NASA TECHNICAL MEMORANDUM

NASA TM - 78164

SIMPLIFIED MODEL OF STATISTICALLY STATIONARY
 SPACECRAFT ROTATION AND ASSOCIATED INDUCED GRAVITY ENVIRONMENTS

By George H. Fichtl and Robert L. Holland Space Sciences Laboratory

February 1978

NASA

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama

TABLE OF CONTENTS

Page
I. INTRODUCTION 1
II. SPACECRAFT MOTION DESCRIPTION 2
A. Spacecraft Equations 4
B. Linearized Equations 5
C. Stochastic Models 7
III. BODY FORCE PROCESS EXCEEDANCE STATISTICS 17
A. Rice's Theorem and Expected Exceedance Rate of Body Force 17
B. Risk of Body Force Exceeding a Critical Value 20
C. Body Force Envelope Exceedance Rate 23
Iי. Risk of Body Force Envelope Exceeding a Critical Value 26
IV. SPACECRAFT ROTATION RATE EXCEEDANCE STATISTICS 30
A. Expected Exceedance Rate of Rotation Rate 30
B. Risk of Rotation Rate Esceeding a Critical Value 33
V. CONCLUDING COMMENTS 33
REFERENCES 37

Figure Title Page

1. Principal axis and fluid container refererce frames 3
2. Nondimensional expected rate $2 \pi \mathrm{~N}_{\mathrm{g}} / \omega_{\mathrm{o}}$ of exceeding thenondimensional level $|g|_{c} / \sigma_{g}$ with positive slope forg > 0 or negative slope for g < 0 . 193. The quantity $|g|_{c} / \sigma_{g}$ as a function of $\dot{\omega}_{o} T$ and R for$\beta=0$22
3. The quantity $|g|_{\mathrm{c}} / \sigma_{\mathrm{g}}$ as a function of $\omega_{\mathrm{o}} \mathrm{T}$ and R for$\beta=0.999$22
4. Nondimensional expected rate $2 \pi \mathrm{M}_{\mathrm{g}} / \omega_{\mathrm{o}}$ of the envelope $\mathrm{A}(\mathrm{t})$of the g jitter process exceeding level $\mathrm{A}_{\mathbf{c}} / \sigma_{\mathrm{g}}$ with positiveslope for $\mathrm{g}>0$ and negative slope for $\mathrm{g}<0$. 25
5. The quantity $\mathrm{A}_{\mathrm{c}} / \sigma_{\mathrm{g}}$ as a function of $\omega_{\mathrm{o}} \mathrm{T}$ and R for $\beta=0.90$ 27
6. The quantity $\mathrm{A}_{\mathrm{c}} / \sigma_{\mathrm{g}}$ as a function of $\omega_{\mathrm{o}} \mathrm{T}$ and R for $\beta=0.95$ 28
7. The quantity A_{c} / σ_{g} as a function of $\omega_{o} T$ and R for $\beta=0.99 \ldots$ 28
8. The quantity $\mathrm{A}_{\mathrm{c}} / \sigma_{\mathrm{g}}$ as a function of $\omega_{\mathrm{o}} \mathrm{T}$ and R for $\beta=0.995$ 29
9. The quantity $A_{c} / \sigma_{\mathrm{g}}$ as a function of $\omega_{\mathrm{o}} \mathrm{T}$ and R for $\beta=0.999$ 29
10. The ratio of the zero-crossing rate of $\Omega(t)$ to the zero- crossing rate of $g(t)$ as a function of the bandwidth parameter β 31

LIST OF ILLUSTRATIONS (Concluded)

Figure
 Title
 Page

12. Nondimensional expected rate $2 \pi N_{\Omega} / \omega_{0}$ of exceeding the nc ıdimensional level $|\Omega|_{c}$ with positive slope for $\Omega>0$ or negative slope for $\Omega<0$. 32
13. The quantity $|\Omega|_{c} / \sigma_{\Omega}$ as a function of $\omega_{0} T$ and R for $\beta=0.01$ 34
14. The quantity $|\Omega|_{c} / \sigma_{\Omega}$ as a function of $\omega_{o} T$ and R for

SIMPLIFIED MODEL OF STATISTICALLY STATIONARY SPACECRAFT ROTATION AND ASSOCIATED INDUCED GRAVITY ENVIRONMENTS

I. INTRODUCTION

Space vehicle rotations resulting from crew activity, thruster firings, etc., and the associated induced g environments appear to be stochastic in character. Accordingly, to define an experiment to be performed aboard a space vehicle which is sensitive to vehicle rotations and the associated induced g environments, it would appear that statistical information concerning the risk of exceedance of critical rotation rates and g levels would be extremely useful. Clearly, the statistics of space vehicle motions and associated induced g environments depend on the vehicle mass and geometry properties, the dynamic behavior of the crew (push-off, sneezing, etc.), the control system parameters, the mission profile, etc. Estimates of these statistics can be obtained from Monte Carlo simulation of the vehicle/forcing function system or from postflight analysis of g enviromment time histories acquired from onboard instrumentation (accelerometers, rate gyros) or look angle data. However, estimates of statistics of space vehicle motions and the associated induced g levels do not appear to be available at this time for the currently planned Space Transportation System (STS) missions with payloads involving g sensitive experiments (for example, those on Spacelab missions 1 and 3) other than estimates of typical and worst case rotations and associated g levels resulting from various kinds of discrete vehicle excitations. ${ }^{1}$ Furthermore, statistical summaries of vehicle rotation and associated g environments measured on previous space flight missions do not appear available. However, a number of excellent reports are available on the effects of crew motion on spacecraft attitude. Reference 1 documents the results of detailed simulations of the effects of crew motion on Apollo vehicle attitude, and Reference 2 provides the results of crew motion experiments conducted during the Skylab Program. This report attempts to provide estimates of exceedance statistics of vehicle rotations and associated g environments resulting from space vehicle motions.

[^0]The approach taken involves the use of basic assumptions concerning the statistics of the torque imposed on a spacecraft resulting from crew activity and thruster firings, i. e., that the imposed components of torque constitute a Gaussian process wherein the associated spectrum of torque in the frequency domain is that associated with a band-limited noise process with constant, nonzero spectral density over the frequency bandwidth of the process and zero spectral density for frequencies outside the bandwidth. The rigid-body equations of motion are used to derive the statistics of the spaceeraft rotations. Finally, the statistics of the associated g environments are derived from the vehicle rotation statistics by applying transformation formulae between inertial and rotating frames. The mathematical machinery of Rice's theory of exceedances is used to obtain estimates of expected temporal rates of exceeding specified critical spacecraft rotation rates and associated g levels. Furthermore, by assuming that the number of exccedances of rotation rate and induced gravity during an orbital experiment with duration time T are Poisson processes, estimates of the risk associated with exceeding specified eritical rotation rate and induced gravity levels at least once during an experiment are obtained. It should be remembered that the calculations presented are speculative in nature and must await statistical analyses of results from Monte Carlo simulations and 'or of space vehicle acceleration data acquired from previous orbital missions. However, it is bolieved that the calculations presented are interesting and thought provoking and may be useful to scientists and technologists who are developing space flight experiments which are sensitive to space vehicle accelerations.

II. SPACECRAFT MOTION DESCRIPTION

Let us consider a body-fixed frame of reference located at the spacecraft center of mass. This orthogonal frame of reference is fixed to the spacecraft with the x, y, and z anes directed along the prineipal axes of the spacecraft. Let us now consider a huid container with center of mass located at position vector \vec{r}_{f} with components x_{f}, y_{f}, and z_{f} relative to the spacecraft center of mass. Furthermore, assume the container is rigidly attached to the vehicle. If the vehicle undergoes rotation, then a fluid particle located at position \vec{r}_{0} with respect to the spacecraft center of mass with components x_{o}, y_{o}, and z_{o} will experience a fore per unit mass in response to the vehicle motion in question which is given by

$$
\begin{equation*}
\vec{F}=\overrightarrow{\dot{\Omega}} \times \vec{r}_{f}+\vec{\Omega} \times\left(\vec{\Omega} \times \vec{r}_{f}\right)-2 \vec{\Omega} \times \vec{u}\left(r_{f}, t\right)+\vec{a} \tag{1}
\end{equation*}
$$

where \vec{a} is the inertial linear acceleration of the vehicle instantaneous center of mass resulting from a net force acting on the vehicle, $\vec{\Omega}$ is the rotation vector of the vehicle with components Ω_{x}, Ω_{y}, and Ω_{z} directed along the principal axes of the spacecraft, and $(\vec{\Omega})$ denotes differentiation with respect to time [3]. The vector quantity $\vec{u}\left(\vec{r}_{f}^{\prime}, t\right)$ is the velocity vector of the fluid particle with position vector $\vec{r}_{\mathbf{f}}^{\prime}$ relative to a frame of reference with coordinates x^{\prime}, y^{\prime}, and z^{\prime} located at the fluid container center of mass and is fixed relative to the fluid container walls so that

$$
\begin{equation*}
\overrightarrow{\mathbf{r}}_{\mathbf{f}}=\overrightarrow{\mathbf{r}}_{\mathbf{f}}+\overrightarrow{\mathbf{r}}_{\mathrm{o}} \tag{2}
\end{equation*}
$$

Figure 1 depicts the various frames of reference and the position vectors \vec{r}_{0}, \vec{r}_{f}, and \vec{r}_{f}, If the spatial extent of the fluid mass is small compared to the distance between the centers of mass of the spacecraft and the lluid container (i.e., $\left|\vec{r}_{\mathbf{f}}\right| \ll\left|\vec{r}_{0}\right|$), equation (1) may be written as

Figure 1. Principal axis and fluid container reference frames.

$$
\begin{equation*}
\vec{F}=\overrightarrow{\dot{\Omega}} \times \vec{r}_{0}+\vec{\Omega} \times\left(\vec{\Omega} \times \vec{r}_{0}\right)+\vec{a}-2 \vec{\Omega} \times \vec{u}\left(\vec{r}_{f}^{\prime}, t\right) \tag{3}
\end{equation*}
$$

The first three terms on the right side of equation (3) can be treated as a timedependent gravitational body force per unit mass. The third term is a Coriolis force. Our analysis will be concerned with statistical definition of the gravita-tional-like body force terms in equation (3) (excluding the linear acceleration term)

$$
\begin{equation*}
\vec{g}(\mathrm{t})=\overrightarrow{\dot{\Omega}}, \vec{r}_{0}+\vec{\Omega},\left(\vec{\Omega}, \vec{r}_{0}\right) \tag{4}
\end{equation*}
$$

and the angular velocity vector si. It should be noted that if the fluid container is rotating (in addition to any rotations that may be imparted by the spacecraft), then precessional fluid thow amalysis may be required, thus invalidating cquations (3) and (1). This case is not treated in this report.

The analysis of the statisties of ${ }^{2}(t)$ with the line are aceoleration term included inereases the complexity of the analysis. The more general case in which induced gravity results from toth rotational and linear acocherations will be amalyou in a sulserguent report.

The apposimation \vec{r}_{f}, \vec{r}_{0} is extremely important becaluse this appronimation means that the grewitational body forer which acts on a fluid partiche due to spaceeratt rotations ean be specified a priori in the semse that g° to a sufficient degree of approximation is independent of the fluid flow dependent
 a: mion: hecause \vec{r}_{f} is a filud pacticle lagrangian position vector which must then be determined as part of the fluid mechanies problem in question.

A. Spacecraft Equations

To develop the conneetion between the dynamies of the spaceoraft and the vector quantities \vec{F} and \dot{s}, the ripid-body equations of motions for the spaceeraft referenced to the principal anes are used. These equations, in vector notation, aro given by
where \vec{T} is the net torque that acts on the spacecraft and \tilde{I} is the moment of inertia tensor with diagonal values $\mathrm{I}_{x^{\prime}} \mathrm{I}_{\mathrm{y}}$ and I_{z} and zeroes for the off-diagonal values (1].

B. Linearized Equations

The torque $\overrightarrow{\mathrm{T}}$ results from rocket thruster firings and crew activity. Some of the forces associated with crew activity (e.g. , push-offs, bending, instrument operation, etc.) have been quantified during Skylab missions and are documented in Reference 2. It appears that crew activity results in vehicle rotation with time scales on the order of seconds to a few tens of seconds. In our analysis, we shall be concerned with rocket thruster firing inputs required to keep a vehicle in a certain attitude in response to vehicle motions resulting from crew motions. These rocket firings produce relatively short period variability in $\vec{\Omega}$ and hence in \vec{g}. Rocket firings associated with major changes in vehicle attitude will not be included in our analysis. Therefore, the terms involving products of rotation rates in equations (4) an: (5) may be neglected relative to the terms involving derivatives of rotation rates. It will be assumed that this is permissible and the tollowing equations for $\vec{\Omega}$ and \vec{g} will be used in the subsequent analysis:

$$
\begin{align*}
& \tilde{\mathrm{I}} \cdot \overrightarrow{\mathrm{i}}=\overrightarrow{\mathrm{r}} . \tag{b}\\
& \overrightarrow{\mathrm{g}}=\overrightarrow{\mathrm{i}} \times \overrightarrow{\mathrm{r}}_{\mathrm{o}} \quad . \tag{7}
\end{align*}
$$

The valldity of the decision to neglect the second-order terms involving $\vec{\Omega}$ to obtain these equations should be examined for each situation. The linearization process used to obtain equation (6) does not include the posisible dependence of $\overrightarrow{\mathrm{T}}$ upon a control law and, in turn, a dependence of the control law upon $\vec{\Omega}$. We shall bypass this issue by assuming that the statistics of $\overrightarrow{\mathrm{T}}$ are known so that a statistical model of $\vec{\Omega}$ and \vec{g} can be developed via a rotational approach with equations (6) and (7).

The use of equation (5) as a model to represent the combined effects of crew motion and rocket thrusters on spacecraft attitude is presumptuous. A model which includes crew motion exactly would be extremely complex because equations of motion for the vehicle and the crew members would be required. These equations would include the effects of erew members attaching and detaching from the vehicle; vehicle crew member push-offs, sneezing, ete., stochastic location of the crew members in time; and a host of other effects. An equation such as equation (5) would result from an analysis where $\vec{\Omega}$ would be the rotation rate of the vehicle about the vehicle center of mass (without crew), \hat{I} would be the moment of inertia tensor of the vehicle (without erew), and \vec{T} would contain the crew member/spacecraft coupling terms and the torques imparted by the rocket thrusters. Equation (5) together with additional equations governing the erew would then require simultaneous solution for the dynanic dependent variables of the crew and spacecraft. Thus, equation (5) should be viewed as an extremely simplified model of a complex system. However, it should be noted that equation (i) is exact for the problem of calculating the response statistics of spaceeraft motions resulting from stochastically imposed torgues for a constant moment of inertia vehicle.

It can be shown for spacecraft such as the space Shuthe orbiter with spacelab as a payload that to neglect the terms in equations (1) and (5) which are second order in $\vec{\Omega}$, we must require the lowest characteristic frequency wif of the random process $\vec{\Omega}$ to be very large compared to any component of $\overrightarrow{\mathrm{a}} ; \mathrm{i} . c .$,

$$
\begin{equation*}
\frac{\omega_{f}}{\Omega_{x}}, \frac{\omega_{f}}{\Omega_{y}}, \frac{\omega_{f}}{\Omega_{z}} \cdots 1 . \tag{*}
\end{equation*}
$$

 Furthermore, crew activity and rocket thruster firings produce vehicle rotations with time seales on the order of seconds to tens of secomsls or, rather, frequencies $w, 20.1 \mathrm{rad} \mathrm{sec}{ }^{-1}$, so that $w_{f}=0.1 \mathrm{radsec}^{-1}$ and $\omega_{f}^{\prime} 32, y, z=10$.
If we accept 10 as being large eompared to unity, then cquation (s) appears to be satisfied for the application intended in this report.

C. Stochastic Models

In this section we develop a stochastic model for $\vec{\Omega}$ and \vec{g} based on equations (6) and (7) and as assumed stochastic model for $\overrightarrow{\mathrm{T}}$.

1. Torque Stochastic Model. We hypothesize that the components of the torque vector are mutually uncorrelated, statistically stationary Gaussian processes which have zero mean values and spectral density functions given by
with similar equations assumed for T_{y} and T_{z}. The quantity w is radian frequeney (Paragraph Il. C.O), ${ }^{\circ} \mathrm{F}_{\mathrm{s}}, \mathrm{T}_{\mathrm{x}}$ is the standard deviation of T_{x}, and w_{0} and w_{1} are upper and lower bound frequencies, respectively. The spectrum in equation (9) and all those that follow in the subsequent development are defined such that integration over the domain $-0<\omega<\infty$ yields the auto- or cross-variance. The assumption that the components of the torque vector are uncorrelated appears to be reasonable for the crew activity contribution to torque. However, this assumption may not be true for the thruster firing contribution to the torque vector. Nevertheless, this assumption is used in the andysis which follows.
2. Rotation Vector stochastic Process. We express $\vec{\Omega}$ and $\overrightarrow{\mathrm{T}}$ in terms of Fourier-steltjes integr:as $|+|$

$$
\begin{equation*}
\vec{\Omega}(t)=\int_{-0}^{n} e^{i \omega t} \hat{d} \hat{\Omega}(u) \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\overrightarrow{\mathrm{T}}(\mathrm{t})=\dot{-i}_{0}^{0} \mathrm{e}^{i \omega \cdot t} d \hat{\overrightarrow{\mathrm{~T}}\left(u^{\prime}\right)} \tag{11}
\end{equation*}
$$

where t is time and $\vec{d}(\omega)$ denotes stoch:stic Fourier amplitude at frequene. ω of the random process $\vec{?}(t)$. Substituting equations (10) and (11) into equation (6) yields the Fourier amplitudes of the $\bar{\Omega}$ process. For the a emmponent, we have

$$
\begin{equation*}
d \hat{S}_{N}(w)=\frac{d \hat{T}_{n}(w)}{i w I_{n}} \tag{1:}
\end{equation*}
$$

with similar equations for the y and z component rigid-body equations alultiplying equation (12) by its comple conjugate evaluated at frequency ... and applying the ensemble average operator over all realizations of the ($\vec{\Omega}, \overrightarrow{\mathrm{r}}$) process yields
where the asterish denotes comples coniugation and the angular brachets demote the ensemble average operator. The reguirement of statistical orthogenality at Fourier components of statistical stationarity of a ramdem process in the time domain demands that

$$
\begin{equation*}
\phi_{\Omega_{x}}, \Omega_{x}(\omega)=\frac{\phi_{T_{x}} \mathbf{I}_{x}^{(\omega)}}{\omega^{2} \mathbf{1}_{x}^{2}} \tag{15}
\end{equation*}
$$

Combining cquations (9) and (15) yields

$$
\begin{align*}
& \phi_{\Omega_{x}, \Omega_{x}}(\omega)=\frac{\sigma_{T_{x}}^{2}, T_{x}}{\left.2{\underset{x}{x}}_{2}^{(} \omega_{0}-\omega_{1}\right) \omega^{2}}, \quad \omega_{1}<|\omega| \leq \omega_{0} \tag{16}\\
& \phi_{\Omega_{x}, \Omega_{\lambda}}(\omega)=0 \quad, \quad 0<|\omega| \leq \omega_{1} \quad \text { or } \quad \omega_{0}<|\omega|
\end{align*}
$$

This result states that $\phi_{\Omega_{x}} \Omega_{x}(\omega) \propto \omega^{-2}$ over the frequency domain in which $\phi_{T_{X}}, T_{X}(\omega)$ takes on nonzero values. Equations similar to equation (16) can be written for Ω_{y} and $\boldsymbol{\Omega}_{z}$.

If it is assumed that the components of the torque vector are uncorrelated, it follows that the cross-spectral density functions of the components of $\vec{\Omega}$ vanish so that

$$
\begin{equation*}
\phi_{\Omega_{\lambda}, \Omega_{y}}(\omega)=\phi_{\Omega_{x}}, \Omega_{y}(\omega)=\phi_{\Omega_{y}, \Omega_{z}}(\omega)=0 \quad, \quad-\infty<\omega<\infty \tag{17}
\end{equation*}
$$

Statistical stationarity domands that the ensemble mean $\langle\vec{\Omega}\rangle$ be equal to a constant vector $\bar{\Omega}_{0}$. Thus $\langle\vec{\Omega}\rangle=0$, which means $\langle\vec{T}\rangle=0$ as hypothesized ab initio. For definiteness we shall set $\vec{\Omega}_{0}=0$.

Integrating equation (16) over the domain $-\infty<\omega<\infty$ yiesds the variance of $\Omega_{x} ;$ i.e.,

$$
\begin{equation*}
\sigma_{\Omega_{N}, \Omega_{x}}^{2}=\frac{\sigma_{\mathrm{T}}^{2}, \mathrm{~T}}{\mathrm{I}_{x}^{2} \alpha_{0}^{2}{ }_{0}^{1}} \tag{1s}
\end{equation*}
$$

where $\beta={ }^{3} / \omega_{0}$. Similar equations can be obtained for the remaining components of $\vec{\Omega}$.

In view of the linear relationship betweon \bar{a} and ${ }^{\circ}{ }^{\circ}$ as exprossed by equation (6) and the assumed Gatussian nature of the torque process, it follows that $\vec{\Omega}$ is a Gussian vector process. The previously mentioned datal concorning the moments of the $\vec{\Omega}$ process provide sufficient information to determine any desired probability density function of the components of 5 a and hence to callculate any desired statistic of the $\vec{\Omega}$ process.
3. Body Forer Voctor stochastic Proooss. The Fourior-siteltjes stochastic decomposition of $\hat{H}^{*}(t)$ is expressed mathematieally as

$$
\begin{equation*}
\vec{H}(t)=\sum_{i=0}^{i} e^{i_{u} \cdot t \frac{\Delta}{d n}(u)} \tag{19}
\end{equation*}
$$

Substituting equations (10) and (19) into cquation (7) Vichls

$$
\hat{\operatorname{tn}(u)} \quad \therefore \dot{s} \times r_{0}
$$

Application of the ensemble average opreator to cquation (30) (notime that
 Thu: , the ensemble mean lody force is zero in this model.

Following the procedure outlined in Paragraph II. (`. 2 , the following: spectal density functions are obtained:

$$
\begin{align*}
& \phi_{g_{y}, g_{y}}(\omega)=\omega^{2}\left[x_{0}^{2} \phi_{\Omega_{z}, \Omega}(\omega)+z_{o}^{2} \phi_{\Omega_{x}}, \Omega_{x}(\omega)\right] \text {, } \tag{22}\\
& \phi_{g_{z}, g_{z}}(\omega)=\omega^{:}\left[y_{0}^{2} \phi_{\Omega_{x^{\prime}} \Omega}(\omega)+x_{o}^{2} \phi_{\Omega_{y}, \Omega_{y}}(\omega)\right] \text {. } \tag{23}\\
& \phi_{K_{y}, K_{x}}(\omega)=\phi_{K_{x}, K_{y}}(\omega)=-x_{0} y_{0} \omega^{2} \varphi_{\Omega_{z}, \Omega_{z}}(\omega) \quad . \tag{24}\\
& \phi_{g_{z}, X_{X}}(\omega)=\varphi_{K_{x}, K_{z}}(u)=-x_{0} z_{0} u^{2} \phi_{\Omega_{y}, \Omega_{y}}(\omega) \quad . \tag{25}
\end{align*}
$$

Substituting the rotation rate spectral density functions into equations (21) through (2i) yields
with similar equations for g_{y} and g_{z} and

$$
\begin{equation*}
\sigma_{g_{x}, Y_{x}}^{2}=\frac{z_{0}^{2} \sigma_{T_{y}}^{2}, T_{y}}{I_{y}^{2}}+\frac{y_{0}^{2} \sigma_{T_{z}}^{2}, T_{z}}{1_{z}^{2}} \tag{2s}
\end{equation*}
$$

with similar cquations for the remaining cross-spectral densitios and

 daussian wedor prowess. The proviously mentioned dita concornite the
voments of the g process provide sufficient information to determing any riesired probability density function of the components of \vec{g} and hence to calcu1 ate any desired statistic of the \vec{g} process.

Since the $\overrightarrow{\mathbf{g}}$ process is Gaussian, there exists an orthogonal transformati.n of the spacecraft principal axis reference frame (x, y, z) to a new frame of r ference (X, Y, Z) such that the cross correlations of the components of \vec{g} i- the (X, Y, Z) frame vanish (5). The components of \vec{g} referenced to the (X, Y, Z) frame are stochastically independent Gaussian processes. The transformation of the \vec{g} process referenced in the (x, y, z) frame [i.e., $\vec{g}(t ; x, y, z)$] to the (X, Y, Z) frame [i.e., $\vec{g}(t ; X, Y, Z)$) is given by

$$
\begin{equation*}
\vec{g}(t ; x, X, Z)=\tilde{A} \cdot \vec{g}(t ; x, y, z) \tag{35}
\end{equation*}
$$

where \tilde{A} is a 3 by 3 tensor with components that are functions of the auto- and cross-covariances of the \vec{g} process referenced to the (x, y, z) frame, i. $e_{\tilde{A}}$, equations (28), (29), (30), (32), (33), and (34). The components of \widetilde{A} can be determined by a relatively straightforward application of a three-way Euler angle transfor: ation [3] subject to the constraint that

$$
\begin{equation*}
\sigma_{g_{X}, g_{Y}}^{2}=\sigma_{g_{Z}, g_{X}}^{2}=\sigma_{g_{Z}, g_{Y}}^{2}=0 \tag{36}
\end{equation*}
$$

Upon diterminaiiou of the components of \widetilde{A}, the spectral density functions of $\vec{g}(t ; X, Y, Z)$ can $c e$ obtained by Fourier transformation of equation (35) and formation of 'ie appropriate square modulii. Thus, for example, Fourier transformation \vec{i}_{x} yields

$$
\begin{equation*}
d \hat{g}_{x}=A_{x x} d \hat{g}_{x}(\omega)+A_{x y} d \hat{\mathrm{~g}}_{y}(\omega)+A_{x z} d \hat{g}_{z}(\omega) \tag{37}
\end{equation*}
$$

Multiplying equation (37) by its complex conjugate at frequency ω^{\prime} and applying the cnidition of statistical orthogonality [equation (14)] yields

Thus, the spectral density function of $\underset{\underline{E}}{ }(t, X, Y, z)$ e:m le calleulated direcelty from the spectral density functions of $\underset{\&}{ }(t ; x, y, z)$. The cross-spectral densith functions of $\boldsymbol{z}^{2}(t, N, x, z)$ vanish identically. The main point that we wamt to make is that there exists a coortinate system such that the components of \vec{E} In that frame of reference are stochastically independent and that the statistios of $\vec{g}(t, N, Y, Z)$ are derivable from the statisties of $\vec{⿷}(t ; \lambda, \cdots, x)$.

The spectral density functions of $\vec{g}(t, N, Y, X)$ are of the form
where

Similar expressions can be obtained for the \mathcal{V} and 7 components of ${ }^{2}$.

4. Cross Correlations of the Rotation and Body Force Vector Processes. The fact that \vec{g} is derived from $\bar{\Omega}$ implies a correlation between the \vec{g} process with the \bar{T} process. The following cross-spectral density functions can be calculated from equation (20):

$$
\begin{align*}
& \phi_{g_{X}, \Omega_{X}}(\omega)=\varphi_{\Omega_{X}, H_{X}}(\omega)=0 \quad . \tag{+1}\\
& \phi_{g_{y}, \Omega_{y}}(\omega)=\varphi_{S_{y^{\prime}} K_{y}}(\omega) \quad \because 0 \quad . \tag{+2}\\
& \phi_{\mathrm{g}_{\mathrm{z}}, \Omega_{\mathrm{Z}}}(\omega)=\phi_{\Omega_{\mathrm{z}}, \mathrm{H}_{\mathrm{Z}}}(\omega) \cdot 0 \quad . \tag{+3}
\end{align*}
$$

Equations (41) through (43) show that parallel components of $\hat{\mathrm{d}} \hat{\boldsymbol{\Omega}}$ and $\hat{\mathrm{dg}}$ are uncorrelated, so that parallel components of \vec{g} and $\vec{\Omega}$ are uncorrelated. The cross-spectral densign functions of the mutually orthogonal components of \vec{g} and $\overrightarrow{\boldsymbol{\Omega}}$ are complex according to equations (44) through (49). This means the mutually orthogonal components of \vec{g} and $\vec{\Omega}$ are out of phase by ± 90 deg. Thus, for example, the Fourier components of Ω_{y} lead those of g_{x} by 90 deg. Integrating equations (38) through (43) over the domain $-\infty<\omega<\infty$ yields

$$
\begin{equation*}
\sigma_{g_{x}, \Omega_{y}}^{2}=\sigma_{\Omega_{y}}^{2} g_{x}=0 \tag{50}
\end{equation*}
$$

and likewise for the remaining cross correlations between the mutually orthogonal components of \vec{g} and $\vec{\Omega}$. These results show that $\vec{g}(t)$ is uncorrelated with $\vec{\Omega}(\mathrm{t}) \mid$ The $\overrightarrow{\mathrm{g}}$ and $\vec{\Omega}$ processes are, however, correlated for finite nonzero time delay τ. This can be shown by the Fourier transformation of equations (44) through (49) to the τ domain to obtain the cross-correlation function $\mathrm{R}(\tau)$ between the mutually orthogonal components of $\vec{g}(t+\tau)$ and $\vec{\Omega}(t)$. Thus, for example,

$$
\begin{align*}
\mathrm{R}_{\mathrm{g}_{\mathrm{x}}, \Omega_{\mathrm{y}}}(\tau) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i} \omega \tau} \phi_{\mathrm{g}_{\mathrm{x}}, \Omega_{y}}(\omega) \mathrm{d} \omega \\
& =-\frac{1}{2 \pi} \frac{\mathrm{I}_{\mathrm{o}}^{2} \sigma_{\mathrm{T}}^{2}\left(\omega_{\mathrm{o}}-\omega_{1}\right) \mathrm{T}_{\mathrm{y}}}{\omega_{\omega_{1}} \int_{0}^{\omega_{0}^{\tau}} \frac{\sin \xi}{\xi} \mathrm{d} \xi,} \tag{51}
\end{align*}
$$

where the sine integral is tabulated in standard references. Thus, for $\tau \neq 0$, $\mathrm{R}_{\mathrm{g}_{\mathrm{x}}, \Omega_{\mathrm{y}}}(\tau) \neq 0$, with similar results for the remaining cross-correlation functions between the orthogonal components of \vec{g} and $\vec{\Omega}$.

III. BODY FORCE PROCESS EXCEEDANCE STATISTICS

In this section we determine the exceedance statistics of each component

 of the \vec{g} process referenced to the (X, Y, Z) frame discussed in Paragraph II.C. 3. Our analysis will be concerned with a single component of \vec{g}; consequently, we will dispense with subscripts on g to denote components. We will use the symbol g to denote a component of \vec{F} and σ_{g} to denote the standard deviation of \mathbf{g}.
A. Rice's Theorem and Expected Exceedance Fate of Body Force

According to Rice [6,7], ior a stationary Gaussian process with zero mean, the expected number of exceedances of induced gravity per unit time which exceed level g is given by

$$
\begin{equation*}
N_{g}=N_{g, o} e^{-\mathrm{g}^{2} / 2 \sigma_{g}^{2}} \tag{52}
\end{equation*}
$$

The quantity $\mathrm{N}_{\mathrm{g}, \mathrm{o}}$ is the expected number of zero crossings of the quantity g from below and is related to the spectral density function $\phi_{g}(\omega)$ through the following expression:

$$
\begin{equation*}
N_{g, 0}=\frac{1}{2 \pi}\left\{\frac{\int_{-\infty}^{\infty} \omega^{2} \phi_{g}(\omega) d \omega}{\sigma_{g}^{2}}\right\}^{1 / 2} \tag{53}
\end{equation*}
$$

Thus, the substitution of equation (39) into equation (52) yields for our assumed stochastic g process

$$
\begin{equation*}
N_{\mathrm{g}, \mathrm{o}}=\frac{\omega_{0}}{2 \pi}\left(\frac{1-\beta^{3}}{3(1-\beta)}\right)^{1 / 2} \tag{5.1}
\end{equation*}
$$

where $\beta=\omega_{1} / \omega_{0}$. The quantity β serves as a relative measure of the spectral bandwidth of the g jitter process. For a relatively broad-banded process in which $\beta=0,2 \pi \mathrm{~N}_{\mathrm{g}, \mathrm{o}} / \omega_{\mathrm{o}}=3^{-1 / 2}$; and for a narrow process in which $\beta \rightarrow 1$, we have $2 \pi \mathrm{~N}_{\mathrm{g}, \mathrm{o}} / \omega_{\mathrm{o}}=1$. If the process were characterized by a monochromatic spectral density function, namely

$$
\begin{equation*}
\phi(\omega)=\sigma_{g}^{2}\left[\frac{\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)}{2}\right] \tag{55}
\end{equation*}
$$

where $\delta()$ is the Dirac delta function, then the zero-crossing rate would be given by $\mathrm{N}_{\mathrm{o}}=\omega_{\mathrm{o}} / 2 \pi$ as calculated for $\beta=1$ with the g jitter spectral model given by equation (39). Thus, the model given by equation (39) includes broadbanded and narrow-banded g jitter processes with the limiting ease of monochromatic g jitter.

Substituting equation (54) into equation (52) yields

$$
\begin{equation*}
\frac{2: \mathrm{N}_{\mathrm{g}}}{\omega_{\mathrm{o}}}=\left[\frac{1+\beta+j^{2}}{3}\right]^{1 / 2} \mathrm{e}^{-\mathrm{g}^{2} / 2 \sigma_{g}^{2}} . \tag{56}
\end{equation*}
$$

The nondimensional exceedance rate $2 \pi \mathrm{~N}_{\mathrm{g}} / \omega_{0}$ is plotled in Figure 2 as a function of $\mathrm{g} / \sigma_{\mathrm{g}}$ for $\beta=0$ and $\beta=0.999$. Thus, we conclude from Figure 2 that for any given value of $\mathrm{g} / \mathrm{g}_{\mathrm{g}}$ the exceodance rate will vary by only a factor of 1.733 over the admissible range of β. This means that for the model selected the exceedance rate N_{g} of the f process is only mildly dependent on the parameler β. The dependence of N_{g} on β occurs through the zero-crossing rate $\mathrm{N}_{\mathrm{g}, \mathrm{o}}$ [equation (54)] and, as previously noted, $3^{-1 / 2}=2 \pi \mathrm{~N}_{\mathrm{g}, \mathrm{o}} / \omega_{\mathrm{o}} \leq 1$

Figure 2. Nondimensional expected rate $2 \pi \mathrm{~N}_{\mathrm{g}} / \omega_{\mathrm{o}}$ of exceeding the nondimensionad level $|f|_{c}{ }_{j}{ }_{g}$ with positive slope for $g>0$ or negative slope for $\mathrm{g}<0$. (The expected rate of exceeding level $|f|_{e}{ }^{\prime} \sigma_{g}$ with positive or negative slope is $2 N_{k}$)
for the full range of variation of the parameter β; i.e., $0 \leq \beta=1$. Thus, for example, if the f process has an upper-bound frequency of $u_{0}=2 \pi \mathrm{rad} \mathrm{sec}^{-1}$, then we have for the expected zero-crossing rate $0.577<N_{\mathrm{f}, \mathrm{o}} \leqslant 1 \sec ^{-1}$.

It should be noted that the g proress can execed critical values of $|g|$ when $\mathrm{g}<0$ with negative slope; consequently, the rate at which the g process excee: icritical value is $2 \mathrm{~N}_{\mathrm{g}}$.

B. Risk of Body Force Exceeding a Critical Value

We now seek to determine the risk that the g process will exceed a critical value for a given orbital experiment duration time. Clearly, the larger the duration time T of an experiment, the higher the risk a critical value of $|g|\left(|g|_{c}\right)$ will be exceeded. Ideally, we wish to know the probabilistic structure of the random time T when $|g| c$ is exceeded. This problem is called the "first passage" problem.

As previously noted, we consider the case where g is a stationary process. Furthermore, the g process is symmetrically distributed in the positive and negative ranges, and the upper and lower bounds are also symmetrical. Thus, the probability of exceeding a critical g level, $|g|_{c}$, at any given instant is

$$
\begin{equation*}
P\left\{\left\{g \geq|g|_{\mathbf{c}}\right\} \cup\left\{g=-|g|_{\mathbf{c}}\right\}|=2 P| g=|g|_{\mathbf{c}}\right\} \tag{57}
\end{equation*}
$$

To estimate the risk associated with $|\underline{g}| \geq|f|_{c}$ for a given experiment duration time T, we shall make the arbitrary assumption that the exceedances of the $|g|$ process above level $|g|_{c}$ arrive independently. We now denote by $Q(T)$ the number of exceedances of $|g|$ at level $|g| c$ over the experiment duration time T. Clearly, the process $Q(T)$ is a Poisson process, and the probability of $Q(T)$ being less than or equal to an assigned value (for example, q) according to T in $|B|$, is given by

$$
\begin{equation*}
P(Q(T)<q, T)={\frac{(\lambda T)^{q}}{q!} e^{-\lambda T}, ~}_{\text {, }} \text {, } \tag{58}
\end{equation*}
$$

where λ is a parameter. The probability of no excedance of the g process above the critical value $|\mathrm{g}| \mathrm{c}$ in time interval T follows by setting $\mathrm{q}=0$ in equation (58), so that

$$
\begin{equation*}
P(Q(T)=0, T)=e^{-\lambda T} \tag{59}
\end{equation*}
$$

By definition of the Poisson process we set

$$
\begin{equation*}
\lambda=2 N_{g} \tag{i0}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
P(Q(T)=0, T)=e^{-2 N_{g} T} \tag{61}
\end{equation*}
$$

Now, the risk R that the f process will exceed the critical value $|g|_{c}$ at least once during an experiment of duration time T is

$$
\begin{equation*}
R=1-e^{-2 N_{g} T} \tag{62}
\end{equation*}
$$

Eliminating the expected exceedance rate N_{g} between equations (56) and (62) yields

$$
\begin{equation*}
\frac{|r|_{c}}{\sigma_{L}}-\left\{-2 \cdot \cdot\left\{-\left[\frac{3(1-\beta)}{1-i)^{3}}\right]^{1 / 2} \frac{\pi(n(1-R)}{T \omega_{0}}\right\}\right\}^{1 / 2} \tag{63}
\end{equation*}
$$

This formula permits the calculation of critical g level (i.e., $|g|_{c}$) as a function of risk R of the quantity $|f|$ exceeding level $|\boldsymbol{f}|_{c}$ at least once during an experiment duration time T and the f enviromment spectral model parameters β and ω_{0}. Figures 3 and 4 contain plots of $|\dot{s}|_{c}{ }^{\prime} \sigma_{\dot{f}}$ as a function of $T \omega_{o}$ for various values of risk for $\beta \cdot 0$ and 0.999 , respectively.

It may be concluded from these figures that the variability in $|f|_{c}$ due to variation in $\omega_{0} T$ and/or β decreases as R decreases.

Figure 4. The auantity . $\mathrm{g}_{\mathrm{c}}{ }^{\prime}{ }_{g}{ }_{g}$ as a function of ${ }^{\prime}{ }_{0} \mathrm{~T}$ and B for $;=0.999$.

C. Body Force Envelope Exceedance Rate

The most questionable aspect of the previous analysis is the arbitrary assumption that the arrival of the threshold crossings of g above and below the critical levels $|g|_{c}$ and $-|g|_{c}$ with positive and negative slopes, respectively, are independent events. This assumption is especially unacceptable for narrowband g jitter bec: use the threshold crossings of narrow-banded g jitter will tend to occur in clumps. Once there is a crossing of $|\mathrm{g}|$ over a threshold $|\mathrm{g}| \mathrm{c}$, the probability is high that the tollowing excursion will produce another crossing. However, we note that the crossing of the same threshold by the envelope of the g process mist precede the first crossing in each clump. Accordingly, when there are many excursions in each clump, the time of a threshold crossing by the envelope is nearly the same as the time of the first crossing in each clump. Thus, although it is more acciptable to treat the threshold crossings of an envelope of a narrow-banded random process as independent events, we can improve the analysis in the previous section by using the expected rate of threshold crossings of the envelope process for λ in equation (59).

From Rice [6,7], we assume the narrow-banded g jitter process can be expressed as

$$
\begin{equation*}
g(t)=A(t) \cos \left(\omega_{m} t+0(t)\right) \tag{64}
\end{equation*}
$$

where ω_{m} is a representative wide-band frequency of the g process and $A(t)$ and $\theta(t)$ are random processes which vary much more slowly than $g(t)$ with respect to t. The process $A(t)$ is nonnegative. Since the spectral density function of our assumed g jitter process is symmetric about the frequency $\omega_{s}=\omega_{0}(1+\beta) / 2$ on the half interval $0<\omega<\infty$, it is clear that $\omega_{m}=\omega_{s}$. According to Rice, the random process $A(t)$ is the envelope process of the g process. Since the g process is Gaussian, it can be shown that the expected exceedance rate or threshold crossing rate with positive slope of the envelope of the g process at level A is given by

$$
\begin{equation*}
M=\frac{\mathrm{A}}{\sigma_{g}} \frac{\sigma_{\mathrm{g}, 1}}{\sigma_{\mathrm{g}}} \frac{1}{(2 \pi)^{1 / 2}} \mathrm{e}^{-\mathrm{A}^{2} / 2 \sigma_{\mathrm{g}}^{2}} \tag{65}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{g, 1}^{2}=\int_{-\infty}^{19}\left(u^{2}-\omega_{m}^{2}\right) \phi_{g}\left(w^{\prime}\right) d w \tag{6i6}
\end{equation*}
$$

Substituting the g process spectral density function |equ:iaion (39)| into equation (6i) yiclds

$$
\begin{equation*}
\frac{\sigma_{k, 1}}{\sigma_{k}}=\frac{\omega_{0}}{\left(1-(i)^{1 / 2}\right.}\left\{\frac{1-\beta}{3}-\frac{(1+i)^{2}(1-j)}{1}\right\}^{1 / 2} . \tag{6i}
\end{equation*}
$$

Furthermore, substituting equation (67) into equation (6i) yields

$$
\begin{equation*}
\frac{2 \pi M}{u_{0}}=\left\{\frac{2 \pi}{1-i}\left[\frac{1-i^{3}}{3}-\frac{(1+1)^{2}(1-i)}{1}\right]\right\}^{\prime}: e^{-i^{2} / 2 \sigma_{0}^{2}} . \tag{is}
\end{equation*}
$$

 process is photed in figure 5 as a liunction of $A \mathrm{o}_{\mathrm{p}}$ for various values of raming from 0. 90 to 0.099.

The values of ,i indieated in Fipure 5 were selected such that the excedance curve of the envelope process remains below the excediance curve
 indie:ated in Figures 2 and 5 , respectively. This reguirement resalts from the fact that the eaceodance rate of the envelope process should be less than the
 The fact that the theory prediets exceedane rates of the envelope process which are greater than the excedance rates of the actual process is a result of the fact that equation (6.1) is strictly vadid only in the limit p-- 1 (i.c., mono-

Figure s. Nondimensional eppeted rate $:=\mathrm{Ma}_{g}$ "o wt the envelope $A(t)$ of the \& jitter proeess exconding level is "f with positive slope for $g>0$ and negative slope for x < 0 . The expected rate of the envelope procoss excedine level a of with pesitive or negative shome is EM_{g}. The dashed it nes correspond to the condition $A \sigma_{E}>A \cdot \sigma_{H}$, cquation (69). 1

$$
\begin{equation*}
\frac{A^{1}}{\sigma_{k}}=\left\{\operatorname{ar}\left[\frac{1}{5}-\frac{(1+i)^{2}(1-i 4}{4(1-i)^{3}}\right]\right\}^{-\frac{1}{2}} \tag{69}
\end{equation*}
$$

and is that value of $A{ }_{k}$ such that $M_{K} N_{g}=1$. We shall assume that $A^{\prime}=$ $A^{+} 10$. The Table contains a listing of the quantity $A^{+}{ }_{j}$ for various values of s. 1 The dashed lines shown in Figure or indicate those portions of the curves for which $A / \sigma_{X}>A^{\prime} \sigma_{X}$.

TABLE. THE QUANTITY A ${ }^{+} / \sigma_{\mathrm{g}}$ FOR VARIOUS VALUES OF β

β	A^{+} / σ_{g}
0	0.798
0.1	0.934
0.2	1.111
0.3	1.344
0.4	1.661
0.5	2.111
0.6	2.793
0.7	3.936
0.8	6.232
0.9	13.135
0.95	26.95
0.99	137.5
0.999	15544.4

D. Risk of Body Force Envelope Exceeding a Critical Value

The risk R that the envelope of the g process will exceed level A_{c} from below for $g>0$ or level $-\Lambda_{c}$ from above for $g<0$ at least once during the orbital experiment time T is now given by

$$
\begin{equation*}
R=1-c^{-M_{g} T} \tag{70}
\end{equation*}
$$

where we have set $\lambda-2 M_{g}$. Elimination of the g jitter envelope exceedance rate between equations (65) and (68) yiclds

$$
\begin{equation*}
-\ln (1-R)=\omega_{0} T \frac{A_{c}}{\sigma_{g}}\left(\frac{2}{\pi}\right)^{1 / 2}\left\{\frac{1-\beta^{3}}{3(1-\beta)}-\frac{(1+\beta)^{2}}{4}\right\}^{1 / 2} e^{-\lambda_{c}^{2 / 2 \sigma_{g}^{2}}} \tag{71}
\end{equation*}
$$

where we have substituted for $\sigma_{\mathrm{g}, 1} / \sigma_{\mathrm{g}}$ with equation (67). Figures 6 through 10 contain plots of A_{c} / σ_{g} as a function of $\omega_{0} T$ for various values of R and β ranging from 0.90 to 0.999 . Again, the strong dependence of the statistics of the envelope process on β is reflected lit the efigures. It should be noted that because of the restrictions on the value of A for which the envelope exceedance analysis is valid, the parameter β was restricted to values in the interval $0.90<f<1$ for the construction of Figures 6 through 10 .

Figure 6. The quantity \hat{A}_{c} / σ_{g} as a function of $\omega_{o} T$ and R for $\beta=0.90$.

Figure 7. The quantity A_{c} / σ_{g} as a function of $\omega_{o} T$ and R for $\beta=0.95$.

Figure 8. The quantity $\mathrm{A}_{\mathbf{c}} / \sigma_{\mathrm{g}}$ as a function of $\omega_{\mathrm{o}} \mathrm{T}$ and R for $\beta=0.99$.

Figure 9. The quantity $\mathrm{A}_{\mathrm{c}} / \sigma_{\mathrm{g}}$ as a function of $\omega_{\mathrm{o}} \mathrm{T}$ and R for $\beta=0.995$.

Figure 10. The quantity A_{c} / σ_{g} as a function of $\omega_{o} T$ and R for $\beta=0.999$.

IV. SPACECRAFT ROTATION RATE EXCEEDANCE STATISTICS

In this section we determine the exceedance statistics of each component of the $\vec{\Omega}$ process referenced to the principal axes of the spacecraft, i.e., the (x, y, z) frame discussed in paragraph II.C.3. Our analysis will be concerned with a single component of $\vec{\Omega}$; consequently, we will dispense with subscripts on $\underline{\Omega}$ to denote components. We will use the symbol Ω to denote a component of $\vec{\Omega}$ and σ_{Ω} to denote the standard deviation of Ω. The developments in the subsequent sections are similar to those in the previous sections for the g process. However, the exceedance statistics of the envelope of the Ω process are not included because the available theory in the literature is valid only for random processes characterized by autospectral density functions which are symmetric about frequency ω_{m} on the half-interval $0<\omega \leq \infty$; i.e., $\phi\left(\omega-\omega_{m}\right)=\phi\left(\omega+\omega_{m}\right)$. The Ω process herein does not satisfy this condition.

A. Expected Exceedance Rate of Rotation Rate

The expected number of exceedances of vehicle rotation rate per unit time which exceed level Ω is given by

$$
\begin{equation*}
N_{\Omega}=N_{\Omega, 0} e^{-\Omega^{2} / 2 \sigma_{\Omega}^{2}} \tag{72}
\end{equation*}
$$

The zero-crossing rate N_{Ω} is given by

$$
\begin{equation*}
N_{\Omega, 0}=\frac{1}{2 \pi}\left[\frac{\int_{-\infty}^{\infty} \omega^{2} \phi_{\Omega}(\omega) \mathrm{d} \omega}{\sigma_{\Omega}^{2}}\right]^{1 / 2}=\frac{\omega_{0}}{2 \pi} \beta^{1 / 2}, \tag{73}
\end{equation*}
$$

where we have substituted equation (16) into the integral to obtain the result indicated on the right side of equation (73). The result indicated corresponds to the geometric mean frequency $\left(\omega_{0} \omega_{1}\right)^{1 / 2}$ with units of radians per second.

The ratios of the zero-crossing rates of Ω, T, and g are given by

$$
\begin{align*}
& \frac{\mathrm{N}_{\Omega, 0}}{\mathrm{~N}_{\mathrm{T}, 0}}=\frac{\mathrm{N}_{\Omega, 0}}{\mathrm{~N}_{\mathrm{g}, 0}}=\left[\frac{3(1-\beta) \beta}{1-\beta}\right]^{1 / 2} . \tag{74}\\
& \frac{\mathrm{N}_{\mathrm{T}, 0}}{\mathrm{~N}_{\mathrm{g}, 0}}=1 \tag{75}
\end{align*}
$$

Figure 11 provides a plot of $N_{\Omega, 0} / N_{g, 0}$ as a function of β according to equation (74) which shows that $N_{\Omega, 0}<N_{g, 0}$ for all relevant values of β. The reason for this result can be traced to the fact that $g(t)$ is characterized by a flat spectrum over the domain $\omega_{1}<\omega \leq \omega_{0}$, while the spectrum of $\Omega(t)$ decreases as ω^{-2} over the same frequency domain. This means that as $|\omega|$

Figure 11. The ratio of the zero-crossing rate of $\Omega(t)$ to the zero-crossing rate of $g(t)$ as a function of the bandwidth parameter β.
increases from ω_{1} to ω_{0} the Fourier components of the g process will provide increasingly larger contributions to the zero-crossing rate of $g(t)$, while the corresponding contribution to the zero-crossing rate of $\Omega(t)$ from each Fourier component of the Ω process will be the same over the bandwidth d ω for any frequency in the interval $\omega_{1}<|\omega| \leq \omega_{0}$.

Combining equations (72) and (73) yields the nondimensional exceedance rate

$$
\begin{equation*}
\frac{2 \pi \mathbf{N}_{\Omega}}{\omega_{0}}=\beta^{1 / 2} e^{-\Omega^{2} / 2 \sigma_{\Omega}^{2}} \tag{76}
\end{equation*}
$$

Figure 12 contains a plot of $2 \pi \mathrm{~N}_{\Omega} / \omega_{o}$ as a function of Ω / σ_{Ω} for $\beta=0.01$ and 1 .

Figure 12. Nondimensional expected rate $2 \pi N_{\Omega} /_{0}^{\prime}$ of exceeding the noudimensional level $|\Omega|_{c}$ with positive slope for $\Omega>0$ or negative slope for $\Omega<0$. (The expected rate of exceeding
level $|\Omega|_{c} / \sigma_{\Omega 2}$ with positive or negative slope is ${ }^{2} \mathrm{~N}_{\Omega 2}$.)

B. Risk of Rotation Rate Exceeding a Critical Value

Following the developments in Paragraph III. 1 , we seck to determine the risk that the $|\Omega|$ process will exceed a criticil value $|\Omega|$ for a given orbital experiment duration time T. We hypothesize that the number of exceedances of $|\Omega|$ above level $|\Omega|_{c}$ fiom below is a Poisson process. Thus, the risk R that the $|\Omega|$ process will exceed the critical value $|\Omega|_{c}$ at least once during an experiment of duration time T is

$$
\begin{equation*}
R=1-e^{-2 N_{\Omega} T} \tag{77}
\end{equation*}
$$

Eliminating the expected exceedance rate $N_{S 2}$ between equations (76) and (77) yields

$$
\begin{equation*}
\frac{|\Omega|_{c}}{\sigma_{\Omega}}=\left[-2 \ln \left[-\frac{\pi}{\omega_{0} T_{\beta} \beta^{\prime / 2}} \ln (1-R)\right]\right]^{1 / 2} \tag{75}
\end{equation*}
$$

This formula permits the calculation of a critical rotation rate $|\Omega| c \mid a n d$ anc tion of risk 12 of the quantity $|s|$ excerding level |s if at least once during an experiment of churation time T and the Ω process spectral density parameters
 for various values of risk for $\beta=0.01$ and 0.999 , respectively.

v. CONCLUDING COMMENTS

The previous sections provide a simple stochastic mokel of spacecraft rotation and induced gravity. To develop the model, it was assumed that the components of the net applied torque voctor are stochastically independent Gaussian processes. Vididation of this model must await the results of statisticad amalyses of accolerometer and rate gyro data acquired from past

Figure 13. The quantity $|\Omega|_{\mathbf{c}} / \sigma_{\Omega}$ as a function of $\omega_{0} T$ and R for $\beta=0.01$.

spaceflight missions. The authors of this report are currently analyzing thruster rate gyro and accelerometer dai a acquired on the Apolln-Soyuz mission. However. in the interim time period the proposed model can be used in orbital experiment definition studies. If it is found that the components of induced gravity and vehicle rotation are non-Gaussian processes, then the calculation of risk values associated with assigned critical values of vehicle rotation and induced gravity could prove to be an extremely complex task for future spaceflight missions.

To apply the model to obtain estimates of rotation rate and induced gravity spectra and risk values associated with exceeding critical values of rotation rate and induced gravity, estimates of $\beta, \omega_{0}, \sigma_{g}$, and σ_{Ω} are required. A range of values for each parameter should be used to obtain a "feel" for the effects of \vec{g} and $\vec{\Omega}$ on an experiment. It should be remembered that the stindard devia tions of the components of the rotation and induced gravity vectors are related. In fact, the standard deviations and cross-variances of the componeats of \vec{g} are derivable from the standard deviations of the components of $\vec{\Omega}$ via equations (18) and (28) through (34) upon specification of the vehicle principal moments of inertia and experiment location relative to the vehicle center of mass.

It should also be remembered thit the model described is valid for a particular imposed torque process; 1.c., the values of β, ω_{0}, and the standard deviations take on fixed values. However, these quantities can vary in time during a mission. To obtain excecdance statistics of g and Ω and associated risks of exceeding critical values of Ω and g for this cinse, lue joint probability density functions $p_{1}\left(\beta, \omega_{0},{ }^{0} \Omega\right)$ and $p_{2}\left(\beta, \omega_{o}, \sigma_{g}\right)$ for the mission are required. Considering the relationships between the standard deviations of the components $\vec{\Omega}$ and $\overrightarrow{\mathrm{r}}$. these aunctions should be derivable from one another. The expected exceedance ates of Ω and g for a total mission can be obtained from the following interrals:

$$
\begin{align*}
& N_{m}(g)=\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} N\left(g ; \beta, \omega_{0}, \sigma_{g}\right) p_{1}\left(\beta, \omega_{0}, \sigma_{g}\right) d / ; d \omega_{0} d \sigma_{g} . \tag{79}\\
& N_{m}(\Omega)=\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} N\left(\Omega ; \beta, \omega_{0}, \sigma_{\Omega}\right) p_{2}\left(\beta, \omega_{0}, \sigma_{\Omega}\right) d \beta d \omega_{0} d \Omega . \tag{80}
\end{align*}
$$

 (50) and (72). The calculation of risks of exceeding critical values of g and Ω can be performed by invoking the Poisson model used in the previous sections. A similar analysis can be applied to the expected exceedance rate of the envelope of the g process. In this model for the exceedince rates of g and Ω, the torque vector process is assumed to be piecewise statistically stationary in time.
*

$9+\cdots$

REFERENCES

1. Murrish, C. H. and Smith, (. W.: Apollo Applications Program Crow Motion Eaperiment Program Definition and Design Development. N.IS, ClR-66599, 1968.
2. Conwity, Bruce A. and Hendricks, T. C.: A Summary of the Skvab Creu/Vehicle Disturbances Eaperiment T-013. NASA TN D-812s, 1976.
3. Goldstein, H.: Classical Mechanics. Addison Wesley Publishing Company, Inc., Reading, Massachusetts, 1959.
4. Batchelor, G. K.: The Theory of Homogeneous Turiulence. Cambridge Press, L.ondon, 1960.
5. Hald, A.: Statistical Theory with Engineering Applications. John Wiley and Sons, Jnc., Now York, 1952.
6. Rice, S. O.: Mathemrical Analysis of Random Noise. Bell System Technical Journal, vol. 24, 194, pp. 282-332.
7. Mathematical Analysis of laandom Noise. Bell System Technical Journal, vol. 24, 1945, pp. 46-156.
8. Lin, Y. K.: Probabilistic Theory of Structural Dynmics. Meciraw-hill Book Company, New Yorl, 1967.

APPROVAL

SIMPLIFIED MODEL OF STATISTICALLY STATIONARY SPACECRAFT ROTATION AND ASSOCIATED INDUCED GRAVITY ENV IRONMENTS

By George H. Fichtl and Robert L. Holland

The information in this report has been reviewed for security classification. Review of any information concerning Department of Defense or nuclear energy activities or programs has been made by the MSFC Security Classification officer. This report, in its entirety, has been determined to be unclassified.

Chief, Atmospheric Sciences Division

CHARIES A. IUNDQUIST
Director, Space sciences Laboratory

[^0]: 1. Lewis, R., Private Communication, 1978.
