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MATHEMATICAL SIMULATION OF POWER CONDITIONING SYSTEMS, VOL.1l:
FINALREPORT SIMULATION OF ELEMENTARY UNITS. - REFORT ON
- SIMULATION :METHODOLOGY = '

R. Prajous, J. Mazankine and J.C. Ippolito

Centre National de la Recherche Scientifique Toulouse (France)
Lab. d'Automatique et d'Analyse des Systémes

Part 1l: Buck, Boost, Buck-Boost

l. Introduction

The purpose of this first part is to describe from a
theoretlical and conceptual standpoint the methods and algorithms
used to simulate the elementary units buck, boost and buck-boost.

To begin with we will discuss important general polnts:

- the definition of similar converters, & definition which
determines the generality of the results obtained and the
effectiveness of the simulation (there 1s a safeguard
against simulating the same system several times);

- the definition of reduced parameters which characterize
the converters and derive directly from the idea of
similar converters;

- the transition from reduced parameters to machine magnitudes;

- the calculation of the corrector galin giving at the minimum
the required "except everything" regulation of *2%; :

- the general philosophy of simulations and "optimizations" i
to be carried out. :

Ther. we will discuss in the following order the different
parts of the simulations to be done:
- 3tudy of local stabllity;
- investigation of a good corrector network; :
- measurement of the output impedance, input impedance ¥
and input-output impedance; :
- study of overall stability.

Finally, we will end up by discussing the utilization of the
results obtalned by the simulation and we will give an example.

2. Electric Systems and Similar Converters /2

Let Fig. 2.1 represent 2 electric circults C, and C, on
which we impose the following restrictlon: C, and C, have the
same number of elements of type R, L or C, At any moment ¢,

# Numbers in the margin indicate pagination in the foreign text,




such a circult is thus completely determined if we know the m
currents passing through it and the m voltages at the terminals
of the m elements. We label these currents I11 and I21 and
these voltages vli and Vai,rof gl and ga respectively, with the
subscript i varying from 1 to m.
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Figure 2.1

Definition:

Circuit C, 1s simllar to circult C, if and only 1f:

1

3% K,y K, such that: IOt =k 1, (1), Yic [1,..m]

Vo, (ket) =k, v, (), Vi€ [1,...n]

It is obvious that if we know the behavior of the circuit
gi during the time interval [tl,t2] then we know the behavior of
the circuit C, during the time interval [thl, th2].

Among other things:

- any non-periodic steady state of circuit gl corresponds to
a non-periodic steady state of circuit ge;

- any steady state of period T for circuit gl corresponds
to a steady state of period kT T for circult ge;

- 1f such a state 1s stable for C,, 1t is also stable for C,.



- It}is clear that the above definition defines an equivalent
lass e.i < Cyeeeee } which includes only circuits which are
imilar to one another.

Thus in order to analyse all the electric eircuits, it is
sufficient to analyse all the equivalence classes, i.e. in
ractice to analyse one cirucit per class.

With respect to the studies to be done within the framework
 ,fof this contract, such an idea 1s very important because it
guarantees that a minimum quantity of simulations will be done
‘but that nevertheless all the desired information will be present.

It is very easy to see that two circuilts 91 and 92 are
only similar if:
- at two simllar instants t and kT T they have the same

electric structure,
- any element R2, L2, 02 of the circuit 92 is related to the

corresponding element R2, L2, 02 of circuit gl by one of
the following relationships:
Xy Ky -
--k-t-gitnzn-k-;&rni ' cz':‘rcl'

3. Reduced Parameters Characterizing the Converters /4

We have just shown the importance of the idea of a converter
class.

It is now fitting to numerically characterize a given class
with the help of parameters. These parameters are necessarily
dimensionless.

Moreover, we have tried to give these parameters the greatest
possible practical significance. Thus, electronic engineers
should find them easy to use.




1 Schematic Structure of Buck, Boosts and Buck-Boost
Converters

The converters we are considering may be represented as
shown in Fig. 3.1.

’lr.‘ll'r
N I S
i Ll IR KT
VA Iy l - Rs V‘

ol—¢

Fig. 3.1
The converter is powered by a voltage source VA‘

The output network always consists of the output capacitor
C (which is given an internal resistance r) and the charge,
represented by a resistor RS, at the terminals of which appears
the output voltage VS.

Besides the above elements, the power stage includes the /5
basic element consisting of the storage inductor L through
which passes a current IL‘

The three converters under consideration differ from one
another only in the way in which V,, VS, L and the switches are
connected to one another.

The circuit shown in Fig. 3.1 suffices to define the main
magnitudes V and I of the power stage as well as the operating
frequency of the converter:



ey (3.1)

Note: transformer buck-boost. For this converter it is sufficient

to express all of the magnitudes V, I of the power stage by
basing them in the traditional way either on the primesry or
secondary winding of the transformer. Everything we say will
then be equally valid in this case.

In addition, the parameters will be defined as follows:
- starting with the steady state of the system;
- 1dealizing this steady state at the output:
v.-C"' ,':.-C“ (the residual ripple of the output is
ignored).

3.2 Parsmeter M, Ratio of Input and Output Voltages
We set up the following equation:

we|3| (3.2)

This parameter, the physical meaning of which is very clear,
characterizes the operating point of the system.

Obviously we have the following:

- BUCK 1 0¢N ¢
- BOOST T 1QCN ¢ %
« BUCK-BOOST ¢t 0 <M < +°®

3.3 Parameter 4, Current Ripple in the Inductor

The current IL always has one of the two forms shown
in Fig. 3.2.




If we assume (Fig. 3.2):

Ar, & I max - I ain (3.3)

We then set up the following:

ar,
A’T (3.4)

This parameter characterizes above all the inductance
value L: the greater L is, the smaller A is and vice versa. The

value of A likewise enables us to know immediately if conduction
is continuous or discontinuous.

We simply show that:

(3.5)
Continuous Discontinuous
Conduction Conduction
BUCK He2 a2
BOOST Acan A> 28
BUCK-BOOST ALl M+ ) A>2 M+ )




3.4 Parameter ¢, Value of the LC Filter yAS

We set up the following equation:

2Tr Vi (3.6)

This parameter establishes the importance of the "rilter"
made up of the inductor L and the output capacitor C by comparing
1ts imaginary tuning frequency with the operating frequency.
- The smaller ¢ is, the smaller the residual ripple (effect
of r not included) because it varles as 02.

- The smallex ¢ is, the smaller the high frequency gain of
the power stage, effect of r not included; it also varies
as 02.

- Since the valuc of L is fixed by A, ¢ infact characterizes

for a given A, the value of the output capacitor C.

3.5 Parameter T, Quality of the Output Capacitor

We set up the following:

Pe2Xzecr

(3.7)

I i{s the ratio between the operating frequency and the
frequency at which the output capaclitor becomes purely resistive.

- If T 1s small, the quality of this capacitor 1is good.

- If I is large, the quality of this capacitor is bad.

- In addition, T enables us to get an idea of the effect of
r on the dynamic behavior of the power stage, the threshold
being situated very roughly at T = 1.

- The same is true for the effect of r on the residual ripple.

These last two points are summarized in Table (3.8). /8




Table (3.8)

Effect of r r«<1 r>1

On the dynamic behavior

of the power stage negligible not neglibible

On the residual ripple negligible Ripple about T
times greate> than
ifr =20

3.6 Other Reduced Parameters

In addition to the 4 above parameters, we can defilne

other useful, but less important, parameters.

3.6.1 Parameter J, Value of the Output Current

We set up the following:

1
38 2—
Ig max (3.9)

This parameter is defined as follows:
- for a glven converter, i.e. VA, VS, L, C, r being constants,
- when its output current is varied, i.e. the charging

resistance RS'

The parameter J cannot be used to characterize a class of
converters since, by definition, IS cannot assume several values

for the same system.

By contrast, J is useful in studying a given converter, as

we shall see later on.




3.6.2 Parameter B, Saturstion of the Magnetic /9

Cores
For a magnetic circult, in principle a transformer,

we set up the followlng equation:

P — (3.10)

We will then always take B = 1.33.

3.6.3 Maximum current in the Switch

For a real system the current in the switch

transistor for transistors 1s limited to a given value.

Without having to define a new symbol, we agree that:

IL limjitation

= 1,33
Imenominal (3.11)

3.6.4 Reduce Time Constants E?

It is obvious that any time constant, in order to

be reduced, must be reduced to the periocd T.

We therefore set up:

g J

From thls 1t follows that F and the cut-off frequency
corresponding to T are in the ratlo ¢1§:

IRE " o (3.13)




3.7 Remark 1: Modulator Gain /10

The definition of the similar circuits given in section
2 can of course be applied to a converter in its entirety.

Nevertheless, we will consider the basiec circuit shown in

Flg. 3.3
lr-'

Ve + + e ‘ ton Etage de Vs
__R_Q—- G,(p) ModutNeor ———3 . c T
- - [: Trstants | puissance | XS

de
B commytration

- D Retour AC:
\ Ga(P) [ .
. ERetour princ pal
Fig' 3'3
Key: A) modulator D) AC return
B) switching instants E) main return

C) power stage

This circuit reveals three distince parts of the converter:
- the power stage,

- the modulator,

- the correcting networks Gl(p) and Ge(p).

The similarity rules should be strictly applied to the power
stage.

By contrast, we can see that although the modulator also
appears in the form of an electric circuit, it is not necessary
that this circuit obey the similarity rule in its totality, but
only at its output and input.

10




In other words, in comparing a converter 2 to a converter 1, 1
it suffices that:

) (3.14)

In particular, the characteristic equation of the coincidence
modulator:

v (0 - R =0 for tmt (3.15)
may be written ag follows:
kv () -xdBe) =0 for  tety

From this it follows that the gain of the colnecldence
modulater is unchanged if we multiply the amplitude of the
sawtooth by k and the control signal by the same factor K.

For the sampling-delay madulator with a gain of G
we end up with the same conclusion.

M = T/A,

Ags for the magnetic modulator, it was directly defined in
a reduced way in the "Implementation Report."

3.8 Remark 2: Correcting Networks

The correcting networks are defined by thelr transfer
function and not by a circuit.

For two aimilar converters, it tris suffices that the
reduced time constants are identical and that the gains:

- are the same for Gl(p)

- are in the ratio kv/kI for Gefp).

11
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4, Transition from Reduced Parameters to True Parameters 12
or to Machine Parameters

The problem which we pose 1n this section 1s to go from
reduced parameters to finding a class of systems to the parameters
of a particular converter of the class. Naturally this converter
may be the one simulated and the equations which we are going
to give are thus also those used for implementing the simulation.

To make this transition from reduced parameters to true
parameters it is of course necessary to start with numerical
values which characterize the converter in question within the
class. To do this, it is clear that the values for the following
must be known at the outset:

- & Voltage,

- a current,

- a time.

It 1s equivalent and more convenlent if we know the following:
- a voltage,

- a resistance,

- a time.

In fact, the following equations assume that VSJ RS and the
operating period T are known.

4.1 Equations Specific to the BUCK

In continuous conduction (4<2):

(4.1)

In diacontinuous conduction (A>2):

L-i'-‘z—;—").fs.‘l‘ (4.2)




4.2 Equations Specific to the BOOST

In continuous conduction (A<2 M):

w-1 1
L ® s e (R_T
@ A "

In discontinuous conduction (4>2 M):

M-1 2
" .A-a-.l!s.'l'

L=

4.3 Equations Specific to the BUCK-BOOST

Tn continuous conduction (A<2 (M+1)):

i 1
L-“+‘vo‘so?

In discontinuous conduction (4>2 (M+1)):

2
L -A—f .ls.'l'

(4.3)

(4.4)

(4.5)

(4.6)

4.4 Equations Common to BUCK, BOOST, BUCK-BOOST

It follows directly from the definitions given in

section 3 that:

8|.¢

o
¢ aR2.0%.p0

2L

2X.c.r

(4.7)

(4.8)

(4.9)

13




2. Gain of the Correcting Amplifier ensuring the 2% /14
Regulation Required

A given converter is essentially subjected to two pertur-
bations:

- the variations in input voltage VA

- the variations in output current IS.

The problem here is to calculate how these perturbatlons
cause the output voltage VS to vary as a result of their
simultaneous action and, in particular, to calculate the minimum
gain G, of the network Gl(p) ensuring in these conditions the
2% regulation required by the specifications (cf. the reports
of the ESTEC-LAAS).

It 1s useless to complicated calculations to make this
determination. It suffices to calculate the maximum variation
in the control voltage Vc of the modulator (Vc max‘vc min) when
VA and IS vary in the specified limits, then to write that:

v -V
Lmax _cain .4y

So R (5.1)

The problem thus becomes to determine Vc max and Vc min

for each converter, and for these values it is clear that we
have:

3>

v -
For the coincidence modulators ¢ max :.o:
and sampling-delay modulators (5.2)

I»

Vomin " fon o
ain

For the magnetic moculater Vo=V, (1 -ty -35)
(cf. the implementation (5.3)
report) 0¢ toy < .53?.

o m  me ep fe d  ai nae e m e R e



A1l of the converters to be considered operate at J = 1 in {15
continuous conduction (ef. Report of the ESTEC-LAAS Meeting of

_f@V'June 25, 1975, p. 5) then end up by changing into discontinuous
- . conduction when J decreases. We know that:

= in discontinuous conduction, bon decreases when J decreases,
= in continuous conduction, ton 18 independent of J.

It is then very clear that:
- t8§ occurs in continuous conduction for a value of M to
X

be determined,
- t0§ occcurs in disqonﬁingous conduction for:
min L :

J=J . =205,

In these conditions very little error is committed by
assuming the following in all cases;

.""'m -0 (5.4)

5.1 Buck

In continuous conduction we have:

Hence t8§x - T‘Mmax = 0.9 7T (ef. section 6.1)

A
v -0,91‘?-0.’\
and o max

Vo uin = ©

15
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From equation (5.1) we then obtain:

For the coincidence and
sampling-delay modulators

S

BEPAA WS S pishininlaioh. vene ¥ RN e 4
¢ _0,9&
(o] 48y
R
o~
A
G - 22,5 o
0 BUCK ¢ Vo (5.5)

Thus in the case of the
simulation:

0,1

- 22,5 iﬁ? :

G - 5,6

O BUCK

(5.6)

For the magnetic modulator equations (5.3) glves us:

Vemax "V O = o
ain

Ve mtn = V1 1 - toy
BAX

We see that with this modulator we cannot exceed M = 0.666.

Under these conditlions:

Hence:

Thus, in the case of the

(5.7)

simulation: For the magnetic modulator
v
g, = 2 7:-, since it 1s assumed Vlng
(5.8)
% pock * 25 y




5.2 Boost /17
In continuous conduction we have:
T Vs _, 32“—-"‘-""-"-'—‘. N> 1
t s T Vg N
LI
Hence ‘tou=T -T %-; (cf. section 6.1)
m M‘
v «T A_M
and cmax 2 T 2
Ve min = 0
Equation (5.1) gives us Go'l%%
R
A
S moost " 123 ¥ \ (5.9)
Thus, in the case of the For the coincidence
simulation: and sampling-delay
modulators
0,1
Gy =125 3
Gy moost = 12 .
(5.10)
For the magnetic modulator it happens that:
ve-n'vi
A B P
Veatn "1 W"T HF'°T
17




~
=
<o

Hence: 3 v‘ld =9
%" WV,
v
1
(5.11) |Gy poosr * 1‘;?;,: 1 "

For the magnetic modulator

Thus, for the simulation

- 10 (5.12)

S5 noosT

5.3 Buck-Boost

In continuous conduction, we have:

ton Ivg| - N
-—-’T-ml_’_lv:'- '—-r'._

f.ﬂ_.“'_s
torr | Va

Hence tou pax =T t“—,—'f

Since we consider that M = 1 (cf. the Report of the EXTEC-
LAAS meeting of June, 25, 1975, p.5):
1.7
tonmax " T 777

In these conditions we obtain the same result as for the
boost and it is therefcre not necessary to re-do the calculations.

T
% suck-oost * 123 "
R (5.13) /19
For the simulation : For the coincidence and

sampling-delay modulators
(5.14)
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=1
% eucx-BoosT * 19 y (5.15)
For the simulation For the magnetic moculator
- 19 v
% Bucx-soosT (5.16)
/

N
n
o

6. Guidelines for the Simulations and "Optimizations"
to be Carried Out
6.1 Variation Ranges of the Parameters

In agreement with the ESTEC (meeting of June 25, 1975),
the following values of the reduced parameters will be considered;

Q I 0,1 l 0,033 I 0,01 l )

For the three types of converters

."|°|‘I’|’I (6.2)

For the three types of converters

» 0,5 0,6 0,7 | o.,8 0,9 ‘ (6.3)
BUCK
A 0,2 0,6 1,8 2,2 6 15 ‘ (6.4)
BUCK :
. " 1,2 1,4 1,6 1,8 2,0 (6.5)
BOOST
A 0,2¢ | 0,8 2,6 3.8 8 !6—] (6.6)
BOOST
" 1 (6.7)
BUCK-BOOST
A Joa |12 3,5 [ s 8,5 16 (6.8)
BUCK-BOOST

19




The extreme values of the given A's are compatible with the /21
extreme values of the given M's and with the converters:
- operation in continuous conduction from J = 1 to 0.1
3 - operation in discontinuous conduction from J = 0.75 to
0.05
(cf. ESTEC-LAAS Meeting of June 25, 1975).

Yor this compatibility we used the variation equations of
A with M and J which we will give in the section which makes
use of the results.

The variation ranges for the reduced parameters defined
above are correct for each parameter taken separately. It may
happen that some combinations are not realistic. In particular
if A is small (large L) and ¢ is large (C very very small), it
is possible, when I' ¥ 0, to end up with a very large value of
r, larger than the charging resistance Rs! We have therefore
eliminated any combination (A,®,I') resulting in a resistance r
greater than 53/10.

]
e b et

6.2 Quantity of Simulations to be Done

The preceding section shows that we have:

3 values of ¢

4 values of T

6 values of A

5 values of M for the buck and boost and 1 for the buck-
boost.

!

o

,5
|

i

'g

4

E :
|

20

We can thus study:

- 360 classes of the power stage for the buck

- 360 classes of the power stage for the boost

- 72 classes of the power stage for the buck=-boost, 1i.e.
i.e. a total of 792 power sta~~ classes.




In addition, we must consider the following:
- 3 types of modulators,
- 5 types of correcting networks.
Thus, in effect, we are considering 11,880 classes of converters.

For each class we are interested in the following: /22 4
- the local stability, ,;
- the overall stability, :
- the response at a step of output current,
- the output, input and input-output impedances.

Thus we end up with 71,280 elementary results to be obtained.

We give these figures to emphasize that:

- i1t would be absurd to want to obtain and formulate such
a mass of results,

- at the limit, it would be nearly impossible to use this
mass of results,

- the simulation is a powerful tool of analysis: all of the
desired results may be obtained for one well determined
system,

- the difficulty which exists, correlatively, in obtaining
from them synthetic results.

The rest of this section is golng to explain how we avoided
this obstacle, i.e. how we reduced the quantity of elementary
results in order to bring it to a realistic, though high, value

while keeping a significant value for the results.

6.3 Simulations and "Optimizations" to be Carried Out

With respect to the different elementary results to be
obtained, the following general remarks can be made:

2l




a) The local stability:
- perhaps obtained using a mean calculation time;
- the search for a local stability 1limit only makes
sense for a non "optimized" system, i1.e. a converter
whose amplifier-correcter is a simple flat gain. In
effect, we suppose, for example, that we have determined
that such a converter operates "best" with a correcting
amplifier of the type G l+rp/P and with G = 5 and
T = 0.1. It is clear that at thils moment it is
meaningless to vary G in order to determine a local
stability limit.
b) The overall stability: demands too much calculation /2
time.

rJ
Ll

c¢) The response at a step of output current:
- demands rather little calculation time;
- 1s meaningless for a system functioning at its "best."
d) The determination of input, output and input-output
impedances:
- demands enormous amount of calculation time;
- 1s meaningless for a system operating at its "best."

, In addition, the reduced parameters A,®,I and M have
i different implications:
a) T and ¢ are genuine construction parameters. Their

value may be chosen intentionally by the desicner:
A enables him to decide in what current range the con-
verter in question is going to operate in continuous or
discontinuous conduction cr to choose the inductance L3
¢ then enables him to choose the size of the output
capacitor.

b) T relates to an imperfection, that of the output 'apacitor.
The designer does not choose a value of I'. Rather he

tries to use a component of which I' 15 as small as possible
or as a tolerable value.

22
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¢) M relates to an operating point. 1In a given application, £
M varies because VA varies. Thus, M has a nominal value
and may vary by a certain percentage more or less around
this nominal value.

Taking into account all of the facts which we have Jjust
enumerated, we adopted the following procedure which may be

s TR
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broadly outlined as follows: ul

- exhaustive study of the local stability with coincidence
modulator, %

- simplified study of the local stability for the two other
modulators,

- investigation of the better correction system for all of
the doublets (A,®) with the conincidence modulator and
study of the variaticns caused by the extreme values of 1 &
Mand by T = 3 or 7, "

- readjustment of the correction system for the two other /24
modulators and for one value of & and two values of A,

- plot of impedances and study . the overall stability

2 s

o poes

for only the optimized systems.

This procedure is shown in more detail in the synoptic
diagram, Table 6.1, for one unit (buck or boost type). For the ;g
buck-boost unit the diagram has to be modified very slightly to _t;
allow for the fact that only one value of M is to be considered. k
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All the doublets P -o0m
A A-» continuous conduction
@, X X 2
A-sdiscontinuous conduction
1 central value of m
1 central value M=o
All the doublets of M T
=0
M, .
Adjustment of the
correction system
“Indicating
Study of best =% response
correction system
with coincidence — Impedances
Local stability with Local stability modulator
coincidence modulator Overall
stability
With sampling-delay With
modulator magnetic
modulator
With sampling-delay With magnetic - ext;;m; values
modulator modulator
f =3o0r7

l

Table 6.1. Diagram of the simulation procedure for one type of unit.
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7. Study of Local Stability

|

When we consider a linear system subjected to constant
inputs, this system possesses an equilibrium state 2° which 1is
such that (using variable of state notation):

(]
e ) =2° —> E®) =20 4 G t

If the system is described by the traditional equation:

L J
Z=AZ+BY

(with, in our case u = u° =c*)
it is easily shown that:

_z_°--h'13u°

If we set:

z-Z-!-_°

—

it is also easily shown that

Az(t) = P(e-t ). AZ(t), ¢ = contlnuous state (7.1)
transition matrix

The system is asymptotically stable (i&:;.yt) = 0). when
o(x) has all its elgenvalues less than 1 {absolute value) for

¥x>0.

If we are dealing with a discrete I'neur system, Eq. (7.1),

takes the form:

pz =@ Az, d = ilucrete state (7.2)

B transition matrix

We arrive at the asymptotic stability from the elgenvalues
of ¢ in the same way as in the continuous case.




The linearity of the system implies that:

- 2° 1is unicue,

- the definition of the stability is valid whatever the
value of AZ,.

If we now consider a discrete non-linear system, this

system may be described by the autonomous non-linear recurrence:

—n+l - "'(!1\,

(7.3)
and the equilibrium point Z° 1s defined by:

2® - £2%, this 1s first order cycle (7.4)
of the recurrence (7.3).

Taking the definition:

A )
Az, "z -2 (7.5)
.t is clear that:
If az 0
(7.6)

82" e -A-’n

d! 5
with g = \
ii;\ !ﬂ-!_o

Eqs. (7.6) define tlLe linear approximation of the system

around 2°.

The discrete non-linear system (7.3) is sald to be locally

stable if its linear approximation around 2° is asymptotically
stable.

In contrast to llnear systems:
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- Z° 1s not necessarily unique,
- there may exist other equilibrium points than the first
order cycles, cf. [2-3-4],

- gn is infinitely small.

The converters which we are interested in here are discrete
non-linear systems [5] for which we know how to determine the
local stability [5].

There exists a basic difficulty in analyzing the local 4g§
stability using a simulation of electric behavior. This
difficulty 1s connected to the fact that the local stability is
a purely mathematical i1dea in particular calling for a transition
to the limit.

When a linear system is unstable and when it is "initialized"
at a value Z, # 2°, the absolute value of Zn increases
indefinitely with n.

When we are dealing with a locally unstable non-linear
system, the amplitude of gn remains limited. The system
oscillates, elther at a subharmonic frequency of F = 1/T (m order
cycles, cf. [2]), or in a quasi-stochastic manner (cf. [3-4]).

We eliminate the non-realistic case where other stable first
order cycles would exist apart from z° (these cycles would
correspond to non-oscillatory operating points different from the
nominal point and which are eliminated by the electronic engineer
for any real system by adequate safeguards). Thus, in all cases, '
the instabllity i1s characterized by the disappearance, in the
steady state, of the strictly periodic operation of period T.

By way of example, we can look at such oscillations in the similar ‘
graphs in Figs. 7.1 and 7.2 where the comparison saw-tooth ¥(t) 1
is given to serve as a time base.

: 27 ‘
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In principle, the oscillation is present for various
magnitudes existing in the system, In particular, it 1s
impossible for the system to be unstable and for the successive
tON to be equal to one another. As a result, the oscillation

can be observed for the command voltage V..

In addition, it may also be noted that IL is a more
"sensitive" quantity (i.e. "whose variations are greater") than

VC since, in a first approximation, IL varies as the integral of
VC' In fact, in the presence c¢f a very low frequency oscillation,
the relative value of IL varies much more than that cf VC.

Since the information is discrete, it is necessary to have
a value of IL and a value of VC per period. Since Z(t) at the
end of a ton is a discrete vector of state [1], it is clear that
we should take IL and VC at the end of the toN periods, which we
will note IL(tON) and VC(tON).

Thus the method of analyzing the local stability 1s based

on the following procedure:

a) The gain G of the error amplifier is set at the value
Go calculated in section 5.

b) The vector of state Z, of the system is set (close) to
the equilibrium point Z°. Under the circumstances, the
voltage at the terminals of the ideal part of the output
capacitor is set as close as posslble to the deduced
value of Z° and I; 1s set at 10% above the deduced value
of Z°. This 10% difference 1s arbitrary and simply
results in the fact that systems which are mathematically
stable but whose stability range around Z° is very small
are considered to be locally unstable.

c) The system is allcwed to develop long enough so that the
transietn behavior is eliminated: we choose to take 110 T.

d) We take the average of IL(tON) and VC(tON) obtained for
t going from 110 T to 150 T, 1.e. IL ave. and Vc ave.,




High amplitude oscillation at 0.014 F
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Figs. 7.1 and 7. 2. Oscillation Examples
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e) We determine the maximum difference of IL(tON) and
VC(tON) with respect to I; ave. and V, ave., 1.e.
AI. max and AVC max for t varying from 145 T to 150 T.

L
f) We decide that the system is locally unstable if:

> 5%

| Axb

I, woy

or if

IAﬂh‘>> S % A = 0,005

g) If the system is stable, we increase the gain of G to
1.5 G and we return to (b).

h) If it 1is unstable, we decrease the gain of G to 0.9 G
until the system becomes stable again and we obtain the
value of G denoted GF, the limit gain of local stability.

Remark 1: Systems which are always stable. /31

Some systems may remain stable even if G + « or may only
become instable for very high gains.

In this case, the following procedure is followed.

An increase in G causes an increase in the residual ripple
in VC‘ We measure the gain G! where Vc(t) reaches a value of
+A or a value of 0 and we sto; the increase in gain atv the
following value of GM:

Gy = 56"y

Although the coefficient 5 1s arbitrary, GM may be considered
in practice as an upper limit of the gain.
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Remark 2: Joint use of IL and yc

One might think of using only IL for doing the convergence

test. Some systems have a non-observable irstability for IL(tON).
An example of this 1is given in the analog graph shown in Fig. T35

N OO

BUCK. $20,039 Aeqa Te0 Me0S . Gie2?

- ....:’::4‘,:"!‘ A
-~ :.~"*?"'\"£ .‘s)"

‘. _sv YT l.!..'.".‘:_.-

Fig. 7.3. Non-observable oscillation for IL.

Remark 3: Limit systems of indistinct stability.

It is possible to describe in an approximate manner the
behavior of the system in question by a continuous linear
model to which we will again refer in the following section.

By means of this description it can be shown that some
converters possess the following property: the phase shift caused
by the power stage remains very close to -m for a wide frequency

31
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range. From this it follows that in a closed loop, for a wide
range of gain, these systems are stable but have a damped
oscillatory behavior with & very small damping coefficient.

An example of such a system is shown in Figs. 7.4 and 15,

In this system the gain may be varied approximately in a ratio
of 1 to 300 while maintaining this behavior (only the resonance
frequency changes).

For a real converter or for the analog simulation the
result is that the system reacts to noises or to parasitic
perturbations while oscillating constantly with a high amplitude
with respect to the perturbations.

We call these "indistinet stabllity 1imit" systems and, in /32
agreement with the ESTEC (cf. Meeting of Dec. 12, 1975), we
will study their local stability.
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8. Study of a Correction Network Giving Good Performance /36

8.1 Correction Networks Considered

Using the symbols used in Fig. 3.3, the different
correction networks which we will consider are the following, in
order of increasing complexity:

G =G (8.1)
6, = Lot
3 P | advance-retard centered on

the frequency f = 1/2nrt.
We have chosen to take a = V5, this value constituting a good
compromise between the obtained phase leading which equals
42° at the frequency f and the high-frequency gain which equals
5 G, thus:

G, (p) -c-‘lf_si'—rk : (8.2)
l#v,sp
G‘(p) -cl’_‘EL
Tp s Integrator with a  (8.3)
0 at the frequency
f = 1/2nT1;

1P 1+ _'5__&_.!0 two preceding equationsg
S with T,<1,

T
G, (p) -glitiie y—@ combination of the (8.4)

A y+Tp , current loop (8.5)

Examination of this list of networks immediately leads to
the following remarks:

- since networks (8.3) and (8.4) possess a pure integrator
they obviously result in a static error of 0 and should

L
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only be optimized with respect to thelr transient response;

- networks (8.1), (8.2) and (8.5) must necessarily be such /37
that G 2 G (minimum gain defined in section 5. We end
up with this conclusion for the current loop (8-5) because
sirce the mean value of the current IC is 0, in continuous
conductance, the current loop cannot improve the static
regulation of the main loop.

8.2 Method of Studying the "Rest" Correction Network

Among the factors which characterize the performance
of a corrected system, some play the role of constraints in the

sense that any system which does not observe a given 1limit is

rejected as belng unsatisfactory. These factors are the following:
- the local stability;
- the precision of regulation (cf. section 5); the
- the indicative response, response to a 50% step in output

current (from Ig to Iq/2), which must enter into a
determined wirZow. This window 1s shown in Fig. 8.1
(cf. Meeting of June 2%, 1975).

* AVg

+0,04 | [\

0,008 / N\ number of
er
(o) : ——ip
. 008 0o \ “O/ vperioci

starting with 1?0
periods

Fig. 8.1. Indicative response.
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The preceding constraints thus have to be completely /38

satisfied. By contrast:

- the output, input and input-output impedances appear
rather like a property of a given system for which it
is up to the designer, the person who uses the result,
to decide whether or not it is satisfactory;

- the same applies for the overall stability, in certain
cases, when the range of instability in the space of the
initial conditions is such that the designer may decide
that 1t cannot be reached or that adequate limitations
are foreseeable.

Thus we have adopted a method which takes into account the
above points and which is illustrated in the flow chart shown in
Fig. 8.2.

The main point, with respect to this flow chart, is that
all of the studies involved here are not done on the hybrid

silmulation system.

Since the simulation is only a method of analysis, such a
task would be insurmountable.

As a result of studies in done in another connection in
this area of the LAAS on the theoretical level, we have §
approximate continuous linear models of the three converters

buck, boost and buck-boost in continuous conduction and
discontinuous conduction [6]. The models, although approximate,
give a good indication of the behavior of the system in

question by giving the galn and phase diagrams of the approximate
transmittances:
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from specific values of A,$,I and M and from the machine values
Vg = 0.4; F = 10; Rg =1 (see, for example, the diagrams in
Figs. 7.4 and T7.5).

The followlng parts of the flow chart shown in Fig. 8.2

were done using thse models:
- what is the simplest network which can be adapted?
- predetermination of the parameters of this network.

|\
W
O

The simulation is used to:

- adjust the parameters of the network taking into account
the exact behavior of the system;

determine the exact impedances;

give the overall stability, which the approximate model

Rk abn geie Sreal Sl
|

e

A St

cannot gilve.

Thus it was possible to carry out this basic phase of the
study of elementary units only by the joint use of a powerful
but approximate theoretical method on the level of synthesis,
and a method of exact analysis using simulation.
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9. Determination of Output, Input and Input-Output Impedances /41

e The notion of impedance is a notion purely related to con-

tinuous linear circuilts.

# The converters in question are dilscrete non-linear systems.
£ This implies the following obvlous consequences:
% - the notion of impedance in the case of a converter 1is

necessarily an approximate notlon;
- the corresponding measurement can be made only at a small

13 signal;

-f - the significance of the values obtained increases as the
:f frequency in question decreases and their significance
Cé‘ decreases as one approaches the frequency F/2 which

L represents a 1imit (SHANNON theorem).

a
e
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9.1 Theoretical Method Used

Let us assume, therefore, Fig. 9.1, an impedance dipole
Z(p) represented symbolically as follows:

810

2(p) t avie

——0

Fig. 9.1. Elementary dipole.

The problem which we have to solve is one of determining
experimentally (in some way) the function |Z(jw)| for a certain
interval of variation of the angular frequency w.

The difficulty basically stems from the fact that for the
physical system (or for the analog simulation, which amounts to
the same thing) we have temporary values Av(t) and Ai(t). H

The most obvious method consists in applylng to the dipole
a signal Av (or Ail) of sinusoidal form Asinwt and measuring
in a steady state the absolute value of the response Al (or Av)

and setting up the ratlo of the absolute values.

This extremely traditional method certainly leads to the 453

result but in our case 1t has the following drawbacks:

- since the measurement is made for a small signal, the
nolse present iIn the machine is not negligible and we
cannot be content with a measurement of the peak value;
the data obtained must be processes, for example a
correlation process, and this treatment must U¢ carried
out for each value of w, which extends the sinulation
time;

- when w is small, the measurement time required Tor one
vlaue of w 1s long, approximately 2 x 2n/w.




By way of example, 1t took us about 35 minutes to plot a
curve |z(jw)| using only 20 values of w.

Therefore we used the method which we are now going to
describe and which is based on the property that Z(jw) is the
FOURIER transformation of z(t) -3“[:@].

Therefore let:
Y Y A [zm] (9.1)
We break Z(p) down into simple elements:

A “2 .
2 - + s
® "y (9.2)

assuming that there are no multiple poles nor zero poles and
that the number of zeros of Z(p) is less than the number of

poles.
We then have:

JCREE N S (9.3)

The FOURIER transformation F(w) of z(t) is:

r(mﬁj pt) @ "% 4 (9.4)
A )

This gives us:

*° (a3t ¥ (a0t

a, - a.-

- e | 2

F(w) Al-[ at +32/ e at + ... (9.5)
°
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I o0 o
A a,-3 "] A [ (“2'3""']
1 . 2
F@) = —— | & o T ] e (9.6) /U3
a -jw [ ° a -jw ° *
Hence:
F(,-'j—»-_?—§j...20...

(9.7)

Comparison of Eq. (9.2) and Eq. (9.7) clearly shows that:
F@) = (I (9.8)

The basic principle of the method is thus to apply a DIRAC

delta function Al =4;06(t), to measure the output Av = I z(t)
and to perform the integral (9.4) off-line.

Theoretically, & single simulation giving z(t) is sufficient
to obtain the entire curve |Z(jw)|, which represents a great
improvement with respect to the preceding method.

9.2 Adaptation of the Preceding Method to Our_ Case
9.2.1 Determination of the Delta Function Response

Tt is clear that it 1s not possible to directly
apply a DIRAC delta function to the dipole in question.

One possibility is to apply an impulse of finite amplitude
H for a sufficilently short time 1, Fig. 9.2, and compare this
impulse with a DIRAC delta functlon of area Ht. The amplitude
H must be compatible with the possibilities of the circuits in
question. Moreover, since T is small, the energy supplied to the
system is low and the corresponding response Ht z(t) is of low

amplitude.
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Fig. 9.2

Another method can be used.

The behavior of the circuit is determined by the following

equation of state:

+ B
(9.9)

€ |»%e
| | n
e I

If 1 is a DIRAC delta function 1 = IOG(t), we have:

\g_(o') 2o

x(0*) = BI
- =0

Thus:

Ae

A
x(t) = e Ux(0h) me TBI
b>»0

and A
vit) =I_Ce B =1Is(t)
o - o

[ ¥Y-)
g (9.10)

esponse being sought z(t) is thus only the

The impulse r
ently set to

f the cirucit in a free state but convenl

response 0O
the value BI .

this adequate initial setting of gIo

For a real circult,
e circult.

can generally be determined very simply by examining th
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We glve to Io the maximum value compatible for g:o with the
assumption of small signals.

9.2.2 Discrete Evaluation and Integration for a
Finite Time

In the hybrid simulation we have infact only one
value of v per period T of the converter, given the discrete
nature of the behavior of these systems.

In addition, v is only measured for a finite time kT.

Eq. (9.4) becomes: /45

kT -yt
F'(u) = z(t) e at

X (9.11)
As a result, modified Eq. (9.6) gives:
A [ (ag-yaxr A, (a,-3W) kT (9.12)
F'(W) = l“j e -1]+ q'j_“’ e . -1 L
A (a,~JOkT A (a,-3u0 kT ]
"0 = i S 1 2 -
F'W) F(W) + '1'”’[‘ + ‘2'3“’ e + (9_13)
error term
In the discrete form we in fact calculate:
k sant?
F ') = Zl.c T (9.14)
Nef N

By way of testing, we apply this method to a circuit of the
second order w'red on the analog part and such that:

4y
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- continuous impedance is 0.1
- resonance of 7 dB at frequency 1.

The result is shown in Fig. 9.3 and one can see that it 1s
very satisfactory. The oscillatory appearance of the curve at

the low frequencies is explained very well by the form of the
error term of Eq. (9.13) which, at the given kT, is sinusoidal
in terms of w with an amplitude which increases when w decreases.
In practice, this error is not detrimental because it manifests
itself in the zones where the behavior of the system is the

best known.

Circuit of the Second Order /U6

~«~ANPL

FREOQ
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e

Fig. 9.3. Example of impedance obtained by FOURIER
transformation.

In order to make a comparison with the first method, the
obtaining of such a curve requires 90 seconds (essentially 90
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seconds of processing on our CII-MITRA 15 computer) for 200
values of w (thus for a very detailed curve).

Since the main portion of the time is the processing time,
in order to improve the results while decreasing the noise, we
in fact make 10 successive firings in acquiring the z(t) values
(which requires only 30 seconds) and we take the average of the
samples of the same order before actually processing the data.

9.3 Output Impedance

Let us consider the output network of the converters
(Fig. 9.4) to which a DIRAC impulse IOG(t) is applied.

I )
111 o

Re I.8(k) I %(\'.)

L

Fig. 9.4. Application of a DIRAC impulse of current
to the output network.

Immediately we see that the effect of applying the impulse

at t = O 1s to create at the terminals of C a discontinuity of
the first kind of value

I
= (9.15)

On the input side the network is either in the air or

connected to the inductor L. In both cases this connection
does not occur.
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We therefore obtain za(t) by the diagram shown in Fig. 9.5.

748
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Fig. 9.5. Obtaining in practice the output impulse
response.

The result is given in the reduced form:

|z, Gw)|

R (9.16)

In a first approximation, the output voltage Vs may be
broken down into the sum of a continuous value and a residual
ripple whose form does not vary at small signals. It 1is for
this reason that it is sufficient to measure AVs per period to
obtain directly the variation in the mean value of Vs.

9.4 Input-Output Transmittance

By definiticn, this is the following quantity:

T_(p) 2 2 o)
P) = P
ES A1 moy (9.17)

This is a dimensionless quantity for which we must speak of /49

transmittance and not impedance.
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Since the measurement of this quantity requires the

application of a DIRAC impulse on the output, IES is determined
at the same time as Zs. It suffices to measure AI, and AV
after applying the step Vo'

A S

The determination of the mean AIA is not as obvious as
that of the mean AVS. Fig. 9.6 shows what IA can look 1like
during the course of a steady state period and a transient
state perilod.

I

Fig. 9.6. Variations in I,.

We see that it is not sufficient to know AIM in order to

know AIA ave.

The following procedure is then used: an auxillary
integrator reset to zero at the beginning of each period gives
at the end of the period the quantity f: I(t) dt =T 1, ave.
and IA ave. becomes directly acessible on the analog wiring
no matter what the form of IA’ i.e. whatever the converter.

Remark: EES in continuous conduction.

Continuous TES’ il.e. TES(O) may be calculated in a very
simple manner.




In the steady state we have:

VaTa ™Y = Vs I ave. (9.18)
I_ moy Vs
Thus: A = —wpMave, (it is assumed that the g;ain 1s sufficient /50
Is-oy va A

such that vg= c®).
We therefore have:

‘l“s (0) = M

(9.19)

which glves us a very simple way of verifying the curve ITES(Jw)I
obtained.

9.5 Input Impedance

Given the electric nature of the system connected to
the input terminals, in order to measure the input impedance it
i1s clear that it is necessary this time to apply a voltage AVA
and measure the variation AIA ave resulting from this,

We thus determine an input admittance.

The correctness of the above reasoning is verified by the
fact that the input admittance decreases with the frequency,
which must necessarily be the case in order for the method
discussed In section 9.1 to be applicable (number of zeros less
than the number of poles).

Depending on the moment considered within the period, the
source VA 1s connected to the inductor L or it is not connected

(Fig. 9.7).
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Fig. 9.7. Connections of VA to the converter.

We define:

N
I
}——

|

£ ’
ime in wgécg L is connected (9.20)
A

ne

T

Suppose that we add to V, & DIRAC impulse Voﬁ(t). This
procedure is purely imaginary: 1t does not have any meaning

as such because of the discrete nature of the converter.

Nevertheless, we can deduce from 1t an equivalent effect

on the system. If L is connected to BA’ applying the impulse
causes a discontinuity of the first kind on IL and there is no
instantaneous effect on the other parts of the circuit. The
equivalent discontinuity on IL is equal to:

<

o
IO-L K

(9.21)

For all of the converters the impuse response at the input
is obtained by means of the circuit shown in Fig. 6.8.

Remark 1: Values of K

The coefficient K defined in Ea. (9.20) equals:

|
1
'..
§
\
3



Ia L
(% Egj,,
t
L -te
il o o
Fig. 9.8. Obtaining the input impulse response.

K = tON/T for the buck and buck-boost in the two conduction

modes
2 K = 1 for the boost in continuous conduction
)
K = tON + tOFF/T for the boost in discontinuous conduction,
The following values are easily calculated: /52 N
e Buck in continuous conduction (9.22)
*f K=1 Boost in continuous conduction (9.23)
-I~. M
j K= o7 Buck-boost in continuous conduction (9.24)
5
X o
1 A in discontinuous conduction (9.25)
Remark 2: Presentation of the result

Although we determined an input admittance YA(Jw), we 1in

fact plot the input impedance z, (3 = ‘(M , Dbresented in the
Y
reduced form: A
]z““‘.ﬂ (9.26)
B
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Remark 3: Value of Z, in continuous conduction.

n

. = ot
We have: VA IA ave. VS Is ave, ™

(We assume that the gain is sufficlent so that Vg and Is

are neurly constant.)

Thus:
Ilmy.dvli»vl.d I‘noy-o
e
av, --w_r-&__v,/n % (9.27)
G moxY I NI oy M
Key: moy = ave.
Thus we have:
2O 1 (9.28)
R w2

10. Study of the Overall Stability

For this section we will refer to references [1-2-3-4-T7].

10.1 Definition

Let us assume a discrete non-linear system described

in the space of state by the recurrence:

2, -£@) (10.1)
Eé A cycle C of order m of the recurrence {10.1) is by
*if definition a set of m vectors: «c¢ '{531' Ecz""'!als all consequent:
= zxet =gz, ), k [t w] and
i Zy = L2y (10.2)




: .
 §

In other words:

1If 3, €€ 1" (10.3)

C 1s an equilibrium set of the recurrence (10.1).

C i1s a stable oycle if the matrix Sc:

s & Zna
(] qn
5. €¢ (10.4)

at all eigenvalues less than 1 in absolute terms.

There exists another type of equilibrium set called
"stochastic behavior zone" which we only mention in the frame-
work of this report. Let D be the closed space  f the admissable
iInitial conditions for the system described by Eq. (10.1).

By definition, the system described by Eq. (10.1) has /54
an_overall stability if the only stable equilibrium set included
in D is a cycle of the first order.

This cyele of the first order corresponds to the normal
operation In a steady state of the system. Any other stable
equilibrium set would correspond either to a subharmonic
osclllation or to a pseudo-stochastic oscillation. We have
already given examples of such oscillations in section 7.

Corollary: if the system (10,1) is on the whole stable
within the range D, any state set to any value whatsoever of
Zo € D converges towards a stable cycle of the first order.

10.2 Method Used

Very elaborate methods exist for determining what
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the equilibrium sets are for a glven recurrence, stable or
unstable, and for plotting the limits of the stability ranges
of the stable sets (cf. references mentloned at the beginning).

These methods, which are especlally designed for making a
detallled analysis of the properties of a given recurrence, are
not used in our case for the following reasons:

- they are essentially algorithms which can be used in

numerical calculation,

- they require much calculation time,

- the precise plotting of the boundaries of the stability

ranges 1s only of little use for the user of the system.

As a result, we used a method based on the following points:

a) In the case of the converters in question the recurrence
(10.1) 1s at least of the second order, since the power stage
itself is of the second order. Of the correction networks given
in section 8.1, the most complex is network (8.4) which is of
the second order. The recurrence corresponding to the system
corrected in this way would thus be of the fourth order.

Analysis of this system would present very great difficulties,
both in terms of calculation time and result evaluation time.

As a result, in agreement with the ESTEC (cf. ESTEC-LAAS /55
Meeting of Jan. 12, 1976), we decided to 1imit ourselves to
systems of the third order. More specifically, we will study
the systems of the fourth order in an approximate manner, as
if they were third order systems. This approximation is
perfec.ly Justified. In effect, the pole p = —/5/12 present in
networks (8.2) and (8.4) is situated beyond the equivalent cut-

off frequency of the system,




In summary:
- the "optimized" converters provided with networks (8.1)
5 and (8.2) will be analyzed as second order systems;
- those provided with networks (8.3), (8.4) and (8.5) will
be analyzed as third order systems, the varlable of state
coming in addition to those of the power stage which 1is the
output of the main integrator of the network.

|

i b) The discrete vector of state in question is [::] at the
beginning of tON in the case of second order systems

and [‘{x} in the case of third order systems.

(N
Z

For each variable of state x we define a maximum value and

We consider that the range d of the admissable initial
conditions is the parallel piped limited by the different maxima
and minima.

g .

[ a minimum value xmax and Amin'
|

|

D is discretely evaluated by giving to each varlable of

state x the 4 values (x ,),(x, + max ; Smin Yo U, = —x“-x—;—xu—"-).(xm).

The domain D is thus made discrete by 16 points in the case
of the second order and by 64 points in the case of the thrid
order.

¢) Then we set the system to each of the values € D
and which we have just defined, and we observe 1f the system
converges or not towards the normal steady state (first order
cycle). To do this we use exactly the same algorithm as for the
local stability. The only slight difference 1s that the con-
vergence is not tested at 5% by at 10% or even more, because /56
the quality of the analog wiring used for the overall stabllity
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is inferior to that of the wiring used for the local stability
(in this regard, cf. the first part of volume 2).

10. 10.3 Presentation of Results

Fig. 10.1 shows an example of how the results are
presented. We use a perspective representation of the domain
D which has been divided into discrete units

A

BUCK, STABILITE GLOBALE,M=0.67 Hitan ZsZein
GAM=0.00DELTA=0.33PHI=0.10 .
G=1.5 s & & o
s 5 USHAX =0.S7
. . . . USH!N =0.00
. . ® . ILNAX =0 .36
Plan choisi pour ' ILNIN =0.08
Vordre2 \ s e 00 IL, 2MAX=0.00
-9 -0 ZMIN=0.00
-0 -0 o
@ = = -
t" b o o e o 8 ’ . l
Mex oo s
B/ X S .
Vamin Vs max
Plan ZeZmax . &

Fig. 10.1 Example of how the overall stability is

represented.
Key: A) overall stability ¢) plane chosen for the
B) plane second order




Each point of the domain D is represented by an alphanumeric
character with a precise meaning:
— the dot ":" means that this setting has not been analyzed;
- the minus sign "-" means that the corresponding setting
converged towards the stable first order cycle;
- the zero "@" means that the corresponding setting did
not converge towards the first order cycle (instability).

The symbols "-" and "@" were choses so as to be very
easily distinguishable by sight.

Thus we have overall stability if and only if all of domain

D contains only minus signs "-".

To be sure, strictly speaking we are not absolutely certain
because the discrete evaluation of the domain D is not very
detailed, but nevertheless there is very little chance that any
instability present will not be detected.

For the second order systems the results are presented 1n
the same way as for the third order systems, but only one of the
four planes corresponding to the discrete evaluation of Z is
used, the other three then being filled with points.

indicated and for more clarity we have discussed Vs instead of

VK (since VS = VK)'

Remark: Systems close to the local instability.

- Some of these systems are locally stable and globally
unstable. In this case, it 1s very common that the stabllity
range of the first cycle has a very restricted surface area (or
volume), but nevertheless 1its form is very complicated allowing
it to attain very elongated zones of D of the stable first order

!
i
'
,
[}
i
i
.
i
The coordinates of the parallel piped D are clearly /58 i

cycle.
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- In addition, such systems generally meet with a high

dZneq

degree of sensitivity ac
n

and, a fortiori, a sensitivity

dZnefe
azn Which Incerases as k increases.

In physical terms, this means that a small variation Agn
is going to result, for example, in a substantial variation

in A§n+50.
- In the case of the analog simulation, these two facts

combine along with the imperfections and noises to lead to the
following phenomenon: the same system, set several times in

succession to the same value, each time follows a different

development.

It may happen, for example, that an initial condition
taken out of the domain of stability of the first cycle, at the
end of a certain number of periods may lead to a discrete
vector of state penetrating into the domain of stability and
remaining there.

As a result, when we are faced with a domain D simultaneously
containing "-'s" and "@'s", the only valid information 1s that
the system 1s locally stable and globally unstable. It is
impossible to get any indication of the topography of the
"_tg" and "@'s" in D, except for certain cases which will be

pointed out when we discuss the actual results.

The example shown in Fig. 10.1 i1s precisely in this case.
The example shown in Figs. 10.2 and 10.3 show the same system
with a larger and smaller gain respectively of the error amplifier.
Fig. 10.2 clearly shows that there are no longer initlal
conditions leading to stability and Fig. 10.3 shows that the
system 1s globally stable.
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BUCK,STABILITE GLOBALE,M=0.67
Gdﬂ%@.ﬂ@ﬁﬁLTﬂBQ.33PHl'0.la

G=S5.
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.

Figs. 10.2 and 10.3 (next page).
Fig. 10.1 with different gains.

Key: A) overall stability

{8

USHAX =0.37
VUSHIN =0.00
ILMAX =90.36
ILMIN =0.00
ZRAX=0 .00
ZMIN=0.00

The system shown in
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BUCK,STABILITE GLOBALE,M=8.67 - :. ¢ e e
GAM=0.00DELTA=0.33PH1=0.10 - - P

G=0.5

L] L ] [ ] L]
L ] L ] o L]
' . & & 5 USHAX =0.57
e o o VSHIN =0.00
e e o oo ILMAX =8,.56
e o s e ILMIN -.-..
L @ L] . Ug
L] L] L] L]
o L] L] L]
-
Fig. 10.3
11. Utilization of the Results /60
In this section we will use the following notation:
- subscript S for the variables relating to the simulation;

- subscript V (true) for the variables of the real
converter in question,

11.1 Transition from the Numeric Values of the
Curves and Hard-Copies to True Values

It 1s now assumed that we have curves or hard-copiles
corresponding to the values of A, ¢, T and Mof the real
converter which we intend to "optimize."

The problem here is to go from the numeric values of the
simulation to true numeric values.
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11.1.1 Gain

The gain G of the error amplifier is involved in
all of the results. When this amplifier does not have any
correction function, 1.e. when Gl (p) = G, there 1is no ambiguity,

In the opposite case, the constant G has the meaning defined
by Egs. (8.1) - (8.5).

When the Simulation and the real converter belong to the same
class their loop gains are identical, This:

©s"%s*%ps = Sy*Cuv Cpv (11.1)

at
witha G = modulator gain @ —on
dvc

2

Gp = power stage gain &

dtON

For the coincidence modulators and Sampling-delay
modulators, GM is of the form T/A. We therefore obtain:

T, s & T, ave y
Gsi(%)g'“vi‘(@)v (11.2)

The quantity T dvs/dtON is proportional to VS. Thus: 61
v, v,
ss sv
G — —
s A "% A (11.3)
Hence:
N%B_. N oo
VT Ry T % O Y,

(11.4)




Thus, in order to go from the gain read on the GS curves to the
ture gain, we have:

A, for the coincidence and
Gy = 4.5 7 sampling-delay (11.5)
sv modulators

The operation of the magnetic modulator, such as it has
been defined, leads to a constant quantity %‘"" "-‘.I?“which is
equal to 2/3. GM in the case of the magnetic moculator 1is
thus proportional to T/V1 = '.“/VS since it 1s assumed that V, =

VSQ

Eq. (11.1) then becomes:

'L(;‘E_ . fv_(""_s)
Gs- vss dew)s GV vﬂ dtw . (11.6)

As above, the quantity T de/dTON is proportional to
VS and we obtain:

Thus:

G, =6 for the magnetic (11.7)
. modulator

The same line of reasoning is carried out for the gain of
the current loop, but Eq. (11.4) becomes:

Mls o NI NoVss ey
acv " Oacs Ry T, T ACS Ag T T, T UAcs Ag Vo Rgo (11.8)

~N
[
O\
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Since we have assumed RSS = 1, we obtain:

G, for the coincidence and ( )
G, =G - sampling-delay 11.9
AV aes g sv modulators

For the magnetic modulator, Eq. (11.6) becomes:

’L("_‘c_) . l(ﬁq_)
°“°‘"’ss a . Cacv Dl ] (11.10)

The quantity T dIC/dtON is proportional to VS/RS, hence:

6 8 1 . Vv
ACS Vg Rgg MOV Vo Ry (11.11)
Thus:
n G .
acv " Pacs sy (11.12)

for the magnetic
modulator

11.1.2 Time Constants, Poles, Zeros

This time we will consider in a correction
network a term of the form (1 + tp) located either in the
numerator (the zero case) or in the denominator (the pole case).

For all of the elements it is clearly indicated "pole
(or zero) at F/x." Everything is produced to the operating

frequency F and, in accordance with the definition given in
section (3.6.4), the corresponding reduced time constant is:

L~ (11.13)




As a result:

ogrv x T, L
'c; s (11.14)

o~
ON
(s

|

11.1.3 Curves as & Function of Time

These are curves of response to 12 Jump 1in

output current.

They may be represented in two forms:
a) Avs(t). We use the variable expressed in ordinate

values (AVS) by means of the following equation:

v
sV
‘.':‘vsv' BVss .4 (11.15)

y —

b) AIL(t). We have

TLv max (11.16)

' )
(BY Irmax 1s meant the value of I, at the end of tyy.)

As for the scale along the atscissa, it 1s directly divided

{.e. the number of periods.

i{nto the number of samples,

11.1.4 Curves as 8 Function of Frequency

a) Output and Input Impedances
Since the ordinate of these cu
it 1s clear that

rves 1is divided

into values of IZ/Rsl,

‘z"‘- H‘;I v (11.17)




b) Input-Output Transmittance /64

Direct utilization, the input-output trans-
mittance being dimensionless.

As for the scale along the abscissa, we have

fv-st; (11.18)

11.1.5 Overall Stability Diagrams

As above, we go from a quantity Xg to a
quantity Xy by means of a proportionality relationship:

<

sv
Scale v, :vg, = v 0.4 (11.19)

1,331
Scale 1. : - —— Ly max (11.20)
L i " s W

zVIIID.!

Scale 2z :2,=25 3 (11.2L1)

S max lu

[note: lu = read]

11.2 Change in Operating Point of a Given Converter

Let us assume a glven converter, i.e. operating at

a nearly constant voltage VS as a result of closed loop

operation and with the elements L, C and r with glven values.

The operating point of this converter changes when VA
varies and/or when RS (or IS) varies. During such an operating

point change, the converter changes class. TIts behavior then
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corresponds to curves other than those used previously.

During a change in operating point, ¢ and I' are constant,
but M and/or A vary.

N
(o)
\5

Below we are going to give the equations allowing us to

calculate these variations.

Consider a converter for which all of the values of the
elements have been calculated for nominal values Anominal’
Mnominal’ Jnominal' If we use this converter with a different
M (different VA) and a different J (different Is), the equations
which follow give the value of A for the new operating point.

11.2.1 Buck (0 < M < 1)

1. Nominal values in continuous conduction

This is the case if Ammu< 2

J

A = A . m - l.H 4 2
nominal® ~J 1N inal ir 4 (11.22)

The operating point iIn question is in continuous conduction.

J
minal , 1-M ,
4 -/;A” S 2| if As2 (11.23)
g nominal
B
f-?_ The operating point in question is in discontinuous conduction.
& 2. Nominal values in discontinuous conduction.

‘ This is the case if |A . .. >2




1 ."munu |

A-A \/ Toom , _ 1-M It A> 2 (11.24)
nominal J

|

!

| The operating point in question is in discontinuous conduction.

2 J
A _A nominal non._-_ 1-M 1r A <2 (11.25)
2 J 1-M
nominal

The operating point in question 1s iIn continuous conductlon.

11.2.2 Boost (M>1) QL_\

1. Nominal values in continuous conduction,

This is the case if: Anontnll <2 M i

2
.am'.("min-l) — L 1 Ao (11.26)
noainal” J N "nminclq

The operating point in question is in centinuous conduction.

2
5 %\
nom ominal M-1 -
A=) 24 S N CR— It A> o (11.27)

The corresponding operating point is In discontinuous conduction.

2. Nominal values In discontinuous conduction.

This is the case 1if Amm_m1 >2 8 il

07




% nal -1 "

The operating point in question 1s i{n discontinuous conduction.

2
A noninal Jom Mnominal __ M=l a "

The operating polnt in question 1s tn continuous conduct ion.

|

11.2.3 Buck=-Boost (M>0) 07

1. Neminal values {n continuous conduction,

T™his is the case n 36 )

Anodnu <2 mmn&nun

3 T
A.Anelhld :ﬂ 1eN sl 11 Ag2 (w) (11.30)

The operating point in question is in continuous conduction.

,,A : 3 .
- nominal _fom (1 ¢ M R te A2 aen  (11.31)

The operating point In question is in discontinuous conduction.

Nominal values tn discontinuous conductlion

o)
L O ]

This is the case 1f 8 catna > ? M oamtnar 'Y

Avl a2 10 A% aeny  (11.32)




The operating point in question is in discontinuous conduction.

2
A. A nominal Inom v o
2 J 1+M

i1f A¢2 wny  (11.33)

The operating point in question is in continuous conduction.

11.3 Change of Frequency for a Given Converter

The given converter is defined as in section 11.2.
If this converter has been calculated for the nominal values
Anom’ ¢nom’ rnom and Fnom it changes class if we change its
operating frequency expressed as F.

We obtain:
'non u
=P F (11.34)
r.r I
r if we go from continuous con= (11.36)
a -Am. ;ﬁ duction to continuous conduction
F
A=A hes
noa 3 if we go from discontinuous con-= (11.37)

duction to discontinuous conduction.

If we change the mode of conduction as a result of the

change in F, we use the following procedure:




s
Fnom —> Flim —

rd ra
A Equation of A A
nom 1im
mode 1 node 2
S TransifiIon between Equation of mode 2 using
mode 1 and mode 2 the limit values instead

of the nomimal values

11.4 Method of Utilization

In this section we do not claim to give the only
method for using the simulation results.

In effect, any designer familar with the results will be
1iable to use them in his own individual way.

Our intention here i{s only to provide the following: ggg
- a certain number of remarks of a general character
which may guide the user in his interpolations, increasing
safety margins, etc;
- a utilization method which should be capable of being
used in the greatest number of cases.

11.4.1 General Remarks on the Effects of
Variations in Parameters

The data which follow are approximate and may

turn out to be in part inevact for some systems. Nevertheless,
in the majority of cases they are satisfacotry.

a) The converters in the discontinuous mode have thelr
gain in high frequency which decreases 20 dB/decade.

The boosts in continuous conduction have their gain 1n
high frequency which decreases 20 dB/decade.

The bucks and buck-boosts in continuous production have
H their gain in high frequency which decreases 40 dB/decade.
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b) The high-frequency gain:

- varies as 1/M

- varles as ¢2

- practically does not vary with A for the continuous mode
- varies as 1/A for the discontinuous mode,

As a result, if we want to keep the same pass band equivalent

for a gilven system, we must:

- use the galn ¢ S—
g optim M optim
[ 2
- use the gain (_gmgg)
optim ']
- use Goptim when A varies, in the continuous mode /70
- use Goptim A/Aopt in the discontinuous mode

- in the case of the current loop, vary GAC and G as
indicated above.

c) If we want to increase the safety margin of a system by
to f

making its equivalent pass band go from f /X, we

optim optim

must:

- use the G /x in the discontinuous mode and for the

optim
boost in the continuous mode,

2
optim/x for the bucks and buck-boosts in

the continuous mode,

2
- use Goptim/x and Gm /x
optim

- use the gain G

d) The presence of I' # 0:

- 1s unfavorable for the discontinuous mode and for the
boost 1n continuous conduction,

- 1s favorable for the buck and buck-boosts in continuous
conduction,
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F
- is negligible 1f T < Fgpivalent pass band

11.4.2 Proposal for a Utilization Method

The main Eoint which happens to complicate the
optimization of the systems in question is the fact, described
above, that the properties of a glven converter vary with the

operating point.

Therefore Wwe should investigate what the worst operating
conditions are with respect to the stability and correct the
system under these conditions. Then, conversely, We determine
what are the operating conditions leading to the lowest
possible high-frequency gain of the output stage and we declde
whether or not the resulting reduction in performance is ac-

ceptable.

Taking into account what we have said In section e YL 1% A8 /T1
the high-frequency gain of the power stage is maximum if:
- M is minimum and

- A is minimum.

The various equations relating the variations of A to those
of J show that A decreases when J increases. The worst case
with respect to the stability is thus the one in which:

- M is minimum and
-J=1, 1.e. the converter delivers 1its maximum current.

The opposite case thus corresponds to the following:
- M is maximum and
- J is minimum.




12. Utilization Examples
ples are examples relating to boost

The following exam

converters and the reader is thus requested to refer to part

1 of volume 3.

12.1 Example 1: Boost Operating Always in Discontinuous

Conduction

Let us suppose a boost converter possessing the

following characteristics:

R > L.

vs-‘ov Is-lhlll thus

V, may vary from 30 V to 20 V

A

F = 20 kHz thus T = 50.10"6 (12.1)

We want the converter always to operate in dis
conduction and we expect to use it from IS =1 A to IS =
0.05 A. We can be content with a theoretical residual
ripple on the order of 1% or even greater, such that

We use a coincidence modulator with A = 5 V.__

continuous

C is small.

The parameter M may vary from 40/30 to 40/20, thus

1,33« M &2
(12.2)
f Eq. (11.28) easily shows that, for a boost in discontinuous
E: conduction, the quantity A/M decreases when M increases. Now
. Thus as M

re in discontinuous conduction if A/M > 2.

we a
inuous conduction.

increases we come closer and closer to cont

As a result, we begin the proportioning at M maximum and at

maximum,

Is




Let M = 2,

We should have & » » M, 1.e. A > 4, We take a margin of
A =5,

Thus we elect to operate with A = 5 when M = 2,
If we use Eq. (11.28) to ¢

alculate the value of A for
M=1,33 always at IS max:

We are going to proportion the

converter for the nomimal
values:

Mom = 1,33
#=0,1 (the relative residual ripple is
very roughly equal to ¢2)
R nom = 40.0Q
Eq. (4.4) gives us:
0,33 2 -6
L= i:_33 m . 40.50.10
L = 80 B (12.4)
Eq. (4.8) gives us:
C= L
an2.0,12.(2.10%2.80.10¢
M o (12.5)

The capacitor we have becomes purely resistive at 02 kHz.

N
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Thus we have:
May (12.6)

The power stage is at its gain maximum for M = 1.33 and
A = 3,5,

It is for these values that we are now going to determine /Tu
the correction networks.

We begin by analyzing the local stability curves for which
we have the value A = 3.8, sufficiently close to that which we
are interested in. We find that for the values ¢ = 0.1,

'=1 ang A = 3.8 it is impossible to obtain the local stability
for the gain GO leading to a regulation rate of #2%. Thus a
correction network is necessary.

We now refer to the indicative response curves for the
values ¢ = 0.1, 8 = 3.8, T =0 ang M = 1.6. On the curve in
question we read that the optimized correction network is a
network of the type G l$§E for which we have a simulation
value of G = 1.7 and a reduced value for T of 25 (Eq. 3.13).
If we substitute the true value of G using Eq. (11.5):

5
Gm ‘-1,7 E- 0.85
Since we are using values of M and A which are slightly
different from thcse of the simulation, we correct this
value by using the suggestlions given in section 11.4,1:

1,33 3,5
o -t 22
G =:0,85 1,6 3.8 " 0,65

We now calculate the value of the true time constant using
Eq. (11.14): ”
25.50.107" _ -4
t -———2—-—- 2.10
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We should therefore insert the following network:

-4 .
G, (p) = 0,65 ""‘f‘

N
\n

We can now refer to the other diagrams concerning this

and we not that:

- the overall stability is satisfactory, the reservations
of a general character expressed on this subject in the
report on the boost of course remain valid.

We now see what the minimum power stage gain conditions

Since Ig has to vary from 1 A to 0.05 A, we have:

0,05¢ 3 1 (12.8)

Eq. (11.28) gives us, for M = 2 and J = 0.05:

1 14,33 1
A.a.s\l:-ﬁg e o

The power stage is at its gain minimum for M = 2 and

A = 22,

If the correction network was a simple flat gain G = 1.7

expressed as a simulation value, these new operating conditions
would not pose any stabllity problems, prcof of which can be
obtained by looking at the local stability curve. The
equivalent path band would simply have moved back from 0.2 F

to:

0,2 L33 ;-;i-o,ozr-mn




But in the inserted network the zero which is involved
there is at F/25 = 0.04 F. There is therefore a risk of
instability since the network causes more phase shift at
0.02 F than at 0.04 F.

However, given the margin which exists for the indicative
response diagram of the optimized system, we can move back the
zero by a factor of three and place it at F/75 = 0.0133 F and
thus use the network with greater certainty in a vacuum:

- -4
6 (51 = 0,65 L5108
6.10 'p (12.10)

Remark: If, for example we were working with an instruction é_g
Vg = 5 V and thus a dividing ridge of ratio 40/5 = 8 on the

output voltage, it itc clear that 1t would be necessary to

multiply the gain of the network by 8 in making it change

to 0.65 x 8 5.

12.2 Example 2: Boost Functioning in Continuous
Conduction from J =1 to J = 0.2

Let us take a boost converter having the following
characteristics: =)

Vg=40V Ig=1Amax  thus Ry » 4052

VA may vary from 30 V to 20V
F =20 kHz thus T = 50.10"6
We want the converter to operate in ccntinuous
conduction from IS = 1 A up to IS < 0.2 A, but
the converter will nevertheless be used from
IS = 1 A up to IS = 0,05 A, There 1s no
particular requirement with respect to the
residual ripple.

We use a coincidence modulator with A = 5 V.

(12.11)
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Thls time we will consider Eq. (11.26). The most
unfavorable case for the transition into discontinuous
conduction is when M = 1.33. Thus this is in the ~ase when

we should be at the boundary between the modes. Therefore
we have:

M~1,33 —-.Au.-ZH-LGG for J=0,2

Hence, for M = 1.33, we have A = 2,66 0.2/1 = 0.53 when J = 1,

We are going to uce the following nominal values:

Hm = 1,33

A, o= 0,53 (12.12)
Snom = 40
For the results relating to the boost we find that it is /7

Impossiblie to arrive at a satisfactory result with ¢ = 0.1.
Therefore we assume:

g =0,03
(12.13)
Eq. (4.3) gives us:
20,33 1 -6
L ’—‘3—3—2- m .40.50.10
’
L=0,7mH (12.14)

Eq. (4.8) gzives us:

1
Cw=
an.0,09%(2.1092 0,7.10-3




The condensor we are using becomes resistive at 10 kHz.
Thus we have:

Ma2 (12.16)

The power stage is at its gain maximum for M = 1.33 and
A = 0.53.

It is for these values that we are going to calculate the
correction network.

Consulting all of the results relative to the boost, we

then find that for ¢ = 0.03 no satisfactory solution exists
for a A as low as 0.53.

T™wo approaches may then be adopted:
a) We can try to work with a larger A, in other words we
allow the transition into discontinuous conduction to
take place for a current clearly greater than 0.2 A.
This does not seem to us to be a logical solution
because it amounts to optimizing the converter in the
continuous mode (which is the most delicate) while it
will operate most often in discontinuous conduction.
b) We decrease ¢. For example, we take: 78

¢ = 0.01 (12.17)
which amounts to using a capacitor:
C'.‘.‘wOOr.r (12.18)

In effect, for the results of the boost ve then find that the
problem has a solution by using a current loop.
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While observing the development of numeric values when
A varies from 0.2 to 0.8 then to 2.6, we see that this
development 1s roughly of the type:

A _c* S4 ™.
Az Gz

Therefore, as a result, we are going to interpolate from
the values A = 0.2 and A = 0.8.

For A = 0.2, we read G = 1.4 and Gy = 1/17.
For A = 0.8, we read G = 4.6 and G, = 1/30.
Interpolation:
We have o BA®
t a5 (0.8) 0,858
hus "" ﬁ -_— X = U,
0,858 )
§ G 0,53 -
ﬁ'(a"é') — 9= 32
e ; * =-0,4
Jikewsse =(35) =" '
5 - 0,41
ac _ (0,53 —s G, =0,04
1730 \ 0,8

Note: we may content ourselves with a simplified interpolation

in this case.

Now let us correct these values to bring them to the 79

good valu of M:

1,33
G=3,2 —i',—s' 2,66

in simulation values

1,33
Gy = 0,0 - 0,033
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We calculate the true values:

G = 4.2,66 %5 -1,33

1,33
Gy = 0,033 -2-:?5 40 = 0,66 (Eq. 11.9)

When at the pole of the current loop, T = 5 In reduced

value, thus:

) -6
5.50.10 -5
T- T = 4.10 (Ea. 11.1H4)

We thus insert the networks:

GI(P) = 1,33
144.10"°p

G, (p) =

Finally, we go to the minimum gain conditions of the
=2 and J = 0.5.

power stage, 1.e. M=2

Using Eq. (11.27) we obtain:

1 1,332 1 -
A rnf2.0,5 G55 T2 0,33 LG

The power stage is at its gain minimum when M = 2 and

Therefore, as predlcted, it 1s

when A = 7.5 (for J = 0.05).
1 operate correctly for

in discontinuous conduction when 1t wil

the gains in question.
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Part II. PwM Shunt
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I. Definition of the Different Reduced Parameters of the Circuit /82

As for the elementary units, these reduced parameters will
characterize each class of PWM shunt converter,

These parameters are dimensionless and they have the
greatest possible practical significance.

For defining these parameters we will make the following
assumptions:
- the values of the reduced parameters are defined on the
basis of the steady state of the system,
- this steady state is 1dealized at the level of the output

= V, = cte; IS = cte.

S

These parameters were defined in accordance with the
ESTEC during the meeting of Jan. 12, 1976. We are going to
discuss their definition in detail.

I.1 Reduced Parameter I' (GAM)

Tt is defined as: P 2247, Ry-Cp-F

F being the operating frequency of the PWM shunt.

As in the other types of elementary units, this parameter
characterizes the quality of the output capacitor. If T is
small, the capacitor is of good quality. If I' is large, the
capcitor is of poor quality.

i n s G A S e LI HO- SR ¥ AR

I.2 Reduced Parameter TE (GAE)

T,

RS o b £ A3l
SN SES

By definition: g £ 21 .r.c.r.

This parameter defines the delay when the diode D of the
shunt is put into conduction. The greater TE is, the longer the

N = delay.

‘R



T.3 Reduced Parameter I'S (GAS)

We define:

MNs &2 T.Rg.C,.F.

This parameter determines the size of the output capacitor
C2 of the PWM shunt by comparing the cut-off frequency of the
output network with the operating frequency of the converter.
At the same time, this parameter determines the size of the
residual ripple at the output.

I.4 Parameter MJ, Ratio of Solar Panel Current to Output

Current
We set up the following equation:

1
s Is
W =16

Obviously we have:

o(ﬂ(l.

This parameter defines the current operating point of
the system, i.e. the cyclic ratio of the transistor of the

power stage.

I.5 Miscellanecus

In addition, we have defined the ratio p which exists
between output resistor Rsandthe resistor RE in parallel on
the current generator of the solar panel.

R

a
9=“B

Everything which has already been said in the "Methodology
Report" in Part I concerning the reduced time constants and the
gains of the different modulators remains valild.



II. Transition from the Reduced Parameters_to the Machine
Parameters

In what follows we have assumed as known the following:
- the output voltage VS,

- the charging resistance RS’

- the operating period of the converter T.

These quantitiles VS, Rs and T relate as well to a simulated
system as to a real system. We deduce from them the quantities

of the circult to be considered:

ITI. Gain of the Correcting Amplifier Insuring the Required
+2% Regulation

In the same way as for the other elementary units, to
find out the minimum gain which ensures the +2% regulation, it
suffices to calculate what the maximum variation is of the
control voltage VC of the modulator (chax'vcmin) when Is and
Is vary within the specified limits, then to write the
following equation:

vmx'vc.nin_“v

- . R




For the coincidence modulator we have:

N
(o]

t
vc-nx. O s
max

3>

<
’
£
L]
3>

For the magnetlic modulators, we have:

3
Ve-V‘ ﬂ-‘l‘w.-ﬁ

0 o< T

With the definition and the range of variation of MJ
(cf. section 4) we easily have:

o.‘.T < tw‘< 009.T
Thus, finally we have:

v = 0.9 A

} coincidence modulator
= 0.1 A

vn!.n

Therefore, for the shunt with the coincidence modulator
we will have:

G - 0.9 A - 22.5
4N V‘ R

<I’

(]
In the case of the simulation, we will have:
G, SHUNT = 5.6

For the magnetic modulator we see that we cannot go below

MJ = 0.333. Ve * Y

v =0

emin

v
G0 = 25 v—"" 2s because we take v, = vy
R

¥ G, SHUNT = 25
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IV. Guidelines for Simulations and Optimizations to be /86
Carried Out

IV.1 Variation Range of the Parameters

In accordance with the ESTEC, we defined on Jan. 12, 1976
the following values for the reduced parameters:

P o 3. %.
MNe :+ 0.3 0.6 1.5
Ms « 100,  sco. 1000,
W : 0.1 0.5 0.9

From these we deduced the simulations and "optimizations"
to be carried out which retain a significant value for the

results.

IV.2 Simulations and "Optimizations" to be Carried Out

- Exhaustive study of the local stability with coincidence

modulator,
- simplified study of the local stablility with magnetic

modulator,

- investigation of the best correction system for the
doublets (fE, I's) with the coincidence modulator and
study of the variations caused by the extreme values of
MJ and by T,

- readjustment of the correction system for the magnetic

modulator,
- plotting of output impedances only for optimized systems.

As for the elementary units studied previosuly, we con-
scructed a flow diagram of the simulations to be carried out.
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