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SIMPLIFIED MODEL OF STATISTICALLY STATIONARY
SPACECRAFT ROTATION AND ASSOCIATED
INDUCED GRAVITY ENVIRONMENTS

|. INTRODUCTION

Space vehicle rotations resulting from crew activity, thruster firings,
etc., and the associated induced g environments appear to be stochastic in
character. Accordingly, to define an experiment to be performed aboard a
space vehicle which is sensitive to vehicle rotations and the associated induced
g environments, it would appear that statistical information concerning the risk
of exceedance of critical rotation rates and g levels would be extremely useful,
Clearly, the statistics of space vehicle motions and associated induced g environ-
ments depend on the vehicle mass and geometry properties, the dynamic
behavior of the crew (push-off, sncezing, etc.), the control system parameters,
the mission profile, etc. Estimates of these statistics can be obtained from
Monte Carlo simulation of the vehicle/forcing function system or from postflight
analysis of g environment time histories acquired from onboard instrumentation
(accelerometers, rate gyros) or look angle data. However, estimates of
statistics of space vehicle motions and the associated induced g levels do not
appear to be available at this time for the currently planned Space Transportation
System (STS) missions with payloads involving g sensitive experiments (for
example, those on Spacelab missions 1 and 3) other than estimates of typical
and worst case rotations and associated g levels resulting from various kinds of
discrete vehicle excitations,! Furthermore, statistical summaries of vehicle
rotation and associated g environments measured on previous space flight
missions do not appear available., However, a number of excellent reports are
available on the effects of crew motion on spacecraft attitude. Reference 1
documents the results of detailed simulations of the effects of crew motion on
Apollo vehicle attitude, and Reference 2 provides the results of crew motion
experiments conducted during the Skylab Program. This report attempts to
provide estimates of exceedance statistics of vehicle rotations and associated
g environments resulting from space vehicle motions.

1. Lewis, R., Private Communication, 1978,
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The approach taken involves the use of basic assumptions concerning the
statistics of the torque imposed on a spacecraft resulting from crew activity and
thruster firings, i.e., that the imposed components of torque constitute a
Gaussian process wherein the associated spectrum of torque in the frequency
domain is that associated with a band-limited noise process with constant,

. nonzero spectral density over the frequency bandwidth of the process and zero
3 spectral density for frequencies outside the bandwidth, The rigid-body equa-
e tions of motion are used to derive the statistics of the spacecraft rotations.
Finally, the statistics of the associated g environments are derived from the
vehicle rotation statistics by applying transformation formulac between inertial
- and rotating frames. The mathematical machinery of Rice's theory of exceed-

& ances is used to obtain estimates of expected temporal rates of exceeding i
’ 5 specified critical spacecraft rotation rates and associated g levels. Further- :
more, by assuming that the number of exceedances of rotation rate and induced

gravity during an orbital experiment with duration time T are Poisson processes, i
# estimates of the risk associated with exceeding specified critical rotation rate ‘

% and induced gravity levels at least once during an experiment are obtained. It
should be remembered that the calculations presented are speculative in nature
’ and must await statistical analyses of results from Monte Carlo simulations
WA and‘or of space vehicle acceleration data acquired from previous orbital

T missions, However, it is belicved that the calculations presented are interesting
! and thought provoking and may be useful to scientists and technologists who are
developing space flight experiments which are sensitive to space vehicle
accelerations,

{1. SPACECRAFT MOTION DESCRIPTION

1.ct us consider a body-fixed frame of reference located at the spacecraft
center of mass, This orthogonal frame of reference is fixed to the spacecraft
with the x, v, and z axes directed along the principal axes of the spacecraft,
1.ct us now consider a fluid container with center of mass located at position

veetor ?f with components Npr Vg and 2 relative to the spacceeraft center of

mass. Furthermore, assume the container is rigidly attached to the vehicle,
If the vehicle undergoes rotation, then a fluid particle located at position ?o

with respect to the spacecraft conter of mass with components X yo, and zo

will experience a foree per unit mass in response to the vehicle motion in ques-
tion which is given by




=

- f}x?f+5x(?fx-r}) -2@x u(rt) +w (1)

where a is the inertial lincar acceleration of the vehicle instantaneous center
of mass resulting from a net force acting on the vehicle, 1 is the rotation vector
of the vehicle with components Q, Qy. and n directed along the principal

axes of the spacecraft and (Q) denotes differentiation with respect to time [3].
The vector qu-mtity u (rf »t) is the velocity vector of the fluid particle with

position vector rt. relative to a frame of reference with coordinates x', y', and

2' located at the fluid container center of mass and is fixed relative to the fluid
container walls so that

T, = T 4T . (2)

Figure 1 depicts the various frames of reference and the position vectors ;;,
;; , and .i‘}' . If the spatial extent of the fluid mass is small compared to the

distance between the centers of mass of the spacecraft and the fluld container
(t.e., Ir | << lr |)» equation (1) may be written as

® FLUID CONTAINER
CENTER OF MASS

Y

SPACECRAFT CENTER OF MASS

X

Figure 1. Principal axis and fluid container reference frames.
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The first three terms on the right side of equation (3) can be treated as a time-
dependent gravitational body force per unit mass, The third term is a Coriolis
force, Our analysis will be concerned with statistical definition of the gravita-
tional-like body force terms in equation (3) (excluding the lincar acceleration
term)

4

—

A(t) = QN s (2N (1)

and the angular veloeity veetor 3; It should be noted that if the fluid container

is rotating (in addition to any rotations that may be imparted by the spaceeraft),

then precessional fluid flow analysis may be required, thus invalidating cqua-

tions (3) and (1). This case is not treated in this report, .

The analysis of the statistios of g (1) with the linear acecleration term
included inereases the complexity of the analvsis,  The more general case in
which induced gravity results from both rotational and Hinear accecelerations will
he analyzed in a subsequent report,

The approsimation e r, is eatremely important because this approsi-
mation means that the greavitational body foree which acts on a fluid particle due
to spacecraft rotations can be specified a priovi in the sense that g to a
sufficient degree of approximation is independoent of the fluid flow dependent

-
o

voiables, It "\‘.f samot be approvimated with v, then @ eamnot be specitied
Q
g Y » . . I3
@ plor” heeause vy is a fiuid particle Lagrangian position veetor which must

then be determined as part of the fluid mechanics problem in question,

A. Spacecraft Equations

To develop the connection between the dynamics of the spacecraft and the
veetor quantitios g and Q . the rigid-body cquations of motions for the space-
craft referenced to the principal axes are used, These equations, in vector
notation, are given by




Tod =Te(@ -Dxg (5)

where T is the net torque that acts on the spacecraft and T 1is the moment of
inertia tensor with diagonal values l < Iy. and I and zeroes for the off-diagonal

- values [1].
L2 |

B. Linearized Equations

The torque T results from rocket thruster firings and crew activity,
Some of the forces associated with crew activity (e.g., push-offs, bending,
instrument operation, ctc.) have been quantified during Skylab missions and
are documented in Reference 2, It appears that crew activity results in vehicle
rotation with time scales on the order of seconds to a few tens of seconds. In our
analysis, we shall be concerned with rocket thruster firing inputs required to
keep a vehicle in a certain attitude in response to vehicle motions resulting
from crew motions. These rocket firings produce relatively short period vari-
ability in ®  and hence in E. Rocket firings associated with major changes in
vehicle attitude will not be included in our analysis. Therefore, the terms
involving products of rotation rates in equations (4) and (5) may be neglected
relative to the terms involving derivatives of rotation rates. It will be assumed
that this is permissible and the following equations for T and g will be used
in the subsequent analysis:

551

.o =7, (6)

gﬂ E = ;;" r . (7)

The validity of the decision to neglect the second-order terms involving Q to
obtain these equaticns should be examined for each situation. The lincarization
process uscd to obtain equation (6) does not include the possible dependence of
T upon a control law and, in turn, a dependence of the control law upon Q.

We shall bypass this issue by assuming that the statistics of T are known so
that a statistical model of T¥ and g can be developed via a rotational approach
with equations (6) and (7).




¥ ¥
- R I S JUR OO QA i
e al e b i >

The use of equation (5) as a model to represent the combined effects of
crew motion and rocket thrusters on spacecraft attitude is presumptuous. A
model which includes crew motion exactly would be extreimmely comples because
equations of motion for the vehicle and the crew members would be required.
These cquations would include the effects of crew members attaching and
detaching from the vehicle; vehicle crew member push-offs, sneczing, etc.,
stochastic location of the crew members in time; and a host of other effects.,
An cquation such as equation (5) would result from an analysis whern @ would
be the rotation rate of the vehicle about the vehicle center of mass (without crew),
1 would be the moment of inertia tensor of the vehicle (without crew), and T would
contain the crew member/spacecraft coupling terms and the torques imparted by
the rocket thrusters. Equation (5) together with additional equations governing
the crew would then require simultancous solution for the dynamic dependent
ariables of the crew and spaceceraft. Thus, cquation (5) should be viewed as
an extremely simplified model of a complex system. However, it should be
noted that equation (5) is exact for the problem of calculating the responsc
statistics of spacceraft motions resulting from stochastically imposed
I torques for a constant moment of inertia vehicle,

- It can be shown for spacecraft such as the Space Shuttle Orbiter with
Spacelab as a payload that to neglect the terms in equations (1) and (5) which
are sccond order in 5, we must require the lowest characteristice requency
@y of the random process 0 to be very large compared to any component of

e b

Q si.cay

W [CAN O
5 { \'( 1 \[. ] \)
—— e e— .. .
. SR O S Y. * {
: N y A

Typically, @ , Q v’ Q L 1,01 rad see™ for Spacelab missions 1 and 3 3],
N SN

Furthermore, crew activity and rocket thruster firings produce vehicle rotations
with time scales on the ovder of seconds to tens of seconds or, rather, fre-
quencies « > 0,1 rad see”t, sothat «, = 0.1 rad see” ' and @, Q = 10,

~ f 7Ny, 2
If we accept 10 as being large compared to unity, then equation (8) appears to
be satisfied for the application intended in this report,

[
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C. Stochastic Models

In this section we develop a stochastic model for H and E based on
cquations (6) and (7) and as assumed stochastic model for T,

1. Torgue Stochastic Model. We hypothesize that the components of the
torque vector are mutually uncorrelated, statistically stationary Gaussian
processes which have zero mean values and spectral density functions given by

(72
T\,T\
) (W) » 777/ vy w, el s
'l‘ L) : oy - N
x' I'x (uo UL1) !
, (9)
\ “ “ - y - N - v -~ iy R
o-r\.vl\‘ (u') L] ~ Iul u-l 9 (W) ‘A() !u’ <@

with similar equations assumed for 'l‘y and Tz' The quantity « is radian

frequency (Paragraph 11,C, 2), Or p is the standard deviation of T‘ , and
N oOX ’
; e upper and lower bound frequencies, respectively. The spectrum
in cquation (9) and all those that follow in the subsequent development are
defined such that intepration over the domain =» <@ < yields the auto- or
cross-variance., The assumption that the comporents of the torque vector are
uncorrelated appears to be reasonable for the crew activity contribution to
torque. However, this assumption may not be true for the thruster firing
contribution to the torque vector. Nevertheless, this assumption is used in the

« and @
0

analysis which follows,

2, Rotation Vector Stochastic Process. We express € and T interms

-~

of Fourier-steltjes integrals |4}

T i t A
() = [ e d(w) (10)

=D

-1




b e A i

k]
i e

el |
;i ‘3 ; ! J——_J ' R - e A A IO T
o]
— Cjet DN
T(t) = ’ e dT(w) ’ (11)

where t is time and d7 «) denotes stochastic Fourier amplitude at frequency
« of the random process E{t) . Substituting equations (10) and (11) into
cquation (6) yields the Fourier amplitudes of the @ process. For the s
component, we have

dl\(u‘)

\
d&l.\(cc) _]“] ’ ( 1:‘)
N

with similar equations for the vy and z component rigid-body cquations  Multi-
plying cquation ( 12) by its comples conjugate evaluated at {requeney o' and
applying the ensemble average operator over all realizations of the \7,—1.)
process vields

*

A A <"i\‘\(“.) (l'i‘\’ (\'L. ')>
* K .. : “ 3
é*’x(“) 4R (e > — . (13)

where the asterish denotes comples conjugation and the angular brackets denote
the ensemble average operator,  The reguirement of statistical orthogonality oi
Fourier components or statistical stationarity of i random process in the time
domain demuands that

8] \ H(u.') ke it o'
Q;\(u‘) (“.;‘(u‘ '> ( 1 l\)
0 if S u" .

where o
to

\ B(u‘) is u speetral density function [ 1. Thus, cquation (11) reduces
“vy

s
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op q (@)
x' X
*q ,q (@) = 7T : (15)
xx X
Combining equations (9) and (15) yields

ol

T T
¢ (w) = mp——o ¥ , w, <|wl =w
Q9 al (wo -wl) w 1 o
(16)
%\'ﬂh(w) =0 , 0<|wl sw, or w < lwl .

This result states that %0 0 (w) « w™? over the frequency domain in which
x'x

¢r T (w) takes on nonzero values. Equations similar to equation (16) can be
?*
X X

written for @ and Q .
y z

If it is assumed that the components of the torque vector are uncorrelated,
it follows that the cross-spectral density functions of the components of
vanish so that

¢ Q'(w)=<1>

Q_, (W) =g g (@ =0 =2<w<e.(17)
Ay z

2.9, ¥

Statistical stationarity demands that the ensemble mean @ > be equal to
a constant vector Uo . Thus (&'{): 0, which means ( 'F)= 0 as hypothesized

ab tnitto, For definiteness we shall set _Sfo =0,

Integrating cquation (16) over the domain =® < w <@ yieids the
variance of szx; f.0.,
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ToT,
R v ars (1%)
Q. Teip
N X X O

where g3 = w]fwo « Similar cquations can be obtained for the remaining

components of @ .

In view of the lincar relationship between @ and T as capressed by
equation (6) and the asswaed Gaussian nature of the torque process, it follows
that @ is a Gaussian vector process,  The previously mentioned data concerning
the moments of the @ process provide  sufficient information to determine any
desired probability density function of the components of ¢ and henee to cal-
culate any desired statistic of the process,

3. Body Foree Vector Stochastic Process,  ‘The Fourier-Steltjes sto-
chastic decomposition of ¥(t) is eapressed mathematically as

D

e . iu‘t '3’
T B IS ™ () B (19)

-}

Substituting equations (10) and (19) into cquation (7) yields

A -
de(e) - do N . {(20)

(¢]

Application of the ensemble average operator to equation (20) (noting that
A

<&;> 0 and henee <\f,2> 0) yickds <‘}.‘;iu‘> 0 and henee <:-£it)> 0,

Thu;\, the ensemble mean body foree is zero in this model,

Following the procedure outlined in Paragraph 11,002, the following
speetral density functions are obtained:

a9
.- V"

7 w) U o g
To o W avia )| (1)
Yy ‘

10



¢, (@)~ e w) =y e (@) (24)
yo X gxﬂ\y 00 ﬂz Qz
¢ (w) = o (w) = =x_z oo («) (25)
gzvﬁx B oK, 0 o ﬂy’ﬂy
L () B ) B e I («) . (26)
kz‘Ly g’yﬂ!z QO O Slxbs]x
Substituting the rotation rate spectral donsity functions into equations (21)
through (26) yields
b3
[0
P\\: "\
hY \ e U S \ 'y y - Y
¥ \ ‘ogx(u) 2(“\0 - L ) ' ul h l“' - u(\
' (27)
Qg " ‘(u.‘) = 9, 0< el ~ (.l‘l or (L‘o < lwl
NEN
with similar cquations for Ky and K, and
I 242
"o "'ry T, Yo o1 .
A L ' (28)
x*Px y z

u
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Recause of the linear relationship between g oand Q [as eypressed by
caquation (7)] and because 2 s o Gaussian process, it follows that w s a

Gaussian veetor process, The previously mentioned data concerninge the




s 24

1-.oments of the g process provide sufficient information to determing any
iesired probability density function of the components of g and hence to calcu-
late any desired statistic of the g process.

Since the E process is Gaussian, there exists an orthogonal transforma-~
ti.n of the spacecraft principal axis reference frame (x,y,z) to a new frame of
r« ference (X, Y,Z) such that the cross correlations of the components of g
i~ the (X, Y,2) frame vanish [5]. The components of g referenced to the
(»,Y,Z) frame are stochastically independent Gaussian processes. The trans-
formation of the E process referenced in the (x,y,2) frame [i.e., _g.(t;x,y.z)]
to the (X, Y,Z) frame [i.e., g(t:X,Y,Z)] is given by

E(t;X,Y,Z) = K.-g.(t;x’}"z) ’ (35)

where A isa3 by 3 tensor with components that are functions of the auto- and
cross-covariances of the g process referenced to the (x,y,z) frame, i.e.,
equations (28), (29), (30), (32), (33), and (34). The components of A can
be determined by a relatively straightforward application of a three-way Euler
angle transfor: ..tion [3] subject to the constraint that

ol = ¢? = g2 =0 . (36)
&’gY gz’gx gz'gY

Upon determinatiou of the components of A, the spectral density functions of

g (t;X,Y,Z) can cc obtained by Fourier transfm mation of equation (35) and
formatxon of "1e appropriate square modulii, Thus, for example, Fourier trans-
formation . 8, yields

d&x N Axxdgx(w) * Axyd&y(w) ¥ szdgz(w) ) (37)

Multiplying equation (37) by its complex conjugate at frequency w' and applying
the coirdition of statistical orthogonality [equation (14) ] yields
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NN ONZ g L,B NV OB LR
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+ 2/ A O W)t \: 4y
ay'xz n\,.n_,( ) AR

)

\l‘)
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Thus, the spectral density function of E(t;.\. Y,7) can be ealeulated divecetly
from the speetral density functions of g (tix,y,2). The cross=spectral density
functions of g (46X, Y, 2) vanish identically, 'The main point that we want to

mahe is that there exists a coordinate system such that the components of

-
Ay

™

in that frame of reference are stochastieally independent and that the statisties
of g(tiN,Y,Z) are derivable from the statisties of g (tin, v, 2).

The spectral density functions of E(t;.\'.\'.'/.) are of the form

ol
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o () - NN @, < Ll
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Similar expressions can be obtained for the Y and 7 components of g,
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4. Cross Correlations of the Rotation and Body Force Vector Processes,

The fact that g is derived from @ implies a correlation between the g pro-
cess with the IT process, The following cross=spectral density functions can be
calculated from equation (20):

vy = v = ) . 4
o () = g (@) (41)
% a0 (@) =g (@) 0 (42)
y y Yy

o o (w) =e. (@) 0. (43)
ﬂzgﬂz SIZ."‘Z

sagx.ﬂy(w) = v»s;y_gx(w) - ez ony’gy(w) . ()

s”a‘..uz("“) ; ‘Ps;z.gx(“') ooy, ‘”szz.szz(“‘) ' (45)

.,sgy.ux(u') =‘- \hs;.\'gy(w) -iu"l.u % 0 (w) . (16)

\,sg 0 () .,ss; i () = iu‘xO \,\Q. 0 («) . (47)
y 2 2y Fa Z

»&gz'ux(w) «:S;\’gz(w) ey Oﬂx’“s(w) . (48)

%.Qy(w) css;y_gz(w) T ohen s*s!v’uy(w) . (1)




.

Equations (41) through (43) show that parallel components of dﬂ and d?;' are
uncorrelated, so that parallel components of g and Q are uncorrelated, The
cross-spectral densign functions of the mutually orthogonal components of E and
Q are complex according to equations (44)_through (49). This means the
mutually orthogonal components of g and Q are out of phase by +90 deg.

Thus, for example, the Fourier components of ﬂy lead those of £, by 90 deg,

Integrating equations (38) through (43) over the domain -® < w <o yjelds

ol = ¢? =0 (50)

and likewise for the remaining cross correlations between the mutually orthogonal
gpmponents of g and Q. These results show that g(t) is uncorrelated with
Q(t)! The g and Q processes are, however, correlated for finite nonzero
time delay 7. This can be shown by the Fourier transformation of equations (44)
through (49) to the 7 domain to obtain the cross~correlation function R(r)

between the mutually orthogonal components of g(t + 1) and Q (t). Thus, for
example,

a

1 iwT

R (r) - = e ¢ (w) dw
gx.ﬂy 2n o gx.ﬂy

z ot w T

1 o T.,T - % sin :

= _-2-7;1 (w = ) . - £ d¢ (51)

X o 1 w,T

where the sine integral is tabulated in standard references. Thus, for 20,

Rg Q (1) #0, with similar results for the remaining cross=-correlation func-
]

tions between the orthogonal components of g and Q.

16

s
.
i
>
X L
2
&
»
i}
i
.

AR RS

SR

o O

B e
PETIRIIET PR T

hAL T

LR

e e B S BT

YOO ST SR

- .

v

st <+ 5 wBtir s T

£ 2 e e e e g g € R =



111, BODY FORCE PROCESS EXCEEDANCE STATISTICS

In this section we determine the exceedance statistics of each component
of the g process referenced to the (X, Y,Z) frame discussed in Paragraph
I1.C. 3. Our analysis will be concerned with a single component of g; conse~
quently, we will dispense with subscripts on g to denote components, We will

use the symbol g to denote a component of § and o to denote the standard
deviationof g, &

A. Rice's Theorem and Expected Exceedance
kate of Body Force

According to Rice [6,7], Jor a stationary Gaussian process with zero
mean, the expected number of exceedances of induced gravity per unit ime
which exceed level g is given by

/20
R g

The quantity N o is the expected number of zero crossings of the quantity g
’

from below and is related to the spectral density function ¢ («) through the
following expression:

o ‘/2
[ 0'¢ (w) de
1 |- E
N e L) . (5})
g,0 2r Ué

Thus, the substitution of equation (39) into equation (52) yields for our assumed
stochastic g process

w Y
N . 2 _1_".@__ (54)
g£,0 2r \3(1-p) : )

PP T T, ET~ e e i ek e o B O T m————— - y
: ) y o " ' o S : . . R R P L M
e . B o oL, e et e - R
D Mot . . T e el PR
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where g=w 1/wo. The quantity g serves as a relative measure of the spectral

bandwidth of the g jitter process. For a relatively broad-banded process in
-1,
2 »

‘ which =0, 2n Ng o/wo =3 ‘%; and for a narrow process in which g-— 1, we
| ]

have 27N_ /w = 1. If the process were characterized by a monochromatic

4 <
1 £,0 0 . i
1 spectral density function, namely v

i :
3 §(w=-w)+0(w+w) :
H o o ¥
= a2 :
; olw) = o 5 : (55) .
4 .
1 Do
& where 0( ) is the Dirac delta function, then the zero-crossing rate would be [y
“:;i given by No = w0/21r as calculated for g = 1 with the g jitter spectral model .
“i given by equation (39). Thus, the model given by equation (39) includes broad- | ;
;j; banded and narrow=banded g jitter processes with the limiting case of mono- P
1 chromatic g jitter. :
& Substituting equation (54) into equation (52) yiclds o
25 ‘ d
¥y .
s Y 2 o
oy QN - P
" B PR .S B2y (56) »
“o 3 ) L

The nondimensional ¢xceedance rate 27rNg/ @ is plotted in Figure 2 as a func-~

tion of g/ o for =0 and p= 0,999, Thus, we conclude from Figure 2 that v
h .

for any given value of g/ ng the exceedance rate will vary by only a factor of

1.733 over the admissible range of ;. This means that for the model selected
the exceedance rate Ng of the ¢ process is only mildly dependent on the

parametler 3, The dependence of ‘Ngr on ;i occurs through the zero-crossing

ny
ratec N [equation (54) ] and, as previously noted, 3 % « 2aN  /w =1
2,0 G ( ) ’ 1 A ’ z,0 %o
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Figure 2. Nondimensionad expected rate 2aN Y/w of exceeding the -
g0 o
nondimensional level !glc "ug with positive slope for g > 0 or o
negative slope for g < 0, (The eapected rate of exceeding
level [gl ‘o with positive or negative slope is 2N )
C g

K

for the (W) range of variation of the parameter j3;i.e., 0 = 8= 1, Thus, for
example, if the g process has an upper-bound frequency of W, = 27 rad sec™,
-1

then we have for the expected zero~crossing rate 0,577 < N < ) see t,
i g £,0
~ »

5 It should be noted that the g process can exceed critical values of g
when g < 0 with negative slope; consequently, the rate at which the g process
‘ exceed . critical value is 2Ng.




B. Risk of Body Force Exceeding a Critical Value

We now seek to determine the risk that the g process will exceed a
critical value for a given orbital experiment duration time. Clearly, the larger
the duration time T of an experiment, the higher the risk a ceritical value of
gl (Iglc) will be exceeded, Ideally, we wish to know the probabilistic struc-

ture of the random time T when |g| c is exceeded, This problem is called the
"first passage'' problem,

As previously noted, we consider the case where g is a stationary process.
Furthermore, the g process is symmetrically distributed in the positive and
negative ranges, and the upper and lower bounds are also symmetrical. Thus,
the probability of exceeding a critical g level, Iglc, at any given instant is

{ \Ur - - = 9 ~ - . oy
Plig = gl t Uig: lglc}l Plg lglcl (57)

To estimate the risk associated with |g| = | glc for a given experiment dura-

tion time T, we shall make the arbitrary assumption that the exceedances of

4

i the |gi process above level Igflc arrive independently, We now denote by Q(T)
§ the number of excecdances of {g| at level Iglc over the experiment duration

3

4 time T, Clearly, the process Q(T) is a Poisson process, and the probability
g of Q(T) being less than or equal to an assigned value (for example, q) accord-
: ing to T.in [8], is given by

.

i

' D AT

: P(Q(T) < q,T) ==(-q!,:> ° ' (58)
]

where A is a parameter. The probability of no exceedance of the ¢ process
above the critical value Ig]c in time interval T follows by setting q= 0 in

cquation (58), so that

P(Q(T) = 0,T) = ¢ M, (59)

et e A e G

N AR
2 R L e L

PR

P S



e

= %;W ot

g,
s

By definition of the Poisson process we set

A= 2Ng - (60)
Thus,
2N T
P(Q(T)=0,T) = e B . (61)
Now, the risk R that the g process will exceed the critical value |g at least

once during an experiment of duration time T is

-2N T

Eliminating the expected exceedance rate N between equations (56) and (62)
vields

17

7
LY
-

\y L .
ke ), .,,{_ [3(1-@] ? xmgl-n)} . (63)

1~y Tw
o

This formula permits the calculation of critical g level (i.e., Iglc) as a func-
tion of risk R of the quantity [l exceeding level [g c at least once during

an experiment duration time T and the g environment spectral model parame-
ters g8 and W, . Figures 3 and 4 contain plots of |g] c/‘o as a function of
[

Two for various values of risk for 3:- 0 and 0,999, respectively.

It may be concluded from these figures that the variability in Igl due
to variation in wo'l‘ and/or g decreases as R decreases.
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C. Body Force Envelope Exceedance Rate

The most questionable aspect of the previous analysis is the arbitrary
assumption that the arrival of the threshold crossings of g above and below the
critical levels Iglc and -{gl c with positive and negative slopes, respectively,

are independent events. This assumption is especially unacceptable for narrow-
band g jitter bec: use the threshold crossings of narrow-banded g jitter will tend
to occur in clumps. Once there is a crossing of |g| over a threshold |g| < the

probability is high that the t>llowing excursion will produce another crossing.
However, we note that the crossing of the same threshold by the envelope of

the g process must precede the first crossing in each clump. Accordingly, when
there are many excursions in each clump, the time of a threshold crossing by
the envelope is nearly the same as the time of the first crossing in each clump.
Thus, although it is more accoptable to treat the threshold crossings of an
envelope of a narrow-banded random process as independent events, we can
improve the analysis in the previous section by using the expected rate of
threshold crossings of the envelope process for A in equation (59).

From Rice [6,7], we assume the narrow-banded g jitter process can be
expressed as

g(t) = A(t) cos (w_t+0(t)) . (64)

where W is a representative wide-band frequency of the g process and Alt)

and 0(t) are random processes which vary much more slowly than g(t) with
respect to t. The process A(t) is nonnegative. Since the spectral density
function of our assumed g jitter process is symmetric about the frequency

w = wo(l + f)/2 on the half interval 0 <w < @, it is clear that W= W

According to Rice, the random process A(t) is the envelope process of the
g process. Since the g process is Gaussian, it can be shown that the expected
exceedance rate or threshold crossing rate with positive slope of the envelope
of the g process at level A is given by

o -A?/20?
M = BA_ —51-1 - S L (65)
g

o
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e ot oL S0,

2 o (elew Do (o) de . .
“g‘.l ;L ( wm) qsg( ) d (66)

Substituting the g process spectral density function | equaiion (39) ] into equation
(66) yiclds

o w s

Bl 0 1 -0 e a-pe o
a '42 3 4 * (67)
4 (1= p)

Furthermore, substituting equation (67) into equation (61) vields

3 n '-\ -;\2/2"?
et ) ee [a- gepta-p]le . &
(J:" l - I; 3 I ¢

. (68)

The nondimensional eacecdance rate 2aM o of the envelope of the g jitter

process is plotted in Figure 5 as a function of A ‘o for various values ol ;2
.

ranging from 0,90 to 0,999,

The vidues of 3 indicated in Figure 5 were selected such that the

eaceedance curve of the envelope process remains belfow the exceedance curve
of the g jitter process (Fig, 2) for the range of values of g'o - and Ao
indicated in Figures 2 and 5, respectively.  This requirement results from the
fact that the exceedance rate of the envelope process should be Jess than the
oxcecdance rate of the aetual proeess at any prescribed level g oo Ao,
B

The tact that the theory predicts eaceedance rates of the envelope process which
are greater than the exceedimee rates of the actual process is a result of the
[act that cquation (61) is strietly valid only in the limit g -- 1 (i.c., mono=
chromatic g jitter). Fquatien (68) is valid only as an appronimation for ;3¢ 1

t ]
for A o - A" o, where AT A L The quantity A s defined as
B a
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Figure 5. Nondimensional eapected rate '.‘:rMR w of the envelope A(t) of the
13

g jitter process eaceading level A o with positive slope tor g > ¢ and
¢ g
negative slope for g < 0, [ The eapectad rate of the envelope process
exceeding level A o with positive or negative slope is IM .
N .

The dashed lines correspond to the condition
A o >A'o , equation (69).
P : g0 ] ( ) ]

A
! " \ 2
2 .;,.,Ll. -4 (]‘-31') (69)
“g R (1 -5 .

and is that value of A fn*g such that MK Ng = 1, We shall assume that A' =

+ + X R
A 10, The Table contains a listing of the quantity A 'ag for various values of

-

A

The dashed lines shown in Figure 5 indicate those portions of the curves for
which A .’ng S A 'ng.
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TABLE. THE QUANTITY A+/og FOR VARIOUS VALUES OF g

+
B A /(rg
0 0.798
o 0.1 0,934
. 0.2 1.111
3 0.3 1,344
0.4 1.661
s 0.5 2,111
~ 0.6 2,793
? 0.7 3.936
0.8 6.232
0.9 13,135
0.95 26,95
0,99 137.5
0.999 15544, 4

D. Kisk of Body Force Envelope Exceeding a Critical Value
The risk R that the envelope of the g process will exceed level Ac
from below for g > 0 or level -Ac from above for g < 0 at least once during

the orbital experiment time T is now given by

-M T
R=1-¢ F , (70)
et
41 where we have set A=~ 2Mq . Elimination of the g jitter ecnvelope exceedance
ol rate between cquations (65) and (68) yiclds

1,

1 /9 iy 2 9 2
-n(1 -R) = T .A_Q <§)/2 1-p3 (s 5)? . \c/ ag
"o £ T 3(1-p) 1

(71)
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where we have substituted for o 1/ o with equation (67). Figures 6 through
L]
10 contain plots of Ac/og as a function of on for various values of R and

ranging from 0,90 to 0,999, Agsin, the strong dependence of the statistics of
the envelope process on g is reflected ia tle se figures, It should be noted that
because of the restrictions on the value of A for which the envelope exceedance
analysis is valid, the parameter g was restricted to values in the interval
0.9 < £ <1 for the construction of Figurcs 6 through 10,

5L  gse09
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Figure 6. The quantity Ac/crg as a function of wOT and R for g= 0.90,
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IV. SPACECRAFT ROTATION RATE EXCEEDANCE STATISTICS

In this section we determine the exceedance statistics of each component
of the @ process referenced to the principal axes of the spacecraft, i.e., the
(x,y,2) frame discussed in_Paragraph II.C.3. Our analysis will be concerned
with a single component of Q ; consequently, we will dispense with subscripts on
Q_to denote components. We will use the symbol @ to denote a component of

Q and O’Q to denote the standard deviation of Q. The developments in the

subsequent sections are similar to those in the previous sections for the g
process. However, the exceedance statistics of the envelope of the Q process
are not included because the available theory in the literature is valid only for
random processes characterized by autospectral density functions which are
symmetric about frequency w on the half-interval 0 < w < ® ;i.e.,

o(w - wm) = ¢(w + wm). The Q process herein does not satisfy this condition,

A. Expected Exceedance Rate of Rotation Rate

The expected number of exceedances of vehicle rotation rate per unit
time which exceed level Q is given by

/202
_ Q
N. =N e . (72)

The zero-crossing rate NQ is given by

o "
2
f w ¢Q(w) dw ©
N = |2 - =2 5 (73)
Q,0 27 092 2r ’

where we have substituted equation (16) into the integral to obtain the result
indicated on the right side of cquation (73), The result indicated corresponds

1
to the geometric mean frequency (wo wl) % with units of radians per second.
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The ratios of the zero~crossing rates of Q , T, and g are given by

N N Y,
0 0 3(1 - 2

T,0 g,0

£,0

Figure 11 provides a plot of NQ O/Ng o 382 function of # according to equa-
’ 1

tion (74) which shows that N Q.0 < Ng o for all relevant values of 3. The
? ]

reason for this result can be traced to the fact that g(t) is characterized by
a flat spectrum over the domain w W S while the spectrum of Q(t)

decreases as w™¢ over the same frequency domain, This means that as |wl|

Figure 11. The ratio of the zero-crossing rate of Q(t) to the
zero-crossing rate of g(t) as a function of the
bandwidth parameter g3,
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increases from ., to w, the Fourier components of the g process will provide

1
increasingly larger contributions to the zero-crossing rate of g(t) , while the
corresponding contribution to the zero-crossing rate of Q(t) from each Fourier
component of the Q process will be the same over the bandwidth dw for any

frequency in the interval w, < fwl = W e

Combining equations (72) and (73) yiclds the nondimensional exceedance
rate

2 2
g, =R°/20
L. 13/"’ e @ (76)

Figure 12 contains a plot of 27N Q /wo as a function of Q/ %, for g= 0,01 and 1.

!
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Figure 12, Nondimensional expected rate ‘.erNQ /“‘o of exceeding
the nondimensional level |Q lc with positive slope for @ > 0
or negative slope for Q@ < 0, (The expected rate of exceeding
level |Q lc./ % with positive or negative slope is 2st ‘)
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B. Risk of Rotation Rate Exceeding a Critical Value

Following the developments in Paragraph III, B, we scck to determine
the risk that the |Q | process will exceed a critical value |Q lc for a given

orbital experiment duration time T. We hypothesize that the number of exceed-
ances of |1Q | above level [Q Ic from below is a Poisson process. Thus, the

risk R that the |Q | process will exceed the critical value [Q lc at least once
during an experiment of duration time T is

=2N_ T
R=1=-=¢ & . (77)

Eliminating the cxpected exceedance rate NQ between equations (76) and (77
yiclds

1,

Q| . :
- [ |y ma-w : (%)
Q wo'l‘p“

This formula permits the caleulation of a critical rotation rate |Q Ic as a func-
tion of risk R of the quantity {2 1 exceeding level [Q i‘_ at least once during an

experiment of duration time T and the @ process speetral density parameters
i and w . Figures 13 and 14 contain plots of |Q | 'ns, as a function of 'l‘wo

for various values of risk for ;- 0.01 and 0,999, respectively,

V. CONCLUDING COMMENTS

The previous sections provide a simple stochastic model of spacecraft
rotation and induced gravity., To develop the model, it was assumed that the
componcents of the net applied torque vector are stochastically independent
Gaussian processes, Vadidation of this model must await the results of
statisticad analyses of accelerometer and rate gyro data acquired from past
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spaceflight missions. The authors of this report are currently analyzing thruster
rate gyro and accelerometer dat : acquired on the Apollo-Soyuz mission, However,
in the interim time period the proposed model can be used in orbital experiment
definition studies. If it is found that the components of induced gravity and

vehicle rotation are non-Gaussian processes, then the calculation of risk values
associated with assigned critical values of vehicle rotation and induced gravity
could prove to be an =xtremely complex task for future spaceflight missions,

To apply the model to obtain estimates of rotation rate and induced gravity
spectra and risk values associated with exceeding critical values of rotation rate
and induced gravity, estimates of p, W ag. and "9 are required. A range of

values for each parameter should be used to obtain a "feel" for the effects of

g and Q on anexperiment, It should be remembered that the standard devia
tions of the components of the rotation and induced gravity vectors are rolated,
In fact, the standard deviations and cross-variances of the componeats of E

are derivable from the standard deviations of the components of Q@ via cquations
(18) and (28) through (34) upon specification of the vehicle principal moments
of inertia and experiment location relative to the vchicle center of mass,

It should also be remembered that the model described is valid for a
particular imposed torque process; i,c., the values of g, W and the standard

deviations take on fixed values, However, these quantitics can vary

in time during a mission., To obtain excecdance statistics of g and Q and associ-
ated risks of exceeding critical values of §& and g for this case, wwe )rint probability
density functions pi(ﬁ. wg? OS'Z) and pz(b‘. o "g) for the mission are required, Con-

sidering the relationships between the standard deviations of the components §? and E
these iunctions should be derivable from one another, The expected exceedance
~ates of Q@ and g for a total mission can be obtained from the following

ntegrals:

® o ]

Nu@ = [ S Of N(Rihw s o) by (Ariop0 ) diide do o (79)
© o 1

Nm(ﬂ) = (){ (‘)[ (_)[ N(Q;;},wo.ng) p2(p‘.wo.uﬂ) d;;d.;oo daQ . (80)
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where N in the integrands of equations (79) and (80) are given by cquations
(56) and (72). Tte calculation of risks of exceeding critical vilues of g and Q
can be performed by invoking the Poisson medel used in the previous sections,

A similar analysis can be applied to the expected exceedance rate of the envelope
of the g process. In this model for the exceedance rates of g and Q, the torque
vector process is assumed to be piccewise statistically stationwry in time,

i
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