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ANATYTICAL AND NUMERICAL INVESTIGATICON OF STRUCTURAL
RESPONSE OF COMPLIENT WALL MATERIALS

By

R. Balasubramanian’

SUMMARY

Theoretical analysis of an electrostatically driven wall system for a
compliant wall drag reduction program is reported. The electrostatic wall
system is capable of producing deflections of many orders greater than the
thicknesses and at small wavelengths. B&an intermediate large response theory

is used for structural analysis. The theoretical predictions are compared to

bench test results, and good agreement between the two is obtained. The effacts

of aerodynamic loads and perturbation elecixic fields on the theoretical
solutions are considered. It is shown that for wvery small wavelengths

(A = 2 mm) the aerodynamic effects can be estimated using potential theorxy
without loss of accuracy, and the perturbation electric fields do not affect
solutions as long as the deflections are less than one percent of the wave-
léngth. Resonance effects for this type of structure are shown to be fairly

small.

1. INTRODUCTION

Details of the compliant wall drag reduction program at Langley have
been discussed in a supplementary report (ref. 1) under the present contract
NSG 1236. It was pointed out in that report that passive walls with short
wavelengths and large amplitudes are extremely difficult to design. Extension
of grant NSG 1236 was given in order to design controlled active wall experi-
ments. The amplitude of surface motion desired was given to be in the range
of 5 % 103 @ to 2 x lO‘% m, the wavelength of the surface motion in the range

2,5 % lOf3 mto 6 ¥ 1073 m, and the frequency range to be between 300 Hz and

L Research Associate, Old Dominion Unlve*slty Research Foundatlon,
Norfolk, Virginia 23508. .
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2 kHz. After careful evalvation of existing techniques for active wall
experiments (refs. 2 to 4) it wvas decided to develop an active wall system using
electrostatic forces as loading to the structure. The choice of materials

for this system was narrowed to extremely thin elastomers, and the amplitude
constraint given ahove dictated large values of the ratio of amplitude thick-
ness. A neonlinear structural response analysis was conducted to determine
accurate surface motion predictions. In sections 2 to 4 the electrostatic

wall system is discusséd in detail, and in section 5 comparisons with experi-

mental measurements are reportad.
2, ANATYSIS OF THE ELECTROSTATIC WALL PROBLEM

The recent summary paper (ref. 5) suggests that low~-speed air experiments
for compliant wall drag reduction be conducted with controlled or active wall sur-
face motion to assess the nature of possible turbulent boundary layer modifications
due to the wall motion. Previous active wall experiments reported in the litera-
ture (refs. 2 to 4) used mechanical drivers; these drive systems are inadeguate for
producing high-Ffreguency, short-wavelength motion contemplated for active wall experi-
ments at Langley. The present work describes an elecitrostatic wall designed to
operate in a frequency range of 200 Hz to 10 kHz with two-dimensional standing waves
of wavelength 2 x 10-3 to 1072 m. The structural surface is basically a thin elec-
trically ccnducting elastomer membrane with a series of transverse electrodes etched
on a PC board as exciters. The structure is periodic, supported at discrete lines
by transverse ribs. Figqure 1 shows the electrostatic wall system along with the
electrical hookup. BReferring to figure 1, the output from the transformer T
is biased at the center-tap and connected to the terminals A and B as indicated.
The conducting membrane surface of widih b and thickness h and isotropic
properties (Young’s modulus .E, density p, Poisson's ratio vy} is supported
structurally at separations of length &, where & << b; the menbrane surface
is electrically grounded. The electrodes are equally spaced from one another
and at a separation H from the membrane stxface, and they are connected
alternately to terminals A or B. Each periodic bay of the conducting surface

has a sealed cavity of volume V(H X & X b) underneath it.

The electrostatic wall model is designed to operate at a frequency range of
200 Hz to 10 kHz. The largest dimension of the model is about 0.4 m, speci-
fically for testing at the 7 in. % 11 in. tunnel facility at Langley. The

largest nondimensional speed is

ad




A
L _ 0.4 x 27 x 10000 << 1 (2.1)

o 3 x 108

E

°|

where w = 21rfmax and c, is the speed of light. Hence, the electric Ffield

between the electrodes and the membrane is guasi-static.

When the electrodes carry voltages, an electric field is set up between
the membrane and electrodes and the mewbrane is subjected to a force field.
The membrane daflects under this loading thereby altering electriec field
distribution. For the case where the electric field is only a weak Ffunction
of the surface undulation, it is possible to uncouple the electric field into
a primary f£ield (field with no structural motion) and a perturbation s=condary
field which is dependent on the amplitude of the structural motion. The deflec-—

tion of the surface can also be split into a primary deflection (under the loading

due to the primary field) and a perturbation field, i.e.,

E=Eg + By (w,Bp)

i

w W(éu) + wy (w{Bg) . J;I) {2.2)

~

where Ej << Bg and hence w) << w(Ep)
3. STRUCTURAL ANALYSIS OF THE MEMBRANE ON PERIODIC SUPPORTS

3.1. Basic Approximations to Structural Analysis

We shall make the following assumptions with regard to the structure under
consideration:
(1) The structure is a thip elastic membrane with isotropic properties

(Young's modulus =, dJdensity p and Poisson's ratio = v).

(ii) The structure is rectangular, flat, and simply supported periodically
at distances &. Each periodic bay is identical with regard to the loading

on it, etc.

'.(iii) Beneath each bay of the structurs is a cavity which is filled with
an incompressible fluid. Hence any transverse motion of the structure shonld

be so as not to decrease the overall volume of this cavity.

=1

g

'E'.
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3.2, Justification of the Basic Approximations

We shall now examine the above assumptions for the case of a typical

electrostatic wall as designed:

(a)- The elastomer used was a membrane of thickness between 2.5 um to 25 um.
(Four thicknesses were actually used: 25 pm, 12.5 pm, 6.25 pm, and 2.5 pm).
The membrane was uniform and was an elastic material with v = 0,3, p = 148 N/ma,

and E = 4 x 108 N/m2.. In order to make the membrane conducting, it was

aluminized on one side. The process of aluminizing did not change its uwniformity

nor its elastic properties in any considerable way, hence the validity of the

assumption (i).

(b) The membrane was usually stretched smooth and placed flat over supports
whiéh Weie nylon threads. The supports were spaced equally from one another.
The nylon threads were cylindrical in shape and were glued to the membrane with
a wniform coating of epoxy resin of negligible thickness. In all cases of
éonstruction the flatness of the surfacg was checked using an optical setup and
wag found to be extremely good. The excitation field on the membrane was
obtained using a symmetrically arrangéd array of elecﬁrodes which were etched
on a PC hoard. The aelectrodes had a flat geometry, were of identical thick-
ness and breadth, and were equally spaced. The alternate electrodes were
connected to tefminals A and B of a volfage source. Negligible current was
drawn by the resistance of the wires, and hence a constant potential difference
existed between terminals A and B. The electrostatic loading on the membrane
was therefore identical between bays for the form of applied voltages V., and

A
v (see section 4 for the analysis of the electrostatic loading). Other

firms of loéding that might occur on the bays include fluid loadings due to
static pressure differential appearing across the membrane (the static pressure
difference can be held constant or nulled using control valves for adjusting .
the back pressure of the cavities) and dynamic loadings induced by turbulence
(if tested in a wind tunnel with flow over the membrane) and loadings due to
fluid striucture -interaction.. The main'body of thé.present analysis and
experimental verification was for bench models where the fluld loadings were
zerxo, and hence the £luid loading effects are not considered here. However, in

a later section we include these cases and indicate how such cases can he

included in analysis for an accurate prediction of the ensuing structural motion.

e
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(c) The cavity underneath the membrane was of uniform depth of ahout
6 um or 10 uym. For a membrane with a width of about 0.2 m and periodic
length of 0.0L m or less, the volume of the cavity is 2 % 10~% m3 for the
worst case. For & volume change of 0.0L perceﬁt.of the total volume by any
form of motion of the structure, the bay would have to suffer a loading
of 1 kg/mz. Since the electrostatic forces acting on the membrane in each bay
are orders of magnitudes lower in strength, such a change in volume is not
possible during the motion of the membrane. In other words, the spring gsbiff-
ness of the cavity for motioms which tend to change the volume is many orders
of magnitude greater than the étiffness (of the structure + cavity) for
motions where no such compression occurs(i.s. the stiffness of the structure
in a deep cavity or in vacuo). For the example considered above, the stiffness

introduced by the cavity for motions where change in volume occurs is

k1 = AF/AV = 10° kg/m3,

which is very large compared to the in vacuo stiffness of the stzuture.
Based on the above discussion it becomes apparent that assumptions (i), (ii),
and (iii) in section 2.1 are justifiable approximations to a structural

analysis.

3.3. Structural Response Theory for Transverse Motions
of the Periodic Membrane

The undamped structural response in transverse motion of a simply supported

rectangular periodic membrane is given by

5 %y 9%y =

3e2  L12(1-v®) [\ax? oy? ¥ ax2 Y yy
. Eh3 . o e .
where the guantity ————— is the flexural rigidity of the membrane, p- is
12(1 - ve, '
the total loading (in vacuo external load and the fluid iocading), N, N, N
X ¥ Xy

are the midplane forces, and w is the transverse motion of the membrane.

To evaluate the midpiane forces, one must have an idea of the nature of the

loading on the structure. Based on a classification of the external loading we

3 2 212 2 2 '
ph32W+|: Eh :Ka + 2 ) w-—-[N 2V LN ﬁ-:.n aw] P®  (3.1)




L TR T L e e A e imm e e e e e e e 2

can classify three distinct regions of structural response. To fix the above

motion, let us use the following nondimensionalization.

w__ bh_ ..*E.\/Ez . - |
R T L NG T T gy W |

\
P - x_ - -

Equation (3.1) in nondimensional form is given as,

2 2 2 T2 ~ a2 _ a2 2
Ba+[: s :IYZ[B” 2 J a-[Nx—-a_ + 8 ey E_]a
otz li2(1 - v ax?  ay? _ ax2 ¥ ay2 Y axapd

(=]

n

P (3.3)

For the case where the initial stretching forces applied at the edges of

the membrane {(i.e2. the forges N r N, N
X0 vO xyO

of these tensile forces is to limit the amplitude of motion and thus raise the

are all positive, the effect

effective stiffness to transverse motion of the structure. When the initial ' . 1

fields ﬁxo’ ﬁyé' nyo are négative, the fields are compressive and instability

of the structure may occur (i.e. buckling instability).

When the initial compressive stresses are large enough to cause buckling,

the rectangular membrane will no longer be flat, but will have a deformed shape

o

under these compressive loads. With the presence of the cavity the initial
sﬁape of the membrane is very complicated possibly with local buckling within
the bay at some points, etc. This situation is rather unpredictable because
'6f-precise'kﬁowlédge of the initial tension or compression, especially for
such flimsy structures. Since it is very difficult to apply compressive
stresses while mounting, usually care-is_taken to keep the membrane with

zero initial tension. The subseguent analysis and prediction.aré simplified

by ithe assumption of zero initial tension.

The following classification of structural response requirements is made

‘with the aSsumption that the periodic bay is short compared to the width and

.the initial tension field is zero, i.e., b >> L and N _=N_ = N~ =-0.
- : S X0 vo Xyo




Regime I: small amplitude theory. - The region of applicability of this
theory is for §E= a/v <0.10; thus, this analysis is valid for load parameter
= 1.67% 1 . e
Pg € ——=—————— — . The structurzal response can be conducted using Nx = N& =

12{1 - v%) ¥3
ny = 0 in equation (3.3). The transverse motion is therefore decoupled from

inplane motions for thiz case.

Regime IXI: (intermediate) large response theoxry. -~ For this regime the
midplane forces are no longer negligible. For analysis of this case, _
| Von Karman's theory is employed. For the type of flimsy materials we use,
even at very large amplitudes the structure is within elasgtic limits. Based

on an order of magnitude analysis of terms such as ux? compared to terms like

U.r W 2 we suggest that the intermediate large response theory we develop is

-3
W 0.03

valid for o < 7 or for load parameter p_ = 0.008-

Regime IIT: large amplitude theory (fbmnpe > 0.008.) - For this region
there are very few available methods of solution. The analysis should incor-
poxate large rotation effects. Equation (3.1) is not.valid for such analysis.
For static cases Reissner's theory has been used with some regularity. The
problem.is & fully three-dimensional elasticity problem with all components
of motion fully coupled with each other. ILittle progress has been made in this
area over the years. Experimental studies in these amplitude ranges are few,
and most have been using plates which are fairly thick (coméared to the thick-
ness of 6 um with which we are dealing). Even before the small deformation
implied in the theory for Region II becomes invalidated, it happens more often
than not that the tensile stresses under large amplitude motion go beyond
tensile strength limits. The structure becomes locally plastic, and we no

. longer can use the iscotropy assumptions implied in the analysis.

For flimsy materials such as we use, the maximum tensile stresses induced

in large awplitude static motion are given by

/= Ne21 . nw| | o Py
_(—_1-v2)(2n)[228+ f g] (3.4)

L

P



This stress sheould bhe below the tensile strength of the material we use,
if assumptions of isotropy are to be valid. For the periodic structure we are
using in our analysis, the longitudinal intertial effects are negligible as will
be shown later in the analysis, and hence the large amplitude vibration prcblem can
be viewed as a quasi-steady problem, especially while evaluating stresses. Hence
the bound on the limits of an analysis such as that for Region IT will definitely

fail if
Ut < U'ts

5 ) : _
where +ts = tensile strength of the structure.

For the polyester film we use as the structural material the tensile strength

s = 1.5 x 107 N/mZ and E = 4 x 108 N/m?; the smallest wavelength used was

A = 1.814 mm and the thipnest membrane had a thickness of h = 2.54 um. From
equation (3.4) we cbtaine the maximum limit on w/h beyond which the structure

will be at least locally plastic as

A Tk A% a2 P _20’ ’
%g\/’fstl(l v2) _ 2 [a %5 _ gy o 3.5
Ex.n.2*72 'iT'Y E

We had given the limit for validity of analysis for Region IT by consideration

of the small deformation approximation implied in it as
W = ~——— .
o 21.5 B ) | | | ) {(3.6)

for @ = 1.4 x 10793, a typical case. Hence, it is feasible using the structure
we are designing to study the limits of validity of the moderate large amplitude

analysis for the first time in our knowledge.

A




3.4. sStructural Response Theory for (Intermediate)

Large Responses of the Periodic Structure

Equation (3.3) in nondimensional form represents the governing equation for
transverse motion of the structure. We make assumpitions (i), (ii) and (iii)

of section 3.1 in ocur analysis; i.e. b >> 2 and
v

furthermore, we assume that the excitation field is of the form

L . . : .
f Ee gin %‘- dx = 0 for m = odd numbers {3.7)
8] .

whexe 5e is the loading function in each bay. The excitation field that will
be derived in the next section can be shown to be of the above form for a given

form of voltaiges at terminals A and B of the electrostatic setup.

For a simply supported rectangular bay, the deflection shaps can therefore

be only of the form

w =ZZW sin 2mﬂx.sin BTy . {3.8)
T mn 2 b _ -

Furthermore, because of uniformity of the electrostatic field in the y direction,

the choice of the deflection shape is restricted to

w=20w  sin ZWE i oon - 1) T (3.9)
‘m R mn A b . o :
or, in nondimensional form,

a =§Zn: a_ sin{2mmx) sin(2n - 1) (TyR) |

where 8 = /b o (3.10)

defining:
m = 2mm - S : _ (3.11)
' e : ' {cont"d)

I

an

Lo,



BE = (2n - 1)Bw

yields

a =3y a'Tsin i & sin 87 (3.11)
n {concl’d)

3.4.1. Midplane forces. - During deflection under transverse load the

midplane suffers in plane strains Exx' Exy' Assuming that the external

E
Vo'l
load parameter extends through Region II, we define the midplane forces as

(s v )
(1 - w2y VXX ¥y

=
I

_ . _En ( )
N =——™—|(E + v E
¥ (l - .\)2) Yy XX

___Eh
Yy T T@ + W) (Exy) (3.12)

In terms of the nondimensionalization adopted in eguation (3.2):

—

= 1
N = —=—|[E== + Vv E——
o -2 ¥Y |
- 1 i 7]
N =—=——|E-= + v B==
b 1 - Uz R YY XXL
No=o—t
v S T0 V) Sy (3.13}
The midplane strains are related to the components of deformation as
- \2
w5
xx ox ax
oy 2
SREHE
ooy 3y
du , av , 9a 3
9y  8x 9% 3y

10
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where u = u/%, v = v/% and u, v are the dimensiopal in-plane displacements.
Before setting wup the dynamic equations of in-plane motion we introduce the

following consideration:

The frequency of excitation for the electrxostatic wall is well below the
longitudinal natural Frequency of the structure, For this case the in-plane
motions are stiffness dominated. Hence, the effect of longitudinal ihertia can

be neglected.

The above reguirement is satisfied if the reduced frequency fL/csh << 1

{but a more relaxed criterion can be égi < 0.10), where £ is the operating

frequency, Can is the shear wave spegg, and L is the wavelength of the

primary motion. For the electrostatic model L

%, the maximum frequency of

operation £ = 10 kHz, and Ccn =,}§-= 1690 m/sec. For the largest wavelength
70

model that we considered, 2 = 7 mm. Hence, gzi'= 1856 = 0.04 < 0.1. Thus the
sh

neglect of longitudinal inertia in all the subsequent analysis is well justified.

The dynamic equations of in-plane motion are now given as

BN; AN~

=k —_ﬁ =0 4
ax ay '
aN=  3N--

—2L . F-yp (3.15)

oy x r

Substituting the relations given in equations (3.13) and (3.14) we get

s

27 - v 523 2y - oz
bn Lo vbu 1Ev OV &y =
9x 3Y2 axdy

[
o]

2= - 2z 2=
a-v + 1 - v a_v + 1 ; \Y {.E
ay 9x> %oy

]
o]

+ F§(£,§,E) (3.16}

where

11



Ba|:82a+ Y Bza]+l+ v da 32%a

F"(errt) = | = LT
2% Lox2 2 55 2 35 o307
2 - 2 2
PG 7.E) = Ba[ REE a_a] L+ v da 3%
3y Lay? 3x> ¢ 9x 3xdy (3.17)

For the deflection shape, we use equation (3.11). Substituting in eguation (3.17)

we get expressions for F;c and Fi_} as:
L T 2 == -
F;c = ZZZZZ 2 aj,q, {s:.n I_(;:. + j)xj cos BBE + BE)Y:I

DAL i e 2 ] s - 93]

. cos[(ﬁ}-& + 81)371[5 {-i‘z + 3 ; - 5}'2; + & ; . Bz BE}:]

-~ sin |:(i + 5);:] cos [{B]—{ - E§)§][5{Iz + 2 ; 2 B% = _.'L;-_\’ B}'é Bi}]

- sin I:(Z - 5)55] cos [(B]'E - Bgﬁ][ﬁ{;z 2 ; - 33‘% - Z . Bz BE}:[ (3.18)

EY = %ZZZZ sy a'jR. {sin [(BE + BE)§] cos [(i + 5)}?]

. [%(B% + 1‘—;-‘1 iz +':L ; Y "£~§)].- sin I:(E‘}—c +'BE)§] cos [(E - x|

. [3_(81{ 2 72 - & Z LR —)] + sin [(S- - B—)y] cos [(l + 3):{]

. [SE(B% . 1_;_\:12 4 L ; Y3 3)] - sin [(B}-c - 8E)§] COS'[(I - g)x:l

—

c[epeez + 2522 1N 5} (3.19)

12




From the known form of F§ and F§ one is now able to proceed to

solve u, v.

3.4.2. Edge conditions. - The edge conditions describe the state of

Fizity of the structure for in-plane motions along the edges. For the simply

supported pericdic structure the edge restraint is

0

u(l,_{r,‘t)

u(0:§r_'i-‘)

|
o

v(&,0,T) = vixaT) = (3.20)
3.5. Solution of the In-Plane Motions
Since equations (3.16) are time-dependent equations, a transient solution
which depends on the initial condition will exist along with the solution of
equations (3.16). This particular solution will be representative of the initial

displacement fields that may exist (e.g., if initially the membrane is stretched

with uniform tension T, the initial displacement field will be nontrivial).

For the case of zero initial tension, the particular solution takes the

trivial foxm:
u (x,7,7) = v_(&3,7) = 0 (3.21)

For the solution of equation 3.16 we take the displacement fields as,

2 =§:§3222:[}%jk2(1) sin {(i + E)E} cos {(BE + 8@)?}:
+ Bijkz(r) sin {(E - 5);} cos {(EE + BE)§}
+ Cyapg () sin (@ + DE Jeos { @ - 8p7)

* Dyup (T) sin {(E-— E)E}ccs {(BE - B;ﬁr}] o : (3.22)
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v =ZZZZ [ﬁijm('t) C’OS.{(JT_ + 5)55} s:i_n{(ﬁi +BE)§}

*F g (T) cos {(E = 5)%} sin{(BE +B§)§)
+ Gy () cos{(E + DF | sin (e -8p7 )
+ Hy g (T) cos{(fi - 3‘);:} sin{(Bi —BE):}}] (3.23)

Substituting for the derivatives of u, v, FL. Fy in equation (3.16) and
equating like terms one obtains a set of algebraic equations for the coefficients

Aijkﬂ," etc. We give one set of these equations as:

2

2
= . 1-v 1+ Vv /= -)( )
Aijksal:(l+3) T3 (BE+ BE)J +Eijk2[ 3 (1+3 Bz * By

_ 1 o by L-~v,a  1+v,

=7 %y ajzl}'{l oo Rt TR Bz}] (3.24)
+ v T = -V /s =

ikt [ 2 (BE * Bi)(l * 3)] T Eiske [(Bk * BE) T3 (1 * 3) ]

_ 1 _ 2 1-v <2 l+\)»?1} ;
=3 ap ajg[ﬁg{ﬁk + 3 i + 5 ij ] (3.25)

and similar eguations connecting other coefficients. Finally the coefficients

are given as:

2
ijke 2{1 - v) (z + ':‘}-‘)2 * (B]?_ + B.E)Z

2
R T e A R _L_l-\l(-:---.-) -
[3{1**"—2—*%*—“5—5&55}{(5;*8@)' 7 \F*]

L+wv - . 7 2 l"“-‘\)'.'z-l'i‘\)":'—.' ,
..(-——2 )(l + J)(BE + BE) BE(SE + 5 i -+ ———'2 i ])] {3.286)

an




Far i # 3,

2

B = + T
ijk% 2(1 - )

o
=137 L =-v 2
“jl:l -+ 3 Bi'i'

when i = j, Bijkﬁ =

1
(L~92+ (B + BE)Z]

1y BB:]{( +s)

2

S + .
ik 2(L - V)

2
N ol 1-v .2
{3[1 + 5 Bk

+259(3 4 3)(e -

and whenever 1 = J, Dijk£

1
L+ 32+ (B - s-)z]

A

1 + v N1
B— ][(SE ) BE) *
v 2 L-v 92. '

= 0, and in other cases

I i l-
15k 2(1 - v) | =
ijke ( ) L -

2
l :I

.2 a2

i)+ (BE Bg)

5)} (3.28)

i+ yg 5)] (3.29)
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2

e L 1
W 20 =V (34 52 4 (g + )2

N7 N = f-2 L~v 2 1+
[ e Dl

2 . 2
- - 1 - 12 1l - 2 14y T3
de+9) #2352 brve) ) o2 P i213)g)] g

2

2 L i ' L. '

14+ vy - N o |2 1 =-v 2 l+y _ .
i e -9 5[ g

+[(i_j)2+;2_v(BE+B§>2][B%+~2Ui_lz\,u]sg (3.31)

Gijk£ = 0 for k = & and
2
. = aikaj’%li 1 ]
_ A
Jltv = Y 1-v 2 1+
{2 (BE‘BE)(“’J)JE T2 Bk T2 Bkﬁz]
S A2 1 -v _ . \2 2 1 -y +2 14V = =
A | e
and Hijkﬂ 2 0 if k = % or else
" _ aikajz[ 1 ' ]
R 20 3252 4 (a - B2

Al+rvw f _—:_':'-.-':'2 1-v . 2 14w _
{2 (Bkﬁsz)(l 3)3[1"" 7 & 2 BEBR]

Ca | _ 3\ o _ a2 -V 2 l—U72u1+UTT
Bz [(" 3) +(Bk Bp,) (lz ):[I:Bk+ 5t 2 3:”(3'33’




Having obtained the coefficients one is now able to evaluate the midplane

forces through the help of equations (3.13) and (3.14). Thus -

R (I T P

cl - vz)

- ._3%3_.9‘ (I 3+ v SE BE)} cc_:s(i + 37);;.005(5]—;. + BQ}?

g ad.. &,
.. -3 ) _.._EE_:L%('-'“-_, _~..)
+-{Bijk_£. (1 3) TV ke (Bk * -Bz) g\ 3 v Bp By
* cos (;. - S)E cos (B]-{- o+ BE).;}
L 2ix%98 (= =
+{ Cixe (l * 3) Y Cigre B (k z) g \PITVE BE)]

- COS(JT- + 3‘);{ cos (BI'{' _: E)g; + {COS (’.{ - S)E cos (B]E - Bﬁ)g}

a.. &
= n k498 (7 =
+ {Dijkﬂ. (;_L - j) = v Hijkﬂ. (BE - EE) + —:‘:—8—2— (l 3+ B]:. BE)} (3.34)

I RS » >0 [ EW ) I iy (5 * %)

(l - u?-)
a;ka.g o ' 2 AN o -

- _3:_?.1_ (Bi BE +‘u i 3)} cos(i + j)x cos(ﬁl—{ + BE)Y

"“{" By ke (i - ) * Fijkn (Bk B) * M(B By = 5‘9}

* cos (i - )x cos (SE + BT,')Y + {U Cijkﬂ. (i + J) + Gijkl (BE - BE)

+ _1-_123_1_9:[\) ijg - B~ 8—]}&35(1 + j)x cos (B— - S) (3.35)

(cont'a)
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B . ' a,,a. '
1.3 - B} + IR T T L el e
+{" ) (l i) - Hiske (Bk .B.o,) * g l:" PP Bz]}

+ cos (£ - 3)# cos (5 - 8)7] (3.35)

{concl'd)

and ¥ |
RS DD [{ (312 5) " Rigkg (BE * 'BE)
i 49 ol 95 sl - 03
'{Bij-kz' (BE *BE') * Fiikg (" - T) * E-k;l& G E} sin (z ) §>;{
. sin(ﬂl-C + -BE)fr +{— Ci3k£ (B}; - Bg) - Glj,jkg, {1’ * JT)
+'E§E B 5} Sin(i + JT);c Si‘n(BE - Bﬁ)i’: : {Dijkz (BE - BE)

a, a. ' o _ . .
* Hisp (i - j). + - :Lk4 NES Bg 3 } sin'(i - j)x sin (BE - BE)Y:I (3.36)

Having obtained the terms ﬁi, ﬁ?, 'ﬁky one can now solve ecguation (3.1).

3.6. Soluytion of the Transverse Motion

The governing equation (3.3) can be solved as modal egquations in time.

The form of a is given by equation (3.11) as:
a=%>5" a_, sin m x sin(Bn y)
m n

The Raleigh-Ritz approximation to equation (3.3) is obtained by multiplfing

equation (3.3) by sin p x sin 83:5 and integrating over the x - y space.
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Defining:

15Kk

A(2)

ijke

(3)
ijke

a 4]

and

3.3 kg

5D

and

ijky,

(2)
:.Jk!?,

g3

J.j ik

(4}
ijke

o)

ijke

o (2)
Ciix

(1 _

vV A

vV B

v

v

|I=-|l—‘

F 1
./,‘_,'_‘i"-

. ._ . 2 a. "
= - o ik j4 (-.‘
Cij‘k,q, (:L + j) + v Gijky, (ﬁk 52) + 8 i

L3 e o M(—?_ -
ijks (l >+ V ik (Bk+ B,Q,) 8 R

g

Lo A
D iky, (J" B 3) TV Bk (512 - SE) g 3

. | é"ikajz
ik Ei kg Qﬁ'{ * 3'5) - (512 r

=
+
o

2,80, _
*ij(ﬁ +By) r g 6 B

=
1
S

ijke 2
L a8y .
Cijke (l * 3) * G5k (Bié - B * T8 (". 13
: .., 3.
. ik j4 ( Tz
-— . -~ - - + ——r— e
Pijke (l 3) T Higxg (Bk B3 8 A\

a..d. - ) - =
SRR Aijkﬂ (Bl"c * 39,) - Eijkﬂ, ("“ * 3)

—\JB}_:

~l

w1

"{ 131{9,.(31:'* B) :.Jka. ( - ) +—LB' :'T] |

T L
+ j) Aijkﬁ + v Eijkﬂ, (Bk + Bl) "—3— (.'L i+ v Bk 59)]

{(3.37}

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.486)

19

‘%.l




and

(3)
Ciake

(4)

i4ke

and also the

and

Ry =i

‘Rg = i

Sg =

S3 =

Sy =

= Cisxe (BE - BE) " %iika ‘(l * 3)

=" [Dijkz (BE - BE) * Hiskg (i -

following parameters

=di+J+p

e T T

‘(3.47)

(3.48)

{3.49)

{3.50)
(cont'd)
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kﬁ'2+s

[43]
o
It

S7=k~-s+gqg

~and the Kronecker delta function

rs = 0 r# s

6rs = 1 r=1

the Rayleigh-Ritz approximation'eQuaticn (3.3) is then

E'Z’EPE * ZZZZ _"3:_2)— ap% [aikaj z]

K _a +
ar2 P2 Pd i 9k Lrs 4{(1 ~ v

'rs Dy + 82 Py + 83 Py + 6y By|=p P9I
Lll 2 P2 3 P3 Py Gen

where
2
PI - p2(1 - v2) 4
1 [=2 (1) 3 (1) |
P = ——— [p2 A, + B= B..
| . aijakg i .1jk£. g ljkz__
1 [ @ 2 (2)
Pp = ——— |p® A'S) 4+ B= g4’
PP L HRE Ta ik
1 [=s () 2 (3)
P33 = v P A, “+ B"" B.‘. ’
aijakz 5 ik g "ijke |
1 = (@) 2 (4) ]
Py = —=— D2 A, . + B= B,
aijakﬂ i ijk& o 1]k£“
and .-

{3.50)
(conel’d)

{3.51)

(3.52)

(3.53)

(3.54)
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81 = '(SR’-I + 6R2P ) SRBI') (5815 * 652q - 6Sss>

62 = (6515 * O50q asss) (aRur * O~ Omg3 ~ 6P~7i)

= (48 + 8 - & 18 + 8 8 -8
83 ( Rir Rop Rar) ( S8 Sgd 538 qu)

= (8 § -6§_., -8_ }(s + 6 -8 -3 3.55
% (Rur * Rsp Rg3 R?J-)(Sm 869 532 St;k) ( )

and

L 1 - -
ngn = 4B [_‘[B{ P, {x,y) sin (p x) sin (B— ¥) a- di;] (3.56)

The set of oxdinary differential equations is highly nonlineax beéause.of the
preéénce of terms such as aijaki %pq. The.coupled set of’such_equaﬁions can |
be solved using numerical techniques. Analytical solutions might be impossible
except in the simplest case, e.g. a one mode solution such'as 1 =j=k= 4 =
P =g = 1. Vhen the electrostatic wall model is subjectad to fluidic forces such
as will occur if used for drag reduction studies, a complete analysis of the
problem as formulated above with a few normal wodes in the deflection shaée might -
be necessary. This is especially so in Flutter regimes of structural motion. In
such cases the generalized 1oad1ng will consist of three maln contrlbutlons-

(a) random turbulent pressure loading whlch can be 1n51gn1flcant unless flow speeds.
are fairly large and the membrane thickness very small; (b) wall pressure loading
due to the interaction of a pulsating boundary in a turbulent boundary layver £low;
the magnitude of this loading ecan be significant under a variety of circumstances
ineluding the flutter mode 1nstablllty case; and (c) the electrostatlc wall 1oad1ng

due to the primary exc1tat10n through electrostatic attraction forces.

In an actual experlment with flow over the structure such as in a w1ndtunnel
other loadings might also be present. The most common of these are pressure '
gradients in tne tunnel and static pressure differentials across the membrane.. An
accurate prediction of the structural response depends largely on identifying all

these influences.
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4. ANATLYSIS OF THE ELECTRIC FIELD

4.1. Determination of the Primzsry Electric Field

The schematic of the electrostatic system is shown in figure la. The output
Zrom the traﬁsformer T 4is biased at the cenfex tap and connected to terminals A
and B as indicated. B2An array of electrodes which is etched on a printed circuit
Loard and coated by dzgassed epoxy cement or lacquer forms one part of the
electrostatic wall system. A grounded conducting sheet (membrane) which is struc—
turally supported periodically at distances "4" apart and separated from the
electrodes at a height "H" forms with these electrodes a cépacitive network.
The membrane is free to move transversely; when altsrnate electrodes are connected
to the terminals A and B respectively the membrane is subjected to an elsctxo-
static force distribution and deflects under these forces. The space between
the membrane and the electrodes is filled with aix and sealed. "o obtain maximum
force for given terminal voltages, the distance between the membrane and the

electrodes should be as small as possible. However, as the distance between the

.membrane and the electrodes becomes smaller and smaller the applied voltages in

the terminals must be reduced lest a breakdown of the electrostatic wall system
due to arcing will occur. The breakdown potential for a given separatién in air
is given by Paschen's law. For air at NT® the breakdown rms potential gradient
is 3.1 kV/mm. If instead of air a F£luid such as SFg is used, the breakdown voltage

gradient can be raised by a factor of two.

In figure 2 we show a typical bay of the electrostatic wall configuration.
The electrice £ield between the electrodes and the membrane can be ubtained by

solvmng in the domain
V3 = 0 . N (4.1)
with the boundary conditlons (as indicated in fig. 2).

N
i

<
I

Vg + Vl(x H) 51n Qt

x-—'-:.t),'.?.. . R v Vo Z/H - R (4-2)

In figure 3y Gl(x H) and its Fourier series representation is shown.

From the rlgure it can be seen that
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Vi(x,H) = 1.1463 V) sin 2r7 sin Q¢ (4.3)

is a good approximation.

The solution of equation (4.1) with the bhoundary conditions given in equation

(4.2) is rather straightforward and can be written as

. Z
vV 7 sinh (Zﬂ—)
V=-S 4 1.1463 V) sin 2—";’5 sin Qt ——f‘l— (4.4)
sinh 27 &

The electric f£field in the dielectric between the electrodes and the membrane

¥ pep %R i3 thus

E =E = o0
x Yy
- vy cosh[EﬂE]
E =24 7.2024 — sin 22% sin Qf ——2
b4 H 2 2 . 27H
Slnh-( ) ) (4.5)

Force density due to primary field. The membrane is subjected to a force

. eE, 2
= 4,
Po 2 |z =0 (4.8)
Thus the generalized electrostatic force is
g _ =
PGen 0 forp>1
and for P = 1
1 0.835 ¢ V V1
pgq = —7 = ch’ sin w t (4.7)
= (%q - 1) Sinh(TE‘ i

Cptimal values for Vg, V,- There is a2 limit o the maximum voltages

Vqr V1 permissible Ffor a given configuration, which is determined by the rms

voltage gradient to be less than the breakdown value (3.1 kV/mm for air at NTP).

&




From equation (4.5) the maximum rms electric field value is given as

2 2
v 1
rms value = =) + L - coth 21l 7.2024
H 2\ L

< 3.1 Mv/m {4.8)

In order to obtain the optimal values of V,, V; £for maximum generalized
forces, one must minimize the generalized Fforces subject to the constraint

equation {4.8).

4.2. Requirements, Ratings; etc. of the Electrical

Networks for Electrostatic Wall Configuration

In figure 4a is shown the schematic of the electrical setup. Power is
drawn from a signal generator stepped through a power amplifier and fed into a
transformer. The transformer output is fed into the exciter for the electrostatic
configuration. Basically the electrostatic wall comprising the mewbrane and the
terminals act as a capacitive load. The capacitance can be measured using a
capacity meter available commercially. It is also fairly straightforward to
theoretically model this electrostatic wall as a discrete capacitive network and

evaluate the capacitances of the wall as done in reference 6.

For satisfactory performance of the electrostatic wall system the following

points should be kept in mind:

(i) The electrostatic wall should be operated below the breakdown voltage
levels to avoid arcing and sparking and consequent degradation of the terminals

and burnout or charring of the membrane surface.

(ii) Collapse of the membrane into the cavity and consequent shorting of
the electrical system should at all costs be avoided lest the transformer or

power amplifier be damaged.

(iii) Any I-C oscillation due to the loading of the system should be avoided.
This is accomplished by designing the outages of the units such that the external

lcad is well within the operating load for the system.
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4.3, Evaluation of the Maximum Permissible Capacitive
Load for the Electrical System

The ratings of the transformer are

Turns ratio a = Np/Njy = 40

Resistance on the primary side R; = 0.5 @

Inductive reactance on the primary side X; =8 € @ 1 kHz
Resistance on the secondary side Ry = 2 kf

Inductive reactance on the secondary side Xp =50 k0 @ 1" kHz

External load is capacitive with a reactance Kc @ 1 kHz = E%E

In figure ¢b the equivalent circuit is shown. It is assumed that the
maghetizing current is zZero, an assumption which is quite valid (uwsually it is

5 to 10 percent of the primary current). With this assumption the reactance

From figure 4:

The equivalent impedance on the L Ro 1
primary side = Zeq S =g X, + R+ g — —
1 a2 a2  juca?
L R
2 . 2
—G:L +—= .2 )3-(1214-——)
1 a? wCa? a?
= 2,0 (4.9)
. v
The primary current I; = v/zeq =z L6 (4.10)
v
The load current Ip = I/a =~ ;-6 (4.11)
za
The circuit becomes a resonant circuit when the reactance is zero,
- L
ji.e. XL + XL = (4.12)
1 2 wCa2

The operating range of the elechkrostatic wall for experiments lies between

200 Hz to 2 kHz. In order to protect the power amplifier the rasonant frequency
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which can be determined from ecuation (4.12) should be well above this range.
Fixing the resonant frequency £ +o be around 3000 Hz we obtain the conditicn

that capacitance of the electrostatic wall be

i

= 28 T
xlf » xzf E_O_Ei
27E7560 = * 1000

c <

With a proper choice of equipment (i.e. low reactance transformers and
power amplifiers), the size and capacity of the electrostatic wall can be
enhanced considerably for the same range of operating frequencies. The fore-
going discussion makes it imperative that when different models reguire
laboratory testing the capacitance of the model be measured to see whether
there is any limitation on operating frequency imposed by the choice and

availability of power equipments.

5. THEORETICAL ANALYSIS AND EXPERIMENTAL VERIFICATION OF THE
PERFORMANCE OF THE ELECTROSTATIC WALL

5.1. Analysis of Structural Motion

We consider the case where the generalired force is due primarily to the
electrostatic field set up in the model. The structural motion resulting can
be studied by solving equation (3.52) with the expression for pggn provided

by equation (4.7). The deflection shape a is given in eguation (3.11) as
a=2§:a sin m x sin 8—17
M Il mn n

We consider the case where B = /b << 1, corresponding to the situation of the
width of the bays b = 50 % which was true for most of the wall to be built for
tunnel testing. '

From the nature of the generalized load ngn given in equation (4.7),

= >
Gen -9 B> 1L
Flg) p=1
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it is cbvious that the deflection shape can be approximated as

a =; a  sin 27x sin Bﬁ v {5.1)

It is not at once clear how far the summation implied in equation (5.1) must

be carried out. However, the nature of the generalized forces ngﬁ {(being

. 1L
proporticnal to YEE?:—ESQ suggests that at best the first two modes are important.

The eguation system for two mode series is of the form

dzall 1 3 1 2 1 2 11
) + a1 [k11] + Gy; aj; + Gyp 87; 24 T Gyg 8y, 87 = PGen
d?%a _ :
! 1 3 1 2 -1 2 o pl2
) + ang [kgp_:l + G2?_ aja + G21 ar, ajp + Gy 211 ala PGen {5.2)

In table 1 the coefficients Gilr G%z, G%a, ki1, etec. are all tabulated
for arbitrary 8, using a program called MACSYMA available through ARPA, NBS

or MIT network.

5.1.1. ZInitial approximations. — We shall examine the case of B << 1

and assume that the percentage of the second normal mode in the solution to the
problem is entirely insignificant in order to obtain an idea of the sensitivity
of the solution to truncation of the series. Setting B = 0 and taking only the

first of the eguation set in equation {5.2) one obtains

d2a11 1 3 11
5 + k11 a3 + Gy, ajy; = PGen (5.3)
art
From equation (4.7) Péén = Pyg sin 9t (5.4a)
1 0.935 € V3 V3
where Pig = (5.4hL)

sinh 27H EYHZ
: %

Then terms kj; and Gil in equation (5.3) have {(for B = 0) values
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P .o I N .ot | 5.20)

1 )
12(1 - v2) (L~ v2)

Equation (5.3) can be rewritten using the following transformation:

T 7 ki1
B =2~ 27T u=aynGl1 . g1 = ——
—_— 02
S .
I
G11
a Py = P —_—
an 2 10,4 o3 (5.5)
as
2.
& . gy w4+ ud =y cos B (5.6)
aa?

5.1.2., Harmonic solution of equation (5.6). - Seeking harmonic solutions

for u, eguation (5.6) leads to a simplified cubic equation,

(m—l)u+%ﬁ=92 (5.7)

from which wu, and hence a, can be ohtained.
5.2, fTheoretical and Experimental Results
Theoretical results for two configurations of the electrostatic wall are

presented in figures 5 through §. The mewmbrane material used (commercially

named Mylar) has the following properties:

=
[

3.5 x 108 kgf/m?

o = 138 kgf sec?
i
m

v=0.3 ' (5.8)

29

-t

o

. i ¥

N O



The air gap between the membranes in two different configurations were
H = 0,305 mm and E = 0,127 mm. Since the electrostatic forces are inversely
proportional to gap height ¥, the smailer gap provides a larger force on
the structure for a given voltage. However, the hreakdown potential for the
system is smaller when the gap is smaller. Hence the electrostatic forces
available in both these configvrations at the optimal voltage are of the same
order. Howevexr the smaller air gap has the advantage that one can work with

lower voltage levels.

In figures 5 and 6 the theoretical values are compared to the bench test
results. It is surprising to observe such an excellent agreement between the
test values and theoretical prediction.  The experimental measurements of
dynamic surface motion were obtained using an optical setup. Reference 10
describes in detail the measurement techmique. The a.c. voltage applied to

the electrodes was at 300 Hz for these experiments.

Figures 7 and 8 show the frequency response of the structure at various
excitation levels. The nature of the backbone curve is indicated by dotted
lines in these figures. At low excitation levels where w/h << 1, there is a
steep increase in amplitude levels at resonance. At higher levels of excitation
resonance has little effect on amplitude level. In the theoretical analysis
structurzl damping was taken to be negligible. Since damping primarily affects
the near resonance amplitude levels, it is not necessary to include structural
damping in the response studies for the present case as can be seen from the
nature of the response curves. The reason for this is very clear; viz, the
test structures have rescnance frequencies well above the excitation fregquency
for load wvaldes of interest (large amplitude case). - Furthermore at these load
values the nonlinear stiffnesses themselves act as a damper or delimiter on
the awmplitude levels. When the structural nonlinsarity is of the soft spring type
it might well be impoitantvto incliude the damping in the analysis since natural
frequencies for this case are being constantly shifted dovnward from the low

excitation case (w/h << 1) with larger excitation levels.

5.3, Examination of the Perturbation;Field

bue to Primary Motion

When the membrane is set into motion by the action of an electrostatic
force field, the slectrical field configuration changes aud consequently'the
excitation field itself must be reexamined.
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To anzlyze the effect of the surface motion on the electric f£ield configu-
ration an orthogeonal curvilinear coordinate system can be used. Since, as
far as the electric Ffield is concerned, the structural motions have a station-
ary behavior, a quasi-rigid coordinate mapping is reguired. Curvilinear
coordinates such as the one to be dgscribed have been used by Benjamin (ref. 7)
and Chang (ref. 8) for flow prxoblems. The first oxder curvilinear orthogonal
map is shown in figure 9. fThe amplitude of the wavy surface is taken to
be (0.1 H); ¥; = 0.0 curve in the figurs represents the épproximation to the
actual surface. Since %— << 1, the variation in the chordwise directions have

been neglected just as in section 4. The mappings for this confiquration are

X1 = % - a e 272 cos 27% sin Rt

- a ™22 gin 27% sin 9 (5.9)

O3]

¥i =

% - ¥y coordinates can be written as

]

x =% +ae 2l g 2mx] sin Qt

Y1 +a e ?W1 o3y any sin @t (5.10)

Nl
I

The solution of equation (4.l1) with the boundary conditions should be attempted.
We write the governing eguation and the boundary conditions in the mapped system

as

B, % _ o | (5.11)
axy2 oy
vi = O. v=20
y1 = (8/2)  v=Vg+ Vi sin @t sin(2mx;)
X1 =0, 1 : V=V _ _ (5.12)
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" The solution of the above problem yields

ﬂv" -
Vo - o V1 sin 27x sin Ot
Vo= — .
-4 H 5
s.1nk TH
2
+ 2ma(cos 2mx E?“sz - cos 4mx) sin Qt | (5.13)
~and
v =0.
%

The correction to the electric field distribution is therefore of the ordexr of
(w/&) times its original value. For the electrostatic walls we are testing
the magnitude of this correction is less than Five percent when the amplitude
of the surface motion is 0.025 mm at a spacing of the bay of 1.814 mm. In all
the tests that we carried out the perturbation field was negligible since the
excitation field could barely drive the system to these values of amplitude.
An error of 15 percent in the evaluation of the.electric field would usually
generate an error of 10 percent in the amplitude prediction, which must be

 borne in mind when accuracies of that orxder are required.

When the deflections of the surface are quite large the perturbed field
can be evaluated using a more refined (éecon& order) coordinate system such as
used by Chang (ref. 8). We show the mapped system in figure 10 and give the
transformations below as

—27Z

X1 =x-ae cos 27x sin Qt - wa® e %% gin 4wk sin O

Y1 =2 - a e 2" gin 21k sin @t + mal (e_L.urrz cos 4Tx - l) (5.14}

a e cog 2mixy - ma? 741 g4y 4W§E

"
I
&
+

N
It
e
[
-

a e"2™1 ‘sin 211'1-:-1 + Waz(ehl‘&“ﬁ cos 4mx] + l) o . {(5.15)
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5.4. Inclusion of Rerodynamic Forces for

. the Electrostatic Wall

The electrostatic walls were purposefully designed as small wavelength
configurations. Hence, static divergence will not be achieved in any of the
electrostatic walls under operating condition {15 m/s - 50 m/s) in the 7 in. X
11 in. tunnel. In reference 1, an inviscid analysis has been carried out for
the evaluation of the aerodynamically induced pressure paero[eq. {39}, p. 16 of

ref. 1] due to structural motion.
We give this expression as

2
u
= 2mp<air> aj; ——— sin 2Tx sin 7y sin wt. {5.16)
. 1 - n2

aexo

Figure 11 shows the effect of including aerodynamic loads in the analysis
for the case of flow over the membrane. Our contention is fairly clear; there is
no need for any sophisticated analysis of aerodynamic effects for these configu-
rations since even the inclusion of the inviscid values which overestimate
these magnitudes increases the levels of amplitnde very slightly and that increase
is only over a very nmarrxow window. The a.c. voltage applied to the electrodes
in this example is at 300 Hz. If the a.c. voltage was applied at very much higher
frequencies the effect of the aerodynamic load on the motion will be enhanced

since the effectlve nonlinear stiffness would be con51derably lowered

We again point out that the analysis which tock into consideration the
aerodynamic load was carried out under the prior known fact that the wavelength
of the structures was much too short to cause static divergence; hence,the flow-
structure interaction problem is not of an eigenvalue type but merely a forced

response problem.
6. CONCLUDING REMARKS
A unified theory for an elecﬁrostatically driven active wall system has
been presented. The electrostatic wall system is capable of producing deflections

of many orders of thicknesses. Consequently a large intermediate response theory

~has been used for analysis. The theoretical analyses are compared with bench test
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results which show excellent agreements between the two. The case of an elec—

trostatic wall vibrating in the windtunnel is considered, and the theoretical
predictions under simulated flow conditions indicate that the aerodynamic

effects are negligible. The perturbation effects to the electric field due to
the structural motions are alsSo considered and shown to be negligible for the

test experiments.
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Table 1. Stiffness coefficients.

G, = {w“ [(12 - 4\)?-) + ?Z- vp® + %_— (5 - u2>:|
- Tg | v - 1 3 2 o
8(\;—1)(52+4) 5L - +5(—""‘"1T)+B 4ve + 12 -~ 16wy

2 _ gy - |
+ g2 (4" — 8} + {16 ~ 16v - 16\)2) - E?-v] }——-—1_—-
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cls = {n“[(s - 16u-’-) - 12 vﬁz] + L [12@. - u) g7
o 16(1 + 822 (v - 1)

6 .
. 1087 (v-— 1) + 55(-24u2 +(21-§‘3) u+56> + s“(ﬁlﬂvz—?—%u
. m . w T

g 2
"2—> + g8 (44-:- 92v - 135\:2) + 82(3—2——“-—— (1—12--&- B)v
T _ m T _
-1?6) + B (16+96\:—96v2) - 32(\»24-3“‘3)]

T :
+ L [(9\;) g6 + p* (132\;2 + 20V + 8) + g2 (308'\)
8(g% + 4)2(v - 1) . . | . .

+ 296v2 - 64v3 - 224) (512 - 128y - (64 + 52—-)v2 + 192\;3]}————3‘—-——

- | _ Pa@ - v3)
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Gz =7 |8 + (20'\) ge + e 27 - 9\3) _—
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| 4,2
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&‘J

Ki1 =

+ ~ "B [729 85( v) +243 8“( - 1) +972_s3(1- )

S 8(v - 1)(98% + 4)

(e ) ) wfi o) s
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- b :
' Gél = {erf [8 + 208%v + %—(27 - 9\.:"3):[ } —t " '
' : : 4(1 - v<)

Gy = {w“ [_8(1 - 2v2) - 12&:52]

k . .
+ - LIS '-Emas7c1 -y -2 36(1 - u)
1682 + 1)2(v - 1) T |

, L
+ g3 (504 - 346.83v +'.168\J2>— %-r— 252 - 32v.

- 40u2> - g3 (15 + 580y - 148v2 + 20\:3)

K | (a0 -
- - (144 + 338.20 - 32\)2) - B(ao ~ 160v + 48u2)

, e _
CJ% * 32"2)]'!' =L ]:8135" + 8¢ (72 + 180v + 900\)2)
N /1 8% + 24)%(v - 1) h o

- g2 (992 + 128v - 1216v2 + 1088u3>

-~ (128\) + 262.63v2 - 192v3):l}———l——

4(1 - v2)
4.2 2 4,2
K, = Ty [4 + 952] - [16 + 728% + 818”]
12(1 - v2) 12(1 - v3) . _.
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/
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(b) Voltage distribution in the terminals & and B

Figure 1. The electrical arrangement of the electrostatic wall system.
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Figure 2. Mathematical representation of the electrostatic field problem.
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Schematic of the electrostatic wall system
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Egquivalent circuit

Figure 4. Schematic of the hookup for the electrostatic wall system.
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First order orthogonal coordinate system for analysis of the perturbed Ffield.
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Figure 10. Second order orthogonal ccordinate system for analysis of thé perturbed field.
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Pigure 11. Theoretical response with aeroloads.
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