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MATHEMATICAL SIMULATION OF POWER CONDITIONING SYSTEMS. VOL.l: 
FINAL REPORT SIMULATION OFEL!KENTARYUNITS •.. REPoRT ON 

SIMULATION, METHOOOIDGY . 

R. PraJous, J. Mazankine and ~.C. Ippolito 
Centre National de la Recherche Sclentifique, Toulouse (France) 

Lab. dtAutomatique et d'Analyse des Syst~mes 

Part 1: Buck, Boost, Buck-Boost 

1. Introduction 

The purpose of this first part is to describe from a 
theoretical and conceptual standpoint the methods and algorithms 
used to simulate the elementary units buck, boost and buck-boost. 

To begin with we will discuss important general points: 
- the definition of similar converters, a definition which 

determines the generality of the results obtained and the 
effectiveness of the simulation (there is a safeguard 
against simulating the same system several times); 

- the definition of reduced parameters which characterize 
the converters and derive directly from the idea of 
similar converters; 
the transition from reduced parameters to machine magnitudes; 

- the calculation of the corrector gain giving at the minimum 
the required "except everything" regulation of ±2%; 

- the general philosophy of simulations and "optimizations" 
to be carried out. 

Then we will discuss in the following order the different 
parts of the simulations to be done: 

- study of local stability; 
- investi~ation of a good corrector network; 
- measurement of the output impedance, input impedance 

and input-output impedance; 
study of overall stability. 

Finally, we will end up by discussing the utilization of the 
results obtained by the simulation and we will give an example. 

2. Electric Systems and Similar Converters 

Let Fig. 2.1 represent 2 electric circuits £1 and ~ on 
which we impose the following restriction: C1 and ~ have the 
same number ot elements of type R, L or C. At any moment t, 

• Numbers in the margin indicate pagination in the foreign text. 
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such a circuit 1s thus completely determined it we know the m 
currents passing through it and the rn voltages at the terminals 
ot the m elements~ We label these cu~rents Ili and 12i and 
these voltages Vli and V2i tor £1 and ~ respectIvely, with the 
subscript i varying trom 1 to rn. 

z .. · .. .. ---~ ~--

\ 

Figure 2.1 

Definition: 
Circuit ~ is similar to circuit Cl if and only if: 

13k
". ky .... such that: I21 (1r'l't). ~ Iu. (t), Vi Eo [1, ..•• J 

It is obvious that if we know the behavior of the circuit 
£1 during the time interval [t l ,t2J then we know the behavior of 
the circuit ~ during the time interval [kTt l , kTt 2J. 

Among other things: 
- any non-periodic steady state of circuit Cl corresponds to 

a non-periodic steady state of circuit ~; 
- any steady state of period T for circuit Cl corresponds /3 

to a steady state of period kT T for circuit ~; 
- if such a state is stable for CI , it is also stable for £2' 



Jt8i:;;; It is clear that the above definition defines an· equivalent 

'g}f;;~lass ; -e~nI ~'Sa'"'' ] . whl'ch incltid'e's onlyc'irc'u'lt's' whlchare 
·':<",;'slmilar to one an'o'ther. 

Thus in order to a:n'allse'al'l' the eleotric cirouits, it is 
suffioient to analyse all the equivalence olasses, i.e. in 

!;practlce to analyse one cirucit per class. 

With respect to the studies to be done within the framework 
of ihis oontraot, suoh an l.dea is very important beoause it 
guarantees that a minimum quantity of simulations will be done 
but that nevertheless all the desired information will be present. 

It is very easy to see that two oircuits £1 and C2 are 
only similar if: 

- at two similar instants t and kT T they have the same 
electric structure, 

- any element R2 , L2, C2 of the cirouit ~ is related to the 
corresponding element R2 , L2, C2 of circuit £1 by one of 
the following relationships: 

3. Reduoed Parameters Characterizing the Converters 

We have just shown the importance of the idea of a converter 
olass. 

It is now fitting to numerically characterize a given class 
with the help of parameters. These parameters are necessarily 
dimensionless. 

Moreover, we have tried to give these parameters the greatest 
possible practioal signifioanoe. Thus, eleotronic engineers 
should find them easy to use. 

3 



3.1 Schematic Structure or Buck, Boosts and Buck-Boost 
Converters 

The converters we are considering may be represented as 
shown in Fig, 3.1. 

PO. -tIT 

o 

Fig. 3.1 

The converter is powered by a voltage source VA' 

The output network always consists of the output capacitor 
C (which is given an internal resistance r) and the charge, 
represented by a resistor Rs' at the terminals of which appears 
the output voltage Vs' 

Besides the above elements, the power stage includes the L2 
basic element conslsting of the storage inductor L through 
which passes a current I L• 

The three oonverters under oonslderation dlffer from one 
another only in the way in whlch VA~a L and the swltches are 
connected to one another. 

The circuit shown in Fig. 3.1 suffices to define the main 
magnitudes V and I of the power stage as well 8S the operating 
frequency or the converter: 

a ______ IF'!l����_U_'!!II ___ ...--___ , ___ ,, __________ _ 



(3.1) 

Note: transformer buck-boost. For this converter it is sufficient 
to express all o.f the magnitudes V J I of the power stage by 
basing them in the traditional way either on the prim~ry or 
secondary winding of the transformer. Everything we say will 
then be equally valid in this case. 

In addition, the parameters will be defined as follows: 
- starting with the steady state of the system; 
- idealizing this steady state at the output: 

" •• e'" , 'I, • C'" (the residual ripple of the output is 
ignored) • 

3.2 Parameter M, Ratio of Input and Output Voltages 

We set up the following equation: 

.el ~I 
A 

(3.2) 

This parameter, the physical meaning of which is very clear, 
characterizes the operating point of the system. 

Obviously we have the following: 

- lOCI I O~."l 

- IOOIt I lC.II<+" 

- a;ICIt-1OOI"I' I O.c. 4. +-

3.3 Parameter A, Current Ripple in the Inductor 

The current IL always has one of the two forms shown 
in Fig. 3.2. 



o 'T 
( .. ) (b) 

Fig. 3.2 

If we assume (Fig. 3.2): 

We then set up the following: 

(3.4) 

This parameter characterizes above all the inductance 
valup L: the greater L is, the smaller ~ is and vice versa. The 
value of ~ likewise enables us to know immediately if conduction 
is continuous or discontinuous. 

We simply show that: 

(3.5) 

Continuous 
Conduction 

lUCK A~2 

100ft A < all 

IUCX-BOOft' 4(.2 (II + 1) 

Discontinuous 
Conduction 

~>2 

4>2. 

A > 2 (" + 1) 



3.4 Parameter I, Value of the LC Filter 

We set up the following equation: 

(3.6) 

This parameter establishes the importance of the "filter" 

made up of the inductor L and the output capacitor C by comparing 

its imaginary tuning frequency with the operating frequency. 

- The smaller. is, the smaller the residual ripple (effect 

of r not included) because it varies as .2. 
- The smalleJ.' • is, the smaller the high frequency gain of 

the power stage, effect of r not included; it also varies 
2 as • • 

- ~lnce·the VQlu~ of L is fixed by 6, • infact characterizes 

for a given 6, the value of the output capacitor C. 

3.5 Parameter ra Quality of the Output Capacitor 

We set up the following: 

r is the ratio between the operating frequency and the 

frequency at which the output capacitor becomes purely resistive. 

- If r is small, the quality of this capacitor is good. 

If r is large, the quality of this capacitor 1s bad. 

In addition, r enables us to get an idea of the effect of 

r on the dynamic behavior of the power stage, the threshold 

being situated very roughly at r • 1. 

/7 

- The same is true for the effect of r on t.he residual ripple. 

These last two points are su~~arized in Table (3.8). 

j 
i 

I 

7 
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Effect of r 

On the dynamic behavior 
of the power stage 

On the residual ripple 

Table (3.8) 

r<l 

negligible 

negligible 

3.6 Other Reduced Parameters 

r>l 

not neglibib1e 

Ripple about r 
times greate" than 
if r = a 

In addition to the 4 above parameters, we can define 

other useful, but less important, parameters. 

3.6.1 Parameter J, Value of the Output Current 

We set up the following: 

I (3.9) 

This parameter :1.8 defined as follows: 

- for a given converter, i.e. VA' VS' L, C, r being constants, 

- when its output current is varied, i.e. the charging 

resistance RS. 

The parameter J cannot be used to characterize a class of 

converters since, by definition, IS cannot assume several values 

tor the same system. 

By contrast, J is useful in studying a given converter, as 

we shall see later on. I 
I 



3.6.2 Parameter Sa Saturation of the Magnetic 
Cores 

For a magnetic circuit, in principle a transformer, 
we set up the following equation: 

BS4turat1on 
" B 

IDIlX 

We will then always take 8 = 1.33. 

3.6.3 Maximum current in the Switch 

(3.10) 

For a real system the current in the switch 

transistor for transistors is limited to a given value. 

Without having to define a new symbol, we agree that: 

IL limitation -=-----. 1 33 XL max nominal ' 

3.6.4 Reduce Time Constants 

(3.11 ) 

It is obvious that any time constant, in order to 

bt reduced, must be reduced to the period T. 

We therefore set up: 

(3.12 ) 

From this it follows that F and the cut-off frequency 

corresponding to T are in the ratio ~: 

I_L .:!a 
2lt't, ~ (3.13) 

, -! , 

:" j 

9 
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3.7 Remark 1: Modulator Ga1n 

The defin1t1on of the s1m1lar c1rcu1ts g1ven 1n sect10n 
2 can of course be app11ed to a converter 1n 1ts ent1rety. 

Nevertheless, we w1ll cons1der the basic c1rcu1t shown in 
Fig. 3.3 

F 
, , 

V~~ ~~E1 hon E.\:a~e. c:l .. 
G1(p) , MM......, _ C _ .... , 

l>Vla.sQ nee. 1:c. - :t"'to~~s r--
d .. 

B CCMftM~h:.~' on 

D R,e.to&.Ar Ac:. 
'\ ' Gta (p) • \ . E Rdou," pr\",,~' 

; 

Fig. 3.3 

Key: A) modulator 
B) switching 1nstants 
C) power stage 

D) AC return 
E) main return 

Vs 

This circuit reveals three distince parts of the converter: 
- the power stage, 
- the modulator, 

- the correcting networks Gl(p) and G
2

(p). 

The similarity rules should be strictly applied to the power 
stage. 

By contrast, we can see that although the modulator also 
appears in the form of an electric circuit, it is not necessary 
that this circuit obey the similarity rule in its totality, but 
only at its output and input. 



In other words, 1n comparing a converter 2 to a converter 1. /11 

it suffices that: 

(3.1~) 

In partioular, the characteristic equation of the coincidence 
modulator: 

v (t) .. ~(t) • 0 for t· \. (3.15) 
0 

may be written as follows: 

k voct) .. k c5tCt) • 0 for t • t 
ft 

From this it follows that the gain of the (~o1ncid~nce 
modulator is unchan~ed if we multiply the amplitude of the 
sawtooth by k and the control signal by the same factor k. 

For the sampling-delay madu1atol' with a f!:aln of OM • T/A, 
we end up with the same conclusion. 

As for the magnetic modulator, it was directly defined in 
a reduced way in the "Implementation Report." 

3.8 Remark 2: Correcting Networks 

The correcting networks are defined by their transfer 
function and not by a cirouit. 

Por two similar converters, it tl'lS f\\lfflces that the 
reduced time constants are identical ~nd that the gains: 

- are the same for 01(P) 
- are in the ratio kV/kI for 02(P). 

11 



4. Transition trom Reduoed ~arameters to True Parameters 112 
or to Maohine Parameters 

The problem whioh we pose 1n this section is to go from 
reduoed parameters to finding a class of systems to the parameters 
of a partioular oonverter ot the class. Naturally this converter 
may be the one simulated and the equat10ns which we are go1ng 
to give are thus also those used for implementing the simulation. 

To make this tranSition from reduced parameters to true 
parameters it 1s of course necessary to start with numerical 
values which oharacter1~e the converter 1n question within the 
class. To do thIs, it is clear that the values for the following 
must be known at the outset: 

- a voltage. 
- a current. 
- a time. 

It is equIvalent and more convenient if we know the following: 
- a voltage, 
- a resistance, 
- a time. 

In fact, the following eguations assume that Vs~ and the 
operatins period T are known. 

4.1 Equations Specific to the BUCK 

In continuous conduction (6<2): 

I - M L-­A .... ,. 
In discontinuous oonduction (6)2): 

~ III - M) IL ,. 
.. • 2 '--.' 

(l4.1) 

(l4.2) 



4.2 Equations Specific to the BOOST 

In continuous conduction (6<2 M): 

.. - 1 1 L.'-'- .R_.'1' 
.... 2 1:+-11 

In discontinuous conduction (6)2 M): 

II - 1 2 
L· -. a ·Ra·'1' 

II A 

4.3 Equations Specific to the BUCK-BOOST 

In continuous conduction (~<2 (M+l»: 

1 1 
L • i'+T . A 'Ra'or 

In discontinuous conduction (~>2 (M+l»: 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

4.4 Equations Common to BUCK, BOOST, BUCK-BOOST 

It follows directly from the definitions given in 

section 3 that: 

I· · ~ I A .. 
(4.1) 

(4.8) 

(4.9) " ~. -----
2 Jf .c.r 

13 



5. Gain or the Correcting Amplifier ensuring the ±2% 
Regulation Required 

A given converter is essentially subjected to two pertur­
bations: 

- the variations in input voltage VA 
- the variations in output current IS' 

The problem here is to calculate how these perturbations 
cause the output voltage Vs to vary as a result of their 
simultaneous action and, in particular, to calculate the minimum 
gain GO of the network Gl(p) ensuring in these conditions the 
±2S regulation required by the specifications (cf. the reports 
of the ESTEC-LAAS). 

It is useless to complicated calculations to make this 
determination. 
in the control 

VA and IS vary 

It suffices to calculate the maximum variation 

voltage Vc of the modulator (Vc max-Vc min) when 
in the specified limits, then to write that: 

v - y 
c ... Go C ;ain • 4 , v. 

(5.1) 

The problem thus becomes to determine Vc max and Vc min 
for each converter, and for these values it is clear that we 
have: 

For the coincidence modulators 
and sampling-delay modulators 

For the magnetic moculator 
(cf. the implementation 
report) 

v • t-__ 
C ... ,. 

IIU 

A 
T 

!. 
'1' 

3 
Vc • VI (l - ta.. 2T » 

2'l' 
O( t(IN< r 

(5.2) 



Allot the converters to be considered operate at J • 1 in ~ 
oontinuous conduotion (at. Report of the ESTEC-LAAS Meeting of 
June 25, 1975, p. 5) then end up by ohanging into discontinuous 
oonduotion when J deoreases, We know that: 

- in discontinuous oonduction, ton deoreases when J decreases, 
- in oontinuous oonduction. ton 1s independent of J. 

It is then very olear that: 
- tQlx ooours in oontinuous oonduotion for a value of M to 

be determined. 
- tON ooours in disoont!~~ous oonduotion for: 

mIn 

J • J min • 0.05. 

In these conditions very little error is committed by 
a3suming the following in all cases: 

~.l Buok 

In oontinuous conduction we have: 

~ " . . -- .. ". 
Henoe tON • T'~ax • 0.9 T (of. section 6.1) 

max 

and I "0 .. • O,t" t · O,t , 

"0 a1ft '& 0 

15 
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From equation (5.1) we then obtain: 

For the coincidence and 
sampling-delay modulators 

(5.5) 

Thus in the case of the 
simulation: 

o I 
GO • 22,5 ?,i" 

(5.6) 

For the magnetic modulator equations (5.3) gives us: 

L) v 
2T' • I 

U - 'l:. ... 
We see that with this modulator we cannot exceed M = 0.666. 

Under these conditions: 

v = 0 c min 

Hence: 

I ,. 

Thus, in the case of the 

simulation: For the magnetic modulator 

v. 
00 • 25 -, sin c e it is ass ume d V 1 = V R 

Va 
(5.8) 

., 11 

"," ~ 

1 
1 
l 

I : 

oJ 
1 

I 
j , ; 

I 
1 

1 
~ 
1 
1 

, , 
'1 
1 

, ~ 



H n 

n 

Thu 
imul 

In n lnu us ti n w hav 

A A ' -. - . . 
'I' 2 I v • ~ C .... 4 

Vc 111ft • 0 

u 1 n ( .1) iv u 

IGo -_. 12,5 VA I 
. -,"a It 

in h f h 

1"1 : 

~ 00 • 12,5 0,. 

,., %-BOOST--.-]-,-2 --. 

F l' h m ul h p n 

v • VI c .... 

'I' 1 ) 
V • v1 U"2' c 111ft ~ 

L1. 

M>1 

. ) 

F p h 

n 

II ul 

-1'\ 

VI .-4 
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Hence: 

(5.1l) 
, V1 a ___ • 19-v o ~& : . 

Thus, for the simulation 

h_·~9 
5.3 Buck-Boost 

(5.11) 
For the magnetic modulator 

(5.12) 

In continuous condu tion, we have: 

..... 
Hence ~ MIl .,." + 1 ... 

Since we consider that M = 1 (cf. he Report of the EXTEC­

LAAS meeting f June, 25 , 1975, p . 5) : 

1 ,. 
tOIl'" .,. r· 2' 

In these conditi ns w ob ain th s me r suIt as for h 

boost and it is h refer n t n cessary 0 r -do he alculations . 

lao ----..... • 12,5 !- J - _ .. --a y~ 

For the simulation 

(5 .13) 

For the coin idence and 
sampling-delay modul tors 

(5 .14) 



(5.15) 

For the simulation For the magnetic moculator 

I "o.a __ - It J (5.16) 

6. Guidelines for the Simulations and "Optimizations" 

to be Carried Out 
6.1 Variation R~nges of the Parameters 

In agreement wi t h the ESTEC (meeting of June 25, 1975), 
the follow1..ng values of th~ reduced parameters will be considered; 

I 0,1 I 0,033 

Fer ·the three types of converters 

r 

For the three types of converters 

0,6 

0,6 

~ \ .," I .,. 
-:---\' I 

I 1,. 

\ 2,' 

A \0, •. \ ~,2 \ 3,S 
IUCX-~S'r 

.\ .,' 

I · 

. I · 

.,5 

0,01 , 

7 

I 
I" I 
I 
\" 1 

(G.l) 

(6. 2) 

(6.3) 

(6.4) 

(6 . 5 ) 

(6. 6 ) 

( • 7) 

( .8) 

/20 
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Th xt1' m valu s of h iv n tJ,ts a1' m ibl wi h h I ' 1 

xt1' m v lu s f h iv n Mts nd wi h th nv r l' 
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In addition, we must consider the following: 

- 3 types of modulators, 
- 5 types of orrecting networks. 

Thus, in effect, we are considering 11,880 lasses of conver ers. 

For each class we are in erested in the followin 

- the local stability, 
- the overall stability! 
- the response at a ste of out ut current, 

the output, input and input-output impedan es. 
Thus we end up with 71 , 2 0 elementary resul s to be b ained. 

We give hese fi ur stern hasi~e that: 
- it w uld b absurd to want ob ain and formula su h 

a mass of r suI s, 
- a he limi ,i w ul be nearly imp ssibl to us his 

mass f resul s, 
he simul tion 1s a p werful 01 of analysis : all of he 

desired resul s may be bt in d for on w 11 de rmin 

sys m, 
he diffi ul y which exis s, 

fr m them syn h ti r suI s. 

With resp 

ob ain d, h f llowin 

h diff ren 

n ral l' mark 

1'1' la ively, in b ainin 

1 m nary r ul 

a.n b md 

b 



a) The lo~al stability: 

- perhaps obtained usin a mean nlcula ion time; 

- the search for a local stability limit only makes 
sense for a non "optimized" sys ern, i.e. a converter 

whose arnplifier-correcter is a sim le flat ain. In 

effect, we suppose, for exam le, hat ''Ie have de ermin d 
that su h a converter operates "bes " wi h 9 orre in 

amplifier of the ty e G l+T IP and wi h G = 5 n 
p 

T = 0.1. It is clear tha at his m men i is 

meanin less vary G in order a de ermlne a 1 al 

stability limi . 

b) The overall stabl1i y: demands 

tlme. 

a mu h al u a i n 

c) The resp nse at a s e f u u urren : 

- demands ra h r 11 le 1 n t l e ; 

- is m anin less for a sys e fun i nln a 1 " 
d) The de ermina 1 n f In u 

imp ' dan es: 
u n 1 u - u u 

- demands enormous am u of al ul ·1 n 1m 

s 

- is meanln 1 ss f I" a syst em ra In a 1 s" s." 

In addit1 n, he redu ra rs r an h 

differ n im 11 a ins : 

a) r n ~ are nuine 1"s. Th 11" 

value may be h sen €'~i n .r: 

t:. en bl ft hlm de i in I" n n-
v r ter in qu s i n is 1n ra In 

dis on Inu u n u 1 n \.'1" h s , he 
¢ hf'n enabl shim h h :;1 f u u 

a ael or. 

" 

1" 

I 

b) r 1" lat 5 an 1m rf ha f h ' :\ [! I ' • 

Th d a alu f r. r h 

tries ,,,hl h r 1 - a s 1 s 1 
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c) M relates to an operating point. In a given application, 

M varies because VA varies. ThuG, M has a nominal value 

and may vary by a certain percentage more or less around 

this nominal value. 

Taking into account all of the facts which we have just 

enum~rated, we adopted the following procedur'e which may be 

broadly outlined as follows: 

- exhaustive study of the local stability with coincidence 

modulator, 
- simplified study of the local stability for the two other 

modulators, 

- investigation of the better correction system for all of 

the doublets (i:l,~) with the conincidence modulator and 

study of the variaticns caused by the extreme values of 

M and by r = 3 or 7, 
- readj ustment of the correction system for the two other /24 

modulators and for one value of ~ and two values of i:l, 

- plot of impedances and study the overall stability 

for only the optimized systems. 

This procedure is shown in more detail in the synoptic 

diagram, Table 6.1, for one unit (buck or boost type). For the 

buck-boost unit the diagram has to be modified very slightly to 

allow for the fact that only one value of M is to be considered. 
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I'\J 
.e 

All the doublets 

"".rw 

Local stability with 
coincidence modulator 

All the doublets 
.,,6 

Local stabil i ty 

1 central value 
of M 

o 

Study of best 
correction system 
with coincidence 
modulator 

' Indicating 
... response 

Impedances 

Overall 
stability 

With s amp ling-delay 
modulator 

With magnetic 
modulator 

2 extreme values 
of M 

r = 3 or 7 

C/J • O.Oll 
A .. continuous conduction 
A __ discontinuous conduction 

• 
' -1 central value of m 

r.O -. 
Adjustment of the 
correction system 

/ 
With sampling-delay 
modulator " With 

magnetic 
modulator 

Table 6.1. Diagram of the simulation procedure for one type of unit. 
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7. Study of Local Stability 

When we consider a linear system subjected to constant 

inputs, this system possesses an equilibrium state ZO which is 

such that (using variable of state notation): 

SCt ) - 10 .... !(t) _!o • to' t 
- 0 -

If the system is described by the traditional equation: 

• 
1-.S+8\1 - - -

(with, 1n our case u • U O = c.~) 
it is easily shown that: 

If we set: 

10 __ .-1 B '.!o 

o 
£\1 • Z - Z - - -

it is also easily shewn that 

~(t' - 'Ct-to)' !,!(to" ¢l = continuous s tate 
transition ma trix 

(7.1) 

The system is asymptotically stable ,(i1::_!(t) • 0), when 

~(x) has all its eigenvalues l es s t han 1 (absolute value) for 

"tx>O. 

If ~e are deal ing with a discrete ~ tne r system, Eq. (7 .1), 

takes the form: 

oz • t' A: • -n -0 
• = J~ v crete state (7. 2 ) 

trdnsitlon matrix 

We arrive at the asymptotic stability from the eigenvalues 

of • in the same way as in the continuous case. 
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The linearity of the system implies that: 

- !O is unique, 

- the definition of the stability is valid whatever the 

value of ~ZO. 

If we now consider a discrete non-linear system, this /27 

system may be described by the autonomous non-linear recurrence: 

Z 1· f(~) 
-ft+ - - •• 

and the equilibrium point ~o is defined by: 

this is first order cycle (7.4) 
of the recurrence (7.3). 

Taking the definition: 

_t is clear that: 

If A Z .. 0 
-n 

AZ 1'" II. A Z =-n+ - n 

(7.6) 

4f \ . wi th , • d1: 0 
-ft z· Z 

-ft -

Eqs. (7.6) define tl.e linear approximation of the system 

around Zoo 

The dis ~ete non-linear systew_ (7. 3) is said to be locally 

stable if its linear approximation around ZO is asymptotically 

stable. 

In contrast to 1 near systems: 



- zo is not necessarily unique, 

- there may exist other equilibrium points than the first 

order cycles, cf. [2-3-4J, 
~ is infinitely small. 

The converters which we are interested in here are d~screte 

non-linear systems [5J for which we know how to determine the 
local stability [5J. 

There exists a basic difficulty in analyzing the local 128 
stability using a simulation of electric behavior. This 
difficulty is connected to the fact that the local stability is 
a purely mathematical idea in particular calling for a transition 
to the limit. 

When a linear system is unstable and when it is "initialized" 

at a value ~o ~ !O, the absolute value of ~ increases 
indefinitely with n. 

When we are dealing with a locally unstable non-linear 
system, the amplitude of ~ remains limited. The system 
oscillabe~, either at a subharmonic frequency of F = liT (m order 
cycles, cf. [2J), or in a quasi-stochastic manner (cf. [3-4J). 
We eliminate the non-realistic case where other stable first 
order cycles would exist apart from !O (these cycles would 
correspond to non-oscillatory operating points different from the 
nominal point and which are eliminated by the electronic engineer 
for any real system by adequate safeguards). Thus, in all cases, 
the instability is characterized by the disappearance, in the 
steady state, of the strictly periodic operation of period T. 
By way of example, we can look at such oscillations in the similar 

graphs in Figs. 7.1 and 7.2 where the comparison saw-tooth ~(t) 

is given to serve as a time base. 
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In principle, the oscillation is present for various 

magnitudes existing in the system. In particular, it is 

impossible for the system to be unstable and for the successive 

tON to be equal to one another. As a result, the oscillation 
can be observed for the command voltage Ve' 

In addition, it may also be noted that IL is a more 
"sensitive" quantity (1.e. "whose variations are grellter") than 

Ve since, in a first approximation, IL varies as the integral of 
Ve' In fact, in the presence (f a very low frequency oscillation, 

the relative value of IL varies much more than that cf Ve' 

Since the information is discrete, it is necessary to have 

a value of IL and a value of Ve per period. Since ~(t) at the 
end of a tON is a discrete vector of state [lJ, it is clear that 

we should take IL and Ve at the end of the tON periods, which we 

will note IL(t ON ) and Ve(toN )' 

Thus the method of analyzing the local stability is based 

on the following procedure: 
a) The gain G of the error amplifier is set at the value 

G calculated in· section 5. 
o 

b) The vector of state ~o of the system is set (close) to 
the equilibrium point ~o. Under the circumstances, the 
voltage at the terminals of the ideal part of the output 
capacitor is set as close as possible to the deduced 
value of ~o and IL is set at 10% above the deduced value 
of Zoo This 10% difference is arbitrary and simply 
results in the fact that systems which are mathematically 

stable but whose stability range around ~o is very small 

are considered to be locally unstable. 
c) The system is allowed to develop long enough so that the 

transietn behavior is eliminated: we choose to take 110 T. 

d) We take the avera e of It(t oW ) and Ve(t oN ) obtained for 

t going from 110 T to 150 T, i.e. IL ave. and Ve ave. 



High amplitude oscillation at 0.014 F 
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e) We determine the maximum difference of IL(tON ) and 

Ve(toN ) with respect to IL ave. and Ve ave., i.e. 
dIL max and dVe max for t varying from 145 T to 150 T. 

f) We decide that the system is locally unstable if: 

or if 

I AVe I > 5' A • 0,005 

g) If the system is stable, we increase the gain of G to 

1.5 G and we return to (b). 
h) If it is unstable, we decrease the gain of G to 0.9 G 

until the system becomes stable again and we obtain the 
value of G denoted GF, the limit gain of local stability. 

Remark 1: Systems which are always stable. 

Some sys t ems may remain stable even if G ~ w or may only 

become instable for very high gains. 

In this case, the following procedure is followed. 

An increase in G causes an increase in the residual ripple 

in Ve' We measure the gain GM where Vc(t) reaches a value of 
+A or a value of 0 and we stop the increase in ain at the 

following value of GM: 

Although the coefficient 5 is arbitrary, GM may be considered 
in practice as an upper limit of the gain . 



Remark 2: Joint use of IL and Vc 

One might think of using only IL for doing the convergence 

test. Some systems have a non-observable ir.~t~bllity for IL(t ON ). 

An example of this is given in the analog graph shown in Fig. 7.3. 

Fig. 7. 3. Non-observable oscillation for I L. 

Remark 3: Limit syst ms of indistinct stability. 

It is possible to describe in an approximate manner the 

behavior of the system in question by a continuous linear 

model to which we will a ain refer in the following section. 

By means of this description it an b shown that some 

converters possess the followin property : the phase shift aused 

by the power sta remains very close to -n for a wide frequency 
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8. study of a tion Network Giving Good 

8.1 Correcti n Networks onsidered 

Using the syrnb ls used in Fi . 3 . 3, the differ nt 
correction networks whi h we will c nsider ar the f llowin , in 
order of increasing complexity : 

We have hosen to 

com romise betwe n 
4 0 t the frequen 

5 G, hus: 

ak 
h 

G1(p) • G • ( .1) 

• G 1+. !.e. G1 (p) 't' 

1+ .. P , advan e-retard ent red on 
h fre quen y f = 1/ nT . 

a I: /5', his value ns i u in a d 

b ain 11 s 1 a in whi h equals 

f nd h hi h- fr qu n y in \\Th i 1 ua1s 

G ( ) • G 1+ "t p 
1 P , 't'p in 

o a 
f = 1/ n t ; 

urn 

n f 
in 

1 

h 
u 

( . 

Examination f hi li 

h followin r m rks : 

f n w rk imm i Y 1 

- sin n w rks (8 . n a ur in r 

they obvious ly r suI in i rr r f n h u1 
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only be optimized with respec t to their transien res onse; 

- ne~works (B . l) , (B . 2 ) and (B . 5) must necessarily be such , 37 

that G ~ Go (minimum gain defined in section 5 . We end 

up with this conclusion for the current loop (B- 5 ) because 

si~ce the mean value of the current Ie is 0, in continuous 

conductance, the current loop cannot improve t he static 

regulation of the main 10 p . 

B. 2 Method of Studying the "Best" 

Among the fa t ors which charac eri ze the erf rman e 

of a corrected system, some 

sense tha ' any system whi h 

rejected as being unsatl sfa 

the r le f 

- the loca l stabili y; 

- the recisi n of re ula i n ( f. s 

- the indicative response, :'es nse 

urr n (fr m IS I / ) , \oJhi h us 

de ermined wir _ow. This Idnd \oJ 1 51 

( c r. Mee in of une 25 5 . 
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The preceding constraints thus have to be completely 

satisfied. By contrast: 

- the output, input and input-output impedances appear 

rather like a property of a given system for which it 

is up to the designer, the person who uses the result, 

to decide whether or not it is satisfactory; 

- the same applies for the overall stability, in certain 

cases, when the range of instability in the space of the 

initial conditions is such that the designer may decide 

that it cannot be reached or that adequate limitations 

are foreseeabl e . 

Thu~ We have adopted a method which takes into account the 

above points and which is illustrated in the flow chart shown in 

Fig. 8.2. 

The main point, with respect to this flow chart, is that 

all of the studies involved here are not done on the hybrid 

simulation system. 

Since the simulation is only a method of analysis, such a 

task would be insurMountable. 

As a r esult of studies in done in another connection in 

this area of th~ LAAS on the theoretical level, we have ~ 

approximate co~tlnuous linear models of the three converters 

buck, boost and buck-boost in continuous conduction and 

discontinuous conduction [6J. The models, although approximate, 

give a good indication of the behavior of the system in 

question by giving the gain and phase diagrams of the approximate 

transmittances: 

AVa 
-- (p) 

A tON 
and 

37 
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from specific values of ~,~,r and M and from the machine values 

Vs = 0.4; F = 10; RS = 1 (see, for example, the diagrams in 
Figs. 7.4 and 7.5). 

The following parts of the flow chart shown in Fig. 8.2 

were done using thse models: 
- what is the simplest network which can be adapted? 
- predetermination of the parameters of this network. 

The simulation is used to: 
- adjust the parameters of the network taking into account 

the exact behavior of the system; 

- determine the exact impedances; 
- give the overall stability, which the approximate model 

cannot give. 

Thus it was possible to carry out this basic phase of the 
study of elementary units only by the joint use of a powerful 
but approximate theoretical method on the level of synthesis, 

and a method of exact analysis using simulation. 

9. Determination of Output, Input and Input-Output Impedances /41 

The notion of impedance is a notion purely related to con­

tinuous linear circuits. 

The converters in question are discrete non-linear systems. 

This implies the following obvious consequences: 
- the notion of impedance in the case of a converter is 

necessarily an approximate notion; 
- the corresponding measurement can be made only at a small 

signal; 
- the significance of the values obtained increases as the 

frequency in question decreases and their significance 
decreases as one approaches the frequency F/2 which 
represents a limit (SHANNON theorem). 



9.1 Theoretical Method Used 

Let us assume, therefore, Fig. 9.1, an impedance dipole 
Z(p) represented symbolically as follows: 

AXcp) 
~ 

Z(t=a) t AV(p) 

Fig. 9.1. Elementary dipole. 

The problem which we have to solve is one of determining 
experimentally (in some way) the function IZ ( jw)1 for a certain 
interval of variation of the angular frequency w. 

The difficulty basically stems fr om the fact that for the 
physical system (or for the analog simulation, which amounts to 
the same thing) we have temporary values 6v(t) and 6i(t). 

The mos t obvious method consists in applying to the dipole 
a signal 6v (or 6i) of sinusoidal form A i nwt and m asuring 
in a steady state the absolute value of the response 6i (or 6v) 

and setting up the ratio of the absolute values. 

This extremely traditional method ce r t ainly leads to the /4 2 

result but in our caGe it has the following drawbacks: 
- since the measurement 1s made for a small signal, the 

noise present in the machine is not negligible and we 
cannot be content with a measurement of the peak value; 

the data obtained must be processes, for example a 
orrelation process, and this treatment must be carried 

out for each value of w, which extends the si.:1l..1ation 

time; 
- when w is small, the measurement time required for one 

vlaue of w is long, approximately 2 x 21T/W. 



By way of example, it took us about 35 minutes to plot a 

curve I z (jw)1 using only 20 values of w. 

Therefore we used the method which we are now going to 
describe and which is based on the property that Z(jw) is the 

FOURIER transformation of aCt) .!l-l [I(P)]. 

Therefore let: 

(9.1) 

We br ak Z(p) down into simple elements: 

ZIp) 
(9. 2 ) 

assuming that there are no multi le poles nor zero oles and 
that the number of zeros of Z(p) is less than t he number f 

poles. 

We then have: 

~t e. + ••• (9. 3 ) 

The FOURIER transformation F(w) of z (t) is: 

-
F('" l 1 aCt) a -j* cSt (9. 4) 

This gives us: 

(9.5) 
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+ ••• C9.6) 

Hence: 

C9.7) 

Comparison of Eq. C9.2) and Eq. (9.7) clearly shows that: 

F(IIt) • Z(j~) 
C9.8) 

The basic principle of the method is thus to apply a DIRAC 

delta func tion ~i = IooCt), to measure the output ~v = Ioz(t) 

and to perform the integral (9.4) off-line. 

Theoretically, a single simulation giving z (t) is sufficient 

to obtain the entire curve IZ(jw)l, which represents a great 

improvement with r espect to the preceding method. 

9. 2 Adaptation of the Preceding Method to Our Case 

9.2.1 Determination of the Delta Function Response 

It is clear t hat it is not possible to directly 

apply a DIRAC delta function to the dipole in question. 

One possibility io to apply an impulse of finite amplitude 

H for a sufficiently short time T, Fig. 9.2, and compare this 

impulse wi t h a DIRAC delta function of area HT. The amplitude 

H must be compatible with the possibilities of the circuits in 

question. Moreover, since T is small, the energy supplied to the 

system is low and the correspondin response HT z (t) is of low 

amplitude. 



H 
... " 

• I •• 
. . 

t: -o 1:: 

Fig. 9.2 

Another method can be used. 

The behavior of the circuit is determined by the following 

equation of sta e : 

Thus: 

and 

If i is a DIRAC delta function i = Ioo(t), we have: 

!.(o-, i 0 

_
X(o+, • 81 

-0 

A 
!.(t) • • t !.(o.) •• 
b>o 

A 
t 81 

-0 

At 
vet) • Ie. 8. I aft) 

0-0 
b>o 

(9.10) 

The impulse response being sought z (t) is thus only the 

response of the cirucit in a free state but conveniently set to 

the value ~Io' 

For a real circuit, this adequate initial setting of ~Io 

can generally be determined very simply by examining the circuit. 
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We give to Io the maximum value compatible for BI with the 
- 0 

assumption of small signals. 

9.2.2 Discrete Evaluation and Integration for a 

Finite Time 

In the hybrid simulation we have infact only one 

value of v per period T of the converter, given the discrete 

nature of the behavior of these systems. 

In addition, v is only measured for a finite time kT. 

Eq. (9.4) becomes: 

F' (14 - (9.11) 

As a result, modified Eq. (9.6) gives: 

(9.12) 

(9.13) 

error term 

In the discrete form we in fact calculate: 

(9.14) 

By way of testing, we apply this met hod to a circuit of the 

second order \\' ~ red on the analo" part and such that: 



- continuous impedance is 0.1 

- resonance of 7 dB at frequency 1. 

The result is shown in Fig. 9.3 and one can see that it is 
very satisfactory. The oscillatory appearance of the curve at 
the low frequencies is explained very well by the form of the 
error term of Eq. (9.13) which, at the given kT, is sinusoidal 
in terms of w with an amplitude which increases when w decreases. 
In practice, this error is not detrimental because it manifests 
itself in the zones where the behavior of the system is the 
best known. 

•••• 

• 

Circuit of the Second Order 

Fig. 9.3. Example of impedance obtained by FOURIER 
transformat ion. 

In order to make a comparison with the first method, the 

obtaining of such a curve requires 90 seconds (essentially 90 

/46 
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seconds of processing on our CII-MITRA 15 computer) for 200 
values of w (thus for a very detailed curve). 

Since the main portion of the time is the processing time, 
in order to improve the results while decreasing the noise, we 
in fact make 10 successive firings in acquiring the z(t) values 
(which requires only 30 seconds) and we take the average of the 
samples of the same order before actually processing the data. 

9.3 Output Impedance 

Let us consider the output network of the converters 
(Fig. 9.4) to which a DIRAC impulse roo(t) is applied. 

o o o 

Fig. 9.4. Ap,lication of a DIRAC impulse of current to the output network. 

Immediately we see that the effect of applying the impulse 
at t = 0+ is to create at the terminals of C a discontinuity of 
the first kind of value 

(9.15) 

On the input side the network is either in the air or 
connected to the inductor L. In both cases this connection 
does not occur. 



We therefore obtain zs(t) by the diagram shown in Fig. 9.5 . 

~ 
L 

o o 

v.~ ___ _ 

o 

o 

Fig . 9.5. Obtaining in practice the out ut impulse 
response . 

The result is given in the reduced form: 

(9.16) 

In a first approximation, the output voltage Vs may be 

broken down into the sum of a continuous value and a residual 
ripple whose form does no t vary at small si nals. It is f r 
this reason that it is sufficient to measure 6Vs per period 0 

obtain directly he variation in the mean value of Vs ' 

9.4 Inpu - Output Transmittance 

By definition, this is the followin quantity: 

(9.17) 

This is a dimensionless quantity for which we must s eak of ~ 

transmittance and not impedance. 
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Since the measurement of this quantity requires the 

application of a DIRAC impulse on the output J. ~S is determined 

at the same time as Zs' It suffices to measure ~IA and ~VS 
after applying the step Yo' 

The determination 

that of the mean ~VS' 
during the course of a 

state period. 

of the mean ~IA is not as obvious as 
Fig. 9.6 shows what IA can look like 
steady state period and a transient 

t 
0' T 

Fig. 9.6. Variations in I A. 

We see that it is not sufficient to know ~IM in order to 

know ~IA ave. 

The following procedure is then used: an auxilIary 
integrator reset to zero at the beginning of each period gives 

a t the end of the period the quantity loT IA (t) cSt • T IA ave. 
and IA ave. becomes directly acessible on the analog wiring 
no matter what the form of I AJ i.e. whatever the converter. 

Remark: ~S in continuous conduction. 

Continuous TES ' i.e. TES(O) may be calculated in a very 
simple manner. 



In the steady state we have: 

ave. (9.18) 

I .or VI 
Thus: " • -. M ave. 

Is.or V" 
(it is assumed that the gain is sufficient 

such that V = C~ ' ). 
S 

We therefore have: 

which gives us R very simple way of 'erifyin 

obtained. 

9.5 Input Impedance 

Given the electric nature o f the syst em 

the in ut terminals , in order to measure t he inpu 

(9.19) 

nne ed to 

impe dance it 

is clear that i t is necessary his ime _t_o~a~p~p_l~y ________ ~ ____ A 

and measure t he variation 6IA ave resu l ing fr om 

We thus de te rmine an input e . 

The correctness of he abov reas onin is verified by he 

fact that the inpu admi an e de reases wi h he frequen y, 

which must necessarily be ··he case in or e r f r he me hod 

discussed m section 9 . 1 0 be a pli abl (number of ze r s 1 ss 

than the number of poles). 

Dependin on the m ment considered withil h erioti, he 

source VA 1s connec ed 0 he indu 

(Fig. 9.7). 

r L or i 1s no c nne d 

9 
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L 

o 0 

Fig. 9.7. Connections of VA to the converter. 

We define: 
/51 

K 

time in which L is connected (9.20) 

to VA 

T 

Suppose that we add to VA a DIRAC impulse Vo o(t). This 

procedure is purely imaginary: it does not have any meaning 

as such because of the discrete nature of the converter. 

Nevertheless, we can deduce from it an equivalent effe ct 

on the system. If L is connected to BA, applying the impulse 

causes a discontinuity of the first kind on IL and there is no 

ins ta~taneous effect on the other part s of the circuit . The 

equivalen t discontinuity on IL is equal to: 

II .Vo .1 
o L (9.21) 

For all of the converters the impuse response at the i nput 

is obtained by means of the circuit shown in Fig . 9.8. 

Remark 1: Values of K 

The coefficient K defined in Eq . (9.20) equals : 



o o 

Fig. 9.8. Obtaining the input impulse response. 

K = tON/T for the buck and buck-boost in the two conduction 

modes 
K = 1 for the boost in continuous conduction 
K = tON + tOFF/T for the boost in discontinuous conduclion. 

The following values are easily calculated: 

It • 1 

It • 2M 
A. 

Buck in continuous conduction (9.22) 

Boost in continuous conduction (9.2 3 ) 

Buck-boost in continuous conduction (9.24) 

in discontinuous conduction (9.25) 

Remark 2: Presentation of the result 

Although we determined an input admittance YA(jw), we in 

fact plot the input impedance ZA (j\l1t • Y ~j\l)' presented in the 
A 

reduced form: 

C;L26) 



Remark 3: Value vf ZA in continuous conduction. 

We have: VA IA ave. ~ Vs Is ave. = c~ 

(We assume that the gain is sufficient so that Vs and Is 

are ne~~ly constant.) 

Thus: 

(9.27) 

Key: moy = ave. 

Thus we have: 

(9.28) ZA(O) 1 
-- '--R . 2 

• M 

10. Study of the Overall Stability 

For this section we will refer to references [1-2-3-4-7J. 

10.1 Definition 

Let us assume a discrete non-l1near system described 

in the space of state by the recurrence: 

(10.1) 

A cycle C of order m of the recurren~e (10.1) is by 

definition a set of m vectors: c ·[~.:1' !.c2,"·'!c.3 

\ 

!c k+l - !(!o k)' 

!cl • !(!c.) 

k [1, ... , -1 and 

all consequent: 

(10.2) 



In th r w r s : 

if I E: C 
"1' , !n+. • !.- (10. ) 

C 1- n equ1l1br1um (l0 . 1) . 

C 1 stabl oy 1 1f h m tr1x 

8 ~ '+II I C dI"1l 
• E. C 
"1l 

(10 . 4) 

s 11 nv lu 1 h n 1 1n a s 1u rm . 

no y f q \1 1b1'1um 11 

" h b h vi r h w In n 1 n 1n h fram -
w rk f hi r L h a m1 1 
1ni i 1 f r by Eq . (10.1) . 

Th1 'Y ul f h f1r r r 1'1' n h n rm 1 

r 1 n n a y h Y t m. Any h r t!bl 

u1 i rium n 1 h l' U harm ni 
1 n r 1 a on . \II h v 

slre xarn f u h i n in i n 7. 

1f h Y m (10 . 1) 1s n h wh 1 

OJ ny s ny lu wh f 
6 nv 1" a bl y 1 f h f i rs r . 

V ry 1 r m .h x f r I'm nin wha 



the p.qui1ibrium sets are for a given recurrence, stable or 
unstable, and for plotting the limits of the stability ranges 
of the stable sets (cf. references mentioned at the beginning). 

These methods, which are especially designed for making a 
detai11ed analysis of the properties of a given recurrence, are 
not used in our case for the following reasons: 

- they are essentially algorithms which can be used in 
numerical calculation, 

- they require much calculation time, 
- the precise plotting of the boundaries of the stability 

ranges is only of little use for the user of the system. 

As a result, we used a method based on the following points: 

a) In the case of the converters in question the recurrence 
(10.1) is at least of the second order, sinc~ the power stage 
itself is of the second order. Of the correction networks given 
in section 8.1, the most complex is network (8.4) which is of 
the second order. The recurrence corresponding to the system 
corrected in this way would thus be of the fourth order. 
Analysis of this system would present very great difficulties, 
both in terms of calculation time and result evaluat ion time. 

As a result, in agreement with the ESTEC (cf. ESTEC-LAAS 155 
Meeting of Jan. 12, 1976), we decided to limit ourselves to 
systems of the third order. More specifically, we will study 
the systems of the fourth order in an approximate manner, as 
if they were third order systems. This approximation is 
perfec~ly justified. In effect, the pole p = -~/L2 present in 
networks (8.2) and (8.4) is situated beyond the equivalent cut-
off frequency of the system. 



In summary: 
- the "optimized" converters provided wi h networks (8.1) 

and (8.2) will be analyzed as seoond order systems; 

- those provided with networks (8.3). (8.4) and (8.5) will 
be analyzed as third order systems, the variable of state 

coming in addition to those of the power stage which is the 

output of the main inte ratoI of the network. 

b) The discrete vector of state in question is [~~] at the 

beginning of tON in the case of se ond order systems 

and[l~] in the case of third order systems. 

For each variable of stat x w define a maximum value and 

a minimum value xmax and xmin ' 

We onsider th t he range admissable initial 

conditions is the parallel pipe by the different m xima 

and minima. 

D is discr t ly evaluated by givin to ea h variable of 
Xmu -: Xmin Xmax - Xmin state x he 4 values (xa1n),(xlain + 1 ), (x

lIAX 
- 1 ,,(x

lDAX
)' 

The domain D is thus mad dis ret by 16 points in the ase 

of the second order and by 64 
ord r. 

ints in the cas f the thrid 

c) Then we set the system to a h of th valu s ~ D 

and which we hav just defined, and we observe if the sys em 

conver s or not towards he normal steady state (first order 
cy le). To do this we us xactly th same al rithm as for he 

10 al st bility. The only sli ht differenc is that th on-
v rgen e is not test d a 5% by at 10% or ev n m re, b cau e I 6 
the quality of th analog wiring us d for he ov rall stability 

5 
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is inferior to that of the wiring used for the local stability 

(in this regard, cf. the first part of volume 2). 

10. 10.3 Presentation of' Re's'ul't 's 

Fig. 10.1 shows an example of how the results are 
presented. We use a perspectIve representation' of the domain 

D which has been divided into discrete units 

A 
BUCK,STABILITE CL09ALE,M-0.67 
GAM=0.0BDELTA=0.J3PHI=8.10 
(i=l.~ 

c 
Pia" choi.i 

l'ord,.2. 

pour 

~ • • • • - . - . '. . . - - -. 
, t .. • • • • " . ... 

• • • • 
• • • <r 

I .. *,. • • • • 
V •• I" V ..... 
P'd .. Z.ZM •• 

B P'on Z.Z ... i" 
• • • • 

• • • • 
• • • • 

• • • • 

• • • • '''ftAX ••• 57 

• • • • US"IN • •••• 
• • • • ILftAX • •• 5a 

• . ' . • ILftlN ••••• 
IL ZftAX ••••• 

2ftIN ••••• 

I 

Fig. 10.1 Example of how the overall stability is 
represented. 

Key: A) overall stability c) plane chosen for the 
B) plane second order 



Each point of the domain D is represented by an alphanumeric 

character with a precise meaning: 

- the dot "~" means that this setting has not been analyzed; 

- the minus sign "_" means that the corresponding setting 

converged towards the stable first order cycle; 

the zero "~" means that the corresponding setting did 

not converge towards the first order cycle (instability). 

The symbols "_" and 1t~1t were choses so as to be very 

easily distinguishable by sight. 

Thus we have overall stability if and only if all of domain 

D contains only minus signs "_". 

To be sure, strictly speaking we are not absolutely certain 

because the discrete evaluation of the domain D is not very 

detailed, but nevertheless there is very little chance that any 

instability present will not be detected. 

For the second order systems the results are presented in 

the same way as for the third order systems, but only one of the 

four planes corresponding to the discrete evaluation of Z is 

used, the other three then being filled with points. 

The coordinates of the parallel piped D are clearly 

indicated and for more clarity we have discussed V ins t ead of 
s 

VK (since Vs ~ VK). 

Remark: Systems close to the local instability. 

- Some of these systems are locally stable and globally 

unstable. In this case, it is very common tha t t he s tabili ty 

range of the first cycle has a very restricted surface ar a (or 

volume), but nevertheless its form is very complicated allowin 

it to attain very elongated zones of D of the stable first order 

cycle. 



In addition, such systems generally meet with a high 
d~ ~ degree of sensitivity _n~ and, a fortibri, a sensitivity 
d&~ 

which incerases as k increases. 

In physical terms, this means that a small variation ~~ 
is going to result, for example, in a substantial variation 

in ~~+50' 

- In the case of the analog simulation, these two facts 
combine along wi t h the imperfections and noises to lead to the 
following phenomenon: the same system, set several times in 
succession to the same value, each time follows a different 
development. 

It may happen, for example, that an initial condition 
taken out of the domain of stability of the first cycle, at the 
end of a certain number of periods may lead to a discrete 
vector of state penetrating into the domain of stability and 
remaining there. 

As a result, when we are faced with a domain D simultaneousll 

containing "-'s" and "_'s", the onll valid information is that 
the system is locally stable and globally unstable. It is 

impossible to get anl indication of the topography of the 
"-'s" and "_'s" in D, except for certain cases which will be 
pointed out when we discuss the actual results. 

The example shown in Fig. 10.1 is precisely in this case. 

The example shown in Figs. 10.2 and 10.3 show the same system 
with a larger and smaller gain respectively of the error amplifier. 
Fig. 10.2 clearly shows that there are no longer initial 
conditions leading to stability and Fig. 10.3 shows that the 
system is globally stable. 



A 
BUCK,STABILITE GLOBALE,M-I.57 
G.AI1=,I. eeD~L TAal .• 33PH I-e. 1 B • • • • 

• • • • 
c-5. • • • • 

• • • • 

• • • • UI"AX ••• 57 

• • • • UI"!H .a .• 
• • • • IL"AX - •• H 

• • • • !L"IH ••••• 

• • • • IL ZftAX ..... 

• • • • ZltI"· •• M 

• • • • 
• • • • 

• • • • 

• • • • 
• • • • 
• • • • 

z 

Figs. 10.2 and 10.3 (next page). The system shown in 
Fig. 10.1 with different gains. 

Key: A) overall stability 
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BUCK~STA8ILtTE GLOBALE,M-S.67 , 
CAI1=8 '. 8SDEL TA-e ~ 33PH I-e. 1 e , ~ 
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- - - .. 
- - - -
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Z 
Fig. 10.3 

11. Utilization of the Results 

In this section we will use the following notation: 
- subscript S for the variables relating to the simulation; 
- subscript V (true) for the variables of the real 

converter in question. 

11.1 Transition from the Numeric Values ~f the 
Curves and Hard-Copies to True Value~ 

It is now assumed that we have curves or hard-copies 
corresponding to the values of 6., 4>, rand M'of the real 
converter which we intend to "optimize." 

The problem here is to go from the numeric values of the 
simulation to true numeric values. 



11.1.1 Gain 

The gain G of the error amplifier is involved in all of the results. When this amplifier does not have any correction function, i.e. when Gl(p) = G, there is no ambiguity. In the opposite case,' "th'e' 'c'on'st'ant G has the' in'e'an'1l1g' "d'effned by Eqs. (8.1) '- ,(8.5). 

When the simulation and the real converter belong to the same class their loop gains are identical. This: 

Gs·c.,_·<\ts • Gy.GNY'~ ( ) "'lIB 
11.1 

A dtON with GM = modulator gain D --­
dYe 

Gp = power stage gain ~ 

For the coincidence modulators and sampling-delay modulators, GM is of the form T/A. We therefore obtain: 

(11. 2) 

The quantity T dVs/dtON is proportional to VS' Thus: 

G. 
v .. Vsv 

(11. 3) A. · Gy "v 
Hence: 

~ VII Av 0,. cay. G. - ' . G 0;1 A. Vsv • Vsv 
(11. 4) 
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Thus, in order to go from the gain read on the aS curves to the 

ture gain, we have: 

for the coincidence and 
sampling-delay (11.5) 
modulators 

The operation of the magnetic modulator, such as it has 
dko" V .. 

been defined, leads to a constant quantity dVe. T which is 

equal 0 2/3. OM in the case of the magnetic moculator is 

thus proportional to T/Vl = ~/Vs since it is assumed that Vl = 

VS· 

Eq. (11.1) then becomes: 

(11. 6) 

As above, the quantity T dVS/dTON is proportional to 

Vs and we obtain: 

Thus: 

for the magnetic 
modulator 

(11. 7) 

The same line of reasoning is carried ut for the gain of 

the current loop, but Eq. (11.4) becomes: 

G ....... G .... 
s 
~ lea. G Ay. ISS. G Ay Y SI ..., 

..... ... -lJ lev AC8 A. ISV AC8 AI Y BY RSS (11. 8) 



Thus: 

Since we have assumed RSS • 1, we obtain: 

for the coincidence and 
sampling-delay (11.9) 
modulators 

For the magnetic modulator, Eq. (11.6) becomes: 

'1'. (dIe ) 'l'y (dIe ) 
G - - -G --

ACS • Y 58 dtOll N:V Y sv dtON 
S Y 

(11.10 ) 

The quantity T dIC/dtON is proportional to VS/RS' hence: 

I GACY .. GACS'~ I 

Vsv 
- G .. _. y 

..... sv 
1 ;;; 

for the magnetic 
modulator 

11.1 . 2 Time Constants, Poles , Zeros 

(11.11 ) 

(11.12) 

This time we will consider in a correction 
network a term of the form (1 + TP) located either in the 
numerator (the zero case) or in the denominator (the pole case) . 

For all of the elements it is clearly indicated "pole 
(or zero) at F~" Everything is produced to the operating 
frequency F and, in accordance with the definition given in 
section (3.6.4), the corresponding reduced time constant is: 

I~ - x 
(11.13) 
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As a re~ul 

1 . 1 4 

11.1. 3 Curves as e Fun i n of Time L.:.. 

Thes ar curves f 1" S nse o a urn in 

out u urrent . 

They may be re resen e in tw f rms: 

a) flVS( ) . We use he variabl ex r sse in 1" e 

values (flVS) b m an s f h f llow n u ·i 

.!!.v • 
I sv 

( . 1. 

(By I Lmax 1s mean h n 

int 

11.1.4 ~ 

u n In u mp p an s 

Sin e he or ina o f 5 

in va ue f IZ/R I, 1 is lear h. 

111.1- I ~ I RSV I 



b) Input-Output Transmittance 

Direct utilization, the input-output trans­

mittance being dimensionless. 

As for the scale along the abscissa, we have 

11.1.5 Overall Stability Diagrams 

As above, we go from a quantity Xs to a 
quantity Xv by means of a proportionalit; relationship: 

Scale 

Scale IL : iy.v • ~ 

Zv IIIAX 
Scale Z , 2..._ • ~s Z 

v S aax lu 

[note: lu = read] 

(11.18) 

(11.19) 

(11. 20) 

(11.21) 

11.2 Change in Operating Point of a Given Converter 

Let us assume a given converter, i.e. operating at 
a nearly constant voltage Vs as a result of closed loop 
operation and with the elements L, C and r with given values. 

The operating point of this converter changes when VA 

varies and/or when ~S (or IS) varies. During such an operating 
point rhange, the converter changes class. Its behavior then 
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corresponds to curves other than those used previously. 

During a chaltge in operating point, p and r are constant, 

but M and/or ~ vary. 

Below we are going to give the equations allowing us to /6 5 
oalculate these variations. 

Consider a converter for which all of the values of the 

elements have been calculated for nominal values 6nominal' 
M J If we use this converter with a different nominal' nominal' 
M (different VA) and a different J (different IS)' the equations 

which follow give the value of ~ for the new operating point. 

11.2.1 Buck (0 < M < 1) 

1. Nominal values in continuous conduction 

This is the case if ~ nominal <. 2) 

J 
A • A nom 1-M 

nominal' -J- . -:-1-~M~-­
nOlll1nal 

if A~ 2 (11. 2 2) 

The operating point in question is in continuous conduction. 

A • ./2 Anolllinal • J nom • 1-M V' J 1-M
noIIina1 

if A>2 (11. 2 3) 

The operating puint in question is in discontinuous conduct ion. 

2. Nominal values in discontinuous conduction. 

This is the case if > 2 nOl!linal 



Th 

Th 

Th 

Th 

A • A J J nolI • 1-" 
~lnal J . I-Mnoa1n&l 

if A> 2 (11. 4) 

r i n in 1n u s n 1ni n nu us ndu i n . 

J nOlll l-M . - -. 
J l-"nOlllinal 

01. 5 ) if 

r in in u 1 n 1 n n 1nu u n u 1 n . 

1. N min 1u n n inu u t1 u n . 

Th h f : I A I\OIIlnal <: 2 MnOIIlina11 
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The operating point in question is in discontinuous conduction. 

2 
A Anoainal 
u. 2 

if ~<2 CI.+1) (11.33) 

The operating point in question is in continuous conduction. 

11.3 Change of Frequency for a Given Converter 

The given converter is defined as in section 11.2. 

If this converter has been calculated for the nominal values 

Anom' ~nom' rnom and Fnom it changes class if we change its 

operating frequency expressed as F. 

We obtain: 

A A Pnoa 
• no. P 

,. , 
~ 

r.r 
~ 

if we go from continuous con­
duction to continuous conduction 

(11.34) 

(11. 35) 

(11. 36) 

if we go from discontinuous con- (11.37) 
duction to discontinuous conduction. 

If we change the mode of conduction as a result of the 

change in F, we use the following procedure: 
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Fnom 

~nom Equation of 
mode 1 

Flim r--------------------------; 
Alim 

Transi on between 
mode 1 and mode 2 

11.4 Method of UtilIzation 

mode 2 

Equation of mode 2 using 
the limit values instead 
of the nomimal values 

In this section we do not claim to ive the only 

method for using the simulation results. 

In effect, any designer familar with the results will be 

liable to use them in his own individual way. 

Our intention here is only to provide the following: 

- a certain number of remarks of a general character 

which may guide the user in his interpolations, increa sing 

safe t y margins, etc; 

- a utilization method which sh uld be ca Qble of being 

used in the greatest number of cas s. 

11 .4.1 General Remarks on the Effects of 

Variations in Parameters 

The data which follow are approximat and may 

turn out to be in part ine~act for some systems. Nevert heless, 

in the majority of cases they ar satisf ot 'y. 

a) The converters in the discontinuous mode have h ir 

gain in high frequency whi h de reases 20 dB/decade. 

The boosts in continuous conduction have their ain in 

high fr quency which decreas s 20 dB/decade. 

Th bucks and buck-boosts in continuous pro u tion have 

their gain in hi h frequency whi h decreases 40 dB/decade. 



b) The high-frequency gain: 

- varies as l/M 
_ varies as ~2 
- practically does not vary with ~ for the continuous mode 
- varies as l/~ for the discontinuous mode. 

As a result, if we want to keep the same pass band equivalent 

for a given system, we must: 

- use the gain G 
optia 

M 
M· 
optia 

- use the gain G ('opt1m) 2 
optia II 

- use Goptim when ~ varies, in the continuous mode 

- use Goptim ~/6oPt in the discontinuous mode 

- in the case of the current loop, vary GAC and G as 
indicated above. 

c) If we want to increase the safety margin of a system by 

~aking its equivalent pass band go from foptim to foptim/x, we 
must: 

- use the G ti Ix in the discontinuous mode and for the op m 
boost in the continuous mode, 

- use the gain Goptim/x2 for the bucks and buck-boosts in 
the continuous mode, 

- use Goptim/x2 and GAe j'X 
optia 

d) The presence of r ~ 0: 

- is unfavorable for the discontinuous mode and for the 

boost in continuous conduction, 
- is favorable for the buck and buck-boosts in continuous 

conduction, 



- is negligible if r < equfval~nt pass band 

11.4.2 Proposal for a Uti1izat~on Method 

The main point which happens to complicate the 

optimization of the systems in question is the fact, described 

above, that the properties of a given converter vary with the 

operating point. 

Therefore we should investigate what the worst operating 

conditions are with respect to the stability and correct the 

system under these conditions. Then, conversely, we determine 

what are the operating conditions leading to the lowest 

possible high-frequency gain of the output stage and we decide 

whether or not the resulting reduction in performance is ac ­

ceptable. 

Taking into account what we have said in section 11.4.1, /71 

the high-frequency gain of the power stage is maximum if: 

- M is minimum and 

- t:. is minimum. 

The various equa ions relating he variations of t:. to t hose 

of J show that t:. decreases whe J increases. The worst case 

with r espect to the stability is thus the one in whi ch: 

- M is minimum and 

- J • 1, i.e. the converter delivers its maximum current. 

The opposite case thus corresponds to the following: 

- M is maximum and 

- J is minimum. 



12. Utilization Examples 

The following examples are examples relating to boost 

converters and the reader is thus requested to refer to part 

1 of volume 3. 

12.1 Example 1: Boos"t Op"e"r"a"t "l n"g" "Always in Discontinuous 

Conduction 

Let us suppose a boost converter possessing the 

following characteristics: 

IS • 1 ~ thus Rs > 40.a.. 

VA may vary from 30 V to 20 V 

F = 20 kHz thus T = 50.10-6 

We want the converter always to operate in discontinuous 

conduction and we expect to use it from IS = 1 A to IS = 

0.05 A. We can be content with a theoretical residual 

ripple on the order of 1% or even greater, such that 

C is small. We use a coincidence modulator with A = 5 V. 

The parameter M may vary from 40/30 to 40/20, thus 

1,334: M 4 2 

(12.1) 

(12.2) 

Eq. (11.28) easily shows that, for a boost in discontinuous 

conduction, the quantity ~/M decreases when M increases. Now 

we are in discontinuous conduction if ~/M > 2. Thus as M 

increases we corne closer and closer to continuous conduction. 

As a result, we begin the proportioning at M maximum and at 

!s maximum. 
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Let M = 2. 

We should have d > 2 M, i.e. d > 4. We take a margin of 
d a 5. Thus we elect to operate with d = 5 when M = 2. 

If we use Eq. (11.28) to calculate the value of d for /73 
M = 1.33 always at IS max: 

A- 5 2 0,33 
1,33' -r-- 3,5 

we are going to proportion the converter for the nomima1 
values: 

H - 1,33 no. 

AflOII - 3,5 

" - 0,1 (the relative residual ripple is 
very roughly equal to ~2) 

RS DOlI - 40~ 

Eq. (4.4) gives us: 

L _ 0,33 
1,33 

Eq. (4.8) gives us: 

2 -6 
3,52 • 40.50.10 

1 
c- 2 2 42 -6 

411 .0,1 • (2.10 ) .80.10 

c - 80 f4" 

02.4) 

(12.5) 

The capacitor we have becomes purely resistive at 02 kHz. 



Thus we have: 

r - 1 (12.6) 

The power stag~ is at its gain max'imum for M = 1. 33 and 
t. = 3.5. 

It is for these values that we are now going to determine /74 
the correction networks. 

We begin by analyzing the local stability curves for which 
we have the value t. = 3.8, sufficiently close to that which we 
are interested in. We find that for the values $ = 0.1, 
r = 1 and t. = 3.8 it is impossible to obtain the local stability 
for the gain GO leading to a regulation rate of ±2%. Thus a 
correction network is necessary. 

We now refer to the indicative response curves for the 
values $ = 0.1, t. = 3.8, r = 0 and M = 1.6. On the curve in 
question we read that the opt1mized correction network is a 
network of the type G l+Tp for which we have a simulation TP 
value of G = 1.7 and a reduced value for T of 25 (Eq. 3.1 3) . 
If we substitute the true value of G using Eq. (11.5): 

5 
G - 4.1,7 40 - 0,85 

Since we are using values of M and t. which are slightly 
different from those of the simulation, we correct this 
value by using the suggestions given in section 11.4.1: 

G '0 85!..t1! hl - 0 65 --, 1,6 3,8 ' 

We now calculate the value of the true time constant using 
Eq • ( 11. 14 ) : 

-6 't'" _ 25.50.10 _ 2.10-4 
2 
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We should therefore insert the following network: 

(12.7) 

We can now refer to the other diagrams concerning this 175 
case and we not that: 

are. 

- the overall stability is satisfac t ory, the reservations 
of a general character expressed on this subject in the 
report on the boost of course remain valid. 

We now see what the minimum power stage gain conditions 

Since Is has to vary from 1 A to 0.05 A, we have: 

10,054 is ~J J (12.8) 

Eq. (11.28) gives us, for M = 2 and J = 0.05: 

1,33 1 22 
2 D,3l'- (12.9) 

The power stage is at its gain minimum for M = 2 and 

tJ. = 22. 

If the correction network was a simple flat gain G = 1.7 

expressed as a simulation value, these new operating conditions 
would not pose any stability problems, prcof of which can be 
obtained by looking at the local stability curve. The 
equivalent path band would simply have moved back from 0.2 F 

to: 

0,2 r 1133 li5 - 0,02 r - 400 .. 



But in the inser"ted network the zero which is involved 

there ia at F/25 • 0.04 F. There is therefore a risk of 
instability since the network causes more phase shift at 
0.02 F than at 0.04 F. 

However given the margin which exists for the indicative 

response diagram of the optimized syste~we can move back the 
zero hy a factor of three and place it at F/75 = 0.0133 F and 
thus use the network with greater certainty in a vacuum; 

() 0 "65 1+6.10-4, 
G1 P • , -4 

6.10 p (12.10) 

Remark: If, for example we were working with an instruction /76 

VR = 5 V and thus a dividing ridge of ratio 40/5 = 8 on the 
output v 1tage, it i~ clear that it would be necessary to 
multiply the gain of the network by 8 in making it change 

to 0.65 x 8 5. 

12 .2 E~ample 2: Boost Functioning in Continuous 
• Conduction from J = 1 to J = 0.2 

Let us take a boost converter having the following 
characteristics: 

v. • 40 V " I. • 1 A IIU thus RS;' 40.Q 

VA may vary from 30 V to 20 V 

F • 20 kHz thus T. 50.10-6 

We want the converter to operate in cc,ntinuous 

conduction from IS ~ 1 A up to IS ~ 0.2 A, but 
the converter will nevertheless be used from 

IS • 1 A up to IS • 0.05 A. There is no 
particular requirement with respect to the 
residual ripple. 

We use a coincidence modulator with A • 5 V. 

(12.11) 
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This time we will consider Eq. (11. 26 ). The most 

unfavorable case for the transition into discontinuous 

conduction is when M • 1.33. Thus this is in the ~a se when 

we should be at the boundary between the mode s. Therefore 
we have: 

" .. 1,33 -~U.ll. 2 H - 2,66 for J Ie 0,2 

Hence, for M = 1.33, we have 6 = 2.66 0.2/1 = 0.5 3 when J _ 1 . 

We are going to u~ e the f 0110wing nominal values : 

I 
HllOCI • 1,33 

A • 0,53 nUll 

RS • 40 noll 

(12 . 12) 

For the result s re lating to the boo~t we find t ha 1 1s L-l 
impossibj e to arrive at a s atisfRctor r es ul wi h ~ = 0 . 1 . 
Therefore we a ssume: 

(12 . 13) 

Eq . (4.3) i ves us: 

L.~ 1 -6 
1,332 0,53 .40.50.10 

(1 2 . 14) 

Eq. (4.8) ! ives us: 

c • 100 I'-P (12 .15 ) 



T:le condensor we are :lsing becomes resistive at 10 kHz. 

Thus we have: 

r.2 (12.16) 

The power stage is at its gain maximum ror M = 1.33 and 

I:. .. 0.53. 

It is for these values that we are going to calculate the 

correction network. 

Consulting all of the results re13tive to the boost, we 

then find that for $ = 0.03 no satisfactory solution exists 

for a t:. s low as 0.53. 

~o approaches may then be adopted: 

R) We can try to work with a larger 1:., in other words we 

allow the transition into discontinuous conduction to 

take place for a current clearly greater than 0.2 A. 

This does not seem to us to be a logical solution 

because it amounts to optimizing the converter in the 

continuous mode (which is the most delicate) while it 

will operate most often in discontinuous conduction. 

b) We decrease $. For example, we take: 178 

$ = 0.01 (12.17) 

\fhich amounts to using a capacitor: 

c ~ 1000 f"r (12.18) 

In effect, for the results of the boost ~e then find that t he 

problem has a solution by using a current loop. 
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While observing the development of numeric values when 

A varies from 0.2 t o 0.8 then to 2.6, we see that this 

development is roughly of the type: 

Ii. _c-

Therefore, as a result, we are going to interpolate from 

the values A = 0.2 and A = 0.8. 

For A = 0.2, we read G = 1.4 and GAC = 1/17. 

For A = 0.8, we read G = 4.6 and GAC = 1/30. 

Interpolatlon : 

We have 

thus 4,6 _ (0,8)X -+ x. 0,858 
' . ,4 0,2 

) 

l),858 
.JL.( 0,53 __ G - 3,2 
4,6 \0,8 

likewise !.l.IO,8)X ...... x - - 0,41 
30 \0,2 

~ • (0,53 .-. GAC • 0,04 
G )- 0,41 

1/30 \ 0,8 

~~ we may content ourselves wlth a simplified interpolation 

in this case. 

Now let us correct t hese values to bring them to the 

good vall' of M: 

G· 3,2 1,33 - 2,66 1 1,6 

0AC • o,o~ 11~!· 0,033 

in simulation values 



We calculate the true values: 

5 
G • 4.2.66 iO • 1.33 

1 33 (11 9) GAl: • O.U33 rn 40· 0.66 Eq. . 

When at the pole of the current loop, t = 5 in reduced 

value, thus: 
. -6 
~ • 5.50.10 • 4.10-5 

2lC' 

We thus insert the networks: 

G1 (p) • 1.33 

0,66 

(Eq . 11.14) 

G2 (p) • -5 
1+4.10 p 

(1 .19) 

Finally, we go to the minimum ain condi ions of the 

power sta e, i.e. M = 2 and J = 0.5. 

Usin Eq. (11. 27 ) we obtain: 

1 . 
0,33 - 7.5 

The power sta e is at its gain minimum wh n M = 2 and 

when ~ = 7.5 (for J = 0.05). Therefore, a pre~i t d, i is 

in discontinuous onduction when i will ra e orre ly for 

the ga ins in question . 
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I. Definit'fon o'r the' Di'fferent Reduced Parameters of the Circuit /82 

As for the elementary units, these reduced parameters will 

characterize each class of PWM shunt converter. 

These parameters are dimensionless and they have the 
greatest possible practical significance. 

For defining these parameters we will make the following 

assumptions: 
- the values of the reduced parameters are defined on the 

basis of the steady state of the system, 
- this steady state is idealized at the level of the output 

= Vs = cte; IS = cte. 

These parameters were defined in accordance with the 

ESTEC during the meeting of Jan. 12, 1976. We are going to 
discuss their definition in detail. 

I.l Reduced Parameter r (GAM) 

F being the operating frequency of the PWM shunt. 

As in the other types of elementary units, this parameter 

0haracterizes the quality of the output capacitor. If r is 
small, the capacitor is of good quality. If r is large, the 
capcitor 1s of poor quality. 

I.2 Reduced Parameter rE (GAE) 

By definition: r K ~ 21" .R.c.r. 

This parameter defines the delay when the diode D of the 

shunt is put into conduction. The greater rE is, the longer the 

delay. 



I.3 Reduced Parameter rs (GAS) ' 

We define: 

This parameter determines the size of the output capacitor 
C2 of the PWM shunt by comparing the cut-off frequency of the 
output network with the operating frequency of the converter. 

At the same time, this parameter determines the size of the 
residual ripple at the output. 

I.4 Parameter MJ, Ratio of Solar Panel Current to Output 

Current 
We set up the following equation: 

6 IS 
lIJ~iG 

Obviously we have: 

o < M < 1. 

This parameter defines the current operating point of 

the system, i.e. the cyclic ratio of the transistor of the 
power stage. 

r.5 Mis~ellaneou6 
In addition, we have defined the ratio p which exists 

between output resistor RS and the resistor RE in parallel on 
the current generator of the solar panel. 

Everything which has already been said in the "Methodology 

Report" in Part I concerning the reduced time constants and the 

gains of the different modulators remains valid. 
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II. Transition from the Redu'ced Parameters to the Machine 

Parameters 

In what follows we have assumed as known the following: 

- the output voltage VS' 

- the charging resistance Rs ' 

- the operating period of the converter T. 

These quantities VS' RS and T relate as well to a simulated 

system as to a real system. We deduce from them the quantities 

of the circuit to be considered: 

R· f.1ta 

C2 f"'S.T 

• 21r·1ta 

III. Gain of the CorrectinG Amplifier Insuring the Required 

±2% Regulation 

In the same way as for the other elementary units, to 

find out the minimum gain which ensures the ±2% regulation, it 

suffices to calculate what the maximum variation js of t.he 

control voltage Vc of the modulator ~Vcmax-Vcmin) when IS and 

Is vary within the specified limits, then to write the 

following equation: 

v -v 
OIIIAX c~ • 4 , V 

GO R 



For the coincidence modulator we have: 

t A 
Vc:aax • .: • T 

t A 
Vc:a1D • .: • T 

For the magnetic modulators, we have: 

(

ve • vI (1 - TON' :.r ) 

o <ta.< ~ 

With the definition and the range of variation of MJ 
(cf. section 4) we easily have: 

0.1.'1' < tON .< 0.9.'1' 

Thus, finally we have: 

V(3I&X • 0.9 A } 

vc:a1n • 0.1 A 
coincidenc e modulator 

Therefore, for the shunt wi th the coincidence modulator 
we will have: 

In the case of the simulation, we will have: 

Go SHUNT - 5.6 

For the magnetic modulator we see that we cannot go below 
MJ = 0.333. v -v 

CIIIU 1 

v - 0 em1n 
V 

GO • 25 ..!. - 25 because we take vl - vR v. 
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IV. Guidelines for Simulations and Optimizationstobe 

Carried Out 

IV.l Variation Range of the P"ar"amet-ers 

In accordance with the ESTEC, we defined on Jan. 12, 1976 

the following values for the reduced parameters: 

r o. 1. 7. 

r. • 0.1 0.6 1.5 

r. • 100. 500. 1000. 

IU • 0.1 0.5 0.9 

From these we deduced the simulations and "optimizations" 

to be carried out which retain a significant value for the 

results. 

IV.2 Simulations and "Optimizations" to be Carried Out 

- Exhaustive study of the local stability with coincidence 

modulator, 
- simplified study of the local stability with magnetic 

modulator, 

- investigation of the best correction system for the . 
doublets (fE, rs) with the coincidence modulator and 

study of the variations caused by the extreme values o~ 

MJ and by f, 

- readjustment of the correction system for the magnetic 

modulator, 

- plotting of output impedances only for optimized systems. 

As for the elementary units studied previosuly, we con­

scructed a flow diagram of the simulations to be carried out. 
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