that these two distributions
be the same. However, there are situations, suchwas circulating particles in a toroidal de-
vice or particles precipitating at a steady rate in a magnetosphere, where the symmetry
need not exist. In addition, the form of the dependence of fo on K and M may difter on
different ficld lines. If we label a field line by the parameters a and § (Northrop [1961].
Stern [1970]) ther {;, = (K. M, a, p).

Note further that the remaining Aindependent terms in {(9) can be lumped together

by redefiving the arbitrary function f,. Thus, through O(e),
= IK.Ma@+ fivd n

v ot

3 ia X3 T ——— e e A i S (3 74 . A
+?lsmkl (&, Y?ta)smé Y \@sé(el T-'e‘) ¢

*

qk, ( M, cosd Bfa)
+— |sind — +— —
mv av v a8

2,

+ cos A l-(é3 + Vi) sin d i“-;g cos § e, + Ve )-8y

qk, ay, e & 'af@
s 22
2 ¥ as




sin § afo

+ sin 2\ relET =& * V&) v &, + (& * Ve, &)
sind af I
. s ] o— — A . 3 s & [ & s Un . i { 3
teos2h —= == & Ve s &y 4 (& 0 V) - 4 ’ (16)

Equation (16) is the princip result of this paper. Given fo + 1, and the magnetic
and electric fields B and E, it a.lows one to calculate the non-gyrotropy (which contrib-
utes, for example, to the cross-field particle flow). The existence of f, means that the
gyro.noic part of f may have a small O(¢) component which depends in an arbitrary
fu<lo on s, v, and 8 and still maintain 9f/0t = 0 + O(e). If the time vanation of § were
limited yet further, restrictions on f, . similar to those imposed on f; here. would arise
(Hastie et al. [1967]). 1t should also be noted that because of the redefinition of f,.
fo + £, is no lonrer f(X = 0) but is the X average of f.

It is instructive to examine velocity space moments of (16) to see the descendants of

each term. The density
] ] ¥
= [ 43ur = L I ey = | d4der . -
n=fdvi = Javd, + ) = [dvi + 0w (7

does not involve any A-dependent terms. because they integrate to zero. To the macro-
scopic flow velocity

. Iy . .
iy} =—!d'vé.vcos§(tu + 1)
- n *

L 5

3 ¢ Vi) sin §

1 .
+ — Jd*vvisind (e, cost A -
N o/ l =

N a, qE; at, cos &AM,
= cos 8 (¢, Vé ) d = —— (in§ — + - —)
3 ! ! 3 mv v v od



af,
+ & sin? k" (é-z . Vfo)sins --——?-eﬁsﬁfél . ?él) N

a8
qE, afy cos § ot ] ,
SR YIRS Y unar Gp——— | 18
¥ mv (sm& ov ¥ v aa) 48

~on the other hand, f, + f, contributes the parallel (to B) component and the cos A and
ﬁﬁ A terms in f are responsible for the perpendicular fluxes in the ¢, and &, directions
respectively. In order that a non-zero {v) * &, exist, (f, + f,) for particles with pitch
angles 0 < & < #/2 must be different from (f, + f,) for particles with pitch angles
7/2<8<n

An experimental detector frequently samples only a portion of the 4x steradians
through which v may vary. For example, in the Pioneer experiment analyzed in the
following paper, the proton detector scans in 8 through 2 radians in a plane to which
B is arbitrarily inclined. An experimental anisotropy is then obtained from the magnitude

and direction of the quantity
bl 1%
jo‘ dv v? ‘[G dé flv, 8(6). MO)] v(0).

The cos 2X and sin 2\ terms in (16), which vanish upon infegration over all angles of v,
contribute to this “‘reduced flow velocity™ provided the pitch angle distribution of par-
ticles is non-uniform so that ar(,/aa # 0.

The perpendicular flow terms in (18) can be cast into a more familiar form by sonie
straightforward integrations, integrations by parts, and vector manipulation. Details are

omitted because we are interested only in the fate of terms in (18).

¢E X B ¢ I
(v), = - 4 _l-—-x VIMB) - Mg, X (& * V¢)
B? nql B '

(E) (Vf,) @, * V&)
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mc

+ —
ngB

& X (¢ Vé3)§d3v fyv? cos? &
@, * Ve (19

where M == & M = — & (m/2) fd®v f,v? sin? § is the magnetic moment per unit volume.
Indicated in parentheses under each term is its ancestry in (16" or (18). With a little

more manipulation we obtain

cE X B M
(v) = ——— +—— ¢ X VB
B? n gB
(E) (Viy)
mc [
+— () X (8 V8 +— (YX M),
q nq
@, *+Vé¢,) (Vi .8 + Vé)
or
(v) = ) +
X).L = <1dﬁﬁ + ‘*;"&W"@h Qn

where (v ..) is the average drift velocity of guiding centers. As shown by Northrop

[1961], the right hand side of (21) also equals

C cE X B me d{v)
& X (V. P)+ — + g X ~—
ngB = B? qB? dt

a result which also follows from the moment equation

d{v) V:P q gy ! \
— = - _+-—(E+—(V)XB).
nm \= c - =

dt nm c
P being the pressure tensor.

B




Although it might have been tempting at first sight of (16) to make off-hand identi-
cations, such that v B drifts arise from terms containing vf,, and the curvature drifts
from those contaiﬁing (€ - &), thisis only partially true in that parts of all these terms
also lead to the (v X M), term. Thus when looking at (16), it is difficult to think in

terms of guiding center motion.
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Il THE ELECTRIC FIELD IN A RIGIDLY COROTATING MAGNETOSPHERE

As a preliminary to our using Equation (16) in following papers, we present here a
short derivation of the form which E must have in order that the magnetospheric plasma
corotate. The source of B may be finite in size and arbitrary in shape. It is rotating
about a fixed axis which we take to define the z-axis of a cylindrical “laboratory™
system, so that {2 = & . By rigid corotation we mean that all physical quantities are
time invariant when seen by an observer moving with the velocity @ X r. However, if
the magnetic field is not axisymmetric with respect to §1, a dB/at will exist at every fixed
spatial point r in the laboratory coordinate system and have a value (Goldstein {1950],
Backus [1956], Birmingham and Northrop [1968])

2B
S =2 XB-(@X 1) VB
oB
=QXB-Q— (23)

Maxwell’s Curl Equation hence becomes

1 3B
vx;z=“-_-(szxg-sz-m->

¢ \— - o¢ (02))
Further
u X B
E= =~
= c 25
where u is the flow velocity of the plasma, assumed to be ideally conducting.
Next we postulate that
u = k(r)é+ a(r)pd 26)



so that the plasma flow consists of a component of amplitude (pa), to be determined from
(24), in the “corotational” direction (¢ may have a field-aligned component) plus the arbitrary
field-aligned portion k(r).

Inserting (25) and (26) into (24) and performing the vector differentiations one
obtains the equation

0 oB
—@B) —a2 X B-p¢B-Va=Q—~Q X B.
d - - - ¥ - - @n

Equation (27) is trivially satisfied by a = const. = . The “corotational” electric field E

thus is

E=-Z4x38 (28)

so that u is totally perpendicular to B. Our result (27) has the same form as Mestel’s
[1961] solution for the case of a rotating azimuthally symmetric magnetosphere whose
rotation and magnetic symmetry axes are parallel. The form of the expression for E
thus is unchanged by generalizing to this non-axisymmetric geometry. In applications
such as in the following paper to Jupiter’s magnetosphere, the electric field has not been
measured and it is desirable to postulate one in order to reduce the number of unknowns.
Although (28) undoubtedly is not exact, it is a stage better than assuming the E which

one would have for a magnetic dipole field.
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