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likelihood estimates of the parametgrs {ai,u N %

samples of two types. :Sampleé of'both'types consist of sets {K }

The Numerical Eﬁaluation of Maximum-Likelihood
Estimates éf the Parameters for a Mixture of Normal Distributions

from Partially Identified Samples

by

Homer ¥, Walker _
Department of Mathematics, University of Houston

Houston, Texas 77004

1. Introduction.

Let ﬁl,,..,wm be populations whose multivariate observations in R o
are distributed with respective normal density functions
1 o, T.o-1, o
1 e— Z(X_]J'i) zi (x Ui) {=1 n
u/2y.011/2 ? T
em™ 1% / |

p;(x) =

If T is a given mixture of members of these populations, then observations

on 7 are distributed in JR ® with density function
. % o
p(;) = ;L a;p. ()

for an appropriate set of proportions {ag}i_l m " These proportions
e A ]
m : s
necessarily satisfy 'iél ag'= 1 and .ag 20, i=1,-,m. In this note, we
o . . -
also assume that each o, 1is strictly positive.

We address here the problem of numerically ap?roximating the maximum-

i"l,...,m determined by

ik k=1, N

L me




A e

L3 }
1k k=1, .0.,N5
i=1,...,m, comprise the identified observations of such samples, and such

of independent observations on ., 1 = 0,...,m. (The sets {x .

.samples are said to be partially:identified.) We distinguish samples of the

two types according to whether the numbers Ni of identified observations

) , ' . o . '
contain information about the proportions ai, i=1,...,m. If the numbers
of identified observations contain no information abOut the proportions,
then the sample is of the first type; otherwise, the éample is of the second
type. The following are examples of how samples of the first and sccond
types, respectively, might be obtained:
(1) For i =0,...m, numbers Ni are arbitrarily choosen and independent

observations {x. .} are obtained from ..

1k g=1,-,Ny i
- b q

(2) A number K, of observations are obtained from Ty For some NU < Ko,

No of these observations are left ﬁnidentified; while the remaining

K, ~ N, observations are identified. For i = 1,...,m, a subset
{xik} of the identified observations is determined whosu

k::l’I'. ’Ni
member observatlons come from Wi.
In the following, we consider likelihood equations determined by the
two types of samples which are necessary conditions for a maximum-likelihood

estimate. These equations, which were derived by Coberly [1], suggest certain

successive—approximations iterative procedures for obtaining maximum-likelihood -

estimates. These procedures, which are generalized steepest ascent (deflected
gradient) procedures, contain those of Hosmer [2] as a special case. Using

argument s that parallel those of [3], we show that, with probability 1 as

3

L Y. "
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Novvapproaches infinity (regardless oﬁ the relative sizes of NO .and

Ni’ 1= 1,...,?0, these procedures converge locally to the strongly
cdnsistent maximum-likelihoéd estimates® whenever the step~size is between
0 and 2. Turthermore, the value of the step-size which yieids optimal
local convergenhce rates is bounded from below by a number which always lies

between 1 and 2.

2., Samples of the first type.

We first assume that numbers {N,} are given and that, for
1 i=0,...,m
1=0,....m, N, independent observations {xik} are drawn on
k=Ll,...,Ny '

. The log—-likelihood function for a sample of this type is

. N _
m
L (0) l kzl 1og P; (K. ) + 2 log p(x } .

In this expression, the parameter vector © (with components @, M, X

3
<

i=1,...,m) belongs to the vector space 6{@5Hhtg defined in [3], and

i

the density functions on the right-handvside are evaluated with the true

0

0 . o] Q
parameter vector & (with components ui’ H. Ei

s 1=1,.,..,m} replaced

by O.

*As in [3], one can show that, given any sufficiently small neighbor—.

‘hood of the true parameters, there is, with probability 1 as NO approaches

infinity (regardless of the relatlve 51zes of N and N , L =1,...,m), a

‘unique solution of the likelihood equatlons for e1ther type of sample in that

neighborhood, and this solution is a maximum-likelihood estimate.




i : Differentiating Ll(Q) and setting its partial derivatives to zero

gives the likelihood equations

a; Ny op.(x,,)
. = AL(Q) =L Pi ok’
(l a) al Al( ) No kgl p(-xok)
3 Ni NO alpl( 11')1(}:
@by wy =M, 0) = Ly =y + o Fy Xy Tplx,) %///{N * Tl el
i T N . (xlp (x, )
(1.c) Zi = si(@) = { z (5q M5 ) (x s M)t k—l (x ok M) I p(xok)
: No 4 iP1 (x ok)
L | {N + kgl p(xok)
- for i=1,...,m
f‘ We set ‘ ,
| A, (0) | o | M (@) | 5,(0)
- a@ = | . , M@ = | . , SO =
i. Am(O) : o ' Mﬁ(@) ' 5, (O

and define an operator & on CX@IHQ48 by
) £ .
A(Q)
tI) (G)) (1 - )0+ ¢ | M(O)
- \s@.
Clearly, for any non-zero ¢,  the likelihood equations are satislicd by a
vector 0 ¢ ({of¥ef if and only if 6 = RON
. We consider the following iterative procedure: Beginning with some
Cstarting value 0(1)5 define Succeséive-iterafes’indﬁctivelj'by

(2) AT WS

/
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= i

for j=1, 2, 3,... . Our local convergence result for this iterative
procedure, as stated in the introduction, follows immediately from the

theorem below.

Tﬁeorem 1: With probability 1 as N, = approaches infinity, o is a locally
contractive operator (in some norm on FoTie ,2) near the strongly consistent
maximum—l.ike.lihood estimate whenever 0 < ¢ < 2.

In saying that *I’E is a locally contractive operator near a point
0 ¢ OK{BZ}TGB_(?, we mean that there is a vector norm |{ |} on 0(03}’(!9,\57 :lm.l.

a number A, 0 £ XA < 1, such that
12,0 - @1 < Ajje’ - o]
whenever @' lies sufficiently near Q.

Proof of Theorem 1: Let

Q|
‘:loo u.'- Q
= Eg

.'):.'lc-

el

4

b LTI

be the stronply consistent maximum—likelihood estimate. We assume that




e, #0, i=1,...,m. (As NO approaches infinity, the probability is 1

that this is the case.) As in [3], it suffices to show that, with

prabability 1, V@E (@) converges to an operator which has operator norm

less than 1 with respect to a suitable vector norm

Now

A(O)
V@E(O) = (1 - e)I + e V[ MO)
S(O)
and we write
A VA VA v
R N - R
8 Vs 'v-ﬁs V8

Py

i
Ltam(m,X as in [3]. Setting

P, (%)

Bi(X) =-—;"—(;)—, Yi(x) = (x - ui), Gi(x) = [Egl(x - “i) (x — ui)T»T],Ki = Ni + :i'iN“ ‘

for 1i=1,...,m, one calculates

on H(fBZBr({B,;?.

. Define inner products < , >::,- on N{, <, »>" on ,8 y and < , > on

L, e

T
V=A@ =1 - (diag ¢.) — I . .
a . . 1 . N 1 - -
: 0
_ Bm Bm
T - B . . B <B Y -’ .)‘_ . T
. 1 Mo [F1) SRS
- VA(D) = - (diag o) == % . .
W i N 1 v .
° B <B Y o]
: . _ Tm ! m m’_ m /.
. 1 N . By By T
: VsA(0) = - (diag a) F B : .
= = o - g o op- P .:n
Bm <Bmam’ ‘m
——— =" T T —




1
N e g (B [ }
FORNCES S AARECETC T E
' L 1
BmYm Bm
| ' auty T
o o Yo oo a; | W [P Byt
VﬂM(O) = (diag E;- Yl"{l i l) ~ (diag E'—) § . . |
BmYm <BﬁYm">m
' ; Ly T
1 Yo % [P 818107
vs(0) = (diag El- E By¥ <6552 — (diag E") I’.- . : ' }
. A SIII.YIII Blll m 1
. T
. 2 N - o ¢ Vo B8\ /B ¢
V5@ = (diag "IE: § Bi§i) ~- (diag K ){ Z . .
Bmdm \ Bm _
| - (tog L (T 10T T 2 ' Tip 4L, 108, <B.y 1)
VES(G) = {diag q - [Cv+y, ()7 - o I POy (71842, i $<Bivammh -
| B8 [ <Byypoci\ T
o, Ny 171 1L >1
- (diag K?){% s - . _
i “ : . . ao t
Bme <Bmfm’ “m
.. . < . ',.’ ’ '[-
' = Iy —_— " - .
VES(O) (diag K, % ﬂiﬁi<6 ) (dlﬂg )-{ . }'
. . ) . . 1 < ﬂ“lbm s .»:, .

Here, the arguments of Bi’yi and Si. can be determined from the indices

of summation, e.g.,

-

T

N

i

T B

N, N, o
ToBiYs = dy By 007 Gy
ik eam e o e S A P N




Setting

y THE
/B poBmATY OF
( ;1 , ggg‘g’g?&'f PAGE 1S POOR

. Em-

BiYy

Bom

B8y

oy

one obtains at O

I 0 o0\  [(iag ﬁi) 0 0
(A 0 oy NG,
= o - ; . V(s T ST INL IR B
v 1;;1 B,y Byy Bog 0 (diag g ) 0 Wy {}] (x,, ) VG )
' h ' ' edinmg
-B31 332 B33 0 o {(diag Ki )
where
— .1 Mo
By = (diag Er'? BiYi)
1 Ee
- o, N
= (dian e T.-1
BZZ = (diag K. § YlYlZl Bi)
: -
L ‘ ;
1 Yo y
Byg = (diag - & BiYs<802y)
A
A By = ap g § 899
- . B =(diag_—{ E[()'Y'*‘Y()]-(IE[()Y-FY() ]B - 0 w‘i TR PR
- ' E. Ny
n 1!
Byg = (diag =~ 5 i 616 <6 ) .
. i K
o - T n . - - o




REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR__

We have assumed that © dis the strongly consistent maximum-likel ihood
estimate. Then, regardless of the relative sizes of Ni and N,» one can
show as in [3] that, with probability 1, {V‘I’E(@) - E(V‘i’E (GO))} converges

to zero as NO approaches infinity. MNow

N

-~ o I 0 0
A(Bb)\ ugu
E(V { M(© ,1) ) = |0 (diag—% 21y 0 -
— 0 i o,N
S0 - 0 0 (diag—ﬁ%ll 1)
i
(diag ai')' 0 : .0
= - - afN . _
- 0 (diag < 1) OO - {fV(x)<V(}:),‘?'p(:-'.)d}:.?
i uiNO o mn
- 0 0 {diag % Xi)
\i ‘
- = B(I ~ QR),
L where
i I o 0
; oON
- B= 0 (diag —%(—9— 0
i agbln
. 0. 0 (diag — 1)
_ 1
(diag ©9) 0 O
b o -+
Q= 0 I 0
. O
Q o 0‘(d1ag Ei)
R = J' V(x) <V(x),>p(x)dx .
E
. 4
e = T e vl ST _ - -9

e —




REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR 10

It was shown in [3] that QR dis positive-definite and symmetric with
operator norm less tﬁan 1 with respect to the innef product <-,Q—1-> on
meﬁﬂm‘g . It follows that I-QR is positive~definitc and symmetrie with
norm less than 1 with respect to <-,Q"14>. Sincé B and Q cowmute,
<-,Qh18—1'> is an inner product on CK@UK@A?, and one sces that
w, e < <r,g7 5w for We Oe{of . Consequently, B(I-QR) s
positive~definite and symmetric with norm less than 1 with respect to the

inner product <',inB—l'> . One concludes that

A%
E(We_(6”)) = (1 - 9T + ¢ BV |M(A™) |)
$(0%)
"hﬁs norm less than 1 with respect to <‘;Q"1Bul’> whenever 0 - « 0 2.

This completes the proof of the theorem.

We remark that, reasoning as in [3]1, one'mhy determine a particular
value of ¢ (the "optimal €") which yields, with probability 1 as N
approachés infinity, the fastest asymptotiﬁ uniform rates of lecal conver—
gence of the iterative procedure (2) near ©O. This optimal e is given by

zv

€T 9z (t+p)

whére p and T afe, resbectivel§ thé largest'and'sﬁallost eigenvhluos aof
B(I-QR)V regarded as an operator on Efﬁﬁﬂﬁxg ( & is the subspace of (¢
whose combonents sﬁm to zero.). Since vp and T iie between éerb anﬁ :1,
one sees thﬁt the optimal ¢ is always greater thaﬁ 1. 1If the component

populations ate "widely separated," then p and T are near zero and,

ok

— s



e =)

Edisis-'s fitts ik

[ ——

11

hence, the optimal e is near 1. If ‘two or more of the component populations
are nearly indistinguishable and if No is large relative to the Ni's,

then T is near zero, and the optimal e cannot be much smaller than 2.

3. Samples of the second type.

We now assume that KO observations are obtained from the mixture
population WO , and that, for some No <-KO, N of these observations

are left unidentified, while the remaining Ky - N, observations are

identified. For i = l,..;,m, let {x;k} - denote the subset of
X k=1,...,N;
the identified observatiouns which come from +,, and let {x 1}
i Ok §=1,...,N

. _ ]
be the set of unidentified observations from “0' The log-1ikelihood

funetion for this sample is

m
(LN )! Ny m N N
i=1 i k5 21

0
¢ r m r -
DTN Gy -eeo b4 B B Tog pyCeg) + B dog plx)

Lz(G) = log { 5

(.Z Ni)! m . Ny NO

Differentiating L2 and setting its partial derivatives to zero gives

the likelihood equations

N, 61 NO P (X )
(3.a) . ) o, = K_ (® E—.}.-_[_.._i T .__‘L__.u.g_}.g..
i i Kb Ko k=1 p(xok)
G.b) | = ©
G B =50

el T X ; - . " "
e Q——f ko til — D . - N4 = s W [

I N T P . T T - S T -~
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for i=1,...,,m.

Ve set

A(0) =
@

RS RN

and define an operator :56' on U(MY(CB,_( by

: A(Q)
&?E(e) = (L -¢)0+ ¢ |MO)
$(0)

Our iterative procedure is the following: Beginning with some starting

o)

value , define successive iterates inductively by

for j =1,2,3,... . As before, the desired local convergence result fot

this iterative procedure follows from the theorem belaw.

"
Theorem 2: With probability 1 as NO approaches infinity, Se is a locally
. contractive opsrator (in some norm on UUEHTGX_) near the strongly consistent !
. E
maximum—likelihood estimate whenever 0 < ¢ < 2.
Proof of Theorem 2: Tf O is the strongly consistent maximum-1likelihood
estimate, then, as before, it suffices to show that, with probability 1, !
V@E(O) éonvefges as N, approaches infinity to an operator which has j
operator norm less than 1 with respect to some vector norm on c&«lﬂm/f_. 1
Progceding as before, one sees that
|
'|
|
-
|
¢
:
[




i3

T
N N, o, " Ny By By
V-A@Q) = (diag_(l ~og ) - (diag ) { E . : g
. . dlo C B 1B
m m
e ! T
~ % ¢ N Bl\ RS
V-ﬁA(O)= ~(diag ) { % - . }
0 ; o et
m} <E’mYm’ *n
: o Y T
a, N (B Bid1a>p
VsA(0) = - (diag ) ﬁ o : .}
L
Bn ] <Bm6m, >h

The remaining Fréchet derivatives, i.e., the derivatives at O of M and

S with respect to E, ﬁ', and X, are unchanged, except that Ki must be

replaced by ai‘z{o wherevgr it appears.

One obtains at ©

(diag(l - —13) g 0

~t - .
In this expression, each Bjk is the same as the corresponding le‘
. .o . \8

det ined

A
oK
e = By Paa By ) ¢
5 B31 Big  Byg
oy
(diag F) 0 0
8] ) N
= X Ul ..
0 KOI 0 ; 4 V(xok) V(}'o,k)',
0 0 (diag =)
_ R Ko




| e

Vel )

14
ﬁreviousiy, except that each Ki in the latter is replécéd by oK  in
the former. Ong verifies that, with probability 1 as No approaches
infinity, (4) has the same limit as B(I~QR), where Q énd R are as
before and B = g?—l. :Repeating our earlier reasoning, one verifies that
E(IHQR) is positgve—definite and symmetric with norm less than 1 with
respect to the.inner product <-,Q_1E-l >, Hénce

A@)
vfi)'e(e) = (1L~ ¢€) + eV | M(O)

5@

.converges tc an operator which has norm less than 1 with respect to

<*,Q "BV > whenever 0 < € < 2, This completes the proof of the theorem.

The remarks concerning the "optimal €' at the conclusion of the

preceding section are valid here verbatim.

T T T TE - 7 S i PR " L A
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FEATURE COMIINATIONS AND THE
BHATTACHARYYA CRITERION

Henry P. Decell, .Jr. and Salma K. Marani

Departmen= of Mathematics
University of Houston

AISTRACT

We develop a procedure fur calculating a kxn rank k matrix B

for data compression using the Bhattacharyya bound on the proba-
bility of error and an iterative censtruction using Householder
transgformations., Two sets of remotely sensed agricultural data
are used to demonstrate the application of the procedure, fﬁé
results of the appliéations give'some indicatioh of. the extent to
which the Bhattacﬂaryya bound on the probability of error is af~
fected bylsuch transformations for multivariate normal popula-
tions. |

1. IHTRODUCTION

: ' For n-dimensional normal classes N(uizi) i=1,...,m, the
Bhattacharyya coefficient (Andrews, 1972) for class i and j is

)



~given by:

plL,3) = (aza,)% fR RN WIS

and the Bayes probab.l.ligz of error (Anderson, 1958) (Andrews s 1972)

by

P =1- dx
& 1 J[;.max iqlp =)}
Where. pi(x) denotes the conditional density of the random vari-
able X given that X n N("'i +4.) and Qysees ,qm,respect:r.vely,
denote the (known) a priori plobabilities of the classes N(“izi)
i = l, [ N ] ,ml ‘ ’

It has been shown (Andrews, 1972) (Kaileth, 1967) that

+ band mn
. | P <$__;1 Z {n ;4. }2f {pi(x)p (x)}“'dx

st

If one considers a kxn rank k linear transformation B of the ran-

'dom variable X (:L.e.. R Y_BX), then the Bhattacharyya coefficlent

for glass i and j for the clas iges N(B;_z. ,BZ B ), i=13,..,.,m is:
’n‘:

Py(1,3) = {qiqjié k{pi(Y,B)pj(qu)}édy

and the Bayes probability of error for the classes N('Bﬂi ,BEiBT),

i= l,...,m is:

L P () = 1 -'fk Tix {p, (v, B) }ay

where 'p i {y,B), 1 = l,...,m denotes the conditional dens:n.ty of the
random variable Y = BX given that Y " N(By, B, BY). 1t follows,

- PR : Ep e T TR - = : — - =
S P I - W . SO PP W vy il E— = )+ P N e P




m=1
since P <PEZ i p(i.,;]), tha.
. i=1 " j=il

= m
. P (B) < (B)Egj Py (4,3)
_ e i i= j;;;i B =

and moreover, (Pecell and Quirein, 1973) (Kalleth 1967), that
(1) p &F BYE p(B).
{(2) Pe Pe(B) if and only if p = p(B).

i

2. THEORETICAL PRILIMINARIES

Let k be an integer (0 < k < n), and N(pi’zi) i = 1,0e.,m
be n—variate normal populations with a priori probabilities
SPERERRL Sy We ﬁoul&ilike to construcr a kixm rank k matrix B that
will minimize p(B). The theoretical extent to which this is pos-
sible and the basis for the construction (Decell and Smiiey, to
appear) is summarized in the followin); theorem., Let

= { u erR™t||u]] = 1} and T(H) ={H=I-2uu?: u € C} denote the
set of Householder transformations on R- (Householder, 1958).

Theorem. For each positive i, iet H

;€ T(H) be chosen such that

p((IklZ)Hl) g.1.b p((IkIZ)H)

HeT(H‘
- and |
2
# (I |2)m Hp = g.1.b. p(T) |2)BH, =+ +H,) '
fol2I My Hy et et e L
then,

W KT, |2)E, o) <(T |2)E, e )

| (2) P((Ik|Z)Hi+l---H )S:P((Ik[Z)H «o+H.H, H e T(H).

1
(3) p((I |2y8,,  H, ---H><p<(1 IZ)HH cesH_ ,H g T(H), |
(@) p«IkIZ)H-- H, -1 (p1) 1)<o((1k|z)Hi+l *H;),He T(H).
and p = 0,...,1—2.

(5) The monotone sequence of real numbers {p(Bi)}:_l where

L




Bi = (Iklz)Hi..Hl is bounded below by Pé aqd hence

lin p(B;) = g.1.b.{p(By)}
{-ve0 1.

We know (Decell and Quirein, 1973) that there is some kxn rank
k matrlx, say B, that minimizes P(B). If p(B) < g.% -b. {p(B )}

we will call the sequence {Bl}i=l sub optimal (uptimal in the

case of equality). bThere are several results (Decell‘and Smiley,
to appear) that lend credibillity to the conjecture that the seq-
uence 1s optimal and cofinallv constént beyond the inde#

i = min{k,n~k}, We will proceed with the development of an itera-
tive procedure:for constructing the subject sequence and, finally,
tabﬁlate results of applicatinns to remotély éensed agricultural
data with equal a priori class probabilities. The approach (and
its merit) will depend upon the bound provided by the inaqﬁality

P < p(B.) i=1;2,..., the nunrincreasiﬁg nature of the sequence

'{p(B Yy 5=1? and the ability to manipulate the expressions for-

p(Bi), i=1,2,.,.. in the case of normal populatlons.

+

e " 3. THE GRADTENT OF'p((Ik|z)H)

We will develop an expression (for the case of normal n-vari;-
ate pépulatibns Nggi,zi),'i =1,...,m) for the gradient of

T
p((Ik[?)H) where H ¢ T(H) has the form B = I-2 —f_ , X % a.
Lo ‘ Lo : o ' R

_ This expre551on will be used In a steepest descent procedure to 2,

calculate each Householder trunsformation Hl 3,... des-

cribed in the preceding theorcm, For m populations N(y&z Yy

i =1,ie.,m it is easy to establish that in order to calculate
-Hi;i, one need_only apply the steepest descent procedure to the

Bhattacharyya coefficlent determined by the populations

H(Hi"'Hl ,H U EH eH) § o= 1,...,m.




" If we define o

The eipression for FkI |F)H(i’j) is given by (Andrews, 1972)
. k‘.

(Kaileth, 1967) (for the case of equal a priori probabilities
q; = 1/my, £ =1,...,m)2

rs syl Y T4
p(1k|z)H(1’J)“;;exP (z z) s -3 |24+25]

225 %), |

~ " T .
where Gij = (Iklz)H(#i"pﬁ) and s (IklZ)HziH(IklZ) , in which
case,

. . 'mug' :it
PU(T, |2)H) = P (1,1).
il ;L Zet P2

-

| 1 Izi+ Zs]
F.. =" (Z z }3 aad G, “ln
-13 ij 13 T2 1
2% |21[2|z %
we have that the differential of p(1;|2)ﬁ(i’jj.is T

) v .. 1. ) . .

frdmAwhence it follows that

aCp (o, IZ)H)) ——i‘l z; exp (F, 146, 53 (A(F; ) + (G ;).
=1 j=

In order to simplify the notation, define -Eij”= Ei +%, and

"‘ (ﬁ ﬂﬁ)(pl pﬁ)
Let tr{*) denote the trace of (*) and [ [-= det{-}. With

a bit of matriAAalgebra it follows that

Fyg = -i*cr{ca lz)nz: puien Iz)T) 1(Ik|Z)HAin(Ik|Z)T}




"~ and

Tij

G, , =&

2

T L1 T
1n|(_1k]z)uzijﬁ(1k|z) | +3 :f.nl_(Iklz)HziH(IkIZ) |

1 T, , k
+ 7 1n| (IkIZ)HZjH(Iklz) | +3 1n2,

Wz will now develop expressions for'd(Fij) and d(Gij), i, i = 1,..;,m.
According to Decell and Quirein (1973)

a(F;,) == trld((@ [Dme,,}

where 3B = (Ik|Z)H_ and

Qij

Since H =

d((Ik[Z)H)

.

I

o F T T T,-1 T T,-1
= [AijB - ZijB (BEijB ) BVijB ](BEijB 7
. _
-2 2%%— it follows that
X X
. XKT | - XXT
-d((zklz) (I-2=5 )) = —2(Ik[z)d 5 -
X X . X X
~2(I£|Z) xTxd(ch) ; x;TdQETx)'
_ (x"x)
-2(1, {2) o
e T (d () e () D) e (d () Taebxd (%)) )
T .2 C _
(x"x)
-2(%, 12)
Tka {(d(x)xTxxI+xx$xd(x)T-xde(x)xT—xd(x)IxxI}
(x"x) ' '
-2(1, |2)

s

= {ld (X)':;:T-xd (%) T) #xT—xxT (d(x) X mxd (x} T)' e

(x =)

A




Suﬁstituting the latter in the expression
1 .

and using the fact that tr(AB) = tr(3A), we have

-2(1, | 2) ‘
aE, ;) = ~%tr-—z—§5;5— (0% ~xa () Do’ (022 ) )T Qg
: X X

7 ~g—erlQ, @1 IZ)[(d(x)x ~xd ) Dy (G x"-xd () D 1}
X x)

= ; ) tr{ Q (Ik[ Z) (d=x)x" -xd{x} )—Q (Ikl Z)xx (dCX)x
x X

~xd (x) )}.

With a little matrix algebra (and some patience) it follows that

1 T _ T, T
a@F; o) Ry tr{{(xx_ Q; 5 (%, 12) Qij(IkIZ)X’_"

-, G, (1] 2) - Q4 (1| Dx) 1xd () ")

We ftow find an'expression“fbr d(Gij)r First, recall
(Rullback, 1968) that ' 4

‘G| m8Y)) = 2e{a@)zE’ (@sH ™

so thaé
3 age. ) = -t ac@ | e, 1, 2) 7, B |z)T);]}

137 = il S ¢ BT A C
Leegac @ | Dme a2, |28 »nhHt

+ 3 ela]amz e | n @ o aa | H ™,

* g

L) -




0bv1ously, the summands in the expression for d(G ) differ

from the expression

1
d(F; ) =-—E—tr{d((IkIZ)H)Qij}

only by multiplicative constants and the matrix Qij' Hence, we
may use the final expression for d(Fij) to obtain the expression
for d(G:I.j) by simply adjusting the multiplicative constants and
replacing 'Qij (in each summand in d(Gij)) with the expressions
T.-1

]

w T ;
Ji5 = Ein(Ik|a) [(1k|z)nzin(Ik|z)

I

By = iiH(Ik[z)T[(Ik[z)HziH(Ik[z)T]"l

o T T.~1
Ly sz(zklz)_[(Iklz)nzj3(1k|2) 1
At this point we will simplify the notation. Let

= (xxTQ..(I IZ)—Q..(I [z)xxT)T-(xxTQij(Ik]z)gqijcxklz)xx?)

and let .'I It K 3 and L i be gimilarly defined by substltutlng,
respectz.vely, i3 ,K 5 and L . for Q 5 in the expression for Qlj
i,j=1,...,m, It’ follows that.

1

iy T
d(F —= tr(Q, .xd(x) )
j (xTx) 2 ij '
. 2 ~ T 1 o T
d(Gij) = tr(J, .xd(x)") - —5—5 trK, . %d(x)")
(xTx) 2 ij (x’?x) 2 1ij
: - :][,‘ 7 tr (L xd (x) )
(x J:)

In order that x be extremal, it is sufficient that x satdisfy
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- m exp(Fﬁ-PG_Lj) A~ ~ ~ "

-1 :
G(x) == E Q.. +27 .-k, . -L Dx=29,
o= e (xTx)2 3 J ij ij

0f course, the function G(x) is the gradient of

I
p((T |2) (T ~ 22 )) with respect to X.
k X%

With G(x), we use a steepest descent techmique to construct
Hl' The process is repeated for the construction of H2 since,
given Hl’ the problem of constructing H2 is identical to that of
constructing Hl provided the populations are taken to be
N(Hlui.ulzi'ﬂl) 1= 1,...,m. _

Test results are ﬁfesented in the following tables for nine
twelve channel, C-1 flight line agricultural classes: soybeans,
corn, oats, red-clover, alfalfa, rye, bare soil, and two types of
wheat. The Hill County data is sixteen channel data for five
agricultural classes: winter wheat, fallow crop, barley, grass,

and stubble.

C-1 FLICHT LINE DATA

n=12, m=9,k =6, P= .02

Iteration HBl HB2 HB3 ,
0 .327 .109 134 '
1 .223 .060 | .034
: 2 171 .062 | .033
; 3 135 | .068 .032
4 .116 .058 | .031 -
5 157 | .055 | L0309
6 1150 | .054 | .0303




‘Andrews, H.C. (1972). Introduction to Mathematical Techniques in -

Decell, H.P. and Smiley, W. '"Householder Tramsformations and

HILL. COUNTY DATA

n='16’m=5’ k=6. p= 9107

I_l'.i;grat:.on .'HBl H'.32 H33 |
0 | .872 336 | .299 . |
1 .785 .310 .287
2 .525 .286 | .232 '
3 4390 | L2713 | .27 | oy )
4 .576 | .267 . 226
5 .386 | .265 294
6 - .363 . 264 ,223
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FEATURE COMBINATIONS AND THE
‘DIVERGENCE CRITERION

Henry P. Decell, Jr. and Shailesh M. Mayekar

Department of Mathematics
University of Houston

ABSTRACT

Classifying large quantities of multidimensional data (e.g.,
remotgly sensed agriculfural data) (Remote, 1968) requires effi- -
cient and effective classification techniques and the construction
of certain transformations of a diﬁension—reducing, information-
preserving nature. This paper will deal with the comstruction of
transformations that minimally degrade information (i.e., class
separability). We will only consider the conétruction of linear
diméﬁsion-reducing transformations for multivariate normal popu-
lations and information content will be measured‘by divergence
(Kullback, 1968). ' -

1. INTRODUCTION

LY F AR

For n—dimensional normal classes N(m.,vi) i=1,...,m, the

divergence between class i and j (Kullbaék,_1968) is given by

o™

e . , P e : s B - - L e e




- iy

et §,., = m,-m,. Then
ij

i

-1
D.. = x[(Vi—Vj).(Vj

) MrLH w

-1 T 1 -1
r[Vi (Vj + 6ij6:i.j)] +—2-tr[Vj (Vi + s'ij

0
] '_Li-‘

populations is given by

and it follows that

’ ) —-tr[ V (f;(v
. . 1'-

:L%J

m(m l)

]

613613))1

~1. _ m(m-1)
Vi Si] =5 m,

=L

]

1
2t
where

§; = vV, + 8 6..)
| 4=
ifj

_1 -1k Lt vLevdy (m - o 2T
D, =5 rl V- VO,V 1 + 2LV V) (mymm, ) (g m.)"1

-1 1 -1 -1 T
-Vi )] +§}:rE(Vi -+ Vj )(Gij)(ﬁij) ]
T
Sij)] - T

‘The interclass divergence (Deéell and Quirein, Oct. 1973) for m

I£ ‘B ds a- k ¥*n rank k- matrix, the ‘B-interclass dlver—-

gence (Decell and Quirein, Oct. 1973) is given by

Dy = ﬁ:; i: Dp{1,3)
1= J=

ifj
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D, = %‘- trlgl (BviBT)“l (BSiBT) 7 - E_’;:J-l. k.
As in the case of average interclass divergence, the B—interclass
divergence is a measure of the "separation” in the classes
N(Bmi,BViBT) i=1,¢0a,m, and is a2 useful tool for constructing
rank k linear transformations that preserve "class separability".
It has been shown (Decell and Quirein, Oct. 1973) that whenever
D= DB’ the probablllty of misclassification (Anderson, 1958) for
the classes N(Bm ,BV B ), i=1,...,m is the same as the probabill—

ty of mlsc1a551f1cat10n for the classes N(mi’vi)’ i=1,,..,m.

2. THEORETICAL PRELIMINARIES

-

We will assume that 'k dis an integer (k < n) and develop a

procedure for selecting a k x n rank k matrix B such that Dy is

maximum., The procedure will be based upon the following theorem
{ue 8% ||u]|=t}
and T(H) {H I~2uu tue C} denote the set of Householder
transformations defined on R* (Householder, 1968).

(Decell and Smiley, to appear). We will let C

- -

Theorem, For each positive integer i 1et Hi E T(H) be inductive-

1y chosen such that

= 1,u.b.[D

D . 1
(T 2V g By gty (Tl 2y g oeoHy
where : S ' - : ” :f
o, 22 oo
The following hold: |
(1) D .
(T, IZ)HH 4 Hl e IZ)Hi_H_ :
2) D '
(2) (Iklz)ﬂiﬂi_l.. leH £ cI IZ)H H ”'Hl’ ffDI every H € T(ITI).
T THE
:jjﬁﬁﬂﬁFBCKgigsfis POOE_
ORLGEL\EAEAM

R T T P
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(3) D(Iklz)HﬂiHi ---H (Ik]z)Hi+1 "Hl, for every H € T(H).
(4) D veey &P
L T L TR S R N LOL PR

for every He T(H), p=0,1,...,1-2.

(5) The monotone sequence

o, ¥ =i U is bounded ahove,
o (T 208, By

and hence

llm.D = 1. u. b {D.

(Iklzm By (Ik[Z)H ---Hl}

We would, of course, be pleased if it were the case that

1.:.b. {D(I IZ)H "'H } D. This, unfortunately, is not always

the case for some ch01ce of k<n and is not p0551b1e, in general,
for any k < n. We do know that there is some k X n rank k
matrix' B for which DB is maximum and, in general, that D. &D
(Decell and Quirein, Oct. 1973). It follows, moreover, that since

the matrices of the Fform (IkIZ)Hi'--Hl have rank Kk, -

-

' L : .
Dez |z)n,---n € Dp & D for every integer i.

1
We will call the sequence {D (]Ek_l Z)Hi..“H]_}:= _ suboptimal
whenever
’
1,u.b. {D o r<
. (Iklz:)ui H B

(and optimal in the case of equality). _

' There are several open theoretical questions that deal with
thé conjecture that the sequence is, in general, optimal and co-—
- finally constant beyond the index i #'ﬁin{k,n—k} (Decell and
Smiley, tc appear). In what follows we will develop a procedure
for constructlng the subgect sequence and demonstrate its -

appllcatlon to agrlcultural data.
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3, THE GRADIENT OF D, '
It has been shown (Quirein, Nov. 1972) that the differential |
dDB of 'DB (regarded as a function of the k X n matrix B) can ‘
be expressed in the form dDB =F + G, where, when the indicated
inverses exist,
TR T, -1 T T |
=3 BS,dB
) F ztr[z;(BViB) (a8 §,B" + BS; ) ]
' = %tr[i;(cﬂi s48T) (Bv;8T)~1]
l=
o 1 T 7. -1
+ Strl 3 (BS; dB™)(BV,BT) ]
m
= tt[}_-;. (aB SiBT) (BviBT)”ll
- l=
_ ‘ :and '
6=~ 2y, (VD (a8 v 3T + 57, an").(av, 3D (a8, ED) ]
‘ e T i i i i i
- _ 1 T\ porr nTy—L T T, ~1
| R -2~.tr[1= (4B V;B) (BV,B") ™ (BS;B") (BV,B")” 1 '
:'“‘ -
1 A Tl . T Towl, o T K |
- Etr{;: (BViB ) (BSiB )(BViB ) (BVidB )1 «1
C B ' T Tl T, Tl - 1
‘ R i:::[‘i}i (dB ViB )(BViB ) (BsiB )(BViB ) 1. 1
|
B A
: [ :

- > - . . A . R 5 Lo . Y ) . .
- Tan . - il . . ST B I Sy R e




Thus,

T .
_ T T, M-l T 7, -1
~dp,, = t_:r[; dB{5,B" - VB (BV,B") " (BS;B)}(BV,B) ]
= tr dB Qi
l:
vhere

VI S T -1 O S
Q; = [{SiB - V.B"(BV,B )77 (BS, B )}(BViB Yy *1.

We are, of course, interested in extremizing DB over the
particular subclass of k X n rank k matrices of the form

1, |z)m where H & T(H) (e.g., for 1 = 1 we find H, that maxi-

mizes D(I'klz)H ). 1Actua11y, one need only consider what is re-
quireq to compute Hl' The computation of H2 is accomplished by
the same procedure as that for Hl' It is simply a matter of,
after selecting Hl" redefining the m classes to be

N(H

Hll

1mi’H1ViH1)’ i=1,.,..,m and proceeding as in the selection of

With these facts in mind we will simply calculate the gra-
dient of D, where B is restricted to having the form
B = (IklZ)H, He T(H).' The restrictions H £ T(H) ecan be accom~
plished by considering those k X n ;ank k matrices of the fofm

) 3 ,
B=(Iklz)(1-2-“’—‘,_'[’~), we Ri(w # 0)
ww ' .

- It follows that

-
-
.

T
6 = dl(1,12) (1 - 2 T - -2(1,[2) d(w?/w'%)

W

T T T,,.T
= —2(1,[2) [wwd(ww_). - ww d(w w)
B Ik o ‘(WT_"W)_Z

it

1




2(I Z) ‘ .
- ——-,fl—-i-[ww(dw wT + wdwT) - WT(WTdW + dwT w)]
(w'w)

2(1, |2) . T
--——T—-i-[rlwwww +wwwdw -wwdww -wdwww]
(ww) :

2(T, |2) _
= - ——k-!—i-[(dw W - wdw ) - e (dw e~ wdw) |

(W W)

Substituting the latter in the expression for Dy,

| m 2|2
- .= tr Y [ - —E . {(aw v - wdviywt ~ wwe(dw wo — waw ) }Q. ]
B T 2 i
; = (ww) _
| 20.(1,12) | .
= tr [ - —-T—ILZ—— {(aw WT - wdwT)wa --WWT(dW at —.wdwT)}]'
i= (ww)
= tr i '1‘ 2[Ww Q (1k|z) (dw S R—— ) ' oo
- : w'w) , .
~ - Q, (1, |2)ww (dw w' - wdw')]
— = ;2 r il M. dw WT - M.wdwT - N.dw WT + N.deT] J
('W W) €L 1 I l-
Where M; = ww Qi(Iklz) and N = Qi(IkIZ)ww .
) ; #
; dDB=—%tr[i{w M, dw-w Ny dw+N wdw ~—M wdw}}
= tr[ {dw M v - dw Ni w o+ N w dw - M:L w dwT}],
(w W) 1= 'ﬁ
: 3
——C o oM. - B . CLT T = “‘“]]



starting value Vs for the descent procedure for selecting H

L om .

=2 T o gt T T. "

by = —% 3 tr[ {Mi wdw -~ N, wdv + N, w cw M, wdvw 1
{(ww) 1=

N

T T
i{mi - Ni) - (Mi - Ni)}w dw 1.

tr[
(ww) i=

The necessary condition that w be extremal is then,

G(w) = Ei;{ﬂﬁ - H. ) - (M - N Yhs =0 (the zero vector).

T
We note that G(w) is the gradlent of D Py and
(T 2@~ 27
ww
use a steepest descent procedure for finding the extremal w. The
process is repeated'for each sequential index until corresponding

values of divergence "stabilize." Test results are presented in

the following tables. The C-1 flight line data is twelve channel

data for nine agricultural classes: soybeans, corn, oats, red=-

clover, alfalfa, rye, bare soil, and two types of wheat. The Hill

- County data is sixteen-channel data for five agricultural'claSSes:

winter wheat, fallow crop, barley, grass, and stubble.
The starting value v for the steepest descent procedure

for selectlng each successive chseholder transformatlon .

Hl’HZ’H . was arbltrarlly chosen to be W, C~—- L .,—EOT.

w e

Ch0031ng startlng values in this arbitrary fashion is certalnly
not the most clever thing to do in the presence of the monotone

bel
ehavior of the sequence D(IklZ)H . One would expect, for

example, that the startlng values for th. selection of H;+1'

”_should depend upon, the unit vectors previously selected as gener-

ators of H H i""’Hl in such a way as to guarantee that the

141 °

-




satisfies X
T . .
A
D LD 0 o
a2, --m T T |2 - 2—JH, "+ *H,.

w.w
0. 0

This rather arbitrary selection of the starting vector does, as
the examples demonstrate, violate the latter inequality. The
question abdut'how ﬁo chooée starting vectoré, according to the
latter inequality, is still an open one and its answer would cer-

tainly decrease computation time.

C-1 Flight Line Date Hill County Data
n=12, k=6, m=9, D=10,660 ' - n=16, k=8, m=5, D=636.
Tteration for Hl o - Iteration for Hi

Yo * Divergence_ DB No % | Divergence DB
-1 . 1982 1 114.58

2 3536 2 136.66

3 4533 3 152.27

4 2781 4 179.69

5 6910 5 223.81 =
) 7522 6 247 .42

7 7710 7 252,78

8 7790 8 257.12

9 7838 . . 9 260.74
10 7865 10 263.95
11 78381 ' ! ,

‘-

12 7892 o,

LY X IR

#Iteration counter

3=
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C~1 Flight Line Data (cont.) Hill County Data (cont.) |
Iteration for H2 . Iteration for H2
- No* pivergence DB No* Divergence- DB
1 7815 1 269,00
- 2 8797 2 280.48 .gi
3 89542 3 293.32 &
4 9785 4 300.68 :
5 9901 5 304,07
- 6 9966 6 306.19
7 10,005 7 307.74
; 8 10,031 3 308.95
- 9 10,048 9 309.93
f Iteration for H3 © - Iteration for H3
,No* Divergence ‘DB , . No* Divergence DB
1 7582 1 312.18 - .
2 8705 2 344.52
L .3 . 9809 3 _ 380.83
4 9947 4 387.20
5 9995 5 391.70
§ ;) 10,020 6 392.96
- 7 10,037 7 394,58
8 10,049 8 399.47
) 10,058
- : ' Iteration for H,
: No# Divergence Dy -
v -1 371.12 '
2 394.75 .
3 398.62
4 400.69
5 402.03
6 402,98
7 403.74
*Iteration. counter S -
4
oo _ . _-~ - " ” x D . Z . PP —_ T « L
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DOCUMENTATION

Computation of the Total and the B-average Bhattacharya‘Disﬁance:
(Univac 1108, Univ. bf’Houéton). | . ;
This program consists of 3 subroutines to be exécuted in the following
sequence:
(1) Subroutine ﬁHATT
(2) Subroutine BHATBL

(3) Subroutine BHATB2

1. SUBRQUTINE BHATT

ABSTRACT

This subroutine calculates the total Bhattacharyya Distance, BDIST, using

" all N channels. The output of this prdg;am, BDIST; will be used in comparing

the difference GH ='HB - BDIST where HB is the B-average Bhattacharyya

Distance computed in the subroutines BHATB1, BHATB2.

User's Information:

~ (Double Precision Version Only).

“In order to use this subroutine the following FORTRAN 'calling sequence
must be given:
| | CATL BHATT(COVAR, XMEAN, M,N, BDIST)
where:
: COVAR(input) - is' a real--B-dimensional array {(MxNuN) 'énd'contaiﬁs
the M NXN class covariance ﬁatrices {positive de-

finite symmetric) used as iﬁput.

I

. . . - I



XMEAN(input)
- M(input)
"N(input)

BDIST (output)

SUBROUTINES USED:

13

_ is a real 2-dimensional array (MxN) and contains

the' M HN-dimensional class . mean vectors.

ig the no. of classes under consideration i.e. the

" no. of covarilance matrices and mean vectors.
-is the dimensién of the covariance matrices and the

: mean vectors. t

is the value of the total Bhattacharyya Distance..com-

puted by subroutine BHATT.

Subroutine BHATT in turn calls the following subroutines

1. Subroutine MATMUL. This subroutine computes the product of 2

N - matrices. It calls subroutines SUPSUM and ORDER.

2. Subroutine CHLSKY. This subroutine computes the inverse of a

posiﬁive definite symmetric matrix,

3. Subroutine DET. This subroutine computes the determinant of a

~positive definite symmetric matrix.

NOTE: (1). The format statements for input, output are dependent upon the

- dimensions of the input aata and corresponding adjustments have to be made to’

formats when different sets of data are run.

' +(2). The varisbles declared in the DIMENSION statements have to similarly

correspond to the dimensions of the input data.

ALGORTTHM:

Subroutine_BHATT computes the value of the total Bhattacharyya Distance

using the covariance matrices and mean vectors as inputs.
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The total Bhattacharyya Distance, BDIST, is computed by the formula

<

m~1 m

BDIST = l > > H(1,3)
: m & By
: i=1 j=i+l

where H{i,j), . the interclass Bhattacharyya Distance.between classes 1 and

j is given by

H(L.3) = expl-ig 8,7 (8, + 276,

-

D
-1 n N i
S ARG AL

where aij =y - u:j and H; dis the mean vector corresponding to class i

N N ’ -
and I i is the covarlance matrix corresponding to class di.

2. SUBROUTINE BHATBI:

ABSTRACT

This subroutine attempts to calculate the minimum  B-average Bhattacharyya

Distance using 1 Householder transformation to construct the B-matrix.

USER'S INFORMATION:

(Double Precision Version Only)

“In order to use this subroutine the followiﬁg FORTRAN calling sequence must

"

be given:
. @ALL BHATBL =~ (COVAR, XMEAN, M,N, K, ITE, ALPHA)
wh_e_are
COVAR (input) is'a real 3~dimensional array (M N<N) containing
o 1.
-the M NXN covariance matrices.
A e R _ . D PSS AN - .




i XMEAN (Input) is a real 2-dimensional array (MxN) and cqntains
N the M N-dimensional mean vectors used as input.
‘M(input) | is the number of classes’ under.consideration (i.e..
. the no. of covariance matrices and mean vectors).
R(input) .is the dimension of the covariance matrices and the
fa " mean vectors,
K{input) is the number of rows desired in the transformation
matrix B (which is KxN)
ITE(input) is 1+ {ﬁhé no. of iterations required)

ALPHA (input) is a varying parameter in the iceration formula,

QUTPUT OF SUBROUTINE BHATB1

L | This subroutine has the following output:

| l;b The transformatidn matfié B3 (which has diﬁeﬁsiﬁn K;&ﬁ corresponding
to a particular value_of_the Householder generator F.#%

2. The value of the B-average interclass Bhattacharyya Distance

Hy(i,3), 1= Lyeee, B13 o= Al

773. The N-dimensional F-vector ﬁhich is the generator of the House-
holder transformation H = I-ZFFT3 used in constructing the B-matrix
B = (L |DE. .

4. The value of the B-average Bhattacharyya Distance, HB  corresponding

to the matrix B. \

" '5, The partial derivative vecter'-ﬁf—r'which contains‘the partial

derivatives of HB with respect to the vector F.

See 'ALGORITHM'




; B m_ :
=2 2 2 B30
i=1 j=it1 — =
is also computed.
S P T L T T T

Subroutines Used

The following subroutines are in turn called by.subroutine " BHATB1:
1. Subroutine MATMUL - calls SUPSUM and ORDER.
2. Subroutine CHLSKY.

3, Subroutine DET.

ALGORITHM

Subroutine BHATBL attempts to compute the minimum B-average Bhattacharyya

Distance using one Householder transformation to compute the B—matrix. The

B-average Bhattacharyya Distance is given by the forinula

1 Bl m
== 2: z (i,3)
B i=1 j=iF s

L I T T N TR S, S S S Y W AN I )
Hy(i,3) = expl- 7 8;," (X, + 1) esij -5 W(|Z; + zjl/z_ |2, | |zj| ]
here 6., =B md £ = 85,87 an o a B matrd |
where ij = (ui - uj) an ;= B iB and B is a Kx§ matrix of rank K
of the form B = (_IK‘ Z)H where H = I—-ZFFT, IIFH = 1. An initial guess for
F is takem to be Fc.T = [71%',.9 a -]?E]T and the co?:resppnding matrix

B = (]'.Kl Z) (_I-AZFOFOT-) ~ is computed. The corresponding value of

A

[hpo o




3

where o is a varying parameter and is one of the inpufs to the program.

gﬁ—A is the partial derivative vector (derived analytically). The value of

' i J|
EP+1 is then normalized so that %F =1, The B-matrix is recomputed with

the new value of F. The corresponding value of HB is computed. This procedure
is repeated (ITE - 1) number of times (8 seems to be a good value for ITE).
Two points should be. noted:

oH

(1). Whether EEE ~ Q.

(2). Whether SH = Hﬁ — BDIST {(the total Bhattacharyya Distance) is
sufficiently small.
The values of o and ITE (which are both inputs to this subroutine)

should be altered accordingly in order to achieve the above 2 objectives.

The value of F at which the minimum value of H, occurs is saved. Call

it FL.

- 3. ~Subroutine BHATB2

This subroutine attempts to compute the minimum B-average Bhattacharyya

Distance using 2  Householder iransformations.

USER'S INFORMATTON:
{Double Precision Versdion) | - _ -
(1) In order to use this subroutine the following FORTRAN calling -

sequence must be given:

,,,,,,,, ey T s :

L e
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HEH and H

, _ {
CALL BHATB2(COVAR, XMEAN, M, N, X, ITE, ATPHA)

where
COVAR, . 2MFAN, M,N,K,ITE,ALPHA

have the same meanings as in SUBROUTINE BHATE1.

(2) This subroutine reads in the value of Fl' computed in the previous
program (subroutine BHATB1). The data cards for TFlL should have
the format 5F16.8 (e.g. if "F1 dis 12-dimensional then ¥l is
punched on "3 data cards; thé first 2"cards contaiﬁ. 5 components
of Fl 'and the last card contains 2 components of F1),

These data cards for F1 are placed following the data cards for the

covariance matrices and the mean vectors.

{3) The velue of Fl that is read in is then used to compute the

Hauseholder transformation Hl =T1- 2F1F1T. . The covariance matrices

Ei and the mean vectors by i=1,...,m are transformed into

1M

The number of Householder transformations by which the covariance matrices

' leiﬂ

p @nd H

-

- Zi and.the mean vectors ui hawve to be traﬁsformed_is denoted by the varigble

II.
For subroutine BHATB2 we require one Householder transformation to obtain

17171 1My

N
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The FORTRAN statements "IJ = 1" appears after the comment:

B N Eq.- No. of Householder Transformations Required——-".

OUTPUT OF SUBROUTINE BHATB2 . ' . , e

1. The veector Fl which is the generator of the Householder trapsfor-

mation H =T - 2P 71T,

2, Same as subroutine BHATBI.
AT.GORLTHM:
Here each Ei' is replaced by -HlEiHl and each u; is replaced by Hlui'

The B matrix is then taken to be B = (I 2)(I-2FFY), F = 1. An initial

guess for F, Fz = [%ﬁ-,...-,' %N—] is made and the same proceduﬁ:e as in subroutine

BHATB1 dis applied. The value of T == F2 at which the minimum value of HB

ocecurs is saved.

USING MORE THAN 2 HOUSEHOLDER TRANSFORMATIONS TO CONSTRUCT THE '~ B-MATRIX:

If 'moré than 2 Househoidér transformations are requiréd to compute the
tran;formai;ion matrix B i,e. dif 611 = ﬁB |
subfoutine BHATB2 can be modified in the. following way. For the B-matrix
requiring 3 Householder transformations do the following:.

| B (1) Placé the data cards ﬁontainj:ng the vector F2 (computed in the

previous program)_ following th_e_ data _c_‘.ards containing - Fl.

(2) The statement following the comment "C... Ij Egq. NO. OF HOUSE-

HOLDER TRANSFORMATIONS REQUIRED ..." should be "IJ = 2"

For J 2 & Householder transformations requiréd in computing the B-matrix:

- BDIST is not small enough, then

. P



' (1) the data cards for ¥i1,...,F(J-1) -should be placed after the data
= ' eards for the covariance matrices and mean vectors;A

(2) the statement "IJ = 2" should be changed to "IJ = (3-1)".

.
-
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1.

2.
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I. INTRODUCTION :

- This progham reads mubtispectal scamnen data from a Universal ﬁoﬁma,t

tape and outputs an intenmediate data set in carnd image format for use as an

Anput data set in various data analysis development proghams. The general

capabilities are sumnarized as foLlows:

1}
7)

5]

4)

5)

decode the headenr recond of the universal format fape.

extract all on part of Lfhe channels on the universal format iape.
(The channel numbers aie helativel. .

exthact a hectangular neg.i,on defined by {inst Line (ISTART],
Last Zine (ISTOP], and a Line skip factfor [ISKIP) and analogous
colump-on pixel values JSTART, JSTOP, AND JSKIP. (ISKIP on
JSKIP = 1, means no Lines are éfupped J v

extract and Label any region dedined by a non-rectangular field
on fields which i5s a subkegion of .

napdomly select a penrcentage SAMPCT of £he regfons on , which
were defined in 3 on 4. _

TI. INPUT PARAMETERS.:

~SAMKEY -1 -onby header recond is decoded _
0 ~deferministic sample L5 extracted
1 -handom sample 45 extracted
SAMPCT -if SAMKEY = 1, percent of data Lo be handomly sampled
SEED -if SAMKEY = 1, initial seed fon nandom numben genmazfon
{must be a paémue odd integen]
ISTART -beginning Line for sample {absofute Eine number)
ISTOP -fast Line for sample
CISKIP . =Line skip ﬁaatolz {if ISKIP = 1, no Lines are asfu.pped)
" JSTART ~-beginning pixet for sample (fteeaﬂwe pixel number)
JsToP -Rast pixel forn sample

JSKIP »—px.xe,ﬁ ARip 5aa;tofc [,{,15 JSKIP = 1, no pixels are shipped)




-~ NCHouTt
NCHLST

NFLDS

FID
NV

MINLIN
- MAXLIN
TF (3,1}

JF(3,7)

~munber of channels fo be owtput
-aniay of relative channel nuwnbers of NCHOUT channefs

fo be oufput
~numbesr of non-nectangufar fields to be defined (4§

NFLDS = 0, then the nectangular region defined by
ISTART ezc, i5 output}

-~y containing § chakacten field 1D fon each {ield
-arhay confaining number of verntices for each non-
reetangular field (if the §ield is a quadralateral,

Zhen NV = 4)
~annay containing the minimum Line ymumber {oi each field
~ahay confaining The maximum Line aumber for each field
~two dimensional array confaining the Line coondinafes of
ihe Jith verntex of the Tth field fon J =1, . . ., MU+T
(the §inst coondinate is nepeated as the fV+1 coondinate
a Lo ERIPS)

~a fwo dimensional annay containdng the pud coondinates
o4 the Jth ventex of the 1th §ield for J = .

NV+71 the {inst coordinate is repeated as the NU+T o=

ordinate a Ra ERIPS]

(the above veatices must be given Ln sequence such that
the infernion of the fiecld Pies fo the night. See
Appendix A for the ERIPS documeniation foxr the FOLNIN
rowtine)
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TV. TINPUT FORMAT FOR PARAMETERS

REQ:  SAMKEYV: » - (70X, 110}

TSTART _,,',; . | |
ISTOP e i
REQ: }ﬁﬁ% (70%, 1] | %
JSTOP |
JSKIP |
OPT:  SAMPCT (10X, F10.0)
SEED. . -, (10X, T10]
. REQ:  NCHOUT = (10}(‘,110)
v NQHLST (10X, 1612
| REQ:  NFLOS (10X, 110)
o for T =1, «...,NFLDS (if NFLDS 0]
| FID(T]
S T
o | MAXLIN(T]

TF(J, T] (1975]
IFOT] (1115

V., ‘FORMAT OF INPUT DATA SET

The Tnput Data Set is read from Fortran unif 1 {FTO1F001) by Zhe READ
noutine. The Input Data Set has the format of a Universal Format Image Data

Tape described in NASA Eanth Resowices Data Foumat Controf Book .(TR-543). A
VI. FORMAT OF OUTPUT DATA SET |

. For each NCH dimensional pixel (X(I}, T=1, ... , NCH) selected
fon- d@tput, the following recond (80 bytes) is wniiten onfo Forfran unit 1
C3 {FTO3F.01),

LINE mumber .+ 5 v

PIXEL NUMBER = *

FID [i4 not app&cabﬁe &abf.ank 45 wiitten)

X(NCHLST, {1)]

X NCHLST (2)]

X(NCHLST (NCHOWT)) | o 4
B .4




The fonmat is (214, A8, 16T4]. The Rogical necond Rength is 80 bytes and
the BLKSTZE is determined by the JOL cand defining Fortran unit 3 (FTO3F001).

VIT, SUBROUTINES _
MIX ~arnanges dafa by pixel nather than by channel

: RANDU  -random mumber generaton (IBM SSP)
— ~ FOININ  ~defenmines intersection 0f a non-reatangular files fon

- a scan Line. (Fontnan versfon of PLT ERTPS ufility noutine)
READ ~assembly Language (360 0S) binary read routine [Hinman)
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IBM Large Area Crop Inventory Experiment (LAC!EZ
3 ITAXPFLI-TICAYXPFLI
Date9/11/75

Rev
Book: Program Documentation : ' Page 1

ITAYXPFLI-ICAXPFLI

REFERENCES

1. Program Neme — FDLKINT REPRODUCIBILITY OIB;‘O’(I:.‘)%E
2. Programmer - R. J. Decker : ORIGINAL PAGE 15

. Langusge - PL/1

LINKEDIT Attributes - NCAL

Inputs -~ Scan Line Number

Outputs ~ Intercepts (pixel numbers) of scan line and field sides
Speciel Ttems ~ Calling sequence:

=1 O\ B

.

CALL FLLNINT(P,L);
where P = pointer to field definition table

L = 11 élement veétor declared

FIXED BIN (15) | | o

L{11) should be loaded with the scan line number

On return, the L vector will contain the ordered pixel intercepts. (e.g., a
areturnof | 5 | 7 [12 [T 20 | 0—>0 | indicates pixels 5
through 7 and pixels 12 through 20 are contained in the field.)

FUNCTIONAL DESCRIFPTION

This subroutine will return the pixel numbers of those plxels on & given llne that
are contained within the boundaries of a field. ' Zs

DETAILED LOGIC DESCRIPTION

ITAXPFLI examines the number of vertices of the input field to determine if the
Tield is & line-field or a polygon. If the input field is a& line-field, then
the intercepts » re determined as follows:

The.interCepf of the_line—fieid and L-0.5 is calculated as P = (X=X )
(L—O.S—Yi) ](YE_YI) + X . "his calculation determines the projection of the
intercept. of the line-field end I+0.5 is calculeted &as P = _(_xeaxl) (L+O.5-Yl) _
](Yg—Yl) + Xl. This calculation determines the projection of the intercept

of I#+0.5 onte L. These projections are examined to determine which is the

ieft one (Pt)'and vhich is the right one (PR}': P, is set to the integral

value of PL+0'5 end PR is set to the integrel value of PR + 0.4999,

Approval Approval

‘j' A Koy ¢/2/1"
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If the field is a polygon, then ITAXPFLI finds the pixel intercepts of a scen line
and the sides of the input field. '

There are three distinct cases and each is handled separately; (1) the scan line
intersects a side but not at the endpoints (i.e., vertices), (2) the scen line

intersects a vertex that is not an end of & horizontel line, and (3) the scan line

is concurrent with & horizontal side of the field.

FUNCTIONAL, FLOWCHART

See Figure 1.

EBM Large firea Crop Inventory Experiment (LACIE)
' 3. IIAXPFLI-ICAXPFLI
Date 9/11/75
Rev Q
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Characterizations of Linear Sufficient Statistics

By B, Charles Peters, Jrl, Richard Redner,}
and Henry P. Decell, Jr.l

University of Houston

.We.develop a necessary and sufficient condition thét there exist
a continous linear sufficient statistic T for a dominated col-~
lection of totally finite measures defined on the Borel field
generated by the open sets of a Banach space X, In particular,

_ corollary necessary and sufficient conditions that there exist a

rank R linear sufficient statistic T for any finite collection of
probability measures having n-variate normal densitites are given.
In this case a simple calculation, involving only the poépulation-
means and covariances, determine$the smallest integer f2 for which
. : there exists a rank £ linear sufficient statistic T (as well as

an associated statistic T itself).
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1. Imiroduction., If W is a Banach space, ®W(W) will denote i:he/B)a‘rel
field generated by the open sets of W. The totally finite measures‘

defined on B (d) will be denoted by W?(W). Tor It,A E???_(W) we will
write W << A provided B € B and A(B) =0 Iimplies "u(B) = 0.
Whenevgr W o<< A, [di/dA} will denote the equivalence clash of Radon—~
Nikodym deriﬁatives of U with respect to {[2] [3]. 1f ﬂ.cz?(m,ogwi.ll
be called a dominated (by A ) set of measures provided_there exists,

A 5:77?(W) {A not nécessarily in 06‘) such that U e 56’ implies

B << A, We will c_all o@l CWZ(W) equivalent to A (ogs A) provided

& 1is dominated by A and W{B) = 0 for each u ¢ o&f implies A(B) = O.

If K. and Y ai:é Banach spaces and T:X + Y then, following the notation
:_Ln {3], we write f(e)'I.‘__l(tS(Y)) provided f:X + R (= Reals) and £ __is
('I'-l(IB(Y), B(R)) - measurable (as well. as (X, IB(Rj) ~ measurable).

In [3], Ha]_.mos and Savage deve__l_op .an appmach to s__'uff__ic_ient statistics.
Their r.esults provide an alternate definition, within a very general mathema-

tical framework, of statistical sufficiency for dominated sets of measures.

This alternate definition is particularly suitable to the development of the

results in this paper. We will require the statement (Theorem 1.) of the
alternate definition in the setting of Banach spaces.

In all that follows X and Y will be Banach spaces, T a linear
ca_ntinupu-s -mapping of ‘X onto Y, and 06, CWZ (X) a dominated set of -

measures.

. Theorem 1, (Halmos-Savage [3]) A necessary and sufficient cundition that

T be a sufficient statistic for og is that there exist A EW(X) - such

I S,
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that 06/5 A and g, € [di/dA] such that gu(E)T_l(B(Y)) for each
ued,

In this paper cur particular concern will.be that of developing
necessary and sufficient conditions that a linear cdntinuous mapping T
of X onto Y he a sufficient statisr.i.c for a dominated set of measures
e .

In Theorem 2.we will require an additional condition on T which, to
the best of our knowledge, is generally unavoidable . We will require )

that the kernel of T ( = ker T) be complemented, in the sense that there

exists a closed subspace S of X such that X = ker T © S. (e.g.,  1f
X 41is a Hilbert space, take 8§ = (ker T)‘L).

In Theorem _é.we will show that the condition X = ker T® S ~may be’
relaxed - whenever [du/dX] contains a continuous representative.
The results we develop are finally used to establish necessary and sufficient
conditions that a linear statistic B:R© =+ Rk(k s n) be sufficient for a

finite collection of probability measures having n-variate normal densities.

2. Principal Results, In all that follows we will. assume tha_t X and Y

are Banach spaces, T:X + Y 1is a linear continuous mapping of X

~onto Y, and ca C???(X) is a dominated set of measures.

Theorem 2. Let X = ker T® 8 for some closed subspace of X. A

necessary and sufficlent condition that T be a sufficient statistic for

oe/is that there exist A 8772(}() such that 035 A and,

ker T'c'{y:gu(x +y) = gu(x), x e X}

for each U € a@( and some gu £ {du/dAl.




X-2 £ _ker T so that gu.(_x)_

Proof. If T 1is a sufficlient statistic for 98 and J € ge/then
there exists (Theorem 1 A Eog and gu £ [du/dA] such that gu(e)T-‘l(lB(Y).

Suppose y € ker T and, without loss of generality, there exists X, £ X

such that 'g (x +y) < &, (x ). Choose r € R such that g (x +9) <r < gu(xo).

Since g (— ,r) and g (r,W) are elements of U3 (X) and gu(e)T—l(E(Y))

it follows that there exist B]. and B2 e B (Y) such that

X, +yE€ g_l(—m,r) = T-l( Bl) and % E.g..“l(r,“’) = T—l(_Bz). Now, since T

is linear and y € ker T, T(xo) € Bl n 32 = ¢, which is absurd.

Conversely, suppose’ 06,5 A, UHE ﬁ and ker T c {y:gu(x + y o= g-u(x), '
x € X} for some g, € {du/dA]. We need only show (according to Theorem 1)
that ‘gu(E)Tul(ﬁ'(Y). It will only be necessary to show that for r € R

there exists Br EB {Y) such that gu_l(-m,r) = T—l(Br). We will show

~ first that. gu_l(—m,r) = T'_l -T(guql(‘—“',r). n S) and then that

B, = T(gu_l(-m,r) ns) e ().

If xe T (T(g (—w r) n §) then T(x) € T(g (—°° r) n 8) .and

hence T(x) = T(z) for some =z € gu (-‘n,r) nS. Since T is linear

|

g, = 2+ 2) = @ < and
_1 '
8, (==, 1).
If x € gu l(-°° r) then, since X=ker T®S, z=k+s for

k e ker T and s € S, It follows that ‘1‘()) = T(s), s ~x¢€kerT,

Agll(S) gu(s -x + x) = g (x) <r, sc€ g (-@ r) , T(x) = T(s) € ’I‘{gu-l(—m,r). n8)

and, finally, that x e T (T(g (—m r) n 8)).

- We now show that . T(gu (-_-w,r) ns) e (¥). Let T_S:S + Y be the

restriction of T to S and observe that TS is a one to one continuous

L
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mapping of the Banach space S onto the Banach space Y. Since TS |

satisfies the hypothesis of the open mapping theorem TS is a

homeomorphism of S onto Y. Since such mappings take elements of 7 (8)
| into elementg of 1B (V) and g_u is measurable, gu"l(-.m,r) nSelRBX ns =B (s).
- It follows that T(gu—l(—W,r) n sy = TS(gu-l(—m,r) ns) e B aﬁd the |

proof of the theorem is complete.

Theorem 3. Let Ogi A, A(@B) = A(B -y) for each yeker T and
B EZB(X) such that A(B) = 0, A(C) > O for each non-empty open subset C of X

, _ and let [du/dA] contain a continuous representative element fu for each

l.1€49:

E- _ A necessary and sufficient condition th=t T be a sufficlent statistic

P for & 1s .that
.L . ' ' ker T ¢ {y : fu(y+x) ='fp(x), x € X}

Proof: 1In order to see that the condition is sufficient we need only show
(according to Theorem 1,) that fu(s)‘l’—l(@(Y)), or equivalently, if r £ R

l

that f (—-m r) = (B.) for some B'r € EB(_Y).. In fact, since T is an

r
open mapping and fM is continuous, T(fnl(-—m,r)) £ B(Y)I. 'Wr-_: take

Br =3 T(_f—_l.(-_-w,- r))  and conclude the argument by showing that

£ -1(—‘” r) = T_lT(f -1(—°° r)). We clearly need only establish that

T T(f (—w ) o f (—m r)y., If 'x E.T-'-lT('fli“l(-m,r)') then . T(x) = T(2)

4 for some =z € f (—m r)., Since x -z £ ker T it follows that

'.fu(x) '="fu'(x -z +z)= fu-(z)' < r and hence that x e fu_l (~,1).
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In order to prove the neceésity of the condition, recall the proof of ;
the necessity of the condition in Theorém 2, and observe that the hypothesis
X=ker T@S5 for some closed subspace S of X was not essential. Ve
may conclude that if v E<{3/ there exists gu € [dp/dA] such that )
ker.T C.fy : gu(y + x) = gu(x), x € X} and fu = gu except on a set

Bel®(X) such that A(B) = 0. .
Tix yeker T. Simce {x: £ (y+x) #g,(y+ x)} =B~y and

‘A(B - y) = A(B) = 0, we may conclude that fu(x) = fu(y + x) except on

C=BU (B-y) and A(C) = 0. Moreover, since the mapping x >y + x

is a homeomorphism of X onto X and flJ is continuous, C 1is an open

subset of X. According to the hypothesis, A{C) = 0 and C open imply

C 1is empty so that fu(y-+ x) = fp(x) for each x € X.

o : ' o S n—1
3. Normal Families. In what follows we will assume that aE?'= {Pi}i=0

is a family of m probability measures defined on.'dS(Rn) having normal

densities

. -n 1 T.-1 ;
pi(x\ = (21) !Ql exp[—-i (x - ni) Ri {(x - ni]; i=0,1, ... ,m-1.

where ni and Qi are known and Qi is symmetric and positive definite.
We will derive necessary and sufficient conditions that a. k X n matrix B~
(k = n) mapping " onto Rk (i.e., rank (B) = k) be a sufficient
A m-1 : :
statistic for {Pi}i=0 . We first prove a Lemma.

Lemma 1. If 1< i sm-1 and _fi(x) = pi(x)/po(x) then

. _ ~ -1 = N S )
{y : £, +x) = £,0, x € X} = ker (2 -_sao ) n {szi n,- “o_“o} .
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'P;ooﬁz Fix vy € Rn. After a little matrix algebra (which we will omit) we
find that fi(y + x) = fi(x) for each x € R® if and oﬁly if

2 @ - 9 hy - 2y @M, - @itng + yT @t - @ty = 0
fcr eéch x € RY, for .x = -y/2 we see that yT(ﬂglni - Qalno) =0 so
that y & {nglno - Eglno}l . In addition, it follows that

2" (@ - ggl}y +y (@ - 9y = 0 and, writing x = (z - /2, that
T, -1

Cz (ﬂi- - Qal)y = 0 for each 2z & X. This cleariy implies (9;1 - Qal)y =0

g0 that vy € ker(Q;l - Q;l). The remaining containment follows easily.

Theorem 4. A necessary and sufficient condition that a k X n rank k

matrix B be a sufficient statistic for {Pi}?:é is that .
w-1 S T T | “1 L
[ - -
ker B igl {ker(wi 90 Yn {ﬂi ni Ro no} 1.

Proof: Since the preliminary conditions of Theorem 3.,are clearly sitisfied

for A ='PG’ Lemna 1. insures the necessity and sufficiénCy of the condition.

Theorem 5. A necessary and sufficient conditiom that a k X n ramk k matrix B

_ . S 1 :
be a sufficient statistic for {Pi}T | isthat, for =1, ..., m-1,
1ﬂ
7 e S T, .. _T.~L
(a) QjB (BQjB ) "= 9,8 (BQB)
T T,~1 T T,~1
(®  ny - QB(EALBY) Bn, = ng - G5 (BB B,

| o T Tyl T, o 2Tyt
(e) ﬂj - QjB (BQjB ) Bﬂj‘a 90 - QOB (BQOB ) Bﬂe

ET S




' singular matrix M such that MR

Proof: Let '(xly) = xTy and (xly)i = xfﬂzly i=0,1, ... ,m~-1.

Tor § ¢ R“, st ahd st il denote, respectivelv, the orthogonal

complements of 5 relative to the inmer products ( +f+ )} and ( -’- )

*
If A disan n¥Xn matrix A i

i
will denote the adjoint of A relative

. _ : : * '
to the inner product ( -f- )i on RY. If A isa kxXxn matrix A * will
denote the adjoint of A relative to the inner products ( «f-: ) on _Rn

i
k i *i T
and { ¢+« ) on R, It follows thar B * = QiB R

If B is a sufficient statistic for {Pi}T:é then, according to

Theorem 3., ker B c© ker(Q}l - QEI); =1, ... ,m =1 and hence

L= L : * *
(ker B) J = (ker B) O . Since this implies range (B j) = range (B_O) we have
% *n -1 . % . -1
that B O(BB 0) BB J = B and hence that QjBT(BﬂjBT)

T T -1
903 (BQOB b

which is (a).

T T,-1 *3 _ o2
Now let @ = QOB (BQOB ) B and observe that Q Y =Q = Q" for
j=1, euo sm - 1, It follows that: ker Q = ker B ker(ﬂgl - Qal) and that
Q(Q—l - 9“1)*0 =@t -g )*0 and hence that Q. - £.) =8, - . which
i 0 5 0 i 70 i 0 ’

recalling the definition of Q, is equivalent to (c).
. S R -1 -1 1
-8 - - ]
Since ker(Qj 0 Yy n (Qj nn 90 jo) IS (nj no) and
ﬂj - nn E (ker B)lj = range (ij) = raﬁge (Q), it follows that

Q(nj - ﬂo) = ﬂj - Ny which, recalling the definiton of Q, is equivalent

“toe (b).

Since all of the preceeding arguments are reversible, (a), (b) and (c)

ITiﬁply B is a sufficient étatistic For V{Pi}T;é , completing the proof of

" the theorem.

In the next theorem we will use the fact that there exists a non

OMT = T and hence that the affine transform-
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ation x -+Mx - no' provides a change of variables that allows (without loss
of generality or the ablifty to recover the sufficlent statistic relative to

the original variables) one to assume that Ny = 0 and 90 = T,

Theorem 6. If Ny = € and RO = T then a necessary and sufficient condition
that 2 k X n rank k matrix B be sufficient for {Pi}ﬁ;é is that there

exist a rank k orthogonal projection Q@ such that, for 1= 1, ... ;m -1,

where 2 dis the n X {(n + 1)(m - 1) zero matrix.
m~1

i=0 °?

loss of generality that BBT =1 'since B 1is a sufficient statistic for

Proof: If B is a sufficient statistic for {Pi} we may assume without

{Pi}?:é if and only if KB is a sufficient statistic for each nensingular

T T

k X k matrix K, One may indeed choose K such that KBB'K =.(KB)tKB)T‘é,I.

For 1 =1, ... ,m ~ 1 Theorem 5, implies that

ﬁiBT(BQiBT) =18 (r8Y) = B

. 80 that

1T

-1 -
(BQiBT} = 39, B g

op =1
and QjBT(BQiBT) B =B

Right multiplication of the latter equation by QiBTB will establish that

LT T T,
QiB B=3B BRiB B
from whence it follows, using symmetry, that

Q.B'B = BB, .

e
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Since ni = Q@ and Q] = I, Theorem 5. further implies

Ty _
n.L -B B =0

and

a, - BTBQ. I - BTB
1 i

Since BBT = I, it follows that BT

B+ {(where (-)+ denotes the

Tg = 8™ is the

generalized inverse of (-)) and hence that Q = B
orthogonal projection on the range of. BT [5]. Clearly Q has rank k and

we conclude that

(I - WOn, = 0

and

T-@ -1 =2z

and the condition follows. Conversely, if tﬁe conditon holds let B be any

' +

k X n rank k matrix such that range (BT) = range (Q). Clearly B B = Q,

BB+ = I and B+ = BT. ‘Using the symmetry of I - Q and Qi - I we conclude
that

Q.8'B = BUAR,
1 _ i

and hence that

Q =38 = B+BQiBT(BQiB¢)_1B

il

§ 0,588 (32,8") 18
1 1
= 237me ) 7s .
i i
In addition, ‘ '
T, oL _
2,8 (B,B7) =B
The obvious substitution for Q guarsntees the satisfaction of the

conditions of Theorem 5.

ey pmm e s mmes - L e i Y M g 8 i e e - -

o
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Defipition 1. We will say that a rank k orthogonal projection ()
}m-l

generates a sufficient statistic for {I’1 1=0

provided @ satisfies

the conditlion in Theorem 6.

Corollary 1. If M= {“1!“2‘ - Inmrll Ql - I} ... lﬂm_l - Il then
+ . m~-1
a) Q=MM generates a sufficient statistic for {Pi}i=0

and

b)) k= rank (MM+) Z tr (MM%) is the smallest integer for which

there exists a rank k orthogonal projection penerating a.

m-1
i=0

sufricient statistic for {Pi}

Proof: Let k be the smallest integer for which there exists a rank k

orthogonal projection P generating a sufficient statistic for {Pi}z;l .

According to the definition of M, (I - P)M =Z so that PM =M
-4 =} . + +
and PMM =MM . Since (I -MM )M=2Z, MM generates a sufficient
i1 ; -+ + . .
atatistic for {?i}i=0 . However, PMM = MM  implies that range
Oﬂi+) c range (P) -'so that the minimality of k and the fact that MH+_'is

an orthogonal projection imply that range (MM+) = range (P} and hence that

i = P,

- Corollary 2. If B is a sufficient statistic for {P }m—l then

i'i=0 "

“1BT

(BﬂiBT)_]“:BQi 120, 1, oo m-1 .

Proof: The conclusion is an immediate'COnseﬁuence of line 6 in the proof

of Theorem 6.
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4. Concluding Remarks. Theorems 4 and 5, although not so stated, are

valid for arbitrary families of n-variate normal probability measures,
Corollary 1., formally gives the construction for a sufficient statistic
for finite families of n~variate normal probability measures solely in

terms of the known parameters that determine the densities, In fact, if

k=rank (M) (=rank MM+) then any rank k matrix B for which range (B)=range (M)

is a suffiﬁient statistic for the famlly. Moreover, in terms of the
dimension of the range of a éuﬁficient statistie, k=rank M is the smallest
integer for which thére exists a sufficient statistiﬁ.

Several open questions concerning. the “"appropriate" definition of a

"almost" sufficient statistic usinguthe,characterizations given in

Theorems 4, and 5. will be the subject of a later paper. In this connection’

the results of Le Cam Eﬂ, although the approach is different, should be of

significant value-

5. Acknowledgement. The authors would like to express there sincere

appreciation to Professor H.:Elton Lacey for his comments,
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é;gtbchastic Approximation Algbrithm for

Estimating Mixture Proportions
by

James Sparra

1. Summary. A stpchastic appxoximation algorithm for estimating the proportions

in a mixture of normal densities is presented. The algorithm is shown to con--
verge to the true proportions in the case of a mixcure of two normal densities.

m ‘ .
2. a, = 1}. Tor each i,

.
2. Introduction. Let A = {a'p Ry > 0 and &Y

i=1,...,m let Uy ‘be -an element.of R® and I, bea poéitive definite

i
real symmetric n X n  matrix. Let X be a random variable with values in R"
and with densityhfﬁnction.

_m o n
p(a x) = ._1 . 1Py (x), for x & R

where Q€ A and

g6 = 2z | M el Lo s, Faenpd

for each 1 = l,..;;m;

We assume that & dis not known but that u, and -Ei ~are known for

."i'é 1;;..,m. 'An.aigorithﬁ,for eStimating. [ 'will be présented in part 3 of

thls paper and in part 4 the algor1thm w111 be shown to converge to a in mean

_ square and With probabillty 1 in the case where m = 2,

C7 mme

Rl.u o~

R Z— T

NN A - PR - P i 1 - A a— . o e * S e
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L 3. The Algorithm. Let {xl_};::n be a sequence of observations on X. Let
i o & A. For n=>0 define ap+l by

| -

w1, n n 0l'ipi(xn)
T w, =0, =c (0 - ———),
: : i i n i
t panfaxn)

gb‘ where

 on
O A

i © - and {ék}§=o. is a sequence of positive numbers such that

- ' . B L w ' RV

i . o o O = 2nd ko Sk < ¥ -

5. we.note that aach;itérate is“in A and that, since X "is a random variable,
i _ each iterate may itself be considéred a_random v@riable.

_ 4;';Convergence of the Algorithm.
B

B Theorem:  If % e R2 then the algorithm described in part 3 converges to o

* in mean square and with probabili;y ..

' Proof: - We refer the reader to the algorithm described in [1,pp. 332-333}1 and
;{.1;._, .tO'thefprobf of'Eoﬁvéigéncé'gifen.iﬁ' [1,pp}:35043521. ”Thé'applicébility of the .
P g . - ' L : 7 S :
o “theorem given there is clear 1f we let f(a) = E(Za), for each o ¢ A, where
@ ) . _ qi(pia %)

S I TR S R B, ° x “o

i




In order to show convergencé we must show that conditions (Al)-(A3) 4in

. [1,pp. 332-333] are satisfied. First we note that

CE) = (o -y (), 0y - 0, ()

" wherxe

- o pi(x) |
89 T e R F G, P
: ”RP _ T
" and

R‘ﬂ
Furthef, we note that
42 '. S : 2
— d7g (o) Py [py () =~ p, ()] - SR
1M 1 1 2 L
doyy Rn{alpl(x) t (-0 )p,(x)] : ‘
';.1 . and
9 7
_ d'gy(ay)) Py py(x) - p ()17 e
. 37 ISR —————3 +pa(x)dx >0.
dat, [(1-0,)py (%) + agp, (X)]7 SR
a _
7
[N
el . w‘J 1 :\ - 'y o “__:V'W' P T S - £ '_——: .
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Now, gl(al) =1 and gl(i) =1, So, since .gl ‘has positive second derivative

we have that g (@) < 1 if o € @1,1) and g, (@) > 1 if o e (0,8).

| Siﬁilarly, gé(az) =1 and g,(1) =1 and gz(uz)«i 1 if o, € (32,1)

and g,(0) > 1 1f 0, € (0,8).

We now show that (Al)-(A3) are satisfied: Let o € A. Then

(A1) £(@) =0 iff gy(o) =1 =pg,(a) iffa= .-

(42) (-8 "F(e) = (al—al) (oo =0 Bg (09)) F (uz—az) (¢, - a,8,(2;)).

I oy 7 0y then gl(ul) < 1 ‘and (oal—algl.(al)-) > 0. ‘Then also

o, (‘32 and gz(az) > 1 and (az—azgz(az)) < 0. Thus, if

S0y > o then (a—a} f(o) >0. Similarly, if Gy O then

(A3)

: o : 2 : : o _
. 2 : o, p., (x) o.p.(x) 2 '
E(| [Za| |2) = 4L (DL;?' -2 _[J—L" ~ Py (x)dx + '/'6—1*—1—-) * pg(x)dx)

. 7 _ , .
(a=8) "F(e) > 0. Thus, A2 dis satisfied in any closed, convex

subset of A.

Py (%)

r® . R .VRP.

POLCX) :

Now, we note that each term in the ith summand; i=1,2, is

less than 1 so that there is an h >0 such that.,E([lZa]IZ).< h

- for all o € A and '&3 is.satisfigd,
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The Role of Eigenvalues in Linear Feature
> Se]ection_Theory
D. R. Brown and M. J. 0'Malley

Department of Mathematics, University of Housten

Heustoh, Texas 77004 7

1ntroductioh. Recent statistical work in'feature selection for the mU]tivariate

norma] pattern recogn1t1on problem has concentrated on 11near1y transforming

pattern classes so that the transformed pattern classes are equ1va1ently distin-

, gu1shab1e S1nce, in. generaT “this is not poss1b1e techn1ques have been

‘deveIoped to preserve the d15t1nct10n of thn transformed pattern classes using

various measures of distinction. These measures of pattern class distinction

'~are most often treated as eigenvalue problems ({11, (21, (51, [61, [71, (91,
1131, [14] [15}) In this paper we con51der a part1cular measure. of pattern.
~c]ass d7st1nct1on ca11ed the average interclass divergence, or more simply,

Vvdjvergenee, (111, (21, [4], 16],.[71, (8], [9], [10], [111), where divergence

will be the pairwise average of the expected interclass divergence derived from

Hajek's two-class divergence as defined, -for example; in (al..

“This work was supported in part by NASA under Contract JSC-NAS-15000. -

TN




It has been shown in 4] that thert: always exicts a k x n real matrix
B such that the transformation determined by B maximizes divergence in

k-dimensional space, and, in fact, that B can be written in the form

'(IK}Z)U, where U s an.orthogonal n x n matrix. We will investigate'the

role of the eigenvaiues of U in such problems, and give an example demon-
strating that the-divérgénce measure of pattérn c]ass-distinction:does not -
depend on tﬁese eigenvalues (Theorem 7).

Our example is derived from the fami?y of examb1es constructed in [3].
This ‘special class df examb1éS permitslanaiytiCal céjtu]at{on of divergence,
a task ord1nar11y eschewed as unrea]1st1c, and y1e1ds a precise expression
for d1vergence The reader is caut1oned howeVer, not to confuse the numerical

J1mp]1c1ty of th1s example with 1mpract1ca11ty, since, mathemat1ca]1y, the

'fa11ure of the e1genva1ues oF U to affect d1vergence in the restricted case

erases any hope that they might be meanlngful in an arb1trary case, however

applied.

1. Special divergence formulas. Let ) ..,Q

o and u1?...,pm be the

‘I!

- covariance matrices and means for m classes, where for each i = 1,...,m,

2 is an n xn positive definite matrix and My is a column n vector.

et

s Y, where &.. = W: - B .

5 J -1 (R 13 13 T 1J LI

3
J#i

Then, assuming equal a priori probabilities,.the average interclass divergence

for these m - classes is given by




o

-~
R R 2 .
- 2 r(.i§-| Q_I 51) - m(m - ])n )

- while, if B is a k % n matrix, the B-average interclass divergence is

Bg = % tr(ig1 (B2, BT)-1(BS§ BT)) - hm(m - 1k {2)

. where tr -represents}the_trace function.

Moreover, as observed in (31, if
‘7___ . Tu . T . ) T , ..= . o .
e BeM BB =1 and (BB)Q; = 2;(B'8), i=1,....m),
where I, is the k x k ‘identity matrix and My is the set of all k xn
real matrices, then, for any B éd? ,_‘(2) may be rewritten as
b = *2 tl;(B(..rII:] 'sz'] S..)BT) -. 5 h(m _~])k . (3) i
BT i1 T ="
‘For the remainder of the paper we assume that each 9, isa diagonal
matrix of the form: X , where X5 is a positive real number, p
L : In-l o o .
, , L s s L
and u, = H for all 1,j. Under these restrictions, &7 8 S, dsa
- - diagonal matrix of the form ( X bI'.%}--' , where = A
S .- _.n—1. . | .
m. 7, m ’ , ‘ .
* = 151:'§"1(J§1 Xj)' and p =m(m - 1). It follows from (1) that the.
SR I - 7 _ S
- average interclass divergence for the m .classes is given by -~ . . -
- D= 4(x - p) | (&)
As observed in the introduction, in seeking to maximize if._he B-average )
"-__intercTass'diVergenCE :DBs-'ﬁt_sufffceSitO'conSidEr those k_X'n__matricesﬁof- .
B




_.the form (Ik|Z)U , where U is an n X n orthogonal matrix. In the sequel,

when considering 'DB’ we shall always assume that B is of this form. For

any such  k x n matrix B, it is obvious that BBT =1, and hence B € ¢§

if and only if (BTB)Qi = Qi(BTB) for i =1,...,m. HWe will derive necessary

and sufficient conditions in-order that B ¢ é? (Theorem 2), but first we
calculate D, in the case that formula (3] is valid. Recall that all means
are hereafter considercd equal and all covariance matrices diagonal of the

form stated above.

Theorem 1. Let B =_(IkIZ)U » Wwhere U = (uij) is an n x n orthogonal

matrix, and suppose D, is given as in (3) above. Then

B
o o D
Dp = (Ey uj )0 | - )

Proof: Since tr(XY) = tr(¥X) whenever both products are defined, we have

L ) T, B
in this case Dg = % tr(B B(igl.ﬂ. ,

; Si)) -3 pk . If U is written in

block form, U = (A'"C)" , where A ds kx k , then

E F
' | T T _ o S Yo
To o alyr 19377 19w < §AA AC RO | NS L
B = U1 [z2) (I |Z)u = ' . Since I, ©; S, = v } o=
| k b S | cTa ¢l =T \ Pl 1
pdT ) =l [} 7 where M ds the k x k matrix " g ;
\ nr-] : : n-k _ 7 S k-1
o qem oo otaTa Tev oo o L T T M L] Yy
Cthen BB(LE, 910 5)) = po (A AL qherefore, tr(B'B(.Z; 95 $)) =
i1 T ApT T o it W
| A\’ e
T e Ty L g K2 ko ko ke 2 s
LA+ er(CQ) = iy Wyl ok G Yig) * gk (1 o))
k 2 n k 2 o ‘n. .k 2
u. Y 3 TR L T - -’ - z. '.Z . - =
(j§1 ujl)x f.P(qu (j§1 qu)). Sjnce U is orthogonmal, 2, (3—1 qu)

e T o TR



X 2 k 2 K2 k2

g 0 ugpd = k- gy ugy s sorthat Dy = (kg ugydx + plk - 5ky uyy)) - e ok
k 2 g-g _ ko2

(81 w057 ) = (g upo

~ Qur next result gives necessary and sufficient conditions in order that
B = (Ik]Z)U eéf . While the proof is rather tedious, these conditions are

particularly easy to apply and hence useful in seeking examples.

Theorem 2. Let B = (IP|Z)U > where U= (u..) is an n x n - orthogonal matrix.

1F
W
If, for each i=1,...,m, Q. = 1 -, then:
i In-l

(1) F x; =1 forall i, then B czqf :

(2) if x, #1 for at least one 1, then Be{(: if and only if
K9 ?
) = . .. = ().
JzIU\“ 1 of 351_UJ1 0.
, _ o S SO |
Proof: If Xy = 1, then 9 = In and (B B)Qi = ﬂi(B B) for any k xn
matrix B. - Thus, if X5 = 1 forall i, then B E.ﬁt for ény k x n matrix

of the form (IkIZ)U. We suppose that X5 # 1 for at Teast one i. As in the

E F

_ g : § ' o . ' . ' A CY . - '
proof-of Theorem 1, we decompose U into the block form ( } , SO

a'a a'c _
T . . . . .
that BB = '-CTA CTC > ~where A is again k x k. For a fixed i such -

: G. :
that x, # 1, write 2. in block form ! I \ , where G, 1s the
o S n-k/ - o A

| /% o ATag, ATc
v %k matrix . Then (B B)Qi = T T , while
| L, . . - \chag cc/ o

Qi(BTB) = (GiA A GiA C) . Thus, BTB commutes with Ri if and only if »




(1) AThg, = G,ATA and (2) c'Ag; = C'A .

a'a

form:

Since ATA is- symmetric,

Since the abOVe argument is va]1d for any 9

Ty

N A A
'(N w) » CA= (R s)

N=_T. Therefore,

We write A'A and C'A

where L and P

Lin M \
DR
. .M.xi_ W

T =
_A AGi__

for which x; # 1, and since

it follows that

in block

T XiL %M T T
and G.A'A= | L Thus A'AG. = G.A'A if and only if M = x.M
1 LB o | !
and similarly, CTAG,i = CTA if and only if Px i =P and Rx = R. Since
k k ‘p jé] Jk+1 3]
M= (.L, u 2y u..u. ) and = K it
3 Jl 32’ 38 Yyt | R) ,
_ _ 0 A | : & j§1 ujn”j]
follows that Mx, = M, Px, = P, and Re; = R if and only if
ok X | o |
xi(jg] UsyUsq = .§1 315 for g =2,...,n. Thus, since x; # 1, we have
- T T o - ..k - o . -
that (B B)Q. = Q.(B B) if and on]y if .;1 31 iq 0 for g = 2,...,0.

B'B commutes with Q “for any i for which X; = 1,
_B F_;: ”1f.and_9n]y_1f 321 uj]ujq ¥_0  for q = 2,.. ' - We next show that_
k ok 2 : k 2
E j§] ujlujq =0 for g-= 2,...,n if and only if J§1 uj1 =1 or ng uj] = 0.
I; "Sigce--U is orthogonal, Jg] uj1Q5q = jgl U51Y5q +:jgké1‘uj1ujq:="0 kfbf |
. 9= 2yecon, vhile 1= ng_uii _.jgi_u§1 * jgk%I “§1nf Thus, T 55y i - b
i tﬁéﬁ ug]-— 0 forj=k+1, o, and 521 uj1ujq“—:j§1 ug]“jq.- 0 for
"g q =-2,...,n.'".if“.j§] u§1'5'0_5~ then uj1 = 0 for §=T.....k and,
:: bbvious]y 'gl_ 31 Jd = Q for q f ?, .. ,N. '
[
NS
v PR DA e —— -




gy |

jeow,

h

Conversely, suppose. that j;l UJTUJQ =0 for q-=2,...,n. If

Ugq = o = Uy = 0, then jél.”j] =.0 and the proof is complgte; Oﬁherw1se,
Tet U be the first non-zero element in the first column of U, where

_ . k : -k o _

.r <k. Then 0= j§1 “31”jq = ur]“rq + j=F+I Ujiljq » SO that

—.-:L Kk ] =
“rq i (j?§+] i1 Jq) for q=2,...,n. Thus, if B as LAY I 0.
o o | : | S22 ko2
then Upg = 0 for g=2....,n and it follows that 1 = u = jg] ugq -

_ . P . _ nooo
Suppose- U] #.O where r < w <.k . Since Uyt +'q§2 quurq =0 , then
Sﬁbstituting far U q =2, we have

] ; . _ _ _ i
+ s R T 2N ——— . . . o= [
"r1uwT q§2 wq(ur1 j=§+] ququ) rl Y ( ) J=r+] UJ1(q§2 “wunq) 0
R - | | ER _ _ ) . o
en f i " = .
Since U s orthogonal, then for j # w, qu quujq “w]uj1 and for

il o2

2
L L= B
q=2 “wa"jn T =2 Ywg

=1y,

: _ _ ko
. It follows tbat i=F] pj}(qu Ua'sq

k
PW1(J=F+1 . 31)) ”1 , and, substituting in (6), ﬂe:have

-1 -1 o n - . . '
Uyq U g+ (—-;J(J r+1( ”31)) + (a——d) = 0. Multiplying by u.,, we have

r
Pw](ur1_+_j=¥+1'uj1 1) = uw] er usp - 1) = 0.. Since u ;7 0 ? it now
' koo ko2
. follows that ] = JLP CLEN L I T

We note that, if there exists at least ane Qj wh1ch is not the 1dent1ty

;matrix_'Ih - then-the proof of Theorem 2 shows that B B comnutes with all

Q{'s “if and only if BTB commutes w1th Q Moreover, in this. case, the

e1emeﬁt5'bf' Ci é&é'prec1591y}th6§é”“3 = IZ)U for wh1ch the First co?umn of7*“

) =

(6)

j‘
y
!
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U is of the form

Um (
Hence, by Theorem 1, if B e Cf .- then Dy =D or Dy=0. (Note that
if Qi =-In_ for all i, then D=0 .)

We close this section with a definition. If V denotes the set of all.

| e et Vo= 00 = fu R .
‘n % n. orthogonal matrices, let { = {U = (up5) e Ve qu.uj]_~ 1 or 0}
Thus, if there exists @, # 1, then B = (I, ]Z2)U e QZ if and only if
: YA J . o

2. Eigenva]uéé of U. Let U'='(u;.) be an n x n orthogonal matrix.

ij ’
- As is well known, .[12] , the eigenvalues of U Tie on the unit
‘circle in the complex plane and non-real eigenvaiues occur in conjugate A
.-pairs. .Thus, if U has a real eigenvalue ), then )= #1, and, if
u=a+bi, b#0- is an eigenvalue of U, then h=a —.bi is also an -eigen-
. . ) + - j
value of U . Clearly, . det U = +1 . Moreover, if ‘1 -has multiplicity p as
- - iplici ' .i,a, ~ bi}g b, £ 0
an eigenvalue of U, =1 mu1t1p11c1ty m, and {a; * byisay = by, ( i 7 ) :
- @re the remaining eigenvalues of .U, then -U is similar to a block diagonal
orthogona1 matrix PUP”] of the fdfm:'
‘ ' ) A
/"
; o -A
o pop™t = b 7y A
i B T
{ 1, 4
e SRR S e o 1
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where 1 appears on the diagonal p times, -1 appears m- times, and each
fa, b\ ‘ o S

A. = k;bJ aJ\ is @ 2 x 2 orthogonal matrix with eigenvalues 3 + bji N
AN T

a. -,bjil Furthermore, the order in which the Aj'53- 1's, and -1's ‘appear

- on the diagonal can be changed to any desired order by & similarity transformation.

Thus, any two orthogonal . n X n matrices with the same set of eigenvalues are

‘similar. Finally, we observe that if U is a 2 x 2 arthogonal matrix, then

v (C' d‘) Cor U= ( ; d} where c? + d2 =1 .

d -c d ¢

 Let B = (Ik|Z)U > C:. For the remainder of the paper we will be concerned

‘with determining what role, if any, the eigenvalues of U play in determining

'DB'. If {A],..L,An} is a set of n not necessarily distinct complex numbers

for wnich there exists an n x n orthogonal matrix U _with_eigenya]ues _
A]""’Xn" then we will say that {A],...,Aq} isa (*) set . We note that

if T= {A1&=.,,An} is a set of n not necessarily distinct_comp]ex numbers

“such that T .is closed under conjugation and every element of T has modulus 1,

- then. T- is a -(*} set . Throughout the following, we assume that 1 <k <,

where k and n are positive integers, and we assume that at least one

covariance matrix;-ﬂi-#.rﬁ .

matrix U with efgeh#a]ues.'k-

Proposition 3. Lepa {A1,..,,}n} be a._(*) set. Then_there exists an okthogonal .

[s-e-oh, such that B = (I, |Z)U g.gf and Dy = D

- if and only if one of the following conditions holds:

(i) ')\’].' is real for sowe i .

(1) k=2 and no A dsreal.
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Proof: Observe that ¥ at least one Aj is real, say A, then by (7)

there exists a block diagonal orthogonal matrix U of the form U = .( 1 \) s
C

where C isan (n-1)x (n-1) block diagonal orthogonal matrix with
L B ' . o L k 2 _ .2 _.2_

eigenvalues 12,...,An . Thus, if U= (uij) , then j§1 uj1 = uj1 = A1 1,

'so that B = (Iklz)u a'ﬁf__and' Dg =D (Theorem 2). If no’ Aj is real, then =

n . is even, and by (7) there exists a block diagonatl orthogonal matrix U with

eigenvalies st}.},lﬁ such that = (ML ., where each .Aj, is

'S
2
, “a: b, ' :
a 2x2 matrix of the form ( ;J AN ’ bj # 0. Thus, the first
: aj _ ' : .
column of U 1is _ , and hence, if k =2, then B= (I, |Z)l € &? -
o o by} : " =& _ k! _
0
. \0/
and Dy = D .

Conversely, suppose that k = 1. If there exists an orthogonal matrix U

with eigenvalues Ayse.-sA, such that B = (IkiZ)U € C; s then Ue dg' Thus,

AT =0, then U s of the forn ( 00\ here o= 41 and

e : . \o

C isan (n-1) % (n-1) orthogonal matrix. Therefore, a is an eigenvalue

oo

of U and A =a 'is real for some i.




“(n-2) x {n - 2) orthogonal matrix'with‘eigehva1ues' A

11

* It is natural to consider the éna]egeus condition Dé = 0. That is,

“given a (*) set ‘{A1";"An}’ does there ex1st an orthogonal matrix U w1th

these eigenVaTuéé such that B = (Ik|Z U e V and DB = 0 ? The answer, as in

the preceding case, is no in general, but_1uv15_true in some important cases.

Proposition 4. Let T {A],.Q.;An} be a (*) set. If either
'(i)' 1 and -1 e T , or;

~o(di) 4 and -1 e T,

" then there exists an orthogonal matrix U with eigenvalues {Ajs. oA} such

‘that B = (L [2Ve {; and Dy = 0.

B
Proof. Let A, and R, denote the pair T, -1 or i, -i, et H"be any

3’;;"hn , and let

0 Z b,

h2 Z 0
of zeros, and if (A, A} = {1, -1}, then by =b, =1, and if
{A]: }\2} = {i, "1} N then b_l - ]’. b2 = ”? .

V*C1ear1y;"-u‘ is an orthogona] matrix. Moreover, the:eigenva]uesﬂof U

are {A1,...?An} ,» since det(_xIn - U) (x2 - b b ) det(xI P H) and._,
' hence. the'fuefsuof det(kl U) = 0 are the- roots of det(xI : H) = 0,
v together w1th the roots of x2 - b]b . S1nce the roots. of the former

e

"~equat1on are the e1genva1ues of H, 1ts suffices to show that A] and. Ay

2

are the roqts,of .x_.a_bIbZ 0. This fo]jqwsuimmedjatelytfrom the relationship

[l -
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defined between the values of A] and Az and the choices of b1 and b2 ;

Thus, since we assume k < n, then Theorem 2 implies that U e t{ » SO

0.

that B = (IkIZ)U £ Z: , and, by Theorem 1, DB

Our next result shows that, if n = 3, then Proposition 4 does not
characterize fhose (*) sets T for which there exists an orthogonal matrix
U with set of eigenvalues T such that B = (I,[Z)U e, and D, = 0 . We
will obtain a partial extension of this result to arbitrary n and we will

make strong use of the extension in our main result, Theorem 7.

Lemma 5. Let n=3, k=2, and suppose that {A], Aps 13} is a (*) set,

13

where A] a + bi, Az = a - bi.

(1) If A3 = 1, then there exists a 3 x 3 orthogonal matrix

U with eigenvalues A Ays Ay such that U e éz and O, = 0,

1’ B
B = (IkIZ)U, if and only if a, the real part of X, and X,

is less than or equal to zero;

(2) if A5 =-1, then there exists a 3 x 3 orthogonal matrix U
With' eigenvalues X, Ay, Ay such that Ue J and D =0,
B = (1k|z)u , if and only if a, the real part of A, and A, ,

is greater than or equal to zero.

Proof. GObserve that if U ¢ J is such that Dg = 0, where B = (1, 12)U,

0

then by Theorems 1 and 2, U is of the form (C) A \ » Wwhere
v 0O

v=+1 and A isa 2 x 2 orthogonal matrix. Moreover, if U has gigenvalues
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A], AZ’ A3 , then det(U) A1l2A3 . Thus, if A3 1, then det(U) =1,
and if A3 = -1, then det{(U) = -1 . We consider the case AB =1, the
case A3 = -1 being similar.

If v=1, then A is of the form (ﬂ; g) . Then det(x[3 -U) =
x3 + dx2 - dx - 1, so that the eigenvalues of U are 1, -{1+d) * iJ_é—Ed-dz_.

2
Thus, there exists U with eigenvalues Al, lz, 1 if and only if there exists
a real number d, |d] €1, such that
—— - —— 2"
A N (8)
2 2

Since |d| £ 1, then :l%iﬂl.k 0, and thus, if U exists, then a = 0.
Conversely, if a < 0, then d = -(1+2a) satisfies both equations in (8)
and |d} <1 . If v=-1, then A= (8 _g\ » and the eigenvaiues of

U are

1y + s Y-
1, (d-1) "1%-3+2d d An argument similar to the preceding one

shows that there exists U with eigenvalues A 1 if and only if a = 0.

'IQ 121
Corollary 6. Let n and k be positive integers, 1 2 k < n, and suppose
that T = {A],...,An} is a (*) set.

(1) If 1e7T and if there exists a + bi € T, with a < 0, then there
exists an n x n orthogonal matrix U with eigenvalues T such

that Ue 4 and Dy = 0, where B = (I |Z)U.

(2) If -1 eT and if there exists a + bi ¢ T, with a = 0, then
there exists an n x n orthogonal matrix U with eigenvalues T

such that U e 4[ and D, = 0, where B = (Ik|Z)U .

B

mﬁ
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Proof. By Lemma 5 and its proof, if a £ 0, then A= 0 -d <c ,
1T 0 0
’ i
where d = -(1 + 2a), 1is an orthogonal matrix with eigenvalues 1, a + bi.

Thus, if U s the n x n block diagonal matrix (g ﬁ) , where H

is an (n - 3) x {n - 3) orthogonal matrix with eigenvalues T\{1, a * bi} ,
then U s an orthogonal matrix with eigenvalues the elements of T. Therefore,
if U is the n x n matrix obtained from U by interchanging the third and
nﬁh rows and columns of U., then U ds orthogonal, and, since U 1is similar

to U, the eigenvalues of U arc also the elements of T. Finally, since

the first column of U fis 9 » we have Ue i » and, by Theorems 1

0
1

and 2, DB =0, where B = (IKIZ)U and k < n . The proof of (2) is

similar.

We make a few additional observations before stating our main result.

tet U be an n xn orthogonal matrix with eigenvalues &, , {aj + bji}gzz 5

where bj may be zero. Since tr{U) is the sum of the eigenvalues of U,

it follows that if A] =1 and aj >0 for j=2,...,n, then

352 aj » +1 , while if A] = -1 and aj <0 for j=2,...,n

n
then tr(U) = -1 + jgz a. < -1 . Also, if A is orthogonal and det{A) = -1,

J
then -1 1is an eigenvalue of A. This follows immediately from the fact that

det(A) 1is the product of the eigenvalues of A , repeated to their respective
multiplicities. Finally, if A is orthogonal, n x n, and n is even, then

det{A) = -1 implies that both -1 and 1 are eigenvalues of A.

e e e T w e T
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Theorem 7. Let n and k be positive integers, 1 =k <n, let U be

an n X n orthogonal matrix, and let B = (IkIZ)U be such that Dg = D.

1 J4

IF U= [ ™1 U and if B = (1,]2)T, then B=8, so
Z -1

that by = DB = D. Either U or U is similar to an n x n orthogonal

matrix U] € c{ such that D, = 0, where 81 = (Ik[Z)U].

By

Proof. Note that the matrix U differs from U only in that the last row of
U is the negative of the last row of U . Clearly, since k < n, we have

= B.

oo

Now suppose that n 1is even. If det(U) = -1, then 1 and -1 are
eigenvalues of U and thus, by Proposition 4, there exists an orthogonal

. - - > =0
matrix U] similar to U such that B] (Ik|Z)U] £ gi and DB] 0. If
det(U) = 1, then det(U) = -1, and the above argument applied to U yields
the same conclusion.

Suppose that n s odd. Then U must have at Jeast one real eigenvalue,

0, then the

1A

A. If x=1 and if U has another eigenvalue a + bi, a

-1 and if U

n

conclusion follows from (1) of Corollary 6. Similarly, if A
has another eigenvalue a + bi, 2 = 0 , then the conclusion follows from (2)
of Corollary 6. Suppose now that X =1 is an eigenvalue of U and that

a >0 for all other eigenvalues a + bi of U. Then det(U) =1 and

tr(U) > 1. Since det(J) = -1, it 7cllows that -1 is an eigenvalue of U,
and, since tr{U) can differ from tr(U) by at most 2, we have that

tr(U) > -1 . Thus, U must have an eigenvalue of the form c¢ + di, where

¢ > 0, and hence, by {2) of Corcllary G, there exists an orthogonal matrix

I o
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U] , Ssimi'ar to U, such that B] = (IkIZ)U] £ C: and DB1 =0 . The

case in wnich A = -1 s an eigenvalue of U and that a < 0 for all other

eigenvalues a + bi of U is handled in a similar manner, and we omit the

proof,

3. Conclusion. This paper provides an example to show that, even under

extremely strong conditions, the eigenvalues of U do not affect the value

of divergence D(I 1Z)U in the space of reduced dimension.
k
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A Review of the LEC Performance Evaluation of UHMLE

In March 1976, Lockheed was directed to submit a plan [1] for
comparative evaluation of several candidate signature extensions algorithms.
The results of that test [2], car ied out by LEC in April, were the basis
for selection of two algorithms [3], OSCAR and ATCOR, for test and imple-
mentation in a sub-operational system by IBM. Four simulated (SIM) data sets
and seven consecutive day (CD) data sets were used. In the following sections,
two points will be addressed for each data set. 1) Analysis and evaluation
of the UHMLE test. 2) Recommendations on changes in the UHMLE algorithm
motivated by the test. The criterion for evaluation of each algorithm will be
overall classification accuracy (Tables 8 and 9 of [2] are attached for

convenience}.

I. Simulated Data Test.

in previous tests carried out by the University of Houston consistentiv
good results were observed using essentially the same data set. The poor
performance of UHMLE on SIM1 and the marginal performance on SIM4 seems
to contradict our previous experience. The following observation on the LEC
test may explain this discrepency.

In SIM1 the iteration sequence seemed to converge before the signatures
had moved into the unlabeled data region. A second run which first estimated
an initial translation X + B and then applied the general UHMLE algorithm
was successful. Even though translation was included in our operational
algorithm delivered to J5C, the second run was not reported in the final LEC

analysis.

o B e i s
. T w ey *
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Local 1st LEC 2nd LEC UHMLE TEST
Pass Accuracy UHMLE TEST w/translation option
SIM1 93.5 ~-21.7 -2.5
SiM2 98.6 , ~0.7 no trans.
SIM3 97.0 -1.0 "o
SIMA 92.8 -5.0 "o
Ave. 95.5 -7.1 -2.3
Std. 9.9 2.0

Table 1

Revised SIM test results.
Overall Accuracy Difference

The use of the translation in SIM1 would dramatically change the outlook
of UHMLE in the SIM test.
The results do not suggest any modifications of the UHMLE algorithm

except to re-state the need to apply the transtation first.

I1. Consecutive Day Test.

General: The consecutive day (CD) data set consisted of three Kansas
Intensive Test Sites (ITS) outlined in  [1]. From these a total of seven

pairs of consecutive day passes were selected from 1973-74 LANDSAT-1 data

acquisitions.

.
7 ata
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DATA SET DATE SIZE HAZE
ITS ) TRAINING/RECOGNITION ITS | TRAINING | RECOGNITION
Finney F1709-8 2/1 July 74 5x 6
! F1673-2 27/26 May 74 " X
" F1655-4 9/8  May 74 L
" F1726-7 19/20 July 74 " X
Saline $1455-4 21/20 Oct 73 3 x 3
" §1725-4 18/17 July 74 " X
1 E1726-5 12/11 June 74 3% 3 X

Two UHMLE tests were run on each data set.

Table 2

Consecutive Day Data Sets

UH/ALL uses as its unlabeled

sample the rectangular area containing the selected Test/Training fields.

UH/FIELDS uses the test fields only as input.

associated with each ITS are defined for further reference.

AD

Al

A2

A3

ITS ground truth site.

track. )

The following ground areas

(Not alligned with LANDSAT ground

Smallest rectangular field containing selected training field.
Used as input for UH/ALL.

A0 intersect Al ,

used for classification area.

Designated test fields ( = training fields within A2). Used
for input to UH/FIELDS.
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Proportion Estimates. UHMLE automatically estimates a proportion vector

fer the unlabeled input data set. These estimates are used in two ways in

the Signature Extention (SE) test.

1) The UHMLE proportion estimates are used as a priori probabilities
in the ciassification algorithm. Although this is not an unreasonable
cheice for the a priori probabilities, the UHMLE classification results are
not comparable to those of the other candidate algorithms which used equally
iikely a priori probabilities. Moreover, in the UH/ALL test, the UHMLE
proportion estimates correspond to Area Al., Area A2 was classified and only
results from Area A3 were used for performance evaluation. In UH/FIELDS the

unlabeled input data set and the classification region were eaquivalent.

2) in Tables 10-13 in [21, the estimated preopovtion of wheet for
each algorithm is first compared to the Tocal classitication proportion
estimate and then to the ground truth proporticn estimate for hoth the SIM
and (D data sets. In the CD test, the U4/LLL and UH/FIELDS are classification
proportion estimates for area AZ2. The maximum-likelihood estimates from UHMLE
(UH/ALL/MLE) correspond to area Al . It is assumed here that the proportion
estimate from local classification in Table 11 of [2] s based on A2. Hence
UH/ALL/MLE  is not comparable to the Jocal standard. In Table 13 [2] the
standard is ground truth. It is not clear whether or not the ground truth

proportions correspond to A0 or A2 . In either case all proportion

estimates listed in that table are not comparable.

M N
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Data Quality. This appears to be the most important factor in analyzing

the UHMLE results. The CD data sets contained numerous déta drops or
"glitches." LEC was careful to choose training segments and fields so as
to avoid this bad data in the.computation of training statistics. However,
several of the recognition segments used as input to UHMLE (in both UH/ALL
and UH/FIELDS) were contaminated. This bad data effectively “captured"”
subclasses from both wheat and non-wheat categories and distorted means

and particularly covariances in other subclasses. Only the data quality in
Area AZ could be assessed from the available computer output. Further data
drops, which may have been present in Al (outside of A2), could also have an
apparent degrading effect on UH/ALL test results. The implications and
incidence of contaminated data is listed below in Table 3. We strongly
recommend that this be the last time that this data set be used in any

testing procedure.

Data Set UH/FIELDS  UH/ALL
F 1709-8 Slight | Slight
F 1673-2 Bad Bad

F 1655-4 Bad Bad

F 17267 Bad Bad

S 1455-4 Slight | Slight
S 1725-4 Good Good

E 1726-5 Good Good

Table 3

Incidence of Data Drops in CD Data Sets
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Label Switching: In the UHMLE algorithm the various subclass statistics i
move in a quasi-independent manner to better "fit" the unlabeled data set.

In this process a subclass component of the mixture model may seek out data

in the unlabeled sample which is from a different category than the one
assigned in the training segment. This poses no difficulty in terms of
density estimation, however correct category labels are required for acreage
proportion estimates. This phenomena is compounded by subclasses being
"captured" by data drops, leaving unmodeled data free to be absorbed by an
existing subclass. In a number of the CD tests substantially improved

results are obtained if the label on a single subclass is reassigned. Inter-
action of the Al or DPA {at this point, prior to aggregation of acreage
proportion estimates at the category level) with the view of detecting obvious
category Tabeling errors, should be considered. This is a key point. We are

simply saying that, when using UHMLE {or other algorithms), the spectral class

identity extrapolated from the training segment may not be sufficient to

establish crop category identity without Al interaction.
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Individual CD Data Set Results. In this section each CD-data-set test is

analyzed separately. Some revised results are reported along with supporting

rationals.

F 1709-8 Two classes have inflated variances due to a data drop. However,

both UH/ALL and UH/FIELDS do better than local classification.

F 1673-2 Very poor performance on both cases is observed. Two data
drops have major effect on distorting variances and means on several sub-
classes. If one subclass, which is obviously mislabeled, is switched from

wheat to non-wheat a substantial improvement is observed.

LEC Test Revised
Local uT UH/FIELDS UH/ALL UH/FIELDS UH/ALL

96.1 0.1 -23.7 -21.3 -3.1 -8.6

In Figure 2, the subclass means determined by UHMLE are plotted in the TACAP
“brightness x green" coordinate system. Subclass W7 s clearly displaced
from the other wheat subclasses. It is not unreasonable for mislabeliny of
this magnitude to be easily detected by an AI or DPA and corrected at the

time of acreage estimation.

i
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F 1655-4 Again two data drops play a large role in distorting several
subclass signatures in UH/ALL. One label switch again improves matters
greatly. In UH/FIELDS the effects of
Revised
Local Ut UH/FIELDS UH/ALL UH/FIELDS UH/ALL
94.9 -3.8 -3.1 ~-15.0 not revised -3.3

the data drops are not as apparent in the overall classification accuracy.

F 1726-7 Data drops substantially distort four subclasses in UH/ALL and
to a lesser extent in UH/FIELDS. Even so, results are excellent (better than
Tocal classification) in UH/FIELDS. UH/ALL results are poor. No clear

label switch is apparent.

S 1455-4 In this data set only four subclasses are modeled. Two subclasses
are distorted by data drops, one severely in both cases. In the UH/ALL case
the Al area is much too large, introducing a larqe segment of extranecus data

into the unlabeled sample. Further A2 s not contained in Al (see Figure 3).
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(129 24)
27,26) (146,26)
( . N
Al
{52,41)
A2
(149,80)

(27,91) \\\\\////,/’/, (146,91)

(71,94)
Figure 3.
Field Definition Errors in S 1455-4.
The poor data quality, errors in field definitions, and small number of

subclasses render the interpretation of this test null and void. Inclusion

of this test in the overall UHMLE evaluations is, therefore, meaningless.

S 1725-4 There are no data drops or anomolies in this test.

E 1726-5 There are no data drops. A reasonable case could be

made for a label switch, however, the explanation is not as obvious as in
the previous data sets and it will be omitted here. This case appears to be a

reasonable test of the algorithm.
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Summary of CD Test. If we introduce the three label changes (easily

detected by an AI or DPA) suggested in F 1673-2 and F 1655-4 and omit

the unacceptable test of S 1455-4, the performance of the algorithm is
distinctly different than that reported in [2]. In light of the results
presented here, the conclusions drawn by LEC in [2] concerning the relative
performance of UHMLE are, at best, questionable. The original results along

with the aforementioned revision and omission are listed in Table 4 below.

LEC Original Revised

Data Set Local UH/FIELDS UH/ALL UH/FIELDS UH/ALL
F 1709-8 79.5 2.7 7.3 same same
F 1673-2 96.1 -21.3 -23.7 -3.1 -3.6
F 1655-4 94.9 -3.1 -15.0 same -3.3
F 1726-7 80.0 0.9 -6.8 same same
S 1455-4 86.5 -12.1 -29.5 oMIT OMIT
S 1725-4 85.4 -4.3 0.9 same same
E 1726-5 66.2 1.4 -7.3 Same same

Mean -5.1 -10.6 -0.92 -2.97
Std. Dev. 8.7 13.1 2.9 6.1

Table 4.

Revised UHMLE Test Results.
Overall Classification Accuracy Differences.
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We maintain that there is considerable evidence (provided, in part, by this
analysis) for rejecting the original analysis and conclusions. If for no
other reason, the poor data quality in five of the seven CD data sets chosen

renders the LEC test results, as they pertain to UHMLE, invalid.

111. Conclusions.

Although the LANDSAT-2 data does not contain nearly the frequency of
data drops observed in the LANDSAT-1 data used for this test, we clearly
must incorporate a data editing scheme into the UHMLE algorithm or assume
that preprocessing has deleted these pixels. There has been preliminary
testing of a thresholding scheme which appears to be an adequate m=thod when
used in conjunction with an initial X + B translation.

The reassessment of labels after signature extension remains a major
priority in the UHMLE signature extension algorithm. This is a small task
in terms of time compared to complete local training by the AI, and appears
to be a necessary Al interaction function coupled with automatic processing

of recognition segments.
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SUMMARY

Our comments on the SD test and on the CD test suggest that the
UHMLE algorithm in particular and mixture density estimation in general
should still play an important role in the solution of the signature
extension problem. In another paper [41, the signature (e.g., Procedure
1} extension problem, in the context of the LACIE training procedure is
reformulated. Mixture density estimation (supervised or unsupervised) will

certainly play a role in the exaction of the Spectral Information Classes

described in that paper. Additional work on the UHMLE algorithm, especially
the details of incorporating it into the LACIE training procedure, we believe

to be essential. These details are treated in the reformulation given in {4].
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TABLE 8.— OVERALIL ACCURACY FOR SIMULATED pATA”

(A minus sign mecans the algorithm was less
accurate than local classification.]

i L S ™

Percentage difference between
L 1 local accuracy and that obtained
Data oca with various algorithms
accuracy
. Ul
R(5} |} MLEST fields R(C) ur
SIML 93.5 0.01 -3.5 -21.,7 -2%.6 ¢ -99.3
SIM2 98.6 | 0.0] 0.0 -0.7 0.01-18.3
SIM3 97.0 0.11 0.0 | -1.0 | -5.21-~50.0
SIM4 92.8 -0.11}-3.2 ~5.0 ~-2.9 ~-8.8
Mean 895.5 0.0 -1.7 -7.1 -9.4 1 -44.1
Std. dev. 2.8 0.1 1.9 9.9 13.6 40.8
*u
Prepared by LEC [2].
!
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¥ TABLE 9.— OVERALL ACCURACY FOF CONSECUTIVE DAY DATA 8 E
=
b | [A minus sign means the algorithm was less &3
: accurate than local classification.]
i@
? Percentage difference between local accuracy and that obtained
L with various algorithms
pata Local
: accuracy MOD UH
, R(S) | MLEST | OSCAR | REGRES | MOD R | R(C) { qoryyn | ATCOR | o lya | UT R{S/C) | UH all
g% F£1709-8 79.5 ~5.8 | -4.4 | -7.0 -7.1 |~-7.6 |-8.1]|-7.8 |~-8.5 2.7 ~-8.2 | ~12.5 7.3
,_i; & g F1673~2 9€.1 -2.01-0.5 | ~3.2 }-i0.2 0.5 | ~1.7|~0.7 {-5.0 [-21.3 0.1 ] =1.7 | -23.7
&
{ & 8 F1655~4 94.9 -3.3 | ~1.8 |-2.1 -2.1 | -2.7 {-4.7|~3.0 |-3.6 =3.1 -3.8| ~-3.8 { -15.0
t}; ?g F1726-7 80.0 1.9 1.7 3.8 4.9 }~1.9 |~-L.1j 2.4 |=-5.9 0.9 -8.51 -7.1 -6.8
) ES = 51455-4 86.5 -0.2|-0.2 | -3.5 -1.8 | -3.2 [~4.4] 2.5 0.1 | -12.1 0.0 | -3.5 | -29.5
] S 51725-4 85.4 1.1}-0.5 | -0.9 0.0 |-3.2 |-1.9|-5.0 |-4.7 -4,3 |-14.1|-11.0 0.9 |
A ;*‘é E1726-5 66.2 ~3.2 | -6.0 |-3.8 -3.5 | -1.8 |-4.1]|-2.8 | -2.7 1.4 |-11,5| -9.8 -7.3
P s Mean g4.1 -1.6{~1.8 | -2.4 -2.8 | -2.8 |-3.7{-3.8 |~4.3 -5.1 -6.6f -7.1 | -10.6
gﬂ; Std. dev. 10.2 2.7 2.8 3.3 4.9 2.5 2.4 4.2 2.7 8.7 5.5 4.2 13.1
= gew _
o AN
1 ﬁ
*
) Prepared by LEC [21]
; i
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Introduction:

The following algorithm has been suggested by Decell and

Smiley in (11 for optimal linear combinations in the feature

selection problem.

Let ¥ be a continuous function from Mﬁ (see definition 1)
into Rt that is invariant uader multiplication on the left

" by kxk iInvertible matrices, Then there exists H.€ ﬂJn
(see definition 2} such that

volglzle ) = é.u‘.}s.{qJ( L 1,17] H)}.
&
n

Now for each positive integer 1, let the element HE€ }l

be chosen such that

Y [Ik'Z}HiHi_l..-Hl) = }]:I.Eu.b. W o z}nny .- H)
n
The gquestlion of whether or not the above process terminates

at an absolute ¥ -extremum (rank k maximal statistic) appeared in
[1]. In thls paper, we show that there exists a function Q’as above
for which the ahbove process does not “erminate at an absolute

Y -extremum.

Let Hl""’Hp be the matrices representing Householder trans-

formations. Then for the matrix [I 1Z]H ---Hy, let O [Ikl 7] Hp o H)
be the span in R? of the k row vectors of that matrix. Suppose

that vl,...,vk are linearly independent vectors in RP®. Then we show
in this paper that there exists some integer p € min(n,n-k) and

Householder transformations whose matrices are H_,...,H for which

- - T T e R T A
— o = e 3T i o Y
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a( [II{IZ] Hl---Hp) = Span{vl,. ..,vk} . We also determine the minlmum
Integer p having the above property.

¥

Preliminéries :

Definition 1. Let Mﬁ be the set of all kxn rank k matrices.

Definition 2. Let [Hn denote the set of all Householder trans-

formations.

Definition 3. Let,.g:f1 denote the collection of all vector
subspaces of RI' of dimension k.

Definition 4. Let 8" = {xﬁRn I izl '—"1 } .

Definition 5. LetObe a closed subset of R" and x & C. Then
there exists c_€ € such that ”x—cx” £ flx~clf for any
ceC. Let e(x;e) = ”x-cx” .

Definltion 6. Let A and B be elements of,gﬁ . Then there exlsts
an element a* €& Af1S™ having the property that
p(a*; BNS") 2 p(a; BNS") for all a€ ANS". The num-
ber e(a*; BNS™) will be called the distance from A to B

and will be denoted by the symbol d(A;B).

Proposition 1. For any elements A, B, and C in‘,ﬁ;‘;
i} d(A;B) @ 0 and d(A;B) = 0 if and only if A = B.
11} a(a;c) € d(A;B) + d(B;C).
iii) For any £ a0 there exists ad>0 such that whenever
d(A3;B) « & , then d(B:;A) « ¢ .

Definition 7. For any PE,.\Sﬁ and & » 0, let
Upr) = {xed5 | a(x;p)e g}.
Definition 8. Let T be the topology on Jﬁ determined by the
90 . k
subbasis {Zﬂg(P)lfé 0 and P€ JX } .
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Definition 9. Let (Cbe a closed subset of )jlr{x and let PE)Sﬁ.
Let D(Pp; C) = g.l.b. {d(P;C)[ CE (_’;’3,

Proposition 2. (}3§,T) is normal.

Proof: Let ( and B be two closed disjoint subsets of‘)gﬁ.
Let ‘2,01 ={Pe)3§| p(p; @) « D(P;ﬁ)} and

‘U’2 = {Peﬁgl p(p; @) > D(P;ﬁ)} . By Proposition 1,
we can determine that Zpl and'tpz are both. open and are

disjoint. This completes the proof.

W1 U Y1
Definition 10, For any vector w = [3 in R%, let w- = |3
W
n k

W
and wb = (§k+ﬂ

o

¥n

Propositiou 3. Suppose that {vl,...,vk } is a collection of
linearly independent vectors in R™, Let p be the dimen-
sion of Span v%,...,vi} and assume p - 0. Then there
exists a vector x € R™ such that [lx/l = 1, and if Hy 1is
the Householder transformation determined by x, then the
dimension of Span.{Hx(vl)L,...,Hx(vk)L} = p-1.

Proof: Case 1) Dimension of Span vg,...,vu'} is less

k
than k. We select a vector xL in Span vl L} such

130 oV
that HxPll =¥%. Since [v%—Z(v%-xL)xP]-xL = 0 for
i=l,...,k. It follows that the dimension of

Span {v%—a(v%-xL)xL,...,vﬁ-z(vi-xL)xL} is p-1l. Now by
assumption there exists a vector xU in Rk such that

IxUll = V%, and vgexU = 0 for i=1,...,k. Since

V%~2(vi-x)xL = vg—2(vg-xL)xL, then the dimension of

g e e . o e

e e
. T .y

el
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Span {vaz(vg-xL)xL,...,v§~2(v£-xL)xL} is p~1l, for
X =4%: .
XU

Case il) The dimension of SpangvU .,VU} = k.

1oereaVy
We select a vector xg in Span {v%,...,vi} with ”x&”:VT;:

Then we have that the dimension of
L L _Ly.L L L Ly L

Span {vl-2(v1-xo)xo,...,vk-2(vk.xo)xo; is p=1. We

assume then that xU = ?\xg‘ for some A &L 1.

We want a
2
vector xU in Rk such that 1f x = (xU) then "xU” +
X
2
”xL” = 1 and v%-Z(vi.x)xL = v%-2(v%.xg)xg for 1=1,...,k.

]

By substituting xg Into this equation in place of xI'r we
can determine that VE.XU = (%%Eav%.xg for i=1,...,k.

By our assumptlon we can find a vector xU satisfying the
above equations whenever a cholce of A 1s made. We ob-
serve that if A approaches 1, then ffol' must appfoach
0, and IxEll must approach V% so that if A approaches

1, then HxUﬂz + ”xLﬂz must approacrlvgi If A approaches
0, then "xU”' approaches + o and ”xL” approaches 0

50 ”xU"a + ”xLHZ approaches +6® as A approaches 0.

It follows from this that there exists some A for which
[P L L

Span{v%-z(vl.x)xL,...,vi—E(vk.x)xL} is p-1 which is the

Thus we have the dimension of

required condition. This completes the proof of proposition
3.
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Definition 11. For any ME?ME let O(M) = Span{vl,...,vk}

where {V13°"=ng are the row vectors of M. O is easlily

seen ¢to be continuous.

Proposition 4. Suppose that E)([kaz]Hl...Hp) = Spangvl,...,vki

for Householder transformations Hl,...,H . Then the
dimension of Span{v%,...,v%} cannot exceed p.

Proof: We observe first of all that for any collection
of vectors iyl,...,ymg and any Householder transformation
HX determined by the vector x that
Spanin(yl),...,Hx(ym)i C Span{yl,...,ym,xg

Now e([Ik|Z]H1...Hp) = SpanSHp...Hl(el),...,Hp...Hl(ek)}
where ei is the vector with 1 in the ith place and O
everywhere else. Thus by the above statements,

Span{vl,...,vki(: Spange1 ...,ek,zl,...,xpg .

It follows that Span{v%,...,vif(i Span§x§,...,x§§ .

Thus the dimension of Spangvg,...,vﬁg 14 less than or

equal to p. This completes the proof of Proposition 4.

Propositlon 5. For linearly independent vectorsé vl,...,vkg,

if p 1s the dimenslon of Span{v%,...,vkg and px> 0, then:

there exists Householder transformations Hl""’Hp

such that © ([Ikl ZJ H, .. .Hp) = Span{vl, .. .,vk§ and no
fewer than p Householder transformations can have this

property.

Proof: This is a consequence of Propositions 3 and 4

A
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Construction of the map W

k -
Definition 12. For any P&jn let P = Span{vl,...,vk} and
define L(P) = the dimension of Span{v%’,...,v{z} .
Definition 13. For O%pén-k let&K = {chglL(A)ép}.

Proposition 6, ip is c¢losed for p=0,...,n-k.

Proof: This is a cunsequence of the faet that if
{ul,...,um} is a collection of vectors in ﬁn-k and q

is the dimension of Span{ul,. ..,um} then there exists a
real number &30 such that if Hui—-u'if” for i=1,...,m,
then the dimension of Span{u:*f‘_,. . ,urfl_z, is greater than or

equal to g¢. This completes the proof of Prcposition 6.

Now for some Pﬁfl there exists£>0 such that if Ae ﬁl, then

U’g(ﬁ) does not contain P. Let (I be the closure in’,gllfl of

%{UE(A)} . By Urysohns lemma, [ 2] there exists a continuous
A f‘{mction ¢1 :ﬁﬁ-@[O,l]C Rl such that ¢1(P) = 1 and Cbl(p.)=0

for any Ac(@. Let T = Span{el,...,ekg. ‘I‘henUE(I)CQ'

since 1€ fl' Define a map ('b 238%-—:—[0,15] by

$o(x) = 0 1r x¢ Up(1) and P,(x) = E—déX;I) 1 xeULT). ]

Let ¢ =¢1 + @2 é:nd define ¥ =Cb°6. We observe that y

1 =e({[lkl zJul ne ‘Hng). also if (1 Jzju)) = 1

for some Hlé‘ 'Hn then for any.HE?-/n, 6([Ik| Z_]H.Hl)eil-

That W has the desired propertiss follows from the fact that

the functlon fb has a maximum value of % at I over the set 21

k
but (b has a maximum value of 1 at P over the entire space Jjn‘ 4
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Sufficient Statistics for Mixtures

of Measures in a Homogeneous Family
by

Charles Peters
Department of Mathematies

University of Houston

1., Introduction:

Let (X,&) and (Y,?g) be measureable spaces and let T : X + Y be
surjective and measureable. Let "7 be a set of finite positive measures on
(X,@). For each u €7/ there corresponds a measure uT—l on (Y,Ig) defined

for F E'g by
wrhmy = perTtE).

If f 1is a y-integrable real valued function on X, then as a consequence of
the Radon Nikodym Theorem, there is a uT-l— integrable function eu(f) on Y
satisfying

i

= [ fdu

f eu(f) dut”
=1(F)

F

for each F E?g. Clearly eu(f) is defined only up to sets in Y of uT—l

measure 0 and f = g a.e. (u) implies e“(f) = eu(g) a.e. (uTﬁl). The
linear operator eu defined as above maps the space ;flcx,él,u) to the space

.{F{Y,YQ,NT_I) and is called the conditional expectation operator. Its value

a3
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eu(f) at £ L—:E(‘(X,Cl,u) is called the conditional expectation of £ given

T.
The conditional probability of an event E £ d. is defined as
P (E) =
Ll( ) eu(xE)
where Xg is the lodicator function of E. The conditional probability
functions satisfy
) -1
(a) P, 3, B, ur ).
whereg(Y, A ,].lT"l) is the set of all real valued 'ﬂ—measareable functions
on Y, with equality defined as equality a.e. (uT-l).

(b) For each F eB,E @,

uE n THE) = [ 2 (@ apr
A

(c) 0 < PH(E) £ 1 for each E e€d and Pu(x) =1,
{(d) If {En}:___l is a disjoint sequence of events in (2,
o =) -1
Pp( ngl En) = ng‘l Pu(En) a.e, (uT 7).

It should be noted that PU satisfies property (¢) even when W is not a

probability measure.

The transformation T is called a sufficient statistic for#{ if

for each E &£ (@ there is a"ﬁﬂneasureable function P(E) on Y such that
for each u e, PH(E) = P(E) a.e., (uT_l). The set 7/ is dominated by

a measure A - (perhaps not in#/) if for each u e, u is absolutely
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SR

continuous with respect to A, ( writtem W << A.) 7} is homogeneous if it is
dominated by each of its members. A measure A is equivalent to 7 if
% dominates Ml and W(E) = 0 for each U ¢'¥K implies A(E) = 0.

The nmotation and terminology used in this paper are taken from (Halmos
and Savage; 1949), as are the following three theorems. The notation
%%(é;)T_l(ﬁb means that there is an element of the equivalence class %% of
Radon-Nikodym derivatives which is T_l(ﬂ) measureable.

Theorem 1: If 7} is dominated, then a statistic T is sufficient for 77 if

and only if there exists a measure A equivalent to 72 such that for each

poE M, %(6 )'1—1(“/3’).

Theorem 2: If -}}L is dominated, then a statistic T is sufficient for 72 if

and only if T dis sufficient for each pair {u,v]} of elements of %% .

Theorem 5: If ##] is homogeneous, Lhen a statistie T is sufficient for 777 if

and only ir 3—5(5_)1‘_1(‘[;) for each p,v e}P].

2. Homogenecouys Families:

Henceforth, we will assume that "/} 1s homogeneous. Let C(}) denote the
cone generated by }/{ , excluding the zero measure. That is, C(#) is the set of
all finite linear combinations, with strictly positive coefficients, of elements

of M . Lliements of C{@n) are termed mixtures of elements of 2#/. C(Clearly,

l) are all the same

C{:) 1is also homogeneous; hence, the spaces j;(Y{E:UT_
for u € C(#® and may be denoted simply byd . For L & C&{®, Pu maps (L to

F and it is clear from the definition of a sufficient statistic that T is

sufficient for a subset ] of € if and only if the conditional probability

 m ey T, ST L TTE T
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functions Pu for u e ¥ are all equal.

Lemma 4: If 771 is dominated, 77< C(HY, and T is sufficient for #H, then

T is sufficient for 77 .

Proof: Let A be that measure equivalent to 7’}1 whose existence is assured

by Theovrem 1. If u e C{UM, then U can be written

k
- i£1 %1 Yy
with Bi >0, vy e/ for i =1,...,k. Hence,
k
du . dvi -1
L1 £z T .
di i}zl By dAi (e 73

Thus T 1is sufficient for C{») and hence is sufficient for 7Z.

In vrder to characterize sufficient statistics for lc C(M), it suffices,

by Theorem ?, to consider a pair

P17 e By 1y
and
= 5‘
My = ogks B
in’){, where I and J are finite sets; B >0 for ke Tul; and the
measures {ui}ir—:’" are distinct members of /'/, as are the measures {L%j }j"J'

The set C( ) of all finite mixtures of elements of 7/{ is said to be
identifiable (Teicher, 1960, 1961; Yakowitz 1969) if each element of C(/7)
can be expressed in only one way as a linear combination with positive
coefficienrs of elements Of—?/?, except for the ord;ar of the summands. Equivalently,

C(In is identifiable if the set 77& is linearly independent over the real numbers.
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:
. The concept of identifiability is very important in establishing the
uniqueness and consistency of various estimators of the so called mixing
= parameters {Bi :1el} in a mixture My (Yakowitz, 1969).
Given a mixture My in C(#0) we have for each E €@, F e /4, |
- |
: 2 Edawt™ g )) |
| -1 |
: = L Biui (EnT (¢))
I iel '
-1
L = L B, {P (E)ddy, T
3 iel 1 é o *
-1
au. T
. -1
I = I B, Ji P, (&) = gk T
L Let I »I_ be the equivalence classes in 1 modulo the relation i = k if

L ERRRE

i and only if PL = P]J ; that is, if and only if T 1is sufficient for the

i
pair {ui, uk}. Then we have

! aw, 1t
Er B [P (E) —E— aw !
S B dy, T
. r du,T—l
=f[ 5 % B = (g) dy, T1
p L OAED T ol M1 ’
L L Hy I .

where P (E) is the common value of the P (E) for i e I,. Thus,

. My Hi
%
s | rodup T T
L - Pu = ol T By
T du.[T u“"ﬂ,

o
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where pI is the mixture

Hp = LA Bi u,

is

Whenever the conditional probability function P'J of a mixture Hy
I

written in this fashion with I ,...,Ir being equivalence classes modulo the

1

relation =, we will say that Pp is written in normal form.
I

Definition 5: The set C(¥) 1is conditionally identifiable with respect to

the statistiec T if for each pair {uI,uJ] in CC?H), whenever PU = PU and
I g
P s P are expressed in normal form
51 3 -1
r dUI T
fuy T e i
du T L
I
du oL
5 J
T = B,
. ap T e 0
J
then r = s and for each £ = 1,...,r there exists exactly one k = 1,...,T
dupr™E duy Tt
such that 2 i k ) and P = P . The set C{(#) 1is
dyu_ T dy T T
1 hi

marginally identifiable with respect to T if the set {UT—llu e} is

linearly independent over the real numbers.

Theorem 6: If C€my) is both marginally identifiable and conditionally

identifiable with respect to a statistic T, then C(?¢) 1is identifiable.

Proof: Suppose ul = I Biui = I B.u, = My - where the measures in each

jel je5 4

sum are distinct members of'nz . Then, expressed in normal form,

. A

#
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r

Tt T

-1 -1
r dngT - duJ T
P”I ) *"vél duT * P“1 ! du.T 1 P“J ) P“J’
M1 % Hy %

and we may assume without loss of generality that

du; 71 dy L
2 - A
-1 ~1
duIT duJT
and PuI = PuJ for L£=1,...,r.
4 '
. -1 _ -1 -1 -1 )
Since W T =y, T 7, it follows that py T " =pu_ T ~. For i,k € Iy,
T J Il JQ .

~1 ~1 . . = =
uiT + ukT , for otherwise, since Pui Puk, we would have PR
contradicting the assumption that {pi : icl} are distinct. Similarly, the

pjT—l for j € J_ are all distinct. Since C(J7)) 1is marginally identifiable,

)
IQ and JR have the same number of elements and for each i € Iy there is
a unique j(i) ¢ Iy such that Bi = Bj(i) and piT_1 = uj(i)T-l' Since
PU. = Pﬂ. o it follows that ui = uj(i) for each 1 € IE' Therefore,
i j(1)
there is one to one map j from I onte J such that Bj(i) = Bi and

uj(i) =Yy for each i & I. Hence, C(#{) is identifiable, and the proof

is complete.
For conditiomally identifiable sets of measures, the following theorem

and its corollary provide some characterizations of sufficient statistics.

Theorem 7: If 771 is homogeneous, C(7%) 1is conditionally identifiable

with respect to a statistic T, and u are in C(W), then T is

1M
gsufficient for the pair hI’ uJ if and only if there exist partitions

I=1 u ... UIr and J=J

1 U vue qu such that for each £ = 1,...,r:

1

A
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8.
duI du
(a) d( I R, m)/ a(y 8 p) = —h =1L
iEIR 01 jEJR | duJ duJ
£
and
(b) T is sufficient for the set Nz = {uk t ke Igng}.
Proof: First suppose such partitions exisi By (b) T is sufficient for the

set N, and hence, by lemma 4, it is sufficicnt for the pair {UI e .o o1t
1 1
follows from (a) and Theorem 3 that T is sufficient for the pair {UI,MJ}.

Suppose that T is sufficient for the pair {uI,uJ}. Then, expressed in

normal form,

-1 -1
r dutzx . dquT
» —_—e~]1 P = — P
221 duI T UIQ 2=1 dUJT_l uJR’

and we may assume without loss of generality that

dup T au, T
L £
T = i and Pu = Pu for each %.
_ - I
duIT duJI Jg
The condition PU = Pu is equivalent to (b,. By Theorem 3, there exists a
I, "y )
diy -1 - dyT
representative f € —— which is T ('ﬁ) measureable. If g € P Py I
duJ duJT

-

then g»T is T—l(fg) measureable and for each F E'f?,

-1 -1
fgeT dup = [gant =uT (B

T“l(F) F
= f £dp
=1 O

£ ot
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It follows that p<T = f a.e.(uJ). Thus,

duIT'l dp, 7Tt du

S T=1eT lge—=m et

-1 du
duJT duJT

Since - T 1is also sufficient for the pair {uI sHy }, a similar argument
'}

gives
g - L
-1 ° Te EW
I
duJET Jg
dug 71 duIT_l
for each 2. Since 21 ST for each &, it follows that (a)
duJT duJT

holds for each ¢ and the proof is complete.
Corollary 8: If 737 is homogeneous and C(W) 1is conditionally identifiable
with respect to a statistie T, then T is sufficient for a pair {UI,UJ}

in C(M) if and only if there exist subsets Ilc I and Jl < J such that:

(a) dull = duT.

and

(b) T 1is sufficient for N = {pk : ke Il u Jl}.

Proof: That T sufficient implies the existence of I1 and .]l satisfying

(a) and (b) is immediate from Theorem 7. Conversely if Il and Jl satisfy

I R
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(a) and (b), then T is sufficient for Br s Uy by (b) and hence, by (a),
1 1
T is sufficient for UIsHge

Given a pair of mixtures uI, uJ in C(//), we will call their

dy
likelihood ratio —= indecomposable if I_ <I, J  <J and
duJ 1 1
duI1 duI
—==-—— dimply I, =1 and J, = J. It is clear from Theorem 7 that
duJ duJ 1 1
i

if C(MW) is conditionally identifiable with respect to T and a pair of
mixtures Hi» Hy in C(#) have an indecomposable likelihood ratio, then

T is sufficient for {uI, uJ} if and only if it is sufficient for

{uk : kelIu T}, Also, it is not difficult to see that for each pair
Hps My in C(M) there exist nonempty subsets Il c I and Jl c J such
that
duIl ) duI
dqu B du
dull
and the likelihood ratio duJ is indecomposable. If UI and uJ represent
1

the probability laws for two alternative hypothescs, them there would be two
advantages in being able to identify subsets Il and Jl satisfying these

two criteria. First,the maximum likelihood decision procedure would be simplified,
and second, the search for a statistic sufficient for deciding bétween the two
hypotheses and having the property that C(#) is conditionally identifiable

could be restricted to those statistics sufficient for {uk ¢t Iu Jl}.

1

3. Sufficient Linear Statistics for Mixtures of Normals:

If'zz is a subring of the ring gg' introduced in Section 2, then with the
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usual definition of addition and multiplication by elements of 7{ the set
of all functions ¢ : @ *‘j is a module over 7{. Thus, it is natural to

consider7€~independence of a set o of such functions. To be precise, gf is

7€lindependent if whenever ¢l,...,¢m is a finite set of distinct elements of

éf and Yy>+-+sY are elements of f? such that
m

Y4, CE) oty 6 ( E) =0 Ffor each § £ 72,

¥
then vy,= ... =Y =0. If ‘K is a subring of |/ which contains all the
bounded Radon-Nikodym derivatives %E%:I for u, v e C(AM) , then it is clear
v
that 72~independence of the set {PU : u e} implies that C(7M) is

conditionally identifiable with respect to T.

For the remainder of this section we will assume that X is ﬁan, Y is i

(k< n) and T : X=+ Y is linear and full rank. &I and 73 are respectively,
the Barel fields on ﬁ{rl and ﬂ{k. We also assume that each U & ] is described

by a normal density function fu with mean m, and covariance Qu . That 1is,

for each E e,

wWE) = f £ dh,
H n
E
where A is Lebesgue measure on ﬂ{ 9. -
n p
By a suitable choice of the coordinate system, we may represént the densities
n-k

s s . . k
fu as joint density functions fu(y,z) on R~ *[R

as the projection T(y,z) = y. Then the marginal densities

while representing T

g (y) = £ (y,z)dz
W =g

R

1
are normal with means ’l‘ml_1 and covariance matrices TQUT (Anderson, 1958).

gL
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Theorem 9: 1If J} is a family of Borel measures on [ A given by n-variate
normal density functions and T : [Rn - ‘Rk is linear of rank k, then
C(#1) 1is conditionally identifiable with respect to T. :
E
Proof: It can readily be verified that conditiomal identifiability of CtD K
is not affected by the chanpe of variables just dcsuribedi If UI and uJ
d,, T~
are in C(#), then the Radon-Nikodym derivative ..,.li]-:--_-_-l is represented by a
du,T
J
function of' the form
Bx Y) ee )/ I Bg O
7o < iy Bg )/ 2 B.g (¥);
gJ(Y) 153 S AU JET TiTHy 1

12.

The conditional density functions

i (Y,Z)
hu(z | y) = Mo

gu(y)

are normal as functions of z ¢ ﬁ{nﬂk with means
1 1.-1

1 S + S T (I T - Tm

(L) ™ Y { y Y y Ll)

and covariances

1 1

1 1,-1
§7 - 80T T 2 ST,
(2) 89, LTI, T 1

where S is the linear operator S(y,z) = z. The conditional probabilities

Pu( E) are represented by

PIJ(E Iy) =f hp(zly)dz . 4
SV(E)

where Sy(E) = {z E}P\n—k | (y,2) ¢ E .
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i.e., a ratio of mixtures of k-variate normal density functions, which

is continuous. Hence,'by the remarks in the first paragraph of this section,
it suffices to show that the set {Pu: g 2N} of conditi&nal density
functions isﬁz—independent, where F2 is the subring of é} consisting of those
elements of‘éf which have a continunus representative. To this end, let

P ""’Pp be distinct and let Yl""’Yr be continuous real valued

functions on ﬂlk such that for each E € { ,

Yl(y)Pu (Ely) +...+ Yr(y)Pu (Ely) =0

1 r
) k
for almost all y. In particular, choosing for E sets of the form {{ x K,

, n-
where K 1is a borel set in K k, we have

Y. [ b (zly)dz +...+ Y (y) [ h_(zly)dz = O
! Ik Y

for almost all y. For each K, f hU (z|ly)dz is a continuous function of
K i

¥. Hence,

I{ GOy (2ly) 4t ¥, OOy (alyD)dz = 0

for each y € ﬁak. It follows that

Yl(Y)hul(ZIY) +o..0+ Yr(y)hur(zly) = 0

for each vy ¢ ﬂ{k, z E[R?_k. Let F be the set of ¥y Efﬂ} where two or

more of the conditional density functions ﬁ; (zly) are equal as functions
i
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of 2z, It is easily seen from (1) and (2) that the Lebesque measure of F is

zero. For y ¢ F, {hu (-]y),...,hu ( «iy)} is a set of distinct normal

1 r

density functions of z. Hence, (Yakowitz and Spragins; 1968), they are

linearly independent over the real numbers. Therefore, for y ¢ F,

Yl(Y) = .. = Yr(y) = 0. That is, Yl = L. 0= Yr = (0 as elements of é} .

Thus, C{#1) is conditionally identifiable.

If My = i%I Bi W, 1is in Ctpy, then My has a density function

which is a mixture of normal density functions. The following theorem is an

immediate consequence of Theorems 7 and 9.

‘iheorem 10: Given the assumptions of Theorem 9, the statistic T is
sufficient for a pair {uI, “3} in C(J}) 1if and only if there exist partitions

I =13_ u,.,.ul and J = J. u...uJ such that for each 2 = 1,...,r,
1 T 1 T

(a) L& Bi £ /L Bj fu (x)
1512 i jel g j
n
= ‘E Bi fu'(x)/ .E ei fu.(x) for each x E[F{ s
iel i jed J
and
(b) .T is sufficient for the family {f : k eI UJE} of normal

L
uk
density functions.

There is set of purely algebraic conditions which are equivalent to (b);

I oa e
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namely, that the expressions

@, -a, 1 (o ™Hlre

uk 11lv: k 11k
m, -0 e ™H
ko Pk Py M

o Thr o Tl

are all independent of k € L, uJ {Peters, Redner, and Decell; 1976).
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CHARACTERIZATIONS OF LINEAR SUFFICIENT STATISTICS
by

B. Charles Peters, Jr.,! Richard Redner,!

and Henry P. Decell, Jr.!

We develop necessary and sufficient conditions that a surjective
bounded linear operator T from a Banach space X to a Banach
space Y be a sufficient statistic for a dominated family of
probability measures defined on the Borel sets of X . We give
applications of these results that characterize linear sufficient
statistics for families of tﬁe exponential type, including as
special cases the Wishart and multivariape normal distributions.
The latter result is used to establish precisely which procedures
for sampling from a normal population have the property.that the

sample mean is a sufficient statistic,

lAuthor was partially supported by NASA/JSC Contract NAS-9-15000
with the University of Houston during the preparation of this
work.
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formation from the measureable space’ (X,A) to the measureable

ﬂ 1. Introduction: Let T be a surjective measureable trans- '
D space- (Y,B) , and let 7V be a set of totally finite measures on

A .” Following Halmos and Savage [2], we say that T is a

&2

sufficient statistic relative to 0¥ if for each E & A there

exists a measureable function P(E|-) : (Y,B) + R (the real numbers)

such that for each F ¢ B, u ¢ P

ey

1 , 1
p(ENT (F)) = _/F-P(E!y}du'l‘ (v)

In another nonequivalent definitiop of a sufficient statistic given
by Lehmann and Scheffe”[3], B is always taken to be BT , the
largest o-field on Y consistent with the measureability of T

- Bahadur [1] discusses the relationship between these two definitions

at length.

In this paper our particular concern is that of developing
necessary and sufficient conditions that a surjective bounded
linear operator T from a Banach space X to a Banach space Y
be a sufficient statistic, where A and B are the respective
i Borel fields of X and Y . Our first theorem shows that under
a very natural -ondition the aforementioned definitions of !
sufficiency are equivalent. Specifically, the condition is that
ker T = {x e X[Tx = 8) be complemented in X ; that is, for some
closed subspace 8 of X, X=ker T® 8 . (For example, if X
- is a Hilbeft space, take S = (ker TTL.) As a corollary we obtain

a simple characterization of sufficient 1inear_statistics for

T S P AR P P
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dominated sets of measures. In Theorem 2, we replace the condition

that ker<T be complemented with conditions on the density functions

corresponding to a dominated set ¥ Finally, we give applications

of ‘these results that characterize linear sufficient statistics

"

for families of the exponential type, including as special cases

the Wishart and multivariate normal distributions. The latter

" result is used to establish precisely which procedures for sampling

from a normal population have the property that the sample mean is

a sufficient statistic. This generalizes the classical result that

the sample mean is sufficient for independent samples. The final

result deals with the connection between linear sufficient statistics

and the Gauss-Markov theorem.

If W is a Banach space, B(W) will denote the Borel field

generated by the open sets of " W . The totally finite measures
defined on B(W) will be dencted by M(W) . We will write p<<v
for the relation of absolute continuity aﬁd dy/dv for the equiva-
lence class of Radon-Nikodym derivatives éf g with respect to v .

For the definitions of a dominated set of measures, equivalent Sets

of measures, and their connection with o-finite measures defined

on B(W), we refer the reader to Halmos and Savage [2].

2. Principal Results: Our first theorem shows that if ker T is

complemented in S8 then, the two definitions of sufficiency

described in the introduction are equivalent.

Theorem 1: Let X and Y be Banach spaces, let A = B(X) and let

T be a surjective bounded linear operator from X to Y such that
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ker T is complemented in X . Then BT + B(Y)

Proof: Since T is Borel measureabie, it suffices to show that

BT(IB(Y) . Let S8 be a closed subspace of X such that

. . _1 -
X=ker T®S . If FeB, ,6 then T (F) e B(X) and if T

T
denotes the restriction of T to 8 , then

~_1 1 ~_1
T (F) =T (F)N S e B(X) . It follows that T (F) e B{(S) , and
~ “"_.l
since T is a topological isomorphism, F =TT (F) e B(Y) .
Henceforth, we will assume that X and Y are'Banach spaces;
A=B(X), B= B(Y) and T:(X,A) - (Y,B) is a surjective bounded
linear operator, According to {2, Lemma 7], for a dominated

collection of measures P C M(X) a measure A , equivalent to

D , can be defined by

A(E) = ) a.u.(E)
429 11
where {ui}°° is a countable subset of 7 which is equivalent
i=1
to ¥ and ¥ aiui(X) < « , QObviously, if ? is homogeneous, we
i=1
can take A € P . Combining the results of Theorem 1 with those

0of Lemma 2 and Theorem 1 of [2], we have:

Theorem 2: If ker T is complemented in X , then T is sufficient
for ¥ if and only if for each u & ? there exists a real valued

function g, on Y such that gpgT e dp/fdA

Proof: By Theorem 1 of [2], T is sufficient if and only if for
each y e ' there exists a real valued Borel measureable function

gp on Y such that guoT € dp/dx . Since ker T is complemented

in X, B(Y) = BT and each real valued function gu such that

-




RO

gﬂ)T is Borel measureable on X must be Borel measureable on Y .

In all that follows 8g(x,z) will denote the Gateaux

differential of the function g at x in the direction of =z .

Corollary 1: If ker T is complemented in X , thean T is

sufficient for ? if and only if for each u e P there exists

fu e dp/dyr such that x e X and y ¢ ker T implies Gfu(x;y) =0

Proof: If T 1is sufficient, them for each ¢ € P there exists
gu:Y -+ R suech that fu = ghgT e dp/dr ., It follows immediately

that ﬁfu(x;y) =0 for each x ¢ X, ¥y € ker T

If fu e dp/dx  and Gfu(x;y) =0 for pwe?D, xe X,y e Ker T,

then fu(x+y)

fu(x) for each x ¢ X, v eker T . For =z eVY
define gu(z) = fu(x) where =z = Tx . Then gp is well defined

and fu = guoT . Hence, T is sufficient.

The next theorem concerns a replacement of the complemented
kernel condition whenever there is a continuous Radon-Nikodym

derivative fu e di/dd for each u e D .

Theorem 3: Let V C X be an open set such that A(XwW) = 0 and
let A(U) » 0 {for each nonempty open subset U of V . Suppose
AMB+y) = 0 whenever B CV, A(B) =0 and y € ker T . TFor

each p ¢ D, let fu € du/dr be continuous on V. Then T is
sufficient.if and only if fu(x) = fp(z) whenever x, z e V and

Tx = Tz , '

Proof: If T is a sufficient statistic, then there exists gu e du/dA

such that gu(x) = gu(z) whenever x, 2z ¢ V, Tx =Tz . Let u e 7D

and y € ker T be fixed. The set




Camiey [T

U= ({x ¢ Vr\(VTY)Ifu(x) # fH(X+Y)}

is an.open subset of V contained in BLJ(BQy),'where

B={xeV| fu(x) 7 gu(x)}

~

Since A(B) 0

0 , it follows from the hypothesis that A(U)

1l

and hence, U = ¢ . Thus fu(x) = fu(x+y) whenever x, %ty ¢ V .

Conversely, suppose fu(x) =.fu(z) for we?®, x, z2z¢eV
whenever Tx = Tz . The function gu:T(V) + R defined by
gu(Tx) = fp(x) for x e V 1is well defined on T(V) . Sirice
fu is continuous on V , f]_l = guéT oecn V , and T is an open
mapping, it follows that gu ié continuous on the open set T(V)

For y ¢ T(V) define gu(y) =0 . Then g  is Borel measure-

able on Y and f]J = gunT . Thus T 1is sufficient for P .

The proof of the following corollary is clear and will be

omitted.

Corollary 2: If, in addition to the hypotheses of Theorem 4, the

set V 1is convex, then T is sufficient for ¥ if and only if

Gfp(x;y) =0 foreach p eV, xeV, y e ker T .

3.  Exponential Families: Let X and Y be Banach spaces,

(H,<+*|+>) 2 Hilbert space and v a o-finite measure on B(X)

such that v(XvV) = 0 for some nonempty open convex set VO X

_ for which -vw(U) > 0 for each nonempty open set UC V. Let

D= {uY} » Y €' be a family of probability measures having
exponential densities :["Y(x) = ¢(y)h(x) exp {Q(y)|t(x)e qu/'dv

where c¢(y) > 0, h(x) > 0 on V a.e.(v), t:X+ H is continuous
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and Gateaux differentiable on V , and Q:T' =+ H .

Theorem 4. Let T:X + Y be linear,®bounded, surjective and
v(§+y§ =0 whenever B e B(X), BCV, vw(B) =0 and v € ker T .
'If--B e ' , T is a sufficient statistic for the exponential

family ¥ if and only if <Q(y) - Q(B)|dt(x;y)> = 0 for each
YeT, xeX and y e ker T ,

Proof: Under the stated assumptions ¥ is homogeneous and thus
A may be taken to be an arbitrary element, say g of 7.

Applying Corollary 2, T is sufficient for P if and only if

ng B(x;y) =8 foreach Y eT , xeV ¥y e ker T , where
3

gy g(¥) = CEE)Q exp {{Q(Y) -~ Q(R)|t(x)>} .
! c

This is equivalent to <Q(Y) - Q(B)| st(x;y)> = 0 for each
Yye! ,xeV ,vekertT. '

4. Applications. Let 8 denote the symmetric n * n matrices,
I' the positive definite elements of 8 and U a family of

Wishart probability measures with m > n degrees of freedom having

densities

1,(5) = e8| m /2 oxp (o L 4p ols) .

Theorem 5. If B eI and T:S8 + range (T) is linear, then T
is a sufficient statistic for the Wishart family P if and only

1 1
if tr-&y ~R )K] =0 for each y eI’ and K e ker T .

Proof. The preliminary conditions of Theorem 4., are satisfied with

Y = Lebesgue measure on S and the obvious identifications of c(y)

T e e

— T e

-
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and h(S) . Let H equal S with <A|B> = tr(AB) , t(S) =S

v 21 .
aad Q(y) = -y /2 . Observe that -§t(S;F) = ¥. and apply Theorem 4.

"Remark: Theorem 5. implies that there is a nontrivial linear

sufficient statistic if and only if there exists a linear mani-

1
fold M % S8 such that vy e M for each y e T

We will now apply these results to normal families of .
probability measures. In Theorem 6. we will state set theoretical,
algebraic and geometrical conditiqns, each equivalent to the
condition that T be a linear suyfficient statistic for a family

D = {Py} , Y € T' of normal n-variate probability measures having

densities, with respect to Lebesgue measure on rR?

- - =1
p,(x) = (202 |a |7H2 exp [-F (x-n )70l (x-n )]

We will assume that for some B e T = 6 and Q. =1

Mg B
This requirement imposes no loss of generality since for any

B e I' there exists a non singular matrix MB for which

MBQBMé = I and a change of coordinate system defined by the
transformation x =+ Mﬂ(xmnﬁ) allows one to recover the sufficient

statistiec in the original coordinate system.

kL . .
is a linear transformation of ramk k

and U = {PY} , Y € I is an arbitrary family of n-variate normal

probability measures such that for some B8 e T

= 6 and

,T‘IB
QB = I then the following conditions are equivalent:

r
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(1) T is sufficient for P = {PY} , Y e T,
‘ ' N L
(2) ker T C {?r [ker(nY I) N [“y]']
(3) For each y el ,
+ —
(2) T+TnY n
(b T T(QY-I) = QY~I

where the notation (-)+ denotes the generalized inverse of (-)

Proof: To see that (1) + (2) observe that the preliminary

conditions of Theorem 4. are satisfied with v = Lebesgue measure

n

on X R . Make the obvious identifications for c(y) and

h(x) . Let Mn denote the n x n real matrices and define

Q:r + H = Mnx RnJ<Mn , t:X -+ H and (-l-) on H , respectively,
21 1 21

b = (-2 2, @ , — 8 2y, t(x) = (xx7,x, 1

y Qy) = (-2 /2, @7 n, - ) nn /2), t(x) = (xx )

and .<(A1,w1,Bl)|(A2.w2,Bz)> = tr(AjA,) + wiw, + tr(BiBy)

Since @, t and {+]|+> satisfy the remaining hypotheses of
Theorem 4. apd d8t(x,z) = (xz”° + z2°%x, 2,8 ) for each X, 2 ¢ R" ,
it follows that for each y e T

.
]

. 21 ‘ 21
ker T C {yeRn:x'(nY ~I)y - y’a_n, =0 x ¢ R™}

.Y 3

= ker (2, ~I) N LM

| -1
= ker (QY ~I)nN [QY n_r
To see that (2) + (3) note that T+T is the orthogonal
projection on range (T") = (ker T)'"L . Since nYc(ker T)* R
(3a) holds. Furthermore, Kker T+T = ker T C ker (QY~I) implies

range (QYTI) C range (T+T) and hence that T+T (QY*I) = (QY-I)
which is (3b) |

In order to see that (3) -+ (1) recall the definition of

Q(y) , t(x) and the fact that é&t(x;z) = (xz2"+2"x, =z, 0 )

o
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We need only show that x“(a,-Dy - u;y = 0 for each y e T ,

x'e X and y € ker T . Using (3b) and symmetry together with

' (3a) it follows that

+ + .
(e -D)y - nly = x7(2_- Ty) - 0, T (Ty) = O .
x“(2,-1)y - niy = x7(Q I)T (Ty) n, T (T¥)

We state the following corollary without proof.

Corollary 3. Under the hypotheses of Theorem 6., there exists

a kxn rank k sufficient statistiec for {PY} , Y e o if

and only if there exists a rank k orthogonal projection P on R

Y
Moreover, any k x n rank k matrix such that TfT =P is a

such tl.at (a) Pn_ = ny and (b) P(ﬂY-I) = QY—I for each vy e T

sufficient statistic for {PY} , Y €T,

Corollary 4. If T = {0, 1,*++, m-1}

y Mg = 6, 94 = I and
B = [nylngleeen, jlo-T{ay~I{---|a _,-I] then T is a linear

sufficient statistic for the finite family {PY} , Y €T of
n-variate normal probability measures if and only if
range (T”) = range (B) . Moreover, Kk = rank B 1s the smallest

integer for which there exists a k x n sufficient statistic for

{PY} » Y & T,

Proof: The equivalent condition is an immediate consequence of
Theorem 6. The minimality statement follows from the fact that
if T is a pxn rank p sufficient statistic then T+TB =B,

+
hence, T+TBB+ = BB+ . It follows that range (BB+) C range (T T)

and, since (BB')B = B, BB' satisfies Theorem 6.(3) so that k = p
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Example 1. Let Rys Hgyter, Koo be a sequence of univariate

N(r,0) variables such that the joint density of Xq o Kgat Xy

i& N(ug ,e ) where £; = (1,i,++-,1) . Let P}, ueR
bé.the family of probability measures having densities N(ugn.ﬂn)

and T #6 & 1 x n matrix,

i

Observe that T 1is sufficient for {Pu} , b e R if and

1/ 2
only if Tnn ig gufficient for the family of probability"

- _1/2
measures {Pu} , # € R having densities N(unn / £ _,I) and,

n’
according to Theorem 6., that this is equivalent to the condition

-1/2 NA

1/2
that ker T e, c [Qn En] . This is equivalent to £ = unTﬂn

for some scalar an . A simple calculation shows that

1
un = n(TQngn) so that the statistic T is sufficient for {Pu} ,

1 _1
p e R if and only if T = [(Tﬂngn) Eﬁgn 1/n . In particular,
note that T = %

=1 -1 =1
- - i t for {P :
(ejo, €. ) g7e  1is sufficient for {P }, » ¢ R and th
T (%y,"++,%x_ )" is an unbiased estimate of u for each integer n.
This generalizes the classical result that the sample mean is a
sufficient statistic for u when the samples Xy,%g, 0"+ are

independent.

Further note that if T = gﬁ/n (the statistic T for the
sample mean) is a sufficient statistic for {P“} . B eR
for éach integer n , the column sums (row sums) of nn are
identically @ = (g;ang)/n . A routine induction argument shows

that, in the latter case, Cov (xi,xj) = constant for i, j:1,2,+--,

id 3.

Example 2. Let y = Wy + € , where W is a fixed m x n matrix

of rank n and e.~ N (8,I). According to the Gauss-Markov theorem,

n

. _1
the minimum varionce unbiased i.ncar estimate of y is y = (W'W) W<y

-10-
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Let T = (W-W)~ W° and observe that for y ¢ RU

_1
T°(TT") «+T Wy =

¥
+ - -y 1 4+ .
Wy and, since T{IT") T=T T, Theorem 6. implics T (s n

sufficient statistic for the set of probability measures (D } ,

vt ¢ R" having densities N(Wy,I) .

On the other hand, if T is a sufficient linear statistic

for {PT} s Y € R® such that Ty is an unbiased estimate of Y

then, since TW =1 , % has rank n . Corollary 4 implies that

n is the smallest integer for which there exists a linear n x m

- 21
sufficient statistic for (P} , v e R® . Moreover, T = B(W'W)™ W-

for some nonsingular n x n matrix B .

Since %w =1,
~ .y
T = (W'W) w .

Since y = Ty , the Gauss-Markov estimate of <y may be

characterized as the unique linear sufficient statistic T for

{PT} : Y E R® for which Ty is an unbiased estimate of vy

13-
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This paper develops an explicit expression for a compression
matrix T of smallest possible left dimension k consistent with
preserving the n-variate normal Bayes assignment of X to a given
one of a finite number of populations and the k-variate Bayes
assignment of TX to that population. The Bayus population assignment
of X and TX are shown to be equivalent for a compression matrix T
explicitly calculated as a function of the means and covariances
{(known) of the given populations.
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i INTROBUCTION
In this paper I; will denote an n-variate nermal population

1
|
(
having g_gfjggj_probability,ni>0 and density pi(x); i=0,T,...,m.
Using recent results [1] that characterize linear sufficient statistics
- we will develop an explicit expression for a kxn compression (¥s<n)
matrix T for which, using the Bayes classification procedure 2] ,
in which costs of misclassification are tacitly assumed equal on all
classes, X is assigned to I% if and only if TX is assigred to Hi' We
will further demonstrate that k is the smallest integer (gn) for
which the latter equivalence is valid and that T can be directly
calculated in terms of the known population means and covariance matrices.
The applications which motivate the necessity for compressing or
reducing the size of a data vector is summarized very well in @ review
paper by Laveen Kaval in [3]. Our own interest was motivated by a
need to reduce computational requirements in a Targe area crop inven-
tory project using multidimensional data taken remotely by near earth
satellites [41.
In all that follcws n; and z; will, respectively, denote the
mean and covariance matrix of population s i=0,T,...,m. It is well
known that for each non-singular nxn matrix A and nx1 vector o, the
Bayes assignment of x to I, is equivalent to the Bayes assignment of
A{x-a) to ;. We will later assume that n =0 and I = I. This assump-
tion will impose no loss of generality in the results that follow since

T

we may set oZn, and choose A such that AZOA =1.

If the latter transformation of variables is necessary, we will not

introduce new symbols for the variate A(X~no), the densities pi(Ax—no)

A TR T R e
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and their associated means and covariance matrices. Whenever Q is
an sxn rank (s<n) matrix, we will denote the s-variate normal

density of Qx by (for population Hi) pi(Qx).
PRINCIPAL RESULTS

According to [1}, let k(<n) be the smallest integer for which

there exists a linear sufficient statistic (kxn matrix T) for the family

of probability measures having densities pi(x); i=0,1, ..., M, The
results in [1] demonstrate that the sufficiency of T is equivalent
to the conditions:
+
m 1 Tﬂj TNy
(2) TT(55-1) = 2,1

J
where (-)+ denotes the generalized inverse of (-).

J=0,1,..., m

Let M be the nx(n+1)m partitioned matrix
M= Inylnpleesn fzy-T]Epm1] o0 {2 - 1]

and let M=FG be a full rank decomposition [6] of M, that is; F is nxk,
G ic kx(m#1)m and rank (F) = rank (8) = k. Again, according to{1] and
the Tatten k must be precisely the smallest integer (<n) for which

a kxn matrix T can be a sufficient statistic for the given family

of probability measures.

It is well known [5] that M =6 F* and hence that MM'=FF*, A
simple computation reveals that T=F! satisfies conditions (1) and (2)
so that FT is a suffigient statistic (of minimum Teft dimension) for
thelgiven family of probgbility measures. We have the following

theorem.




=

Theorem 1. Let T, be an n-variate normal population with a
priori probability wi>0, mean n and covariance i i=0,1,-°+,m
(with ng=e, £ =1) and let FG=Mz[n fnpl-+=n_[54-1|35=1]- o+ |5 -1]
be a full rank (=k<n) decomposition of M. Then, the n-variate
Bayes procedure assigns x to Hi if and only if the k-variate Bayes pro-
cedure assigns Flx to Hi' Moreover, k is the smalliest integer for
which there exists a kxn compression matrix T preserving the Bayes
assignment of x and Tx to LIy i=0, 1, «..o m

Proof: Recall that the n-variate Bayes procedure assigns x to

T if and only if “jpj(x)>"ipi(x) 3 1=0,1,...,m: i# j (with arbitrary

assignment of x to any of the populations Ilkfor which wjp.(x) = nkpk(x) ).

J

Let R be any {n-k} x n matrix such that C = R(I-FF+) has rank

j(x) > wip%(x); i=0,1,....m: i#j is equivalent to
¥ F . im L oaags

3Ll x ) > wep, ([ 1x)s i=0,1,...,m: 37 .
For any g=0,1,...,m, the n-variate normal density pq([g 1%) has mean
[FTn
cn

n-k and note that =.p
T J

q] and covariance matrix:

q .
T T, ¢T
F zqF F qu
CzqF Czqc

Condition (1) implies qu=e. Condition (2) implies that 1-FF' commutes

with £, and it follows that CquT=CCT and Cz,q

. T
writa pq([g 1x) as the product of the respective k-variate and {n-k)-

F = 8. We may therefore

variate densities pq(FTx) and pq(CxlFTx), the conditional density of Cx
given FTx. Since pq(CxlFTx)>0 does not depend upon q =0, 1, ..., m;
it follows that the n-variate Bayes assignment 7 x to I J=0,1,...,, m,

implies the k-varjate Bayes assignment FTx to Il The foregoing arguments

j.
are revéarsible and hence the k-variate Bayes assignment of FTs to I
implies the n-variate Bayes assignment of x to Iz, cunpleting the proof of

the equivalence. The minimality of k, in the sense that the n-variate

.‘ari
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o e




and k-variate Bayes assignments of x and Flx are preserved, is a con- !

sequence of the developments preceding the theorem.

CONCLUDING REMARKS
Clearly the theorem is valid if there is at Teast one population
with mean o and covariance I, in which case we would tabel that
population Hb. If this is not the case, one would choose some
population, say =

q
where AquT=I prior to application of the theorem. The appropriate

, and perform the change of variables x+A(x-nq)

statistic for compression, in terms of the original variates, would

then be T=F'A™!,

These results compietely characterize the nature of data

L compression for the Bayes classification procedure in the sense
that k is the smallest allowable data compression dimension consis-
tent with preserving Bayes population assignment and, moreover, the
theorem provides an explicit expression for the compression matrix T
‘that depends only upon the known population means and covariances. .
The statistic T=FT given by the theorem is by no means unique {(e.qg.,

T

for any non singular kxk matrix B, T=BF  will do! It is also true

that there may be more efficient methods for calculating the

statistic T (yet to be determined) than the method of full rank

decomposition of M.
It should be noted that the matrix M has an "excellent chance"

of having rank equal to n. Even in the case of two populations (m=2),

there may well be n linearly independent columns among the 2{n+1) columns

of M and, therefore, no integer k<n and kxn rank k compression matrix T

preserving the Bayes assignment of x and Tx.

Dy L pan iy X T T S
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There has been extensive work [61,[71,181,19]1,{107,[111,({22],[13],

on determination of compression matrices {of a given rank) based upon
criteria that, generally, éttempt to describe the relative (to the |
variate x) "information content" in the variate Tx (e.g., divergence,
Bhattacharyya distance, Chernoff bound, principal components, Wilks
scatter, etc.) While these-criteria provide bases for calculating
compression matrices T, they provide 1ittle or no means for determining
the degradation in probability of misclassification or sensitivity to
population assignments.
In sampling situation one may choose to replace the columns of the
matrix M by their estimates, that is nj by Rj and I; by S5. The matrix
defined by the estimate suggest a compression technique based on the selec-
tion of a k dimensional hyperplane which in some sense best fits the

range space of matrix

LI

M= X%, imlsj-sol---]sm—so]
where

x0=9 and SO=I.

We feel that the results in this paper shed some 1ight upon the
subject. In future work we intend to extend these results and the results

of [1] to a related concept of an "almost sufficient” statistic.
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1. TIntroduction

Systems of nonlinear equations can seldom be solved exactly. Usually,
one must obtain approximations to the solutlons of such systems by iteration.
Quasi-Newton methods (also known as variable metric, variance, secant, update,
or modification methods) constitute a class of iterative procedures which may
be regarded as generalizations of the secant method for solving a single
equation in one unknown. Indeed, not only is the quasi-Newton eguation (the
equation characteristically satisfied by the iterates produced by these methods)
a direct extension of the equation which defines the iterates of the secant
method, but also these procedures share many of the computational advantages
of the secant method over Newton's method.

Quasi-Newton methods were first introduced in the papers of Davidon [2],
Fletcher and Powell [4], and Broyden [11. In spite of their recent origins,
these methods have proved themselves in dealing with practical problems and
have become the subject of a large amount of research. The paper of Dennis
and Moré [3] provides both an excellent in-depth survey and an elegant unified
development of quasi-Newton methods and thelr theory as wunderstood in the mid-

1970's. The main body of this note is a rearrangement and condensation of
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material in [3].

In the following, we first formulate precisely the problem fo be solved
and motivate the introduction of quasi-Newton methods by considering the
classical Newton and secant methods and their properties. We then survey
three highly successful quasi-Newton methods: Broyden's method for the

solution of general nonlinear equations, and the Davidon-Fletcher-Powell

‘and Broyden-Fletcher-Goldfarb-Shanno procedures for unconstrained minimization.

(The last two methods will henceforth be referred to as the DFP and BFGS methods,
respectively.) TFinally, we compare the properties of these methods to those of
Newton's method and UHMLE in potential applications to maximum-likelihood esti-

mation of parameters in mixture distributions.

2. The problem
We consider the problem of solving F(x) = 0 in an open convex subset

D of R® under the following assumptions on the mapping F:D ~ R .

(a) P is continuously differentiable on D.

(b) There is an x¥ in D such that F(x¥) = 0 and
P'(x¥) is nonsingular.

Newton's method for iteratively approximating the solution x¥ begins with

an initial approximat.on Xq to x*¥ and attempts to obtain improved approxi-

mations by the iteration

-1,
= X - F‘(xk) F{x

k= 0,1, ...

Xy i)

The convergence properties of Newton's method which are important here are

sumnarized in the following theorem.
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Theorem: Whenever Xy is sufficiently near x¥%, there is a sequence
{uk} of non-negative numbers which converges to zero and for which
k=0,1,...
- x¥ v o ¥ =
(1) lﬁ&l x#| sakuk x¥*| k=20,1, ... .

If, in addition to satisfying assumptions (a) and (b) above, F has a derivative

which is Lipschitz continuous at x¥, i.e., there exists a k for which
IF'(x) - F'(x¥)| < klx - x¥| for all x sufficiently near x¥, then there

exists a constant B such that

(2) % - X*1 s Blx - xH® Kk

0,1, ...

whenever X, is sufficiently near x¥%.
A sequence which satisfies an inequality of the form (1) with a sequence

{uk}k=0 1 which converges to zero is said to converge superlinearly. If
sl

a sequence satisfies an inequality of the form (2), then it is said to converge

quadratically. Superlinear convergence is fast; quadratic convergence is very

fast. Since Lipschitz continuity is a very weak assumption, one might say that
the theurem asserts that the convergence exhibited by the Newton iterates i1s
always fast and almost always very fast.

The rapid convergence of the Newton iterates is the major advantage of
Newton's method. Another advantage is that Newton's method is "self-.corrective"
in the sense that X depends only on F and %, SO that bad effects of
previous iterations are not carried along. (Quasi-Newton methods are not self-
corrective in this sense.) Balanced against these advantages is the fact that
Newton's method often requires a great deal of computation at each iteration.

Indeed, the determination of each iterate requires 0(n“) function evaluations

R
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and Q(n3) arithmetic operations. Thus one 1s led to ask whether there
are methods which retain fast cuurgence while requiring fewer function
evaluations and arithmetic operations at each iteration.

With this question in mind, consider the secant method in the case

n =1, This method beglns with an initial approximation Xq to x* and

defines successive approximations by the iteration

e = X
F(x) - Flx, 4)

Tl T Xy T Flx)

One may regard the secant method as being obtained from Newton's method by
replacing the derivative F'(xk) by a finite-difference approximation. A
particular consequence is that the number of function evaluations per iteration
is reduced from two for Newton's method to one for the secant method while the
number of arlthmetic operations per iteration is not significantly increasei.
It can be proved that, for Xq sufficiently near x¥, the iterates produced
by the secant method exhibit superlinear convergence rather than quadratic
convergence ds in the case of the Newton iterates. Nevertheless, superlinear
convergence is still fast, and experience has shown that, as a general-purpose
algorittm, the secant method is more efficlent in total computation time than
Newton's method. This suggests that generalizatlons of the secant method to

higher dimensions might be similarly successful.

3. Quasi-Newton methods

Quasi-Newton methods are generalizations of the secant method which are
applicable to problems of the type at hand involving an arbitrary number of

independent variables. The key properties of these methods are that the
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iterates exhibit superlinear local convergence and that each iteration
requires n function evaluations and 0(n2) arithmetic operations. In
spite of the fact that quasi-Newton methods do not have the quadratic conver-
gence property of Newton's method, the comparatively small number of funiation
evaluations and arithmetic operations make them preferable to Newton's method
in many applicatlons.

Quasi-Newton methods have the general form

_ ~1
K = % = B PR
where Bk satisfles the quasi-Newton equation

(3) B (x - x. 4) =Flx) -Flx_ 1) .
Note that Bk has the action of a finite-difference approximation to
F'(x,_ ;) in the direction (x, - x,_,). Thus quasi-Newton methods in general
bear the same relatioh to Newton's method as the secant method in the case
n=1.

It is clear that the secant method is a quasi-Newton methed. In fact,
if n=1, then the quasi-Newton equation determines the scalar Bk exactly,
and so the secant method is the only guasi-Newton method in this case. If
n > 1, then the quasi-Newton equation alone does not determine Bk uniquely;
hence, there is no unique natural extension of the secant method to the case
of an arbitrary number of independent variables. This lack of uniqueness in
the general case may be regarded as an advantage, for it allows a variety of
gquasi-Newton algorithms which may be drawn upon to take advantage of any

special structure which may be present in specific problems of interest.
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When n > 1, one must impose relations between successive matrices
Bk and their predecessors which, together with the quasi-Newton equation,
uniquely determine these matrices inductively. In general, those relations
are chosen with an eye toward minimizing the computational complexity of the

resulting update formula for determining from , X and F while
+1

1c?
taking maximal advantage of whatever special structure may be shared by the
particﬁlar problems under consideration. Of the three quasi-Newton methods
presented below, the first (Br.yden's method) is intended to be a general
purpose algorithm which can be applied to all problems without regard to
special structure. Conseguently, in Broyden's method, Bk 41 is obtained by
adding a rank-one "correction term" %o Bk in such 3z way that the quasi-
Newton equation is satisfied and Bk+1 agrees with Bk on the orthogonal
complement of (xk+l - xk). In a sense, this may be regarded as the "simplest"
way to obtain Bk+1 from Bk in such a way that the quasi-Newton egquation is
satisfled. On the other hand, the second two methods (the DFP and BWGS methods)
are designed for unconstrained minimization problems, in which the Jacobian
F*(x) can be expected to be symmetric and positive-definite. Thus the update
formulas for these methods are such that the successive Bk's "inherit"
symmetry and positive-definiteness from the preceding ones. Not surprisingly,
these formulas are more complex than the update formula of Broyden's method.

In fact, in order to guarantee hereditary symmetry and positive-definiteness,

it is necessary in these formulas to determine Bk+l from Bk with a

correction term of rank two.




L, Broyden's method for general nonlinear equations

Broyden's method is, in a sense, the "simplest" of the most popular
quasi-Newton methods and is intended to be a general-purpose algoritim for
solving arbitrary nonlinear equations. To derive the formula used in Broyden's
method to update the matrices Bk’ suppose that, for some k = 0, one has

arrived ab xk and Bk' Then xk

+1 can be generated by the formuda

- -1
X T %~ By F(xk) .

Our objective 1s to use Xy Bk and F to update Bk in the

k412
"simplest" way to obtain a matrix Bl which satisfies the gquasi-Newton
equation.

For convenience, we adopt the following notation:

X =X, B =B, B 3 =B, X -% =5, F(xk+l) - F(xk) = y.

In this notation, the quasi-Newton equation which we wish Bk+l to satisfy
is Bs = y. This equation uniquely specifies the action of B in the
direction of s. Since there is no apparent reason for B to differ from

B on the orthogonal complement of s, 1t seems reascnable to impose on B

Ts = 0. Tt is easily

the condition that Bz = Bz for all 2z such that z
verified that there is a unique B which satisfies both this condition and y
the quasi-Newton equation. This B is given by the formula
i {y - BS)ST
B=B+-—L—-—2——-—
Isl
Note that B and B differ by a rank-one operator. Restoring subscripts,

we obtain the iteration formulas for Broyden's method: *




Xerr = % " By Flx)

T
e ~ Bspsy
Iskl2

By = By +

where Yy = F(Xk+l) - F(xk) and s - X

- K T Xk

Does Broyden's method exhibit the key properties attributed to quasi-
Newton methods in the preceding section? Tt can be shown that if Xy and
BO are sufficiently near x¥* and F'(x¥), respectively, then the Broyden
iterates are well-defined and converge superlinearly to x*. (The proof is
rery involved, and we omit it.) Also, it is clear that, for a given value of
k, the determination of Xpesl and Bk+l requires only the n function

evaluations necessary to specify F(x assuming that F(xk) can be

o4
provided from storage. Finally, it is evident that, for a given Kk, Xal
and By,  can be determined with O(n°) arithmetic operations if B F(x,)
can be evaluated with O(ng) arithmetic operations.

There are two ways of evaluating Bl F(x) with O(n") arithmetic
operations, both of which require information about B1- The first way is
based on the Sherman-Morrison formula [8] and produces B! from B1 with

O(n2) arithmetic operations in the following way: write

T
§=B+———-—-—(y“gs)3 =B+ v,
isl
T
5
where u = (y - Bs), v = 53 then
: Is]
l=pt.- 1 B luv Bt .
1+ <v,B"lu>

TR T e T z e = > % R S Tt
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The second way 1s based on a special factorization procedure due to Gill

-and Murray [5] which begins with a factorization B = QR and yields a

factorization B = @ R with O(ng) arithmetic operations. (Here, Q and

Q are orthogonal and R and R are upper-triangular.) Since an n-dimensional
linear system whose coefficient matrix is factored in this way can be solved with
O(nz) arithmetic operations, this allows the evaluation of the terms BElF(xk)
with O(n2) arithmetic operations as desired. For reasons of numerical stability,
the Gill-Murray factorization procedure is generally preferable to the method

using the Sherman-Morrison formula.

5. The DFP and BFGS methods for unconstrained minimization

For the purposes of this note, the basic problem of unconstrained minimization
may be regarded as the problem of solving Vf(x) = 0 in an open convex subset D
of Rn, where f 1s a nonlinear functional from D to Rl. Ciearly, this
problem is of the type introduced in Section 2, with VI playing the role of F.
The special feature of this problem is that the Jacobian of the function whose
zero is being sought is actually the Hessian ng, a nmirix which is certainly
symmetric. In fact, in most problems of practical interest, ng is positive-
definite near the minimm of f.

It seems reasonable to require that the matrices Bk appearing in a quasi-
Newton method applied to an unconstrained minimization problem be symmetric and
positive-definite. Since each Bk is to be determined from its predecessor
by an update formula, it is reasonable to impose conditions on the update formula
which guarantee that symmetry and positive-definiteness are inherited by the
successive matrices Bk' Unfortunately, imposing hereditary symmetry as well as

the quasi-Newton equation completely determines a rank-one update formula, and

W T TP

TR P
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this formula does not guarantee hereditary positive—definiteness. Consequently,
one is led to look for rank-two update formulas which insure that the successive
matrices Bk inherit symmetry and positive-definiteness.

A general rank-two update formula which guarantees hereditary symmetry

is the following:

B+ (y - Bs)cT + cly - Bs)T _ sy -Bs,s> T

B = ce”

<C,8> <c,s>2
vhere c¢ 1s any vector in R" such that <¢c,s> # 0. A "natural" choice of
¢ which insures hereditary positive-definiteness whenever <y,s> > 0 is
¢ =y. (Since «<y,s> = <V2f(x*)s,s> near x¥*, one expects <y,s> to be
positive near x¥,) The resulting update formula is that used in the
Davidon-Fletcher-Powell (DFP) method. Denoting by ﬁbFP the updated matrix

obtained from B by applying this formula, one has

T T

B =pa+lyo-Bsly +yly - Bs)® _ 2y = Bs,soyy

Bopp 2
<y,8> <y,s>

ys sy’ v
- Q-gehl-55 tys

As with Broyden's method, one can show that the DFP I1terates converge
superlinearly to x* whenever Xq and BO are sufficiently near x* and
ng(x*), respectively, and that each iteration requires n function
evaluations and O(nz) arithmetic operations. Although the DFFP update
formula is a bit more compiicated than the Broyden update forrula, experience

has shown that the DFP method is generally superior to Broyden's method for

problems in unconstrained minimization.
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At the kPN iteration, both Broyden's method and the DFF method
require first the determination of B;lF(xk) and then the updating of Bk'
It is natural to ask whether a more efficient method might be obtained by
applying an update formula directly to Bil . If we denote B} by H
and Bl by H, the quasi-Newton equation Bs =y becomes s = fiy.
Carrying out a development completely analogous to that leading to the DFP
update formula yields the update formula of the Broyden-Fletcher-Shanno-
Goldfarb (BFGS) method. Denoting by EEFGS the updated matrix obtained firom
H by applying this formula, one has

T T

T
i = 5y __ys S
Hopgg = (1 - <3,r,s>)H(I <y,s>) * <y,8>

It is not difficult to see that, as in the case of the DFP update, this
update adds a rank-two correction term to H and guarantees hereditary symmetry
and, if <y,s> > 0, positive—definiteness. Again, it can be shown that the
BFGS iterates converge superlinearly to x¥ wherever X and HO are
sufficiently near x* and Vof(x¥)™F, respectively. It is clear that each
iteration requires n function evaluations and O(n2) arithmetic operations.

The BFGS method is not the same as the DFP methed. In fact,

- -1 T
Hapgs = Bppp) ~ + W
1/2[ s __Hy 4
<S,y> <y, Hy>" °
evidence that BFGS is the best current update formula for use in unconstrained

where v = <y, Hy> According to [33, there is "growing

minimization".
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6. A potential application

We conclude this note by comparing the properties of quasi-Newton methods
to those of Newton's method and UHMLE in a potential application to the
problem of obtalning maximum-likelihood estimates of the parameters in mixture
distributions. Such estimates, of course, play a fundamental role in certain
approaches to sigﬁéture extenslon, estimation of proportions, and clustering.
For a description of the UHMLE algorithm, see [6] ard [71.

let X be an n-dimensional random variable with probability density

function
n1 J0
p(x) = Lalp (x),
where
oL (x) = 1 ~1/2(x-uy % ZO_ (X-ug)
i (Eﬂ)n/2]2 |l/2

and the proportions ag are positive and sum to 1. Suppose that {xk}k‘l N

is a sample of independent observations on X. By a maxinum-likelihood estimate

of the parameters {m s u El}l_ qm o We mean a choice of parameters
-

{Gi, Hys zi}i=1 n which locally maximizes the log-likelihood function

gr ey

N
L= kgl log D(K ) .

regarded as a function of the parameters {ai, TN Zi}._ . It is known
i i=1,...,m

that, loosely speaking, there is a unigque strongly-consistent maximum-likelihood

estimate.  (See [7] for a clarificaticn and proof of this statement.)

The problem which we consider here is to approximate numerically the

strongly-consistent maximm-likelihood estimate. This is potentially a very

I 2o, - n : . D, - o T e




difficult problem. Indeed, the rnumber of independent variables is

n{n+l)
2 3

the evaluation of functions derived from the log-likelihood function usually

m=1) +m +m a number which may be very large. Furthermore,
involves summation over the entire sample of N observations and, hence, is

a source of computational difficulty when the sample is large. In the table
below, we list the key properties of UHMLE, Newton's method, and quasi-
Newton methods when applied to solving likelihood equations obtained by
differentiating the log-likelihood function. It should be noted that, in
addition to the arithmetic operations listed in the table, each method requires

at each iteration the evaluation of the functions pi(xk), i=1,...,m,

k=1,...,N.
ARTTHMETTC OPERATIONS
METHCD CONVERGENCE PER TTRRATION
UHMLE Linear O(mn2N)
Newton's Method Quadratic Ol(mznqN} + 02(m3n6)
Quasi-Newton Methods Superlinear Ol(mnzN) + Oz(mznu)

Of course, many factors must be considered in addition to convergence
rates and the amount of arithmetic per iteration when deciding what sort of
algorithm is best suited in a particular instance for application to the
problem under consideration. For example, UHMLE is a type of gradient
method; hence, one might expect UHMIE to enjoy the relatively good global
convergence behavior usually assoclated with gradient methods. Furthermore,
gradient methods are often competitive in speed of convergence to Newton's

method and quasi-Newton methods when only "ball-park" approximations to the

o

~
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solution are desired. Since the nearness of the maximum-likelihood estimate
to the true parameters will be limited by the variance of the sample obser-

vations, "ball-park" approximations will certainly suffice except, perhaps,

in the case of a very large sample,.

Tt is difficult to predict circumstances 1n which the advantage of fast
convergence for Newton's method and quasi-Newton methods will outweigh the
disadvantage of having to perform a great many arithmetic operations at each
iteration with these methods. However, it should be noted that if N 1s
very large relative to m ard n, then the number of arithmetic operations
per iteration required by quasi-Newton methods is comparable to the number
required by UMMIE. Also, if N is very large, one might rea onably want
to obtain very accurate approximations of the maximum-likelihood estimate,
in which case the superlinear convergence of quasi-Newton methods is clearly
preferable to the linear convergence of UHMLE. Consequently, If N 1s very
large relative to m and n and if particularly accurate approximations of
the maximum-likelihood estimate are desired, then quasi-Newton methods appear
to have a clear-cut advantage over UHMLE. In such circumstances, one might
retain the good global properties of UHMLE by employing a hybrid method
which initially behaves like UHMIE and then behaves increasingly like a

quasi-Newton method as the iteration proceeds.

e A T R R R T e e
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ON NED ROOTS OF POSITIVE OPERATORS

by D.R. Brown and M..J. O'Malleyl

A bounded operator A on a Hilbert space H  is positive
provided <Ax,x - 2 0 for all x £ H. These operators are
symmetric, and as such constitnte a natural geﬁeralizntion of
non-negative real diagonal matrices. The fellowing result is

thus both well known and not surprising:

Theorem: A positive operator has a unique posicive square root

(under operator composition).

This may be established by integration of the correct
function, invoking the spectral theorem for self-adjoint operators.

A more accessible argument for those not acquainted with the mysteries
of spectral measures mav be found in [ 1,p.317].

While square roots and their iterates seem to provide a sufficient
analytic tool for most purposes, it is also a (folk) theorem that
positive operators possess unique positive nﬁ1 roots for every
positive integer n. As in the n = 2 case, existence follows from an
application of the spectral theorem; however, we give an argument in the
spirit of [1]. The purpuse in so doing is not to excrcise the r=ader's
knowledge of induction, but rvather to illustrate another use of the Law of

the Mean as a motivational instrument.

1} Both authors received partial support under NASA coutract NAS-9-15000.
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Let I be the identity operator on H, and let B(H)
denote the set of bounded operators on H. We will need

the following properties of positive operators:

{1) the relation on positive operators defined by A £ B

if and only if B - A is nositive, is reflexive,

LR

transiti;e, and consistent with the not&ia;n 0 A
for auy positive A; morcover, this relation is pre-
served by operator addition and positive real scalar
multiplication, and reversed by negative scalar
multiplication.

(2) If A and B are puositive and if AB = BA, then AB 1is
positive.

(3 If 0z£A <1, then 0O 2 I-A £ 1.

i

(4) If 0 5 A, them A L []AallIl, so that (IIAI])“lﬁ < 1, if A =0.

(5 If 0 £ A - I, then A" ~ A for all positive integers n.

We also require:

Lemma. If {8 } is a sequence in B(H) such that 0 £ 8§ = §
AR ) o n n+l
5 1, then there exists S ¢ B{ll) such that (Snu} + su for

all u ¢ H.

All of the conclusions above are verified by straightforward

arguments in [1,pp. 317-320].

Theoremi! Let A £ B(H), 0 £ A, and let k be a positive integer.
k
Then there exists a unigue positive operator B such that B = A.

Proof: By (4) above, we nced only consider the case in which A £ TI.
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We first prove the existence of B. Since the theorem is a tautology
for all operators when k = 1, we assume the existence of positive
{k-1)~st roots for all positive operators.

Under the momentary supposition that B exists, let

==}
Ll

I ~-A and §S=1- R, Then (I - S)k

I - R, so that
; koo r.r
(*) s= (/0 IR+ 2D T,

Clearly the existence of a positive operator satisfying this
implicit relation is necessary and sufficient to establish the
existence of the desired operator B. To this end, we define a

sequence of operators by 8 =0, § = (1/k) (R + 5 (¥)(—l)r5r]
' - 0 ' Tn+l r=2 - n

In order to.show Sn ha Sn+l it suffices to show, under the assumption
< e - =
0= Sn_1 s Sn £ I, that 0 = an Sn
(1/k) € PG -7t - st ).
r=2 n n-1

To accomplish this, we digress to a consideratiin of the

k . -
polynomial £(x) = L, (D17 = (10" + kx - 1. since

Sirce f£'(x) = k (2 -~ (1 - x)k—ll 20 on [0,1], clearly f |is
increasing on this interval. To translate this to ovperatoers, it is
necessary to examine the situation more carefully. By the Mean Value

Theorem, given 0 5y < 2z < 1, there exists a (unique) number ¢ € (y,z)

such that

(%) £(z) - £(y) = £'(c)(z - ¥) -

1/(k-1)

k-1 e
Upon solving, ¢ =1 - 1 (1/k) rgO (1 - y)k r l(1 - z)r1

e



Returning to our operator proeblem, we wish to apply this
information Lo the sequence {Sn}. Since all members of this
family are polynomials in R = I - A, any two of them commute.
This is a property sufficient to permit imitation of ecquation (**)
with operators; let z = § , y = Sn—L' In thislformat, we use C

n

to represent the operator 1 - J, where J 1is (any) positive

{(k~1)st root of the operator (1/k) kil (T - 8§ )k—r~1(I - 8 )r.
i r=g n-1 n
The following chain of equalities is casily calculated:
Sn+l h Sn ) (llk)'(f(Sn) B f(sn-l))
k-1
= (L/RMK[T - (T - O 718 -85 ))
n n-1
=(r- (-0 -
n n-1
= (1= s s )
n n-1
‘ kol k-r-1 ry- .
=11 - {/k) k5 (1-8__)) (1-s ) }i=(s - ¢ )
By application of remarks (2), (3) and (5), the assumption of
existence of (k-1)st roots, and the inductive hypothesis Sn~l 55,

the latter operator product exists and is positive. Hence Sn = Sn+l’
and the sequence {Sn} is increasing. Of course, the Law of the Mean
is not applicable in this setting, nor is it used other than to motivate
the choice of C. Indeed, the discerning reader will note that the
extremes of the chain abuve may be shown to be equal without the

introduetion of C. However, the rather unusual factorization of

Sn+1 - Sn would be more difficult to discover without the example

o S i LiE e o G = Tt arC IR SR L R
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To invoke the lemma and complete the proof of ¢xistence of

t , .
k—h roots, it remains to show Sn = I for all n.

<
0= Sm £ I, we have ksm+I

By remark (5), (I - S )k b

R -+ kSm - I+ (I~ Sm)

b

k§ . S kI and S_ 51,

operator as in (*), and I

In order to prove the

we first observe that if T 1is any positive kEE root of A, then T

must perforce commute with

Sn’ and thus with § and

Then 0 = <(Bk~Tk)u,v"=' (

Since B and T conmute,

r=0,1,...,k=-1. Llet F_

of BkhrqlTr. Then !iFrvl
Frv = 0 and Bk_r_lTrv = F
or Bk—rTru - Bk~r—]Tr+1u,

r= k-1, BT o 7fl Mt

iIf k = 2, the argumen
HHB-T)ul 1 = < (3-1)7u,u - =

u € H, and B

less than k, for positive

(BJ)2 - BEJ - Bk _ Tk _

k 1s odd, we have shown above that B =T

is thus unique.

‘v the real function situation.

Assuming

=R+ f G s = R- 1+ ks + (1= 85K
r=2 m m m

I ~8 ; therefore
m
"R+KkS - T+1-§
m m
I + (k—l)Sm £ kI. Hence

as deslired.

- S =3B

, . th
uniqueness of a positive k~L root of A,

A, hence with I - A = R,

I -S=DB, Let uelil, v=(R-T)u.
kzl  ker-1,.r k=

X - o= ¥ .
Ly B T)(B-Tu,v>= L B

o - Bk—r—lTr, whence (Bk—r—l.r

is a kEE root of A.

Thus, the Lemma gives an

T v,v>

k-r~1_r
v,V

hence with each

0,

be any positive (hence symmetric) square root

T
| =
1

) -
;v = 0. Therefore Bk r-1

r=0,1,...k-1.

iplying by T, we have B
t ahove shows Bv = 0 = Tv,

< (B-T)v,u>= 0. Hence Bu

operators are unique. If k

k+1 k+1

2
=<F v,Fv>=<F v,v>= 0,
r r r

k+1

50 that

T (B~T)u

In particular, for

whence

Tu

(TJ)z, whence BF = T and thus B

, S0, by the even

23,

Now assume all positive roots, of order

If

"

P
1

T ]
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exponent argument, again B = T. This completes the proof.
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A FIXED POINT THEOREM FOR CERTAIN OPERATOR VALUED MATPS

by D.R. Brown and M.J. O'Malleyl

1. Introduction. Let H be a real Hilbert space,‘and let Bl(H) denote
the space of symmetric, boundéd operators on H yhich have numerical range
in [0,1], topologized by the strong operator topology (that is, the topology
of point-wise convergence). It is well known [3], that if T ¢ Bl(H), then

there exists a unique § ¢ Bl(u) such that 52 = T, We represent S by

1.
T?, The following theorem is due to John Neuberger [2].

Theorem A: Suppose w & H, P is an orthogonal projection on H, and L is

a (strongly) continuous function from H into Bl(H). Let Qo = P, and set
- QL(Q%w)0? 0,1,2 Q1"
Qn+l = QnL(an)‘n’ n=10,1,2,... . Then Qn h=o COmverges to an element
1.
Q¢ Bl(H) for which z = Q% is a fixed point of P and a fixed point of L

in the sense that L{z)z = =z.

In this paper, under the same hypotheses as Theorem A, we develop a
family of Neuberger-like results to find points =z £ H satisfying L(z)z = z
and P(z) = z. This family Includes Neuberger's theorem and has the additional
property that "most" of the scquences {Qn} converge to idempotent elements
of Bl(H). The limit operator of Theorem A need not be idempotent.

Such theorems as those above not only play a valuable role in the search

for numerical solutions of partial differential equations, but are also useful,

in the finite-dimensional case, in attacking the problem of determining the nonzero

lBoth authors received partial support under NASA contract NAS-9-15000.
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fixed points of a function @:R™——3R". In particular, if x € R"-{0}, then

®x is a fixed point of @ if and only if A(x)x -~ x, where A is the matrix

. —_"
valued function defined by A(x) = (|l|x]} “)'ﬂ(x)'(xT). In fact, it follows

that this can occur if and only if A{x) 1is a nonzero symmetric idempotent.
It is a pleasure to record our indebtedness to H.P, Decell for the remark

immediately above, und to several other members of the University of Houston

Mathematics Department, particularly Phillip Walker, for helpful conversations

regarding the preparation of this paper.

2, Fixed Points of L(z). Recall that an operator is positive if <Ax,x» 2 0

for all x € H, where < , > is the irner product of H. We presume familiavity
with the standard properties of positive operators as set forth, for example,
in [3]. By invocation of the Spectral Theorem, or, alternatelyv, by a sequential

construction, it is pessible to provide, for any T ¢ Bl(H) and anvy positive

T1/n Tl/n n

integer n, a unlque operator Yy = T. This notion

£ Bl(H) such that (
extends immediately to arbitrary positive rational powers of T by defining

Tr/s ~

(Tl]s)r. Moreover, by again appealing to the Spectral Theorem, it follows

that if {Qj} is a sequence in Hl(”) converging strongly to Q, and t 1is an
arbitrary positive rational number, then {QEJ converges strongly to Qt
Finally, recall that the usual quasi-ovder defined for positive operaters by
A£B 4if and only if B - A is positive satisfies an additional anti-symmetry
condition, to wit: if A and B are positive and commute, then A £ B and

B <A forces A = B.
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Lemma 1. Let Q ¢ Bl(H) and let « be a positive rational number other

than 1. 1f Qa :.Q, then = Q2; that is, @ 1s an idempotent.

25935: Let ¢ = r/s; the presunmed equality is equivalent to Qr = QS. Withou£
loss of generality, assume r < s and that r is the minimal positive power
of @ which reoccurs in the sgquence {Qn}. From the fact that powers of an
operator descend in the quasi-order mentioned above, together with the limited
anti-symmetry of this relation, it feollows that dt = Qr for all integral t

r+]1

between r and s. From Qr =0 , it follows that Qt = Qr for all t = r.

If r 1is odd, then (Q(r+l)/2)2 = Qr+1 = er = (Qr)z. By uniqueness of square
roots, Qr = Q(r+1)/2, whence r = (r+l1)/2 and r =1. If r {is even, then
(erz)2 = Qr = (Qr)z, whence r = r/2, which is impossible for positive r.
Thus r =1 and Q = Qz.

We are now ready te prove our

Theorem 2. Let w € H, let P be an orthogonal projection on H, and

let L:H-——%Bl(H) be stronglv continuous. Let o,8 be positive raticnal

1 . = 63 - Ly B r'(‘i. =
numbers with o € [,=). Set Q0 P, and let Q4 QnL(an><n‘ n=40,1,2,...

Then {Qn}:=o‘ is a decreasing sequence of elements of Bl(H) which converge

to an element Q € Bl(H) such that

(1) if a >3, then Q is idempotent and z = Qw satisfies

L(z)z = z, and Pz = z, and

(2 if o=12% and 8 > %, then =z = QBw satisfies L(z)z = z and

Proof: Fix a z Y% end B 0. Since “o =re BI(”) and the range of L

A
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is in Bl(H), it follows inductively that Qn £ Bl(H) for all n. Since

20

2 2a o
20 2 1, Qn £ Qn; moreover, <(Qnu - Qn+1)x,x> = <(Qn - QnL(QEw)Qﬁ)x,x> =

;Q:(I - L(QEw)Q:x,x» = (I - L(QEw))ng,Q:x>. Thus, since 1 - L(wa) =z 0, it.

2a
follows that Qn+l hut Qn . Hence we have

20
{(*) Qn+l s Qn £ Qn, n=20,1,2,...

In particular, the sequence {Qn} is monotonicall; decreasing in the (operator)
interval from O to I. Thus we have by [3, p.318] that the sequence {Qn}
converges strongly to an element 0 € BI(H)’ whence {Q:} converges to Qa

and {Qi} converges to QS. Since L is continuous and operator multiplicatioen
is jointly continuous in the strong topology on Bl(H), we have by uniqueness

of limits that Q = QaL(QBw)Qa. Also, from (%) and the closed graph of the
relation £, we have Q < qu £ (0. Thus, since  anpd Q2a commute, we

have that Q = @ u. Moreover, since P = Qo' we have PQn = Qn, whence

PQY = QY for all positive ratiocnal Y.

2
“, from which it follows that

(1) Suppose o > %, By lemma 1, Q = O
Q= O_Y for all positive rational Yy, and, in particular, 0 = QL(GQw)Q.

Let 2z =(Qw, and fix x ¢ H. Then <Qx,x> = <QL(z)0x,x> = <L(z)Qx,Qx>,
and since Q2 = Q, it follows that 0 = <Qx,Qx> - <L{z)(Qx,Qx> = <{I - L{z))Qx,Qx>.
Therefore, since I-L{z) and hence (I—L(z))% belong to Bl(H), we have that
Q = L{z)Q. In particular, =z = Ow = L(2)Qw = L(z)z.

-

o L 1
{(11) Suppose n =%, 8 z'%. Let z = Q[w; then ( = QEL(z)Q5 from

e b

1 ; 1 1
which <Qx, x> = <Q L(z}QEx,x> = 4L(z)Q5x,Qix>. Since <Qx,x> = <Q°x,Q°x> also,

! Lo s L ! . . ,
we have 0 = <Qix—L(z)Q'x,Q‘x> = <(I—L(z))Qﬁx,Qﬁx>. Now, as in (i), it follows

L
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that Q1 = L(z)Q%. In particular, z = QBw = QEQB v = L(z)QiQB =
L(z)st = L{z)z. That Pz = 2z in hoth cases is obvious from the fact that

-PQY = QY for all positive ratiomal y. This completes the proof,

Given a nonzero element 2z € H such that L(z)Jz = z, it is reasonable

to ask 1f our sequences are able to produce z. We note now that, by proper
selection of w and P, =z is attainable from eéch of our sequences,
Specifically, if o and B are fixed as in the éheorem, then let w = =z
and let P be the orthogonal projection of H onto the line through z.
From the construction of the sequence {Qn}, Ql = PL(z}P, whence Ql = P.
If follows immediately that Qn = P for all n and thus Q = P. Hence

z=0Qw="Pw (or z= QBw = PBw

i

Pw) 1is the fixed point yielded by our theorem.

While it is not reasonable to expect the praticioner to guess P so

accurately, these remarks do attach the virtue of theoretical completeness to

these processes.

3. Examples. (1) Suppose that o =% and that vy, § € [%,9) such that
neither of Yy, & is an integral multiple of the other. We show that for fixed
weH and P, the Q and =z obtained by using Y for £ need not be the
same as those obtained by using § for B. Morcover, the limit operator Q in
this case need not be an idempotent, although it can be one. Assume 6 < Y.

Let k be the least positive integer such that y < ké. Note 2 £k and
(k=1)§ < y. Let a be any number in the interval (0,1). Then

R N S S LIS

a

e e e e S =




6.
Define L:R—3%[0,1] by
1, x <al
L(I‘() = [(l_,a)/(aY_a(k-l)iS)]. (x—-aY) +1, EiY <% s a(k—l)5
a5 a(k~l)6 £ x.

Set P=1, w= 1. Using vy for B in the theorem yields QO =1 and Ql = a.
Inductively, Qn = a, so that G = a. Hence z = QYw = aY'l = aY in this case.
On the other hand, using 0§ for & gives Qo =1, bl = a, but Q2 = 32,...,Qk = ak.
Moreover, Qn = ak for n > k, hence 1 = ak and z = Qéw = ak6'1 = aké. By

the choices of a and k, the exponents Y and & yield distinct operators
and distinct fixed points. Moreover, neither of the limit operators determined

by vy and ¢ 1s idempotent.

(2) Suppose that o > !5, so that any limicing © obtained through the
theorem is idempotent. We show for fixed w & H and P, that the resulting
limit idempotents may vary with the choice of B, as may the fixed points
determined in this manner. To this end, let « =1 in the theorem. Let
L:R3-~9B1(R3)be as follows: all image matrices are diagonal, wherefx 0 0} will

0
0

o
N

be represented as diag(x,v,z). We require L(1,1,1) = diag(l,%,1},

L(1,%,1) = diag(l,%, %), L{(1,%,1) = diaz(%,%, 1), L{(l.y,z) = diag(l,y,z) for
(y,z) & [0,%] ~ {0,%], and L{x,y,1) = diag(x,y,1) for (x,y) ¢ [0,%] x [",%].
The extensiovn theorem of Tietze (c.f. [1]) permits a continuous extension of

L to all of R3 into the diagonal matrices whosec cntries are in the interval

[0,1]. Let P =1 the identity cperator, and let w be the vector (1,1,1).

31

If B =%, a brief examination of the defining sequence of Qn‘s in Theorem 2
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shows that the limit idemporent @ = diag(l,0,0), and =z = Qw = (1,0,0). On

the ather hand, if § = 1, then limit Q = diag(0,0,1), and =z = (0,0,1}.

(3) With notation as in (2), suppose B = 1 is fixed. We show for
%ixed w € H and P, that the resulting limit irdempotents may vary with «,
as may the fixed points determined in this manner. Letting P = I3 and
w= (1,1,1) as in (2), we rcq;ire this time that L(1,1,1) = L(1,%,1) =
diag(l,%,1), L(1,1/8,1) = L(1,0,0) = diag(l,0,0), . and 1L(1,1/32,1) = L(0,0,1) =

diag(0,0,1). Extending as before, we have a contiruous I defined on R3 into

the diagonal matrices with entries in [0,1]. For any choice of «,

Q, = diag(l,%,1). If a =1, Q, diag(1,1/8,1), Q, =, = Q= diag(1,0,0),

z = (1,0,0). On the other hand, if « = 2, then @, = diag(1,1/32,1), Q3 = Qn =
Q = diag(0,0,1), z = (0,0,1).

It is easy to sce that a slightly more complicated definition of L would

vield a single example incorporating the features of all three prior illustrations.
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