General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

DESIGN OF A COMPENSATOR FOR AN A.R.M.A. MODEL OF A DISCRETE TIME SYSTEM

N78-21838
(NASA-CR-156097) DESIGN OF A COMPENSATION
FOR AN ARMA MODEL OF A DISCRETE TIME SYSTEM
M.S. Thesis (Massachusetts Inst. of Tech.)

99 P HC A05/MF A01 CSCL 12A

Carlos I. Mainemer

Electronic Systems Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139

DESIGN OF A COMDENSATOR FOR AN A.R.M.A. MODEL OF A DISCRETE TIME SYSTEM

BY

Carlos I. Mainemer

This report is based on the unaliered thesis of Carlos I, Mainemer, subnitied in pariial Eulfillment of the requirements for the degree of Master of science at the Massachusetts institute of Technology in January, 1978. This research was conducted at the Decision and Control Sciences Group of the M.I.T. EIecironic Systems Iaboratory with partial support provided by the Contract NASA/Ames \#NGL-22-009-124.

Electronic Systems Iaboratory
Department oin Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, Massachuseits 02139

DESIGN OF A COMPENSATOR FOR AN A.R.M.A. MODEL OF A DISCRETE MIME SYSTEM

by

Carlos I. Mainemer

B.S.E.E., Georgia Institute of Technology

SUBMITTED TM PARTAn FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
at the

MAS:
January, 1978

Accepted by Chairman, Departmental Committee on Graduate Students

DESTGN OF A COMPENSATOR FOR AN A.R.M.A.

MODEL OF A DISCRETE TIME SYSTEM

Abstract

by

Carlos I. Mainemer Submitted to the Department of Electrical Engineering and Computer Science on January 20, 1978, in partial fulfiliment of the requirements For the degree or Master of Science in Electrical Engineering.

ABSTRACT
This thesis considers two problems: a) the design of an optimal dynamic compensator for a multivarieble discrete time system and b) the design of compensators to achieve minimum variance control strategies for single input single output systems. Both problems are stochesicic in nature.

In the Eirst problem the initial conaitions of the plant are random Veriables with known first and second order moments, and the cost is the expected value of the stancexd cost, quadratic in the states and controls. The compensator is besed on the minimum order Luenberger obseryer and it is found optimally by minimizing a performance index. Necessary and sufficient conditions for optimality of the compensator are derived. The compensator is given in Anto Regressive Moving Average form.

The second problem is solved in three difjerent ways; two of them working directly in the Frequency domain and one working in the time domain (state space techniques). It turns out that the first and second
order moments of the initial conditions are irrelevant to the solution. Necessary and sufficient conditions are derived for the compensator to minimize the vaxiance of the output.

Thesis supervisor:
Timothy E. Johnson

Mitle: Associate Prosessor of Electrical Engineering

ACKNONLEDGEMENTS

It is almost impossible to thank all the people that have contributed, in one way or another, to make this moment come true. However, I woula like to express my thenks to Professor Timothy H. Johnson, who, not only had the immense task of being my advisor but supervised this thesis from beginning to end.

To Nancy Young For her terrific job and velocity typing this thesis.
To Cheryl Worden for her previous typings and her patience correcting the exrors in English.

To the Trachtenberg Emily, Ernesto Pataky and Carlos A. Pulin for their encouragementi and advice in all aspects of Iife.

To the Organization of American States for their Iinancial aid; without which, this moment would not have occurred.

And to my parents, Abrahem and Fine Mainemer for their help, reprimandals and guidance that showed me the way to become what I have become.

TABLE OF CONTENTS

Page
ABSTRACT 2
ACKNONLEDGEMENTS 4
TABLE OF CONTENDS 5
CHAPTER I 7

1. Brief Historical Review 7
2. Outline of Contents 8
3. Notation and Terminology 10
CHBDRER IT 11
4. Introdnction 11
5. Structure 0 큰ultivariable Systems 12
6. Minimal State Space Representation for Tinear Mulitivariable Systems 16
7. Classical gajoint of a Matrix 25
CHAPTER III 29
I. Introduction 29
8. The Discrete Time Linear Regulator Problem 31
9. Structure of the Discrete Time Minimum Order Based Compensator 33
10. The Minimum Order Observer Based Compensator 41. Problen
11. The A.R.M.A. Compensator56
Chapter IV 68
I. Introduction 68
12. Minimum Variance Control - Direct Method I 69.
13. Minimum Variance Control - Matrix Approach 74
14. Minimum Variance Control of an Oltput Noise-Free Sysiem - Direct Mėhod 2 (Astrom's Approach) 85
Chepter V 89
15. Solution Using Direct Method 2 89
16. Checking the Result Using the Matrix Approach 89
REFERENCES 94

CHAPRER I

1.: BRIEF HISTORICAL REVIEW

The problem of finding compensators for systems in state space form has been widely stuaied. It is a known Fact that if the pole configuration of a controllable plant is noi desira3le, it can be arbitrarily changed using state feediback. A rigorous formulation of the Iinear state regulator problem is also known.

At First, the Iinear quedratic problem was Fommlated as a completely deterministic one, penalizing both deviations from the desired planc state and excessive use of control. The solution, as it is well known, is in the form of a complete state feedback control law. This formulaiion constitutes an idealization, since most of the time the initial state is not exactly know and complete state measurements are not available. For these reasons, the problem was reformulated as a stochastic one where the first and second order statistics of the initial state and the noise were known. The cost was taken as the ensemble average value of the deteministic performance index. Surprisingly enough, the new result was a kalman filter followed by the same gains obtained in the deterministic framework. In this thesis we will work out this problem assuming that no plant or measurement noise is disturbing the system. The solution obtainea is a minimum order observer as proposed by Iuenberger (II) preceded by the gains found in the previous two formulations. Since the parameters of the Luenberger observer are

-8-

rather arbitrary, several authors, among them Blanvillain (Bl), Miller (MI) and Llorens (L2), have determined the compensator parameters by minimizing a performance index, which gives a specific form for the observer. A surprising characteristic in the solution of this problem is that a separation develops in the equations for the parameters of the observer and the optimal gains, the latter being the same as if complete state measurements were available. It turns out that the minimun-order observer-based compensator is optimal.

All the preceding methods have been worked out for state space representation of a system. Astrom (Al), following another line os work, Finds minimal output variance control strategies directiy using an AutoRegressive Moving-hüerage model fow single-input single-output plents. In this approach, although he doesn't have the Ireedon of the state space techniques the is just minimizing the variance of the output and no penalties are assigned to the staces nox to the input). Astrom has the great adveniage that the gains are very easy to compute by simple polynomial aivision.

2. OUTTINE OF CONTENTS

Chapter two is designed to be a background chapter; this means that the techiques needed to go from an Auto-Regressive Moving-Average (A.R.M.A.) model to a minimal state space representation of a system, and vice versa, are developed. The importance of the fact that the first
transformation is to a minimal state space form lies in the conditions required for positive definiteness of certain covariance metrices, as pointed out by ilorens (T, 2). This technique requires the A.R.M.A. model to have a specific siructure which oan be achieved by matrix multiplications. The transformation form state space to an A.R.M.A. model involves the computation of the classical adjoint of a matrix, which is shown in section 4.

In chapter three the structure of the aiscrete time minimum order observer as well as the linear requlator problem are presented as background for the main problem, the solution of the discrete time minimum order observer based compensetor. It is assumed that the initial state plant is a random vector with known first and second order statistios. The performance index is the expectation of the standard cost over the time interval $[0 ; \infty)$, quadratic in the state and control veciors. The approach mimies BlanvilIain's work until the aciual minimization pointr where the technique used by fiorens (L2) is employed.

Chepter Four deal with the problem of Einding the minimal variance control strategy for a single-input single-output discrete time system. Direct method 1 gives the necessary conditions to solve the problem, but even for a simple example they are very difficult to solve. the matrix approach solves this problem completely using state space techniques, while airect method 2 gives the solution to the problem in a very simple way (a polynomial division) but has the disadvantage that it assumes the observations to be noise-free. For all the above methods, a certain
structure for the compensator was assumed, and this is that the input at time \dot{t} cannot depend on the output at the same time t, which makes a Iot or sense in a discrete time system because it is not usually possible to seed the output instancaneously back to the input in such a system. In chapter five a second order example is solved, First using direct method 2, and then the answer is checked by inserting it into the equations given by the matrix approach.

3. NOTATION AND MERMTNOLOGY

Small boldface Roman Ietters will denote vectors and capital letters will denote matrices unless otherwise stated. $\mathrm{A}^{\text {' }}$ denotes the transpose of A, adjA the classical adjoint of A_{i} I the identity matrix and 0 the zero matrix. A(mm) denotes the matrix A which is of dimension mom. It is stressed that same metrices in different chapters have different meanings. $P(z)$ änotes a mairix which is a function of z except in chapter four where it is used as a (scalar) polynomial function of z. The expected value (ensemble average) is denoted by $E[$. $\}$. The covariance matrix of a vector valued random variable:

$$
E\left(x(t) x^{\prime}(t)\right)-E(x(t)) E\left(x^{\prime}(t)\right)
$$

is denoted by:

$$
\operatorname{cov}(x(t))
$$

Also, the numeration of the equations are independent from section to section.

CHAPTER II

1. TNTRODUCTION

The problem of finding optimal compensators for systems described in state space form has been widely studied, but this approach assumes that we already have the matrices that describe the system in such a form. This assumption is somewhat ideaj, since in order to describe a plant in a mathematical model we have to derive the equations that govern it from basic principles. In this event the model of the system will be given to us in the form of aifferential equations, For continuous time systems, or difierence equations for disarete time systems. In order to design a compensator for such a system, we have to choose one oz two possible approaches: either convert the system into a state space representation or use the input outpui description. In chepter four we are going to use both techniques to find the minimal variance control for a plantr while in chapter three we use only the tatter one.

The intention of this chapter is to senve as a background for the work in chapter three. So, we will show the techniques available to converi a system from an A.R.M.A. model to a state space representation, and vice versa.

The structure of this chapter is as Follows. In the second section the structure of multivariable systems is presented as a background to the work in section three, where the steps to Eind a minimal state space
representation For a multivariable system are developed. Both these sections rely on the work of Wolovich (Wl) and Wolovich and Falb (W2). Section four deals with the iransformation back from the state space Form to an A.R.M.A. model, where the main problem is the calculation of the adjoint of a matrix. This section is based on Gantmacher's book [GI].

2. SERUCTURE OF MULTIVARIABIE SYSTEMS

Let's considar systems of the form
$x(t+1)=A x(t)+B t(t)$
$y(t)=c x(t)$
where
$x(t)$ is an n vector
u(t) is p vector
$Y(t)$ an m vector
and A, B, C are constant matrices of appropriate dimensions.
Furthermore, let's assume that B and C are matrices of full rank. Then, it is a well known fact thai if the pair (A, C) is completely observable, there exists a similarity transfomaition g such that the system

$$
\begin{align*}
& z(t+1)=\hat{A} z(t)+\hat{B} t(t) \tag{2}\\
& y(t)=C z(t) \\
& \text { where } \hat{A}=-Q^{-1} \mathrm{AO} \quad \hat{B}=Q^{-1} B \quad \hat{C}=C Q
\end{align*}
$$

is in standard observable form.

We are going to show now, how to obtain the matrix 0 .
Let $K=\left[C^{\prime},-A^{r} C^{\prime}, A^{\prime} C^{\prime}, \ldots\left(-A^{\prime}\right)^{n-1} C^{\prime}\right]_{r}$ then, since we assumed that system (1) was completely observable, the $n \times$ rim matrix k is of rank n, and it is possible to define a basis for R_{n} consisting oñ the first n Iinearly independent columns of K . Iet I be a matrix whose columns are the basis for R_{n} in the following order

$$
I=\left[C_{1}^{1},-\mathbb{A}^{\prime} C_{1}^{1}, \ldots,\left(-A^{r}\right)^{\sigma_{1}-1} C_{1}^{\prime}, e_{2}^{1}, \ldots,\left(-A_{1}^{\prime}\right)^{\sigma_{2}^{-1}} C_{2}^{\prime}, \ldots,\left(-A^{r}\right)^{\sigma_{m-1}} C_{m}^{t}\right]
$$

where
$c=\left[\begin{array}{c}-c_{1}- \\ -c_{2}- \\ \vdots \\ -c_{m}-\end{array}\right]$
Setting $d_{k}=\sum_{i=1}^{k} \sigma_{i} \quad k=1,2, \ldots, m$
where $a_{0}=0$
and Ietiting J_{k} be the $a_{k}^{t h}$ now of I^{-1}, we define the matrix 0 as

$$
\underline{Q}=\left[J_{1}^{1}(-A) \bar{u}_{1}^{t} \ldots(-A)^{\sigma_{1}}{ }^{-1} \bar{v}_{1}^{\prime}, \ldots,(-A)^{\sigma_{m}-1} J_{J^{!}}\right]
$$

After doing the transformation pointed out in (2) wes get \hat{A} as a block matrix of the form

$$
\hat{A}=\left[\begin{array}{lll}
\hat{A}_{11} & \cdots & \hat{A}_{1 m} \\
\hat{A}_{1 m} & \cdots & \hat{\underline{A}}_{2 m} \\
\hat{A}_{21} & & \hat{A}_{m 1} \\
\hat{A}_{m 1} & \cdots & \hat{m}_{\operatorname{man}}
\end{array}\right]
$$

with $\hat{A}_{i i}$ a $\sigma_{i} \times \sigma_{i}$ companion matrix given by

$$
\hat{A}_{i i}=\left[\begin{array}{lllll}
0 & 0 & \ldots & 0 & \hat{A} d_{i-1}+1, \\
a_{i} \\
1 & 0 & \ldots & 0 & \hat{A} a_{i-1}+2, \\
a_{i} \\
0 & 1 & \ldots & 0 & \hat{A} a_{i-1}+3, \\
a_{i} \\
0 & 0 & \ldots & 1 & \hat{A} a_{i-1} r \\
0 & 0 & \ldots & 0 & \hat{A}_{i} a_{i}, a_{i}
\end{array}\right]
$$

and $\hat{A}_{i j}=i^{z} j^{\text {matrix }}$

$$
\hat{A}_{i j}=\left[\begin{array}{llll}
0 & 0 & \ldots & \hat{A} d_{i-1}+1, \\
0 & 0 & \ldots & d_{j} \\
\hat{A} d_{i-1} & +2, & d_{j} \\
0 & 0 & \ldots & \hat{A d_{i}} a_{j}
\end{array}\right]
$$

For $i \neq j$. And C^{-}is an m x n matrix of the form

$$
c=\left[\begin{array}{ccccccc}
0 & \ldots & 1 & 0 \ldots & 0 & \ldots & 0 \\
0 & \ldots & \hat{c}_{2}, a_{1} & 0 \ldots & 1 & \ldots & 0 \\
0 & \ldots & \hat{c}_{3} r a_{1} & 0 \ldots & \hat{c}_{3}, a_{2} \ldots & 0 \\
0 & \ldots & \hat{c}_{m_{1}} a_{1} & 0 \ldots & \hat{c}_{m}, a_{2} \ldots & 1
\end{array}\right]
$$

Now, that we have obtained the structure of the system after the transformations were maine, we are going to compute the transfer matrix of the plant $T(z)$

$$
T(z)=\hat{C}(z I-\hat{E})^{-1} \hat{B}
$$

But by taking advantage of the strucure of the system, we can find $T(z) a s$

$$
\mathrm{T}_{\mathrm{F}^{\prime}}(z)=\hat{\mathrm{C}}_{0} \Delta^{-\mathrm{I}}(z) \mathrm{S}(z) \hat{B}_{0}
$$

where

$$
\begin{aligned}
& S(z)=\left[\begin{array}{lllllllll}
1 & z & \cdots & z^{\sigma_{1}-1} & 0 & \ldots & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 1 & \cdots & z^{\sigma_{2}-1} & & \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0
\end{array}\right] \\
& \hat{c}_{0}=\left[\begin{array}{llll}
1 & 0 & \cdots & 0 \\
\hat{c}_{2} r a_{1} & 1 & \cdots & 0 \\
\hat{c}_{3} a_{1} & \hat{c}_{3}{ }^{\prime} a_{2} & \cdots & 0 \\
\hat{c}_{m} a_{1} & \hat{c}_{m} a_{2} & \cdots & 1
\end{array}\right] \\
& \hat{B}_{0}=\hat{B}
\end{aligned}
$$

and $\Delta(z)$ is the m x matrix with entries given by $\Delta_{i j}(z)=\operatorname{det}\left(z I_{\sigma_{i}^{\prime}}-\hat{A}_{i j}\right)$

Note that $\Delta(z)$ can be rewritten as

$$
\Delta(z)=\left[\begin{array}{ccccc}
z^{\sigma_{1}} & 0 & 0 & \cdots & 0 \\
0 & z^{2} & 0 & \ldots & 0 \\
0 & 0 & z^{3} & \ldots & 0 \\
0 & 0 & 0 & \cdots & z^{m}
\end{array}\right]-s(z) \hat{H}_{0}
$$

where \hat{A}_{0} is an $n x$ m matrix of the coefzicients of $A_{i j} i_{r} j=1,2, \ldots m$ given by
3. MTNIMAL STATE SPACE REPRESENTATION FOR IINEAR MUTMTVARIABIE SYSTEMS

In this section, we present an algorithm, based on Wolovich's paper (WI), that gives a minimal state space representation for a system expressed in a more general meirix difference operator Form. This transEormation is very important in practice, since as the result of applying well known physical laws, such as Kirchoff's Iaws for eleciricai networks
or Lagrange equations for mechanical systems, we obtain mathematical models for plents in the form of aifferential or diEserence equations and not in state space form. The advantage of having a state space representation, lies in the fact that there exist, ai the preseni, very powerful techniques for designing and analyzing plants that are described in such a form. These are not available when working directiy with the equations that govern the system.

편er the algorith is developed, a simple example will be presented to show how it works.

We will work with systems that are not as genexal as the ones considered by wolovich (WI), namely, systems that are described by the matrix difference equations

$$
\begin{align*}
& \mathrm{P}(z) W(t)=Q(z) \dot{W}(\dot{\tau}) \tag{I}\\
& Y(t)=E_{W}(t) \tag{2}
\end{align*}
$$

where
$P(z)$ is a m x m matrix
$\mathrm{Q}(\mathrm{z})$ is m m pmatrix
R an $\mathrm{m} \times \mathrm{m}$ constant nonsingular matrix
and z a difference or delay operator.
Furthemore, we assume that $P(z)$ is nonsingular, in order for the above equations to represent the transfer matrix of a system, that the system is strictly proper and that it is irreducible, that is, that the composite matrix $[P(z), Q(z)]$ has rank m For every $z \in C$, as defined by Rosenbrock (RI) and Popov (PI). This irreducibility assumption will guarantee that
the system in state space form winl be minimal. The desinition of row proper Torn will also ve required.

DEFINITION (ROw proper):

$$
\begin{aligned}
& \text { Let }
\end{aligned}
$$

where the $+\ldots$ denotes lower degree terms in each row of $P(z)$, and \bar{a}_{i} is the degree of the highest-order tem of the $i^{\text {th }}$ row. Then $p(z)$ is said to be row proper in and only if det(T) is not equal to zero where

$$
\bar{\Gamma}=\left[\begin{array}{cccc}
\mathrm{P}_{11} & \mathrm{P}_{12} & \cdots & \underline{P}_{1 m} \\
\mathrm{P}_{21} & \mathrm{P}_{22} & \cdots & \mathrm{P}_{2 m} \\
\vdots & \vdots & & \\
\mathrm{P}_{\mathrm{ml}} & \mathrm{P}_{\mathrm{m} 2} \cdots & \mathrm{P}_{\mathrm{mm}}
\end{array}\right]
$$

ALCORITHM
Siep 1:
II $P(z)$ is row proper, this step can be omitted. If $P(z)$ is not row proper, we premitiply (l) by any unimodular matrix u(z) which reduces $P(z)$ to row propex form. An algorithm for finding such a $U(z)$ is given by wolovich (WI) in the appendix of his paper. So (1) and (2)
reduce to
$U(z) P(z) W(亡)=U(z) Q(z) u(亡)$
$\mathrm{Y}(\mathrm{u})=\mathrm{R} \mathbf{w (t)}$
which is equivalent to the syster described by (1) and (2).

Step 2:

Let
$W_{0}(t)=T^{W}(t)$
Where Γ is the $m x$ nonsingular constant real matrix consisting of the highest degree z terms in each row of $\mathrm{U}(z) \mathrm{p}(z)$. If $\Gamma=\mathrm{I}$ this step can be omitted, if not, we substitute $\Gamma^{-1} W_{0}(t)$ for $v(t)$ in (3) and (4) to obtain
$P_{0}(z) W_{0}(t)=Q_{0}(z) u(t)$
$y(t)=R_{0} W_{0}(\dot{\tau})$
where $P_{0}(z)=U(z) P(z) \Gamma^{-I}$

$$
\begin{aligned}
& Q_{0}(z)=\square(z) Q(z) \\
& R_{0}=R \Gamma^{-I}
\end{aligned}
$$

We cai show now, that the matrix $P_{0}(z)$ is in a particularly useful £оrm; i.e..

$$
P_{0}(z)=\left[\begin{array}{cccc}
z^{1}+\ldots & \cdots & \cdots & \cdots \cdots \\
\cdots \cdots & z^{2}+\cdots & \cdots & \cdots \cdots \\
\vdots & \vdots & \vdots & \vdots \\
\cdots \cdots & \cdots \cdots & \cdots & z^{m_{1}+\ldots}
\end{array}\right]
$$

where the ... denotes polynomials of lower degree than d_{k} in each ($k^{\text {th }}$) row.

Since we assumed that the system was stricily proper, we can omit Wolovich's third step. Note that the intention of the previous two steps is to be able to identixy the matrices $\underline{D}_{0}(z)$ and $g_{0}(z)$ with the $\Delta(z)$ and $S(z) \hat{B}_{0}$ found in section two. Once we have letemined $P_{0}(z)$ and $Q_{0}(z)$, We can obtain a minimal realization ($\bar{A}_{0}, \bar{B}_{0}, \bar{C}_{0}$) direcily by observing their structure.

Step 3:
Let us rewrite $\mathrm{P}_{0}(\mathrm{z})$ as

$$
\dot{F}_{0}(z)=\left[\begin{array}{cccc}
z_{1} & & 0 & 0 \\
0 & z^{\sigma_{2}} & & 0 \\
\vdots & & z_{3} & \\
0 & & & \sigma^{\sigma_{M}}
\end{array}\right] \quad-s(z) A_{0}
$$

where we heve replaced a_{i} by σ_{i}, so that the sinilarity between the structures of $\Delta(z)$ and $P_{0}(z)$ be more striking.

Let $S(z)$ be the $m x$ matrix desined in section two and A_{0} an $m x$ constant real matrix.

Since the system is strictly proper we can wite $Q_{0}(z)$ as
$Q_{0}(z)=s(z) B_{0}$
where $\hat{\vec{B}}_{0}$ is an $n \mathrm{p}$ constant real matrix.
We observe that the only term left unspecified in order for
$T(z)=P_{0}^{-1}(z) O_{0}$
to be equal to
$T(z)=\hat{C}_{0} \Delta^{-1}(z) S(z) \hat{B}_{0}$
is \hat{C}_{0}. But since $D_{0}^{-1}(z) Q_{0}$ is already equal to $\Delta(z) S(z) \hat{B}_{0}$ we let $\hat{c}_{0}=I_{m}$
So, we can now obtain directly a minimal realization for the system
$P_{0}(z) w_{0}(t)=g_{0}(z) u(t)$
as follows.
Define
$r_{k}=\sum_{i=1}^{k} \sigma_{i}$ 두 $k=1,2, \ldots, m$
Replace the m-r k th coinms of the (n $x n$) matrix
$\left[\begin{array}{ccc}0 & \cdots & 0 \\ I_{m-1} & & 0 \\ & & 0\end{array}\right]$
by the m ordered colums of A_{0} to obiain $\overline{\mathrm{A}}_{0} \hat{\mathrm{~B}}_{0}$ as given by (7) is an appropriate \bar{B}_{0} corresponding to the choice of $\overline{\mathrm{A}}_{0}$. Finally, let $\overline{\mathrm{C}}_{0}$ be the matrix obtained by substituting the $m-\mathrm{r}_{\mathrm{k}}$ th columns of the m $x n$ zero matrix by the m orderea colums of \hat{C}_{0} i.e., \dot{I}_{m}

Thus far, we have obtained the following state space representation

$$
\begin{aligned}
& x_{0}(t+1)=\bar{A}_{0} x_{0}(t)+\bar{B}_{0} u(t) \\
& w_{0}(t)=\bar{c}_{0} x_{0}(t)
\end{aligned}
$$

Step 4:

since we want to observe the output $y(t)$ and not wo (t), we can use
equation (6) to obtain:
$x_{0}(t+1)=\bar{A}_{0} x_{0}(t)+\bar{B}_{0} u(t)$
$\underline{y}(t) \quad=R_{0} \vec{F}_{0} x_{0}(t)$

So, finally we have the desired minimal zealization
$x(t \div I)=A x(t) \div B u(t)$
$y(亡)=c x(t)$
where
$\bar{A}=\bar{A}_{0}$
$B=\bar{B}_{0}$
$c=R_{0} \bar{C}_{0}=R \Gamma_{R}^{-1} \bar{C}_{0}$

EXAMPLE
Let
$P(z)=\left[\begin{array}{cc}z^{2}+5 z+6 & 3 z \div 4 \\ z^{2}-2 & z+1\end{array}\right]$

$$
Q(z)=\left[\begin{array}{cc}
z-1 & z-4 \\
z & z-2
\end{array}\right]
$$

and

$$
R=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Step 1
$\Gamma=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$ so, the system is not row proper.

Iet

$$
U(z)=\left[\begin{array}{cc}
I & 0 \\
I & -I
\end{array}\right]
$$

then

$$
\begin{aligned}
& U(z) P(z)=\left[\begin{array}{cc}
z^{2}+5 z+6 & 3 z+4 \\
5 z+8 & 2 z+3
\end{array}\right] \\
& \because U(z) Q(z)=\left[\begin{array}{cc}
z-1 & z-4 \\
-1 & -2
\end{array}\right]
\end{aligned}
$$

Step 2

$$
\Gamma=\left[\begin{array}{ll}
1 & 0 \\
5 & 2
\end{array}\right] \Leftrightarrow \Gamma^{-1}=\left[\begin{array}{cc}
1 & 0 \\
-5 / 2 & 1 / 2
\end{array}\right]
$$

so

$$
\begin{aligned}
& P_{0}(z)=\left[\begin{array}{cr}
z^{2}-5 / 2 z-4 & 3 / 2 z+2 \\
1 / 2 & z+3 / 2
\end{array}\right] \\
& Q_{0}(z)=\left[\begin{array}{cr}
z-1 & z-4 \\
-1 & -2
\end{array}\right] \\
& R_{0}=\left[\begin{array}{cc}
1 & 0 \\
-5 / 2 & 1 / 2
\end{array}\right]
\end{aligned}
$$

Step 3

$$
P_{0}(z)=\left[\begin{array}{ll}
z^{2} & 0 \\
0 & z
\end{array}\right]-\left[\begin{array}{lll}
1 & z & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cc}
4 & -2 \\
5 / 2 & -3 / 2 \\
-1 / 2 & -3 / 2
\end{array}\right]
$$

and

$$
\begin{aligned}
& Q_{0}(z)=\left[\begin{array}{ccc}
1 & z & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & -4 \\
1 & 1 \\
-1 & -2
\end{array}\right] \\
& x_{1}=2 \text { and } r_{2}=3+\text { then }
\end{aligned}
$$

$$
\bar{A}_{0}=\left[\begin{array}{ccc}
0 & 4 & -2 \\
1 & 5 / 2 & -3 / 2 \\
0 & -1 / 2 & -3 / 2
\end{array}\right] \quad \bar{B}_{0}=\left[\begin{array}{cc}
-1 & -4 \\
1 & 1 \\
-1 & -2
\end{array}\right]
$$

and

$$
\bar{c}_{0}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Step 4

$$
C=R_{0} \bar{C}_{0}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & -5 / 2 & 1 / 2
\end{array}\right]
$$

So finally

$$
\begin{aligned}
& x(t+1)=\left[\begin{array}{lll}
0 & 4 & -2 \\
1 & 5 / 2 & -3 / 2 \\
0 & -1 / 2 & -3 / 2
\end{array}\right] x(t)+\left[\begin{array}{rr}
-1 & -4 \\
I & 1 \\
-1 & -2
\end{array}\right] u(t) \\
& y(亡)=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & -5 / 2 & 1 / 2
\end{array}\right] x(t)
\end{aligned}
$$

4. CTIASSICAL ADJOTNI OF A MATRTX

This last section of this chapter deals with the problem of finding the (classical) adjoint of a matrix. As will be seen in the nexi chapter, this is the lest step needed to convert the system given in a state space
form into a matrix difference operator form. The method to be used is the one suggested by Faddeev (FI) For the simultaneous determination of the scalar coefficients of the characteristic polynomial of a matrix A_{a}, and the matrix coefficients of the classical adjoint matrix $M(z)$.

Iet A be an $n \mathrm{n} \|$ constant matrix, so, it is well known that

$$
(z I-A)^{-I}=\frac{\operatorname{adj}(z I-A)}{\operatorname{det}(z I-A)}=\frac{M(z)}{p(z)}
$$

where

$$
\begin{aligned}
M(z) & =\operatorname{adj}(z I-\bar{A}) \\
\text { and } p(z) & =\operatorname{det}(z I-\bar{A})=z^{m}-p_{1} z^{m-1}-p_{2} z^{m-2}-\ldots-p_{m}
\end{aligned}
$$

As shown in Gantmacher's book (GI), the difference $p(z)$ - p (u) is divisible by z^{-}. without remainder. Theresore

$$
\begin{equation*}
g(z, u)=\frac{p(z)-p(u)}{z-u}=z^{m-1} \div\left(u-p_{1}\right) z^{m-2}+\left(u^{2}-p_{1} u-p_{2}\right) z^{m-3}+\ldots \tag{I}
\end{equation*}
$$

is a polynomial in z and u.
The identity
$p(z)-p(u)=g(z, u)(z-u)$
will still hold if we replace z and u by the matrices $z I$ and A respectively, giving

$$
\begin{equation*}
p(z I)-p(A)=g(z I, A)(z I-A) \tag{2}
\end{equation*}
$$

but, since by the Cayley-Hemilton theorem $p(A)=0$, we get $\underline{p}(z I)=g(z I, A)(z I-A)$
therefore

$$
\begin{equation*}
(z I-A)^{-1}=(p(z I))^{-1} g(z I, A)=\frac{g\left(z I_{r} A\right)}{p(z)} \tag{4}
\end{equation*}
$$

so

$$
\begin{equation*}
g(z I, A)=M(z) \tag{5}
\end{equation*}
$$

Hence, by viritue of (1) and (5)

$$
\begin{equation*}
M(z)=I z^{m-1}+M_{1} z^{m-2} \div M_{2} z^{m-3}+\ldots \div M_{m-1} \tag{6}
\end{equation*}
$$

where

$$
M_{1}=A-D_{1} I \quad M_{2}=A^{2}-D_{1} A-D_{2} I \quad \cdots
$$

and in general

$$
M_{k}=A^{k}-p_{1} A^{k-1}-p_{2} A^{k-2}-\ldots-p_{1} I \quad k=1,2, \ldots, r m-1
$$

So, it can be easily seen that the matrices $M_{1} \times M_{2}, \ldots, M_{m-1}$ can be compuced using the recursive equation

$$
\begin{equation*}
M_{k}=A M_{k-1}-\mathrm{P}_{\mathrm{k}} I \quad \mathrm{k}=1_{r} 2, \ldots, m-1 \tag{7}
\end{equation*}
$$

where

$$
M_{0}=I
$$

The coefficients of the characteristic polynomial $p(z)$ cen be easily found successively as

$$
\begin{equation*}
k p_{k}=s_{k}-p_{I} S_{k-1}-\ldots-p_{k-1} S_{1} \quad k=1,2, \ldots, n \tag{8}
\end{equation*}
$$

where

$$
\mathrm{s}_{\mathrm{k}}=\operatorname{ir}\left(\mathrm{A}^{k}\right)
$$

Faddeev (F I) combining (7) and (8) obtained the coefficients $p_{1}, p_{2} \ldots$, P_{n} and the natrices $M_{1}, M_{2} \ldots M_{n-1}$ successively as follows:

$$
\begin{align*}
& \mathrm{A}_{1}=\mathrm{A} \\
& P_{I}=\operatorname{tr}\left(A_{I}\right) \\
& M_{I}=A_{I}-p_{I}^{I} \\
& \mathrm{~A}_{2}=\mathrm{AM}_{\mathrm{I}} \\
& p_{2}=\frac{1}{2} \operatorname{tr}\left(A_{2}\right) \\
& M_{2}=\underline{M}_{2}-\underline{p}_{2} I \\
& \mathrm{~A}_{3}=\mathrm{AM}_{2} \\
& \underline{p}_{3}=\frac{1}{3} \operatorname{tr}\left(A_{3}\right) \\
& M_{3}=A_{3}-P_{3} I \\
& \text { : } \\
& A_{n-1}=A_{n-2} \quad p_{n-1}=\frac{1}{n-1} \operatorname{ir}\left(A_{n-1}\right) \quad M_{n-1}=A_{n-1}-p_{n-1} I \\
& A_{n}=A M_{n-1} \quad D_{n}=\frac{1}{n} \operatorname{tr}\left(A_{n}\right) \tag{9}
\end{align*}
$$

In order to cheok the computations, we can go one step further and find whether $M_{n}=A_{n}-p_{n}$ equals zero or not. IF $M_{n}=0$ the computations are right, and if $M_{n} \neq 0$ there is a mistake somewhere.

The formulas in (9) are the ones that will be used in the nexi chapter to find the adjoint of the matrix ($z I-F$).

CHAPTER IIT

1. INTRODUCTION

This chepter will deal with the problem of finding a minimum order based compensator for a discrete time systent.

The problem of designing optimal compensators can be tackled in two completely different ways: (1) it can be worked out directly in the frequency domain or (2) the system can be transformed from the frequency domain equaitions into state space fom, and then the compensator structure can be found easily using the poweriul techniques available. Graphically, this means:

There are advantages and disadvantages for working with either method; meny of them arise from practical considertions-the problem directly in the frequency doman has the great advantage that most specifications are given in terms of rise time, overshoot, bandwidth, etc., which can be handied easier using techniques such as Nyquist plots, Inverse Nyquist plots, Root Iocus, and Bode plots. Anoither advancage of the frequency domein method is a very pracicical one; engineers, in the great majority, identīy very easily with such terminology.

The big disadvantage that this method faces, is the lack of powerful, easy to implement, techniques, especially in the case of multiple-input, multiple-output problems. In the last years, several computer-aided techniques have been developed to try to overcome this deficiency, among them the diagonal dominence method presented by Rosenbrock (RI) is widely used for multivariable systems. But still, there isn't yet, a frequency domain technicue that could be compared in scope and versatility, to the Iinear quadratic design in state space form.

For this reason, the approach of this chapter will follow path 2 shown in the above graph.

The importance of step 2 (c) Iies in the Fact that for systems that do not require the use of a computer, the compensator can be built very easily using only delays and gains that are readily available. When computers are used to implemont the control, this structure is also very convenient since a stack can be createa and very fow memory locations will be requirea.

This chepter, as mentioned above, will consider the problem of designing an optinal compensator whose dynamics are constrained to be those of a discrete time minimum order observer. The initial, as well as the finel foril will be a matrix difference operator. The initial condition of the plant will be a random vector with known inist and second order statistics, and the cost to be minimized will be the expectation, with respect to the initial condition, of the standard quadratic cost for
the discrete time linear regualtor probler.
The structure of this chepter is as follows. In seciion two the discrete time linear regulator problem is presented. Section three deals with the structure of the discrete minimum order observer as suggested by Iuenberger ($\mathrm{L}, 1$) . In the fourth section of this chaptex the optimal control problem is formulated and the equations that musi be satisfied by the unknown parameters of the compensator are developed. Also the necessary conditions for optimelity are presented but not worked out based on Iloren's thesis (I2). In the last section, the transformetion From State space Form into an Auto-Regressive Moving-Average model along with the structure of the matrix F of the compensator and some peritinent remarks are presented.

2. THE DISCRETE TTME IIMEAR REGUTATOR PROBLEM

This section considers the problem of finding an optimel compensator, given the Fact that complete state measurements are availeble. The initial condition of the plant fs assumed to be a random vecior with known finst and secona order statistics. The performence index to be minimized is the expectation of the usual cost, quadratic in both states and control. Since this problem is well known only the problem formulation and the results are presented.

OPTIMIZATION PROBEEM

Given:
(a): The following minimal realization discrete time linear invarient plant
$x(t+1)=A x(t)+B u(t)$
on the time interval $t[0, \infty)$ where
$x(0)$ is an R^{n} random vector with known first and second order stiatistics
$x(t)$ an R^{n} - valued random process
$u(t)$ an R^{P} - valued random process to be determined
A a constant real $n \cdot x$ matrix and
B a constant real in x matrix
(b) : The symmetric matrices Q and R where

Q is an $n x n$ constant real symmetric positive semidefinite matrix and

R a p x p constant real symmetric positive definite matrix

Find: the optimal control $u(t)$ which minimizes the performance index J(u) given by
$J(u)=E \sum_{t=0}^{\infty} x^{1}(t) Q x(t)+u^{1}(t) R u(t)$
As it was pointed out before, the solution of this problen is a
well known resialt given by
$u(t)=G X(t)$
where

$$
\begin{equation*}
G=\left(R \div B^{\prime} \mathrm{KB}\right)^{-1} \mathrm{Br}^{\prime} \mathrm{KA} \tag{3}
\end{equation*}
$$

and K is a symetric matrix that satisfies the discrete time algebraic Riccati equation

$$
\begin{equation*}
K=A^{\top} K A+Q-A^{\prime} K B\left(R+B^{\prime} K B\right)^{-1} B \cdot K A \tag{4}
\end{equation*}
$$

The minimal cost to go is then obtained as

$$
\begin{equation*}
J^{*}=\operatorname{tr}\left(\mathrm{K} \Sigma_{0}\right) \tag{5}
\end{equation*}
$$

where

$$
\Sigma_{0}=E\left(x(0) x^{\prime}(0)\right)
$$

It can be show thei K satisfies also the following equation
$K=(A \div B G)^{\prime \prime} K(A \div B G) \div O+G^{\prime} R G$

The suificient conaitions that must be satisified for K to be the unique positive derinite solution of (4) are
(a) (Z, B B) is a completely controllable pair and
(b) (A, $Q^{1 / 2}$) is a completely observable pair
2. STRUCTURE OF THE DISCRETE TTME MTNTMTM ORDER OBSERVER BASED COMPENSATOR

In the previous section, it was assumed that complete state measurements were available, but in most applications only a certain number of states (usually very Eew of them) or some linear combination of them can be directly observed. This lack of measurements poses a very serious problem in the implementation of the optimal Inear regulator since the control Iawr instead of being just a linear combination of the states
becomes dependent on time as well as the observed staces. Thus, either a new approach that directly accolmes for the nonavailability of the entire state vector must be devised, or a suitable approxination to the non availabie states must be determined. The latter was the direction taken by Luenberger (II) when he proposed the construction of an observer that would approximate assymptotically the non available states. It turn out as it will be shown in the next section, that the inserition of the observer coesn't change at all the value of the Feedback gain matrix G. The only thing that chenges is that instead of feeding back the entire state vector, the observed states plus the estimates of the unavailable states are the ones that are Eed back. So the first phase in ihe implementation or an optimel control law should be to assume that the entire state vector is available for feedback, while the second step should be to design a system that will approximate assymptotically the states of the original plant, i.e., to design an observer. When the notion of an observer was Eirst introduced, it was used primerily for the approximation of the states of detemministic, continuous time, linear time invariani planis, but, the observer theory hes subsequently been extended to include tine varying systems, discrete time systems ana stochastic systems. of course, the construction of a minimum ordex observer is not the only solution to the problem of Finaing an opimal compensator. Levine (I, 3) proposed the use of an optimal output feedback controller, however, not all systems are output stabilizable which could cause an unstable system
to remain unstable. Some other strategies that could be used are
a) to buila a full state observer: this approach hes all the methematical simplicity of the minimum order observer's, but implicitly, it possesses a certain degree of redundancy. Redundancy that arises from the Fact that the observer will be estimating the entire state, while we already have certain states through the outputs of the system, and
b) to implement an observex thet will reconstruct asymptoiically the optinal control Iaw $a(t)=G X(t)$ as proposed by Foxtmann and Williamson (F2): this technique has the advantage that the degree of the observer can be less than that of the minimum orãer observer, i.e., less than ($n-m$) but also possess the great disadvantage of mathematical compl sity, and it has not been worked out yet For multiple input multiple output systems.

For these reasons, we have selected to find the optimal compensator based or the siructure of a minimum order observer.

Let a minimal discrete time, linear time invariant system be governeả by the following equations

$$
\begin{align*}
& x(t+1)=A x(t) \div B u(t) \tag{I}\\
& y(t)=C x(t) \tag{2}
\end{align*}
$$

where
$\dot{Y}(t)$ is an R^{m} ranaom process described by (I) and (2)
C is an m x n constant, full rank matrix

Furthemore, let us assume that C hes the following structure;

$$
\begin{equation*}
\mathrm{c}=\left[I_{\mathrm{m}}: 0\right] \tag{3}
\end{equation*}
$$

where
I_{m} is the $m x m$ identity matrix and
0 is a $m x(n-m)$ zero matrix.

This is in no way a restriction on the range of systems that we can deal with, since from the assumptions that the system is minimal and that C is a full rank matrix, a similarity transformation can be fouma that will give us the desired structure. In Eact, Blanvillain (BI) shows a way to get this transzormation.

Having the system in this specific form, we dan partition (I) and
(2) in such a way to get

$$
\begin{align*}
& x(t+1)=\left[\begin{array}{l}
x_{1}(t+1) \\
x_{2}(t+1)
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{lll}
x_{1}(t) & \div & B_{1} \\
x_{2}(t) & B_{2}
\end{array}\right] u(t) \tag{A}\\
& y(t)=\left[I_{\text {min }}: 01\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=x_{1}(t)\right. \tag{5}
\end{align*}
$$

where
x_{1} (t) is an R^{m} random process
$x_{2}(t)$ is an $\mathrm{R}^{\mathrm{n}-\mathrm{m}}$ random process
and
$A_{12}(m \times m), A_{12}(m \times n-m), A_{21}(m-m \times m), A_{22}(n-m \times n-m)$,
$\mathrm{B}_{1}(\mathrm{~m} \times \mathrm{p}), \mathrm{B}_{2}(\mathrm{n}-\mathrm{m} \times \mathrm{p})$ are real valued metrices
It can be readily seen that the output $y(t)$ will give us directly $x_{1}(t)_{r}$ so an observer shoula be built to estimate only $x_{2}(t)$.

Expanding (4) we obtain
$x_{2}(t+1)=A_{21} x_{1}(t)+A_{22} x_{2}(t)+B_{2} u(t)$
$x_{1}(t+1)=A_{11} x_{1}(t) \div A_{12} x_{2}(t) \div B_{1} u(t)$
Substituting (5) in (7) an rearranging some terms we get

$$
\begin{equation*}
y(t+1)-A_{11} y(t)-B_{1} u(t)=\mathbb{A}_{12} x_{2}(t) \tag{8a}
\end{equation*}
$$

Now, Iet

$$
\begin{equation*}
y(t+1)-A_{11} y(t)-B_{1} u(t)=w(t) \tag{8b}
\end{equation*}
$$

Therefore, systems (6) and (7) can be expressed as

$$
\begin{align*}
& x_{2}(t+1)=A_{22} x_{2}(t)+A_{2 I} y(t)+B_{2} u(t) \tag{9}\\
& w(t)=A_{12} x_{2}(t) \tag{10}
\end{align*}
$$

II we can measure $w(t)$, equation (10) provides the measurement $A_{12} x_{2}(t)$ for the system (9) which has state vector $x_{2}(t)$ and input $A_{21} y(亡) \div B_{2} u(t)$. Drovided that $W(t)$ can be computed ${ }_{r}$, the only problem lies in the fact that ($A_{22},{ }^{A}{ }_{I 2}$) has to be completely observable. This problem is readily solved since by assumpion (A, C) is completely observable (see Padulo and Arbib (P 2)).

The idea behind the construction of the observer is then as foliows.

Figure 1

Figure 2

Since $u(\tau)$ and $y(t)$ are measurable, let us build a systen with the exect form of (9) and (10). Then we have

$$
\begin{align*}
& \hat{x}_{2}(t+1)=A_{22} \hat{x}_{2}(t) \div A_{21} y(t)+B_{2} u(t) \tag{II}\\
& \hat{w}(t)=A_{12} \hat{x}_{2}(t) \tag{12}
\end{align*}
$$

But, since any errors in the initial state or disturbances of the system would make our approximaiion to $x_{2}(t)$ very bad, let us keep track of the error between $w(t)$ and $\hat{w}(t)$ and Feed it back to the syster through the matrix H , as show in Figure 1.

So, we get the siructure of the observex as follows

$$
\begin{equation*}
\hat{X}_{2}(t+1)=A_{22} \hat{X}_{2}(t)+A_{21} y(t) \div B_{2} u(t) \div H\left(w(t)-A_{12} \hat{X}_{2}(t)\right) \tag{13}
\end{equation*}
$$

Thexefore

$$
\begin{equation*}
\hat{x}_{2}(\dot{t}+1)=\left(A_{22}-H A_{12}\right) \hat{X}_{2}(t) \div{\underset{A}{2 I}}^{Y}(\dot{t}) \div B_{2} u(t) \div H w(t) \tag{714}
\end{equation*}
$$

Substituting (8b) in (14) we obtain

$$
\begin{align*}
\hat{x}_{2}(t+1)= & \left(A_{22}-H A_{12}\right) \hat{x}_{2}(t)+\left(A_{21}-H A_{11}\right) y(t)+\left(B_{2}-H B_{1}\right) u(t) \\
& \div H(t+1) \tag{15}
\end{align*}
$$

Now, in order to eliminate the $y(t+1)$ term from equation (15), Iet us dezine

$$
\begin{equation*}
z(t)=\hat{X}_{2}(t)-H y(t) \tag{16}
\end{equation*}
$$

Finally, inserting (16) into (15) we obtain the desired structure for the observer as shown in Figure 2.

$$
\begin{align*}
z(t+1)= & \left(A_{22}-H_{12}\right) z(t)+\left(A_{22}-H_{12}\right) H Y(t)+\left(A_{21}-H A_{11}\right) y(t) \\
& +\left(B_{2}-H B_{1}\right) u(t) \\
\hat{x}_{2}(t)= & z(t)+H Y(t) \tag{17}
\end{align*}
$$

We are now ready to compute the optimal input to the system given by

$$
u(t)=G\left[\begin{array}{l}
x_{1}(t) \tag{19}\\
\hat{x}_{2}(t)
\end{array}\right]
$$

Paritioning G correspondingly, we obtain

$$
\begin{equation*}
u(t)=G_{1} x_{1}(t)+G_{2} \hat{x}_{2}(t) \tag{20}
\end{equation*}
$$

where
G_{1} is a $p \times m$ constant matrix and
G_{2} is a $\mathrm{p} \times \mathrm{n}-\mathrm{m}$ constant matrix
Substitutiong (18) into (20), we get

$$
\begin{equation*}
u(\epsilon)=\left(G_{I}+G_{2} H\right) Y(t)+G_{2} z(亡) \tag{2I}
\end{equation*}
$$

Note from equation (17), that the observer dynamics are determined by the eigenvalues of $A_{22}-H A_{12}$. Since the pair $\left(\mathcal{A}_{22}, A_{12}\right)$ is completely observable, it can be shown using duality, that the poles of the system can be arbitrarily chosen by manipulation of the matrix E. This suggests theit the closer the eigenvalues of the system are to the origin the better the observer, since it would yield an extremely rapia convergence. This tends, however, to make the observer act like a forward shift which
introduces several difyiculties. So, it is common practice to let the dynamics of the observer be just a little faster than those of the plant. This uncertainty of not knowing how to choose the dynamics of the observer, led during the last decade to some research in this area, in order to obtain the parameters of the H matrix by minimizing a cost. Blanvillain (BI), working the continuous time problem, assumed the optimal control to have the same structure as the optimal control for the linear regulator problem, and then minimized the increment in cost due to the use of the observer. Miller (MI) minimized the standard quadratic cosit constraining the control law to be an affine fanction of $\hat{x}(t)$. Also Newnan (N1), Rom and Sarachick (RI), Yuksel and Bongiorno (YI) among others contributed in the solution of this problem. The approach to be developed in the next section will follow Blanvillain's method.
4. THE MINIMUM ORDER OBSEEVER BASED COMPENSATOR PROBLEM

In this section the actual control probiem is solved. As was pointed out earlier, we start with a matrix difference operator equation and based on the results obtained in chapter two, transform the system to a state space representation. As was show in the previous section, all the parameters of the compensator can be obtained, once we find the matrices H and G. These matrices are Found by minimizing the expected value with respect to the initial conditions of the standerd quadratic cost. The solution of the optimization problem reduces to finding the solution of two independent discrete time algebraic Ricatti equations.

This separation is achieved by working with $x(t)$, the states of the plant, and $e(t)$, the error in the estimation of $x_{2}(t)$, instead of working with the more natural variables $x(t)$ and $z(t)$, which lead to less tractable equations. The sufficiency conditions are presented at the end of this section.

Assume that an irreducible system is given to us in the following Eorill:

$$
\begin{equation*}
P(z) Y(t)=Q(z) u(t) \tag{I}
\end{equation*}
$$

where
$P(z)$ is an x m matrix difference operator
$Q(z)$ is an $m x p$ matrix difference opera亡்or
and we have incorporated the matrix R as defined in chapter two
into $P(z)$.

It was shown in section three of chapter two, that the plent (I) can be transformed into a minimal state space representation of the form;

$$
\begin{align*}
& x_{0}(t+1)=A_{0} x_{0}(t)+B_{0} u(t) \tag{2a}\\
& y(t)=C_{0} x_{0}(t) \tag{2b}
\end{align*}
$$

where
$A_{0}(n \times n)$ is in observable Form
$B_{0}(n \times p)$ is a constant real matrix
$C_{0}(m \times n)$ is a matrix given by
$c_{0}=r^{-1} \bar{c}_{0}$
with
$\Gamma(m \times m)$ and $\bar{C}_{0}(m \times n)$ as dezined in chapter two． As pointed out in the previous section，we want the c matrix to be of the form

$$
\mathrm{c}=\left[I_{\mathrm{m}}: 0\right]
$$

In the next section，when we discuss the structure of F ，a transformation that achieves this goal is fully presented．For now，let us assume that we have the desired siructure and proceed with the statement of the optimization problem．

Given：
a）$E\{x(0)\}=m_{0}$ and $E\left\{x(0) x^{\prime}(0)\right\}=\Sigma_{0}$ for the process $x(亡+1)=A x(t) \div \operatorname{Eu}(t), \quad 亡 \varepsilon[0, \infty)$
$\underline{y}(t)=\left[I_{\mathrm{m}} ; 0\right] \mathrm{x}(\mathrm{t})$
b）The maitices A and B For the above process
c）The weighting matrices $Q(n \times n), R(p \times p)$ such that Q is a constant real symmetric positive semidefinite matrix R is a constant real symetric positive deinite matrix

Find：the matrices $G(p x m)$ and $H(n-m x m)$ and the vector $z(0)$ such that the cost

$$
j=E\left\{\sum_{t=0}^{\infty} x^{\prime}(t) 0 x(亡)+u^{1}(t) P u(t)\right\}
$$

ذs minimized subject to

```
x(t+1)=Ax(t)+Bu(t)
z(亡+I)=Ez(t) +S v(亡) +Du(t)
Y(t)=, Cx(t)
u(t) = K K Y (t) +K K2 z(t)
```

where

$$
\begin{aligned}
& F=A_{22}-H A_{I 2} \\
& S=E H+\left(A_{2 I}-H A_{I I}\right) \\
& D=B_{2}-H B_{1} \\
& K_{I}=G_{I} \div G_{2} H \\
& K_{2}=G_{2}
\end{aligned}
$$

As noted before, this formulation leads to a series of intractable mairix equations that can, however, be avoided by using $e(t)=$ the error in the estimation of $x_{2}(t)$, instead $\mathrm{of}_{\mathrm{I}} \mathrm{z}(\mathrm{t})$. So r_{r} let us define $\mathrm{e}(\mathrm{t})$ as

$$
\begin{equation*}
e(t)=x_{2}(\tau)-\hat{x}_{2}(t) \tag{5}
\end{equation*}
$$

Therefore
$e(t+1)=F e(t)$

And
$z(t)=x_{2}(t)-H Y(t)-e(t)$

We can now state the problem as follows: leave everything in the previous formulation unchanged but modi\#y the constraints to read

$$
\begin{align*}
& x(t+1)=A x(t)+B u(t) \\
& e(t+1)=\left(A_{22}-H Z_{12}\right) e(t) \tag{9}\\
& u(t)=G x(t)-G L e(t) \\
& e(0)=x_{2}(0)-H y(0)-z(0) \tag{II}\\
& y(t)=x_{1}(t) \tag{12}
\end{align*}
$$

where
$L=\left[\begin{array}{l}0_{\operatorname{mx}}(n-m) \\ I_{(n-m) \times(n-m)}\end{array}\right]$

Define now the new zugmented state

$$
\xi(t)=\left[\begin{array}{l}
x(t) \\
e(t)
\end{array}\right]
$$

Then we can make use of (8), (9), and (10) to write the overall closed loop system in the following Form

$$
\begin{equation*}
\xi(\dot{\tau}+I)=\Gamma \xi(\dot{\tau}) \tag{13}
\end{equation*}
$$

where Γ is given by

$$
\Gamma=\left[\begin{array}{cc}
\AA+B G & -\mathrm{BGL}_{1} \tag{14}\\
0 & \AA_{22}-\mathrm{HA}_{12}
\end{array}\right]
$$

and of (11) to obtain the overall initial conditions as

$$
\begin{align*}
& \xi(0)=\left[\begin{array}{l}
x(0) \\
e(0)
\end{array}\right] \\
& \xi(0)=\left[\begin{array}{l}
x(0) \\
x_{2}(0)-H y(0)-z(0)
\end{array}\right] \tag{1.5}
\end{align*}
$$

We are now ready to solve the above optimization problem. The cost J can now be rewritten as

$$
\begin{equation*}
J=E\left\{\sum_{t=0}^{\infty} \xi^{\prime}(t) \Omega \xi(t)\right\} \tag{16}
\end{equation*}
$$

where Ω is given by

$$
\Omega=\left[\begin{array}{cc}
Q+G^{\prime} R G & -G^{\prime} R G L \tag{I7}\\
-I G^{\prime} R G & I^{\prime} G^{\prime} R G E
\end{array}\right]
$$

Using equetion (13) we can see that $\xi(t)$, the augmented siate at time t, can be found as a function ois the initial augmented state $\xi(0)$ as follows

$$
\begin{equation*}
\xi(t)=\Gamma^{\dot{亡}} \xi(0) \tag{18}
\end{equation*}
$$

Substituting (18) into (16), the cost J an be expressed as a function of $\xi(0)$

$$
\begin{equation*}
J=E\left\{\sum_{t=0}^{\infty} \xi^{\prime}(0) \Gamma^{1 t} \Omega \Gamma^{t} \xi(0)\right\} \tag{19}
\end{equation*}
$$

which can be computed as

$$
\begin{equation*}
J=\operatorname{tr}\left\{\left(\sum_{t=0}^{\infty} \Gamma^{i} \Omega \Gamma^{t}\right) E(0)\right\} \tag{20}
\end{equation*}
$$

where

$$
\Xi(0)=\mathbb{E}\left\{\xi(0) \xi^{1}(0)\right\}
$$

In order to find the value of \bar{J}, we then need to compute oniy

$$
\begin{equation*}
\sum_{t=0}^{\infty} \Gamma^{t} \Omega \Gamma^{t}=\Lambda \tag{22}
\end{equation*}
$$

which can be found as a solution of the discrete time Iyapunov equation

$$
\begin{equation*}
\Lambda=\Gamma \quad \Lambda \Gamma \div \Omega \tag{23}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\Psi=\operatorname{tr}\{\Lambda \quad \Xi(0)\} \tag{24}
\end{equation*}
$$

EVAUUATION OF E (O)

Recall from (2I) that

$$
E(0)=E\left\{\xi(0) \xi^{\prime}(0)\right\}
$$

and from (11) that

$$
E(0)=x_{2}(0)-H x_{1}(0)-z(0)
$$

so

$$
\begin{align*}
& E(0)= E\left[\begin{array}{ll}
x(0 \\
e(0)
\end{array}\right]\left[x^{\prime}(0) e^{1}(0)\right] \\
& E(0)=\left[\begin{array}{ll}
\Sigma_{0} & E_{12} \\
\vdots & E_{12}
\end{array}\right] \tag{25}
\end{align*}
$$

In order to compute Ξ_{12} and E_{0}, we need to partition the matrix Σ_{0} and the vector m_{0} as follows

$$
\begin{aligned}
& \Sigma_{0}=\left[\begin{array}{cc}
\Sigma_{11} & \Sigma_{12} \\
\Sigma & \Sigma \\
12 & 22
\end{array}\right] \\
& m_{0}=\left[\begin{array}{c}
m_{1} \\
m_{2}
\end{array}\right]
\end{aligned}
$$

according to the dimensions of $x_{y}(0)$ and $x_{2}(0)$. So

$$
\Xi_{12}=E\left\{x(0) \in^{\prime}(0)\right\}=\left[\begin{array}{l}
\Sigma_{12}-\Sigma_{I I} H^{\prime}-m_{1} z^{\prime}(0) \tag{26}\\
\Sigma_{22}-\Sigma_{12}^{\prime} H^{\prime}-m_{2} z^{\prime}(0)
\end{array}\right]
$$

and

$$
\begin{align*}
& \Sigma_{0}=\mathrm{E}\left\{\mathrm{e}(0) e^{\prime}(0)\right\}=\mathrm{H}_{11} \mathrm{H}^{\prime} \div \Sigma_{22}-\Sigma_{12}^{1} \mathrm{H}^{\mathrm{y}}-\mathrm{H} \Sigma_{12}-\mathrm{z}(0)\left(\mathrm{m}_{2}-\mathrm{Hm}_{1}\right)^{\prime} \\
& -\left(m_{2}-\mathrm{Hm}_{1}\right) z^{\prime}(0)+z(0) z^{1}(0) \tag{27}
\end{align*}
$$

EVALUATTON OF Λ
Recall from (23) that Λ is given by
$\Lambda=\Gamma \quad \Lambda \Gamma+\Omega$
where I $\pm s$ given by (14) and Ω by (17).
Partitioning Λ as

$$
\Lambda=\left[\begin{array}{ll}
\Lambda_{11} & \Lambda_{12} \\
\Lambda_{12} & \Lambda_{22}
\end{array}\right]
$$

where
Λ_{11} is an $n \times n$ symmetric matrix
Λ_{12} is an $n x(n-m)$ matrix
A_{22} is an $(n-m) \times(n-m)$ symetric matrix we
we obtain

Expanding (28) we obtain the following three matrix equations

$$
\begin{align*}
& A_{I I}=(A+B G)^{1} A_{1 I}(A+B G) \div O+G^{\prime} R E \tag{29}\\
& A_{12}=-(A+B G)^{\top} A_{11} B G I+(A+B G)^{1} A_{I 2}\left(A_{22}-H_{12}\right)-G^{I} \mathrm{RGI}_{2} \tag{30}\\
& A_{22}=(B G L)^{1} \Lambda_{11} B G L-\left(A_{22}-\mathrm{HA}_{12}\right)^{1} \Lambda_{12} \mathrm{EGI}-(\mathrm{BGL})^{1} \Lambda_{12}\left(\mathrm{~A}_{22}-\mathrm{HA} 12\right)+ \\
& \div\left(\mathrm{A}_{22}-\mathrm{HA}_{12}\right)^{\mathrm{A}} \mathrm{~A}_{22}\left(\mathrm{~A}_{22} \mathrm{HA}_{12}\right)+\Phi^{\mathrm{Y}} \mathrm{G}^{\mathrm{R}} \mathrm{RGL} \tag{31}
\end{align*}
$$

Comparing equation (29) with equation (6) in section one we get

$$
\begin{equation*}
\Lambda_{11}=A^{1} A_{11} A+Q-A^{\prime} \Lambda_{11} B\left(R+B^{\prime} A_{11} B\right)^{-1} B^{\prime} \Lambda_{11} A \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
G=-\left(R+B^{\prime} \Lambda_{11} B\right)^{-1} B^{\top} \Lambda_{11} A \tag{33}
\end{equation*}
$$

From (30) we obtain

$$
\begin{align*}
& A_{12}=-A^{\prime} A_{11} B G L-G^{\prime} B^{\prime} A_{11} B G L-G^{\prime} R G L+(A+B G)^{\prime} \Lambda_{12}\left(A_{22}-H A_{12}\right) \tag{34}\\
& A_{12}=-A^{3} A_{11} B G L-G^{\prime}\left(R+B^{\prime} \Lambda_{11} B\right) G I \div(A+B G)^{\prime} A_{12}\left(A_{22}-H A_{12}\right) \tag{35}
\end{align*}
$$

and substituting (33) into (35)

$$
\begin{equation*}
\Lambda_{12}=(A+B G)^{\prime} \Lambda_{12}\left(\underline{I}_{22}-{ }^{-H 2} 12\right) \tag{36}
\end{equation*}
$$

If the analysis of this problem is done for the finite time interval [0,T] and then the liatt is taken, we will Find that

$$
\begin{equation*}
A_{12}=0 \tag{37}
\end{equation*}
$$

Substituting (37) and (33) in (31) we get

$$
\begin{equation*}
A_{22}=\left(A_{22}-H A_{12}\right)^{\prime} \Lambda_{22}\left(A_{22}^{-H A_{12}}\right)-L^{t} G^{\prime} B^{t} A_{11} A T \tag{38}
\end{equation*}
$$

Recall now, from (24) that

$$
v=\operatorname{tr}(\Lambda \quad \Xi(0))
$$

then

$$
\bar{u}=\operatorname{tr}\left\{\left[\begin{array}{cccc}
A_{11} & 0 & \Sigma_{0} & \Xi_{12} \\
0 & A_{22} & \Xi_{12} & \Xi_{0} \tag{39}
\end{array}\right]\right\}
$$

so

$$
\begin{equation*}
\bar{u}=\operatorname{tr}\left(\Lambda_{1 I} \Sigma_{0}\right)+\operatorname{tr}\left(\Lambda_{22} E_{0}\right) \tag{40}
\end{equation*}
$$

Comparing equation (5) of section one with (40), we see that the inclusion of an observer in the system to estimate the nonavailable states has the efiect of increasing the cost by

$$
\begin{equation*}
\Delta J=\operatorname{tr}\left(\Lambda_{22} E_{0}\right) \tag{41}
\end{equation*}
$$

The idea now is to find the optimum parameter H and $z(0)$ such that the increment in the cost, ΔJ, is minimized, so we want to solve the following minimization problem.

Given:
a) $\Lambda_{22}=\left(A_{22}-\mathrm{HA}_{12}\right)^{1} \Lambda_{22}\left(A_{22}-H A_{12}\right)-I^{1} G^{1} B^{1} A_{11} A L_{1}$
where G and Λ_{11} are described by equations (32) and (33), and obvionsly independent os H and $z(0)$.
b) $E_{0}=H \Sigma_{11} H^{i}+\Sigma_{22}-\Sigma_{12}^{\prime \prime} H-E \Sigma_{12}-2(0)\left(\mathrm{m}_{2}-\mathrm{Hm}_{1}\right)^{\prime}$ $-\left(\mathrm{m}_{2}-\mathrm{Hm}_{I}\right) z^{3}(0)+z(0) z^{T}(0)$

Find the optimum parameters of H and $z(0)$ such that the increment in the cost

$$
\Delta_{J}=\operatorname{tr}\left(\Lambda_{22} E_{0}\right)
$$

is minimized.
Llorens proved (T2) that the above dynamic optimization problem can be transformed to a static optimization problem, using a technique similar to the Lagrange multiplier methoa used to solve minimization problems in calculus. This static optimization problem becomes of the form

$$
\begin{align*}
& \Delta J=\operatorname{tr}\left[\Lambda_{22} E_{0}+\left[\left(\mathcal{A}_{22}-\mathrm{HA}_{12}\right)^{\prime} \Lambda_{22}\left(\underline{A}_{22}-\mathrm{HA}_{12}\right)-L^{\prime} \mathrm{G}^{\dagger} \mathrm{B}_{11} \mathrm{~A}_{12} \mathrm{AI}-\Lambda_{22}\right] \mathrm{K}\right. \tag{42}\\
& \Delta J=\operatorname{tr}\left\{\Lambda_{22}{ }^{H} \Sigma_{11} \mathrm{H}^{\prime}+\Lambda_{22} \Sigma_{22}-\Lambda_{22} \Sigma_{12}^{1} \mathrm{H}^{\prime}-\Lambda_{22}{ }^{H \Sigma} \Sigma_{12}\right. \\
& -\Lambda_{22} z(0)\left(m_{2}-E m_{I}\right)^{\prime}-\Lambda_{22}\left(m_{2}-H m_{1}\right) z^{\prime}(0) \div \Lambda_{22^{z}}(0) z^{\prime}(0)
\end{align*}
$$

The necessary condition for (43) to have a stationery point at $z^{*}(0), K^{*}$, H^{*}, A_{22} * are the following:

$$
\begin{align*}
& \left.\frac{\partial J}{\partial Z(0)}\right|_{*}=0 \tag{44}\\
& \left.\frac{\partial J}{\partial K}\right|_{*}=0 \tag{45}\\
& \left.\frac{\partial J}{\partial H}\right|_{*}=0 \tag{46}
\end{align*}
$$

$$
\begin{equation*}
\left.\frac{\partial \Delta J}{\partial \Lambda_{22}}\right|^{*}=0 \tag{47}
\end{equation*}
$$

where $\left.\right|_{\text {: means }}$ "evaluated at the staitionary point"

From (44)

$$
\Lambda_{22} a^{*}(0)-\Lambda_{22}^{*}\left(m_{2}-H^{*} m_{1}\right)=0
$$

So

$$
\begin{equation*}
z^{*}(0)=\mathfrak{m}_{2}-H * \mathbb{m}_{1} \tag{48}
\end{equation*}
$$

From (45)

$$
\begin{equation*}
A_{22}^{*}=\left(A_{22}-H^{*} A_{12}\right)^{\prime} \Lambda_{22}{ }^{2}\left(A_{22}-H^{*} A_{12}\right)-I^{\prime} G^{\prime} B^{\prime} \Lambda_{22} A T \tag{49}
\end{equation*}
$$

From (46)

$$
\begin{align*}
& 0=\Lambda \stackrel{\star}{22} H^{*} \Sigma_{11}-\Lambda_{22}^{*} \Sigma_{12}^{\prime}+\Lambda_{22}^{*} z^{*}(0) m_{1}^{\prime}-\Lambda_{22}^{*} A_{22}{ }^{\mathrm{K} * A_{12}^{\prime}} \\
& \div \Lambda_{22}^{*}{ }^{\mathrm{H}^{*} \mathrm{~A}_{12}}{ }^{\mathrm{K}^{*} \mathrm{~A}^{\mathrm{Z}}}{ }^{1}{ }_{12} \tag{50}
\end{align*}
$$

From (47)
$K=H^{*} \Sigma_{11} H^{*}+\Sigma_{22}-\Sigma_{12}^{\prime} \mathrm{H}^{*^{\prime}}-\mathrm{H}^{*}{ }_{12}-\mathrm{z}^{*}(0)\left(\mathrm{m}_{2}-\mathrm{H}^{*} \mathrm{~m}_{1}\right)^{\prime}$

$$
\begin{equation*}
\left.-\left(m_{2}-\mathrm{H}^{*} \mathrm{~m}_{1}\right) z^{\prime *}(0) \div z^{*}(0) z^{*^{\prime}}(0)+\left(\mathrm{A}_{22^{-H A_{1}}}\right){K^{*}\left(\mathbb{A}_{22}\right.}^{-\mathrm{H}^{*} A_{12}}\right)^{\prime} \tag{51}
\end{equation*}
$$

Substituting (48) in (50) and solving for H^{*} we get

$$
\begin{equation*}
H^{*}=\left(\Sigma_{12}^{1}-m_{2} m_{1}^{\prime}+A_{22^{K}}^{K^{*} A_{12}^{1}}\right)\left(\Sigma_{11}-m_{1} m_{1}^{3} \div A_{12} K_{12}^{*} A_{12}^{\ddagger}\right)^{-1} \tag{52}
\end{equation*}
$$

and substituting (48) in (51)

$$
\begin{align*}
K^{*}= & \left(A_{22}{ }^{-H * A}{ }_{12}\right) K^{*}\left(A_{22}-H^{*} A_{12}\right)^{\prime}+H^{*}\left(\Sigma_{11}-m_{1} m_{1}^{\prime}\right) H^{* \prime} \\
& +\Sigma_{22}-m_{2} m_{2}^{\prime}-\left(\Sigma_{12}^{\prime}-m_{2} m_{1}^{\prime}\right) H^{\top}-H^{*}\left(\Sigma_{12}-m_{1} m_{2}^{\prime}\right) \tag{53}
\end{align*}
$$

which becomes, after some manipulations

Summarizing, the optimal compensator parameters $H_{r} G$, and $z(0)$ can be found as follows

Feedback: gain

$$
G \quad \therefore \quad-\left(R+B^{\prime} \Lambda_{I I} B\right)^{-1} B^{\prime} \Lambda_{I I}^{A}
$$

where

$$
\Lambda_{11}=A^{\prime} \Lambda_{11} A+Q-2^{\prime} \Lambda_{11} B\left(R \div B^{\prime} \Lambda_{11} B\right)^{-1} B^{\prime} \Lambda_{11} A
$$

Parameters of the observer

$$
\mathrm{H}=\left(\Sigma_{12}^{1}-m_{2} \mathrm{mi}_{1}^{\prime \prime}+A_{22} \mathrm{KA}_{12}^{\prime}\right)\left(\Sigma_{11}-m_{1} m_{1}^{\prime}+A_{12} \mathrm{KA}_{12}^{\mathrm{I}}\right)^{-1}
$$

where

$$
\begin{aligned}
& K=A_{22}{ }^{K A}{ }_{22}^{\prime} \div \Sigma_{22}-m_{2} m_{2}^{-1}-\left(\Sigma_{12}^{\prime}-m_{2} m_{1}^{\prime}+A_{22} K_{12}^{\prime}\right) . \\
& \left(\Sigma_{11}-m_{1} m_{1}^{\prime} \div A_{12} K A_{12}^{\prime}\right)^{-I}\left(\Sigma_{12}-m_{1} m_{2}^{\prime} \div A_{12} K \mathcal{A}_{22}^{\prime}\right)
\end{aligned}
$$

and

$$
z(0)=\mathrm{m}_{2}-\mathrm{Hm}_{1}
$$

Notice from the above equations, that the separation thet was referred at the beginning of this section holds. The feedback gain depends only on the plant parameters and the weighting matrices, while the parameters of the observer depend on the plant structure and the stetistics of the process. This observation is very important since it ellows us to construct the observer and the feeaback gain of the compensetox indepenaently oİ one another.

Apert From the assumptions that wers made tinrough the development o立 the optimal compensator, if we assme that ($\Sigma_{11}-m_{1} m_{1}$) is positive Cefinite, the transfer function of the observer will be unique. Furthermore, Blanvillain and Johnson (B2) found that the plant transfar function uniquely determines the transfer function of the compensetor.

Llorens (L2) presented the conditions that must be satisfied in ordex to guerantee the existence of positive definite Λ_{11} and K matrices. These are
a) (A,B) be a controllable pair
b) $\left(A, Q^{1 / 2}\right)$ be an observable pair
and
c) $\left(A_{22}^{\prime}-A_{12}^{\prime}\left(\Sigma_{11}-m_{1} m_{1}^{\prime}\right)^{-I}\left(\Sigma_{12}-m_{1} m_{2}^{\prime}\right), A_{12}^{\prime}\right)$ be a controllable pair
a)

$$
\begin{gathered}
\left(A_{22}^{\prime}-A_{12}^{1}\left(\Sigma_{11}-m_{1} m_{1}^{\prime}\right)^{-1}\left(\Sigma_{12}-m_{1} m_{2}^{1}\right),\left(\Sigma_{22}-m_{2} m_{2}^{\prime}-\left(\Sigma_{12}^{1}-m_{2} m_{1}^{\prime}\right)\right.\right. \\
\left.\left.\left(\Sigma_{11}-m_{1} m_{1}^{\prime}\right)^{-1}\left(\Sigma_{12}-m_{1} m_{2}^{\prime}\right)\right)^{1 / 2}\right) \text { be an observabIe pair }
\end{gathered}
$$

e) $\left(\Sigma_{I I}-\pi_{1} m_{1}\right)$ is a nonsingular matrix

Conaition c) is sctisfied if the pair (A, C) is observable. These conditions, especially a) and the implication of condition c) that the pair (A, C) be observable, are the main reasons that led us to construct a minimel realization from the original matrix difference operators.

5. THE R.R.M.A. COMPENSATOR

In the previous section we found the structure of the optimal observer basea compensator by minimizing a performance index. since we want a minimum order observer, it turns out that the input to the system depenas not only on the estimates of the nonavailable states, but on the output itiself. This is an ianelizea situetion for purely synchronous discrete time systems, since it is impossible in practice to feed back the measurement at time t without any delay. whree different ways get around this problem are:
a) buila, instead on a minimum order observer a finli state observer: this approach woula heve all the methenatical s!mplicity, as well as properties, such as the separation between gain end observer paramerers equations, foura in the develonment of the optimel minimum oraer observer based compersator. In practice, this method won't increase the order on the observer by too much since
generally, the number of outputs even for complex systems, is small compared to the number of states
b) try to find another structure for a compensator, hopefuly of degree less than n that will Ieed back an estimate of the states plus a combination of the outputs at time, say, t-1
c) construct a "neariy synchronous" controller that wil be able to compute $u(t)$ at $(t+\Delta), \Delta \ll I$ such that the output at time t coula have enough tine to be fed back. In this case the same compensator found in the previous section would be used.

In this section, we will assume that the optimal compensator already Found is realizable, and then we will transiorm the sta亡e space representation of the compensator into a matrix aifference operator formr using the technique presented in section four of chapter two We will also fina the structure of the matrices A and F used in the previous section, and show that F is in observable Form.

We are interested here to find then the optimal compensator transfer function. Recall from the previous section that the equations satisfied by the optimal compensator are

$$
\begin{align*}
& z(t+1)=E z(t) \div s Y(t) \div D u(t) \tag{1}\\
& u(t)=K_{1} Y(t)+K_{2} z(t) \tag{2}
\end{align*}
$$

where
$F=A_{22}-\mathrm{HA}_{12}$ is an ($\mathrm{n}-\mathrm{m}$) $\mathrm{x}(\mathrm{n}-\mathrm{m})$ matrix
$S=F H \div A_{21}-H_{11}$ is an (nxm) xan matrix
$D=B_{2}-E B_{1}$ is an $(n-M) \times p$ matrix
$K_{1}=G_{1}+G_{2} H$ is an $p \times$ m matrix
$\mathrm{K}_{2}=\mathrm{G}_{2}$ is a $\mathrm{p} \times(\mathrm{n}-\mathrm{m})$ matrix
From (1) and (2)

$$
\begin{align*}
& z(t)=(z I-F)^{-1} s y(t)+(z I-F)^{-1} D u(t) \tag{3}\\
& u(t)=K_{I} y(t)+K_{2} z(t) \tag{4}
\end{align*}
$$

Substituting $z(t)$ from (3) in (4) we obtain

$$
\begin{equation*}
u(\dot{\tau})=K_{1} y(t)+K_{2}(z I-F)^{-I} s y(t)+K_{2}(z I-F)^{-I} D u(t) \tag{5}
\end{equation*}
$$

Finally rearranging terms we gei

$$
\begin{equation*}
\left(I_{p}-K_{2}(z I-F)^{-1} D\right) u(t)=\left(K_{1}+K_{2}(z I-F)^{-I} S\right) y(t) \tag{6}
\end{equation*}
$$

which is a transfer equation From output to input.
Note that the system described by (6) is not irreducible, but at any rate, we are not concerned in this section to obtain a systen in irreducible matrix difference operator form. It is important to note also, thet since it is needed to compute $(z i-\xi)^{-1}$ on both sides of (6), we can multiply both I_{p} and K_{I} by det $(z I-F)$ and then cencel the $\frac{1}{\operatorname{dec}(Z I-F)}$ that will be present on both sides. In other words

$$
\begin{align*}
\left(\operatorname{det}(z I-F) I_{p}-K_{2}(a d j(z I-F)) D\right) u(t)= & \left(\operatorname{det}(z I-F) K_{I}\right. \\
& \left.+K_{2}(\operatorname{adj}(z I-F)) S\right) y(亡) \tag{7}
\end{align*}
$$

and here is vhere Faddev's method to compute the adjoint of a matrix becomes handy.

COMPUTATION OF det (zI-F) AND adj ($Z I-F$)
Note Froul section four or chapter two that if the det (zi-F) is given by

$$
\begin{equation*}
\operatorname{det}(z I-F)=z^{n-m}-p_{1} z^{n-m-1}-p_{2} z^{n-m-2}-\cdots-p_{n-m} \tag{8}
\end{equation*}
$$

ana the adj $(z I-E)$ by

$$
\begin{equation*}
\operatorname{adj}(z I-E)=I z^{n-m-1} \div J_{1} z^{n-m-2} \div J_{2} z^{n-m 3}+\ldots J_{n-m-1} \tag{9}
\end{equation*}
$$

we cen compute simultaneously $p_{1}, p_{2} r \ldots r P_{n-m}$ and $\bar{J}_{1} r J_{2}, \ldots, J_{n-m-1}$ using Faddeev's algorithm

$$
\begin{align*}
& F_{I}=F \\
& P_{1}=\dot{L} x\left(F_{1}\right) \\
& F_{2}=F_{I} \\
& \mathrm{P}_{2}=\frac{1}{2} \operatorname{tr}\left(\mathrm{~F}_{2}\right) \\
& J_{1}=F_{1}-\underline{p}_{1} I \\
& \mathrm{~F}_{3}=\mathrm{FJ}_{2} \\
& \vdots \\
& p_{3}=\frac{1}{3} \operatorname{tr}\left(\mathrm{~F}_{3}\right) \\
& \mathrm{J}_{2}=\mathrm{F}_{2}-\mathrm{P}_{2} \mathrm{I} \\
& \Psi_{3}=F_{3}-P_{3} I \\
& F_{n-m-1}=E_{n-m-2} \quad p_{n-m-1}=\frac{I}{n-m-1} \operatorname{tr}\left(F_{n-n-1}\right) \quad J_{n-m-1}=F_{n-m-1}-p_{n-m-1} I \\
& \left.F_{n-m}=F_{n-m-1} \quad p_{n-m}=\frac{1}{n-m}+r_{n-m}\right) \tag{10}
\end{align*}
$$

Inserting (8) and (9) into (7) we obtain
$\left[\left(z^{n-m}-p_{1} z^{n-m-I}-\ldots-p_{n-m}\right) I_{p}-K_{2}\left(I z^{n-m-1}+J_{1} z^{n-m-2}\right.\right.$
$\left.\left.\div \ldots+J_{n-m-1}\right) D\right] u(t)=\left[\left(z^{n-m}-p_{1} z^{n_{1}-m-1}-\ldots-p_{n-m}\right) K_{1}\right.$
$\div k_{2}\left(I^{n-m-1}+J_{1} z^{n-m-2}+\ldots \div J_{n-m-1}\right) \operatorname{siy}(t)$

Which reduces to the Auto-Regressive Moving-Average form

$$
\begin{align*}
& I_{p} u(t+n-m)-\left(p_{1} I_{p}+K_{2} D\right) n(t+n-m-1)-\ldots-\left(p_{n-m} I_{p}+K_{2} I_{n-m-1} D\right) u(t)= \\
& =K_{1} Y(亡+n-m)-\left(p_{1} K_{1}-K_{2} s\right) y(t+n-m-1)-\ldots-\left(p_{n-m} K_{1}-K_{2} J_{n-m-1} s\right) y(亡) \tag{12}
\end{align*}
$$

Notice thet the number of multiplications required to obtain each new input is

$$
\begin{equation*}
\left(n+p^{2}\right)(n-m)+p m \tag{13}
\end{equation*}
$$

This number can be reduced if instead of using（6）we compute the transfer function of the system as follows：Substiturie（2）into（1）to ge亡

$$
\begin{equation*}
z(t+1)=\left(E \div D K_{2}\right) z(t) \div\left(S \div D K_{1}\right) y(t) \tag{1,4}
\end{equation*}
$$

Taking the z－transform in both sides we obtain

$$
\begin{equation*}
z(t)=\left[z I-\left(E+D K_{2}\right)\right]^{-1}\left(S+\mathrm{DK}_{1}\right) Y(t) \tag{1.5}
\end{equation*}
$$

to finally substitute（15）into（2）to get

$$
\begin{equation*}
u(t)=\left(K_{2}\left[z I-\left(F+D K_{2}\right)\right]^{-1}\left(S+D K_{1}\right) \div K_{1}\right) y(i) \tag{16}
\end{equation*}
$$

Employing again Faddeev＇s method to obtain both det $\left[z I-\left(F+D K_{2}\right)\right]$ and $\operatorname{adj}[z I-(\mathrm{F} \div \mathrm{DK}, 2)]$ we get
$I_{p} u(t \div n-m)-r_{I} I_{p}^{u}(t+n-m-1)-\ldots-I_{n-m} I_{p} u(t)=K_{1} Y(t+n-m)$
$-\left(r_{1} K_{1}-K_{2}\left(S+D K_{1}\right)\right) y(t+n-m-1)-\ldots-\left(r_{n-m} K_{1}-K_{2} M_{n-m-1}\left(S+D K_{1}\right)\right) y(t)$
where
$\operatorname{det}\left[z I-\left(F+D K_{2}\right)\right]=z^{n-m}-r_{1} z^{n-m-1}-r_{2} z^{n-m-2}-\cdots-r_{n-m}$
and

$$
\operatorname{adj}\left[z I-\left(F+D K_{2}\right)\right]^{2}=I z^{n-m-1} \div M_{1} z^{n-m-2} \div \ldots+M_{n-m-1}
$$

Notice that the nunber of multiplications required by using (17) has been reduced to

$$
\begin{equation*}
(\mathrm{pm}+\mathrm{p})(\mathrm{n}-\mathrm{m}) \div \mathrm{pm} \tag{18}
\end{equation*}
$$

STRUCRURE OF THE A AND F MATRICES
AFter using Wolovich's method in the previous section to achieve the transfornation from a matrix difference operator form into a state space representation, we pointed out thet a similarity transformation was required in order to put the system into siate output canonical form. We will present now one transformation that will give us the matrix F in an observable form.

Recall Irom equations (2a) and (2b) of sections four that we have a completely observable system of the form

$$
\begin{align*}
& x_{0}(亡+1)=A_{0} x_{0}(t)+B_{0} u(t) \tag{19}\\
& y(\tau)=c_{0} x_{0}(\tau) \tag{20}
\end{align*}
$$

where
A_{0} (nsm) is in observable Form
$B_{0}(\operatorname{mp})$ is a constant matrix
$c_{0}(\operatorname{mon})$ is a matrix given by
$C_{0}=T_{R}^{-1} \bar{C}_{0}$
that we want to convert into state output canonical form. That is, we want to find a similarity transformation given by

$$
\begin{equation*}
x(t)=J x_{0}(t) \tag{iI}
\end{equation*}
$$

such that

$$
\begin{align*}
& x(t)={ }^{J A_{0}} J^{-1} x(t)+\mathrm{JB}_{0} u(t)=\mathrm{Ax}(t)+\mathrm{Bu}(t) \tag{22}\\
& y(t)=\mathrm{C}_{0} \mathrm{~J}^{-1} x(t) \tag{23}
\end{align*}
$$

is in state output canonical form.
Let us look at the structure of C_{0} in order to find the desired J^{-1}

$$
\left.c_{0}=\left[\begin{array}{ccccccccccc}
0 & 0 & \ldots & 0 & 1 & 0 & 0 & \ldots & 0 & 1 & \tag{24}\\
0 & 0 & \ldots & 0 & \Gamma_{\mathrm{cI}}^{-1} & 0 & 0 & \ldots & 0 & \Gamma_{c 2}^{-1} & \cdots
\end{array}\right] \Gamma_{\mathrm{cm}}^{-1}\right]
$$

where $T_{c l^{r}}^{-1} T_{c 1}^{-1}, \ldots \Gamma_{c m}^{-1}$ denote the First, second, \ldots, and ${ }^{\text {th }}$ colum en of r^{-1} and $r_{1}, r_{2}, \ldots, r_{m}$ are the $r_{1}, x_{2}, \ldots, r_{m}$ columns of C_{0} as defined by (8) in section three of chapter two. We see that if we define J^{-1} as

$$
\begin{aligned}
& \text {-63- }
\end{aligned}
$$

$$
\begin{aligned}
& \text { m }
\end{aligned}
$$

where $r_{1}, r_{2}, \ldots, r_{m}$ denote the $r_{1}, r_{2}, \ldots, r_{\text {m }}$ rows of J^{-1} and $r_{r 1}, r_{r 2}, \ldots$, $\Gamma_{\text {Im }}$ are the Iirst, second,\ldots, and $m^{\text {th }}$ rows of Γ. Then c will be in state outpui canonical Forin i.e.,

$$
c=\left[\begin{array}{ll}
I_{\mathrm{m}} & 0_{\mathrm{mx}(\mathrm{n}-\mathrm{m})} \tag{26}
\end{array}\right]
$$

From (25)
-64-

So A will be given by

$$
\begin{equation*}
\mathrm{A}=\mathrm{JA}^{-1} \tag{28}
\end{equation*}
$$

which becomes

$$
\begin{aligned}
& \text {-65- }
\end{aligned}
$$

> m
> $n-m$
where the \mid columns denote colums of numbers.
Recall now that F is obtained by

$$
\begin{equation*}
F=\underline{I}_{22}-H A_{12} \tag{30}
\end{equation*}
$$

So, from (29) and (30) we can finally find the structure of F to be given by

$$
F=\left[\begin{array}{cccc|cccc|ccc}
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
& & \vdots & & & & & & & & \\
0 & 0 & \cdots & 1 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & 1 & \cdots & 0 & 0 & \cdots & 0 \\
& & \cdots & & & & \vdots & & & \vdots & \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 1 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 1 & & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 1
\end{array}\right]
$$

which is the mul̇ivariable observable forin.

REMARES

a) Taking advantage of the structure of F and using (1) and (2), we Find that the number of multiplications nebded to obtain each new input working in state space form is ($2 \mathrm{p}+2 \mathrm{~m}$) (n-m) +pm . Comparing this number with $(p m+p)(n-m)+p m$ the number found for the Auto-Regressive Moving-Average model, we note that for systems that have a small number of inputs, the difierence is not that big. We need co have in mind also that the A.R.M.A. structure found is not irreducible, so for specific problems, some extre savings in the above number of computations can be achieved.
b) Zs was pointed out earliery one of the big advantages of having the system in an A.R.M. A. form is thet for simple systems the implementation of the compensator can be done with readily available elements, and for more complex systems a stack cen be created, which allows us to avoid
core memory accesses, a characteristic that speeds up the computation time.

CHAPTER IV

INERODUCTION

In this chapter we will present three diFferent methods to obtain minimum variance control strategies for single input single output discrete time systems. The main reason to build these types of compensators is to reduce the effects that noise has on the plant. as will be seen in the example solved in chapter Five, these procedures do not guarantee the stability of the compensator. Even though the compensator will not be necessarily stable, the overall system will be. In order to avoid the problens pointed out in the previous chapier, it is assumed that the compensator computes each new input as a function, solely, of the past information available, i.e., u(t) depends only on the previous inputs $u(t-1), u(t-2), \ldots$ and the previons noisy measurements $z(t-1), z(t-2), \ldots$

The structure of this chapter is as follows. In section two the necessery conditions to achieve a minimm variance control for a noisy system with noisy measurements are obtained. This is a direct method since it will not be necessary to transform the system into a state space representation. This technique hes the great disadvantage that even for very low ordered systems the equations become untractable. Section three deals with the same problem, but the system is converted to state space form. Although the structure assumed for the compensator does not allow us to get a separation to obtain its parameters, as was the case with the minumu-order based compensator solved in the previous chapter,
the matrix equations that we get can be solved with the use of a computer. Section four presents the strategy developed by Astrom to get the minimum output variance control for a discretie time linear time invariant plant with noise-Iree measurements. It turns out that the compensator, using this method, is very easy to get. A simple polynomial division gives directly the parameters of the compensator as well as the numbers required to Find the variance of the output.
2. MINIMUM VARTANCE CONTROI-DIRECT METHOD I

As was pointed out in the introduction, the great disadvantage or this method lies in the fact that the equations that need to be solved are not difficult to get, but if obtained, difficult to solve. The idea behind tinis technique is as follows: once the structure of the compensator is assumed, substitute it into the transfer function of the originat system, in order to obtain the transf̣er function of the overali system depending only on the transfer tunction from internal noise and measurement noise to output. At this point, we go back to the time domain and find the necessary conditions required to get a minimum variance of the output.

Let us assume that an $n{ }^{\text {th }}$ discrete time linear time invariant single input system is described by the following Auto Regressive Moving Average equation:

$$
\begin{align*}
& y(t+n)+a_{n-1} y(t+n-1) \div \ldots \div a_{0} y(t)=b_{n-1} u(t \div n-1)+\ldots+b_{0} u(t) \div \\
& c_{n-1} v(t \div n-1) \div \ldots+c_{0} v(t) \tag{I}
\end{align*}
$$

where
$u(t)$ is the input to the system
$\mathrm{v}(\mathrm{t})$ is the internal white gaussian noise such that $E(v(\tau))=0$ and $\operatorname{cov}(v(\tau))=v \delta(t)$
since the measuremencs are also noisy, let

$$
\begin{equation*}
z(t)=y(t)+w(t) \tag{2}
\end{equation*}
$$

where
$w(t)$ is a white gaussian noise such that
$E(w(t))=0, \operatorname{cov}(w(t))=W \delta(t)$ and $E(v(t) w(t))=0$
Now, Iet us assume that the $n^{\text {th }}$ order compensator has the following structure

$$
\begin{equation*}
u(t+n)+d_{n-1} u(i \div n-1) \div \ldots \div d_{0} u(t)=\dot{\Phi}_{n-1} z(t+n-1) \div \ldots \div \dot{\Phi}_{0} z(亡) \tag{3}
\end{equation*}
$$

which can be rewrititen as.

$$
\begin{align*}
& u(t+n) \div a_{n-I} u(t+n-1) \div \ldots+a_{0} u(t)=I_{n-1} y(t+n-1)+\ldots \div I_{0} y(t)+ \\
& f_{n-1} w(t+n-1) \div \ldots+E_{0} u(t) \tag{4}
\end{align*}
$$

Taking the Z-transform of both (I) and (4) we get

$$
\begin{align*}
& Y(t)=\frac{B(z)}{A(z)} u(t)+\frac{C(z)}{A(z)} v(t) \tag{5}\\
& u(t)=\frac{F(z)}{D(z)} y(t)+\frac{F(z)}{D(z)} w(\tau) \tag{6}
\end{align*}
$$

where

$$
\begin{aligned}
& A(z)=z^{n}+a_{n-1} z^{n-1}+\ldots+a_{0} \\
& B(z)=b_{n-1} z^{n-1} \div \ldots+b_{0} \\
& C(z)=c_{n-1} z^{n-1}+\ldots+c_{0} \\
& D(z)=z^{n}+d_{n-1} z^{n-1}+\ldots+c_{0} \\
& E(z)=\sum_{n-1} z^{n-1}+\ldots+E_{0}
\end{aligned}
$$

Substituting (6) into (5) we get

$$
\begin{equation*}
\underline{Y}(t)=\frac{B(z)}{A(z)}\left[\frac{F(z)}{D(z)} Y(\hbar) \div \frac{F(z)}{D(z)} w(t)\right] \div \frac{C(z)}{A(z)} v(t) \tag{7}
\end{equation*}
$$

which becomes

$$
\begin{equation*}
Y(t)=\frac{B(z) F^{\prime}(z)}{A(z) D(z)-B(z) F(z)} w(\dot{L}) \div \frac{C(z) D(z)}{A(z) D(z)-B(z) F(z)} v(z) \tag{8}
\end{equation*}
$$

Equation (8) describes the overall closed loop transfer function. Note that since $B(z) F(z)$ is of degree $2 n-2$ and $A(z) D(z)-B(z) F(z)$ of degree $2 n$, the measurement noise at time till be delayed twice beyore it is reflected on the output of the system; this is logical since this disturbance has to go through the compensator as well as the plant before it goes out. Observe also that since the order of $C(z) D(z)$ is $2 n-1$ the internal noise is delayed only once, this is because $v(i)$ hes only to go through the plant before it is reflected at the output.

Having obiainew the transfer function of tine closed ioop system we go back to the time comain to express

$$
\begin{equation*}
y(t)=\sum_{n=0}^{t} h(t-n)_{w}(n) \div \sum_{n=0}^{t} g(t-n) v(n) \tag{9}
\end{equation*}
$$

where
$h(t)$ is the inverse z-transform of $\frac{B(z) F(z)}{A(z) D(z)-B(z) F(z)}$
$g(t)$ is the inverse Z-transform of $\frac{C(z) D(z)}{A(z) D(z)-B(z) F(z)}$

We are now ready to compute the variance of $y(t)$

$$
\begin{align*}
E\left(y^{2}(t)\right)= & E\left[(\sum _ { n = 0 } ^ { t } h (t - n) _ { w } (n) + \sum _ { n = 0 } ^ { t } g (t - n) v (n)) \left(\sum_{i=0}^{t} h(t-i)_{W}(i)\right.\right. \\
& \left.\div \sum_{i=0}^{t} g(t-i) v(i)\right) \tag{IO}
\end{align*}
$$

Recalling that $v(i)$ and $w(t)$ are independent, (10) becomes

$$
\begin{align*}
E\left(y^{2}(i)\right)= & E\left(\sum_{n=0}^{t} n(t-n) w(n) \sum_{i=0}^{t} h(t-i) w(i) \div \sum_{n=0}^{t} g(t-n) v(n)\right. \\
& \left.\sum_{i=0}^{t} g(t-i) v(i)\right) \tag{1.1}
\end{align*}
$$

$$
\begin{align*}
& \text { Since } E((n) w(i))=\bar{w} \delta(n-i) \text { and } E(v(n) v(i))=V \delta(n-i) \text {, we obiain } \\
& E\left(y^{2}(t)=\sum_{n=0}^{t} h^{2}(n) w+\sum_{n=0}^{亡} g^{2}(n) V\right. \tag{12}
\end{align*}
$$

and taking the limit as $t \rightarrow \infty$ we fineliy get

$$
\begin{equation*}
B\left(y^{2}(\infty)\right)=\sum_{n=0}^{\infty} h^{2}(n) w+\sum_{n=0}^{\infty} g^{2}(n) V \tag{13}
\end{equation*}
$$

therefore, the necessery conditions that must be satissied to obtain a minimum output variance are

$$
\begin{equation*}
\sum_{n=0}^{\infty} h(n) \frac{\partial h(n)}{\partial s} W+\sum_{n=0}^{\infty} g(n) \frac{\partial g(n)}{\partial s} V=0 \tag{1,4}
\end{equation*}
$$

For each 5_{r}, being $a_{n-1}, d_{n-2}, \ldots, d_{0} f_{n-1}, f_{n-2}, \ldots, I_{0}$

We can see in (14) the difficulty to implement the compensator using this techmique, because, not only to obtain $g(n)$ and $h(n)$ for $n=0, I_{f}=,=$,
is a tremendous task, but to solve the necessary conditions is almost impossible, since in almost every $h(i)$ and $g(i)$ there are present at leasit several of the parameters we are trying to find.

In order to avoid these difficulties, we can use parseval's relation to put (13) as Foliuws
$E\left(y^{2}(\infty)\right)=\frac{W}{2 \pi} \int_{-\pi}^{\pi} H\left(e^{j u}\right) H^{*}\left(e^{j u}\right) d u+\frac{v}{2 \pi} \int_{-\infty}^{\infty} G\left(e^{j u}\right) G^{*}\left(e^{j u}\right) d u$
and then the necessary conditions become
$w \int_{-\pi}^{\pi} H\left(e^{j u}\right) \frac{\partial H^{*}\left(e^{j u}\right)}{\partial s} d u+w \int_{-\pi}^{\pi} \frac{\partial H\left(e^{j u}\right)}{\partial s} H^{*}\left(e^{j u}\right) d u+$
$+V \int_{-\pi}^{\pi} G\left(e^{j u}\right) \frac{\partial G *\left(e^{j u}\right)}{\partial s} d u+v \int_{-\pi}^{\pi} \frac{\partial G\left(e^{j u}\right)}{\partial s} G *\left(e^{j u}\right) d u=0$
for each s as defined above.
Note that even though the parameters of the compensator can be found more eesily using (16) instead of (14), they are not readily available and the computations are still difficult especially because of the integration thet must he done-

3. MINIMUM VARIANCE CONTROI-MATRIX APPROACH

The difficulty of solving this minimum variance control problem using the direct method 1 approach, leads us to obtain the solution by using state space techniques. The idea behind this matrix approach is to convert the system and the assumed compensator structure into state space \dot{F} om and then minimize the limit as $t \rightarrow \infty$ of the variance of the output with respect to the unknown parameters.

Recall from the previous section that the plant mathematical representation is
$y(t \div n) \div a_{n-1} y(t+n-1)+\ldots \div a_{0} y(t)=b_{n-1} u(t+n-1) \div \ldots \div b_{0} u(t)$ $\div c_{n-1}\left(v(t+n-1) \div \ldots+c_{0} v(t)\right.$
and the compensator's is

$$
\begin{align*}
& u(t+n) \div a_{n-1} u(t+n-1) \div \ldots+a_{0} u(\tau)=\sum_{n-1} y(\tau \div n-1) \div \ldots+f_{0} y(c) \\
& \because f_{n-1}(t \div n-1) \div \ldots \div \sum_{0^{*}}(t) \tag{2}
\end{align*}
$$

We can represent these systers in state space form as
$x(t \div 1)=\left[\begin{array}{cccc}0 & 0 & 0 & -a_{0} \\ 1 & 0 & 0 & -a_{I} \\ 0 & 1 & \cdots & 0 \\ -a_{2} \\ \cdots & 0 & - & - \\ 0 & 0 & - \\ 0 & -a_{n-1}\end{array}\right] \quad x(t) \div\left[\begin{array}{c}b_{0} \\ b_{1} \\ b_{2} \\ - \\ - \\ b_{n-1}\end{array}\right] u(t)+\left[\begin{array}{c}c_{0} \\ c_{1} \\ c_{2} \\ \vdots \\ 0 \\ c_{n-1}\end{array}\right] v(t)$

$$
\begin{align*}
& \mathrm{Y}(\mathrm{t})=\left[\begin{array}{lllll}
0 & 0 & \ldots & 0 & 1
\end{array}\right] \mathrm{x}(\mathrm{t}) \tag{4}
\end{align*}
$$

$$
\begin{align*}
& u(t)=\left[\begin{array}{lllll}
0 & 0 & \ldots & 0 & 1
\end{array}\right] z(t) \tag{5}
\end{align*}
$$

and for convenience as

$$
\begin{align*}
& \mathrm{x}(t \div 1)=\mathrm{Ax}(t)+\mathrm{Bu}(\tau) \div \mathrm{CV}(亡) \tag{7}\\
& \mathrm{Y}(\mathrm{t})=\operatorname{Ex}(\mathrm{t}) \tag{8}\\
& z(t+1)=D_{O B S} z(t)+F Y(t)+F W(t) \tag{9}\\
& \mathrm{H}(\mathrm{t})=\mathrm{Hz}(\mathrm{t}) \tag{10}
\end{align*}
$$

Furthermore, we assume that (\bar{A}, B) and (\bar{A}, C) are controllable pairs.
For reasons that will be seen later, we let

$$
\begin{equation*}
D_{O B S}=I \div D H \tag{11}
\end{equation*}
$$

where

$$
I=\left[\begin{array}{ccccc}
0 & 0 & & 0 & 0 \\
1 & 0 & & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & & 1 & 0
\end{array}\right]
$$

and

$$
D=\left[\begin{array}{c}
-a_{0} \\
-a_{1} \\
-a_{2} \\
\vdots \\
-a_{n-1}
\end{array}\right]
$$

Then we can rewrite (9) as

$$
\begin{equation*}
z(亡 \div I)=(I \div D H) z(t) \div F y(t)+F w(t) \tag{12}
\end{equation*}
$$

and the augmented systen is

$$
\left.\begin{array}{l}
{\left[\begin{array}{l}
x(t+1) \\
z(t+1)
\end{array}\right]=\left[\begin{array}{ll}
A & B H \\
F H & I+D H
\end{array}\right]\left[\begin{array}{l}
x(t) \\
z(t)
\end{array}\right]+\left[\begin{array}{ll}
C & 0 \\
0 & F
\end{array}\right]\left[\begin{array}{l}
v(t) \\
w(t)
\end{array}\right]} \\
y(t)
\end{array}\right]\left[\begin{array}{ll}
\mathrm{F} & 0]\left[\begin{array}{l}
x(t) \\
z(t)
\end{array}\right] \tag{I4}
\end{array}\right.
$$

Ietiting

$$
\xi(\dot{L})=\left[\begin{array}{l}
x(t) \tag{15}\\
z(t)
\end{array}\right]
$$

end

$$
\Gamma=\left[\begin{array}{ll}
\mathrm{A} & \mathrm{BH} \tag{16}\\
\mathrm{~F} & \mathrm{I}+\mathrm{DH}
\end{array}\right] \quad \alpha=\left[\begin{array}{ll}
\mathrm{C} & 0 \\
0 & F
\end{array}\right]
$$

we ann write (13) and (14) as

$$
\xi(t \div I)=P \xi(t) \div c\left[\begin{array}{l}
w(t) \\
w(t)
\end{array}\right]
$$

Note from (17) thai

$$
\xi(i)=\Gamma^{t} \xi(0)+\sum_{i=0}^{t-1} \quad \Gamma^{t-i-1} \alpha \quad\left[\begin{array}{l}
v(i) \tag{19}\\
w(i)
\end{array}\right]
$$

We are now ready to find the variance of the output as follows

$$
E(Y(t) Y(t))=E\left(\xi^{\prime}(t) \quad\left[\begin{array}{l}
H^{\prime} \tag{20}\\
0
\end{array}\right]\left[\begin{array}{ll}
H & 0] \\
(t)
\end{array}\right]\right.
$$

so

$$
\operatorname{var}(y(亡))=E\left(\xi^{\prime}(t) \quad\left[\begin{array}{lll}
H^{4} & H & 0 \tag{2I}\\
0 & 0
\end{array}\right] \quad \xi(t)\right.
$$

since we are interested in finding the limit as $t+\infty$ of $\operatorname{var}(y(t))$ as a function of the initial conditions of the plant and compensator, and the disturbance variance, we cen rewrite (21) as

$$
\begin{align*}
& \lim _{t \rightarrow \infty} E\left[\xi^{i}(0) \Gamma^{i}\left[\begin{array}{ll}
H^{\prime} H & 0 \\
0 & 0
\end{array}\right] \Gamma^{i} \xi(0) \div \sum_{i=0}^{t-1}[v(i) w(i)] \alpha^{i} \Gamma^{t-i-1}\right. \\
& {\left[\begin{array}{ll}
H^{\prime} H & 0 \\
0 & 0
\end{array}\right] \sum_{j=0}^{t-1} \Gamma^{t-j-1} \alpha\left[\begin{array}{l}
v(j) \\
v(j)
\end{array}\right]} \tag{22}
\end{align*}
$$

which, recalling from the previous section that $w(t)$ and $v(i)$ are independeni white gaussian noises, becomes,
$\lim _{t \rightarrow \infty} E\left[\xi^{t}(0) \Gamma^{t}\left[\begin{array}{ll}H^{t} H & 0 \\ 0 & 0\end{array}\right] \Gamma^{t} \xi(0)+\sum_{i=0}^{t-1}[v(i) w(i)] \alpha^{t} \Gamma^{t-i-1}\right.$
$\left[\begin{array}{ll}W^{\prime} H & 0 \\ 0 & 0\end{array}\right] \quad \Gamma^{t-i-I} \quad \alpha\left[\begin{array}{l}v(i) \\ u(i)\end{array}\right]$
that can be computed as

$$
\operatorname{tr}\left(A_{1} \quad E(0)\right)+\operatorname{tr}\left(\Lambda_{2} \alpha\left[\begin{array}{ll}
v & 0 \tag{24}\\
0 & w
\end{array}\right] \quad a^{\prime}\right)
$$

where

$$
\begin{align*}
& \equiv(0)=E\left[\xi(0) \xi^{1}(0)\right] \\
& A_{I}=\lim _{t \rightarrow \infty} \Gamma^{t}\left[\begin{array}{ll}
H^{\prime} H & 0 \\
0 & 0
\end{array}\right] \quad \Gamma^{t} \tag{25}\\
& A_{2}=\operatorname{Iim}_{t \rightarrow \infty} \sum_{i=0}^{t-1} \Gamma^{t-i-1}\left[\begin{array}{ll}
H^{1} H & 0 \\
0 & 0
\end{array}\right] \quad \Gamma^{t-i-1} \tag{26}
\end{align*}
$$

Since we want a steble overall system, note that $\lim _{t \rightarrow \infty}^{i}$ shoula be zero so

$$
\begin{equation*}
\Lambda_{1}=0 \tag{27}
\end{equation*}
$$

then (24) becomes

$$
\operatorname{var}(Y(\infty))=\operatorname{tr}\left(\Lambda_{2}\left[\begin{array}{cc}
\operatorname{cVC}^{1} & 0 \tag{28}\\
0 & \vdots \\
0 & F^{\prime}
\end{array}\right]\right)
$$

where Λ_{2} solves the discrete time Iyapunnov equation

$$
\Lambda_{2}=\Gamma^{t} \Lambda_{2} \Lambda \div\left[\begin{array}{ll}
H^{\prime} H & 0 \tag{29}\\
0 & 0
\end{array}\right]
$$

At this poinc we can see why the compensator is not guaranteed to be stable while the overall system is. From equation (23) we note that although we are "sort of penalizing" $x(t)$ we are not doing the same with $z(t)$, and from (26) we observe that if the overall system was not stable Λ_{2} would diverge. We are now ready to solve for the necessary conditions in order for the compensator to privide a minimum variance control. To do this we have to minimize

$$
\operatorname{tx}\left(A_{2}\left[\begin{array}{lc}
C V C^{\prime} & 0 \\
0 & F W F^{\prime}
\end{array}\right]\right)
$$

with respeci to E and D
subject to

$$
\Lambda_{2}=\Gamma^{\top} \Lambda_{2} \Gamma+\left[\begin{array}{ll}
H^{\prime} I & 0 \\
0 & 0
\end{array}\right]
$$

As was pointed out in chapter three, we can convert this dynamic minimization problem into a static minimization as Follows.

> Define
$J=\operatorname{tr} \Lambda_{2}\left[\begin{array}{cc}\text { CVC'I } & 0 \\ 0 & F W F^{\prime}\end{array}\right]+\left[-\Lambda_{2}+\Gamma^{r} A_{2} I+\left[\begin{array}{ll}H^{\prime} H & 0 \\ 0 & 0\end{array}\right] j B\right)$

In order for J to be a minimum the following necessary conditions must be satisfied

$$
\begin{align*}
& \left.\frac{\partial J}{\partial \beta}\right|_{*}=0 \tag{31}\\
& \left.\frac{\partial J}{\partial \Lambda_{2}}\right|_{*}=0 \tag{32}\\
& \left.\frac{\partial J}{\partial F}\right|_{*}=0 \tag{33}\\
& \left.\frac{\partial J}{\partial D}\right|_{*}=0 \tag{34}
\end{align*}
$$

where \mid, means "evaluated at the optimum solutions".
From (31) we obtain

$$
\Lambda_{2}=\Gamma^{\prime} \Lambda_{2} \Gamma \div\left[\begin{array}{ll}
H^{\prime} H & 0 \tag{35}\\
0 & 0
\end{array}\right]
$$

From (32)
$\beta=\Gamma \beta \Gamma^{\prime}+\left[\begin{array}{ll}C V C^{\prime} & 0 \\ 0 & E W F^{\prime}\end{array}\right]$

Partitioning Λ_{2} and β as
$\Lambda_{2}=\left[\begin{array}{cc}\Lambda_{11} & \Lambda_{12} \\ \Lambda_{12} & \Lambda_{22}\end{array}\right]$
$\beta=\left[\begin{array}{cc}\beta_{11} & \beta_{12} \\ \vdots & \\ \beta_{12}^{\prime} & \beta_{22}\end{array}\right]$
we can see that (30) can be rewrititen as

$$
\begin{aligned}
& J=\operatorname{ir}\left[\Lambda_{I 1} \mathrm{CVC}^{\prime}+\Lambda_{22^{2}} \mathrm{FFF}^{\prime}+\left[-\Lambda_{1 I^{A}}+\mathrm{A}^{\prime} \Lambda_{12} \mathrm{FHF}+\mathrm{H}^{\mathrm{t}} \mathrm{~F}^{\prime}{ }_{12}{ }^{\mathrm{A}}+\right.\right. \\
& +\mathrm{H}^{\prime} \mathrm{F}^{\prime} \Lambda_{22} \mathrm{FH}+\mathrm{H}^{\prime} \mathrm{HI} \beta_{11} \div\left[-\Lambda_{12}+\mathrm{A}^{\mathrm{I}} \mathrm{~A}_{11} \mathrm{BH}+\mathrm{A}^{\prime} \mathrm{A}_{12} \mathrm{~L}+\mathrm{A}^{\prime} \mathrm{A}_{12} \mathrm{DH} \div\right.
\end{aligned}
$$

$$
\begin{align*}
& \div H^{\prime} B^{\prime} \Lambda_{12}{ }^{\mathrm{L}} \div \mathrm{H}^{\prime} \mathrm{B}^{\prime} \Lambda_{12} \mathrm{DH} \div \mathrm{H}^{\prime} \mathrm{D}^{\prime} \Lambda_{12}^{\prime} \mathrm{BHF}^{+I^{\prime} \Lambda_{12} \mathrm{BH}+\mathrm{I}^{\prime} \Lambda_{22} \mathrm{I}+} \\
& \left.+\mathrm{I}^{\prime} \mathrm{A}_{22} \mathrm{DE}+\mathrm{H}^{\prime} \mathrm{D}^{\prime} \mathrm{A}_{22} \mathrm{I}+\mathrm{H}^{\prime} \mathrm{D}^{\prime} \Lambda_{22} \mathrm{DH}\right) \beta_{22}{ }^{\mathrm{J}} \tag{37}
\end{align*}
$$

sor Erom (33) and (37)

$$
\begin{align*}
& +\Lambda_{22}{ }^{\mathrm{DHE}}{ }_{12}^{1 \mathrm{H}^{\mathrm{t}}} \tag{38}
\end{align*}
$$

and from (34)

(39a)
Note that
$0=\Lambda_{12}{ }^{A} \beta_{12}+\Lambda_{22}{ }^{\mathrm{FH} \beta_{12}}+\Lambda_{12}^{\mathrm{I}}{ }^{\mathrm{BH} \beta_{22}}+\Lambda_{22}(\mathrm{I}+\mathrm{DH}) \beta_{22}$
is sufficient for (39a) to be satisfied
Solving for F in (38) we get

$$
\begin{equation*}
F=-\Lambda_{22}^{-1}\left(\Lambda_{12}^{\prime}{ }^{A} \beta_{11} H^{\prime}+\Lambda_{12}^{\prime} B H \beta_{12}^{\prime} H^{\prime}+\Lambda_{22}(I+D H) \beta_{12}^{\prime} H^{\prime}\right)\left(w \div H \beta_{11} H^{\prime}\right)^{-1} \tag{40}
\end{equation*}
$$

and substituting (40) in (39b)

$$
\begin{align*}
(I+D H)= & \Lambda_{22}^{-1} \Lambda_{12}^{\prime} A\left[-\beta_{12}+\beta_{11} H^{\prime}\left(w+H \beta_{11} H^{\prime}\right)^{-1} H \beta_{12}\right] \\
& {\left[\beta_{22}-\beta_{12}^{\prime} H^{\prime}\left(w+H \beta_{11} H^{\prime}\right)^{-1} H \beta_{12}\right]^{-I}-\Lambda_{22}^{-1} \Lambda_{12}^{\prime} B H } \tag{LI}
\end{align*}
$$

finelly

$$
\begin{align*}
F= & -\Lambda_{22}^{-1} \Lambda_{12}^{\prime} A\left[\beta_{11} H^{\mathrm{F}}+\left(-\beta_{12}+\beta_{11} \mathrm{H}^{\prime}\left(w+H \beta_{11} H^{A}\right)^{-1} H \beta_{12}\right)\right. \\
& \left.\left(\beta_{22}-\beta_{12}^{\prime} H^{\prime}\left(w T H \beta_{11} H^{\prime}\right)^{-1} H \beta_{12}\right)^{-1} \beta_{12}^{\prime} H^{\prime}\right]\left[w \div H \beta_{11} H^{\prime}\right]^{-1} \tag{42}
\end{align*}
$$

Expanding (36) we obtain

$$
\begin{equation*}
\beta_{I 1}=A \beta_{11} A^{\prime}+A \beta_{12} H^{\prime} B^{\prime}+B H \beta_{12}^{i} A^{\prime}+B H \beta_{22} H^{\prime} B^{\prime}+C V C^{\prime} \tag{43}
\end{equation*}
$$

$$
\begin{equation*}
\beta_{12}^{\prime}=F H \beta_{1 I^{E^{\prime}}} \div(I+D H) \beta_{12}^{A^{\prime}}+F H \beta_{12} H^{\prime} B^{\prime}+(I+D H) \beta_{22^{\prime}} B^{\prime} \tag{44}
\end{equation*}
$$

$$
\begin{align*}
\beta_{22}= & \mathrm{FH}_{11} \mathrm{H}^{\prime} \mathrm{F}^{\prime}+\mathrm{FH}_{12}(\mathrm{I} \div \mathrm{DH})^{2}+(\mathrm{I} \div \mathrm{DH}) \beta_{12}^{\prime} \mathrm{H}^{\prime} \mathrm{F}^{\prime} \div(\mathrm{I} \div \mathrm{DH}) \beta_{22}(\mathrm{I} \div \mathrm{DH})^{\prime}+ \\
& \div \mathrm{FWF} \tag{45}
\end{align*}
$$

Let
$s=\left(-\beta_{12} \div \beta_{11} H^{H^{\prime}}\left[w+H \beta_{11} H^{\prime}\right]^{-1} H \beta_{12}\right)\left(\beta_{22}-\beta_{12}^{\prime} H^{H^{\prime}}\left[w+H \beta_{11} H^{\prime}\right]^{-1} H \beta_{12}\right)^{-1}$

Then, substituting F and ($\mathrm{L}+\mathrm{DH}$) into (44) and (45)

$$
\begin{align*}
& \beta_{12}^{1}=-\Lambda_{22}^{-1} \Lambda_{12}^{\prime} A\left(\beta_{11} H^{\prime}\left[w \div H \beta_{11} H^{\prime}\right]^{-1} H \beta_{11} A^{\mathrm{I}}+S \beta_{12}^{\prime} H^{\prime}\left[w+H \beta_{11} H^{\prime}\right]^{-1} H \beta_{11} A^{\prime}\right. \\
& \left.-s \beta_{12}^{\prime} A^{\prime}+\beta_{12} \text { H' }^{\top} B^{\prime}\right)-\Lambda_{22}^{-1} \Lambda_{12}^{\prime} B \operatorname{BEI}\left(\beta_{12}^{A} A^{\prime}+\beta_{\left.22^{H^{\prime}} B^{\prime}\right)}\right. \tag{46}\\
& \beta_{22}=\Lambda_{22}^{-I} \Lambda_{12}^{\prime} A\left(\beta_{11} H^{\sharp}\left[w+H \beta_{11} H^{\prime}\right]^{-I} E \beta_{11} A^{\prime}+S \beta_{12}^{\prime} H^{\prime}\left[w+H \beta_{11} H^{\prime}\right]^{-1} H \beta_{11} A^{\prime}\right. \\
& \left.-S \beta_{12}^{\prime} A^{A^{\prime}}+\beta_{12} H^{\prime} B^{\prime}\right) \beta_{12} \quad \Lambda_{22}^{-1} \div \Lambda_{22}^{-1} \Lambda_{12}^{\prime} B H\left(\beta_{22^{H \prime} B^{\prime}}+\beta_{12}^{\prime} A^{\prime}\right) \\
& \Lambda_{12} \quad \Lambda_{22}^{-1} \tag{47}
\end{align*}
$$

So

$$
\begin{equation*}
\beta_{22}=-\beta_{12}^{1} \Lambda_{12} \Lambda_{22}^{-1} \tag{48}
\end{equation*}
$$

and since β_{22} is symmetric

$$
\begin{equation*}
\beta_{22}=-\Lambda_{22}^{-1} \quad \Lambda_{I 2}^{1} \quad \beta_{I 2} \tag{19}
\end{equation*}
$$

Expanding (35) we get

$$
\begin{align*}
& \Lambda_{11}=A^{\prime} \Lambda_{11} A+A^{\prime} \Lambda_{12} F H \div H^{\prime} F^{\prime} \Lambda_{12}^{\prime} A \div E^{\prime} F^{\prime} \Lambda_{22} F H \div H^{\prime} H \tag{50}\\
& \Lambda_{12}=A^{r} \Lambda_{I 1} B H+A^{r} \Lambda_{12}(I+D H)+H^{r} F^{r} \Lambda_{12}^{r} B H+H^{r} F^{r} \Lambda_{22}(I \div D H) \tag{51}\\
& \Lambda_{22}=H^{\prime} B^{\prime} \Lambda_{I 1} \mathrm{BH}+\mathrm{H}^{\prime} \mathrm{B}^{\prime} \Lambda_{I 2}(\mathrm{I}+\mathrm{DH})+(\mathrm{I}+\mathrm{DH})+(\mathrm{I} \div \mathrm{DH})^{\mathrm{r}} \Lambda_{12} \mathrm{BH}+ \\
& +(\mathrm{I} \div \mathrm{DH})^{2} \mathrm{~A}_{22}(\mathrm{~L} \div \mathrm{DH}) \tag{52}
\end{align*}
$$

-84-

Substituting (4I) and (42) in the above equations

$$
\begin{aligned}
& \Lambda_{11}=A^{\prime} A_{11} A-A^{\prime} \Lambda_{12} \Lambda_{22}^{-1} \cdot \Lambda_{12}^{\prime} A\left[\beta_{11} H^{\prime}+S B_{12}^{\prime} H^{\prime}\right]\left[w+H B_{11} H^{\prime}\right]^{-1} H- \\
& -H^{\prime}\left[w+H \beta_{11} H^{\prime}\right]^{-1}\left[H \beta_{11}+H \beta_{12} S^{\prime} I A^{\prime} \Lambda_{12} \Lambda_{22}^{-1} \Lambda_{12}^{\dagger} A+\right. \\
& \div H^{\prime}\left[w+H \beta_{11} H^{\prime}\right]^{-1}\left[H \beta_{11}+H \beta_{12} S^{1}\right] A^{\prime} \Lambda_{12} \Lambda_{22}^{-1} \Lambda_{12}^{\prime} A_{1}
\end{aligned}
$$

$$
\begin{align*}
& \Lambda_{12}=\underline{A}^{1}\left[\Lambda_{11}-\Lambda_{12} \quad \Lambda_{22}^{-1} \Lambda_{12}^{1}\right] B H+A^{1} \Lambda_{12} \Lambda_{22}^{-1} \quad \Lambda_{12}^{\prime} A S- \\
& -H^{\prime}\left[w+H \beta_{I 1} H^{\prime}\right]^{-1}\left[H \beta_{I 1} \div H \beta_{12} S^{\prime} I A^{\prime} \Lambda_{12} \Lambda_{22}^{-1} \Lambda_{12}^{1} A S\right. \tag{54}\\
& A_{22}=H^{\top} B^{1}\left[\Lambda_{I I}-\Lambda_{12} \Lambda_{22}^{-1} \quad \Lambda_{12}^{1} I B H \div S^{\prime} A^{1} A_{I 2} \Lambda_{22}^{-1} \quad \Lambda_{I 2}^{1} A S\right. \tag{55}
\end{align*}
$$

So, in order to Find the compensator that will provide the minimun variance control we need to solve equations (46), (47), (48), (53), (54), and (55). Note that we can reduce the number of equetions that must be satissied by one, iti we substitute (48) in the others. Observe also that Λ_{22} as well as (w+FH $\beta_{11}{ }^{\text {H}}$ ') have to be nonsingular. Although these equations seem to be very complicated, recall that H and. ($I+\mathrm{DH}$) are very simple matrices. Thus a lot of simplification will appear during the computations.

Fven though the above equations are more tractable than the ones encountered in the previous section, they do not give us in a simple way
the parameters of the compensator. For this reason, in the next section we will develop a direct method to obtain the compensator for a system with perfect measurements, i.e., $W=0$, that involves only a simple polynomial division.

4. MINIMUM VARTANCE CONTROL OF AN OUTPUT NOISE-FREE SYSTEM--DIRECT METHOD 2

The idea behind this method is to put the output of the plant at time $t+1$ as a function of the inputs up to time t_{r} the outputs up to time $t-1$, and the internal noise of times t and $t-1$. Once this is achieved we equate the equations of the input and output to obtain the structure of the compensator. The reason we set the output at time tol as a Eunction of the outputs up to time $t-1$ and not up to time t, is because we want the compensator to compute each new input as a function of the past measurements available and not to include present information, in oraer to avoid the problems mentioned in the introduction to this chapter.

We again are given a plant of the form

$$
\begin{array}{r}
y(t+n) \div a_{n-1} y(t+n-1)+\ldots+a_{0} y(t)=b_{n-1} u(t+n-1) \div \ldots \div b_{0} u(t) \div \\
 \tag{1}\\
c_{n-1} v(t+n-1) \div \therefore \div c_{0} v(t)
\end{array}
$$

We can compute the transfer function of the system as

$$
\begin{equation*}
y(t) \div \frac{B^{*}(z)}{A^{*}(z)} u(t-1) \div \frac{C^{*}(z)}{A^{*}(z)} v(t-1) \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& A^{*}(z)=I \div a_{n-1} z^{-1}+\ldots+a_{0} z^{-n} \\
& B^{*}(z)=b_{n-1} \div b_{n-2^{2}} z^{-1}+\ldots+b_{0} z^{-n+1} \\
& C^{*}(z)=c_{n-1}+c_{n-2} z^{-1}+\ldots \div c_{0} z^{-n+1}
\end{aligned}
$$

so

$$
\begin{equation*}
y(t+1)=\frac{B^{*}(z)}{A^{*}(z)} \underline{z}(t) \div \frac{C^{*}(z)}{A^{*}(z)} v(t) \tag{3}
\end{equation*}
$$

It follows from (2) that we can compute $v(t-2), v(t-3), \ldots$ from the information available $\ddagger t$ time t. To do this explicitly we rewrite
using the identity

$$
\begin{equation*}
C^{*}(z)=A^{*}(z) F^{+}(z)+z^{-2} G^{*}(z) \tag{4}
\end{equation*}
$$

where F^{*} and G^{x} are polynomials of degrees I and $n-1$ respectively as

$$
\begin{equation*}
Y(t+1)=\frac{B^{*}(z)}{A^{*}(z)} u(t)+F^{*}(z) v(t)+\frac{G^{*}(z)}{A^{*}(z)} v(t-2) \tag{5}
\end{equation*}
$$

From (2) we can see that

$$
\begin{equation*}
\forall(t-2)=\frac{A^{*}(z)}{C^{*}(z)} y(t-1) \div \frac{B^{*}(z)}{C^{*}(z)} u(t-2) \tag{6}
\end{equation*}
$$

Substitutiong (6) in (5) we obtain
$y(t+1)=\frac{B^{*}(z)}{A^{*}(z)}-\frac{G^{*}(z) B^{*}(z) z^{-2}}{A^{*}(z) C^{*}(z)} u(t) \div \frac{G^{*}(z)}{C^{*}(z)} Y(t-1) \div F^{*}(z) v(t)$
winch reauces to
$Y(亡+I)=\frac{B^{*}(z) F^{*}(z)}{C^{*}(z)} u(t)+\frac{G^{*}(z)}{C^{*}(z)} Y(t-1)+F^{*}(z) v(t)$

We are now ready to compute the variance of the output, is was pointed
out earlier
$E\left(y^{2}(t+1)\right)=E\left[\left(F^{*}(z) v(\dot{\tau})\right)^{2}\right]+E\left[\left(\frac{G^{*}(z)}{C^{*}(z)} y(t-1) \div \frac{B^{*}(z) F^{*}(z)}{C^{*}(z)} u(\dot{\tau})\right)^{2}\right]$

Observe that the mixed tems will vanish becatuse $v(t)$ and $v(t-1)$ are independent of $y(\tau-1)$, $y(t-2), \ldots$. Therefore the second term in (9) will only increase the variance of $y(t+1)$, hence

$$
\begin{equation*}
E\left(y^{2}(亡+I)\right) \geq\left(F_{0}^{2}+F_{I}^{2}\right) V \tag{10}
\end{equation*}
$$

where equality holds for

$$
\begin{equation*}
u(t)=-\frac{G^{*}(z)}{B^{*}(z) F^{*}(z)} y(t-1) \tag{11}
\end{equation*}
$$

So, the transfer Eunction of the minimum variance compensator is
given by

$$
\begin{equation*}
u(t)=-\frac{g_{n-1}+g_{n-2} z^{-1}+\ldots \div g_{0} z^{-n+1}}{\left(b_{n-1}+b_{n-2} z^{-1}+\ldots \div b_{0} z^{-n+1}\right)\left(f_{1} \div f_{0} z^{-1}\right)} y(t-1) \tag{12}
\end{equation*}
$$

Note that if either b_{n-1} or \tilde{E}_{1}, or for the same purpose b_{n-1} or c_{n-1} is equal to zero, the structure of the compensator found this way will not be desirable since $u(t)$ would depend on $y(t)$. If this was the case, it is obvious that following the same procedure outlined. above we can obtain a compensator that will satisfy the desired structure.

As was mentioned befiore, note that the parameters of the compensator are obtained besically from the polynomial divisom in (4). So this technique presents a very simple way of finding the minimun variance
compensator. The only drawback of this method is that the measurements are assumed to be perfect, i.e., no noise affects the sensors. This assumption is highly idealized, since every sensor has at least some intermal noise generated, that will influence the accuracy of the measurements. But if this perturbation is small, the solution obtained in (12) is very accurate.

EXAMPTE

In this chapter we solve a simple problem using the direci method 2 and then we corrolate the answer by showing that it satisfies the necessery conditions found for the matrix approach.

1. DIRECT METEOD 2

Let us assume that we have a second order plant governed by

$$
\begin{equation*}
y(t \div 2)-Y(t)=u(t \div 1) \div 2 u(t) \div 2 v(t \div 1) \tag{I}
\end{equation*}
$$

Chen the transfer function of the system is

$$
\begin{equation*}
y(t)=\frac{1+2 z^{-1}}{1-z^{-2}} u(i-1) \div \frac{2}{1-z^{-2}} v(i-1) \tag{2}
\end{equation*}
$$

Since

$$
\begin{equation*}
2=2\left(1-z^{-2}\right)+2 z^{-2} \tag{3}
\end{equation*}
$$

We finc that the compensator is given by

$$
\begin{equation*}
u(\dot{L})=\frac{-2}{\left(1+2 z^{-1}\right)(2)} y(i-1) \tag{4}
\end{equation*}
$$

So

$$
\begin{equation*}
u(t+2)+2 u(\tau+I)=-Y(\tau \div I) \tag{5}
\end{equation*}
$$

and the output variance is given by

$$
E\left(Y^{2}(t)\right)=4 \bar{v}
$$

2. MAPRIX APPROACH

From (1) and (5) we find that
$\underline{\underline{I}}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{l}2 \\ 1\end{array}\right] \quad \mathrm{C}=\left[\begin{array}{l}0 \\ 2\end{array}\right] \quad \mathrm{H}=\left[\begin{array}{ll}0 & I]\end{array}\right.$

$$
(I T D I)=\left[\begin{array}{cc}
0 & 0 \\
1 & -2
\end{array}\right] \quad F=\left[\begin{array}{c}
0 \\
-I
\end{array}\right]
$$

and we want to show that D and F as given above satisfy the necessary conditions obtained in section three of the previous chapter. To at this we show that there is a $\Lambda_{11}, \Lambda_{12}, \Lambda_{22}, \beta_{11}, \beta_{12}$, and β_{22} that will give us the above values For F and D.

Note that the pairs (A, B) and (A, C) are controllable. Let

$$
\Lambda_{11}=\left[\begin{array}{ll}
\Lambda_{111} & \Lambda_{112} \\
\Lambda_{112} & \Lambda_{113}
\end{array}\right] \quad \Lambda_{12}=\left[\begin{array}{ll}
\Lambda_{121} & \Lambda_{122} \\
\Lambda_{123} & \Lambda_{124}
\end{array}\right] \Lambda_{12}=\left[\begin{array}{ll}
\Lambda_{221} & \Lambda_{222} \\
\Lambda_{222} & \Lambda_{223}
\end{array}\right]
$$

and
$\beta_{11}=\left[\begin{array}{ll}\beta_{111} & \beta_{112} \\ \beta_{112} & \beta_{113}\end{array}\right] \quad \beta_{12}=\left[\begin{array}{ll}\beta_{121} & \beta_{122} \\ \beta_{123} & \beta_{124}\end{array}\right] \quad \beta_{22}=\left[\begin{array}{ll}\beta_{221} & \beta_{222} \\ \beta_{222} & \beta_{223}\end{array}\right]$

From

$$
\Lambda_{11}=\mathcal{A}^{\prime} \Lambda_{11} A \div A^{\prime} \Lambda_{12} F H+H^{\prime} F \Lambda_{12} A+H^{1} F^{\prime} \Lambda_{22} F H \div H^{\prime} H
$$

we get that

$$
\Lambda_{111}=\Lambda_{113} \quad \Lambda_{124}=0 \quad \Lambda_{223}=2 \Lambda_{122}-1
$$

From

$$
A_{12}=A^{\prime} A_{11} B F+A^{\prime} \Lambda_{12}(I+D H)+H^{\prime} F^{\prime} \Lambda_{12}^{1} B H+H^{\prime} F^{\prime} \Lambda_{22}(I \div D F)
$$

we obtain

$$
\Lambda_{121}=0 \quad \Lambda_{122}=4-3 \Lambda_{111} \quad \Lambda_{112}=2-2 \Lambda_{111}
$$

$$
\Lambda_{123}=-5+3 \Lambda_{111} \quad \Lambda_{223}=7-6 \Lambda_{111}
$$

and from

$$
\begin{aligned}
\Lambda_{22}= & H^{\prime} B^{\prime} \Lambda_{11} \mathrm{BH}+\mathrm{BE} \div \mathrm{H}^{\prime} \mathrm{B}^{1} \Lambda_{12}(\mathrm{I}+\mathrm{DH}) \div(\mathrm{I} \div \mathrm{DH})^{\prime} \Lambda_{12} \mathrm{BH} \div \\
& +(\mathrm{I} \div \mathrm{DH})^{!} \Lambda_{22}(I \div \mathrm{DH})
\end{aligned}
$$

we get

$$
\Lambda_{221}=7-6 \Lambda_{111} \quad \Lambda_{222}=-6 \div 6 \Lambda_{111} \quad \text { and } \Lambda_{111}=1
$$

Then

$$
\Lambda_{11}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad A_{12}=\left[\begin{array}{ll}
1 & 0 \\
-2 & 0
\end{array}\right] \quad \Lambda_{22}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

From

$$
\beta_{11}=A \beta_{11} A^{\prime}+A B_{12} H^{\prime} B^{\prime}+B H \beta_{12}^{\prime} A^{\prime T}-B H A_{22}^{-1} \Lambda_{12}^{i} \Lambda_{12}^{H^{\prime} B^{\prime}}+C V C^{1}
$$

we obtain

$$
\beta_{124}=0 \quad \beta_{122}=\beta_{113}-\beta_{111}-4 V \quad \beta_{122}=\frac{4}{3} v
$$

From

$$
\beta_{12}=A \beta_{11} H^{\prime} F^{\prime}+A \beta_{12}(I+D F I)+B H \beta_{12}^{\prime} H^{\prime} F^{\prime}-B H A_{22}^{-1} \Lambda_{12}^{\prime} \Lambda_{12}(I+D H)
$$

we get

$$
\begin{aligned}
& \beta_{12 I}=0 \quad \beta_{123}=0 \quad \beta_{I 24}=0 \quad \beta_{1 I 2}=0 \\
& \beta_{113}=\Delta V \quad \beta_{11 I}=-\frac{4}{3} V
\end{aligned}
$$

and from

$$
\beta_{22}=-\Lambda_{22}^{-I} \Lambda_{12}^{\prime} \beta_{12}
$$

we get

$$
\beta_{22 I}=0 \quad \beta_{222}=0 \quad \beta_{223}=-\frac{4}{3} V
$$

$$
\beta_{11}=\left[\begin{array}{cc}
-\frac{4}{3} \mathrm{~V} & 0 \\
0 & 4 \mathrm{~V}
\end{array}\right] \quad \beta_{12}=\left[\begin{array}{cc}
0 & \frac{4}{3} \mathrm{~V} \\
0 & 0
\end{array}\right] \quad \beta_{22}=\left[\begin{array}{cc}
0 & 0 \\
0 & -\frac{4}{3} \mathrm{~V}
\end{array}\right]
$$

Substituting these results in

$$
\Lambda_{12}^{L} \mathrm{~A} \beta_{1 I} \mathrm{H}^{\mathrm{I}}+\Lambda_{22} \mathrm{FH}_{11} \mathrm{H}^{\mathrm{i}}+\Lambda_{12}^{1} \mathrm{BH} \beta_{12}^{1} \mathrm{H}^{\mathrm{I}}+\Lambda_{22}(\mathrm{I}+\mathrm{DH}) \beta_{I 2}^{1} \mathrm{H}^{\prime}
$$

and

$$
\Lambda_{12}^{1} A \beta_{12}+\Lambda_{22}{ }^{P H \beta_{12}}+\Lambda_{12}^{2} B H \beta_{22}+\Lambda_{22}(I \div D H) \beta_{22}
$$

we see that both become equal to zero, which was the result we expected. We then conclude that the compensator described by the above F and D
gives a minimum variance control strategy.
Note that $E\left(Y^{2}(i)\right)$ is given in this case by

$$
E\left(y^{2}(t)\right)=\operatorname{Lr}\left(A_{I I} \operatorname{CVC}\right)=\Delta V
$$

which is the same result obtained with the direct method 1.

REMARKS:
5
In chapter four we discussed three different methods to obtain a compensator that would minimize the variance of the output of a discrete time linear time invariant single input single output system. As was seen in the second section further study in this problem is required to be able to Find the desired compensator using the direct method 1. Also, Irom section three, more insight into this kind on problems will prove to be of great help in order to find the compensator structure. Maybe, some easier equations would develop if the compensator is found in two steps a) a form of observer plas b) a matrix of gains. Some analysis to establish if the necessary conditions found with this matrix approach give a unique solution or is a stable compensator cen always be found would be a very interesting topic to work on. Some other lines of study around this problem could be to generalize the three methods to the multiple input-multiple output case. It would be ziso very interesting to find is the insertion of noise in the measurements, working with the direct method 2 , gives any results.

REFERENCES
(AI) K. I. Astrom, "Introduction to Stochastic Control Theory", New York: Academic Press, 1970.
(A2) M. Athans, "The Matrix Minimum Principle", Informetion and Control, Vol. $1 I_{r}$ Dec. 1967, pp. 592-606.
(A3) M. Athans and P. I. Falb, "Optimal Control", New York: McGrawHíli, Inc., 1966.
(B1) P. J. Blanvillain, "Optimal Compensator Structure for Iinear Time Invariant Plant with Inaccessible Strtes", Report ESI-R-5A6, M.I.T., May. 1974.
(B2). P. J. Blanvillain and T. I. Johnson, "Invarients of Opitmal MinimalOrder Observer-Based Compensators",
(B3) E. W. Brockett, "Finite Dimensional Linear Systems", New York: John Wiley end Sons, Inc., 1970.
(Dl) M. I. Denhan, "Canonical Forms For the Identification of Multivarianble Iinear Systems", IEEE Trans. Auto. Control, Vol. AC-19, No. 6, December 1974, pp. 646-656.
(D2) B. W. Dickinson, T. Kai, Tath and M. Mor₹, "Canonical Mairix Fraction and State Space Descriptions for Deterministic and Stochasitic Lineax Systems", TEEs Trans. Anto. Control, Vol. AC-19, No. 6, December 1974, pp. 656-666.
(FI) D. K. Faddeev and I. S. Sominskii, "Problems in Higher Algebra", Second Edition, Moscow, 1949.
(F2) T. E. Fortman and D. Williamson; "Design of Low Order Obsezvers for Linear Feedback Control Laws": IEEE Mrans. Auto. Control, Vol. AC-17, No. 3, June 1972, pp. 301-308.
(F3) W. H. Fleming and R. W. Rishel; "Deterministic and stochastic Optimal Conirol", New York: Springer-Verłag, 1975.
(GI) F. R. Gantmacher, "The Theory of Matrices", VoI. I, New York: Chelsea 1959.
(HI) B. I. Ho and R. E. Kalmen, "Effective Construction oi Linear State Variable Models from Input/Output Functions", Regelungstechnik, Vo1. 12, 1966, pp. 545-548.
(K1) H, Kwakernaak and R. Sivan, Einear Optimal Control Systems, New York: John Wiley and Sons, Tnc, Inc., 1972.
(II) D. G. Iuenberger, "An Introducition to Observers", IEEE Trans. Auto. Control, Vol. AC-16, No. 6, December I97Ir pp. 785-793.
(L2) B. Ilorens-Ortiz, "On the Optinal Minimum Order Observer-Based Compensator and the Iimited State Variable Feedback Controller", Report ESI-R-732, M.I.T., September 1976.
(Lu) W. S. Levine, "Opimal Output Feedback Controller For Jinear Systems", M.I.T., Reporit ESI-R-374, February 1969.
(I.4) W. S. Levine, T. Is. Johnson and M. Athans, "Optimal Limited Sizate Variable Feedback Controllers for Linear Systems", IEEE Trans. Auto. Control, Vol. AC-I6, No. 6, Decenber 1971, pp. 785-793.
(M1) R. A. Miller, "Specific Optimal Control of the Linear Regulator Using a Minimal Order Observer", Int. U. Control, Vol. 18, No. 1, 1973, pp. 139-159.
(MI) M. M. Newman "Specific Optimal Control of the Ifinear Regalator Using a Dynamical Controller Based on the Minimal-Order Iuenberger Observer", Int. J. Control, Vol. 12, July 1970, pp. 33-48.
(OI) A. V. Oppenheim and R. W. Schafer; "Digital Signal Processing"; New Jersey: Prentice-Ha11, Inc., 1975.
(P1) V. M. Popov, "Some Properties of the Control Systems with Irreducible Matrix-Trunsfer Functions", Iecture Notes in Maithematics No. 144, Berlin, Germany: Springer Verlag 1969,pp. I69-I80.
(P2) I. Padulo and M. A. Arbib, "System Theory", Washingion: Hemisphere Publishing Corporation, 1974.
(P3) E. Polak, "an Algoritha for Reducing a Linear, Time Invariant Differential System to State Form", IEEE Trans. Auto. Conirol, Vol. AC-11, 1966, pp. 577-579.
(RI) F. H. Rosenbrock, "Computer-Pided Control System Design", Academic Dress, Inc., Iondon, 1974.
(R2) D. B. Rom and P. E. Sarachick, "The Design of Optimal Compensators for Linear Constant Systems with Inaccessible States", IEEE Trans. Auto. Control, Vol. AC-18, No. 5, October 1973, pp. 509-512.
(WI) W. A. Wolovich, "The Determination of state Space Representation Eor Linear Muliivariable Systens", Automatioa, Vol. 9, I973, pp. 97106.
(W2) W. A. Wolovich and P. L. Falb, "On the Structure of Multivariable Systems", SIAM U. Control, Vol. 7, No. 3, August 1969, pp. 437-443.
(Yı) Y. O. Yuksel and J. J. Bongiorno, Jr.; "Observers for Linear Muliivariable Systems with Applications, IEEE Trans, Auto. Control, Vol. AC-16, No. 6, December 1971, pp. 603-613.

