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The Numerical Evaluation of Maximum-Likelihood

Estimates of the Parameters for a Mixture of Normal Distributions

from Partially Identified Samples

by

Homer E. 'balker
'i	

Department of Mathematics, University of Houston

Houston, Texas 77004

1. Introduction.

Let TII,...., m be populations whose multivariate observations in 	 n

are distributed with respective normal density functions

l	 - 2Cx-^0)TE0-1Cx-u0}
Pi(x)	 n/2 0 ]/2

	

i	 e	 , i = 1,...,m.
(2',)	 1 , j

If r is a given mixture of members of these populations, then observations
0

on 7 are distributed in I n with density function
.o

w
P(X) iEl a°pi (x)

for an appropriate set of proportions fa°} 	 These proportionsI	 1 --1 1 --, m

!.	 necessarily satisfy 
iEl 

a° = 1 and . a°	 i. ? 0, i.= 1,-,m. In this note, ire

also assume that each a0 :is strictly positive.

We address.bere.the problem of numerically approximating the maximum--

i likelihood estimates of the parameters fa0,p°.,E°}	 determined Uy
i x 

T	 samp.les of two types. Samples of both types consist of sets fx }
ik k=1,...,Ni

E
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;i

of independent observations on Tr., i = 0,...,m. (The sets {x. }	 ,
A k=l,...,Ni

comprise the identified observations of such samples, and such

samples are said to be partially identified.) We distinguish samples of the

two types according to whether the numbers N i of identified observations

contain, information about the proportions a°., i = Z,...,m. If the numbers

of identified observations contain no information about the proportions,

then the sample is of the first type; otherwise, the sample is of they second

type. The following are examples of how samples of the first and second

types, respectively,. might be obtained:

(1) For i = 0,...m, numbers N i are arbitrarily choosen and independent

observations {x }	 are obtained from Tr..
ik k=Ni	

3.

(2) A number 
0 

of observations are obtained from 7rO . For some Ne K

No of these observations are left unidentified, while the remaining;

Ko -- N
0
 observations are identified. For i = 1,...,m, a subset

{x .k }	 of the identified observations is determined whose
^k=Z,...,Ni

member observations come from 7r..
i

In the following, we consider likelihood equations determined by the

two types of samples which are necessary conditions for a maximum-likelihood.

_ estimate. These equations, which were derived by Coberly [1], suggest certain

successive-approximations iterative procedures for obtaining maximum- like Iih06d

estimates. These procedures, which are generalized steepest ascent (deflected

gradient) procedures, contain those of Hosmer [2) as a special. case. Using

argunteiit that parallel those of [3), we show that, with probaMl ity l	 i-;
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No approaches infinity (regardless of the relative sizes of N o and

Ni , i 1,...,m), these procedures converge locally to the strongly

consistent maximum--likalihood estimates * whenever the step--size is between

0 and 2. Furthermore, the value of the step-size which yields optimal

local convergence rates is bounded from below by a number which always lies

between 1 and 2.

2. SamDles of the first tvne.

We first assume that numbers IN.}	 are given and that, for
I i=O,...,m

i 0,...,m, N. independent observations 	 Ix I	 are drawn on
ik k 1,...,Ni

71 i. The log-li.lcelihood function for a sample of this type is

m Nz	 No
L1(0} - 1

E1 kEl log pi(xxk) + kEl log p(xok) .

In this expression, the parameter vector 0 (with components a i , }Ai , Ei,

i = 1, ... ,m) belongs to the vector space 6roXiQ defined in 131,  and

the density functions on the right-hand side are evaluated with the true

parameter vector Oe (with components ao, 110, E°., i 	 1,...,m) rep laced

by 0.

*As in . [3], one can show that, given any sufficiently small neighbor.-

hood of the true parameters, there is, with probability 1 as Na approaches

infinity (regardless of the relative sizes of N o and Ni , i = 1,. 3 m) 1 a

unique solution of the likelihood equations for either type of sample in that

-	 neighborhood, and this solution is a maximum-Likelihood estimate.
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Differentiating L1 CO) and setting its partial derivatives to zero

gives the likelihood equations

N	 x
(1. a) ai Ai (0)i^ 

PP {

X
Ok

0	 ok)

Ni	 No	
aipi(xok)	

No 
a. p .. ( Xn k )

(l.h} i = Mi{0} 
{k 1 Pik + k 1 wok p(XOk) /{N i + kFl PCXO C' }

l.c	 - S 0	 E	 ""	 x.	 P( )	 i - i{) _ {kh
Ni

 (zk_Pi) C ik i^i ) T + k^l (xok ^^i ) {ink -i^ i )^ â p(X0k) - }
ok

No aip . (x{Ni + 
kEl P (xok) }

for i = 1,...,m.

lie set

Al (e)	 C }	 S^ (0)

A(0)	 , M(0) -	 S(0)

m (0)	 m(Q)	 Sm(0)

and define an operator 1) 	 oil (, ,@Xa j by
t_

	

	
A(0)

^E (0) = (1 - 00 + E m(0)

Clearly, for any non-zero e, the likelihood equations are satisiiud 1)y a

vector .0 c	 8yy a	 if and only if 0 (D (0) .
E

We consider the following iterative procedure Beginning with some

starting value 0 (1} ; define successive iterates inductively by

(2)	
00+1) - 4) (0(j))

E.
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for j = 1, 2, 3,...	 Our local convergence result for this iterative

procedure, as stated in the introduction, follows immediately from. the

theorem below.

Theorem l: With probability l as No approaches infinity, ( E
 is a locally.

contractive operator (in some norm on MDr,Lb ^) near the strongly consistent

maximum-likelihood estimate whenever 0 < E < 2.

In saying that 4 )
E 

is a locally contractive operator near a point

	

~	 0 c ®!(^^ , we mean that there is a vector norm I J 1 1 on O( 10 70, and

a number A, 0 5 A < 1, such that

Oil 5 Xlla' - oll

whenever 0' lies sufficiently near 0.

Proof of Theorem. l: Let

a1

	

J	
a

_	 m

a

	

--	 ul

0	 p	 =

_	 Pm

El
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oGi 0, 1 1,...,m. (As N0 approaches infinity, the probability is 1

that this is the case.) As in [3], it suffices to show that, with
I

probability 1, 0 4PC (0) converges to an operator . whi.ch has operator norm

less than 1 with respect to a suitable vector dorm on {J( fB^ .

Now	 A(0)
VO (0) _ (1

	

	 1 + E v DI(0)

S (o)

and we write

A	 DaA V-	 VGA

0 x = 0-&M [ M Ve

S	 0-ds D-S y

r

	

	 Define inner products < ,. >! on 	 , < , >" on ,(g , and < , > on

aIDWOj as in [3]. Setting

Pi W
^x(x)	 p(x)^ Y

i (x)	 (x ` le i) 8i (x) _ [F.il (x 	 i)(x - } ^ i ) _T],K = iv' T + (L. r4,

for i = 1,...,m, one calculates

T

	

No	
Sl l

da (0) =I	 (diag. ai) N

T

V7A(0) _ (diag a,) 7l E  ^ ^^1 
(<^1y1, 

•,l
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T.

I N
o 	ai No ^iyi 	Ri

VIM - (ding K.
x 1 Siyi) "' diag K.) ]

Y	 '

	

0mym 	 am

ai	 No	
o
1y1 	 <0lY;'•l1 Tai 

No 	 T -1 vu i(o} = (diag 
K. 1 Y

iyiEi 3	 (diagi) -	 Kx)

amYm	 Ckym  • >,m

t^	 T
No	 a.	 No	 a Iyi 	 K^1S1'• ].

VZ-M(0) - (dial; Kl
	

(3iyy<Si, • >z) - (diag Ki)+

loym	 RM m' lit

E. No	 a.E.	 No	 ^l. 6 1	 ^^	
T

a-S (0) - (diag 
Kx 

E ^i6 i ) - (diag K.
I)K.	 &

^nl m	 Rm

Ni	
l

-S(a)	 (diag	 f_,E [(•)Y +yi(•) T] E0t {•)y +yy(•)T](ii+£i odi<(iiy , • > t ;G) -K.x 	].	 ].	 1	 ^

e	
s	 T

a.E.	 No	 iSi	 <sjy1'•>i
(diag x x)
	

E

m m	 *a m m

a.E	 NC, 	 l6,L,

QYS(0)	 (diag 
Ex 

Eo ^,5. <S, •> ,r ) 
_ (diag 

x i
)	 a

Ki	 x x	 i	 K. { 1.

	

^m m	 'ill 6M 2 *'

_	
Here, the arguments of ai ,yl and S. can be determined froln . th.e indices

Of summation, e.g.,

Eo 
Riyi — kI i (xok^yi ( 'nk )i



Setting

V

E3y	 g*RODUCIBIL^ Q-PO

^m

olyl

53-

F3

Mm

one obtains at n

et .
I	 0	 0	 (diag —^)	 0	 0

(^A

	

No	 (X	 NOi

	

S	
21	 22	 23	 lti	 cti?:^

	

X31 B32 B33	 0	 0	 (ding K. )

where
No

B21 (diag I 
i T ^iyi)

0
B22 = (dia K 7:	 Z-f: z1$ )

No

B 23 = (dial	 ^?iyi<Si, •>)
1

F_ No

B
31 J (diag K1	 SiS1)

N^

B32 J {diag	 -1^(-)yi^YiC')l - a^^{')Y^"Y1(.)^1 ^. } i .i F,l.{,l^ri,• ^}. )

	

1	 I
K.

No

	33	 I`. 1	 z i i	 i".

W.^
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REPRODUCIBILITY OF THE

Q^IGA^TAL PAGE IS POOR

We have assumed that 0	 is the strongly consistent maximum-likelihood

T	 estimate.	 Then, regardless of the relative sizes of 	 Ni 	and	 No)	 ona can

show as in	 [31 that, with probability 1,	 { q [D E (0) -- EMDC (00)) l	 conver ges

to zero as	 No approaches infinity.	 Now

_ I	 0	 0

A (Oa)1 Cc0N

E(V M(0')	 } - 0	 (dingh ° I)	 0 -
^-

S 
(00 } 1	 cc No

0	 0	 (diag 1 0 1}
K.

(diag a°.) 0	 0
z °

-	 -- 0 OL1(diag	 0	 )	 o	 {	 Jv(x><V(x), • ,^^cr}^C:_:'t
K	 oc0N	

an
o

0 0	 (diag	 i

B (I -	 Qk) ,

where

I 0	 0

--	 B 0	 (diag _	 o 1)
Ki aoNn

0 0	 (diag	 K.	 l)
i

(diag Cc°.) 0	 0

Q = 0 1	 0

0 0 (diag ZO)

V(x) <V(X) , ->p(x)dx •:

IR	

.

--	 -	 _tom Sb



^, moDuomiLa ' Or THE
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It was shown in [3] that QR is,positive-definite and symmetric with

operator norm less than 1 with respect to the inner product <•,Q-1 •> on

QOY*D,	 It follows that I--QR is positive--definite and symmetric Wi Lh

norm less than 1 with respect to <•,Q- ^ • >. Since B and Q commute,

<•,Q-1B-l•> is an inner product on LI(OTSJ , and one sees that

<W,ClW> < <W,Qr1B 11P for W e OWW . Consequently, B(I--QR) i s

positive--definite and symmetric .with norm less than 1 with respect to 010

°-	 inner product < • , Q^IB 	 One concludes that

A(Q°)

4mm	 E(O'c(0°}) _ (1 - Z) I + c R(a M(op) )

S (cop)

has noun less than I with respect to <• 3 Q-1B--1, > whenevO.17 0	 2.

This completes the proof of the theorem.

We remark that, reasoning as in [31, one ncry deterTflne a particular

value of c (the "optimal c") which yields, with probability I as No

-	 approaches infinity, the Fastest asymptotic uniforin rates of local conv(.1-

Bence of the iterative procedure (2) near 0. This optimal c is given by

2E=2- (T+p)

where p and T are, respectively the largest and smallest eigenvalues of

-	 B(I.--QR) regarded as an operator on ^ G VD (? (	 is the. subspace of (Z

whose components sung to zero.) Since p and '[ lie between zero and 1,

one sees that the optimal c is always greater than 1. If the componvtit

population: are "widely separated," then p and z are near zero and,
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t'	 hence, the optimal E is near 1. If-two or more of the component population.;

are nearly indistinguishable and if N o is large relative to the Nit s,
f

then T is near zero, and the optimal e cannot be much smaller than 2.

jj

3. Samples of the second type.
I

We now assume that Ko observations are obtained from the mixture

population 'W , and that, for some N o < kQ , No of these observations

are left unidentified, while the remaining Ko -- N0 observations are

identified. For i = 1,...,m, let {x } 	 denote the subset ofik k :L,

the identified observations which come from 'ir ., and let {x }
!	 1	 ok k=1,...,NG

_.	 be the set of unidentified observations from 9r^. The lob;-1 ikeiihood

function for this sample is

ff

	 m

I
(^F1N1) !
	

Ni
	 Nm	 m 

Ni	
NoL2 (0) = log 

{ N1 !...Nm ! a . 'xm } + iE1 kE1 
log p

i (xik) + kE1 
log 

p (Xok)

m

	(.E N.)!	 m	 Ni	 N= lag {N l
l ..N^l ! } + i-1 kEl log [aipi (Xik) l + J01 log p(xok)

^i

j	 Differentiating L2 and setting its partial derivatives to zero g ves

the likelihood equations

N	 Ni ai 
No pi(xok)

(3.a)	 ai - Ai (0) 
_ K + K kT p (xn	 n	 r,,, )

r

.i

i
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for i

We set
_	 N

Al 0)

NA(0)

A n (0)

and define an operator E on (90Iqe, by

ACO)

4) (0) = ( 1 - s)0 + E	 M(0)^.	 E

S (0)

Our iterative procedure is the following: . Beginning with some starting

value O Cl) , define successive iterates inductively by

()	
O Cj+l)	 fo0))

r
for j = 1,2,3,...	 As before, the desired local convergence result for

u^	
this iterative procedure follows from the theorem below.

Theorem 2: With probability 1 as Na approaches infinity, 0 e is a locally

contractive operator (in some norm , on	 near the strongly consisreu

maximum-likelihood estimate whenever 0 < e < 2,	 ^

Proof of Theorem 2: Tf 0 is the strongly consistent maximum--likelihood 	
i
I

estimate, then, as before, it suffices to show that, with probability 1,

OTE (0) converges as No approaches infinity to an operator which has

operator norm Less than I. with respect to some vector norm on ^m3rf^

Proceeding as before, one sees that



13

N.	 a.	 N 11 T
aA(0) - (diag (1 a.K ))	 (diag)	 i°

xo	 a
Bm	 ^m

T
N	 ^11	 `11Y1' >1

p }̂ A(0) _ --(diag Kx)	
Zo	

1,	 a

0	 1	 ^T

Rm 	 amYm M

	

a.	 N	 S1	 ^^1^1'^^
(diag K̂") ^ 10

	

0	 ,),r
Om

The remaining Frechet derivatives, i.e., the derivatives aL 0 of M and

V	 S with respect to a, }a, and f, are unchanged, except that K. must he1
replaced by a 

i K 0 wherever it appears.

One obtains at 0

`-'	
N

A	 (diag.(1 - aK ))
	 0	 0

i 0
(4)	

v M =	 $21	 B22 B23
N	 N

S	
B31	 B32 B33

a.

	

(diag 
11C	

0.	 p

	

o	
N

	

0	
ICflI	 0	 kE1 V(Xok)<V(''r^ !C);

	

E.	 ,

	

0	 0	 (diag i)
K0

In Lhis expresr.iun, ea:•h 
Bjk is the same as the corresponding Bjk
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previously, except that each K  in the latter is replaced by a i K 0 in

the former. One verifies that, with probability 1 as N o approaches

µ	 infinity, (4) has the same limit as B(I-QR), where Q and R are as
N

before and B = K I. Repeating our earlier reasoning,. one verifies that

B(I-QR) is positive-definite and symmetric with norm less than l with

_1N_1
respect to the inner product < • ,Q B •>	 Hence

N
A(G)

N
nq£ (0)	 (1 - 0.+ e© M(0)

S (o)
Y	

converges to an operator which has norm less than 1 with respect to

-1N-1
<• ,Q B . > whenever 0 < e-< 2. This completes the proof of the theorem.

The remarks concerning the "optimal e" at the conclusion of the

preceding section are valid here verbatim.

'y
1

1

{
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ABSTRACT

We develop a procedure for calculating a kxn rank k matrix B
for data compression using thW Bhattacharyya bound on the proba-

bility of error and an iterat:;.ve construction using Householder

transformations. Two sets of remotely sensed agricultural data

are used to demonstrate the application of the procedure. The
results of the applications gave some indication of.the extent to

which the Bhattacharyya bound on the probability of error is af-
fected by such transformation^ . for multivariate normal popula-

tions.

1. INTRODUCTION



P(xaj) = (Qiq ^)^fn{pi (x) p3 (x) }"dx

and the Ba es probability of arror (Anderson, 1958) (Andrews, 1972)

by

Pe = 1 - f-Inmax {gip,(x)}dx
 LiLm

where pi (x) denotes the conditional density of the random vari-
able X given that X 'U N( 1,^L ,Ei )	 and gl,...,gm:respectively,

denote the (known) a pLriori probabilities of the classes N(jLJEi)

	

= 1,	 , ,Ta.

It has been shown (Andrews, 1972) (Kaileth, 1967) that

	

'	 Pe <_	
{C q . }^ J n {pi (x)p^ (x) }j2dx

If one considers a kxn rank k linear transformation B of the 'ran-

dom variable X (i. e., Y-BX), then the Bhattacharyya coefficient

for class i and ^ 'for the cla:;pes N(Bg,,BE B T), i = 1 ' ... 'M is:

pB ("^)	 {gigj) jk{pi (y 1 £ )P i (y ,B) } dy	 f

T
and the Bayes probability of error for the classes N(BE:t,BE iB ),
i = 1,...,m is:

P (S) = l fR k max {pi(y,B)}dY
e 	 IL-iLm

where p^(y,B), i 1,....,m denotes the conditional density of the

random variable Y BX givers that Y' ti N(B11i ,BE iBT). It follows,



since PP =^,	 P U 'D ^ than.e _ 
	 j=i+I	 1

m
Pe (B) L P (B) -	 f PB (i 1 j )

t

and moreover, (Decell and Quirein, 19 73) (Kaileth, 1967), that

(1) Pe L Pe (B) 4: P (B)

(2) Pe = Pe (B) if and only if p = p(B) .

2. THEORETICAL PM?.LIMINARIES
ti

Let k be an integer (0 < k < n), and N(^_, i ) i = 1,040,m
x

--	 be n-variate normal populations with arp iori probabilities

gl ,..., gm . We Yrould;like to construct, a kxn rank k matrix B that

will minimize p(B). The theoretical extent to which this is pos-

sible and the basis for the construction (Decell and Smiley, to

appear) is summarized in the followinj; theorem. Let

C = { u se. d1uli = 11 and T(H) ={H=z-2uuT : u E C} denote the

set of Householder transformations on 0 (Householder, 1958).

Theorem. For each positive i., let Hi f: T(H) be chosen such that

p, ((IkiZ)Hl) = g.1.b p((Ik Z)H)
HET (H^

and

P, ((Ik Z)Hi+j'H.
	 H1) = g.1.b. p((TkIZ)HHi..,g1)

HET(H)

then,

(	 Ft(1kiZ)H +zHi.,.Hl} <p((TkIZ)g.••_H )^. 	
r

_	 (2) P ((Ik Z)Hi+l...HI) < P((Ik Z)Hi ...H1H H E T(H)) .

(3) P((IkIZ)Hi+1H....Hl)<p((IkIZ)HHi...Hl, H E T(H)).

(4) p((I IZ)H...H. r	HH.	 H }< o((IIZ)H. H.....g .) H T(H)

and p

(5) The monotone sequence of real numbers {p(B.)}^ 	 where.i i=i

i,

n 49— —	 _.
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Bi (Iklz)n!- . Hl is bounded below by P
e
 and hence

lim p(Bi) = g.l.b.I p(Bi)}

We know (Decell and Qui.rein, 1973) that there is some kxn rank

k matrix, say B, that minimizes p (B). If p(B) < 9,l.b.{P(Bi)}
3.

CO

we will call the sequence {B l i	 sub optimal a timal in the

case of equality). There are several results (Decelland Smiley,

to appear) that lend credibility to the conjecture that the seq-
uence is optimal and cofi.nall-,r constant beyond the index
i = min{k,n-kl. We will proceed with the development of an itera-

tive procedure'€or constructing the subject sequence and, finally,

tabulate results of applicatiins to remotely sensed agricultural

data with equal a priori class probabilities. The approach (and

its merit) will depend upon the bound provided by the inequality

Pe < p(B) i = 1,2,..., the non-increasing nature of the sequence

_	 {p(B)J. , and the ability to manipulate the expressions fox-i z-1

p(Bi), i = 1,2,... an the case of normal populations.

3. THE GRAD ENT OF p((IkJZ)H)

We will develop an expression (for the case of normal n-vari.,-,

ate populations N(A..a , i 1,...,m) for the gradient of

P((Ik jZ)H) where H g T(H) has the form H = I-2 ^ 	x ^ 9.
X x .

This expression will be used _u a steepest descent procedure to

calculate each Householder transformation Hl , H2. , H3 ,... des-

cribed in the preceding theorc_m;. For m populations N(

i = 1,..6,m it is easy to establish that in order to calculate

3+1' one need only apply the .steepest descent procedure to the

Bhattacharyya coefficient determined by the populations

u<u ...0 .. u ...0 r u ...0 1	 _
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w

The expression for P(I IZ)H (i,j) is given by (Andrews, 1972).
k

(Kaileth, 1967) (for the case G£ equal a rp iori probabilities
q. = llm, t = 1,...JM)

f^

P(Tk lz
) H ("I - exp-

vij(yi+zj) -^ 6ij .^ In k 1 i+^^^'

2

where 6i7 = (1 Z)H(p-^cJ) and Ey	 (k^ Z)HEiH(Ik ^Z) T , in ^rhich
case,

-m-1
P((^k^Z)H)	 E .I	 P(^ IZ)g(i,j).

If we define

g
ij 

= -.4 j ( i-{-^ sib add Gij -- 2ln k

2 Ei^ z^j

we have that the differential o^ Piz ^Z )H (i,j) is	 1
k

d (P(Ikj Z) (i 3a)) =	 ex,)(Fi +Gzj)(d(^'ij) + d(Gia))

from whence it follows that
r,

m
d (^ ((^k 1 Z) H)) _

	

	 _̂, exp (Fij+ci^) (a (rid ) + d (Gi3 )) .
-1 a -^; .



r

and

^x^	 2 Inj(^k Jz)x 1^x{^ Iz)T I + ^ Inj(xk IZ)HE (^k Z)TI

+ In J (1k 1 2)HE 3H (I k J Z) J + Z 1n2.

-	 We will now develop expressions for d(Fij ) and d(Gij ), i,j = 1,...,m.

According to Decell and Quirein (1973)

d(F^.) _ - tr(d((z Jz)H)Rii }

where B = (I, JZ)H . and

[^^d BT- E..BT(BFz^BT)-IBVijBT^ (BEij$T)-3'

T
Since H = I'- 2 

xx 
it follows that

X x

	

T	 T

	

d((Ik (z)x) _ d({^k Jz) ( - 2 x
	 )} = -2 (zk JZ)d x

	

x x	 x x

xd (x < - xxTd L: x)--	 ^ ..Z(1	 xkJ2) ^
	 T 2

(x x}

-2(l 1 Z)k	 IxTx (d (x) xT+xd (x) T) --xxT (d (x) Tx+xTd (x)) }

(X
T 
X)2

-2(l Z)

_	 k2 {(d(x)xTxxT+xx xd{x) -xxTd(x)xT-xd(x)Txx J
(x x)

-2 (1 J Z)	 fn	 T-	 ^k	 { (d (x) x ? -xd (x) ) xxT-xxT (d (x) xT-xd (x) T) } .



a

substituting the latter in the expression

d(>,
ii) =- 2 trld C(1k Iz)H)Qij }

and Using the fact that tr(AB) = tr(BA), we have

-2 tI ^ Z)
d(Fi^) = ^tr

	

	 Tk Z I(dtx) xT-xd(x)T)xxT-xxTT (d(x)xT--xd(x) T)3 Qi3
(x x)

1z tr{Q3^ (Ik ^ Z) I (d.(x)xT--xd(x) T)xx --xx {d(x)xT—xd(x) T) J}
(x x)

I trCxxTQ. - (Tkl Z) (d(x)xmwxd{x}T)--Q.. ( I Z)xxT(d(x)x(xTx) Z	 , :.j	 i^

-xd(x)T)}.

With a , little matrix algebra (and some patience) it follows that

	

d (F	 T1 t
r{ I (xxTQi^ (Tk^ Z) - Qi^ (Ik e Z)xxT) T -

(x x)

-.. (xx Qi* (Ikj Z) - Qij (Ik) Z)xxT) ]xd(x)T}

We now find an expression ,for d (Gyp) First, recall

(Kullback $ 1968) that	 i

d (1nj BE BTl)	 2tr(d (B)E BT (BE BT) -I^

so that

	d(Gi^)	 -tr(d((I,I Z)H),E H(IkI Z) T ((zki Z)H IJH(Tkl Z)T)-Z}

_Ztr{d((Tk1Z)H)EiH(Tk1Z)T((TkIZ)HEiH (Ik l2 ) T)

--I

+ ; tr{d( (I,_I z)H) .x( , ! Z) T t(T, I z)HE .H(T_ z)T)"'I1.



obviously, the summands in the expression for d (Gi^) differ

from the expression

d(F	 =-- trfd ((Ik lz)H) Q 3}

only by multiplicative constants and the matrix Q ij . Hence, we

may use the final expression for d(Fij ) to obtain the expression

for d (Gij ) by simply adjusting the multiplicative constants and

	

replacing Q 	 each summand in d(Gij )) with the expressions

dij = E
i.3	 k ^Z) f[ (Tk ^ )HZijH(Ik IZ)T]

_1

Kij = E2.
H (Ik ^Z)TC (Ik IZ)HEiH(Ik 1z)T^ -1

L 	 Z.H (Ik IZ) T C(Ik jZ)HZ H (IkIZ)T7
-1

i At this point we. will simplify the notation. Let

Qij = (xxTQ3.j (Ik IZ)-Qij (Ik Iz}_CxT) T-(^cxTQi j (Ik IZ)-Qlj (Zk fz), T)

and let J.., K.., and L.. be similarly defined by substituting,

	

1j	 11	 ].3
respectively, Jij ,X.., and Lid for Qij in the expression for Qij,

It'follows that

d (Fi j)	
T 2 tr (Qia xd (x) T)	

i(x x)

d (Gi j) _	 z tr (Jiaxd (x) T) T2 tr (K jxd (x) T}
(x x}	 (x x)

^	 .	 I



	

i	
m	 exp (F -^G

ii
	..

	

G (x) = m
	 T2 :i.^) (Q + 2J -- 

`ij
	 )x - 9 .

ij

Of course, the function G(x) is the gradient of

T

	

P((Tk iZ)(I	 - 2	 )) with respect to X.
xx

With G(x), we use a steepest descent technique to construct

Hi e The process is repeated for the construction of H 2 since,

given Hl , the problem of constructing H 2 is identical to that of

constructing 
H1 provided the populations are taken to be

N (Hlµi .HIZiH 1 ) J=
Test results are .presented in the following tables for nine

twelve channel, C-1 flight line agricultural classes: soybeans,

corn, oats, red--clover, alfalfa, rye, bare soil, and two types of
wheat. * The Hill County data is sixteen channel data for five

agricultural classes: winter wheat, fallow crop, barley, grass,

and stubble.

C--1 FLIGHT LINE DATA

n 12, m = 9,.k = 6, P = .024

f

I

Iteration HH
1

HH
2

HB
3

0 .327 .109 .134

1 .223 .060 .034

2 .171 .062 .033

3 .135 .068 .032

4 .116 .058 .031

5 .1157. .055 .0309

6 .1150 .054 .0303



HILL 'COUNTY DATA

n-16,m =5, k=6. p= .107

Iteration :HB
1

HB
2

H-B
3

0 .872 .336 .299

1 .785 .310 .287

2 .525 .286 .232

3 .439 .273 .227

4 .576 .267 .226

5 .386 .265 . V4

6 .363 .264 .223
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-	 •	 ABSTRACT

Classifying large quantities of multidimensional data (e.g.,

remotely sensed agricultural data)(Remote, 1968) requires effi-

cient and effective classification techniques and the construction

=	 of certain transformations of a dimension--reducing, information-

preserving mature. This paper will deal with the construction of

transformations that minimally degrade information (i.e., class

.separability). We will only consider the construction of linear

dim'e'nsion-reducing transformations for multivariate normal popu-

lations and information content will be measured by divergence

(Kullback, 1968),

1. INTRODUCTION

For n-dimensional, normal classes N(mi,vi) i 1,...,m, the

divergence between class i and 3 (Kullback, 1968) is given by

r



I

Dij = 2 tr f (V Vj ) (V j -Vi') ] + Itr [ (V;,'+V^j') (mi— i) (m3.^ ) ]

Let S - m .. Then
ij _ i -m3

Di . =	 1^(V3^Vj)(Vjl-V^l}] + 2tr (V11+ V1)(Sij}(Sid}T]

z r[Vi1 (Vj + ^3-j5J.J)] + 
r(V3 (Vi s; 3 by3 )^ --.

The interclass divergence (Decell and Quirein, Oct. 1973) for .m
E

populations is given by

_ D -
	 Di j

i#3

and it follows that

DV' 
1(^ 

(V + S ST ) ) ] -- m(2-1) n
2	 ]	 ij ij

i0j

rj Vil gi ] - m(2 
1) n,

where

Nk



ti

 j

DB = 2 trj "v' (BV.BT)`1 (BSiBT) ] -- 
m("'

)-^') .k.
3.

r
As in the case of average interclass divergence, the B-interclass

divergence is a measure of the "separation" in the classes

N(Bmi ,BV.BT) i = 1,...,m, and is a useful tool for constructing

rank k Linear transformations that preserve "class separability".

It has been shown (Decell and Quirein, Oct. 1973) that whenever

D = DB , the probability of misclassification (Anderson, 1958) for

the classes N(Bmi ,BViBT), i = 1....,m is the same as the probabili-

ty of misclassification for the classes N(mi ,V.), i = 1,...,m.

2. THEORETICAL PRELIMINARIES

We will assume that k is an integer (k < n) and develop a

procedure for selecting a k x n rank k matrix B such that D  is

maximum. The procedure will be based upon the following theorem_.	
(Decell and Smiley, to appear). We will let C = {u a e: I Jul l =l}.

and T(H) _ iH = I-2uu T: u e CI denote the set of Householder
transformations defined on R  (Householder, 1968).

Theorem. For each positive integer i let H E T(H) be inductive-
i_._ 

ly chosen such that

r	 Dcikl
zmn.-

l ...Hl 
.l.u.b.[D(IkIZ)HR _1...H1^

where

D(Ik1Z)H1 .H^T(H) D(IkIZ)H•

The following hold:

-	 (1) . D(IkIZ)xH. T1....H1 ` D(Ik.lZ)H
i+1Hi "'Hl.



(3) D (Ik 1Z)HH.Hi-1 ... H1 L D (IkJ 1)Hi+1Hi••'Hl, for every H e T(H).
3.

(4) D(
IkIZ) Hair1...Hi-(p-1)URi-(p+I)...H1 L D(IkJZ)Hi-f:L 

H1,

for every H e T(H), p =

(5) The monotone sequence

	

{DB co} 	
_ {D(^ 

JZ)H .. . H }co	 is bounded above,i
and hence

13

4-
.m D (Ik ^ Z)Hy. .,.Hl = 1.u.b. {D(T

k
 ^Z)IHi...Al}•

I

We would, of course, be pleased if it were the case that

l.u.b. {D (IkfZ)i...H I } = D. This, unfortunately, is not always

the case for some choice of k < n and is not possible, in general,

for any k < n. We do know that there is some k X n rank k

matrix B for which DB is maximum and, in general, that D B L D

(Decell and Quirein, Oct. 1973). It follows, moreover, that since

the matrices of the form (Ik IZ)Hi ••• H1 have rank k,

D(I
k I Z)H.x • • • H1 G DB 4: D for every integer A.

We-wx11 call the sequence {D (1klZ) ^... ^_x=l - suboptimal

	

rt	
Hl .

whenever

1.u.b. {D (I IZ)H ...H } E DB

	

i	 k	 1	 1

(and optimal in the case of equality).

	

^	 There are several open theoretical questions that deal with
.e¢

the conjecture that the sequence is, in general, optimal and co-

finally constant beyond the .index i = min{k,n-k} (Dece11 and

Smiley, to appear). In what follows we will develop a procedure

for constructing the subject sequence and demonstrate.its

application to agricultural. data.



THE 'GRADIENT OF D 

It has been shown (Quirein, Nov. 1972) than the differential

dDB of 
D  

(regarded as a function of the k x n matrix B) can

be expressed in the form dDB = F + G, where, when the indicated

inverses exist,

	

F =	 i1tr[	 (BV BT)-I (dB S iBT + BSidBT}
3:=1

= 
2 r[
	 (dB SiBT)(BViBT)-Ij
x-

+ -I2-Cr[	 (BSi dBT).(BViBT) x^

tr [	 (dB SiBT) (BViBT) w1 l

and

G -- 2 tr [^ (BViBT) -^ (dB ViBT . + BV ABT). (BV BT) -^" (BViBT) ]3.

-	
_ -- 2 r[	 (dB. V BT ) 

(BViBT)
-I (BSiBT) (BViBT} -I] .

lT --1	 T	 T -1	 . T

	

^r[	 (BV1B) (BS.B )(BViB) (BVidB )
i=



Thus,

m
-dDB = tr[	 OB S.BT - ViBT(BViBT)-1(BSjBT)}(BViBT)-I

=trdBQ

where

	

	 E

Ri = [{S.BT - V.BT (BV.BT } -1 (BS.BT)}(BV BT)-1j.

We are, of course., interested in extremizing D B over the

	

	 ti
r

particular subclass of k x n rank k matrices of the form

(Ik IZ)H where H s T(H) (e.g., for i = 1 we find H 1 that maxi-

mizes D(I IZ)H ). Actually, one need only consider what is re--
k

quired to compute H1 . The computation of H2 is accomplished by

the same procedure as that for H1 . It is simply a matter.of,

after selecting Hl , redefining the m classes to be

N(Hlmi ,HlViHI), i = 1,...,m and proceeding as in the selection of

H1.

With these facts in mind we will simply 'calculate the gra--

dieiit of DB where B is restricted to having the form

B = ( Ik IZ)H, H c T(H). The restrictions H S T(H) can be accom-

plished by considering those k x n rank k matrices of the form
_	 T

B = (Ik l Z ) (I - 2 T ) w e Ra(w # @}ww

It follows that

TT	

dB = d((Ik IZ) (I - 2 T )I = -2(Ik IZ) d(ww /w w) 	 ,s
W w

_ -2 ( ' Z) jw wd (

	

	 - wv (r w) j
(W W)2



2(T  Z)

_ - - - T 
2 [w-w (dw wT + wdwT) - wwT (wTdw + dwT w) ]

(w w)

_-	 2[dwwTww +www dwT -ww dww -w dwww]
(w w)

2(I IZ)
= - kI 2[(dw w - wdw^)wwT - wwT (dw w^ wdwT)]

(w w)

Substituting the latter in the expression for dDa,

dD = tr m [ 2(1 k12) {(dw w  - wdw T)wwT _ wwT (dw w -- wdwT 
)IQ •]B	

(w
	 x

2Qi(Ik 
Z) {('tr	 [ -	 d w wdwT )wwT - w-wT(dw

 
WT - wdwT)}]

w W 2

r 2 2 [wwT Qi (Ik^Z)(dw wT - wdwT)
w w

- Qi.(Ik jZ)wwT (dw w - wdwT)]

- T2 2 tr	 [M. dww -- M wdwT - Nidw wT + NiwdwT]w w

Where Mi = wwTQi (Ik IZ) and Ni = Qi(IkIZ)wwT.

dDB = T2 2 tr[ {w Mi. dw - wT Ni dw + N. w d T - Mi w dwT}]
(w w)	

2,_,
	 -

T2 2 tr[pdwT M! wdwT Ni w + Ni w dwT Mi w dwT}]
wW

s



a, —
T

2 tr[ m (Z w dwT - Ni w dwT + N.
3.
 w dwT - Mi w dw I]

	

(w w)	 a.-^.

-	
=T2 2

w) tr[
	

{ (M.. --
 N. 	 ^- (Mi - Ni ) }w dwT }.

(w 

The necessary condition that w he e_xtremal is then,

m

	

G(w) _ -2
	

"	
- N. )T - (M. - N.)}w 	 a (the zero vector).

T 2	 i	 ]	 ^.
(W W) 1—

We note that G.(w) is the gradient of D (^ 
Z)(1

. - ^ww } and
.	 k 	 wTw

use a steepest descent procedure for finding the extremal w. The

process is repeated for each sequential index until corresponding

values of divergence "stabilize." Test ;results are presented in

the following tables. The C-1 flight. line data is twelve channel

data for nine agricultural classes: soybeans, corn, oats, red-

clover, alfalfa, rye, bare soil,, and two types of wheat. The Hill

County data is sixteen-channel, data for five agricultural classes:

winter wheat, fallow crop, barley, grass, and stubble.

The starting value w for the.steepes . t descent procedure0
for selecting each successive Householder transformation

H13 H2 ' H3... was arbitrarily chosen to be wo^,..,, 1}T,
r rn A

Choosing starting values in this arbitrary fashion is certainly

not the most clever thing to do in the presence of the monotony

behavior of the sequence DOne would expect, for(T Z)gi ... gl

example, that the starting values for tl,.% selection of xi+l

should depend upon the unit vectors previously selected as gener-

ators of H ,H.	 ,Hl in such a way as to guarantee that the

starting value wo, for the descent procedure for selecting H.

h

Y 	 _
„s^	 n	 _	 .



satisfies

w -w
D C (2)H ^...x1 L D (1k ( z) (^ - 2 T ° xi ... Hi,

w w0 .0

This rather arbitrary selection of the starting vector does, as

the examples demonstrate, violate the latter inequality. The

question about how to choose starting vectors, according to the

latter inequality, is still an open, one and its answer would cer-

tainly decrease computation time.

C-1 Flight Line Date	 Hill County Data

n-12, k=6,.m=9, D=10,660 	 n-16, k=.8, m7--5, D=636.

Iteration for Hl	 1teratLon for Hl

No Divergence	 D$

1 1982
2 3536
3 4533
4 5781
5 6910.
6 7522
7 7710
8 7790
9. 7838	 .

10 7865
11 7881
12 7892

No
Divergence	 D3

1 114.58
2 136.66
3 152.27
4 179.69
5 223.81
6 247.42
7 252.78

8 257.12
9 260.74

10 263.95
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C-1 Flight line Data (cont.)

Iteration for H2

NO Divergence	 DB

1 7815
2 8797
3 9542
4 9785
5 9901
6 9966
7 10,005
8 10,031
9 10 048

Hall Cbunty Data (cont.)

Iteration for H2

NO Divergencc- D

1 269.00.
2 280.48
3 293.32
4 300.68
5 304.07
6 306.19
7 307.74
8 308.95
9 309.93

New Divergence .D$

1 7582
2 8705
3 9809
4 9947
5 9995
6 10,020
7 10, 037
8 10,049
9 10,058

No Divergence	 DB

1 312.18
2 344.52
3 380.83
4 387.20
5 391.70
6 392.96
7 394.58
8 399.47

^•- -	 Iteration- for H4

No Divergence	 DB

1 371.12
2 394.75
3 398.62
4 400.69
5 402.03
61 402.98
7	 1 403.74
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DOCUMENTATION

Computation of the Total and the B-average Bhattacharva'Distance:

(Univac 1108, Univ. of Houston).

This. program consists of 3 subroutines to be exocuted in the following
-	 1

sequence:

,(l) Subroutine BHATT

(2) Subroutine BHATBI

(3) Subroutine B11ATB2

1. SUBROUTINE BRATT

ABSTRACT

This subroutine calculates the total Bhattacharyya Distance, BDIST, using

all N channels. The output of this program, BDIST, will be used in comparing

the difference SH = H  - BDIST where HB is the B-average Bhattacharyya

Distance computed in the subroutines B gATBI, BHATB2.

User's Information:

(Double Precision Version Only)

-In order to use this subroutine the following FORTRAN calling sequence

must be given:

CALL . BHATT(COVAR, XMEAN, M,N, BDIST)

where:

COVAR(input)	 is a real. 3-dimensional array (MXNXN) and contains

the 14 NXN class covariance matrices (positive de-

finite symmetric) used as input.	 A



2.

`	 MCAN(input)

M(input)

N(input)

BDIST (output)

d 	 ,

is a real 2--dimensional array (MxN.) and contains

the' M =dimensional class-mean vectors.

is the no. of classes under consideration i.e. the

no. of covariance matrices and mean vectors.

is the dimension of the covariance matrices and the

mean vectors.

is the value of the total Bhattacharyya Distance--com--

puted by subroutine BHATT.

SUBROUTINES USED:

Subroutine BHATT in turn calls the following subroutines

1. Subroutine MA.TMn. This subroutine computes the product of 2

matrices'. It calls subroutines SUPSUM and ORDER.

2. Subroutine CILLSKY. This subroutine computes the inverse of a

positive definite symmetric matrix.

3. Subroutine DET. This subroutine computes the determinant of a
1

positive definite symmetric matrix.

NOTE: (l). The format statements for input, output are dependent upon the

di:mensions.of the input Bata and corresponding adjustments have to be made to

formats when different sets of data are run.

i(2). The variables declared in the DIMENSION statements have to similarly

correspond to the dimensions of the input data.

ALGORITHM:

Subroutine BHATT computes the value of..the total.Bhattacharyya Distance

using the covariance matrices and mean vectors as inputs.

i-	 a



3

The total .Bhattacharyya Distance, BDIST, is computed.by  the formula

l m--1 M
BDIST =	 Z H(i,j)

i7-1 j =i+l

where. H(i,j), the interclass Bbattacharyya Distance.between classes i and

j is given by

^Z + Z j

H(a.,D = exp[	 S^,T(E +' E^) -iSz^ - 2 Xn 2NjEii
	 I
1/2II . iI/2

where S., ui - uj and uz is the mean vector corresponding to class i

_	 and Ei is the covariance matrix corresponding to class i.^

2. SUBROUTINE BHATBL:

ABSTRACT

_-	 This subroutine attempts to calculate the minimum . B-average Bhattacharyya

Distance using i Householder transformation to construct the B-matrix.

USER'S INFORMATION:

(Double Precision Version Only)

In order to use this subroutine the following FORTRAN calling sequence must

-	 be given:

GALL BHATBl	 (COVAR, XMEAN, M,N, K, ITE, ALPHA.)

where

COVAR(input)	 is a real 3--dimensional array (M iixN) containing

r
the M N xN covariance matrices.



}

^"	 I

1	 I

XMF"Cinptit) 	 is a real 2-dimensional array . (MxN) and contains

the' M N-dimensional mean.vectors.used as input.

	

M(input)	 is the :number of classes' under . consideration U. e. .

the'no. of covariance matrices and mean vectors).
--	 i

	N(input)	 is the dimension of the covariance matrices and the

mean vectors.

	

K(input)	 is the number . of rows' desired in, the transformation

matrix B (which is KAN)

	

ITE(input)	 is 1 + (the no. of iterati.ens required)

	

ALPHA(input)	 is a varying parairieter in the iteration formula.
E

-	 OUTPUT OF SUBROUTINE'BHATBI

This subroutine has the following output:

1. The transformation matrix B (which has dimension K>O corresponding

to a particular value of . the Householder generator F.*

2. The value of the B-average interclass Bhattacharyya Distance

HB (i, j ), i = 1,...,I+I; j = i+l,....,

3. The N-dimensional F-vector which is the generator of the House

holder. transformation. H I-ZFFT used in constructing the B-matrix

B W (IKIZ)H. w

4. The value of the B-average Bhattacharyya Distance,corresponding
HB

to the matrix B.
S

5. The partial. derivative vector S^ . which contains the partial

derivatives of HB with respect to the vector F.

See 'ALGORITHM'

I
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Subroutines Used

The following subroutines are in turn called by.. subroutine BHATBI:

-- .	 1. Subroutine MATMUL -- calls SUPSUM' and . ORDER.

2. Subroutine GHLSKY.

3. Subroutine. DET..

ALGORITHM

Subroutine BHATBI attempts to compute the minimum B-average Bhattacharyya

Distance using one Householder transformation to compute the B-matrix. The

B-average Bhattacharyya Distance is given by the formula

I ^ T ^	 ^ -I^	 ].	 n	 ^	 k n 112 ^ 1/2
HB(i1J) = exp[-- . a.. (E. + E^) s^ -- 2 ^n(^Ei + E 1^2 lEi^ 	 ^E.

A
where 6 i = B(11i u^) and Z  = BE	 andand. B is a Kxk matrix of rank K

of the form B = (I Z)H where. H	 1 2FE T
, JIFI1 = l.. An.init ,ial guess for

F is taken to be F T = [,...,] and the corresponding matrix

B..^ (TK Z)(I^2Fo o)  is computed. The corresponding value of

I m..l	 m
$B ".	 HB(i,j).

i=1: =i+1 .

is also computed.



u
s	 b

i'

The steepest descent iterator is then applied to alter the value of F
i

8H
a	

g
p+l	 P	 aFp

where cc is a varying parameter and is one of the inputs to the program.

§HB is the
2F	

partial derivative vector (derived analytically). The value of
p

Fp+1 is then normalized so that Fp
+1^,1 

= 1. The B-matrix is recomputed with

the new value of F. The corresponding value of H B is computed. This procedure

is repeated (ITE - 1) number of times ( 8 seems to be a good value for ITE).

Two points should be:noted:
-	 @HB

(1). Whether 2F e, &

(2). Whether dH HB - BDIST (the total Bhattacharyya Distance) is

sufficiently small.

The values of a and ITE (which are both inputs to this subroutine)

--	 should be altered accordingly in order to achieve the above 2 objectives.

The value of, F at which the minimum value of HB occurs is saved. Call	 !

it Fl.

3. Subroutine BHATB2.

This subroutine attempts to compute the minimum B-average Bhattacharyya

Distance using 2 Householder t-ansformations.

USER'S INFORMATION:

(Double Precision Version)

(1) In order to use this subroutine the following FORTRAN calling



a

7

CALL BHATB2(COVAR, XMRAN, M, N, X, ITE, ALPHA)

where

COVAR, . XMEAN, M, N., K, ITS', ALPHA

have the same meanings as in SUBROU'T'INE BHATBI.

(2) This subroutine reads in the value of Fl computed an the previous

program (subroutine BHATBI). The data cards for FI should have

the format 5F16.8 (e.g. if 'F1 is I2--dimensional. then Fl is

punched on 3 data cards; the first 2 cards contain 5 components

of Fl ^ and the last card contains 2 components of Fl) .

These data cards for Fl are placed following the data cards for the

covariance matrices and the mean. vectors.

--	 (3) The value of Fl that is read in is then used to compute the

Householder transformation Hl = I — 2FIF1T. The covariance matrices

Ei and the mean vectors }.ti i = I,...,m are transformed into

HIEiHI and Hl9i.

The number of Householder transfornta.tions by which the covariance matrices

Ei and themean vectors ui have to be transformed . is denoted by the variable

IJ.

For subroutine BHATB2. we require one Householder transformation to obtain

HIE.H and . HI i.	 -



8

The FORTRAN statements " IJ = " appears after the comment:

"C- L-------IJ Eq. No. of Householder Transformations Required—".

OUTPUT OF SUBROUTINE BHATB2

1. The vector Fl, which is the generator of the Householder transfor-

mation HI' - I -- 2E1FIT.

2. Same as subroutine BHATBI.

ALGORITHM:

Here each 
Ei 

is replaced by HIEiHl and each 11i is replaced by H1ui.

The B matrix is then taken to be B = (I 	 (I-2FFT) , F = 1. An initial

guess for F, FT = { 
	

] is made and the same procedure as in subroutine	
i

T	 BAATBl is applied. The value of F = F2 at which the minimum value of HB

occurs is saved.

USING MORE THAN 2 HOUSEHOLDER TRANSFOI'MATIONS TO CONSTRUCT THE' B-MATRIX: 	 A

_	 If more than 2 Householder transformations are required to compute the

transformation matrix B i.e. If $H = HB - MIST is not small enough,.then .

subroutine BHATB2 can be modified in the following way. For the B--matrix

requiring 3 Householder transformations do the following:.	 s
(1) Place the data cards containing the vector F2 (computed in the

previous program) following the data cards containing Fl..

(2) The statement following the comment "C... Ij Eq. NO. OF HOUSE-

HOLDER TRANS.FOMATIONS REQUIRED ..." should be 11IJ = 2"

For J a 4 Householder transformations required in computing the B-matrix:





References
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I. INTROVUCTION

TW phogkam herds mOttspectat acanneL data jnom a Univexsat ga mat

tape and output an .r n temned iate data .6 et in card .unag a .Johmat 6oh ub a as an

.input data z et in vwt.ious data anal yz. z devetopm ent pnogtwm . The g eneirat

capabUitie3s ate 6m)na i..zed as 6otZow.s:

1) decode the headeh hecond o6 the un iveuat 6mmat tape.

s_	 2) extAac t aU on patct o6 the ehannetz on the un ve&6aP_ jotunctt tape.
(The channel nun6ehb are keeative) .

3) ext act a tree tanguta& region dej tned by j.inat tine (I START)
tP.aat tine (ISTOPj, and a nine skip 6actah (ISKTP) and anaZogous
cot mn- . oh piket values JSTART, JSTOP, AND JSKIP. (ISKTP o n
JSKTP = 1, means ' no Zi.nez are b Fii.pped. l

4) exthaet and tabet any neg.i.on deo,'•,'xed by a non--neeta.ngutak 6ietd
oh j.ields which i6 a .6ubhegion o4

5) handomZy zeZeet a petcentirge SAMPCT of the keg+ions ox , which
were des fined in 3 ox 4.

II. INPUT PARAMETERS::

SAMKEY -1	 --on.2y heade L record i,a ,decoded
0	 -detehm:ini^sti.c trample is extkaeted
1	 -random zampte lz exttacted

SAMPCT	 --.ib SAMMY = 1, percent o j data to be tcandomt y 6ampted
SEED	 .ij SAMKEY = 1, .initiat seed {i on random number genetcatok.

(mutt be a positive odd integeA)
ISTART	 -beginning Zi.ne 5o>t zampfe (a6asoWe. Zi.n.e nwnbek)
ISTTP	 -labt tine Soh sampte
ISKTP	 tine bfrip jaetoh (.i^ ISKTP = 1, no tines are skipped)
JSTART	 beginning pixet $on zampte (helative pixet number)
JSTOP	 2a6t pixel. 4ox zampZe
JSKIP	 pixet .5 kip 4aetoh (.i4 JSKIP = 1, no p.ixetz ake skipped)



NWOUT
NCf^LST

NFLDS

FID
NV

MIMUN
-	 MAXLW

IF (J, 7)

-nwtibeh. o6 channeU to be output
-axtcay o6 aetative channel numbw o6 NCHOUT ehanneLs
to be output

-nwnbett og non-nectanguZaa 4.Le 4 to be desined (.i6
NFLDS = 0, then the -tectangutoA a.eg.con de6.ined by
TSTART etc, is output)

-aaaay containing 8 cha act a. hie -d 7D {ion each 6ieCd
-aftAay, containing numbea. o f vvtt ceA jon each non-
a.eetangutca& J.ietd (ij the ^ ietd iz a qu:adaaZatmat,
then NV = 4)

-aanay containing the. minimum tine nwnben 6ok each Siefd
-amay containing the max forum .dine number 6oh each 6ietd
-two d menz ionat ahAay containing the U-ne cooxdinatez o6
the Jth v ertex o6 the Tth 6 ietd bon J = 1, . . . , MVa-1
(the 6,6ut coordinate i6 repeated as the NV+1 covitdinate
a ta. ER.ZPS)

-a ^(wo d imenz.ionat w0 ay containing the p ixet coo4d incrtea
o 4 the Jth v eatex o6 the I th 6.ietd 6ok J = 1,
NV+l the 4-in6t coordinate is repeated as the NV+1 co-
ordinate a to ERTPS )

(the above veati.ces must be given in sequence such that

the .inteh i ak o 4 the J.ie td Zi.ers to the aight. See
Appendix A Jos. the ERTPS documentation Jos the TaLNTH
a.outine)

.r

o --
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REQ= S7AMKE	 _'-,.' , , A 7 ox,	 110)

RE(Zo TSKIP
JSTART

(10x, 	 0)
?'STOP
-SKIP

OPTS siulpCr (lox, F1 0, 0)
SEED:.. ,; .(I OX,	 110)

RE27 NCHOUr [7 agr J10)
NCffLST (l ox,	 16121-

REQQr NFLDS (l ox.,	 Z10)

ion I = 1, .....NFLDS Cij NFLDS ' - Q1

FID CT)

OPT:
NVC11

MINLIN(L).
(A 8,	 2X,	 31`5)

MAXLTN CT 1
IF C-1, T ) Cl I T51
JFC7,'L) C11T5 1

V.	 FORMAT OF'TNPUT DATA SET

7.7 1 CUP,

The Input Data Set .is nead from Faun unit a (FT01FO01) by the READ

_.	 noutf.ne. The Input Data Set has the i mat of a Univemat FoAmat Image Data

Tape desci i.bed in NASA Earth' ReAoulices Data Format ContAot Book . (TR-543) .

VT. FORMAT OF OUTPUT DATA -SETT

Fox each NCff d imen &Eo naZ p.{xe:L (X (I) , I =.1,	 NCH) selected

bon output, the 6ottow.i:ng xecoAd (80 bytes) iz rwr itten onto Fo,^tAan unit

3 (FT03f , 37 .)

LINE numbeA -	 . ,

PIXEL NUMBER

FID (ij not apptic-abte' :bZan.k .i:s uw..Wen,).
X (NCffLSL (711
X(MCHLS (21)	 -

X (NC14LST CNCUOL(T))	 t



REPRODUCIBILITY OF THE

ORIGINAL PAGE IS POOR

The jottmat .tfi	 (214, AS, 16141. The Zog.ieat necond Zength " 84 bytes and

the BLKSTZB lz detekmi.ned by the JCL cand dejimtng Fohthan unit 3 (FT03FOOI) .

UTT, SUBROUTINES

MTX	 --amang es data by p i xet natheit than by channek
RANDU	 -handom nwnber geneh.aton rTBM SSP)
FDLNTN -detehm.i.n.eA intouection of a non-aecta.ngu.lan 6itm 4on

a 4can Zin.e. (Fmtkan veuion of PO PRTPS ut Wy noutine)
READ	 -aabemb.ly .language [364 OS7 b,lnaxy xead i.outi.ne fffinman)





- -- --LEVEL 21.81-1 JUN--7.4-y..	 _	 VS/36()	 FORTRAN-14-	 .^

COMPILER OPTI [DNS	 NAME = 	 MiiN OPT = 02 , 	INECNT = 50 SIZE=Q000K
50URCEs E8CCIC,NCLI^	 iNCDECK i L ADrMAPvN0 E^ITtNQiDgNOXREF

----- ISV 0002 —INTEGER SEED
ISM JJ03 INTEGER BEGVI D loRECLNG,RECEND rANCLNG 9 INOX (16,),XXXX(2500) r

ONE SAMKEY'1SAMSII	 NCHLST(16)
*1ISV 0004 LOGICALZ(3060),Z2H) 9 X(100 0)*OUT(16)

---- ISd  INTFGElt*2 	 ZINT-2,NRECvLlN	 tXX(5000)	 —
ISV
ISV

0006
0007

DOUBLE	 PKECISIGN OVER	 6LANK, CXXX,F IC
F	 5{'))DIMENSION	 ID (-80)	 NV(	 , NINLI N ( 50) , NAXL IN ( SO), I F{ 12,50),

JF (120 0 ) ,I NT (ll } ,GV E R( 1000 )
I SV 00 C8 .T..__._.._ DATA BLANK/ 	 -- ....----
ISN 0009 DATA OXXX /'
Isi
ISV

0010
0011

DATA CLT/16* 1 	t / SAMSIZ/0P LIN /0/
EQUIVALENCE	 ( ZI.NT2,Z2(l)),	 NREC , Z(l!)	 ( L IN ;, Z{71 1),

txt1)1XX(IIII(X(1)jpXXXK(3^1- 	 ---
C
C BEAD HEADER RECORD ANC DECODE THE FOLLOWING VARIABLES

- _ C -- -NCH	 __ ^._... NUMBER	 CF	 CHANNELS-°--
C NCH1	 -	 NUMBER OF CI-ANNELS ON FIRST RECORO.OF BAND
C NCH2	 NUMBER OF CHANNELS ON OTHER RECORDS OF BAND
C REC LNG	 —	 RECOPI) LENGTH

RECBND - = .t	 . NUMBER OF	 RECORDS - PER_ . EAND-
C NPI X	 —	 KUVBER OF PIXELS PER CHANNEL 3PER BAND
C ANGLNG	 —	 LENGTH OF ANCILLARY BLCCK CN ;FIRST RECORD OF BAND
C BEGVID	 —	 BEGIN VIDEO BYTE WITHIN SCAN

IND34	 BYTE	 - C-H N44f -

C
.WITHIN TH AFPRCPFIATE PECDRD

ISV 0012 CALL READ { Z,LRCLG?
-----_--.-	 I5^1 0013- . -_ __-IF{LRCLG.LT.Q-)--Gfl T©-999- 	 ---~	 —

ISN 0015 ZI NT2=0
ISV 0016 Z2 (2)=Z190)
ISV 0017 INC ri =ZI NT2

ISV 0018 Z2(1)=Z(92)
ISN 0019 Z2(2)=2493)
ISV 0020 BI_GVIQ = ZINT2

---. G -
ISN 0021 Z2(1)=Z(96)
ISV 0022 Z2(2)=Z(97)

o
ISM 0023 NP I X= Z I NT2 d^

I SV 0 024 Z2 ( 1)=Z(100) n
I5V 0025 Z2(2) =Z(101)
ISV 0026 C R ECLNG=Z INT2 -

-	 ^-ISM 0027 i n 7f NT?=fl

f
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IIAXPFLI--ICAXPFLI

REFERENCES

1. Program Name - FDLNINT	 REPRODUCIBILTYY OF THE

2. Programmer - R. J. Decker	 ORIGINAL PAGE IS POOR

3. Language - PL/1
4. LINKEDIT Attributes - NCAL
5. Inputs -- Scan Line Number
6. Outputs -- Intercepts (pixel numbers) of scan line and field sides
7. Special Items - Calling sequence:

CALL FI,LNINT (P , L) ;

where P = pointer to field definition table

L = 11 element vector declared

FIXED BIN (15)

L(11) should be loaded with the scan line number

On . return, the L vector will contain the ordered pixel. intercepts. (e.g.,
a return of 1 5 1 7	 12 1 20 J 0 ^ 0	 indicates pixels 5
through 7 and pixels 12 through 20 are contained in the field.)

FUNCTIONAL DESCRIPTION

This subroutine will return the pixel numbers of those pixels on a given line that
are contained within the boundaries of a field.

DETAILED LOGIC DESCRIPTION

IIAXPFLI examines the number of vertices of the input Field to determine if the
field is a line-field or a polygon. If the input field is a line--field, then
the intercepts *re determined as follows:

The intercept of the line-field and L-0.5 is calculated as P = (X2-X1)

(L-0.5--Y1) J ( Y2-Yl ) + X l . iris calculation determines the projection of the
intercept.of the line-field and L+0.5 is calculated as P = (X 2--Xl ) (L+0.5-^Y1)

1(Y2_Y1 ) + Xl. This calculation determines the projection of the intercept

of L+0.5 onto L. These projections are examined to determine which is the
left one (PL) and which is-the right one (P R ). PL is set to the integral

value of FL+0.5 and PR is set to the integral value of PR + 0.4999.

Approval	 .Approval

it
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3.IIAXPFLI-ICAXPFLI

Date 9/11/75
Rev

Bank: Program Documentation 	 page 2 i

If the field is a polygon, then . IIAXPFLI finds the pixel intercepts of a scan line
{	 and the sides of the input field.

There are three distinct cases and each is handled separately; (1) the scan lane
intersects a side but not at the endpoints (i ..e., vertices), (2) the scan line
intersects a vertex that is not an end of a horizontal line, and (3) the scan line
is concurrent with a horizontal side of the field.

FUNCTIONAL FLOWCHART

See Figure 1.
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IS4 S P28 ZZ ( 2)=Z( 02)
ISN '29 N-"HZ=ZIN 2

ISV 4434
_.._.£ __--.-:ZI

NTZ=O	 -

ISN 0031 Z2 (2) =.Z iiO4)
ISN 0032 RECBND=ZINT2

ISN 0033 ZZ11)=Z(105)
ISM. 0034 Z2 (2)=Z(106)
ISN 0035 ANC LNG=ZI NT2

ISV 0036 Z2 (3.)=2 (17851
ISI 0037 7-2 (2) =7 (1786)
IS'q 0038 NCHI=ZINTZ

ISN 0 .039
C

iC T=0
IS4 0040 00 20 I=1,NCH1

f	 ISN 0041 IC T=I C T+l
--- iS.S 0042 )=ANC LNG.+2+1I-1)*NP 1 IX+1--

ISN 0043 I F (REC BND. EQ. I). GO TO 40
ISN 0045 DO 30 I=2,RECB.ND
ISM 0046 DO 30 J=1 r NCH 2

w - IS14 '0047- IC T=ICT+1,--
ISN 0048 30 1 D X[ ICT)=2+(J-1)*NPI X+1
ISV U049 40 WRITE (6 8 200)	 hCHiPNPIXrRECLNG.sNCH19NCH2 , Rf.CB.ND,ANC',.NG#BEGVID
1SN 0050 WkITE(63201)	 (IrINDX ( I),I=1, NCHI

----IS4 0051 --	 ^IE^^ITE (6,202)	 2	 -..	 ---
ISV 0 .052 200 FORMAT ( IH1rI

	
19169/1,M.
916NCH =	 °

3 °	 RECLNG -	 ' , 16 rf, 
NCHI° r i 6 r /

':°	 NCH2	 -	 Ib•/a
°	 RECSND =	 ' :I6,/,°	 ANCLNG =	 ° ° 16 f r -	 -

IS4 005 201 FORMAT ( IH	 s°IN €3X(°,I2r')	 _	 a18)
IS4 0054 202 FORMAT 41.00(/r5(2Xr10Z21)9C

C READ SAMPLING PARAMETERS
G-_-_-__-.-..-SAMKEV --- - - CKY [iEADER - RECCRO- -I5 -DECODED	 - --- -	 -	 --	 -	 -
C 0 - DETERMINISTIC SAMPLE
C I	 RANDOM SAMPLE
C SAMPCT	 -- PERCENTCCE CF DETA TO BE SAMPLEC RANDOMLY

SEED---	 ---.,.- - SEED FOR- RANDOM -NUMBER-..-GENERATED
C ISTART	 - BEGIA LI EE FOR SAMPLE (ABSOLUTE LIVE NUMBER:)

i	 ^	 t

Wit•



UlP	 - LI ;E SKIP ACT R M [ P ISKIP'=Ot NC LINE S ARE SKIPPE D?
JSTART	 BEGIN PIXEL FCR- . S'AMPLE . (RFLAT-IV-E"-Pl-XEL-NUMB-ERI-
JSTCP	 LAST PIXEL FOR SAMPLE
JSKI P	 - PIXEL SKIP FACTOR (IF JSKIiP =Ot NO PIXELS ARE SKIPPED)
NCHCUT	 - NUMBER OF CHANNELS TO BE OUTPUT
NGNLST	 - ARRAY CF- CHANfkEL--ID5 -T E} 8E i3i^TP^T-'f- Et Ai

C ...--------------- .rww--rte.-r-

ISN 0055 READ(5t1000)	 SANKEV
ISV 0056 W1 I TE (b ,1007)	 SARKEY
ISN 0057. IF ( SAN KEY) 41 v42 t42

_-- 151 0058 -41 STOP
ISN 0059 42 READ(5,1000)	 ISTARTtISTOPISKIFtJSTAPTtJSTOPJSKIP
ISI 0060 liRITE (6 1 1008) ISTART,I STOP :IS KIP,JST ART ,JSTOP:JSKIP
ISV 0061 IF (SANKEY)	 44P.44,43

--	 ISN 0062 -- 43 READ1591002)	 SAfl0PCTsSEED'	 -r--
ISV 0063 IX=SEED
ISV 0064 WRITE (6:1009)	 SANPCT,SEED
ISN J065 54 MP% T=SAMPCT /100.
ISN 0065 - —. -44 READ (5,1000)	 NCHCUT
ISN 0067 READ (5910.03)	 (NCH LST(I)#I = 1tNCI-OUT) .
ISN 0068 1000 FORMAT (10X,110'
ISV 0069 ICO2 FORMAT (i0XtF1 O.O t/ t l0X t I 10)
IS4 0070 -1CO3 FORMAT(10X,161.2)—_---.--
ISV 0071 ICC7 FOR MA7(1H1t'SAVKEY	 =	 t t 110)
ISV 0072 1008 FORMAT (1H

t I STAR;	 =	 11 110;/  1_.. --..._.... _	 -... # t	 I SKIP
J START	 _	 ' , 110,/,
JSTCP	 = ° , I10 t/,

°	 JSKIP	 =	 ',I10.)
_	 ISN 0373 ---10CS FORMAT('	 SAM'PCT	 = ' tFi0

t ^-[SV 0074 1010 FORMAT (°	 NCHOUT	 =	 t I10)
IS'V
ISV
1S4

0075
3376
0077-

1C1I
—.,.._

FORMAT ( ° NCHLST	 = ' ,16151
READ(5,2030)	 NFLIDS
WRITE (6,_1001)

F5

ISd 0078 2000 F0RMAT(IOX,I10)
ISV X7479 2001 FORMAT (1H	 , I NFLDS	 Y t 1110)
ISIN

-
0080

-'-^'-43S
IF (N LDS) 440 .440=438	

_...----DD 439 NF=} ,NhLI)S-	 ISV-
I	 IN
ISN

0081.
0082
00.83

READ(512002)	 FID( NF) ,NV(tF)	 MINLIN(hF),MAXLIN(NF3
N;S=NV (NF )	 + .1 '

ISV 0084 READ(5,2003)	 (.IF (J,NF) tJ= I,NVS) ^'n	 --_. IS 14-0085 ---READ(5-t2"3)----tJFI;I,NF) tJ=1oNVS-)--
ISV 3086 DO 6C: XI =? ?N^ 6 O



I55V J087 J=NVS-i?1.,
}5u ()088 J1=J+1
ISN 0089 IF (J7 M :1F1=I Fd J',AF} -
IV^^

-
0390 605 JF(JIYNF)=JF(J,N-F)

•	 I5Y 0091 IF (:i y NF )=I F (NbS	 :AFI
I5V 0092. JFII,NF)=JF(NVS.. 	 ,AF) .

_. ISN OJ93 -. _....	 _ IF (NVS+2vNF) =1F (3 r DF)
IS% 0094 JF (NVS+2, NF) =JF(3,AF)
ISN OOS5 NV3=NV S+2
ISN OOS6 VAR I TE (6 x2004)	 NF
ISN 0057 -WRI TE (6 r2005)	 FID( AF) :NV( pF) ,Mf INL-fk"-F)rtiA X.
ISV 0096 WRITE(6,2006)	 #IF(J9NFJvJ=1rNV3)
ISV 0099 439 WRITE(6,2(}07)	 (JF (dr NF) tj=LP NV3)
IS--I SN

JI00 2CO2 FORMATIA8,2X,315.)
~flIO 2003.FURMATi11I5}

ISN . 0102- 2C04 FORMAT (5X,'FIELD = ° 1110)
IS% 0103 2005 FORMAT(5X,'FIELDIIr =	 ''r	 A8»"°°'t! r

5X 1 ' N11	 =	 ` sI1C!► :!,.SX^ • MINLIN- .=-°tllfl >;
-,X, r MA XL IN	 =	 °7I10;

ISN 0104 2006 FORMAT ( SWUN6	 = e s12I51.
IS1i 0105 2CC7 FOR PAT15Xt N P1 XEL	 =	 ° .1215)

--ISM--0106- -440--CONTINLE

C

_

- -	 ---. ----CWRITE- DATA INTO -:CC9 FORMATw--
C

C
- ISN -0107-- ---SA M SI Z	 = b	 - ---- - -- --

ISN 0108 50 CALL READIZ,LRCLG)
ISM 3109 IF (LRC LG. LT. 0)	 GC TO 999
ISN 0111 IF(NREC-1)	 55 P 5.5 v6

C
ISN 0112 55 LINE=LI A p

I ISN 0113 IF (.FNE.GTaIS7CP)	 GO TO 999 w R,
IS IJ

`
0115-	 ____ _- LS=LINE-ISTART	 ---- — —

A	 IS:U 0116 INRI TE {6,307)	 LINE
1	 ISN 0117 307 FORMAT(24X,I14) W,

ISN 0118 IF (LS.GEEO) GC TC 552 C
ISV 0120-- ___ . — IFIREC8 ND. LE..L-) GO TO 5-0--

C
	

PL4

C
IS M; 0122	 550 CALL READ(ZiLRCI_GI

.TC_499
BN 4125	 IF I NREC--11 55 V55 P550

a



IStii 0126 552 LSM=L c /I SKI P*l SKIP-LS
15 '-,1 0127	 ._...- ..	 _.._ IF i LSM.NE.0)	 GlO _ .TO 55t)-------,--C
ISN 4 L29 :55 DO 561 =1v2500 
ISN 0130 56 XX X X (I) =G

! IS14 01?1 KRFC=1
IN 0132 NZ T=0
ISM! 0133 DO 57 I-i yNCH1

- I S4 0134 - -NC T-NC T+1 	 --
ISN 0135 IND=INDA(NC T)
ISN 0136 57 CALL MIXMINDI	 NCTnNPiXrXrNCH)

IF(NCH2.EQ' 0)	 G6 TC 7329iSN 0137
ISV -Q1.3 g -_. - GO TO 50} C ^ o

i ISM! 3 L40 E0 KREC=KREC+1	 d--	 IS q 0141- --- DO .61	 1=i tNCH2----_ -._- - -	 ----__
i SN . 0142 NC T=NC T +1
ISN 0143 IND=I NDX(NCT3
€S`V.0144 61 CALL MIXMIND) t1NC7rNPIXaXyNCH)

ISN 0145 IF (KREC.LT* REC8ND)	 GO TO 50C

C	 kRITE DATA T 	 OUTPUT CATA SET.^
ISN 0147 7329 CONTINLE
ISV 0148 IF (NFLQS)	 675 1675/559

C
IS' 0149 -__ ._ -.	 655

DO 6bC fP=1 ,NPI1i 
ISN . 0150 .	 . 660 OVERQ P)=DXXX
ISN 0 151 DO 665 NF=1 rNF'LUS
ISN

---
0152

-	 -- -
CALL FDLNIN(LI.NE	 NV(NF)	 IF(1 o NF)vJF(lvNF),INTsMINLlN(NF)t

PAM AINF)

C WRI TE (6r6660)	 LINE gNF tIN'f
C6660 FORMA I(3QXt2I1€ 01115)

IS\] 0153 DO 668 IM=1 0
15N 0154 K,INT(2*IM--1)

'	 ISN 0155 KK=INT(241IM)
IF (K-E(;.0) . GO-:T0-670----- 	 _.

ISN 0158 DO 669 JK=1;,KK
ISN 0159 569 OVER(JK)=FID {NF)
ISN 0160 470 CONTI NLE
i51i :. _-0161--- --6-6-8-CONT114LE-.---	 -
I'SN 0162 '	 665 CONTI NLE



ISN 0103-- --675-.00NTIhiUE
ISV 0164 DO 80 I =JSTAR T, JST CP, JSKI P

c
ISV 0165 IF (NF LD S. LE.0)	 GC 70 680 

ISN 0167 IF (OVEP. (I) . EQs DXXX) GC TO 80
C

ISN 0169 680 CONTINUE
I- ISN 0170-__—__._.- IF ( SAP, KEY)	 35 ,.75y70

ISN 0171 7C CALL :RANDU(IAirIYvYFL) .
ISN 0172 IX=IY

! ISV 0173 IFtYFL.GT.SAMPCT} G4] TO 80

ISV 017.5 75 00 78 J=1:NCHOUT
` ISN 0176 78 OUT(J) =X( (I	 4-i) *N H + NCHLST (J)) .

I- ISN 0117- --- IF (NF LOS.LE.01	 OVER(I)=8LANK
IS1
ISN

0179
0180 3C0

WR I TE 43 300]	 LI NE I OVER M , (OUT(J ),J= 1v NCHUUT)
FORMAT( ^14 A8	 9+614x}

ISV 0181 SAMSIZ	 = AM5^Z + 1
ISV 0182_ _ _ ___ .. 80 CONTINL£-..... 	 ._-w-,.,. ---	 -----	 - --.

C
C

^'- ISN
ISV

0183
0184 -

WigITE (WO1)	 LINE tKREC
FORMAT ( -- •.._ ...	 --:30.1 v2i5 }

ISV 0185 GO TO 50
L

ISV 0156 595 ONE-1
IS^1. 0187 ..-.-_..DD 90. I=1,143D--	 — __
ISV 0188 90 WRITE (3 40.0)	 UE

49T6X) ^! ^ISV 0189 400 FORMATI
ISN 0190. WRITE (6 405}	 SAMSI Z '~+

. ISV 0191 -4(15- FORMAT{ ^- 5AMSLZE-- T 	 4-:I-10)-----
ISV 0142 ENDFI LE 3
IS'J
ISN

0193
0194

REWIND 3
STOP

ISN	 -01,1 35 -END



-
^

 ^~ .

LEVEL 21 ° 8. ^- UNr^^°^ ^	 ' O3/360-- p OATRAN N --	 -

`	 014	 R CPTIONS	 NAME= MAIN OPT-02 l 	 Z
'uU	 ^muLl9T m

15 N	
AOvM^PwNOE61T P NOfDrNOXREF^	 ^—	 G	 ^H^NPI^{nXinC 

(l)
ISN 0004	 DO I 1=19 N PIX
I 5\1 0005'	 ) *	 H--__--_-''J- 	 1D8' -------^-------------^-----------'------^---'--------
ISv uOu7	 RETURN
IS% 8008	 /	 END

'	 .
|---------------------_^-------'------- - '-- - -'---'---'-- --- _- ---'--------'---
|	 '	 '



it
.

- -

LEVWL. 21.8	 I - JUN -y 9	 )	 CS/361)	 FORT RAN H	 - ----	 -,.._ ._.-	 _..__	 ^_-- DATE

.
COMPILER OPTS C'!^S _ NAME=	 MAIN OPT= 02 LINECNT=50 SIZE=.00OOK

SOUIZCEyEBCCf^CgNOL I-,T t N'COECK t LCAD,# MAPv NUECITt NOI DolgO CREf
- -	 ISN 0002-- ---_^----.-S^.J+ROI'^INE 	 RA 1Dt1[Ik,i Y^YFL? 	 --	 --....._	 _.._	 - --	 -	 _

ISy 0003 IY=IX*,65539
ii ISN 0704 iFQY'5p6,6

ISN 0005 5 IY=IY+2147483647 f I
i

---
ISM (}OQE, —__-_ '6	 YFL = I if	 ---	 -	 --_	 --	 ^- --

{ ISM 0007 YFL= YFL*.4556Er1.3E-9
ISN 00{38 R;TURN
ISN 0009 ERD

^E

r	
^

1 `

II

f

,i
I

I

I

_	 r'f



i Y LEVEL 21.8	 t--JUN-'-74  CS!360	 F^ % RAN H--	 -	 -	 — _^__^- _. _.__. DA iE

COMPILER GPTI ONS -- NAME =	MAI h (7PT=0 2 L INECNT=50 SIZE=OOOOK^
5OUP.CE,EBCG C,NOL I T pNCEECK; LEAD,MAPPNOECITp NO ID,,NOXREF

j ; 1 S 000.2 r SUC-ROUTINE	 FD.LNIN	 (LtNVtY vXa INT-,Pl€NL`I11sMAXL:^IN-)
ISV 0303 INTEGER Y(12) s'XAl2):INTt1411,EW,
ISN 0004 REAL.	 PTS(i0)
ISN 3005 NVi=Nby1
154 0 ) 06 -^ _ _.... GO	 10	 I = l y 10
ISN 0007 10 INT(I)=0
ISN 0308 IF ( L. LT.M.I NLI N" CR. L.GT. NAXLI N) 	 RETURN
ISId 0010 1 DD	 15	 I =l v 10

- -	 ISN 0011 __ 15- PTS(I} = C. -
LSV 0012 IPT=O

' ISN 0013 DO 12 I=2 eNVl
? fSN 0014 1F[.NOT.I.L.^GT:.',MINO(Y[I) QY [1+1) }.AND.L.LT. MAX 0 Y 	 I}sY[I+1 1)}I

G0 :TP 12	 w	 -----_ .
ISNI 0016 IPT=Ii PT+I
ISM 0017 PTSUPT)=[FLOA-T((L-Y(1))*IX(I+'i)-X[ I1) l)

'	 (FLOAT[Y,(1+1)--Y(I)))+FLOAT(X(l)I
ISN 0016 ---- 2-- CONTINLE __--
I5 lq
ISN

0014
0020

DD	 14	 I=2pNVl
IF(.NGT. (L.EQ+.Y(I) QAND.L.NE.Y{I-1}.AhI;.L.NE.N'[ 1 	 1}))G©	 TO	 ].

ISNI 0022 IPT=IPT+i

^
ISN 0023 --- __. - PTSU PT)=FLCAT,(X (I 1)

. I.SN 0024 IFI.NOTo€(L.LTWY(I-1).AND.L.LT.Y(I+i}).OR.(L.GT.YII-1}.AND.
L. GT m.Y (I+1.)))) GO TO 14

' I SN 0026 IPT=I PTt1
ISN 0027	 --- -- -	 P T S I I PT.)=PTS(IPT-1)
ISN 0028 .14 CONTINLE
ISN 0029 J=I
ISN 0030 50 J=J+l
I S 4 003.1- --- I F (J . G Tn NV)	 G C- TC	 100- -
ISM 0033 I "r tY(J),.NF.1.)	 CC	 TC 50
IS^ 003'5 IF(Y(J+i).NE.:u)	 GC TO 50
ISN 0037 IF (Xt "+lJ . LTA. )L{J))	 GO TC	 16HN 0039-	 ____ --IF (Y(J-l).GE. U,	 GC TO 20-
ISM 0041 IPT=I PI+I
15N 0042 PTS(IPT)= X(J)

e1 ISN 0.743  - 20 IF (Y(J+2).GE. U GO TO 2.1
Y-SN 0045-,- _-. -_._	 -- I P T=I P T+i
Isl 0046 PTS(IPT)=X'(Jt11
ISN 0047 21 J=J+I 21O
IS GOGO TO 50 jn d

--- - ISN- 0 049. 1-6-- IF ( Y (.1- 1)  . LE.- U._-GG-.TO.._.17__..--	 -	 - ^-`-a
ISV 0051. IPT=IPT+1
ISN! 00:2 PTS(IPT)=X'J)
ISN 0053 17 IF [ Yt J+23 . LE. L).	 GO TO 18

1SM 0056 PTS[IPT)=X4.)4-1.)

^d

i	 2	 f



.;.	 _. -

..	 ...	 ...	 -	 . _	
...	

w _ _...^-^ -.. .. rte, ws^o.-ai'i:FiR +Y1'..^.: . T.̀Y^c ^,+^^:.523+^+^r`^ f^ •s - i '_G5(,^},^.

" ISN 0.057 la J=J+i
mn r SN 0058 GO	 TO 5 0

ISN U059 - _	 .-1.00 - C(JNTINLE--
IS1E JJEO IPTI=IPT--1

' IS'4 U061 DO	 30	 K=I rI PTI
ISN 0062 K1=K+1
ISN 0 . J 63 DO	 30	 I =KZ	 :I PT"	 -_	 —..__^_._

a ISN OJ64 IF (PTS f I) .(xE. F-75 (K)	 GO TE 30
9 ISN 0066 DUM= PlS (I )

ISN 0067 PTS(I)=PTS(K)
1 ISN 0068 --- — PTS (K) =DUt 
' ISN 0069 30 CONTINLE

ISN 0.070 IF{ IPT.EQ.2f	 GC TO 103
ISN 0072 IPT2=IPT-2
I5V 0073 40 1=2 IPT242
ISV 0074 IF(PTS(I).f1E.. PTS(I+1))	 GO TO	 40
ISN OC76 PTS(11=-1
ISN 0077 PTS(1+1)=-1
ISN 00?9 —40.•--- CON TINLE

' I S1! 0079 103 K=O
'` ISN 0080 DO	 110	 I=14I PT32

ISN 0081 IF (PT S.I}aEQ.-1)	 GC TO 105
ISV 000 - - K=K+1	 - --- -	 -

' i ISN
IS I

0084
0085 105

INT(K)=PTS(I)+.499.
CQNTINLr—

ISV 0086 IF (PT S (I+3 } .ECG, -1) 	 GO TC	 310
'... ISA X1088- ___._- K^K+ 1	 -
`` ISN 0089 INTfK)=PI'S(I+11 +	 .500

,ISN 0090 110 CONTINLE
ISN 0091 120 IPT2=IPT-2
ISN 0092.. _ DC 60	 I=2 rl PT2y2—..,-

'ISV 0093 IF (INT(IJ. NE . IMTI1 .+I) }	 GO TO 60
M 0095 1NT(I)=0

iISV 3096 INT (I+1)=c]
( ISV 0097	 - -- i6O--- CONTINLE
ISN 0058 IPTI=IPT•-1
ISN iJ99 DO	 70	 1C=1 ' I PTI.

 1 1-S-4 0I00 K1=K+1ISN 0I01 - DO	 65: I =Kl,I PT
BN 0102 IF(.NOT.(INT(I.Iei\E.O.AND.INT(I)*LT.FNT(K).OR.INT(K).EQ.0)IGD 	 TO	 65
ISN 6104 DUM=IN-1111
ISN 0105 INT(I) =INT(K)
ISV 0106"-- - ------ 1NT(K) =DU !-
ISV 0107 65 CONTINLE
ISN 0108 70 CO NTINLE

f
ISN 01 04 RETURN
ISN- 0 LID---- ---ENf3



PETURN	 DS	 OH	 RErLRN LCGIC
L	 13 SAVE+4	 OLD SAVE PREA AEOR

ii	

RETURN t, 14 1.2) T	 RETURN TC CALLER

ENDDATA DS	 OH
iv IV 1	 0 (5) X II FF v

__B , --- - RE TURN...

ERROR cs OH REAE EFRCR CCCURREC
OvFIELD Dr- CE ADOP

LNPK TMP('3) i FlEL0(5) CCNVERT TC PSEUCO	 E 13C Pj IC
IR TMP(S)vTABLE-240

-
CCNAiERT 70 EE [IC

lv ^c ERRM5G+40f8)iTFP MOVE TC OUTPUT BUFFER

sl I FIELD ERROR	 PITS ANC	 CC5 ACtR
LNPK TMIP I S) s FI ': L ^ (5) C. I-	 A.	 cjNVERT	 TC PS ;; U r O-EBC--IC
IR TMP(8),TAffEL-240 CINVERT TO EECCIC
JV VC E RRM CG+ 60 (6	 TPP MCVE TC EUGPuT	 EUFFF ER -

Ft- Ts
PnCB,rqQvSf^ OUTr-"*r	 E"r

W-^RE
O,	 M rc' -ACf

ERR	 CCF
E R 14 'RETURN TC SYSTEIV

END CF INPUT
SET RECCRO LENGTH 10 ,NEGATIVE
RETURN TC CALLER

4READ

READ Ek IPS	 [Cf]s	 TAPE

LARRY HINMAN ?	 EARTH RESCURCES	 PRCGFAM OFFICEv	 1>1-,ILCO-FORD
^ .____	 __ ___ CALL- R rDLCG T kBUF ADR-7 -RCELNIG)

^^

READ CSECT
SA (14v12)vTv* SAVE REGS
LR --- ---,2 s 15 SET	 BASE
LSING READ 2 GSM	 EASE
LA 3,SUE NEW SAVE	 AREA	 AECR
S T 3, © (I.3) LSA

_S-j 131 4 (3), HSA
LR 1.393 SAVE AREA ADER

L. 370(1) ADDF	 CF	 EUFFER
L 5,4(l) ADD 	 OF - Ytr_RD--FCR-R-ECO-R-E—tNETti
LA 79TAPEDCB ADDR OF CCB
L	 ING IHADCBY7 SECCNQ	 EASE
T M DC B 0 F LG S t X 10 TEST FCR CPEN
BO --- INPUT IS	 OPEN---

CPEN TAP EDC B t t L FCCB , CUT PUT)	 INIT	 CCONS

-111 P -Ur—D' S- OH RECCRDS--FFcM'-cCB
READ lNDECBtSF:pTAPEDCBv(3Jv l .S'	 READ	 RECORD

CHECK INDECB CHECK READ

L B,INDECB+16 ICB ADER
LH 4,rDC B BLK S I RECORD SIZE REAC
SH 4t14(8) LENGTH OF RECC IRE READ

RTNO CS OH SET	 RECORD LENGTH	 IN BYTES
ST 40(51 RECCRD LENGTH TC CALLER

7tt-

6",



•E 1

S

yN9,

Y

DA TA

FIELD CS C!_tiTMP .	 _. r S CL9"	 _—	 ------ -- ------- -- --v	 — _

E^
__.IAPECCB DC6 MAC RF =R IpREC F Y=U	 ELKSIZF=88 )DxECCAC= ENO CArA,_________^^____^_ 	 —^__------...-------

DSOR G =PSpDD NAME=FTO1F001 l ;YNAD=ERPCP,DEVD =TA EPOPr =ACC

LPDCB DCB DSORG=P5,MACR:= =PPpBLKSIZE=133v .LR,ECL = i33wREC FM = FBl rf: 	 X
___-_-- D DNA NE=LP 	 -	 __ -- ---	 -- — ----

os OF

ERRMSG CC X1091*CL132'**READ ERRCPo	 FECCRD	 ICN0REG** 4 	!

^.:
r GS OF

ABLE DC C10123456789ABCDEFF

CCBD DSORG-PS

Vgggl
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Characterizations of Linear Sufficient Statistics

By B. Charles Peters, Jr1 1 Richard Redner,l
and Henry P. Decell, J7r.1

University of Houston

We develop a necessary and sufficient condition that there exist

a continous linear sufficient statistic T for a dominated col-

lection of totally finite measures defined on the Borel field

generated by the open sets of a Banach space X. in par.ticular,.

corollary necessary and sufficient conditions that there exist a

rank h linear sufficient statistic T for any finite collection of

probability measures having n-variafe normal densitites are given.

In this case a simple calculation, involving only the population

means and covariances, determinesthe smallest integer k for which

there exists a rank h linear sufficient statistic T (as well as

an associated statistic T itself).

1This author was partially supported by .NASA Contract NAS--9-15000
with the University of Houston during the preparation of this work.
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1. Introduction,. If W is a Banach space, ZB(W) will denote the^3^re1

field generated by the open sets of W. The totally finite measures

defined on Z3 (W) will be denoted by ? M. For 11, a 0 (W) we will

write 11 << X provided B E {8 (W) and a (B) = 0 implies 'P(B) = 0.

Whenever u << a, [du/dX] will denote the equivalence clash of Radon--

Nikodym derivatives of u with respect to [ Z] [3] . If	 c ;^(W) 	 will

be called a dominated (by a ) set of measures provided there exists.

A E 77? (W) (a not necessarily in 	 such that u E	 implies

`	 u << A. We will call cnJ c ? (M equivaZen.t to A (,e(E A) provided

_ 0z:1 is dominated by X and }1(B) = 0 for each p E oV implies A(B) = 0.

If X and Y are Banach spaces and T-X -} Y then, following the notation

in [3],  we write f (e) T-1(t$ (Y)) provided f : X -} R (= heals.) and f is

(T-1 (G(Y) , ZB(R)) - measurable (as well as (Z5(X) , e(R)) - measurable) .

In [3], Halmos and Savage develop an approach to sufficient statistics..

Their results provide an alternate definition, within a very general mathema-

tical framework, of statistical sufficiency for dominated sets of measures.

This alternate definition is particularly suitable to the development of the

results in this paper. We will require the statement (Theorem 1.) of the

alternate definition in the setting of Banach spaces.

in all that follows X and Y will be Banach spaces, T a linear

continuous mapping of . X onto Y, and	 c 71 (X) a dominated set. of

measures.

Theorem. 1. (Halmos-Savage [ 3 1.) A necessary and sufficient cvrtdition that

T be a sufficient statistic for Q is that there exist X s q(X) such

^-	 - r
^;	 _
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that	 A and g}l E [dla/daj such rll-it g ( E) T-1 6(Y)) for each

In this paper our particular concern will be that of developing

necessary and sufficient conditions that a linear continuous mapping T

of X onto Y be a sufficient statistic for a dominated set of measures

OY	 (X) .

In Theorem 2.we will require an additional condition on T which, to

the best of our knowledge, is generally unavoidable	 We will require

that the kernel of T (= ker T) be c omplemented, in the sense that there

exists a closed subspace S of X such that X = ker 'T ® S 	 (e.g., if

X is a Hilbert space, take S	 (ker 'T)^).

In. Theorem 4.we will show that the condition X ker T (1) S may be

relaxed whenever	 [du/da] contains a continuous representative.

The results we develop are finally used to establish necessary and sufficient

conditions that a linear statistic B: 	 gk (k S n) be sufficient for a

finite collection of probability measures having n-variate normal densities.

2. Principal. Results. In all that follows we will assume that X and. Y

V	 are Sanach spaces, T:X Y is a linear continuous mapping of X

onto Y, and . dff c k(X) is . a dominated set of measures.

Theorem 2. Let X = ker T G 5 for some closed subspace of X. A

necessary and sufficient . .condition that T . be a^sufficient statistic for

t^is that there exist a c 2 (X) such that OE)y - X and,

ker T c (Y-.9 (X + y) = 99 (x), x E X1

for each p e Ce and some g,, F [du/da] .
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a,

Proof. If T is a sufficient statistic for 	 and p E 0()" then

there exists (Theorem 1 1 - OE and g^ e [du/da] such that gP (E)T-I (IS (Y).

Suppose y e ker T and, without Loss of generality, there exists x0 E X

such that gu (x0 + y) < gP (x0). Choose r E R such that g P (x0 + y) < r < g11N0).

Since g 
1 (

-m,r) and g T1 (r,-) are elements of n (X) and gu(E)T-1(GM)

it follows that there exist B1 and B2 E Zg (Y) such that

X0 + y E g 1 ( ,r) = T 1 ( Q I) and x0 E .g. (r, co) = T-1 (B2 ) . Now, since T

is linear and y E ker T, T(x0) E B1 n B2 = c, which is absurd.

Conversely, suppose dV = 7^,	 E 0 and ker T c {y:gP (x + ;F gu(x),

X E X} for some g^ E [dj/da]. tie need only show (according to Theorem l)

that. gu (E)T-1 ( (Y). It will only be necessary to show that for r E R

there exists Br E ' (Y) such that g. 	 `= T-1 (Br ) . We will show

first that g -1 (--,r) = T-1 T(g^-1(—,r) n S) and then that

Sr = T(gp	 r) n S) E *U (Y) .

If x E T-1 (T(g 	 (-W,r) n S) then T(x) E T(g r^ (--,r) n S) and

hence T(x) = T(z) for some z E g11-1 (--,r) n S. Since T is linear

x - z E ker T so that g u. (x) = g (x -- z + z) = gu (z) < r and

If x E g -I 
(-=,r) then, since X = ker TIPS, x= k . + .s for

k E ker T and s E S. It follows that T(w) 	 T(s), s -- x E ker T,

g (s)= gu ( s - x + x) = gp (k) < r ^ s E gp-1(-m^, r) . T (x) = T(s) E T(g -1 (—,z). n S)

and, finally, that x E T -1 
(T (gV-1(—, r) n S)).

We now show that. T(g -1 (-w ,r) n S) e G (Y). Let TS :S -} Y be the

restriction of T to S and observe that TS is a one to one continuous
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mapping of the Banach space S onto the Banach space Y. Since TS

satisfies the hypothesis of the open mapping theorem T S is a
homeomorphism. of S onto Y. Since such mappings take elements of 	 (S)

into elements of Z8 (Y) and gu is measurable, gu-l r) n S E JB (X) n S	 (S) .

-	 It follows that Vs,  ̂(--,r) n S) = TS ( gµ 1 (-^, r) n S) E	 (Y)	 and the

proof of the theorem is complete.

Theorem 3. Let	 ? A, A(B) = A(B - y) for each y E ker T and

B E{X) such that A(B) = 0, A(C) > 0 for each non-empty open subset C of X

and let [du/da] contain a continuous representative element f u for each

A necessary and sufficient condition t[e7t T be a sufficient statistic

for 01^_J is that

ker T c {y 	 fu (y + x) = fP (X), x E X}

Proof: In order to see that the condition is sufficient we need only show

(according to Theorem 1.) that f (E)T-1(G(Y)), or equivalently, if r E R

that furl (-PO.,r) = T^l (Br) for .some Br e 63(Y).. In fact, since T is an
open mapping and f u is continuous, T(f-l(--,r)) E 28(Y). We take
Br T(f-^.(--,r)) and conclude the argument by showing that
f -I(-CO, r) = T1T(f-1(—,r.)). We clearly need only establish that

'...	 T.lT(fu I
{--°°^r)) 

c fu-1	,r). If 'x E.T-lT(fPTl(--,r)) them. T(x) 	 T(z)

for some z e fu 1 -(- ,r). Since x - z s-ker T it follows that

fu (x) fu(x - z + z) = fu (z) < r and hence that x e fu (— 'r)

...	 ,
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In order to prove the necessity of the condition, recall the proof of

the necessity of the condition in Theorem 2. and observe that the hypothesis

X = ker T C) S for some closed subspace 5 of X was not essential. We

may conclude that if }: E tkj' there exists g
11 
e [dp/dX] such that

ker T c {y gu (Y + x) = o (x), x e X} and f  = gP except- on a set

B C	 (X) such that X(B) = 0.

Fix y C ker T. Since (x : €P (y + x) ^ gu (y + x)} = B -- y and

X (B -- y) = X (B) = 0, we may conclude that 
f11 

(x) = fu (v + x) except on

C = B U (B - y) and X (C) = 0. Moreover, since the mapping x } y + x

is a homeomorphism of X onto X and frp is continuous, C is an open

subset of X. According to the hypothesis, a(C) = 0 and C o pen imply.

C is empty so that fTj (y + x) = f^(x) for each x E X.

M-1
3. Normal Families. In what follows we will assume that 	 _ {Pi}i=0

is a family of m probability measures defined on Zp (R n) having normal

densities

-n/2	 -112	 1  
pi (	 _ (2,r)	 SZi I	 exp [- 2 (x - ni ) ,U-, (x  -- Ali ] ; i = 0, 1,

where n  and 0 are known and 92 i is symmetric and positive definite.

We will derive necessary and sufficient conditions that a k x n matrix B

(k S n)	 mapping Rn onto R  (i.e., rank (B) _ k) be a sufficient

m-1
-	 statistic for {Pi}i=O	 We first .prove a Lemma.
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Proof. Fix y e Rn . After a little matrix algebra (which we will omit) we

find that fi (y + x) £i (x} for each x E Rn if and only if

-	 2xT (5^-1 $ -1 - 2yT(S^3l71 _ SiOlno) + yT (CI - ^F1
)y 

= O

for each x E Rn . For x = -Y/2 we see that yT 02-ni - 
Sto1nO) = 0 soJ.

that y e {Q-171 - 2-171	 In addition, it follows that

2xT (Q11 E20
1 )y + yT (SZ-1 - n-1)y = 0 and, writing x = (z --y)/2, that

zT {523 -. 52-o1)y = 0 for each z s X. This clearly implies (SZ 1 w 5^ 1)y = fl

so that y e ker(Q-1 - 0-1). The remaining containment follows easily.

Theorem 4. A necessary and sufficient condition that a k X n rank k

matrix B be .a sufficient statistic for {P IM-1 is that

M-1
ker B c 

inl 
{ker(, _ SZflI) n {53 1 TI - 0O1nO}1]

Proof: Since the preliminary conditions of Theorem .I are clearly s-itisfied

for A = .PO , Lemma 1. insures the necessity and sufficiency of the condition.

Theorem 5. A necessary and sufficient condition that a k X . n rank k matrix B
-	

m-1	
.

be a sufficient statistic for fP I M. I is that, for j = 1, , .. , m - 1,

(a) 0j gT (BQj BT) "1 = n0BT (BQ0BT) -1

(b) n. - Q. BT (BQ.BT ) -lBn. _	 - Q BT (BSI BT)-1Sn

(c) SZa -- 0 BT (BRj BT) -1Wj - SZO - QOBT (BROBT) -IBRO .



Proof: Let (x1y) = xTy and (xly) i = x
r
;?i Iy	 i = 0, 1,

For S c Rn , Sy and Sri' will denote, respectivel y, the orthogonal

complements of S relative to the inner products 	 and ( •'• ) i .

If A is an n x n matrix A i will denote the adjoint of A relative

to the inner product{ .^. ) i on Rn. If A is a k x n matrix A* i will

denote the adjoint of A relative to the inner products 	 on Rn

k

	

	 *•	 T
and { + ) on R. It follows that B ' = Q B

z

If B is a sufficient statistic for {P 
}m-1 

then, according to
i i=0

m	 Theorem 3., ker B c ker(Q 1 - Q-1 ); j = 1, ... ,m - 1 and hence

(ker B)
I

^ 	 (ker B)10 . Since this implies range (B j ) = range (B 0 ) we have

that B*°BB*° -
l jj	 T	 T -1	 T	 T -1

(	 ) BB = B	 and hence that SZ
j 
B (1352

j 
B )	 = 52

0B (BSZOB )

which is (a)

T	 T* '	 2
Now ,let Q = 90B (BQ0B ) B and observe that Q 7 = Q Q for

j = 1, .... , m -- 1. It follows that : lcer Q = ker B G ker (2 1 - S2°1 ). and that

Q(97 - °1 } ° = (52j 1 - S20) ° and hence that Q(Q - 00 = Q - 520 which,

recalling the definition of Q, is equivalent to (c).

-	 Since ker(52 	 - 52 1) n {SZ^ItIn - 52°1n0) c (tlj - n° 	 and

71 - 
no 

E (ker B)lj = range {B 1 ) _ range (Q), it follows that

Q(Tlj - T10) = 71 - n0 which, recalling the defini ton of Q, is equivalent

to (b) .

Since all of the proceeding arguments are reversible, (a), (b) and (c)

imply B is a sufficient statistic for lP}m 
1 

completing the proof of
i i=0

the theorem.

In the next theorem we will use the fact that there exists a non

singular matrix M such that M52
0
 MT= I and hence that the affine transform-

^f



ation x --)- Mx - r)0 provides a change of variables that allows (without loss

of generality or the ability to recover the sufficient statistic relative to

the original variables) one to assume that no	 and Q0 = I.

Theorem 6. If q = Q and Q0 : I then a necessary and sufficient condition

that a k X a rank k matrix B be sufficient for {P i Im
-1 is that there

exist a rank k orthogonal projection Q such that, for 1 = 1, ... ,m - 1,

(I	 Q) I T11 .I r12 1 ... 1 "m-1 1 "1	 1 1 "2 - 11	 19n-1 - 1] = Z

Where Z is the n x (n + 1) (m - 1) zero matrix.

Proof: If B is a sufficient statistic for (P 
IM-1 	 we may assume without

loss of generality that BB  = I since B. is a sufficient statistic for

{pi} 1 if and only if KB is a sufficient statistic for each nonsingular

-	 k X k matrix K. One may indeed choose K such that KBB TKT =.(KB)(.KB)T =.I.

For 1 = 1,	 ,m - 1 Theorem 5. implies that

QiBT (BS2iB -1 W I BT (B Z BT ~l	 T)	 = B

so that

1	 11
(B2 B'	 = 12i BT and .9 BT (BQiBT )~ B = BT  .

T	 Right multiplication of the latter equation by Q B 
T 
B will establish that

T	 T	 T91BB ^ BBQiBB
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Since 'n1 0 and 2 1 = I, Theorem a. further implies

r11--JB^O

--	 and

Q. - BTBQ. = Z - BTB

Since BBB = I, it follows that B = B+ (where { • )a- denotes the

generalized inverse of (•)) and hence that Q B 
T 
B = B+B is the

orthogonal projection an the range of BT [5]. dearly Q has rank k and

we conclude that

(I-Q)91-0

and

(I--Q)fi-I) =^

and the condition follows. Conversely, if the conditon holds let B be any

k X n rank k matrix such that range (B T) = range (Q). Clearly eB = Q,

Be = I and B+ = BT . Eking the symmetry of I -- Q andSki - I we conclude

that
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Definition 1. We wilt say that a rank k orthogonal projection Q

generates a sufficient statistic for 
(PIIi-1 

provided Q satisfies

the condition in Theorem b.

Corollary 1. If M = [ 111 I T I21 ... In M-1 
1  111 - f ... { RM-1 - 11	 then

a) Q = Mai+ generates a sufficient statistic for {P IM-1

and

b) k = rank (Mkf+) T tr (MM +) is the smallest integer for which

there exists a rank k orthogonal projection generating a.

sufticie-at statistic for {PiIM=O

Proof: Let k be the smallest integer for which there exists a rank k

T	 orthogonal projection P generating a sufficient statistic for 
{P i) 1i-

According to the definition of M, (X - P)M - Z so that PM = M

and PMM+ = MCI+	Since (1 - MM+)M = Z , MME generates a sufficient

atatistic for 
{Pi)i-0	

However, PMM+ W MM+ implies that range

(me) c range (P) so that the minima.l.ity of k and the fact that MM+ is

an orthogonal projection imply that range (MM}) = range (P) and hence that

NM+ P.



ll

4. Concluding Remarks. Theorems 4 and 5, although not so stated, are

valid for arbitrary families of n-variate normal probability measures.

Corollary 1. formally gives the construction for a sufficient statistic

for finite families of n--variate normal probability measures solely in

terms of the known parameters that determine the densities. In fact, if

k=rank (M) (=rank 101 ) then a_ rank k matrix B for which range (B) =range N

is a sufficient statistic for the family. Moreover, in terms of the

dimeension.of the range of a sufficient statistic, k=rank M is the smallest

integer for which there exists a sufficient. statistic.

Several open questions concerning the "approp-riate" definition . of a

"Almost" sufficient statistic using the characterizations given in

Theorems 4.and 5. will be the subject.of a later paper. In this connection

the results of Le Cam [4], although the approach is different, should be of

significant value.

5. Acknowledgement. The authors would like to express there sincere

appreciation to Professor H. Elton Lacey for his comments.







A Stochastic Approximation Algorithm for

Estimating Mixture Proportions

by

.lames Sparra

1. Summary. A stochastic approximation algorithm for estimating the proportions

in.a mixture of normal densi'ties.is presented. The algorithm is shown to con-

verge to the true proportions in the case of a mixcure of two normal densities.

m
2. Introduction. Let. ` A	 a Rm :ai > 0 and ^ CC  =,11. For each i,

let ui be an element'. of Rn and Z. be a positive definite

real symmetric n X n matrix. Let X be a random variable with values in Rn

and with density function.

P( m
).a}c , x = iEl ^.
	

orfor x e Rn

where a 1^ A and

-
n/2	 1/2	 1	 T -1

P i (x) _ (21T)	 Zi	 exp{-- (x-- i ) Ei (x-ui? }

for each i = 1,...,m.

We assume that a is not known but that 11i and Zi are known for

An algorithm for estimating a will be presented in part 3 of

this paper and in part 4 the algorithm 1-411 be shown to converge to oc in mean

square and with probability 1 in the case where m - 2.

l

j
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be a sequence of observations on 	 X.	 Let3.	 The Algorithm.	 Let	 {x l. It=o

(o e A.	 For	 n .--'!- 0	 define	 (I FI
	

by
i

{X }f z+].	 n -	 r+n --	 zF
	

)'^i	
cn ( 1i	 Z

Pan txn)

*.where

M
pan(xn) - iT i'ip i (x }

and	 {c }Is a sequence of positive numbers such that
k It=o

_	 t Co.
_2.	 and	 E	 c	 <

i ^u c ic mm	
ko	 It 	 .

We note that each iterate is in 	 A	 and that, since	 X	 is a random variable,

each iterate may itself be considered a random variable.

4.	 Convergence of the Algorithm.

Theorem:	 If	 at c R2 	then the algorithm described . in pert 3 converges to	 a	 J

in mean square and with probability I . . a

Proof:	 We refer the reader to the algorithm described in jl,pp. 332-3331	 and

tc the proof of con.vet-gence given in	 [l,pp. , 350--3521.	 The applicability of the

theorem. given there is clear if we let	 f (a) w E ( Za) ,	 for 'each	 a E A,	 where

a (p i o	 X)

Oi wi -	 pa p X
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Now, gl (al} = 1 and gi (1) = 1. So, since gi has positive second derivative

we have that gi(ai) "I 1 if ai E Oa, j) and g l (al) > I if al E (O,al ) .

Similarly,g2 (a2) = Z and 92 (1) = 1 and g 2 (a2 )	 1 if a2 E: (a2,1)

andg2 (a2 )	 1 if a2 F- 
(0 .""2) .

Tie now show that (Al)-(A3) are satisfied: Let a E A. Then

(Al) f (a) - 0 if  g1 (a	 1 = g2 (az) if f a = a:

(A2) (a—ca) f (a)	 (ai_a1) 
(r' 1I_a19l (a )) + (a2—az7 (a2 — a2g2 (a2 )) .

If a-, al then 91 (al ) L l and (al-aigl.(al )) 3 0. Then also

a2 
<a 

2  and g2 {a2 ) 7 1 and (a2-a2 g2 (a2 )) C d. Thus, if
h

a1 ai then (a-'CO T  (a) > 0. Similarly, if al al then

^ T{a-fit) t(a) > 0. Thus, A2 is satisfied in any closed, convex





T
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The Role of £igenvalues in Linear Feature

Selection Theory

i

D. R.. Brown and M. J. O'Malley

Department of Mathematics, University of Houston

Houston, Texas 77004

Introduction. Recent statistical work in feature selection for the multivariate

normal pattern recognition problem has concentrated on linearly transforming

pattern classes so that the transformed pattern classes are equivalently distin-

guishable. Since, in.general, this is not possible, techniques have.been

developed to preserve the distinction of tho transformed pattern classes using

various measures of distinction. These measures . of.pattern class distinction

are most often treated as eigenvalue problems ([ll, [21, [51, [6l, [71, [91,

[13.1, [141, [151). In this paper we consider a particular measure of pattern

class distinction called the average interclass divergence, or more simply,

divergence, ([l1, [21, [41, (6);.[71, [81, [91, [101 ., [ 111)., Where divergence

will be the pairwise average of the expected interclass divergence derived from

Hajek:s . two-class divergence as defined., for - example., in C.9.1.

This work was supported in part by NASA under .Contract JSC-NAS-75000..
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It has been shown in 141 that rheri ; always exists a k x n real matrix

B such that the transformation determined by B maximizes divergence in

k-dimensional space, and, in fact, that Q can be written in the form

(1 V 1z)1l, where U is an orthogonal n x n matrix. We will investigate the

role of the eigenvalties of U in such problems, and give an example demon-

strating that the divergence measure of pattern class distinction does not

depend on these eigenvalues (Theorem 7).

Our example is derived from the family of examples constructed in 131.

This special class of examples permits analytical calculation of divergence,

a task ordinarily eschewed as unrealistic, and yields a precise expression

for divergence. The reader is cautioned, however, not to confuse the numerical

simplicity of this example with impracticality, since, mathematically, the

failure of the eigenvalues of U to affect divergence in the restricted case

erases any hope that they right be meaningful in an arbitrary case,,however

applied.

1. Special divergence formulas. Let P 13 ... ,5?m and u1 ,...,^m be the

covariance matrices and means for m classes,. where for each i



r

3

D	 ,z tr(iE 1 
ail 

S i } - ;z m(m - 1)n	
( l)

while, if B is a k x n matrix, the B-average interclass . divergence is

m
D 	 4 tr( i E (^3S^i B) -1 (H BT )) - '2 m(m - 1)k	 (z)

where tr represents the trace function.

Moreover, as observed i n 131, if

fB a Mkn : BB7	 I k and (BrB)R = Q ( BT B), i = l,...,m}

where I	 is the k x k identity matrix and M 	 is the set of all k x n
kn

	

---	 real matrices, then, for any B c 1C (2) may be rewritten as

DB = z tr(B(.Ei 
9i1 

S i ) BT ) - '2 m(m - 1)k	 (3)

For the remainder of the paper we assume that each Qi is a diagonal

matrix of the form:	 xi ,where xi is a positive real number,

In-1

and Pi = 11j for all i, j. Under these restrictions, 
i
E^ 9	 Sj is a

x	 -
diagonal matrix of the form

	

	 where
Pin-1

m	 l m

	

-	 x 	 x.	 E x.)
 J

) and p = m(m - 1). It follows from (1) that the

jT7

average interclass divergence for the m classes is given by

D = ^i( X 	 p)	
-	 (4)

As observed in the introduction, in seeking to maximize the B-average

interclass divergence .DB ; it suffices `=to consider those k. x n matrices of
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the form (I k 1Z)U , where U is an n x n orthogonal matrix. In the sequel,

when considering D B , we shall always assume that B is of this fore. For

any such k x n matrix B. it is obvious that BB B 	i t, , and hence Q c

if and only if .(BTB)9 i = 2i(BTB)

and sufficient conditions in order

calculate D3 in the case that fo

are hereafter considered equal and

form stated above..

for i = T,:..,m. We will derive necessary

that B c	 (Theorem 2), but first we

rinula (3) is valid. Recall that all means

all covariance matrices diagonal of the

Theorem T. Let B	 (I k 1Z)J	 where U = (u i^) is an. n x n orthogonal

matrix, and suppose Dg is given as in (3) above. Then

DR = ( i E1 ui i )D	 (5)

Proof: Since tr(XY) = tr(YX) whenever both products are defined, we have

in this case	 D  = 4 tr(BTB(i 0 S i }) - 32 pk	 If U is written in

block form,	 U = 	A 
C	

where A is k x k	 then
E F^

T	 T_	 T	 ATA ATC	 m -1	 x
B B = U ( Ik Z) (I k ^Z}u =	 T	 T	 since 

iEl 
sa l Si

C A C C	 pn-'

x	 x
—	 M
P	 P

p	 I	 = p
I
	, Where M is the k x k matrix	 I

1 n-1	 n-k	 k-T

_

	m -1	 ATAM A C	 TB then Q
T 

B (.	 S2	 Si  =. p .	 Therefore,	 tr(BB (.	 sa. $ .)) -
CTAM CTC	

_ i-1

T	 T	 k.	 2 x	 k	 k	 2	 n.	 k 
'J 

2F	 d	 • ^) —p(tr(A A^^i) + tr ( C C ) ? - ^((^_ ^.i 
)^	 ^,	 (^. ^.) +	 ,^ (E	 —

J — 	 t p	 q	 j-2	 --1 Jq	 q- 7 j-1 .]Q

a

	

k 2 n 	 k 2	 n	 k 2 i
(.	 u : )x	 p (	 (.E U, ) } . since U. i s orthogonal ,	 E (.E u

q=z J-i Jq.	
g_2 

^ rl as



I	 E

-	 ^E1	 (1	 - u
2

1 ) = k - jEl
	

u	 1	 a	 so that	 D B = 'z(( d	 l	 u3 1 )x	 p(k	 - ; E 1	 u^ l ))	 - !? p 

,] = 1	 j1	 2	 J=1	 J1

Our next result gives necessary and sufficient conditions in order that

B	 (Ik1Z)U c^ .	 While the proof is rather tedious, these conditions are

particularly easy to apply and hence useful	 in seeking examples.

Theorem 2.	 Let	 B = (I k IZ)U	 where	 U - (u ij. )	 is an	 n x n	 orthogonal	 matrix.

X i
If,	 for each	 i	 - 1	 ..,m, ^2	 _

i	
T

then:

n-1

(l)	 if	 x i	 =	 1	 for all	 i,	 then	 B
c	

;

_	 (2)	 if	 xi # 1	 for at least one	 i, then	 B E	 if and only if

^E1	
u2
J

I 	 = 1	 or	 ^1	 u,2T1	 = [}.

Proof:	 If	 xi = l	 then	 Q	 = I n	 and (BTB)2	 = P. ( BB B)	 for any	 k x n

matrix	 B...	 Thus,	 if	 x i	 = 1	 for all	 i, then	 B c	 for any	 k x n	 matrix

of the form	 (I k JZ)U.	 We suppose that	 x i r 1	 for at least one	 i.	 As in the

proof of Theorem 1, 	 we decompose	 U	 into the block form	
E	 F^	

so

_ ATA	
ATC

T
that	 B B =	

CTA	 CTC	
where	 A	 is again	 k x k.	 For a fixed	 i	 such

G

--	 that	 x i # 1,	 write	 Pi	 in block form
i	

I	
where	 G i	is the

n -.k,

.Xi ATAGi	 ATC
T

r x k	 matrix	 Then	 (B B)Qi =	 T	 T	
while

I k-7
CAGi	 CC.

T	
T

SZi(BTB) =	 GiA A	 G i A C	
Thus,	 B 

T 
B commutes with	 2	 if and only if.

CTA .	CTC
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(1)	 ATAG. = G.ATA	 and	 (2)	
CT 

AG 	 = C 
T 
A	 We write	 ATA	 and	 C A	 in block

7	 1	 1

T	
W	

TCA	 Q=	 =font:	 AA	 where	 L	 and	 P	 are	 1 x 1.

T	
T	 T	 Lxi	

M
iSnce	 A A	 is symmetric,	 N _ ,	 Therefore,	 A AG- =	 ,

Wx
_	 _

x.l.	 x 
i 

M
and	 G i ATA = Thus	 ATAGi = G i ATA	 if and only if	 M = xiM

M	 W

and similarly,	
CT 
AG= CT 	 if and only if	 Px i = P	 and	 Rx i = R.	 Since

k	 k	 f j°1	 ujk+luji
i^I	 (	 E	 u	 u	 ,...,	 E	 u	 u)	 and-	 j=1	 jl	 j2	 j^1	 j1	 jk	 R

^P) _
k it

j1	 uinujl

follows that	 Mx 	 M,	 Px i = P,	 and	 Rx i	R	 if and onl y if
k	

k
I,	 x(:E	 u.	 u.	 =	 E	 u.	 u.	 for	 q	 =	 2,...,n.	 Thus,	 since	 x i	1,	 we

i j-1	 jl Jq	 j=1	 J1 jq
have

k
that	 (BBB)th = Q (BTB)	 if and only if	 .2 l	ujl ujq	 0	 for	 q = 2,..:,n.

Since the above argument is valid for any	 9	 for which	 x	 1,	 and since

BT B	 commutes with	 9	 for any	 i	 for which	 x i = 1,	 it follows that

k
B E	 if and only if	 j E 1	 u

ji
ujq = 0	 for	 q . = 2,...,n.	 We next show that

_.

E	 u. u.	 = 0	 for	 2,:..,n	 if and only 1f	 E	 u2	 = 1	 or	 Ej=l	 j1 j q	j=1	 ji	 j-1
U.	 = 0.
jl

'-	 n	 k	 n
u	 +	 E	 u: u	 _ 0	 forSince	 U	 is orthogonal,	 E	 u: U.	 =	 E	 u	
jj=1	 jl	 j q	 j= 1 	 1	 q	 j-E:+1	 jl	 jqj

q = 2,...,n,	 while	 1	 .E	 u2	 -	 E	 u
2
	 E	 uz	 Thus,	 if	 .E

j=1	 j1	 j=l	 jl	 i. k+1	 jl	 j-1
u	 _ 1^
jl.

then	 u..	 = 0	 for j _ k + 1,...,n,_, and	 n	 _. jE	 u..
jl 

u
j	

_ 0
j7	 i 1 ujlu3q	 =l	 q

for

k
q - 2,—,n-	 If	

1 
u l - 0	 ,	 then	 u^^ = 0	 for	

j = 1,..:;k	 and,

obviously	
j 1	 ujlujq = 0
	 for	 q - 2,...,n.



h
Conversely, suppose that k 	1.^?'1 11	 1 q - 0	 for q = 2 ..... n.	 If

jl

u 11 _	 = u kl = 0, then jE^ u^ l = 0 and the proof is complete. Otherwise,

let ur1 be the first non-zero element in the first column of U, where 	 j

r < k. Then. 0	
J
.E	 J1 u .l u J. q
	

u rl ur 
q 

f 
J 4+1 u J.l u J.q 

, so that
_

--1	 k
urq	

url	 (j=r^1 ujl ujq ) for q - 2,...,n. Thus, if u rf]1'."" kl W 0'

then ur = 0 for q = 2....,n and it follows that 1	
u r] = j Zl ujl .q

n
Suppose uwl t 0 where r < w ^ k	 Since Urlowl + qL2 uwqurq 	0 , then

substituting for Urq , q >_ 2, we have
n-1	 k	 -1	 n

u rl u ti,r1 * 
E2 urr ( u	 41 u . u . } = u u	 + (^ L)	 u`, ( E u u .) W 0	 (6)

q -	 =r	 J1 Jcl	 rl wl	 url	 j = r+1 Jl q=2 t-rq Jq

Since U is ortha ona'I, then for	
n

9	 _	 j	 w, q ,=2 uwq u j g = uwl u j 1 and for

j	 w,	 E u u,	 u2	
1	 u2	 It follows that	 E	 ui ( F u u ) -

	

q=2 wq J q	 q=2 wq	 wl	 J =r^-1 J 1 q-2 wq J q

k
u 

(j4+.1
 ( -u? )) + u	 and, substituting in (b), we have

w1  	 J1	 wl

k
uw1(url + ( u^ } ( j= r^l (-ujl)) 

+ (u l ) } = 0	 Multiplying by 
u
rl ' we have

r7	 r1

k	 k
(u2	 j=rl u^ l 	1)	 uw7 (jt^ u l	 1) _ 0. Since 

uti^rl T 0
	 it now

uwl rl	
_

follows that 1 =	 2 -	 2
kk

u
J=r Jl	 j!] uJl	 -

We note that, if there exists at least one Q j which is not the identity
.. 

matri x 
In	

then the proof of Theorem 2 shows that U 
T
B connnutes with all

Pi `s if and only if BT  commutes with 0.. Moreover, in this case, the

kyy	 elements of	 are precisely thaw 6 = (I IZ)U for which the first column of



U
U is of the fora	 1l	 or.	 r 0

U kl '	 uk}1l

0	 unl

Hence, by Theorem 1, if 8 e 	 then DU	D or Dg = 0	 (Note that

if n i	
n

= . I	 for all i, then D	 0 }
We close this section with a definition. If V denotes the set of all

^	 k
n x n orthogonal matrices, let	 _ {U	 (u...) C V	 E U.	 1 or 0},i ^ 	 j l ^1

Thus, if there exists QI 	 `n 	 then Q = (I k ^Z)U e	 if and only if

U E

2. Eigenvalues of U	 Let U = (u ij ) be an n x n orthogonal matrix.

-	 As is well known,	 .[121	 the eigenvalues of.	U	 lie on the unit

circle in the complex plane and non-real eigenvalues occur in conjugate

pairs. Thus, if U . has a real.eigenvalue x, then a	 -r-1 ,. and, if

1i = a + hi , b	 0 is an ei genval ue ofU, then 	 a - . bi is also an ei gen-

value of U	 Clearly,. det U = f1	 Moreover,. if 1 has . muitiplicity P as

an eigenvalue of U, --1 multiplicity_ m 	 and {aa + bj i,a.	 bj i^q,l (b. # 0)

are the remaining eigenvalues of U, -then -U is similar to a block.diagonal

orthogonal matrix PUPA of the form;

}

	

t	 aq
PUP^ I =	 l	

(7)

l
t	 "1



g

where l appears on the diagonal p times, -1 appears m . times, and each

/a	 b
A. F i b	 aJ	 a'
	

is a 2 ^: 2 orthogonal matrix with eigenvalues a . + b _ i
J	 1	 d

a^ -..;bji. Furthermore, the order in which the A i r s, 1's,'. and -I's appear

on the diagonal can be changed to any desired order by a similarity transformation.

Thus. any two orthogonal. n x n matrices with the same set of eigenvalues are

similar. Finally, we observe that if U is a 2 x 2 orthogonal matrix, then

c -d	
or U =	 c	

d)	
where c2 + d2 = l

d	 -c	 -d	 c.

Let B = (I
k
 Z)U c ;	 For the remainder of the paper we will be concerned

with determining what role, if any, the eigenvalues of U play in determining

DB	If 
{;̂ l " '

., an } is a set of n not necessarily distinct complex numbers

for which there exists . .an n x n. orthogonal matrix U . with.eigenva.lue.s

......n , then we will say that { % 1 , ... ,a,II is. a (*} set . We note that

if T = {a1:=.,,X } is a set of n not necessarily distinct complex numbers

such that T is closed under conjugation and every element of T has modulus 1,

then T is a (*} set	 Throughout the followi ng., we assume that .1 .s k` < n,.

where k and n are positive integers, and we assume that at least one

covariance matrix Q. 	 Ln	
z

Proposition 3. Le. ', {h
1
 ,...,A } be a (*) set. Then there exists an orthogonal

	

n	 _

matrix U with eigenvalues h l ,...,an such that D	 (I k lz)U e ^ and. DS
. = D

if and only if one of the following conditions holds:

(i) X 	 is real 'For some 7

(ii) k > 2 and no A. is real

Mi-
-^---	

--.-.-T.-TAT--..^.	 --	 -
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F

Proof: Observe that if at least one A^ is real, say A l 	then by (7)

^1there exists a block diagonal orthogonal matrix U of the form 	 U =	 ,
C

where C is an (n -- 1)	 (n - 1) block diagonal orthogonal matrix with

k
eigenvalues	 ,...,a	 Thus, if U = (u.,)	 then	 E u? = uz =2 = 7,2	 nJ 	 J 1	11	 1	 I

so that B	 (I k (Z)U E r and D  = D (Theorem 2)_ If no a s is real, then

n is even, and by (7) there exists a block diagonal orthogonal matrix U with

eigenvalues k 	̂ n such that U =	 A1,	 where each A^ is

An

2

	

a	 b.
a 2 x 2 matrix of the form 	 J	 b^	 0	 Thus, t.he.first

	

-bJ	
aj

a
column of U is-bl	 and hence, if k ? 2, then 'B	 (I k 1Z)U c

1
0

r0
and DB = D	 -

Conversely,  suppose that k = 1. If there exists an orthogonal matrix:

with eigenvalues X111- 3 xn such that B	 (I k iZ}U E	 then U E:	 Thus,

if D	 D, then U is of the form	 0	 _ 0	 where a = +1 and

0	 C

^°
C is an -(n ,- 1) x (n	 1) orthogonal matrix. Therefore, a is an eigenvalue

of U and X. _ a .is :real for some i,



I

-	 It is natural to consider the analogous condition D B = 0. That is,

given a () set {al,... n }, does there exist an orthogonal matrix U with.

these eigenValues such that B = (IJZ)U c 	 and DB	 0 ? The answer, as in 	
1

-	 the preceding case, is no in general, but it is . true in some important. cases.

Proposition 4. Let T = {X1,...,anI be a ( ) set. If either

(i) 1 and -1 c T	 or;

(ii) i . and -.i	 T

then there exists an orthogonal matrix U with ei genval ues f a 1 , ... , an } such

that B = (I k ^Z)U c, and DB = 0 .

Proof. Let X1 and 
X2 

denote the pair 1, -1 or i, -i, let H be any

(n	 Z) x (n	 2) orthogonal matrix with eigenvaiues A3 ,...,
 
A n	 and let	 i

-	 C	 Z	 b^,

ZH Z where Z denotes an (n	 2) row or column vector
-	 b2 Z	 D

of zeros, and if. 	 {X 1 x2	 -'1}, then 
b1	

b2	 1	 and if

{a l , x2} = fi, -i}	 then b1	 1, b  = ^1

-
Clearly, U is an orthogonal matrix. Moreover, the eigenvalues of U

are {A,...,a } , since det(xI -- U) = (x 2	b b,,) det(xI	 - H:) and
1	 n	 n	 1 c	 n -2

hence the roots of det(xI n - U) = 0 are the roots of det(xIn ^Z - H) = 0,

together with the roots of x,	 b l bz = 0	 Since the roots.of the former

equation are the eigenvalues of H, its suffices to show that. al and. Xg

are the roots of 
X 	

b1 b2
= 0. This follows immediately : from the relationship

9



i	 12

10

1i.
defined between the values of A l and A2 and the choices of b 	 and b2

Thus, since we assume k < n, then Theorem 2 implies that U e 	 so

that B = (I k IZ)U a^	 and, by Theorem 1, D  = 0.

Our next result shows that, if n = 3, then Proposition 4 does not

characterize those N sets T for which there exists an orthogonal matrix

U with set of eigenvalues T such that B = (I k IZ)U E ^ and D  = 0 . We

will obtain a partial extension of this result to arbitrary n and we will

make strong use of the extension in our main result, Theorem 7.

Lemma 5. Let n = 3,	 k = 2,	 and suppose that
{A1' A 2' X3)	 is	 a	 (	 )	 set,

where A l = a + bi ,	 A2 = a	 _	 bi .

(1) if A3 = 1, then there exists a 3 x 3 orthogonal matrix

U with eigenvalues A l , A21 A 3 such that U e	 and DB = 01

B = (I k IZ)U, if and only if a, the real part of A l and A2,

is less than or equal to zero;

(2) if A3 = -1 , then there exists a 3 x . 3 orthogonal matrix U

with' eigenvalues 
A1' A

2' X3 such that U E j and D B = 01

B = (I k IZ)U , if and only if a, the real part of A l and A2

is greater than or equal to zero.

Proof. Observe that if U c j is such that DB = 0 , where B = (Ik]Z)U,

then by Theorems 1 and 2, U is of the form 	 0 A	 where
0
v 00

v = +1 and A is a 2 x 2 orthogonal matrix. Moreover, if U has eigenvalues

U
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X1 	 X3	 then det(U) = X I X 2h 3 	Thus, if X1 3 = 1, then det(U) = 1,

and if A 3 = -1, then det(U) = -1	 We consider the case a
3 
= 1, the

case A3 = -1 being similar.

If v = 1, then A is of the form-d	
d)	

Then det(xI 3 - U) W

x 3 + dx 2 - dx -- 1, so that the eigenvalues of U are 1, - (1+d)	 i 3-2d--dam.

Thus, there exists U with eigenvalues a l , X21 1 if and only if there exists

=-	 a real number d, IdI s 1	 such that

=_t 7 +rI	 b	
3- 2d-d2- -

Since IdI s 1	 then - Z gl w 0, and thus, if U

Conversely, if a s 0, then d = -(1+2a) satisfies bo

and IdI s 1	 If v = -1	 then A =	
c -d

U are 1,	 d-1	 ^3+2d-d?„	 An argument similar
2

shows that there exists U with eigenvalues A l , a 2 , 1

exists, then a :^ 0.

th equations in (8)

and the eigenvalues of

to the preceding one

if and only if a <- 0.

Corollary 6. Let n and k be positive integers, 1 :^ k < n, and suppose

T	 that T = {a 1 , ... ,A n } is a	 () set.

(1) If 1 e T and if there exists a + bi c T, with a s 0, then there

exists an n x n orthogonal matrix U with eigenvalues T such

that U e	 and D  = 0, where B = (IkIZ)U.

(2) If -1 c T and if there exists a + bi c T, with a ? 0, then

there exists an n x n orthogonal matrix U with eigenvalues T

such that U e '	 and 0B = 0, where B = (I k 1Z)U .

A

]i
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0	 c	 d
_Proof. By Lemma 5 and its proof, if a ^ U, then A = 	 0 -d	 c

1	 0	 0

where d = -(1 + 2a), is an orthogonal matrix with eigenvalues 1, a + bi.

Thus, if U is the n x n block diagonal matrix 	
Z	

, where H

is an (n - 3) x (n - 3) orthogonal matrix with eigenvalues T\{1, a + bi}

then U is an orthogonal matrix with eigenvalues the elements of T. Therefore,

if U is the n x n matrix obtained from U by interchanging the third and

thn	 rows and columns of U , then U is orthogonal, and, since U is similar

to U	 the eigenvalues of U are also the elements of T. Finally, since

the first column of U is	 we have U c ^ , and, by Theorems 1

1;

--	 and 2, pB = 0 , where B = (I k 1Z)U and k	 n . The proof of (2) is

similar.

We make a few additional observations before stating our main result.

-	 Let U be an n x n orthogonal matrix with eigenvalues X 1 , {a j + bji)3=2

where bj may be zero. Since tr(U) is the sum of the eigenvalues of U,

it follows that if X 1 = 1 and a j > 0 for j = 2,...,n , then

n
tr(U) = 1 + j E2 a  > +1	 while if a 1 = -1 and a j < 0 for j = 2,...,n

n
then tr(U) - -1 +i^2 a  < -1 . Also, if A is orthogonal and det(A) = -1,

then -1 is an eigenvalue of A. This follows immediately from the fact that

 det(A) is the product of the eigenvalues of A , repeated to their respective

multiplicities. Finally, if A is orthogonal, n x n, and n is even, then

det(A) = -1 implies that both -1 and I are eigenvalues of A.

0
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U

Theorem 7. Let n and k be positive integers, 1 - k < n, let U be

an n x n orthogonal matrix, and let B = (I
k	 B
JZ)U be such that D = D.

If U =	 In-1	 z	 U	 and if 
E-=  

(l k ]Z)U , then B = B , so
z	 -1

that DB = DB = D. Either U or U is similar to an n x n orthogonal

matrix U 1 E	 such that DB 1 = 0, where B I = (Ik1Z)Ul.

-	 Proof. Note that the matrix U differs from U only in that the last row of

U is the negative of the last row of U 	 Clearly, since k < n, we have

B = B.

Now suppose that n is even. If det(U) = -1, then 1 and -1 are

eigenvalues of U and thus, by Proposition 4, there exists an orthogonal

matrix U 1 similar to U such that B 1 = 0 k IZ)U l E	 and DB1 = 0	 If

det(U) = 1, then det(U) = -1, and the above argument applied to U yields

the same conclusion.

-	 Suppose that n is odd. Then U must have at least one real eigenvalue,

A	 If a = 1 and if U has another eigenvalue a + bi, a <_ 0, then the

conclusion follows from (1) of Corollary 6. Similarly, if a = -1 and if U

has another eigenvalue a + bi, a ? 0 , then the conclusion follows from (2)

of Corollary 6. Suppose now that X = 1 is an eigenvalue of U and that

a > 0 for all other eigenvalues a +- bi of U. Then det(U) = 1 and

tr(U) > 1. Since det(J) = -1, it ;L711ows that -1 is an eigenvalue of U,

and, since tr(U) can differ fro•• tr(U) by at most 2, we have that

tr(U) > -1	 Thus, U must have an eigenvalue of the form c + di, where

c > 0, and hence, by (2) of Corollary 6, there exists an orthogona l matrix

J
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a	 _
U 1 , simi l ar to U , such that B 1 = (I k 1Z)U I c ^ and D 	 = 0	 The

1
case in r,nich A = - 1 is an eigenvalue of U and that a < 0 for all other

eigenvalues a + bi of U is handled in a similar manner, and we omit the

proof.

3. Conclusion. This paper provides an example to show that, even under

extremely strong conditions, the eigenvalues of U do not affect the value

of divergence D {I ^Z)U in the space of reduced dimension.
k
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A Review of the LEC Performance Evaluation of UHMLE

In March 1976, Lockheed was directed to submit a plan [11 for

comparative evaluation of several candidate signature extensions algorithms.

The results of that test [21, car r ied out by LEC in April, were the basis

for selection of two algorithms [31, OSCAR and ATCOR, for test and imple-

mentation in a sub-operational system by IBM. Four simulated (SIM) data sets

and seven consecutive day (CD) data sets were used. In the following sections,

two points will be addressed for each data set. 	 1) Analysis and evaluation

of the UHMLE test.	 2) Recommendations on changes in the UH111LE algorithm

motivated by the test.. The criterion for evaluation of each algorithm will be

overall classification accuracy (Tables 8 and 9 of [21 are attached for

convenience).

I. Simu lated Data Te st.

In previous tests carried out by the University of Houston consistentl,,

good results were observed using essentially the same data set. The poor

performance of UHMLE on SIM1 and the marginal performance on SIN seems

to contradict our previous experience. The following observation on the LEC

test may explain this discrepancy.

In SIMI the iteration sequence seemed to converge before the signatures

had moved into the unlabeled data region. A second ran which first estimated

an initial translation X + B and then applied the general UHMLE algorithm

was successful. Even though translation was included in our operational

algorithm delivered to JSC, the second run was not reported in the final LEC

analysis.



Local	 1st LEC	 2nd LEC UHMLE TEST
Pass	 Accuracy	 UHMLE TEST	 w/translation option

Simi 93.5 --21.7 -2.5

SIM2 98.6 -0.7 no trans.

SIM3 97.0 -1.0

SiM4 92.8 -5.0

Ave. 95.5 -7.1 -2.3

Std. 9.9 2.0

Table 1

Revised SIM test results.

Overall Accuracy Difference

The use of the translation in SIM1 would dramatically change the outlook

of UHMLE in the SIM test.

The results do not suggest any modifications of the UHMLE algorithm

except to re-state the need to apply the translation first.

I I . Consecutive O.ay Test.

General: The consecutive day (CD) data set consisted of three Kansas

Intensive Test Sites (ITS) outlined in	 [1]. From these a total of seven

pairs of consecutive day passes were selected from 1973--74 LANDSAT-1 data

acquisitions.

x^
'—mss.	

---.	 ^	 _	 . _ ..r.+i^;•.,,y

Y
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ITS
DATA SET

ID
DATE

TRAINING/RECOGNITION
SIZE
ITS

HAZE

TRAINING RECOGNITION

Finney F1709-8 211	 July 74 5 x 6

" F1673-2 27/26	 May 74 x

" F1655-4 9/8	 May 74

" F1726-7 19/20 July 74 x 1

Saline 51455-4 21/20	 Oct 73 3 x 3

11
18/17 July 74 41 1	 x	 1

Ellis E1726-5 12111 ,tune 74 3 x 3 x

Table 2

Consecutive Day Data Sets

Iwo UHMLE tests were run on each data set. UH/ALL uses as its unlabeled

-	 sample the rectangular area containing the selected Test/Training fields.

UH/FIELDS uses the test fields only as input. The following ground areas

associated with each ITS are defined for further reference.

AO	 -	 ITS ground truth site. (Not alligned with LANDSAT ground
track.)

-`	 Al	 -	 Smallest rectangular field containing selected training field.
Used as input for UH/ALL.

A2	 AO intersect Al , used for classification area.

A3	 -	 Designated test fields ( 	 training fields within A2). Used
for input to UH/FIELDS.

f	 '
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Pro[Lortion Estimates. UHMLE automatically estimates a proportion vector

for the unlabeled input data set. These estimates are used in two ways in

the Signature Extention (SE) test.

1) The UHMLE proportion estimates are used as a priori probabilities

in the classification algorithm. Although this is not an unreasonable

choice for the a priori probabilities, the UHMLE classification results are

not comparable to those of the other candidate algorithms which used equally

likely a priori probabilities. Moreover, in the Uhl/AL.L test, the UHMLE

proportion estimates correspond to Area Al. Area A2 was classified and only

results from Area A3 were used for performance evaluation. In UH/FIELDS the

^-	 unlabeled input data set and the classification region were equivalent.

2) in Tables 10-13 in [21, the estimated proportion of wheat for

each algorithm  i s first  compared to the local  classifica p:ion proport-; or,

estimate and then to the ground truth p roportion estimate for both the Silo

and CD data sets. In the CD test, the UWALL and U11/i I[L,DS are classificati-)n

proportion estimates for area A2. The maximun€-likelihoosi estimates from U11MLE

(UH/ALL/MLE) correspond to area Al 	 it is assumed here that the proportion

estimate from local classification in Table 11 of [2] is based on A2. Hence

—	 W ALL/HLE is not comparable to the local standard. In Table 13 121 the

standard is ground truth. It is not cleat whether or not the ground truth

proportions correspond to AO or A2 	 In either case all proportion

estimates listed in that table are not comparable.

J	
1
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Data Quality.	 This appears to be the most important factor in analyzing

the UHMLE results. The CD data sets contained numerous data drops or

"glitches." LEC was careful to choose training segments and fields so as

to avoid this bad data in the computation of training statistics. However,

several of the recognition segments used as input to UHMLE (in both UH/ALL

and UH/FIELDS) were contaminated. This bad data effectively "captured"

subclasses from both wheat and non-wheat categories and distorted means

and particularly covariances in other subclasses. Only the data quality in

Area A2 could be assessed from the available computer output. Further data

drops, which may have been present in Al (outside of A2), could also have an

apparent degrading effect on UH/ALL test results. The implications and

incidence of contaminated data is listed below in Table 3. We strongly

recommend that this be the last time that this data set be used in any

testing procedure.

Data Set	 UH/FIELDS	 UH/ALL

F 1709-8 Slight Slight

F 1673-2 Bad Bad

F 1655-4 Bad Bad

F 1726-7 Bad Bad

S 1455-4 Slight Slight

S 1725-4 Good Good

E 1726-5 Good Good

Table 3

Incidence of Data Drops in CD Data Sets

I
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Label Switching: In the UHMLE algorithm the various subclass statistics

move in a quasi-independent manner to better "fit" the unlabeled data set.

In this process a subclass component of the mixture model may seek out data

in the unlabeled sample which is from a different category than the one

assigned in the training segment. This poses no difficulty in terms of

density estimation, however correct category labels are required for acreage

proportion estimates. This phenomena is compounded by subclasses being

"captured" by data drops, leaving unmodeled data free to be absorbed by an

existing subclass. In a number of the CC tests substantially improved

--	 results are obtained if the label on a single subclass is reassigned. Inter-

action of the Al or DPA (at this point, prior to aggregation of acreage

proportion estimates at the category level) with the view of detecting obvious

category labeling errors, should be considered. This is a key point. We are

simply saying that, when using UHMLE (or other algorithms), the spectral class

identity extrapolated from the training segment may not be sufficient to

establish crop category identity without Al interaction.

I^	 '
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Individual CD Data Set Results. In this section each CD-data-set test is

analyzed separately. Some revised results are reported along with supporting

nationals.

F 1709-8	 Two classes have inflated variances due to a data drop. However,

both WALL and UH/FIELDS do better than local classification.

F 1673-2	 Very poor performance on both cases is observed. Two data

drops have major effect on distorting variances and means on several sub-

classes. If one subclass, which is obviously mislabeled, is switched from

wheat to non-wheat a substantial im provement is observed.

LEC Test
	

Revised

Local	 UT	 UH/FIELDS	 UH/ALL
	

UH/FIELDS	 UH/ALL

96.1	 0.1	 -23.7	 -21.3	 -3.1	 -8.6

In Figure 2, the subclass means determined by UHMLE are plotted in the TACAP

"brightness x green" coordinate system. Subclass W7 is clearly displaced

from the other wheat subclasses. It is not unreasonable for mislabeliny of

this magnitude to be easily detected by an AI or DPA and corrected at the

time of acreage estimation.

i
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'	 F 1655-4 Again two data drops play a large role in distorting several

subclass signatures in UH/ALL '	One label switch again improves matters
`
^ greatly. In UH/FI[LDS the effects of

' Revised
-- Local UT U U	 U H/ALL

` 94.9!	 '
--

-3 B' -^	 -	 `-3.1	 l^ 0 not revised	 -3.3-'

 th^ data drops are not ^s apparent in the overall classification ^C^ur^Cy..

)̂
-

F 1726-7	 Data drops substantially distort four Subclasses in UH/ALL and
!	 ---------

to a lesser extent in UH/FlELD5 ' [VeO so, results are excellent ( bet t.er than

.`
	

local classification) in UH/F{ELD3. UH/ALL results are poor. No clear

label switch is apparent.
/
'-

~^

.	 3 1455-4	 In this data set only four subclasses are modeled. Two subclasses--

are distorted by data drops, one severely in both cases. In the UH/ALL case

—	 the Al area is much too large, introducing a large segment of extraneous data

^ into the unlabeled sample. Further A2 -is not contained in Al (see Figure 3)'
_

^
^

U	 /
^
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Figure 3.

Field Definition Errors in S 1455-4.

The poor" data quality, errors in field definitions, and small number of

subclasses render the interpretation of this test null and void. inclusion

of this test in the overall UHMLE evaluations is, therefore, meaningless.

S 1725-4	 There are no data drops or anomolies in this test.

E 1726-5	 There are no data drops. A reasonable case could be

--	 made for a label switch, however, the explanation is not as obvious as in

a the previous data sets and it will be omitted here. This case appears to be a

reasonable test of the algorithm.
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Summary of CD Test. 	 If we introduce the three label changes (easily

detected by an AI or DPA) suggested in F 1673-2 and F 1655-4 and omit

the unacceptable test of S 1455-4, the performance of the algorithm is

distinctly different than that reported in [2]. In light of the results

presented here, the conclusions drawn by LEC in [2] concerning the relative

performance of UHMLE are, at best, questionable. The original results along

with the aforementioned revision and omission are listed in Table 4 below.

Data Set Local

LEC Original

UH/FIELDS	 UH/ALL

Revised

UH/FIELDS UH/ALL

F 1709-8 79.5 2.7 7.3 same same

F 1673-2 96.1 -21.3 -23.7 -3.1 -8.6

F 1655-4 94.9 -3.1 -15.0 same -3.3

F 1726-7 80.0 0.9 -6.8 same same

S 1455-4 86.5 -12.1 --29.5 OMIT OMIT

S 1725-4 85.4 -4.3 0.9 same same

E 1726-5 66.2 1.4 -7.3 same same

Mean	 -5.1	 -10.6	 -0.92	 -2.97

Std. Dev.	 8.7	 13.1	 2.9	 6.1

Table 4.

Revised UHMLE Test Results.

Overall Classification Accuracy Differences.

I

^	 a
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We maintain that there is considerable evidence (provided, in part, by this

analysis) for rejecting the original analysis and conclusions. If for no

other reason, the poor data quality in five of the seven CD data sets chosen

renders the LEC test results, as they pertain to UHMLE, invalid.

III. Conclusions.

Although the LANDSAT-2 data does not contain nearly the frequency of

data drops observed in the LANDSAT-1 data used for this test, we clearly

must incorporate a data editing scheme into the UHMLE algorithm or assume

that preprocessing has deleted these pixels. There has been preliminary

testing of a thresholding scheme which appears to be an adequate m?thod when

used in conjunction with an initial X + B translation.

The reassessment of labels after signature extension remains a major

priority in the U11MLE signature extension algorithm. This is a small task

in terms of time compared to complete local training by the AI, and appears

to be a necessary AI interaction function coupled with automatic processing

of recognition segments.

1
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SUMMARY

Our comments on the SD test and on the CD test suggest that the

UHMLE algorithm in particular and mixture density estimation ineng eras

should still play an important role in the solution of the signature

extension problem. In another paper [41, the signature (e.g., Procedure

l.) extension problem, in the context of the LACIE training procedure is

reformulated. Mixture density estimation (supervised or unsupervised) will

certainly play a role in the exaction of the Spectral Information Classes

described in that paper. Additional work on the UHMLE algorithm, especially

-	 the details of incorporating it into the LACIE training procedure, we believe

to be essential. These details are treated in the reformulation given in [41•

4
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TABU 8.- OVERALL ACCURACY FOR SIMULATED DATA

to minus sign means the algorithm was less
accurate than local classification.)

Data Local,
accuracy

Percentage difference between
local accuracy and that obtained

with various algorithms

n (S) WEST fields R {C) UT

SIMI 93.5 0.0 -3.5 -21.7 -21.6 -99.3

SIM2 98.6 0.0 0.0 -0.7 0.0 -18.3

SIM3 97.0 0.1 0.0 -110 -5.2 --50.0

SIM4 92.8 -0.1 --3.2 --5.0 -2.9 --8.8

Mean 95.5 0.0 -1.7 -7.1 -9.4 -44.1

Std. dev. 2.8 0.1 1.9 9.9 13.5 40.8

Prepared by LEC [21.
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TABLE 9-- OVERALL ACCURACY FOR CONSECUTIVE DAY DATA*

[A minus sign means the algorithm was less
accurate than local classification,]

^o

r=

C "
T

Data Local

Percentage difference betFreen local accuracy and that obtained
with various algorithms

accuracy
R(S) MLEST OSCAR REGRES MOD R R(C) MCA

ATCOR LH
UT R(S/C) UH allOSCAR fields

P1709-8 79.5 --5.8 -4.4 -7.0 -7.1 -7.6 -8.1 -7.8 -8.5 2.7 -8.2 -12.5 7.3

F1673-2 96.1 -2.0 --0.5 -3.2 -10.2 0.5 -1.7 --0.7 -5.0 -21.3 0.1 -1.7 -23,7

F'.655--4 94.9 -3.3 -1.8 --2.1 -2.1 -2.7 -4.7 -3.0 -3.6 -3.1 -3.8 -•3.8 -15.0

F1726-7 80.0 1.9 1.7 3.8 4.9 -1.9 -1.1 2.4 -5.9 0.9 -8.5 -7.1 -6.8

S1455--4 86.5 -0.2 -0.9 -3.5 -1.8 -3.2 -4.4 -2.5 0.1 -12.1 0.0 --3.5 -29.5

51725-4 85.4 1.1 -0.5 -0.9 0.0 -3.2 -1.9 -5.0 -4.7 -4.3 -14.1 -11.0 0.9

E1726-5 66.2 -3.2 -6.0 -3.8 -3.5 -1.8 -4.1 -9.8 -2.7 1.4 -11,5 -9.8 -7.3

Mean 84.1 -1.6 -1.8 -2.4 -2.8 -2.8 -3.7 -3.8 --4.3 -5.1 -6.6 -7.1 -10.6

Std. dev. 10.2 2.7 2.6 3.3 4.9 2.5 2.4 4.2 2.7 8.7 5.5 4.2 13.1

i

Prepared by LEC [2]

c•.
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Introduction:

The following algorithm has been suggested by Decell and

Smiley in flJ for optimal linear combinations in the feature

selection problem.

Let 	 be a continuous function from Mn (see definition 1)

into R that is invariant under multiplication on the left

by kxk invertible matrices. Then there exists H 1 E `4n

w	 (see definition 2) such that

^ { Ik ' Z  Hl )	 = l.u.b. f w ( L I k1 ZJ H ) .
H ,F

Now for each positive integer I, let the element HE Cf
n

be chosen such that

( E,	 _1-Hi-l...Hl) = l.u.b.	 {	 I k ^Z H.Hi-1...Hl)
HE 74n

The question of whether or not the above process terminates

at an absolute W-extremum (rank k maximal statistic) appeared in

[1]. In this paper, we show that there exists a function W as above

for which the above process does not terminate at an absolute

µ	 -extremum .

Let HI ,...,HP be the matrices representing Householder trans-

formations. Then for the matrix [IkI Z] Hl • • •Hp , let ® ( likI ZI H l • • •Hp)

be the span in Rn of the k row	 vectors of that matrix. Suppose
^k

that vl ,...,vk are linearly independent vectors in Rn . Then we show

in this paper that there exists some integer p 4 min(n,n-k) and

Householder transformations whose matrices are Il l , ...,H for which
P

!l
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(EQ ZIHl •••Hp ) = Spanfvl ,...,vk3	 We also determine the minimum

integer p having the above property.

Preliminaries:

Definition 1. Let M n be the set of all kxn rank k matrices.

Definition 2. Let Pn denote the set of all Householder trans-

formations.

Definition 3. Let.j 
n 

denote the collection of all vector

subspaces of Rn of dimension k.
i

Definition 4. Let Sn = Ix E Rn ( 1i x)l = a	 .

Definition 5. Let 6be a closed subset of R n and x+ ^'. Then

there exists c x E e such that I!x- c x It 1^ #x-cJI for any

c C0. Let e(x;C) = fix-c x /I .

Definition 6. Let A and B be elements of' j k	 Then there exists
n

an element a*E A(1 Sn having the property that

e(a*; B!) Sn )	 (>(a; B/l Sn ) for all a  An Sn . The num-

ber e(a*; B ns n ) will be called the distance from A to B

and will be denoted by the symbol d(A;B).

Proposition 1. For any elements A, B, and C in j k
n

i) d(A;B)	 0 and d(A;B) = 0 if and only if A = B.

ii) d(A;C)	 d(A;B) + d(B;C).

iii) For any g a 0 there exists a Sa 0 such that whenever

d(A;B) c d	 then d(B;A) e- t .

Definition 7. For any PoE j 
n and	 0, let

j. k (P)	 --	 Xc,3 k I d(X;P)	 .

Definition 8. Let T be the topology on j nd
etermined by the

T	 subbasis j ` 1 F(P) I f a 0 and PE . ,.S n
i	

7 71
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Definition 9. Let be a closed subset of nk and let PC A kn .

	

`	 Let D(P;	 g.l.b. 
f 

d(P;C) f C C 	.

Proposition 2.	
('8k ,T) is normal.

Proof: Let 0 and t9 be two closed disjoint subsets of >8 k
n'

Let ( l	 PE"g k I D(P; 	^) G D(P; (,r^)	 and

2 =	 PEA n JD (P; O) ^ D(P; J5)J	 By Proposition 1,

we can determine that ZY 1 and ^t.#` 2 are both, open and are

disjoint. This completes the proof.

Definition 10. For any vectorw = wl
	

in Rn , let w  = w1

wn	 wk

and wL	 wk^ 1
a

W 

Proposition 3. Suppose that 
f 
v l , ... ,vk I is a collection of

linearly independent vectors in R n . Let p be the dimen-

sion of Span V L....,VL J and assume p ^ 0. Then there

exists a vector x iE R n such that 11x« = 1, and if Hx is

the Householder transformation•determined by x, then the

dimension of Span f H x (v l ) , ...... H x (vk ) L 	= p--1.
UProf: Case i) Dimension of Span fV1,...,vk 	 is less

than k. We select a vector XL in Span VL ,...,VL J such

that JxL JJ _	 Since EvI'-2(v•xL )xLI • xL = 0 for

i =l,...,k. It follows that the dimension of

Span VL -2(v . X L ) xL , ...,vk-2(vL.XL)xL^ is p-l. Now by

assumption there exists a vector X U in R k such that

JJxU1J = r̂T, and vU .xU = 0 for i=l,...,k. Since

vL--2(vi • x)xL = vL-2(vL .XL )xL , then the dimension ofi^
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Span 
vL_ 2(v L. xL )xL ,...,vL-2(vL .XL )xL ^ is p_l, for

X X = aUX

Case ii) The dimension of Spanvi,...,vul = k.

We select a vector x^ in Span v^,,..,vk wit h jjxLJj= VT

Then we have that the dimension of

Span vil-2(vL. XLo )xo,...,vL-2(vk.xo )xo	is p-1. We

assume then that x L = xo for some	 1. We want a

vector XU in R 	 such that if x =	 then 11xU1j2+
(XL

JJ

I	 11
XLJ 21 = 1 and vi--2(vi .x)xL = vL-2 (vi.x o)x o fo r i=1,...;k.

By substituting xL into this equation in place of x L we

can determine that vU .i xU = ( 1 ^^)vL.xL for i=l,...,k.a	 z o
By our assumption we can find a vector x U satisfying the

above equations whenever a choice of A is made. We ob-

serve that if A approaches 1, then Jlx U ll must approach

0, and JJX L ) j must approach vT so that if A approaches

1, then 1011 2 + II X L 11 2 must approach V . if A approaches

0, then IVII approaches + era and Jj xLjj approaches 0

so )I xU llz + II x L 1!2 approaches +00 as A approaches 0.

It follows from this that there exists some A for which

I,xU )1 2 + !! xL)11- = 1. Thus we have the dimension of

Span[vL-2(v1 .x)xL ,...,vk-2(vk .x)xLj is p-1 which is the

required condition. This completes the proof of proposition

3.

k
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Definition 11. For any Me Mn let O(M) - Span v1,...,vk

wherevl,...,v J are the row vectors of M. 8 is easily

seen to be continuous.

Proposition 4. Suppose that () ([Ik lZjHI ...Hp ) = Span vl,...,vk}

for Householder transformations H l ,...,Hp , Then the J

dimension of Spanfv L ,...,vk cannot exceed p.

Proof; We observe first of all that for any collection

of vectorsy 1 ,...,ym and any Householder transformation

Hx determined by the vector x that

-	 Span K(y I ),...,H X(YM) C Spanfyl ,...,ym ,x ..

Now^( Ik [Z] HI .,.Hp )	 Span ^Hp...Hl(el),...,Hp...H1(ek}

where e  is the vector with 1 in the ith place and 0

everywhere else. Thus by the above statements,

Span vl,...,vk C: 	 el,...,ek,xl,...,x pi .

--	 It follows that Span ivL ,...,vk C Span xZ,...,xPi .

L	 LjThus the dimension of Span v ,...,v	 id less than or

equal to p. This completes the proof of Proposition 4.

Proposition 5. For linearly independent vectors vl,...,vki,

if p is the dimension of Span vl,...,v and p 0, them:

there exists Householder transformations Hl,...,Hp

such that ® ([IkIZj H1 ...Hp }	 Span vl ,...,vk	and no

fewer than p Householder transformations can have this

property.

Proof: This is a consequence of Propositions 3 and 4 .

r	 -
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Construction of the map 4

Definition 12.	 For any kPE	 let P = Span iv 13 ...,vJ and

define L ( P) = the

n

dimension of Span[v,, ... , vkL l

Definition 13.	 For 04p6n-k let r p = fAC k IL( A)tpi.

Proposition 6. CRP is closed for p=O,...,n-k,

:	 Proof: This is a consequence of the Fact that if

ful,..,,um} is a collection of vectors in Rn-k and q

is the dimension of Spa+l,...,um^ then there exists a

real number ^s 0 such that if j, u i--u* lI	 for

then the dimension of Span	 isis greater than or

equal to q. This completes the proof of Proposition 6.

Now for some PE , l there exists F3 0 such that if AC 91 , then

`u (A) does not contain P. Let a be the closure inA k of

U^V.5(A)^	 By Urysohns lemma, (21 there exists a continuous
AE Tl'

function	 :A k4[ 0,1] C R l such that 1 (P) = 1 and	 (A) =0

for any AE (J. Let I = Spanfel , .. , , ekj , Then l(Q F,(I) C

since I E 1. Define a map ^ 2:A n -- . [ 0,?g	 by

2 (X) = 0 if X 	 (1) and ( 2 (X) = - -d( X;I ) if Xevr(i) .

--	 Let (^ = 1 + 2 and define Y 4oE). We observe that

gl = O(f l,k l Z]H I HE: ^4n^). Also If ()( 110 Z] Hl ) = I
for some H'E 74n then for any HE ?4n , E) *k1 Z, H . H l )C 91.

That Y has the desired properties follows from the fact thaty	

the function 0 has a maximum value of ;^ at I over the set 91
but ( has a maximum value of 1 at P over the entire space X8 nk.

-:_ r	 ^-S
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1. Introduction:

Let (X,	 and (Y,	 be measureable spaces and let T : X -)- Y be

L	 surjective and measureable. Let `M be a set of finite positive measures on

(X, Q ) . For each P E 7j1 there corresponds a measure UT 
-1 

on (Y,-e) defined
L	

for F e -6 by
I

E-	 pT-1(F) = }a(T-1(F)).

i

If f is a fit-integrable real valued function on X, then as a consequence of

the Radon Nikodym Theorem, there is a pT 1- integrable function eu (f) on Y

satisfying

!	 1 ep ( f) 
dijT-I	 f f dp

F	 T-I (F)

for each FE	 Clearly e11	 is defined only up to sets in Y of VT l

measure p and f = g a.e. (p) implies ep (f) = e 
1
(g) a,e. (pTrl). The

linear operator e defined as above :naps the space t'(X,d 	 to the space
p

1(Y,-g,pT-1) and is called the conditional expectation operator. Its value

1
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e (f) at f co^(X,C?,p) is called the conditional expectation of f 	 iven

T.

J	 The conditional probability of an event E E a is defined as

Pu (E) = eu(X£)

where X  is the indicator function of E. The conditional probability

functions satisfy

(a) P :CL- J(Y, ' , pT-1 ) .

where l(Y, - ,pT-l) is the set of all real valued 'iy -measureable functions

on Y, with equality defined as equality a.e. OT-1).

(b) For each F c -V,E c Q

u( E n T-l (F)) _ ` P^(E)dpT-Z
F

I
(c) Q 5 Pu(E) 1 l for each E E Q and Pu (X) = 1.

t.	
(d)	 If {E }^	 is a disjoint sequence of events in CZ ,

n n=1

P ( u E) = El P (E ) a.e. (pTn	
n n=1	 n

It should be noted that P p satisfies property (c) even when u is not a

probability measure.

--	 The transformation T is called a. sufficient statistic forl)t if

for each E c d there is a -9 -measureable function P(E) on Y such that

for each U e'JJJ , P
11
(E) = P(E) a.e. , (liT l ) . The set711 is dominated by

a measure a • (perhaps not in71 j ) if for each p E-	 , P is absolutely

ww

l
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continuous with respect to X,( written u << l.) M is homogeneous if it is

dominated by each of its members. A measure ^ is equiv alent to 772 if

dominates - Y1 and p(E) = 0 for each u e "yn implies A(E) = 0.

The notation and terminology used in this paper are taken from (Halmos

and Savage; 1949), as are the following three theorems. The notation

dp(^,;)T-I(-a) means that there is an element of the equivalence class d of

Radon-Nikodym derivatives which is T -1 (8) measureable.

Theorem 1: If -;It is dominated, then a statistic T is sufficient for WE if

and only if there exists a measure a equivalent to PL such that for each

Theorem 2: If -}?Z is dominated, then a statistic T is sufficient for )Y& if

and only if T is sufficient for each pair {;.,,v) of elements of 4W .

Theorem :: If ill is homogeneous, Lhen a statistic T is sufficient for 7')2 if

and only it dv 	 for each p, v c j/ j .

2. Homogeneous Families:

Henceforth, we will assume that ")1Z is homogeneous. Let C(Rf denote the

cone generated by ;)L, excluding the zero measure. That is, C" is the set of

all finite linear combinations, with strictly positive coe.fficients,of elements

of lAt	 '.lements of CQ?t) are termed mixtures of elements of '7'I2. Clearly,

CO:O i5 also homogeneous; hence., the spaces j (Y,-,6,pT-I) are all the same

for ^i E C(y?b and may be denoted simply byY	 For 1^ e COO P
11 

maps CL to

and its is clear from the definition of a sufficient statistic that r is

sufficient for a subset 7j of Ct77t) if and only if the conditional probability
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functions Pu for p E 7/j, are all equal.

Lemma 4: Tf y1'L is dominated,	 C(^y^, and T is sufficient for ^1Z, then

T is sufficient for 	 .

Proof:	 Let a be that measure equivalent to I)t whose existence is assured

by Theorem 1. if ;3 E C(?ytj, then f1 can be written

k

i=1

with Q. > 0	 V E M for i = 1,...,k. Hence,^	 a i
k

d^ - ;^	 dVi	 (E) T-1 (^.
i=1 i da

Thus T is sufficient for C (K and hence is sufficient for ,PL.

In order to characterize sufficient statistics for A c C(-74, it suffices,

by Theorem 2, to consider a pair

u T	 iF

...	 and

5'}1j,	
j £J 

j }li

in ^t, where T and J are finite sets; ^ > 0 for k E Tu.1; and the

measures {p i 1,, , are distinct members of %'1, as are the measures {P i }jEJ.

The set C( ) of all finite mixtures of elements of 7^'4 is said to be

identifiable (Teicher,1960, 1961; Yakowitz , 1969) if each element of C(In

can be expressed in only one way as a linear combination, with positive

coefficients of elements of -14 1 except for the order of the summands. Equivalently,

^µ	 COR) is identifiable if the set 	 ? is linearly independent over the real numbers.
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The concept of identifiability is very important in establishing the

uniqueness and consistency of various estimators of the so called miring

	

parameters { i :i6I} in a mixture PI	 (Yakowitz, 1959).

Given a mixture p  in COW we have for each E cO , 'F E:17,

F 
P11z ( E ) dp, T

-1 	

^I ( E n T-1 (F) )

	

M	 ^i11i (E n T
-1 ( F ) )

	

_	 ^ . ! P (E) dN T--1
iEI 1 F Pi

-1
T	 _

ieTi ` P	 ( E)	
i 

-I dUI T 1.
3.	 d^ I T

Let Il ,...,Ir be the equivalence classes in I modulo the relation i - k if

and only if P^ = P p ; that is, if and only if T is sufficient for the

i	 k
pair {pi, 

pk
}. Then we have

d}1 . T- I

x	 I

	

' E 6. S f P (E)	 ^ -1 d}t IT-1

	

F Pi	 dp.IT

	

r	 d T-1
^i	 -1

f Q11 iEI^ 6i d T- I P11 (E) dp, T

^I	 z

where P
11 

(E ) is the common value of the P (E ) for i F I Q . Thus,
I

	

	 i
Q

r 
dI 

T-1

P 11	 QEl	 -1 PP-
T	 du.^T	 ;I

l
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where	 u I	is the mixture
2

uZ
Q	 ^.

y	 Whenever the conditional probability function	 P	 of a mixture	 p	 is
PI

written in this fashion with 	 1 1 , .... I r	being equivalence classes modulo the

-	 relation	 -,	 we will say that	
PPI	

is written in normal form.

i	 Definition 5:	 The set	 C(-YJo	 is conditionals identifiable with respect to

the statistic	 T	 if for each pair	 (P I ,pd ) in	 COP!)	 whenever	 P^ = P^ andy
I 3

-.	 P	 , P	 are expressed in normal formu i	 ^d r	
d	 T^l

PSI	 ^.EI -0- P 7 Qd1i T
l

dp	 T-1
s	 .7k

P^1 - kLl
	

Pu3-1du	 T	 k
..	 3

then	 r = s	 and for each	 Q = 1,...,r	 there exists exactly one 	 k = 1,...,r

dwIT-11	 dPjT-1

-
such that	 Q.

	 -	 k	 and	 P	 = P	 The set	 C(WZ)	 is
T -1djjdpi ,f-1	 I	 u IkI

marginally identifiable with respect to	 T	 if the set	 {VT-1 I U ^ 1'f2 }	 is

linearly independent over the real numbers.

Theorem 6:	 If	 C(W	 is both marginally identifiable and conditionally

identifiable with respect to a statistic 	 T, then	 C(-M	 is identifiable.

Proof ,	Suppose	 pi
 =
	 E	 0 iP i =	 E	 5.u. = Pi ,	 where the measures in each
isl	 j E3	 ]

µ	 sum are distinct members of ^1j 	 'Then, expressed in normal form,



i

i
i

;i

r

I

i

7.

r d1I 
T-1	

r d1iJ T-1
Q = 	_ 4.PuI 

= R71 dp T 1 
PuI	

J
Pl dp T 1
	 PuJ = P J,

I	 Q	 k

and we may assume without loss of generality that

dul T--1
	

dp J T71
Q	 ^

d}iZT 1	 dj JT-^1

and	 P11I = P €1J 	 for Q = 1,...,r.

^,	 Q

Since pIT-1 = PiT 	 it follows that jj T 1 = uJ TTI . For i,k E IQ,
Q	 Q

3j
iT-1 J ukT-1 , for otherwise, since Pu i = PP 

k
, we would have pi = Pk,

contradicting the assumption that (P i : icl) are distinct. Similarly, the

-1
11i T	 for j E J 	 are all distinct. Since C(1•70 is marginally identifiable,

I Q and J 
k 

have the same number of elements and for each i E Iz there is

a unique j (i) E J Q such that ^i W j 1i) and piT-1 = }^^ (i) T^ l . Since

P11 = Pp	 11it follows that pi = Pi(i) for each i e I Q . Therefore,

1	 .] (i)
there is one to one map j from T onto J such that Sj(i) _ (ii and

pj(i) = Pi 
for each i G 1. Hence, C(-M) is identifiable, and the proof

is complete.

For conditionally identifiable sets of measures, the following-theorem

and its corollary provide some characterizations of sufficient statistics.

Theorem 7:	 If -)-)t  is homogeneous, CCM) is conditionally identifiable

with respect to a statistic T, and jj V P are in C(-W, then T is

sufficient for the pair. }i,, }1J if and only if there exist partitions

I = I1 U ... uIr and J = J1 U ... UJr	such that for each Q = 1,...,r:



du l 	d1iz

	ieT Q 	1	 jEJR ] J	 d J	 dp

and

(b)	 T is sufficient for the set N  = {uk : k c IItuJQ}.

Proof: First suppose such partitions exist 	 By (b) T is sufficient for the

set Nl and hence, by lemma 4, it is suffic.L,--nt for the pair (Ij 211 }, it
1 1

follows from (a) and Theorem 3 that T is sufficient for the pair {jjl,uJ}.

Suppose that T is sufficient for the pair { p1 ,111 }. Then, expressed in

normal form,
r	 djl r-1

	

Q	 r
i PP

QFl dPI 
T-- ll 

= Q 1

t
and we may assume without loss of generality that

	

del	 1	 dj^	 T--1
'--	 IQ_i =
	

J^
-1
 and Pu	 = P^	 for each Q.

	

dtia 1T	 d^ J 7'	 I ,	 JQ

The condition P 	 Pp	 is equivalent to (b,. By Theorem 3, there exists a

Q	 JQ

	

d11i	 -1	 dpIT i
representative f E dp which is T ('13) measureable. If g E dP T_1,

	

J	 J

then g+T is T
-1 ( ) measureabie and for each F c

-^),

! g.T dp	 1 g d i liT 1 = II I T-1(F)

	

T--1 (F) 	 F

8.

dpJ T^1
Q

P	 ,
duJT-1 PJZ
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u^

It follows that g^T = f a.e.(Ij 	 Thus,

dp TT
-1
	d1ilT-1	 dpl

T = {g,T	 g	 _--	 } c
-1	 dudpJT--

1
	dpJT	 J

I
Since- T is also sufficient for the pair {p

I Q 
, p

JQ }, 
a similar argument

I 

gives

f	 dpT 
T-1	

dE'T

d Q _l 
o T c d'^J^

pJ QT

dpT Tl	 dp T1
for each Q. Since 	 I 	 for each Q, it follows that (a)

dp T	 dpJT

holds for Each R and the proof is complete.

Corollary 8: If -M is homogeneous and C(17t) is conditionally identifiable
i

-	 with respect to a statistic T, then T is sufficient for a pair {vilpJ}

in C(Y)1) if and only if there exist subsets I 1c I and 31 c J such that:

L..

}	 (a)	
dp

dv dp
^	 l

and

i
(b)	 T is sufficient for N _ {pk k E I 1 u J1}.

Proof: That T sufficient implies the existence of I l and Jl satisfying

(a) and (b) is immediate from Theorem 7. Conversely if I l and J 1 satisfy

f



(a) and (b), then T is sufficient for P I	 pJ	 by (b) and hence, by (a),
^.	 1

T is sufficient for uI'pJ'

Given a pair of mixtures PI, pJ in C(li(), we will call their
dp

likelihood ratio 
d{aI 

indecomposable if I 1 C-I, J l CJ and
J

dull dpT

dp	
du imply Il = I and Jl = J. It is clear from Theorem 7 that

J1	J

{	 if C(-41) is conditionally identifiable with respect to T and a pair of

mixtures pI , pJ in C(4Q have an indecomposable likelihood ratio, then

E

r^	 T is sufficient for {PI, 11	 if and only if it is sufficient for

j
{uk k e I u .T;. Also, it is not difficult to see that for each pair

r

11,3 pJ in C(-Kt) there exist nonempty subsets I 1 c I and Jl c J such

that

dell 	 d1il

dpJ 	 duJ
--	 1

du 
and she likelihood ratio du l	 is indecomposable. If p I and pJ represent

31

the probability laws for two alternative hypothesc^,, then there would be two
w	

advantages in being able to identify subsets I 1 and J1 satisfying these

two criteria. First the maximum likelihood decision procedure would be simplified,

and second, the search for a statistic sufficient for deciding between the two

hypotheses and having the property that C(M) is conditionally identifiable

could be restricted to those statistics sufficient for {pk : I l u J1).

3. Sufficient Linear Statistics for Mixtures of 14ormals:

If 
-jz is a subring of the ring 1 introduced in Section 2, then with the
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usual definition of addition and multiplication by elements of 	 the set

of all functions	 : 0-	 is a module over	 Thus, it is natural to

consider	 -independence of a set of such functions.	 To be precise, . is

-)e-independent if whenever 1 ,...,^m is a finite set of distinct elements of

and	 yl , ... ,y	 are elements of -R such that
m

Y?l ( E)	 +...+ Ym$ (E) = 0 	 for each	 E e (: ,
r

then	 Yl= ... = Ym = 0.	 If k	 is a subring of , y-	 which contains all the

bounded Radon-Nikodym derivatives dui for	 u, v e C(y}ll ,	 then it is clear

that lq •- independence of the set
duT

{Ply	
u E7n }	 implies that	 C (ft	 is

k

conditionally identifiable with respect to	 T.

For the remainder of this section
n	 , k

we will assume that	 X	 is	 ,	 Y is ^1

(k s	 n)	 and	 T : X - Y	 is linear and full rank. &2 and -6 are respectively,

the Borel fields on	
n	

and (!; k . We also assume that each	 U E	 is described

by a normal density function 	 f^ with mean	 m	 and covariance	 Stu	That is,i

L
for each	 E	 e 0-, 

? p{E)	 J fu dX

E
where	 A	 is Lebesgue measure on n.n

i
r By a suitable choice of the coordinate system, we may repres6nt the densities

}	 fu as joint density functions f u (y,z) on R k xIR:
	

while representing T

as the projection T(y,z) = y. Then the marginal densities

g (Y) = f
n-k 11

f (y,z)dz
u	 ^ 

are normal with means Tm^ and covariance matrices TO T l (Anderson, 1958).

— -.	 n
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1.2 .

The conditional density functions

€1A(y,z)

11	
gU

are normal as functions of z E n-k with means

(1) Smu + MS 1TI (TO PTI) -1 (y - TmP)

and covariances
t

(2) soPSZ - SQL 1TI (TQ11T 1 ) -1 TOPSZ.

where S is the linear operator S(y,z) = z. The conditional probabilities

PP (E) are represented by

P^(E IY) = f hP(zly)dz

Sv(E)

where Sy (E ) = {z E R n-k j (y, z) E E },

Theorem 9: if `jam is a family of Borel measures on FR n given by n-variate

normal density functions and T R n + 
^Rk 

is linear of rank k, then

C(ft is conditionally identifiable with respect to T.

Proof: It can readily be verified that conditional ident i fiability of CM)

is not affected by the change of variables just described. If v  and ud
d T-I

are in C(J'yt), then the Radon-Nikodym derivative ^-I is represented by a
dpiT

function of- the form

gZ (Y)
9 (Y)91 (Y)	 iEI iIji	 j Ci ^j g (Y)11J 
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.^ i.e., a ratio of mixtures of 	 k-variate normal density functions, which

is continuous.	 Hence, by the remarks in the first paragraph of this section,

it suffices to show that the set	 tP t^:	 on)	 of conditional density

functions is g -independent, where f5	 4_s the subring of 	 consisting of those

elements of I	 which have a continuous representative. 	 To this end, let

P	 ,...,P	 be distinct and let	 yl , ... ,yr	be continuous real valued
Pl	 r

functions on ffz k	 such that for each	 E e u

Y1 (Y)Pp 	( EI Y) +...+ Yr (Y) P 11	(E l Y) = 0
-- 1	 r

for almost all	 y.	 In particular, choosing for 	 E	 sets of the form	 1k X K,
_

where	 K	 is a borel set in 
stn-k

we have

Y1 (y )	 f hp	(zlY)dz +...+ Y r (Y)	 f hIj	 (zlY)dz = 0
1C	 l	 K	 r

for almost all	 y.	 For each	 K, f h	 (zly)dz	 is a continuous function of
K	 pi

y.	 Hence,

K	
(Y I (Y)h0	(zly)	 +...+ yr (Y)h p ( z l y l) dz = 0 r

for each	 y E R k .	 It follows that

Yl (Y) h 	 (zlY) +...+ 
Yr(y)hP	

( z lY)	 = 01	 r
Y

for each	 y F	
k, 

z E	 -k .	 Let	 F be the set of	 y E	 where two or

more of the conditional density functions 	 Feu (zly)	 are equal as functions
1

AL ...
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of	 z. It is easily seen from (1) and (2) that the Lebesque measure of F	 is

zero. For	 y ^	 F ,
{hu

(•]y),...,hu ( •[Y)?	 is a set of df'stinct normal
i r

density functions of z. Hence, (Yakowitz and Spragins; 1968), they are

linearly independent over the real numbers.	 Therefore, for	 y e F

Y1
 (Y) _ ...	 = Yr (y) = 0. That is,	 yl = ... = y 	 = 0	 as elements of	 .

_y Thus, C(I'}'1,) is conditionally identifiable.

If I	 - ieI ^ i N i is in C {t)D , then	 u1	 has a density function

I	 iE1 I P i

which is a mixture of normal density functions. The following theorem is an

immediate consequence of Theorems 7 and 9.

Theorem 10:	 Given the assumptions of Theorem 9, the statistic T is

sufficient for a pair {p i , 11 J 1 in CQtj) if and only if there exist partitions

I = 1 1 u...u1r and J = J1 ij ... L;j	 such that for each Q =

(a) }; R. f (x)/	 Z	 f (x)
iEI Q I ^i	 j CJ R 7 ^j

n
= F	 f (x) / Z ^, f (x} for each x E

iEI	 i	 j EJ J	 i

._	 and

(b) T is sufficient for the family {f 	 k E: I X uJ k} of normal
^k

density functions.
i

There is set of purely algebraic conditions which are equivalent to (b);
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3 .

namely, that the expressions

n - Q T  (T 9 Tl ) -lT 0

	

Pk	 uk	
Ilk
	

Ilk

m	 - S2 Tl (T S2 Tl ) -^"T m

	

Ilk
	 Pk	 Pk	 Pk

S2
"

 Tl (T S2p Tl ) -1 e

	

k	 k

are all independent of k c :I z uJQ (Peters, Redner, and Decell; 1976).

J ^,

4
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CHARACTERIZATIONS OF LINEAR SUFFICIENT STATISTICS

by
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We develop necessary and sufficient conditions that a surjective

bounded linear operator T from a Banach space X to a Banach

space Y be a sufficient statistic for a dominated family of

probability measures defined on the Borel sets of X . We give

applications of these results that characterize linear sufficient

statistics for families of the exponential type, including as

special cases the Wishart and multivariate normal distributions.

The latter result is used to establish precisely which procedures

for sampling from a normal population have the property that the

sample mean is a sufficient statistic.
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1. Introduction: Let T be a surject,ive measureable trans-

formation from the measureable space' (X,A) to the measureable

space (Y,B) , and let D be a set of totally finite measures on

A	 Following Halmos and Savage [2], we say that T is a

sufficient statistic relative to D if for each E c A there

exists a measureable function P(RI-) : (Y,B) -} R (the real numbers)

such that for each F e B, u e D

p(E n T_ 1 (F)) =	 P(Ely)dpT-1(y)
F

i

In another nonequivalent definitiop of a sufficient statistic given

by Lehmann and Scheffe'[3], 8 is always taken to be 8 T , the

largest a-field on Y consistent with the measureability of T

--	 Bahadur [1] discusses the relationship between these two definitions

at length.

In this paper our particular concern is that of developing

necessary and sufficient conditions that a surjecti.ve bounded

linear operator T from a Banach space X to a Banach space Y

be a sufficient statistic, where A and B are the respective

Borel fields of X and Y . Our first theorem shows that under

a very natural . • -)ndition the aforementioned definitions of

sufficiency are equivalent. Specifically, the condition is that

ker T = {x e XjTx = 0} be complemented in X ; that is, for some

closed subspace S of X	 X= ker T 0 S	 (For example, if X

is a Hilbert space, take S = (ker T) a-	As a corollary we obtain

a simple characterization of sufficient linear statistics for



dominated sets of measures. In Theorem 2.we replace the condition

that ker.^T be complemented with conditions on the density functions

corresponding to a dominated set V	 Finally, we give applications

of-'these results that characterize linear sufficient statistics

for families of the exponential type, including as special cases

the Wishart and multivariate normal distributions. The latter

result is used to establish precisely which procedures for sampling

from a normal population have the property that the sample mean is

a sufficient statistic. This generalizes the classical result that

^p	 the sample mean is sufficient for independent samples. The final

result deals with the connection between linear sufficient statistics

and the Gauss-Alarkov theorem.

-°	 If W is a Banach space, B(W) will denote the Borel field

generated by the open sets of- W 	 The totally finite measures

defined on B(W) will be denoted by M(W) 	 We will write p<<v

for the relation of absolute continuity and du jdv for the equiva-

lence class of Radon-Nikodym derivatives of p with respect to v..

--	 For the definitions of a dominated set of measures, equivalent sets

of measures, and their connection with a-finite measures defined

on B(IV), we refer the reader to Halmos and Savage [2).

2. Principal Results: Our first theorem shows that if ker T is

complemented in S then, the two definitions of sufficiency

described in the introduction are equivalent.

Theorem 1: Let X and Y be Banach spaces, let A = B(X) and let

T be a surjective bounded linear operator from X to Y such that

-2-
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ker T is complemented in X . Then BT + B(Y) .

Proof: Since T is Borel measureable, it suffices to show that

BT CB(Y)	 Let S be a closed subspace of X such that

X = „ ker T ED S	 If F e 8T	 then T- (F) a B(X) and if T

denotes the restriction of T to S , then

T(F) = T ^(F) n S e B(X)	 It follows that T r; (F) a B(S)	 and

since T is a topological isomorphism, F = TT (F) c B(Y)

Henceforth, we will assume that X and Y are Banach spaces;

A = B(X) , 8 = B(Y) and T:(X,A) 	 (Y,B) is a surjective bounded

linear operator. According to [2, Lemma 71, for a dominated

collection of measures D C M(X) a measure a , equivalent to

D , can be defined by

X ( E ) _	 ailli(E)
i=l

where { Pi }	 is a countable subset of D which is equivalent
i=1

to D and E ai p i (X) <	 Obviously, if D is homogeneous, wei=1
can take a e D . Combining the results of Theorem 1 with those

of Lemma 2 and Theorem 1 of [2], we have:

Theorem 2: If ker T is complemented in X , then T is sufficient

for D if and only if for each U e D there exists a real valued

function g 	 on Y such that g PO T e du/dX .

Proof: By . Theorem 1 of [2], T is sufficient if and only if for

each µ e D there exists a real valued Borel measureable function

9  on Y such that gµpT E do/da . Since ker T is complemented

in X	 B(Y) = BT and each real valued function g u such that

-3-
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gPO T is Borel measureable on X must be Borel measureable on Y .

:.In all that follows 6g(x,z) will denote the Gateaux

differential of the function g at x in the dire-,tion of z .

Corollary l: If ker T is complemented in X , then T is
f

sufficient for D if and only if for each	 e D there exists

f p a dp/dX such that x e X and y e ker T implies 6f p (x;y) = 0 .

Proof: If T is sufficient, then for each u e D there exists

9)1:Y -)- R such that f  = g ppT a dp/dX . It follows immediately

that 6fp (x;y) = 0 for each x e X, y e ker T .

	

If f  e dp/dA and 6f p (x;y) = 0 for	 a D, x e X, y e ker T

._	 then f p (x+y) = f p (x) for each x e X	 y c ker T	 For z E Y

define g 
1
(z) = f p (x) where z = Tx	 Then g p is well defined

and fp = gup T	 Hence, T is sufficient.

The next theorem concerns a replacement of the complemented

kernel condition whenever there is a continuous Radon-Nikodym

derivative f  e du/dX for each P E D .

Theorem 3: Let V C X be an open set such that a(X euV) = 0 and

let X(U) > 0 for each nonempty open subset U of V 	 Suppose

A(B+y) = 0 whenever B C V 	 A (B) = 0 and y e ker T	 For

each p e D , let f p e dp/dh be continuous on V	 Then T is

sufficient•if and only if f u (x) = f p (z) whenever x, z e V and

Tx = Tz .	 i
t
i

Proof: If T is a sufficient statistic, then there exists g u £ dp/dA

such that gp (x) = gp (z) whenever x, z c V, Tx = Tz	 Let p e.D

and y E ker T be fixed. The set
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u = ( x e vn ( V-y ) l f u (x)	 fIr (x+y) )

is an open subset of V contained in B ^ ) (B-y) ,• where

B= {x e V C fu ( x )	 g (x))

Since l(B) = 0	 it follows from the hypothesis that a(U) = 0

and hence, U =	 Thus f 
1
(x) = f 0 (x+y) whenever x, x+y e V .

Conversely, suppose f 
1
(x) = f

11
(z) for v e 'D , x, z e *V

whenever Tx = Tz . The function g
11

:T(V) -} R defined by

gu (Tx) = f P (x) for x e V is well defined on T(V) 	 Since

fu is continuous on V	 fu = gu - T on V , and T is an open

mapping, it follows that g^ is continuous on the open set T(V) .

For y k T(V) define gP (y) = 0	 Then g
11 

is Borel measure-

able on Y and f = g u0 T . Thus T is sufficient for V .

The proof of the following corollary is clear and will be

omitted.

Corollary 2: If, in addition to the hypotheses of Theorem 4, the

set V is convex, then T is sufficient for V if and only if

Sf u (x;y) = 0 for each p s D, x e V, y e ker T.

3.. Exponential Families: Let X and Y be Banach spaces,

(H,< • I • >)	 a Hilbert space and v a Q-finite measure on B(X)

such that v(XtiV) = 0 for some nonempty open convex set V C X

for which • v(U) > 0 for each nonempty open set 	 U C V	 Let

D = [ PY }	 y e P be a family of probability measures having

exponential densities	 f  (x) = c ( y ) h ( x ) exp	 Q(y ) [ t(x)> e 
dpY 

/dv

where c(y) > 0, h(x) > 0 on V a.e.(v), t:X -} H is continuous

-5-
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and Gateaux differentiable on V , and Q:F + H .

Theorem 4. Let T : X -j- Y be 1 inear,' bounded , sUr j ect ive and

v(B+y) = 0 whenever B e B(X), B C V, v(B) = 0 and y e ker T

if .0 c F , T is a sufficient statistic for the exponential

family D if and only if <Q(y) - Q(0) st(x;y)> = 0 for each

Y e F	 x e X and y e ker T.

Proof: Under the stated assumptions D is homogeneous and thus

A may be taken to be an arbitrary element, say u, , of D .

Applying Corollary 2, T is sufficient for D if and only if

bgY'o (x;y) = B for each Y e F, X c V y e ker T, where

gy , a (x) = c(Y	 exp {( Q(Y) - Q(S)lt(x)>) -
cM

This is equivalent to <Q(,) - Q(S)j St(x;y)) = 0 for each

Y c F, x e V, y e ker T.

4. Applications. Let S denote the symmetric n x n matrices,

r the positive definite elements of S and D a family of

Wishart probability measures with m > n degrees of freedom having

densities

fy(S) = 
c(y)E91(m- n-1)/2 exp {- 2 tr (Y S))

Theorem 5. If a e F and T:S 4 range (T) is linear, then T

is a sufficient statistic for the Wishart family D if and only

if tr [(Y 1 -.S-1 )K] = 0 for each y e F and K e ker T .

Proof. The preliminary conditions of Theorem 4. are satisfied wzth

-Y = Lebesgue measure on S and the obvious identifications of c(y)

-6-
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and h(S)	 Let H equal S with	 tr(AB)	 t(S)	 S
a	 Z

aad Q(Y)	 y- /2	 Observe that •6t(S;F) = F. and apply Theorem 4.

.Remark: Theorem h,implies that there is a nontrivial linear
M

sufficient statistic if and only if there exists a linear mani-

fold M ^ S such thatY -1 e hi for each Y c 1'

We will now apply these results to normal families of .

probability measures. In Theorem 6. we will state set theoretical.,

algebraic and geometrical conditions, each equivalent to the

condition that T be a linear sufficient statistic for a family

D = {PY I	 Y e r of normal n-vari.ate probability measures having

densities, with respect to Lebesgue measure on Rn

P (x) = (27r)-n/2I,Y1 -1/2 exp 
[`2 

(x-
nY)^nYl(x—in

a

We will assume that for some $ e r , na = 6 and Q, = I

This requirement imposes no loss of generality since for any

B e r there exists a non singular matrix Ni s for which

M S 0 M' = I and a change of coordinate system defined by the

transformation x 4 M 0 (x—rj ) allows one to recover the sufficient

statistic in the original coordinate system.

Theorem 6. If T:R n -+ Rk is a linear transformation of rank k

and D = {PY }	 Y e T is an arbitrary family of n-variate normal

probability measures such that for some B e f	 no = 6 and

R S = Y then the following conditions are equivalent:

-7-
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(1) T is sufficient for V = (PY )	 e r.

(2) ker V C . Q [ker(Q	 n [n
YEr	 Y	 Y

(3) For each y e r

(a) T+Tq Y = rl Y

(b) T+T(R Y- I)	 a 
Y 
-I

where the notation	 denotes the generalized inverse of

Proof: To see that (1)	 (2) observe that the preliminary'

conditions of Theorem 4. are satisfied with v = Lebesgue measure

on X	 n	 Make the obvious identifications for c(y) and

h(x)	 Let Al n denote the n x n real matrices and define

Q: r	 H	 M n x Rn x 	 t : X	 R and	 on H , respectively,

by Q(y)	 (-RY 2, f2 n
Y ,	

S1	 T1 11
Y 	

t(x) = (xx',x, I)
Y	 Y Y 

and <( A 1 pwl p B 1 )I(A2 )W2 3 B2 	tr(AiA2	 1+ W'W2 	 1+ tr(B'B2

Since Q, t and	 satisfy the remaining hypotheses of

Theorem 4. and 6t(x,z)	 (xz' + z-x, z,8	 for each x, z e Rn

it follows that for each y e r

	

ker T C JycRn :x'(sl Y I ) y	 yo$l 
Y Tl

y 	 0	 x e Rn

	

ker (a- - I) n [R	 ker(a -i)n [n
Y	 Y Y	 Y

To see that (2) -*- (3) note that T T is the orthogonal

projection on range (T') = (ker T)' 	 since fl Y e(ker T)

(3a) holds. Furthermore, ker T T ker T C ker (9 -1) implies
Y

range (0 
Y 7

1) c range (T+T) and hence that T + T (a 
Y- 

I)	
Y- I)

which is (3b)

In order to see that (3)	 (1) recall the definition of

Q(y) , t(x) and the fact that 6t(x;z) = (xz'+z -x, Z,

Al



We need dhl show that x'	 -	 ' -	 for eachy	 q -I
( Y }Y 	 [t Yy	 0	 Y e r

x , c X and y e ker T	 Using (3b) and symmetry together with

(3a) it follows that

x'(SI -I)y - n' y = x'O - I)T+ ( Ty ) - n T+(Ty) = 0
Y	 Y	 Y	 Y

We state the following corollary without proof.

Corollary 3. Under the hypotheses of Theorem 6., there exists

a k x n rank k sufficient statistic for {PY } , Y e r if

and only if there exists a rank k orthogonal projection P on R 

such t'._at (a) PnY = n 	 and (b) . P(9Y-I) = SA Y -1 for each Y E r

Moreover, any k x n rank k matrix such that IZ T = P is a

sufficient statistic for (P Y } , y e r.

Corollary 4. If r = {0,	 ,..•, m-11 , no - 6 , no = I and

B ._ [nl 1T121.•.Inm-1191-1 1 t2 2-I .. • In	 1 J then T is a linear

sufficient statistic for the finite family {P Y } , y e r of

n-variate normal probability measures if and only if

range (T') = range (B) . hIoreover, k = rank B is the smallest

integer for which there exists a k x n sufficient statistic for

{P 
'YY	 r.

Proof: The equivalent condition is an immediate consequence of

Theorem 6. The minimality statement follows from the fact that

if T is a p x n rank p sufficient statistic then T +TP = B,

hence, T+TBB+ = BB+	 It follows that range (BB+ ) c range (T+T)

and, sinceJ^	 (BB )B = B, BB+ satisfies Theorem 6.(3) so that k = p .
1

i

w^

^..	 _,.:_.--...-_-.^-..-;i	 _ •—^.:--	 -......nom	 _	 ....	 _,	 ..	 . a ..	
..	 ..
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Example 1. Let xl , x2 , ••• , xn ,• • • be a sequence of univariate

N(u,Q) variables such that the joint density of xl,x2,•••,x n

1.	 i& N(ut n ,S2n) where as = {1,1,••.,1)	 Let {P }	 e R

be„the family of probability-measures having densities N(pEn'R

and T	 e a; l X n matrix.

^w>	 Observe that T is sufficient for { Pu }	 u e R if and

only if TR 
1/2 

is sufficient for the family of probability'
_1 /z

measures { Pu ;	 e R having densities N(uQn 	^ n ,I) and,

according to Theorem 6., that this is equivalent to the condition

that ker T St n C [Stn 	C I	 This is equivalent to	 ^ = anTO

_	 for some scalar an	 A simple calculation shows that
-_	 k

an	
n(TStnn )	 so that the statistic T is sufficient for {P^}

^..	 Z	 _ 1

u e R if and only if T = [(TQn E n )”	 R ]/n	 In particular,

note that T = T( s2 ^ n)..1 ^^
	
is sufficient for { P U }, u c R and the

n

T (xl,•••,xn)' is an unbiased estimate of u for each integer n.

This generalizes the classical result that the sample mean is a

sufficient statistic for u when the samples a l ,x2 , ••• are

independent,

Further note that if T - Cn/n (the statistic T for the

sample mean) is a sufficient statistic for { Pu } ,	 E R

for each integer n , the column sums (row sums) of Stn are
t

-	 identicallyan
	 (CIOn^)/n	 A routine induction argument shows

that, in the latter case, Cov (xi ,xJ ) = constant for i, j,:1,2,•••,

i	 J

Example 2. Let y W WY + e , where W is a fixed m x n matrix

of rank n and e•ti N (0,I), According to the Gauss-Markov theorem,

the minimum variance unbiased x4near estimate of Y is Y = (W'W) W'y

`lQ'"
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l+

Let T = (IV-IV) - I W' and observe that for y e Rn
Z	 1

T'(TT')-tT WY = WY and, since T'(TT') - T=T
+
T,,Theorem	 impliv. T Is it

sufficient statistic for the set of probability measures {Py}

y. a Rn having densities N(IVy, I )

On the other hand, if T is a sufficient linear statistic

for {P7 } , y e Rn such that Ty is an unbiased estimate of y

then, since TW = I , T has rank n . Corollary 4. implies that

n is the smallest integer for which there exists a-linear n x m

sufficient statistic for iP	 Ry}	 n	 Moreover	 T = B(W'L11) ri W'Y e 

for some nonsingular n x n matrix B 	 Since TW = I

T = ( W'W) -I w' .

Since y = Ty , the Gauss--Markov estimate of y may be

characterized as the unique linear sufficient statistic T for

R Y ) , Y e Rn for which Ty is an unbiased estimate of y .

a

i
1

E

--11--

W

'	 t5
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INTRODUCTION

_a	
In this paper 

11  
will denote an n-vari ate normal population

having a priori probability 7r >0 and density pi(x);

Lasing recent results [1] that characterize linear sufficient statistics

we will develop an explicit expression for a kxn compression (.^<n)
_

matrix T for which, using the Bayes classification procedure [2] ,

in which costs of misclassification are tacitly assumed equal on all

classes, X is assigned to lii if and only if TX is assigned to II i . We

will further demonstrate that k is the smallest integer (<n) for

which the latter equivalence is valid and that T can be directly

calculated in terms of the known population means and covariance matrices.

The applications which motivate the necessity for compressing or

reducing the size of a data vector is summarized very well in a review

paper by Laveen Kaval in [3]. Our own interest was motivated by a

need to reduce computational requirements in a large area crop inven-

tory project using multidimensional data taken remotely by near earth

satellites [4].

In all that follows 
ni 

and 
Ei 

will, respectively, denote the

mean and covariance matrix of population Il i , i=0,1,...,m. It is well

known that for each non-singular nxn matrix A and nxl vector a, the

Bayes assignment of x to Ii i is equivalent to the Bayes assignment of

A(x-a) to Ii i , We will later assume that no=o and F. = I. This assump-

tion will impose no loss of generality in the results that follow since

we may set a^no and choose A such that AE 
O
A
T 
=I.

If the latter transformation of variables is necessary, we will not

introduce new symbols for the variate A(X-n o ), the densities pi(Ax-no)



and their associated means and covariance matrices. Whenever Q is

an sxn rank (s<n) matrix, we will denote the s-variate normal

density of Qx by (for population Ii i ) pi(Qx).

PRINCIPAL RESULTS

According to 111, let k(fn) be the smallest integer for which

there exists a linear sufficient statistic (kxn matrix T) for the family

of probability measures having densities p i (x); i=0,1, ..., m. The

results in [11 demonstrate that the sufficiency of T is equivalent

to the conditions:

(l) T+Tnj = nj
m

(2) T+T(Ej -I) = Zj-I

where (•)+ denotes the generalized inverse of (•).

Let M be the nx(n+l)m partitioned matrix

M e [nl^n2^...^nm^^l_IE2-I^...l Em-I]

and let M=FG be a full rank decomposition [5] of M, that is; F is nxk,

G is kx(m+l)m and rank (F) = rank (G) = k. Again, according to [1] and

the latter, k must be precisely the smallest integer (<n) for which

a kxn matrix T can be a sufficient statistic for the given family

of probability measures.

It is well known [51 that M+=G+ F+ and hence that *'= FF} . A

simple computation reveals that TUFT satisfies conditions (1) and (2)

so that FT is a sufficient statistic (of mini,-,ium left dimension) for

the given family of probability measures. We have the following

theorem.



Theorem 1. Let if, be an n-variate normal population with a

priori probability 7i >0, mean ni and covariance E i ; i=0,1,-••,m

(with nQ =o, Eo=I) and let FG=M= [nlfn2 1 ... 
1n ,IEl- IJE2-II...^ Em-I1

be a full rank ( = k<n) decomposition of M. Tien, the n-variate

Bayes procedure assigns x to 1[ i if and only if the k-variate Bayes pro-

cedure assigns FT x to Il i . Moreover, k is the smallest integer for

which there exists a kxn compression matrix T preserving the Bayes

assignment of x and Tx to ,r i ; i=0, 1, ... , m

Proof: Recall that the n-variate Bayes procedure assigns x to

7r  if and only if ,r j p j (x)>,r i p i (x) ; i=0,l,...,m: i^ j (with arbitrary

assignment of x to any of the populations IIkfor which -ff j pj (x) = ,r kp k (x) ).

Let R be any (n-k) x n matrix such that C = R(I-FF}) has rank

n-k and note tha7.r j pj (x) > ,r i p-(x); i=0,1,...,m: i ^j is equivalent to

ll jp j(1c] x) > 7r i p i {[^ ]x); i=0,1,...,m: i,j
T

For any q=0,1,...,m, the n-variate normal density p g([ Ix) has mean

IFTnq ] and covariance matrix:C ng

FTEgF	 FTEgCT

CEg F	 CEgCT

Condition (1) implies Cng=o. Condition (2) implies that I-FFT commutes

with Eq and it follows that CE gCT=CCT and CE gF = o. We may therefore

T
writs pq ([c Ix) as the product of the respective k-variate and (n-k)-

variate densities pq (FTx) and pq (CxIFTx), the conditional density of Cx

given FTx. Since pq (CxIFTx)>0 does not depend upon q = 0, 1, ..., m;

it follows that the n-variate Bayes assignment )f x to 11j; j =0,1,..., m,

implies the k-variate Bayes assignment F Tx to 1Tj. The foregoing arguments

are revOrsible and hence the k--variate Bayes assignment of F Ts to Hi

implies the n-variate Bayes assignment of x to 11 j , completing the proof of

the equivalence. The minimality of k, in the sense that the n-variate

a
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and k--variate .Bayes assignments of x and FT  are preserved, is a con-

sequence of the developments preceding the theorem.

CONCLUDING REMARKS

Clearly the theorem is valid if there is at least one population

with mean a and covariance I, in which case we would label that

population 110	If this is not the case, one would choose some

population, say Tr q , and perform the change of variables x-}A(x-nq)

where Az gAT^I prior to application of the theorem. The appropriate

statistic for compression, in terms of the original variates, would

then be T=FTA-1.

These results completely characterize the nature of data

compression for the Bayes classification procedure in the sense

that k is the smallest allowable data compression dimension consis-

tent with preserving Bayes population assignment and, moreover, the

theorem provides an explicit expression for the compression matrix T

that depends only upon the known population means and covariances.

The statistic T = FT given by the theorem is by no means unique (e.g.,

for any non singular kxk matrix B, T-BFT will do! It is also true

that there may be more efficient methods for calculating the

statistic T (yet to be determined) than the method of full rank

decomposition of M.

It should be noted that the matrix M has an "excellent chance"

of having rank equal to n. Even in the case of two populat i ons (m=2),

there may well be n linearly independent columns among the 2(n+l) columns

of M and, therefore, no integer kin and kxn rank k compression matrix T

preserving the Bayes assignment of x and Tx.



There has been extensive work [61,[ 71,[$],19],[101,[111,[171,[13],

on determination of compression matrices (of a given rank) based upon

criteria that, generally, attempt to describe the relative (to the

-	 variate x) "information content" in the variate Tx (e.g., divergence,

Bhattacharyya distance, Chernoff bound, principal components, Wilks

scatter, etc.) While these criteria provide bases for calculating

compression matrices T, they provide lithe or no means for determining

the degradation in probability of misclassification or sensitivity to

--	 population assignments.

In sampling situation one may choose to replace the columns of the

matrix M by their estimates, that is n j by xj and Ej by Sj . The matrix

defined by the estimate suggest a compression technique based on the selec-

tion of a k dimensional hyperplane which in some sense best fits the

range space of matrix

M = [xlIx21 ... 1Xm lSj - So l ... ism-Sol

where

xo=O and So-T.

We feel that the results in this paper shed some light upon the

subject. In future work we intend to extend these results and the results

of [1] to a related concept of an "almost sufficient" statistic.

7771.,
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1. Introduction

Systems of nonlinear equations can seldom be soloed exactly. Usually,

one must obtain approximations to the solutions of such systems by iteration.

Quasi-Newton methods (also known as variable metric, variance, secant, update,

or modification methods) constitute a class of iterative procedures which may

be regarded as generalizations of the secant method for solving a .tingle

equation in one unknown. Indeed, not only is the quasi--Newton equation (the

equation characteristically satisfied by the iterates produced by these methods)

a direct extension of the equation which defines the iterates of the secant

method, but also these procedures share many of the computational advantages

of the secant method over Newton's method.

Quasi-Newton methods were first introduced in the papers of Davidon [21,

Fletcher and Powell C41, and Broyden Ell. In spite of their recent origins,

these methods have proved themselves in dealing with practical problems and

have become the subject of a large amount of research. The paper of Dennis

and More'C31 provides both an excellent in-depth survey and an elegant unified

development of quasi-Newton methods and their theory as w-iderstood in the mid--

1970 1 s. The main body of this note is a rearrangement and condensation of
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material in 131.

In the following, we first formulate precisely the problem to be solved

and motivate the introduction of quasi--Newton methods by considering the

classical Newton and secant methods and their properties. We then survey
i	 .

three highly successful quasi.-Newton methods: Broyden's method for the

solution of general nonlinear equations, and the Davidon-Fletcher-Powell

and Broyden-Fletcher-Goldfarb-Shanno procedures for unconstrained minimization.

(The last two methods will henceforth be referred to as the DFP and BFGS methods,

respectively.) Finally, we compare the-properties of these methods to those of

Newton's method and UHMLE in potential applications to maximum-likelihood esti-

mation of parameters in mixture distributions.

Z. The problem

We consider the problem of solving F(x) = 0 in an open convex subset

D of Rn under the following assumptions on the mapping F:D -} Rn .

(a) F is continuously differentiable on D.

(b) There is an x* in D such that F(x*) = 0 and

F'(x*) is nonsingular.

Newton's method for iteratively approximating the solution x* begins with

an initial approximation x0 to x* and attempts to obtain improved approxi-

mations by the iteration

xk+l = xk - F' (xk)-'F(xk)	 k = 0,1
1 .. ,

The convergence properties of Newton's method which are important here are

suunrized in the following theorem.
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Theorem: Whenever x0 is sufficiently near x*, there is a sequence

{ak}	 of non-negative numbers which converges to zero and for which
k=0,1,...

(1) Ixk+l - x*1 :5 
ak lxk - x*l	 k = 0,1, ...

` 	 If, in addition to satisfying assumptions (a) and (b) above, F has a derivative

which is Lipschitz continuous at x*, i.e., there exists a K for which

IF' (x) -- F I (x*) I s Klx - x ff I for all x sufficiently near x*, then there

exists a constant R such that

(2) Ix k+1 - x*I 
:5

	 - x# I 2	 k = 0,1, ...

whenever x0 is sufficiently near x*.

A sequence which satisfies an inequality of the form (1) with a sequence

{qck}0 1
	 which converges to zero is said to converge superlinearly. If9 i

a sequence satisfies an inequality of the form (2), then it is said to converge

quadratically. Superlinear convergence is fast; quadratic convergence is very

fast. Since Lipschitz continuity is a very weak assumption, one might say that

the theorem asserts that the convergence exhibited by the Newton iterates is

always fast and almost always very fast.

The rapid convergence of the Newton iterates is the major advantage of

Newton's method. Another advantage is that Newton's method is "self-corrective"

in the sense that xx+1 depends only on F and xk so that bad effects of

previous iterations are not carried along. (Quasi-Newton methods are not self-

corrective in this sense.) Balanced against these advantages is the fact that

Newton's method often requires a great deal of computation at each iteration.

Indeed, the determination of each iterate requires 0(n 2 ) function evaluations

U
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and 00) arithmetic operations. Thus one is led to ask whether there
are methods which retain fast ce -rgence while requiring fewer function

evaluations and arithmetic operations at each iteration.

With this question in mind, consider the secant method in the case

n = 1. This method begins with an initial approximation x0 to X* and

defines successive approximations by the iteration

x  - xk-1

xkfl - xk - F(xk) -- F(xk_1) F(xk) .

One my regard the secant method as being obtained from Newton's method by

replacing the derivative F'(x k) by a finite-difference approximation. A

particular consequence is that the number of function evaluations per iteration

is reduced from two for Newton's method to one for the secant method while the

number of arithmetic operations per iteration is not siMxficantly increases.

It can be proved that, for x 0 sufficiently near x*, the iterates produced

by the secant method exhibit superlinear convergence rather than quadratic

convergence ass in the case of the Newton iterates. Nevertheless, superlinear

convergence is still fast, and experience has shown that, as a general-purpose

algorithm, the secant method is more efficient in total computation time than

Newton's method. This suggests that generalizations of the secant method  to

higher dimensions might be similarly successful.

3. Quasi-Newton methods

Quasi.-Newton methods are generalizations of the secant method which are

applicable to problems of the type at hand involving an arbitrary number of

independent variables. The key properties of these methods are that the



iterates exhibit superlinear local, convergence and that each iteration

^-	 requires n function evaluations and o(n2) arithmetic operations. In

'spite of the fact that quasi-Newton methods do not have the quadratic conver-

gence property of Newton's method, the comparatively small number of function

evaluations and arithmetic operations make them preferable to Newton's method

in many applications.

Quasi-Newton methods have the general form

xk+1 - xk - Bk1F(xk)

where Bk satisfies the quasi-Newton equation.

(3)	 B'k(xk - xk-1) = F(xk ) - "(x k-1).

Note that Bk has the action of a finite-difference approximation to

F'(xk-1 ) in the direction (xk - xk-1 ). Thus quasi-Newton methods in general

boar the same relation to Newton's method as the secant method in the case

n - 1.

It is clear that the secant method is a quasi-Newton method. In fact,

if n = 1, then the quasi-Newton equation determines the scalar B k exactly,

and so the secant method is the only quasi-Newton method in this case. If

n > 1, then the quasi-Newton equation alone does not determine B k uniquely;

hence, there is no unique natural extension of the secant method to the case

of an arbitrary number of independent variables. This lack of uniqueness in

the general case may be regarded as an advantage, for it allows a variety of

quasi-Newton algorithms which may be drawn upon to take advantage of any

special structure which may be present in specific problems of interest.
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When n > 1, one must impose relations between successive matrices

Bk and their predecessors which, together with the quasi-Newton equation,

Y	
uniquely determine these matrices inductively. In general, those relations

are chosen with an eye toward minimizing the computational complexity of the

resulting update formula for determinning Bk+l from Bk, xk, and F while

taking maximal advantage of whatever special structure may be shared by the

particular problems under consideration. Of the three quasi--Newton methods

presented below, the first (Broyden's method) is intended to be a general

purpose algorithm which can be applied to all problems without regard to

^-	 special structure. Consequently, in Broyden's method, 
Bk+l is obtained by

adding a rank--one "correction term" to B k in such a way that the quasi.--
L

Newton equation is satisfied and Bk+l agrees with Bk on the orthogonal

complement of (xkk+1` xk )' In a sense, this may be regarded as the "simplest"

way to obtain Bk+l from Bk in such a way that the quasi-Newton equation is
I

'-	 satisfied. On the other hand, the second two methods (the DFP and BUGS methods)

are designed for unconstrained minimization problems, in which the Jacobian

F'(x) can be expected to be symmetric and positive--definite. Thus the update

formulas for these methods are such that the successive Bk's "inherit"

symmetry and positive-definiteness from the preceding ones. Not surprisingly,

these formulas are more complex than the update formula of Broyden's method.

In fact, in order to guarantee hereditary symmetry and positive-definiteness,

it is necessary in these formulas to determine N+1 from Bk with a

correction term of rank two.



7

4. Broyden's method for general nonlinear equations

Broyden's method is, in a sense, the "simplest" of the most popular

quasi-Newton methods and is intended to be a general-purpose algorithm for

solving arbitrary nonlinear equations. To derive the formula used in Broyden's

method to update the matrices Bk, suppose that, for some k >_ 0, one has

arrived ut x  and Bk . Then xk+l can be generated by the formula

xk+l - xk 
_ 
Bk

1 F(xk) .

Our objective is to use x k, xk+,, Bk and F to update Bk in the

"simplest" way to obtain a matrix Bk+1 
which satisfies the quasi-Newton

equation.

For convenience, we adopt the following notation:

Xk _ x, Bk 
J B, Bk+1 - B, xk+l - x  = S. F(xIC+l) - F(xk) = Y.

In this notation, the quasi-Newton equation which we wish Bk+l to satisfy

is Bs = y. This equation uniquely specifies the action of B in the

direction of s. Since there is no apparent reason for B to differ from

B on the orthogonal complement of s, it seems reasonable to impose on

the condition that Bz = Bz for all z such that z s = 0. It is easily

verified that there is a unique B which satisfies both this condition and

the quasi-Newton equation. This 	 is given by the formula

3 = B + 
(y - Bs)sT

1s]2

Note that B and B differ by a rank-one operator. Restoringr, subscripts,

we obtain the iteration forwlas for Broyden's method:

J ^^
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xk+l - xk - B;'F (xk )

(yk -- Bksk)sk
+1 - Bk ^	

Isk i2

where y  = F(xk
+1) - F(xk) and s  = xk+l r xk

Does Broyden ° s method exhibit the key properties attributed to quasi--

Newton methods in the preceding section? It can be shown that if x0 and

B  are sufficiently near x* and F'(x*), respectively, then the Broyden

iterates are well -defined and converge superlinearly to x*. (The proof is

rery involved, and we omit it.) Also, it is clear that, for a given value of

k, the determination of 
xk+l 

and 
Bk+l 

requires only the n function

evaluations necessary to specify F(x k+l ), assuming that F (xk) can be

provided from storage. Finally, it is evident that, for a given k, xk+l

and Bk
+1 can be determined with 0(n2 ) arithmetic operations if Bk1F(xk)

can be evaluated with 0(n2 ) arithmetic operations.

There are two ways of evaluating Bk1F (xk) with 0(n2 ) arithmetic

operations, both of which require information about Bk`l . The first way is

based on the Sherman-Morrison formula C81 and produces B
_1 

from 
B71 

with

0(n2 ) arithmetic operations in the following way: write

3 =8^ (y"Bs)s T ^ B +uvT,
Isle

T
where u = (y -- Bs) , v = s	 ; then

1s {2

B_1 = B--1 _	 1	
B-1uvTg 1

1 + <v,B-1u>

s
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The second way is based on a special factorization procedure due to Gill

-and Murray C51 which begins with a factorization B = QR and yields a

factorization B = Q R with 0(n 2 ) arithmetic operations. (Here, Q and

Q are orthogonal and R and R are upper-triangular.) Since an n-dimensional

linear system whose coefficient matrix is factored in this way can be solved with

0(n2 ) arithmetic operations, this allows the evaluation of the terms Bk1F(xk)

with 0(n2 ) arithmetic operations as desired. For reasons of numerical stability,

the Gill-Murray factorization procedure is generally preferable to the method

using the Sherman-Morrison formula.

5. The DFP and BFGS methods for unconstrained minimization

For the purposes of this note, the basic problem of unconstrained minimization

may be regarded as the problem of solving	 Of(x) = 0 in an open convex subset	 D

of	 Fin, 	 where f is a nonlinear functional from D to	 R1 .	 Clearly, this

problem is of the type introduced in Section 2, with cif playing the role of F.

The special feature of this problem is that the Jacobian of the function whose

zero is being sought is actually the Hessian V 2f, a.iiia.triz which is certainly

symmetric. In fact, in most problems of practical interest, 02f is positive-

definite near the ndrirrum of f.

it seems reasonable to require that the matrices Bk appearing in a quasi-

Newton method applied to an unconstrained minimization problem be symmetric and

positive-definite. Since each Bk is to be determined from its predecessor

by an update formula, it is reasonable to impose conditions on the update formula

which guarantee that symmetry and positive-definiteness are inherited by the

successive matrices Bk . Unfortunately, imposing hereditary symmetry as well as

the quasi.-Newton equation completely determines a rank -one update formula, and

'-- -	 -	 -	 - n -	 _	 w
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this formula eloes not guarantee hereditary positive-definiteness. Consequently,

one is led to look for rank-two update formulas which insure that the successive

matrices Bk inherit symmetry and positive-definiteness.

A general rank--two update formula which guarantees hereditary symmetry

_	 is the following:

B = B + (y - Bs)cT + c(y - Bs) T - <y - Bs,s> cc 

<c,s>	 <c,s> 2

where c is any vector in Rn such that <c,s> r 0. A "natural." choice of

c which insures hereditary positive-definiteness whenever <y,s> > 0 is

c = y. (Since <y,s> z <V2f(x*)s,s> near x*, one expects <y,s> to be

positive near x*.) The resulting update formula is that used in the

Davidon-Fletcher-Powell (DFP) method. Denoting by BDIT 
the updated matrix

obtained from B by applying this formula, one has

-llFP = B + (Y - Bs)y
T
 + y(y -- Bs) T - <y - Bs,S>yyT
<y,s>	 <y,s>

T	 T	 T
_	 ys	

+
sY	 YY

(1 - <yIs>)B(I 
r <Y,s>)	 <Y,s>

As with Broyden's method, one can show that the DFP iterates converge

superlinearly to x* whenever x 0 and B0 are sufficiently near x* and

O2f(xk ), respectively, and that each iteration requires n function

evaluations and O(n` ) arithmetic operations. Although the DPP update

formula is a bit more complicated than the Broyden update formula, experience

has shown that the DFP method is generally superior to Broyden's method for

problems in unconstrained minimization.
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At the kth iteration, both Broyden's method and the DFF method

require first the determination of Bk1F(xk) and then the updating of Bk.

It is natural to ask whether a more efficient method might be obtained by

applying; an update formula directly to Bk1 . If we denote B ^ by H

and B--1 by H, the quasi-Newton equation Bs = y becomes s = F^y-

Carrying out a development completely analogous to that leading to the DFP

update formula yields the update formula of the Broyden-Fletcher-Shanno-

Goldfarb (BFGS) method. Denoting by HBFGS 
the updated matrix obtained from

H by applying this formula, one has

syT 1H(I _ ysT	ss^

	

HBFGS - {I - <Y,s>"	 <y,s>)	 <Y,s>

It is not difficult to see that, as in the case of the DFP update, this

update adds a rank--two correction term to H and guarantees hereditary symmetry

and, if <y,s> > 0, positive-definiteness. Again, it can be shown that the

BFGS iterates converge superlinearly to x* wherever x 0 and HO are

sufficiently near x* and 02f(x*) -1 , respectively. It is clear that each

iteration requires n function evaluations and 0(n2 ) arithmetic operations.

The BFGS method is not the same as the DFP method. In fact,

HBFS (-DFP)-1 + vvG 

	

where v = <y,Hy>1/2t<Ssyy - <yHy-^y>^	 According to [31, there is "growing

evidence that BFGS is the best current update formula for use in unconstrained

minimization".

--	 - 12	 u
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6. A potential application

We conclude this note by comparing the properties of quasi-Newton methods

to those of Newton's method and UHMLE in a potential application to the

problem of obtaining maximum-likelihood estimates of the parameters in mixture

distributions. Such estimates, of course, play a fundamental role in certain

approaches to signature extension, estimation of proportions, and clustering.

For a description of the UMLE algorithm, see 161 and 171.

Let X be an n-dimensional random variable with probability density

function

M
p (x) = Mai pi(x)

where
T 1

and the proportions afl are positive and sum to 1. Suppose that {x }k k=1,...,N

is a sample of independent observations on X. By a maximum-likelihood estimate

of the parameters {a 0 , Pi, Ei }i=1	 m , we mean a choice of parameters

{ai' ui' Ei }i=1

	

	 m which locally maximizes the log-likelihood function

N
L = k Z 1 log p(xk)

regarded as a function of the parameters {ai, pi , Ei }i=1	 m . It is known

that, loosely speaking, there is a unique strongly-consistent maximum--likelihood

estimate.' (See 171 for a clarification and proof of this statement.)

The problem which we consider here is to approximate numerically the

strongly-consistent maximum-likelihood estimate. This is potentially a very
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difficult problem. Indeed, the number of independent variables is

(m - l) 4- mn + m n(+l) , a number which may be very large. Furthermore,

the evaluation of functions derived from the log-likelihood function usually

involves summation over the entire sample of N observations and, hence, is

a source of computational difficulty when the sample is large. In the table

below, we list the key properties of UHMLE, Newton's method, and quasi-

Newton methods when applied to solving likelihood equations obtained by

differentiating the log-likelihood function. It should be noted that, in

addition to the arithmetic operations listed in the table, each method requires

at each iteration the evaluation of the functions p i (xk), i = 1,...,m,

k = 1,...,N.

METHOD	 CONVERGENCE	
ARITH =C OPTIU^ATIONS

PER ITERATION

UHMLE	 Linear	 0(mn2N)

Newton's Method 	 Quadratic	 0l(m2n4N) + 02(m3n6)

Quasi-Newton Methods	 Superlinear	 01(mn2N) + 02(m2n4

Of course, many factors must be considered in addition to convergence

rates and the amount of arithmetic per iteration when deciding what sort of

algorithm is best suited in a particular instance for application to the

problem under consideration. ;.,'or example, UHMLE is a type of gradient

method; hence, one might expect Uh IE to enjoy the relatively good global

convergence behavior usually associated with gradient methods. Furthermore,

gradient methods are often competitive in speed of convergence to Newton's

method and quasi--Newton methods when only "ball-park" approximations to the
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solution are desired. Since the nearness of the rraximum-likelihood estimate

to the true parameters will be limited by the variance of the sample obser-

vations, "ball-park" approximations will certainly suffice except, perhaps,

in the case of a very large sample.

It is difficult to predict circumstances in which the advantage of mast

convergence for Newton's method and quasi-Newton methods will outweigh the

disadvantage of having to perform a great marry arithmetic operations at each

iteration with these methods. However, it should be noted that if N is

very large relative to m and n, then the number of arithmetic operations

per iteration required by quasi.-Newton methods is comparable to the number

required by UHMLE. Also, if N is very large, one might rea.onably want

to obtain very accurate approximations of the maximum-likelihooi estimate,

in which case the superlinear convergence of quasi-Newton methods is clearly

preferable to the linear convergence of UHMLE. Consequently, if N is very

large relative to m and n and if particularly accurate approximations of

the maximum-likelihood estimate are desired, then quasi-Newton methods appear

to have a clear-cut advantage over UHMLE. In such circumstances, one might

retain the good global properties of URCE by employing a hybrid method

which initially behaves like UFML,E and then behaves increasingly like a

quasi-Newton method as the iteration proceeds.



BIBLIOGRAPHY

1. C. G. Broyden, "A class of methods for solving nonlinear simultaneous

equations," Math. Comp. 19 (1965), pp. 577-593.

2. W. C. Davidon, "Variable metric method for minimization," Rep. ANL-5990

Rev. (1959), Argonne National Laboratories, Argonne, Illinois.

3. J. E. Dennis, Jr., and J. J. More, "Quasi-Newton methods, motivatirin

and theory," SxAM Review 19 (1977), pp. 46--89.

4. R. Fletcher and M. J. D. Powell, "A rapidly convergent descent method

for minimization," Comput. J. 6 , (1963), pp. 163-168.

5. P. E. Gill and W. Murray, "Quasi-Newton methods for unconstrained

mi nimi zation," J. Inst, Math. Appl• 9 ( 1972), pp . 91-108.

6. B. C. Peters, Jr. and H. F. Walker, "The numerical evaluation of the

maximum-likelihood estimate of a subset of mixture proportions,"

University of Houston Math. Dept. Tech. Report No. 50, Contract NAS -9-

12777 (197 6 ).	 ` t

7. B. C. Peters, Jr., and H. F. Walker, "An iterative procedure for

obtaining maximum-likelihood estimates of the parameters for a mixture

of normal distributions, II," University of Houston Math. Dept. Tech.

Report No. 51, Contract NAS -9-12777 (1976)•

8. J. Sherman and W. J. Morrison, "Adjustment of an inverse matrix

corresponding to changes in the elements of a given column or a given

row of the original matrix," Ann. Math. Statist. 20 (1919), p. 621.



ON Nth ROOTS OF POSITIVE OPERATORS

D.R. Brown and M.J. O'Malley
Department of Mathematics

University of Houston
Houston, Texas 77004

Report #68

February 1978



REPRODUCIBILITY OF THE
ORIGINAL PAGE IS PGGP^

ON N-th 1ZC)OTS OF POSITIVE OPERATORS

by D.R. Brown and M-1. O'Malley1

A bounded operator A on a Hilbert space H is positive

provided <Ax,x r > 0 for all x e H. These operators are

symmetric, and as slich constitute a natural generalization of

non-negative real diagonal matrices. The following result is

thus both well known and not surprising:

Theorem: A positive operator has a unique posi:i.ve square root

(under operator coutposition).

This may be established by integration of the correct

function, invoking the spectral theorem for self-adjoint operators.

A mry re accessible argument for those not acquainted with the mysteries

of spectral measures may be fec und in ,1, p. 3171.

While square roots and their iterates seem to provide a sufficient

analytic tool for most purposes, it is also a (folk) theorem that

positive operators passcGs unique positive I t-hr- roots for every

positive integer n. As !it 	 n = ? case, existence follows from an

applicatinn of the spectral theorem; however, we give an argument in the

spirit of f1.1. The purpose in so doing is not to exercise the r•aader's

knowledge of indnetion, !)tit rather to illustrate anothor use v.h the Law of

the Meap as a motivational instrument.

1) Both authors received partial support under NASA contract NAS-9-15000.
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Lot I be the identity operator on H, and let B(H)

denote the set. of bounded operators on H. We will need

the following properties of positive: operators.:

(1) the relation on positive operators defined by A < B

if and only if B - A ' is positive, is reflexive,

transitive, and consistent with the notation ~	A

for any positive A; moreover, this relation is pre-

served by operator addition and positive real scalar

multiplication, and reversed by negative scalar

multiplication.

(2) If A and B are positive and if AB = BA, then AB is

positive.

(3) If 0	 A j 1, then 0= I-A j I.

(4) If 0 w A, then A n IIAIII,	 so that	 (IIAII) l A < I, if A x 0.

n
(5) If 0 = A ^ I, then A _ A for all positive integers n.

We also require:

Lemma. If An) is a sequence in B(H) such that 0 1 S  _ Sn+l

` 1, then there exists S c B(H) such that All u) -r Su for

all u e H.

All of the conclusions above are verified by straightforward

arguments in rl,pp. 317-3201.

Theorem! Let A r B(H), 0 = A, and let k be a positive integer.

Then there exists a unique~ positive operator B such that B k = A.

Proof: By (4) above, we need only consider the case in which A ! I.
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We first prove the existence of R. Since the theorem is a tautology

°	 for all operators when k = 1, we assume the existence of positive
I

(k-l)-st roots for all positive operators.

Under the momentary supposition that 8 exists, let

R= I- A and S= I- B. Than	
k

(I - 5) = I - R, so that

k
{*)	 S = (1/k) f 	 + rE Z (r) (-1) rS r 1 .

Clearly the existence of a positive operator satisfying this

implicit relation is necessar y and sufficient to establish the

existen(.,! of the desired operator B. To this end, we define a

sequence of operators by S o = 0, Sn+1 = (1/k) [R + r ? z { rr (-1) rSn7 .

In order to.show S  r. 
S1i+1 

it suffices to show, under the :assumption

0 '^ Sn-1 ^5 S  1 I, that 0 - Sn+1 - S 1

(1/k) CrE2(s} (-1)r(Sn - 5n-1)) .

To accomplish this, we digress to a considerati , n of the

-	 k'
polynomial f(x) = rE 2 (r)(-1) r xr = (1-x) k + kx - 1. Since

Since f'(x) = k C? -- 0 - x) k-1 I >. 0 on [0,11, clearly f is

increasing on this inrerval. To translate this to operators, it is

necessary to examine the sjtuation more carefully. By the Mean Value

Theorem, given 0 < y < r. < 1, there exists a (unique) number c e (y,z)

such that

( *)	 f (z) - f (y) = f , (c) (z - y)	 .

Upon solving, c = 1 -	 (1/k) -1{1 - y)k-r-l(1 - z)rl
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Returning to our operator problem, we wish to apply this

information Lo the sequence {S }.
R	

Since all members of this

family are polynomials in R = 1 - A, any two of them commute.

This is a property sufficient to permit imitation of equation {**)

with operators; let z = S 	 y = S 	 this format, we use C

to represent the operator I - J, where J is (any) positive

k-1
(k-1)st root of tho operator (1/k) r E (t - Sn-1)k-r-1(I - Sn)r.

The following chain of equalities is easily calculated;

S n+l - S  = (
1/0-MS 

n ) - US n-1 A

= (1/k){k{I - (I - 
0 k-lI 

W S n - Sn-1)

[I - (I - C)
k-1

I
,
(S n - Sn-1)

[I - 
Jk-11-(Sn - Sn-l)

[1 - t(1/k) 
k-1 

(I-s	
)k-r-1( I-s ) r }] • ( s -	 )A)	 n-1	 n	 n	 n-1

By application of remarks (2), (3) and (5), the assumption of

existence of (k-1)st roots, and the inductive hypothesis Sn-1 5 
SW

the latter operator product exists and is positive. Hence S  ` Sn+1'

and the sequence iS n } is increasing. Of course, the Law of the Mean

is not applicable in this setting, nor is it used other than to motivate

the choice of C. Indeed, the discerning; reader will note that the

extremes of the chain above may be shown to be equal without the

introduction of C. However, the rather unusual factorization of

Sn+l - 
S 
	 would be more difficult to discover without the example
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To invoke the lemma and complete the proof of existence of

kth roots, it remains to show S i, _ I for all n. Assuming

0 1 Sm < I, we have kSm+I = R + r 2 (r)(-1) r Sr = R - I + W + (I - Sm)k.

By remark (5), (I - S ) k < I - Sm ; therefore

R+kS - I+Q - S )'	 ^R+kS - I+I - S
m	 m	 m	 m

T I •+- (k-WS < kI. Hencem

kSM+l s kI and Sm+l < I, as desired. Thus, the Lemma gives an

operator as in (*), and I - S = B is a kO root of A.

In order to prove the uniqueness of a positive k th root of A,

we first observe that if T is any positive 
kth 

root of A, then T

must perforce commute with A, hence with I - A = R, hence with each

Sn) and thus with S and I - S = B. Let u e H, v = (B-T)u.

k k	 k-1 k-r-1 r	 k7l	 k-r-1 r
Then 0 = <(B -T )u,v = ( rX B	 T )(B-T)u,v = r=0 B 	 T v,v

Since B and T commute, 0 .. B k-r-1 T r	 k-r-1, r
_	 whence < B	 T v,v > = 0,

r = 0,1,...,k-1. Let F
r 

be any positive (hence symmetric) square root

of Bk-r-1
Tr . Then I F F r y I ; ` = < F r v, F ry > = < Frv, v > = 0, so that

F v = 0 and Bk-r-ITry = F 
2 
v = 0. Therefore B

k-r-1 T r
(B-T)u = 0.

r	 r

or Bk-r,Tru = Bk-r-lTr+I11, r = 0,1,...k-1. 	 In particular, for

r = k-1, BT 	 = Tk . Multiplying by T, we have B
k+1 

= BA = HTk = Tk+1.

If k = 2, the argument above shows B y = 0 = Tv, whence

j j (B-T)u j j2 = < (B-T) 2u,u -• = < (B-T)v,u > = 0. Hence Bu = Tu for all

U E H, and B is thus unique. Now assume all positive roots, of order

less than k, for positive operators are unique. IE k = 2j, then

(Bi ) 2 = B.2j = B  = T  = (Tj ) 2 , whence Bd = Tj and thus B = T. If

k+1	 k+1
k is odd, we have shown above that B 	

_ ,T 	
so, by the even



=1	 6 .

exponent argument, again B	 T. This completes the proof.
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A FIXED POINT THEOREM FOR CERTAIN OPERATOR VALUED *LAPS

by D.R. Brown and M.J. O'MalleyI

1. Introduction. Let H be a real Hilbert space, and let B 1 (H) denote

the space of symmetric, bounded operators on H which have numerical range

in [0,1], topologized by the strong operator topology (that is, the topology

of point-wise convergence). It is well known 131, that if T e B 1 (H), then

there exists a unique S c B 1 (11) such that 5 2 = T. We represent S by

1^
T . The following theorem is due to John Neuberger [2].

Theorem A: Suppose w r. H, P is an orthogonal projection on H, and L is

a (strongly) continuous function from 11 into 13 1 (11). Let Qo = P, and set

Qn+1 - Q^L(Qnw)Qn, n = 0,1,2,... . Then [Qn
}
n=o converges to an element

f,

Q e B l (H) for which z = Q 2w is a fixed point of P and a fixed point of L

in the sense that L(z)z = z.

In this paper, under the same hypotheses as Theorem A, we develop a

family of Neuberger-like results to find points z E 11 satisfying L(z)z = z

and P(z) = z. This family includes Neuberger's theorem and has the additional

property that "most" of the sequences {Q
n } 

converge to idempotent elements

of BI W. The limit operator of Theorem A need not be idempotent.

Such theorems as those above not only play a valuable role in the search

for numerical solutions of partial differential equations, but are also useful,

in the finite-dimensional case, in attacking the problem of determining the nonzero

1 Both authors received partial support under NASA contract NAS-9-15000.
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I

fixed points of a function ^:It n 34tH . In particular, if x E 4^.n- {0;, then

x is a fixed point of 0 if and only if A(x)x - x, where A is the matrix

valued function defined by A(x) 	 I x I 1 ')• 0( x).(xT), In fact, it follows

that this can occur if and only if A(x) is a nonzero symmetric idempotent.

It is a pleasure to record our indebtedness to H.P. Decell for the remark

immediately above, and to several other members of the University of Houston

Mathematics Department, particularly Phillip Walker, for helpful conversations

regarding the preparation of this paper.

2. Fixed Points of L(z). Recall that an operator is positive if <Ax,x> ? 0

for all x E H, where < , > is the inner product of H. We presume familiarity

with the standard properties of positive operators as set forth, for example,

in [3]. By invocation of the Spectral Theorem, or, alternately, by a sequential

construction, it is possible to provide, for any T e B 1 (H) and any positive

integer n, a unique operator TIN t B I (H) such that 
AIN )

n W T. This notion

extends immediately to arbitrary positive rational powers of T by defining,

Tr/s = (Tl/s)r	
Moreover, by again appealing to the Spectral Theorem, it follows

that if {Q	 is a sequence in I I (H) converging; strongly to Q, and t is an

arbitrary positive rational numbe=r, then IQ 
itJ
i converges strongly to Qt.

Finally, recall that the usual quasi-order defined for positive operators by

A g B if and only if B - A is positive satisfies an additional anti-symmetry

condition, to wit: if A and B are positive and commute, then A < B and

B <_ A forces A = B.

Q ^G NAL PAGE IS ROM
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Lemma 1. Let Q e B
1
 (H)and Iet a be a positive rational number other

than 1. If Qa w Q, then Q = Q 2 ; that is, Q is an idempotent.

Proof: Let a = r/s; the presumed equality is equivalent to Q r = Qs . Without

loss of generality, assume r < s and that r is the minimal positive power

--	 of Q which reoccurs in the sequence {Qn}. From the fact that powers of an

operator descend in the quasi--order mentioned above, together with the limited

anti—symmetry of this relation, it follows that Q t = Q 	 for all integral t

between r and s. From Qr = Q
r+l , it follows that Q t = Qr for all t ' r.

(r+l)/2 2	 r+l	 2r	 r 2
If r is odd, then (Q	 } = Q	 = Q	 = (Q )	 By uniqueness of square

roots, C} r = Q(r+l)/2, whence r = (r+l)/2 and r = 1. If r is even, then

r/2 2	 r	 r 2
(Q	 ) = Q = (Q )	 whence r = r/2, which is impossible for positive r.

Thus r = 1 and Q = Q".

We are now ready to prove our

Theorem 2. Let w E H, let P be an orthogonal projection on H, and

let L:H---*B1(H) be strongl y continuous. Let a,S be positive rational

numbers with a e [4,-). Set Qo = P, and let Qn+1 = QnL(Qnw){n: n = 0,1,2,...

Then {Qn }m=o ' is a decreasing sequence of elements of B (H) which converge

to an element Q E B I (H) such that

(1) if a > 4, then Q is idempotent and z = Qw satisfies

L(z)z = z, and Pz = z, and

(2) if a = Q and S 2 4, then z = Q 
5 w satisfies LOA  = z and

Pz = Z.

Proof: Fix a	 and 6	 4. Since 
00 

= P E B (H) and the range of L
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is in BI (H), it follows ind

2a ? 1, Q 2 < Q ; moreover,
n	 n

<Qn(I - I.(()nw)Qnx,x- = <.0 -

uctiveIy

< (Q2" .

L(Q Rw) )

that Qn E BI (H) for all n. Since

Qn+l)x'x> = 
<(QnCE - 

QnL(QBw)Qa)x,x>

^nx,Qax>. Thus, since I -^ L(Q 8w) ? 0, it

follows that Qn+1 "^ Qna ' Hence we have

( )	
Qn+] s Q2ct t Qn ^ n = 0,1,2,... .

In particular, the sequence 
IQn} 

is monotonically decreasing in the (operator)

interval from 0 to I. Thus we have by (3, p.3181 that the sequence { Q }
n

converges strongly to an element 0 e 31 (H), whence {Qn	a1 converges to Q

and I Qn ) converges to Q Q . Since L is continuous and operator multiplication
n

is jointly continuous in the strong topology on B 1 (H), we have by uniqueness

of limits that Q = Q
cc
L(Q^w)Qa . Also, from (*) and the closed graph of the

relation <, we have Q	 Q 2 Q. Thus, since Q and Q 2 commute, we

have that Q = Q2a . Moreover, since P = ^?	 we have PQ = Q , whence009 	 n

PQY = Q 	 for all positive rational y.

(i) Suppose a >	 By lemma 1, Q = 0	 from which it follows that

Q = Q 	 for all positive rational y, and, in particular, 0 = QL(Qw)Q.

Let z = Qw, and fix x c If. Then <Qx,x> = <QL(z)Qx,x> = <L(z)Qx,Qx>,

and since Q 2 = Q, it follows that 0 = <Qx,Qx> - <L(z)Qx,Qx> = <(I - L(z))Qx,Qx>.

Therefore, since I-L(z) and hence (I-L(z) ) ,` belong to B 1 (I1), we have that

Q = L(z)Q. In particular,

(ii)	 Suppose 11 = ''i, ;3

which <Qx.,x> = <Q L(z)QAx,x>

we have 0 = <Q^x-L (z) Q 'x , Q 'x>

Ow = :,(z)Qw	 L(z)z.

'^. Let z = Q^w;	 tlien Q : Q ,L(z)Q 5 from

<L(z)QF^x,Q^ix>. Since <Qx,x> = <Q x,Q"x> also,

i

<(I-L(z))Q^x,c)`x>. Now, as in (i), it follows
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that Q^ = L(z)Q^. In particular, z = Q aw = Q )^Q S-^w = T,(zOQa ^w

L(z)Q w = L(z)z. That Pz = z in both cases is obvious from the fact that

PQY = Q 	 for all positive rational Y . This completes the proof.

Given a nonzero element z F H such that L(z)z = z, it is reasonable

--	 to ask if our sequences are able to produce z. We note now that, by proper

selection of w and P, z is attainable from each of our sequences,

Specifically, if a and a are fixed as in the theorem, then let w = z

and let P be the orthogonal projection of H onto the line through z.

From the construction of the sequence {Qn), Q 1	PL(z)P, whence Q  = P.

If follows immediately that Q  = P for all n and thus Q = P. Hence

z = Qw = Pw (or z = Q 
8 
w = Psw = Pw) is the fixed point yielded by our theorem.

While it is not reasonable to expect the praticioner to guess P so

accurately, these remarks do attach the virtue of theoretical completeness to

these processes.

3. Examples. (1) Suppose that a = i and that y, d 6 [',-) such that

neither of y, d is an integral multiple of the other. We show that for fixed

w e H and P, the Q and z obtained by using y for ^ need not be the

same as those obtained by using S (or S. Moreover, the limit operator Q in

this case need not be an idempotent, although it can be one. Assume d < Y•

Let k be the least positive integer such that y < kd. Note 2 :S k and

(k-1)6 < y. Let a be any number in the interval (0,1). Then

akd < ay <'a (k-1)6< 
aS.



b.

0ef ine L: R---- )[0,11  by

1 , •	 x _i ay

L(x) =	 f (1-•a)/(ay-a(k-1)6)]• (x-aY) + 1	 ay <_ x	 a (k- 1)e$

---	 {k-1}S
a	 a	 `- X.

Set P = 1, w = 1. using y for (3 in the theorem yields Q.
	 Qi
= 1 and	 = a.

Inductively, Qn = a, so that Q = a. Bence z = Q yw = ay 1 = ay in this case.

On the other hand, using 5 for A gives Q. = 1, Ql = a, but Q. = a 2 ,...,A = ak.

Moreover, Q = ak for n	 k, hence q = ak and z = Q
6
  = akd• 1 = aka'. By-	 n

the choices of a and k, the exponents 	 and d yield distinct operators

and distinct fixed points. Moreover, neither of the limit operators determined

by y and S is idempotent.

(2) Suppose that a > Q, so that any limiting Q obtainQd through the

theorem is idempotent. We show for Fixed w t. H and V, that the resulting

limit idempotents may vary with the choice of 5, as may the fixed points

determined in this manner. To this end, let a = I in the theorem. Let

L:R3 ^B 1 (R 3 ) be as ,fullows: all image matrices are diagonal, wherex 0 0 will
0 y 0
0 0 z

be represented as diag(x,y,z). We require L(1,1,1) = d090,43),

L(1, !i,l) = diag(l,'^,'•z), I.(1,':;,1) = diag('-u&l), L(l,y,z) = diag(l,y,z) 	 for

( y ,z) E 10,41 x [O,41,	 and	 I. ( x , y ,l) = diag(x,y,l)	 for	 ( x , y ) C [ 0 + `^] " ^' +`=]

The extension theorem of Tietze (c.f. [1]) permits a continuous extension of

L to all of R3 into Ae diagonal matrices whos=e entries are in the interval

[0,1]. Let P = I 3 , the identity operator, and let w be the vector

If B = Q, a brief examination of the defining sequence of Q
n
's in 'Theorem 2

—^ —
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shows that the limit idempotent Q = diag(1,0,0), and z = Qw = (1,0,0). On

the other hand, if 	 = 1, then limit Q = diag(0,0,1), and z = (0,0,1).

(3) With notation as in (2), suppose 	 1 is fixed. We show for

fixed w F- H and P, that the resulting limit ir;empotents may vary with a,

T
as may the fixed points determined in this manner. Letting P = I 3 and

w = (1,1,1) as in (2), we require this time that L(1,1,1) = L(1,^,1)

-	 diag(l,'1,1), L(1,1/8,1) = L(1,0,0) = diag(1,0,0),. and L(1,1/32,1) = L(0,0,1)

diag(0,0,1). Extending as before, we have a continuous L defined on R 3 into

the diagonal matrices with entries in (0,1]. For any choice of a,

Q 1 W diag(1,^,1). If a = 1, Q 2 = diag(1,1/8,I), Q 3 = ^Zn = Q = diag(1,0,0),

z = (1,0,0). On the other hand, if a = 2, then Q, ) = diag(1,1/32,1), Q = Q
11si

Q = diag(0,0,1), z = (0,0,1).

It is easy to see that a slightly more complicated definition of L would

yield a single example incorporating the features of all three prior illustrations.
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