General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

PRELIMINARY DESIGN ANALYSIS FOR THE SOLAR OPTICAL TELESCOPE MAIN MIRROR ACTUATOR

```
(NASA-CR-156701) PRELIMINARY DESIGN N}78-2199
ANALYSIS FOR THE SOLAR OPTICAL TELESCOPE
MAIN MIRROR ACTUATOR (Sacramento Peak
Observatory) 44 P HC AO3/MF A01 CSCL 03A unclas
G3/89 14138
```

AUGUST 1977

Prepared By
SACRAMENTO PEAK OBSERVATORY
SUNSPOT, NM 88349

Richard B. Dunn

This study was performed under the auspices of the One Meter Solar Telescope Definition Team (Agreement S-64 177A between NASA and National Science Foundation) for the Shuttle/Spacelab Payloads Project, iv.4SA GodJard Space Flight Center.

PRELIMINARY DESIGN ANALYSIS
 FOR THE SOLAR OPTICAL TELESCOPE
 MAIN MIRROR ACTUATOR

Bichard B. Dunn
Sacramento Peak Observatory Sunspot, NM 88349

August 1977

This study was performed under the auspices of the One Meter Solar Telescope Definition Team (Agreement S-54177A between NASA and National Science Foundation) for the Shuttle/Spacelab Payloads Project, NASA-Goddard Space Flight Center.

CONTENTS

1.0 BACKGROUND
2.0 SPECIFICATION OF MIRROR MOUNT POINTING CAPABILITIES
2.1 DEGREES OF FREEDOM
2.2 CROSS COUPLING
3.0 BASELINE MIRROR MOUNT
3.1 CONFIGURATION
3.2 ACTUATOR LENGTHS FOR A $\pm .5^{\circ}$ OFFSET
3.3 ACTUATOR LENGTHS FOR A 10 SEC OF ARC TILT
3.4 CONTROL CONCEPT
3.5 LOADS
4.0 BASEL INE ACTUATOR
4.1 RESOLUTION
4.2 SPEED
4.3 THRUST
4.4 PRELOAD
4.5 ACCELERATION
4.6 STIFFNESS AND SPRING CONSTANT
4.7 STOPS
4.8 LAUNCH LOAD CAPACITY

DESIGN ANALYSIS
SOT MAIN MIRROR ACTUATOR

1.0 BACKGROUND

The resolution of the SOT Gregorian telescope is maintained if the conic foci of the elliptical secondary and parabolic primary are made to coincide within ± 38 microns across the prime focus plane and to within 5 microns in focus. An error in coincidence across the focal plane causes all point images to show additional coma with all the comatic tails pointing in the same direction. An error in focus becomes magnified by the square of the magnification of the secondary and simply increases the diameter of the point source. Offsetting or rastering the sun may be accomplished by swinging the primary in an arc about the point of coincidence of the conic foci so long as the coincidence is kept to within the tolerance stated. $A \pm .5^{\circ}$ offset (two solar diameters) must be accommodated.

The alignment telescope detects the lack of coincidence of the conic foci and interprets the measurement as an angular tilt of the primary although the error might have come from decentering the primary, or tilting or decentering the gregorian. Correction of the error will affect the line-ofsight (LOS) pointing.

The objective mirror of the line-of-sight (LOS) detector is mounted on the primary and so it detects line-of-sight angular errors whether they arise from tilt or decentering of the primary or pointing of the telescope truss. To correct this line-of-sight error the vertex of the primary may be rotated or swung about the conic foci so long as tilts are not introduced that destroy the coincidence of the conic foci. When used in conjunction with an offset in the LOS detector this swing can be used to offset point or raster the sun without repointing the truss itself. It can even be used for internal motion compensation (IMC) if it can be done fast enough. Alternatively the telescope truss can be repointed.

In determining the requirements of sensitivity of the actuators of the primary mirror mount, the principal driver is the need to prevent cross coupling between tilt and trans?ation of the prinary mirror as the mirror is moved to correct the error signal generated by the LOS detector. For example, it is attractive for rastering and correcting LOS errors to set up the mirror mount so the vertex of the mirror is swung about the conic foci. The plate scale at the prime focus is 21 microns per sec of arc so that swinging the primary 2 microns about the conic foci would correct a $L O S$ error of 0.1 sec of arc. One can visualize a system that swung the mirror this 2 microns
as soon as the LOS detector showed an error of 0.1 sec of arc. If during this 2 micron step the mirror tilted in the right direction by 0.1 sec of arc, which corresponds to only 0.6 microns at the edge of the mirror, the LOS detector would show its error corrected and so should not have commanded a \mathbf{i} micron step. One way to prevent this cross coupling is to make all increments or sensitivities in swinging the mirror about the conic foci small enough that if a tilt does occur that satisfies the LOS detector the correction can be stopped. This requirement would appear to be satisfied if the increment of motion in translation or focus were so sinall that it could not cause an error in pointing greater than 0.1 sec of arc.

The coincidence of the conic foci is not a driver since the ± 38 microns tolerance at the prime focus of the conic foci corresponds to $\pm 1.7 \mathrm{sec}$ of arc tilt of the primary or about ± 10 microns at the edge of the primary. Focus is also not a driver since i ts tolerance is ± 5 microns. Note that if all LOS errors are corrected by the truss pointing system instead of by swinging the mirror then the sensitivity for focus and coincidence of the conic foci become the drivers.

2.0 SPECIFICATION OF MIRROR MOUNT POINTING CAPABILITIES

2.1 DEGREES OF FREEDOM: The prime focus mirror must be capable of the following motions:
2.1.1 Rotation of the vertex about the conic foci: This motion will be used to offset and raster the telescope and to provide internal motion compensation (IMC) at slow rates without moving the telescope truss. The motion must be $\pm 0.5^{\circ}$ which corresponds to a translation or decentering of the mirror of approximately $\pm 4 \mathrm{~cm}$. The maximum rate must be not less than $\pm 0.5^{\circ}$ in one minute. The increment must be 0.1 sec of arc or smaller. For commanding the mirror position without servos the repeatability must be less than 1 sec of arc.
2.1.2 Tilt about the vertex: This motion will be used to bring the conic foci into coincidence. The sensitivity must be 0.2 sec of arc. The range must be at least $\pm 20 \mathrm{sec}$ of arc about the radius vector from the conic foci to the vertex as translated in 2.1.1. The acquisition range to bring the radius vector to the conic foci must be $\pm 500 \mathrm{sec}$ of arc.
2.1.3 Focus: The focus must have a range of $\pm 1 \mathrm{~cm}$ and a sensitivity of 1 micron. Focus rate must be variable with a maximum rate of $1 \mathrm{~mm} / \mathrm{second}$. The direction of focus should occur along the radius vector from the conic foci to the vertex as translated in 2.1.1
to avoid upsetting the alignment detector.
2.2 CROSS COUPLING: The motions in 2.1 shall be independent. or appear to the operator to be independent, to the following degree: Rotation of the primary mirror vertex about the conic foci shall not introduce more than 2 sec of arc error in the tilt about the vertex for each 0.1° of offset and not more than 2.5 microns in focus for the full $\pm 0.5^{\circ}$. The tilt about the vertex shall not influence the focus by more than 2.5 microns. The focus shall not effect LOS pointing by more than I sec of arc for each millimeter of focus.
3.0 BASELINE MIRROR MOUNT: The A frame (Figure 1) has been chosen as the baseline mount for primary mirror in SOT, although other schemes are possible. The A frame is very rigid and precise and solves the problem of matching the expansion of the truss structure to the main mirror so that there will not be any over constraint. Expansion of an actuator will cause the mirror to move in one or more of its six degrees of freedom, but it should not introduce any stresses. The disadvantage of the A frame is the requirement for a complex control system.
3.1 CONFIGURATION: The configuration used for this analysis is shown in Figure 2. This layout is for edge-mounted actuators. Rear-mounted actuators are also possible.
3.2 ACTUATOR LENGTHS FOR $A+0.5^{\circ}$ OFFSET: The lengths of the six actuators may be calculated exactly for any view point on the sun by using the procedure that follows. The origin of the coordinate system (Figure 3) is chosen at the conic foci sef tiat any offset on the sun is accomplished by rotating the mirror about an angle $\Delta \alpha$. The position angle of this rotation is θ. The steps are as follows.

Step 1 Determine the coordinates for any point on the mirror X_{0}, Y_{0}, Z_{0} from layout $r_{0}=\sqrt{X_{0}^{2}+Y_{0}^{2}}=70.5$, for example in Figure 2 -8-
$\theta_{0}=\arctan \frac{Y_{0}}{X_{0}}=0,60,120,180,240,300$ degrees, for example.

Step 2 Detemine the radius, p, and angle $\alpha_{;}$, between the point on the mirror and the axis of rotation of the mirror.

$$
\begin{aligned}
& d=r_{0} \sin \left(\theta_{0}-\theta\right) \\
& \rho=\sqrt{d^{2}+z_{0}^{2}} \\
& \alpha=\arctan \frac{d}{z_{0}}
\end{aligned}
$$

Step 3 Rotate the mirror through $\Delta \alpha$ and locate the point on the mirror with respect to the original coordinate system.

$$
\begin{aligned}
& \psi=\alpha+\Delta \alpha \\
& \gamma_{\theta}=\rho \sin \psi \\
& x_{\theta}=r_{0} \cos \left(\theta_{0}-\theta\right) \\
& z_{\theta}=\rho \cos \psi \\
& x=x_{\theta} \cos \theta-\gamma_{\theta} \sin \theta \\
& y=x_{\theta} \sin \theta+\gamma_{\theta} \cos \theta \\
& z=z_{\theta}=\rho \cos \psi
\end{aligned}
$$

Step 4 Calculate the length of the actuator

$$
L=\sqrt{(x-X)^{2}+(y-Y)^{2}+(z-Z)^{2}}
$$

where X, Y, Z are the coordinates of the fixed end of the actuator.

Table 1 shows the lengths of the actuators for different α and θ angles. $\theta=45^{\circ}$ shows the greatest change in length.

TABLE 1 ACTUATOR LENGTHS FOR $+0.5^{\circ}$ AND -0.5° () OFFSETS FOR DIFFERENT VALUES 0 F $\theta . L_{0}=61.61168 \mathrm{~cm}$.

Actuator	θ					
	0°	45°	60°	90°	120°	150°
1-7	63.339	64.101	64.054	63.510	62.493	61.259
	(60.135)	(59.319)	(59.370)	(59.954)	(60.716)	(62.255)
2-8	59.370					
	(64.054)		.			
3-9						
4-10			64.054			
			(59.370)			
5-11	59.370					
	(64.054)					
6-12	63.329			59.954		
	(60.135)			(63.510)		

3.3 ACTUATOR LENGTHS FOR A 10 ARC SECOND TILT: Tilting the mirror aboist its vertex 10 seconds of arc about the X axis changes the lengths of the actuators by the amount shown in Table 2.

TABLE 2: Change in length of the actuators for a +10 sec of arc rotation about the X axis.

Actuator	$\Delta \mathrm{cm}$
$1-7,6-12$	+.002528
$3-9,4-10$	-.002260
$5-11,2-8$	-.000284

This motion would be used as a differential to correct the tilt error, and force the conic foci to coincide. The Δ is applicable to all tilts if the three alignment telescopes are assumed to be symmetrically placed with respect to the actuators. The same amplitude signal is sent to the four actuators but the sign differs.
3.4 CONTROL CONCEPT: Assuming the actuators step in increments, the control concept is to first zero all the actuators and then count steps to place the mirror close enough to the correct position that the alignment and focus detectors can lock on. The output of each alignment telescope is fed to a specific set of four actuators. For example, in Table 2 to correct a positive error the same number of negative steps would be sent to actuators 1-7 and 6-12 while an equal number of positive steps were sent to

5-11 and 2-8. The actuators $3-9$ and 4-10 would not be actuated. For focus the same number of steps would be sent to all actuators. After the alignment and focus detectors were zeroed, the LOS detector would be turned or.1. Its X signal, for example, would be sent to each of the six actuators in proportion to the actuator's influence on the X motion. This proportion is within $\pm 4 \%$ over the $\pm 0.5^{\circ}$ field. If the system is looking at a stellar source the rastering would be open loop and the length of the actuators would be continuously calculated for each point in the field. Alternatively, for both solar and stellar pointing the entire truss could be repointed with the IPS.
3.5 LOADS: The actuators make an angle of $\operatorname{arc} \tan \frac{36}{50}=35.7^{\circ}$ with respect to the mirror. With the mirror on its back each actuator sees $1 / 6$ of the 1650 1b mirror resolved along 35.7° or 338 lb . With the mirror on edge the entire downward force is taken by two actuators, for example, 2-8 and 5-11 in Figure 2, and the loads become

$$
\frac{1650}{2 \sin 35.7^{\circ}}=1413 \mathrm{lb}
$$

The combined emergency landing load of 4.5 g forward (x) and 4.5 g downward (z) would subject the two side actuators to $4.5 \times 1413+4.5 \times 338=7879 \mathrm{lb}$.

Similarly launch load is $1.5 \times 1413+2.9 \times 338=30991 b$ and the landing load $2.8 \times 1413+1 \times 338=4294 \mathrm{lb}$.

The force to move the mirror in space is much smaller. To track a 10 sec of arc $\mathrm{p}-\mathrm{to}-\mathrm{p}$ LOS error at 1 Hz by swinging the mirror about the conic foci takes the following force:

5 sec of arc amplitude $=105$ micron shift $=.00413$ inches $a=A(2 \pi f)^{2}=.0041(2 \pi f)^{2}=.162 \mathrm{in} / \mathrm{sec}^{2}$
$F=\frac{W}{9} \times a=\frac{1650}{32 \times 12} \times .162 \mathrm{in} / \mathrm{sec}^{2}=.696 \mathrm{lb}$ which is very small and represents forces during IMC.

To accelerate the mirror about the conic foci to the maximum scan velocity in 0.1 sec takes the following force:

Velocity $\max =60 \mathrm{sec}$ of $\mathrm{arc} / \mathrm{sec}=1.26 \mathrm{~mm} / \mathrm{sec}$ displacement $=$.0496 inches/second
average $a=\frac{.0496}{.1}=.496 \mathrm{in} / \mathrm{sec}^{2}$
$F=\frac{W}{G} \times a=\frac{1650}{32 \times 12} \times .496=2.1 \mathrm{lb}$
4.0 BASELINE ACTUATOR: The baseline actuator is shown in

Figure 4. The device is a preloaded 0.2 inch lead ball screw coupled to a 400 step per revolution Slosyn through a 80:1 harmonic drive. Dlog stops on the screw serve as mechanical stops. No eiectrical stops are used. The design parameters are calculated in the following sections and are summarized as follows:

Resolution: 0.158 microns (. 06 sec of arc on sun)
Speed: 5400 steps,'sec (crosses sun in 30 sec), $0337 \mathrm{in} / \mathrm{sec}$
Range: 76.2 mm
Thrust: 2000 lb each
Backlash: In space, removed by a 100 lb spring. On the ground, removed by the weight of the mirror.

Acceleration: Up to $1.77 \mathrm{in} / \mathrm{sec}^{2}$ in space.
Up to $.674 \mathrm{in} / \mathrm{sec}^{2}$ in one g .
Stiffness: $\quad 3.2 \times 10^{6} \mathrm{lb} /$ inch load capability.
4.1 RESOLUTION: The step resolution is as follows:
steps $/$ rev \times gear reduction \times lead $=\frac{1}{400} \times \frac{1}{80} \times 0.2 \times 25.4=$ $.000158 \mathrm{~mm}=$. 158 microns

A single step on two adjacent actuators would tilt the mirror 0.03 sec of arc. In the control scheme suggested in section 3.4 one would set in steps of .06 sec of arc. If the opposite set of actuators were not turned on half this angle could be set in.
4.2 SPEED: In the worst case (45°; Table 1) an actuator has to be moved 4.8 cm to cover $\pm 0.5^{\circ}$. The sun's diameter is half the full range, so that at a 5.4 KHZ stepping rate the time to scan the sun is as follows:

$$
\frac{24 \mathrm{~mm}}{.158 \times 10^{-3}} \times \frac{1}{5400 \mathrm{steps} / \mathrm{sec}}=28.1 \text { seconds }
$$

4.3 THRUST: The M061-FCO8 motor in half step mode puts out 20 in 02 at 5400 steps per second with one winding one. The thrust at 90% efficiency for the Ball screw and 80% for the harmonic drive is as follows:

$$
\begin{aligned}
\text { Thrust }= & \frac{\text { Torque } \times 2 \pi \times \text { eff }}{\text { lead }}=\frac{20 \text { in } \theta z \times 80 \times 2 \pi \times .80 \times .90}{0.2}= \\
& 3619102=2261 \mathrm{lbs}
\end{aligned}
$$

This thrust can be increased by $11 / 2$ times by activating two windings but at the penalty of twice as coarse a step. The thrust in the actuator during one G checkout with the telescope horizontal is 1413 lb (see Section 3.5).
4.4 PRELOAD: The harmonic drive has 8.5 min of lost motion for a resulting torque of $10 \mathrm{in}-1 \mathrm{~b}$ which represents 2 microns or 12 steps and so must be removed with a preload across the actuator. To put $10 \mathrm{in}-1 \mathrm{~b}$ on the harmonic drive output to take out the "backlash" would take the following:

Thrust $=\frac{10}{.2} \times \frac{2 \pi}{\times .9}=349 \mathrm{ib}$
The residual torque of the motor is 5 in-oz. To drive the motor backwards would take the following:

$$
\text { Thrust }=\frac{\text { Torque } \times 2 \pi}{\text { lead } \times e f f}=\frac{5 \times 80 \times 2 \pi}{.2 \times .8 \times .9 \times 16}=1090 \mathrm{lb} .
$$

The actual preload required will have to be determined, but in view of the low force requirements in space a preload across the actuator of several hundred lb would seem appropriate. The spring must also take into account the back pressure from the air enclosed in the bellows.
4.5 ACCELERATION: The acceleration available is as follows:

Inertia

Load Inertia at the Motor $=$
$W \frac{L^{2}}{(2 \pi)^{2}} \frac{1}{G^{2}}=\frac{825 \times(.2)^{2}}{(2 \pi)^{2} \times(80)^{2}}=1.3 \times 10^{-4} 10-\mathrm{in}^{2}$
$W=$ weight the actuator sees $\sim 1 / 2$ mirror weight
$\mathrm{L}=$ screw lead
$G=$ gear reduction in harmonic drive
Motor Inertia $=.04 \mathrm{lb}-\mathrm{in}^{2}($ catalog value)
Harmonic Drive Wave Generator Inertia $=.07 \mathrm{lb}-\mathrm{in}^{2}, ~$ cainilog value)
Lead Screw Inertia $=\frac{\mathrm{D}^{4} \times \text { length } \times .028}{G^{2}}=\frac{1.25^{4} \times 8 \times .028}{80^{2}}=$

$$
8.54 \times 10^{-5} \mathrm{lb}-\mathrm{in}^{2}
$$

Total Inertia, $I=.111 b-\mathrm{n}^{2}$ and is totally dominated by the motor and wave generator in the harmonic drive.

In space, since the friction is low and the loads negligible, the entire 20 in-02 is available to accelerate the inertia and the time to reach 5400 steps/second (84.82 $\mathrm{r} / \mathrm{sec}$) which moves the actuator at $.0337 \mathrm{in} / \mathrm{sec}$ as follows: $t=\frac{I \omega}{T}=.111 \mathrm{~b}-\mathrm{in}^{2} \times 84.82 \mathrm{r} / \mathrm{sec} \times \frac{16}{2 n} \mathrm{in}-\mathrm{lb} \times \frac{\mathrm{sec}^{2}}{32 \times 12 \mathrm{in}}=$.0190 sec, which, because of the angle of the actuator to
to the mirror, corresponds to accelerating the mirror to a velocity of .04 inches $/ \mathrm{sec}$ in .019 sec , which is $2.1 \mathrm{in} / \mathrm{sec}^{2}$. This would require 8.9 lb push on the mirror and would be split between two actuators. This would be more acceleration than is necessary and could possibly effect the IPS, in which case a slower acceleration ramp could be programmed. The Slosyn controller used to test the actuator has an acceleration range adjustable from 50 ms to 1 sec which is considerably longer than that needed. The 50 ms range would reduce the acceleration on the mirror from 2.1 to $0.81 \mathrm{in} /$ sec^{2} and the force on the mirror to 3.42 lb .

On the ground only $7.5 \mathrm{in}-0 z$ of the $20 \mathrm{in}-02$ is left to overcome the inertial load and it will take .050 sec to accelerate to the maximum velocity of 5400 steps $/ \mathrm{sec}$ or . 04 inches/sec of mirror motion which is then an acceleration of $0.8 \mathrm{in} / \mathrm{sec}^{2}$.
4.6 STIFFNESS AND SPRING CONSTANT: The stiffness or spring constant of the assembly is estimated as follows: Nut assembly (from pit, 1972 Beaver Catalog), 300 1b. load. $K=9.5 \times 10^{6} \mathrm{lb} / \mathrm{in}$

Screw (from pl4, 1972 Beaver Catalog), 5 in long, bearings on one end only.

$$
K=\frac{25 \times 10^{6}}{4}=6.25 \times 10^{6} \mathrm{lb} / \mathrm{in}
$$

Harmonic Drive: The catalog gives a stiffness of $k=116,000$ $\mathrm{lb}-\mathrm{in} /$ radian to the rated load of $320 \mathrm{in}-1 \mathrm{~b}$. With $10 \mathrm{in}-\mathrm{lb}$ torque from the preload (Section 4.4) the stiffness will be much lower. Judging from their typical curve it may be down by a factor of three. The thrust, P, needed to rotate the screw 1 radian is $\frac{2 \pi T}{L}$ and the screw advances $\frac{L}{2 \pi}$ so that $K=$ $\frac{(2 \pi)^{2} k}{L^{2}}=\frac{(2 \pi)^{2}}{(.2)^{2}} \times \frac{116000}{3}=38 \times 10^{-6} \mathrm{lb} / \mathrm{in}$.
Stepper Motor (from catalog): Use 1.8° step values. 1000 lb on the screw results in a 5.1 in-oz torque on the motor (using a 0.81 efficiency). The holding torque is 53 in-oz so the windup is 10% of the holding torque and is 0.12° which represents $K=\frac{360}{.12} \times 80 \times$ $\frac{1}{.2} \times 1000=1200 \times 10^{6} 1 \mathrm{~b} / \mathrm{in}$.
Bellows: Specified at greater than 50,000 in-lb/radian. The actual design value is 3 arc min windup per $400 \mathrm{in}-1 \mathrm{~b}$ torque which gives

$$
\begin{gathered}
k=400 \times 3437 \mathrm{~min} / \mathrm{rad} \times \frac{1}{3 \mathrm{~min}}=458,366 \mathrm{in}-1 \mathrm{~b} / \mathrm{rad} \\
\mathrm{~K}=\frac{1}{32 \mathrm{in}-1 \mathrm{~b}} \times \frac{458,366 \mathrm{in}-1 \mathrm{~b}}{\mathrm{rad}} \times \frac{2 \pi \mathrm{rad}}{\mathrm{rev}} \times \frac{1000 \mathrm{lb}}{.2}=450 \times 10^{6} \mathrm{lb} / \mathrm{inch}
\end{gathered}
$$

Ball Bearing: The thrust ball bearing is a special 60° contact angle preload pair designed for ball screws. It is designed to have a stiffness of $6.7 \times 10^{6} \mathrm{lb} /$ inch.

Overall Stiffness: The overall stiffness not including the connections on the ends is calculated by summing the reciprocal K values for all the parts.
$\frac{1}{k}=\frac{1}{106}\left(\frac{1}{9.5}+\frac{1}{6.25}+\frac{1}{38}+\frac{1}{1200}+\frac{1}{450}+\frac{1}{6.7}=\frac{1}{2.25 \times 10^{6}}\right)$

Overall Stiffness $\mathrm{K}_{\text {system }}=2.2 \times 10^{6} \mathrm{lb} /$ inch Discussion of Stiffness: Clearly the stiffness will be given by the preloaded ball bearing, the screw, and possibly the harmonic drive. One step of the motor corresponds to an extension of 6.2×10^{-6} inches of the actuator which is equivalent to a change in force of 13.6 lb . This would suggest that "stiction" in the system should result in less than 13.6 lbs thrust.

The torque to overcome preload in the ball screw is $T_{p}=\frac{0.2 \mathrm{~L}}{2 \pi} \mathrm{~L}$, and for $P_{L}=300 \mathrm{lb}$ preload. $T_{p}=\frac{0.2 \times .2 \times 300}{2 \pi}=1.91 \mathrm{in}-1 \mathrm{~b}$ at the output of the harmonic drive. The bearing drag is $4 \mathrm{in}-1 \mathrm{~b}$ and must be added to this value for a total drag friction at the output of the harmonic drive of $5.9 \mathrm{in}-\mathrm{lb}$ which is $1.18 \mathrm{in}-\mathrm{oz}$ at the stepper. For a harmonic drive stiffness of $1 / 3$ the catalog value or $38,666 \mathrm{lb}-\mathrm{in} / \mathrm{rad}$ the windup is 1.5×10^{-4} rod which is almost equal to the step value of 1.9×10^{-4} rod. Clearly there is a tradeoff between stiffness, drag and preload that will have to be determined experimentally.

There is a stiction load that originates in the 12 rod end connections to the mirror and the base plate. All 12 rod ends are moved by the movement of one actuator so the stiction in each joint should result in less than 1 lb variation in the thrust on the actuator.

Teflone lined rod ends have been considered for the attachment points. The ball in a teflon-lined, 0.7510 rod end would have a diameter of 1.18 inches and a coefficient of friction of .19. The friction in a one G checkout would be determined by the two actuators with the 1413 lb load on them (see Section 3.5). This would be $P \times R \times f=1413 \times .59 \times .19=158 \mathrm{in}-1 \mathrm{~b}$
which would appear to be way too high since the stiction could be expected to be 10% of the friction. In space teflon rod ends might be acceptable since the friction would come from a 15 lb spring loading across the rod ends. The friction would then be 1.7 in-1b and the stiction a small part of that.

This suggests that a more sophisticated rod end may have to be incorporated. Note that the movements come in in all orientations around the rod end and so the ball bearing rod end shown in the BBRC alignment study will not work. Flexures are shown in the Itek study but it would be better if the mirror were free from moments so that its optical figure were preserved.

A gimbal on the end of the actuator with stall diameter ball bearings looks attractive at this point. It could employ four small diameter ball bearings or spherical rollers and would look like one end of a universal joint. This unit could be lightly preloaded, which would eliminate the preload springs across the joint.

The friction in each 1 inch diameter race would be $1413 \times .5 \times .002=1.41 \mathrm{in}-1 \mathrm{~b}$ and stiction in ball bearings is low. Two bearings in each gimbal would be active but each carries only half the load.
4.7 STOPS: Dog stops on the ball bearing screw engage the ball nut to mechanically stop the drive. This method et dres that the actuator can be backed off and that the screw and its thrust bearing are not loaded. The torque is absorbed across the bellows and harmonic drive, which then must stand the inertial load and driving torque of the motor. Consider that the motor is operating at 5400 steps per sec when the dog hits.

The velocity at the output of the harmonic drive is 1.06 rad per sec and the motor and harmonic wave generator inertia transferred to the output is equal to $0.11 \times 80^{2}=$ $704 \mathrm{lb}^{\mathrm{ln}}{ }^{2}$. The harmonic drive can stand momentary overloads up to two times its rated.torque and the problem is to determine if the motor is stopped by the time the harmonic drive is wound up against its spring constant to two times the rated torqure. Since the average torque is half the maximum, the time to stop the motor is given by

$$
\Delta t=\frac{2 I \omega}{T_{\max }}=\frac{2 I}{T_{\max }} \times \frac{s p s \times \cdot 9}{G} \times \frac{\pi}{180}
$$

where $G=$ gear ratio $=80: 1$
ω = angular velocity of motor at output
The average angle moved by the motor during Δt is half the maximum speed times Δt divided by the gear ratio which is 80:1. The spring constant, K, is 116,000 in-lb/rad so that

$$
T_{\max }=\frac{\mathrm{sps}}{2} \times \Delta t \times \frac{1}{6} \times \frac{.9^{\circ}}{\operatorname{step}} \times \frac{\pi}{180} \times \frac{1 \mathrm{~b}}{\text { rad }}
$$

Solving for Δt and equating

$$
\begin{aligned}
& T_{\max }=I^{\frac{1}{2}} \times \frac{I}{(32 \times 12)^{\frac{1}{2}} \times \mathrm{sps} \times .9 \times \frac{\pi}{180} \times \frac{1}{G} \times K^{\frac{13}{2}}} \\
& T_{\max }=8.015 \times 10^{-4} \frac{1^{\frac{1}{2}} \times \mathrm{sps} \times K^{\frac{1}{2}}}{G}=488.9 \mathrm{in}-1 \mathrm{~b} \\
& \text { where } \mathrm{sps}=5400
\end{aligned}
$$

The motor torque (20 in-oz with one winding on) will have to be added to this value to give a total torque of $588.9 \mathrm{in}-\mathrm{lb}$ which is 10% higher than the two times rating. The harmonic drive bearirigs and the bellows will be compliant enough to make up this difference and the efficiency is not calculated in. If necessary, an " A " type harmonic drive cup made from 4340 steel can be used with 2.5 times the rating. Another approach would be to greatly limit the speed as the dogs are approached.

The time to stop the drive in this example is 8 ms .
4.8 LAUNCH LOAD CAPACITY: The actuator does not drive backwards very effectively. In section 4.4 it was shown that over 1000 lb thrust is required to overcome the friction of the motor. Shorting the motor leads enormously increases the viscous damping of the motor. Thus there is the possibility that the actuators can be left attached during launch and landing, and that they can withstand the 7900 lb emergency landing load in section 3.5 without coming apart. The static
rating of the ball screw is $26,700 \mathrm{lb}$. Its rated load is 6270 1b. The ball bearing is rated in thrust at 3700 ib working load and 6700 lb maximum. Whether or not the balls would pop out at 7900 would have to be determined. It would appear that the actuators themselves could withstand launch and landing loads.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

FIGURE 2. CONFIGURATION (EXAMPLE EXTERNAL ACTUATORS)

FIGURE 3: COORDINATE SYSTEM

FIGURE 4: BASELINE ACTUATOR
RBD SEPT 77

HDUC
 COMPONENT SETS

REPRODUCIBILITY OF THE ORIGINAL PAGE IS D

Harmonic Drive Transmission Components serve worldwide in a variety of dernanding military, aerospace, and industrial! applications. Mechanically similar to USM's Harmonic Drive Speed Reducers, these components are easier to install than other types of gearing. And they achieve a highratio speed reduction or increase with only three basic elements:

W Wave Generator - an elliptic steel ball bearing assembly
\square Flexspline - a thin-wall steel cup with external spline teeth

- Circular Spline - a thick-wall ring with internal spline teeth

Typical HDUC Component Bearing Support Requirements and Drive Variations to accomplish Power Transmission Functions

Speed Reducer
Circular Spline (CS) stationary. Wave Generator (WG) is input. Flexspline (FS) is output. Input and output turn in opposite directions. Ratio is as tabulated.

Speed Increaser
Circular Spline stationary. Flexspline is input. Wave Generator is output. Input and output turn in opposite directions. Ratio is as tabulated.

Speed Reducer
Flexspline stationary. Wave Generator is input, Circular Spline is output. Input and output turn in same direction. Ratio is as tabulated plus 1

Speed Increaser

Flexspline stationary Circular Spline is input. Wave Generator is output. Input and output turn in same direction. Ratio is as tabulated plus 1

Differential
Flexspline is primary input, Circular Spline is primary output. Wave Generator is trim input.
$\underset{\text { Speed }}{\text { Ouput }}=\frac{\text { Input }}{\text { Speed }} \times \frac{\text { Listed Ratio }}{\text { Listed Ratio }+1} \pm \frac{\text { Trim Speed }}{\text { Listed Ratio }+1}$

Rating Tables
Harmonic Drive Component Sets
Size 14-100

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

HPPUT RPM		3500			1750**			1150			500			Marimum Runaing Output Torque Ib./in.	
Sizo	Ratio	input ho	Output rpm	Output ib./is.	Input hop	Output rpm	Output ib. /in.	$\begin{gathered} \text { Input } \\ \text { hop } \end{gathered}$	Output Im	Out put lb./ in.	Input hp	Output rpm	Output Ib./in.		
														STD.	TYPE $A^{* * *}$
14	88	07	39.8	87	03	199	81	02	131	87	01	5.7	87	87	
	110	. 06	31.8	81	03	15.9	87	02	105	87	01	4.5	87	87	N.A.
20	80	21	43.8	260	11	21.9	270		144	270	03	62	270	270	400
	96	21	36.5	270	11	182	320	08	120	320	03	52	320	320	480
	128	15	213	278	09	137	372	07	90	380	03	3.9	380	380	570
	160	13	21.9	286	09	10.9	372	07	12	430	03	3.1	430	430	650
25	80	34	43.8	408	20	21.9	500	14	144	500	. 06	6.2	500	500	750
	100	29.	350	434	20	175	590	16	115	700	. 07	5.0	100	100	1050
	120	27	29.2	560	11	146	616	14	96	113	07	4.2	850	850	1280
	160	22	21.9	417	13	10.9	622	11	12	113	05	3.1	940	940	1400
	200	19	17.5	486	12	83	622	09	58	713	05	2.5	940	940	1400
32	78	75	449	890	41	22.4	970	27	147	970				970	1450
	104	65	33.7	990	42	16.8	1250	31	110	1400	13	4.8	1400	1400	2100
	131	53	26.5	990	33	13.3	1250	26	87	1430	13	3.8	1800	1800	2700
	151	46	22.2	990	29	11.1	1250	22	13	1430	13	3.2	1900	1900	2850
	208	37	16.8	990	24	8.4	1250	18	55	1430	10	24	1900	2100	3150
	260	31	13.5	990	20	6.1	1250	15	44	1430	. 09	1.9	1900	2100	3150
40	80	140	43.8	1700	70	21.9	1700	47	144	1700	19	6.2	1700	1700	2550
	96	147	365	2090	81	182	2300	42	120	2300	22	52	2300	2300	3450
	. 128	115	27.3	2090	72	137	2610	55	90	3000	25	3.9	3300	3300	4950
	160	96	219	2090	60	109	2610	45	72	3000	26	3.1	4000	4000	6000
	194	82	180	2090	51	9.0	2610	39	59	3000	22	2.6	4000	4000	6000
	258	67	136	2090	42	6.8	2610	33	45	3000	18	1.9	4000	4000	6000
50		2.6	43.8							3100	35	6.2	3100	3100	4650
	100	2.6	35.0	3880	165	175	4900	1.10	11.5	4900	46	50	4900	4900	7350
	120	23	292	3880	142	146	4900	109	96	5600	48	42	5900	5900	8850
	160	1.8	21.9	3880	112	10.9	4900	86	12	5600	48	37	7500	7500	11300
	200	15	175	3880	94	8.8	4900	12	58	5600	40	25	7500	7500	11300
	242	1.3	145	3880	83	72	4900	63	18	5600	35	20	7500	7500	11300
65	18	5.7	44.9	6770°	2.9	22.4	6800								
	104	4.7	33.7	7220^{*}	30	168	9100	23	111	10400	1.0	48	10500		15800
	132	30	265	7220°	24	133	9100	19	37	10400	10	3.3	13900		20700
	158	3.4	222	7220°	2.1	11.1	9100	16	73	10400	90	3.2	13900	N.A.	20900
	208	2.7	16.8	$7220 *$	17	8.4	9100	13	55	10400	70	2.4	13900		22500
	260	2.3	13.5	7220^{*}	15	6.7	9100	11	44	10400	60	1.9	13900		22500
80	80				50	21.9	12150	33	144	12150	1.3	6.2	12150.		18200
	96				56	182	16000	3.1	120	16000	16	5.2	15900		23900
	128				5.0	13.7	18000	3.8	90	20700	18	3.9	24000		36000
	160		N.A.		4.1	10.9	18000	32	72	20700	1.8	3.1	27700	N.A.	41600
	194				3.5	9.0	18000	2.7	59	20700	15	26	27700		41600
	258				29	68	18000	22	45	20700	12	19	27700		41600
	320				2.4	5.5	18000	18	36	20700	1.1	16	27700		41600
100	80												21800		32700
	100				11.1	175	33000	74	115	33000	3.1	50	33000		49500
	120				9.7	14.6	33150	74	96	38000	3.4	4.	42000		63000
	160		N.A.		16	10.9	33150	58	72	38000	3.3	31	50700	N.A.	76000
	200				6.4	88	33150	49	58	38000	27	25	50700		76000
	242				56	12	33150	43	48	38000	2.4	2.0	50700		76000
	320				45	5.5	33150	34	35	38000	20	15	50700		75000

- Thermal Limited - 60\% duty cycle recommended with on time not to exceed 30 minutes
- Momentary occasional overloads of up $1020 \times$ rated torque at 1750 RPM input are permissible on standard units and $25 \times$ rated torque on Type A units

Ratings given are based on a Service Factor of 1 See $p q .6$ for recommended AGMA Service Factor Application
. - Type A Units furnished on special order in Sizes HDUC 20.50
Type A slandard in Sizes 65.80 and 100

Performance Data

HDUC Components

REPRODUCIBILITY OF THE GRIGINAI PAGE IS POOR

Size	Wave Generator Inertia (Ib.-in. ${ }^{2}$)	No-Loed Starting Torque (Approx.) oz.-In.	Maximurn Recommended Input Speed (R.P.M.).
14	.011	2	13.000
20	07	2.2	10.000
25	21	5.3	7.500
32	66	8.5	7.000
40	1.81	166	5,600
50	5.18	31.2	4.500
65	20.2	68	3.500
80	54.2	153	3.500
100	159.0	278	2.500

- Consult factory before using

@ Rated Torque \& 1750 RPM

Output Torque
Percent of Rated @ 1750 RPM 100.1 Ratio

Lost Motion and Torsional Stiffness

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

Lost Motion

The above curve and the chart below describe "lost motion" This characteristic is analogous to the pure backlash which occurs in conventional gearing. Since pure backlash cannot be measured accurately in Harmonic Drives. total deflection under a relatively light reverse load is listed. This vaiue includes backlash plus soft windup for standard and optimized units. Optimized units can be specified on order by adding the suffix "BL30" (i.e., HDUC 20-100-2 BL30)

Torsional Spring Rate
The above load/defiection curve shows typical torsional spring characteristics for Harmonic Drive Components with the input shaft locked. The chart below lists approximate average spring rates. Addition of typical input and output shafts reduces these values by approximately $1 / 2$. Load/deflection information on specific sizes is available on request.

Lost Motion (arc min.)				Average Torsional Spring Rate (lb.-In.Jradian)	
Size	\pm Load (lb.-In.)	Standard	Optimized	Load (lb. In.)	Spring Rate
14	3.5	8.5	3	109	40,000
20	10.	8.5	3	320	116,000
25	19.5	8.5	3	625	226,500
32	40.	8.5	3	1.370	475,000
40	80.	8.5	3	2,560	928,000
50	150.	8.5	3	5.000	1.8×10^{6}
65	340.	8.5	3	11.000	4×10^{6}
80	640.	8.5	3	20.500	7.4×10^{8}
100	1.250.	85	3	40,000	14.5×10^{6}

Lubrication Requirements
 HDUC Transmission Components

Harmonic Drive components operate in any attitude, but deliver optimum performance when horizontally mounted and oil lubricated. The following oils are recommended for operating oil temperatures to $200^{\circ} \mathrm{F}$ maximum.

Duty	HOUC Size	Lubrication
Normal Duty	$14 \cdot 100$	Automatic Transmission Flund, Mobil AIF 220 or equiralent
Heary Duty	$65 \cdot 100$	Compound Gear Oil - Mobil Geat 626 or equiralent

The recommended minimum oil volume and required oil level below the horizontal drive centerline are

HDUC Size	14	20	25	32	42	50	65	80	100
Volume (fi. oz.)	10	1.5	3	5	8	16	1 qt.	2 gts	4 gts
Oil Level Betow Centerline (mm)	7	12	15	19	24	30	61	75	94

The oil level for vertically mounted units as a general rule must be maintained at the wave generator bearing ball centerline D/2. However, optimum performance can be obtained when the input shalt is vertical, facing upward, and running at speeds above 960 rpm by use of a Harmonic Drive Liftcone (illustrated below) A lower oil level (LC) is then permissible as specified below.

HDUC Siza	14	20	25	32	40	50	65	80	100
LC Oi Level (mm)	N.	28	34	43	54	62	93	100	127

Oil changes under normal operating conditions are recommended after the first 100 operating hours and thereatter every 1,000 hours or 6 months, whichever occurs first.

Harmonic Drive components also can be grease lubricated but typically will have a lower thermal capacity than with oil lubrication. As a general rule, the continuous input speed should be limited to the values specified below. All grease lubricated applications should be reviewed by the factory as a precaution.

Service Factors

and Ordering Data
Before selecting a component set for a given application, an equivalent horsepower or torque rating should be computed by multiplying the required normal system horsepower or output torque by the recommended AGMA service factor. This equivalent value is then used to select a unit from the rating tables. The service factors tabulated below are typical but do not include all possible types of applications. Abnormal load conditions require special consideration and should be referred to the factory for recommendations.

Standard Harmonic Drive component sets can withstand periodic momentary overloads of $20 x$ tabulated rating at 1750 rpm input speed (Type A. 2.5x tabulated). However, if the frequency of the momentary load is more than a few times per day, the load magnitude must not exceed the tabulated maximum running torque value for the unit.

Serrice Classification		Lasd Classification		
Plime Mover*	Senice Duration*	Uniform	Moderat Shoct	Heary Shock
Electric Motor	3 hrs/day (intermatient)	0.80	1.00	1.50
	10 hrs./day 24 hrs/day	$\begin{aligned} & 1.00 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 150 \end{aligned}$	$\begin{aligned} & 1.75 \\ & 2.00 \end{aligned}$
internal Combustion	3 hers.day (intermittent)	100	125	1.75
- Engine	$10 \mathrm{hrs./day}$	1.25	150	2.00
(multı cylinder)	$24 \mathrm{hs} / \mathrm{day}$	1.50	1.75	2.25

- For other prime movers or unusual duty cycles, consult the lactory for the propar service factor.

Ordering Data

Harmonic Drive Component sets are identified by Model, Size, Ratio, Type, and Special Requirements. Type is always specified " -2 ". Special Requirements are specified as follows.

Requirement	Speclify
Optimized Lost Motion	30
Liftcone	Liftcone
High-Capacity Flexspline	Type A

Example: A standard size 40, $128: 1$ reduction ratio set is specified HOUC-40-128-2. The same set with highcapacity flexspline and Liftcone is specified HOUC-40-128-2 Type A Littcone.

```
NOTE:
These catalog dimensions are for
reference and are suitable for pre
liminary layout purposes and to
evaluation Detailed specifications
recommended fits. concentricity
limits and fubrication requirements
are avalable on dated prints on
request
```

Dimensions Harmonic Drive Components HDUC Size 14 to 100 Installation Drawings and Specifications Available on Request

HDUC 14

HDUC 20-100 Type A
(High Capacity Type)

Other Harmonic Drive Products Brochures available on request

apper dux
EXTRA - PRECISION BEARINGS ABEC-7

QUADRUPLEX MOUNTING

SET WIDTK

DUPLEX MOUNTING

To meet the requirements of the servo-controlled machinery field. The Fafnir Bearing Company has developed a new series of ball bearings specially designed for ball screw applications. Design criteria for these bearings were maximum axial rigidity, low drag torque, and extreme control of lateral eccentricity.

These bearings are manufactured to ABEC-7 tolerances and are of the non separable angularcontact type design with a 60° contact angle and maximum complement of balls. Seven basic sizes are available and are stocked and packaged as duplex pairs or quadruple sets. These bearings are designed primarily for ball screw applications and should not be considered in other areas such as spindles or gear-box shafting without approval by the Fafnir Engineering Department

DIMENSIONS • TCLERANCES

BEARING NUMBER	Inches	RE tolerance +.0000 to minus, in.	LATERAL ECCENTRICITY maximum in inches	no.	LS size In.	WT. ibs.
DUPLEX						
MM9306 WI-2 DU E-8842	. 7874	. 00015	. 0001	15	1/4	-
MM9308WI-2 DU E-8842 (. 9385	. 00015	. 0001	21	1/4	-
MM9310WI-2 DU E-8842	1.5000	. 0002	. 0001	24	1/4	-
MM9311WI-3 DU E-8842	1.7510	. 0002	. 0001	26	1/4	-
MM9313W1-5 OU E-8342	2.2500	. 0002	. 0001	32	1/4	-
MM9316WI-3 DU E-8842	3.0000	.0002	. 0001	41	1/4	-
MM9321WI.3 DU E.8842	4.0000	. 00025	0001	37	46	-
QUADRUPLEX						
MM9306WI-2 QUAD E-8809	. 7874	. 00015	. 0001	15	1/4	-
MM9308WI-2 QUAD E-B809	. 9385	. 00015	. 0001	21	1/4	-
MM9310WI-2 QUAD E-8809	1.5000	. 0202	. 0001	24	1/4	-
MM9311WI-3 OUAD E-8809	1.7510	. 0002	. 0001	26	1/4	-
MM9313WI-5 QUAD E-8809	2.2500	. 0002	. 0001	32	1/4	-
MM9316WI-3 QUAD E-8809	3.0000	.0002	. 0001	41	1/4	-
MM9321WI-3 QUAD E-8809	4.0000	. 00025	. 0001	37	$1 / 6$	-

(1) See "Width Tolerances," page 12
(2) MM9308WI.3 same s, MM9308WI. 2 except for .9843 bore

EXTRA - PRECISION BEARINGS ABEC-7

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

PHYSICAL CHARACTERISTICS • LOAD RATINGS

BEARING NUMBER	AXIAL SPRING CONSTANT $\text { x } 10^{0} \text { ibs./inch }$	DRAG TORQUE OF PRELOADED SET Inch lbs.	THRUST LOAD RATING (Ca_{s}) lbs.	LIMITING THRUST CAPACITY (T_{L}) 163.
DUPLEX				
MM9306WI-2DU. MM9308WI-2DU MM9310WI-2DU MM9311WI-3DU MM9313WI-5DU MM9316WI-3DU MM9321WI-3DU	$\begin{aligned} & 4.76 \\ & 6.7 \\ & 8.34 \\ & 9.80 \\ & 11.6 \\ & 14.3 \\ & 16.7 \end{aligned}$	$\begin{array}{r} 3 \\ 4 \\ 4 \\ 5 \\ 7 \\ 9 \\ 12 \end{array}$	3200 3700 3900 4000 4200 4800 9500	4700 6500 7500 8200 10000 12900 26100
QUADRUPLEX				
MM9306WI-2QUAD MM9303WI-2QUAD MM9310WI-2QUAD	$\begin{aligned} & 10 \\ & 13.3 \\ & 19.6 \end{aligned}$	$\begin{aligned} & 6 \\ & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & 5600 \\ & 6400 \\ & 6900 \end{aligned}$	$\begin{array}{r} 9400 \\ 13000 \\ 15000 \end{array}$
MM9311WI-3QUAD MM9313WI-5QUAD MM9316WI-3QUAD MM9321WI-3QUAD	$\begin{aligned} & 22.2 \\ & 25.0 \\ & 30.8 \\ & 36.4 \end{aligned}$	$\begin{aligned} & 10 \\ & 14 \\ & 18 \\ & 24 \end{aligned}$	$\begin{array}{r} 7000 \\ 7140 \\ 8500 \\ 16500 \end{array}$	$\begin{aligned} & 16400 \\ & 20000 \\ & 25800 \\ & 52200 \end{aligned}$

Note: For life and load calculations, use X and Y factor given heluw:
$X_{1}, X_{2} \& Y_{1}, Y_{2}$ Factors

$x_{1}-1.90$	$y_{1}=.54$
$x_{2}-.92$	$y_{2}=1.00$

life calculation
The 90\% survival life of ball bearings may be calculated from the relation:

$$
L=\frac{50000}{N}\left(\frac{C_{3}}{T_{E}}\right)^{3}
$$

where: $L=$ life in hours
$\mathrm{N}=$ speed of application in rpm
$\mathrm{C}_{\mathrm{a}}=$ basic load rating in lbs. at $331 / 3 \mathrm{rpm}$
$T_{\mathrm{E}}=$ equivalent thrust load in lbs.

	BEARING BORE	SHAFT	BEARING O.D.	HOUSING	BEARING SIZE	SHAFT $\pm .005$	HOUSING $\pm .005$	FILLET RADIUS (max.)
MM9306WI-2	.78740 .78725	$\begin{array}{r} .7873 \\ .7871 \end{array}$	$\begin{aligned} & 1.8504 \\ & 1.8502 \end{aligned}$	$\begin{array}{r} 1.8507 \\ 1.8504 \end{array}$	MM9306Wi-2	1.078	1.636	. 024
MM9308W1-2	.93850 .93835	$\begin{array}{r} .9384 \\ .9332 \end{array}$	$\begin{aligned} & 2.4409 \\ & 2.4407 \end{aligned}$	$\begin{aligned} & 2.4412 \\ & 2.4409 \end{aligned}$	MM9308WI-2	1316	2.174	. 024
MM9310WI-2	$\begin{aligned} & 1.5000 \\ & 1.4998 \end{aligned}$	$\begin{aligned} & 1.4998 \\ & 1.4996 \end{aligned}$	$\begin{array}{r} 2.8346 \\ 2.8344 \end{array}$	$\begin{array}{r} 2.8349 \\ 2.8346 \end{array}$	MM93 $10 \mathrm{WI}-2$	1.860	2.474	. 024
MM9311WI-3	$\begin{aligned} & 1.7510 \\ & 1.7508 \end{aligned}$	$\begin{aligned} & 1.7508 \\ & 1.7506 \end{aligned}$	$\begin{aligned} & 3.0000 \\ & 2.9998 \end{aligned}$	$\begin{aligned} & 3.0003 \\ & 3.0000 \end{aligned}$	Mm9311Wi-3	2.052	2.667	. 024
MM9313 WI-5	$\begin{aligned} & 2.2500 \\ & 2.2498 \end{aligned}$	$\begin{aligned} & 2.2498 \\ & 2.2496 \end{aligned}$	$\begin{aligned} & 3.5433 \\ & 3.5431 \end{aligned}$	$\begin{aligned} & 3.5436 \\ & 3.5433 \end{aligned}$	MM9313WI-5	2.572	3.191	. 024
MM9316WI-3	$\begin{aligned} & 3.0000 \\ & 2.9998 \end{aligned}$	$\begin{aligned} & 2.9998 \\ & 2.9995 \end{aligned}$	$\begin{array}{r} 4.3307 \\ 4.3304 \end{array}$	$\begin{aligned} & 4.3311 \\ & 4.3307 \end{aligned}$	MM9316W1-3	3.375	3.995	. 024
MM932IWI-3	$\begin{aligned} & 4.00000 \\ & 3.99975 \end{aligned}$	$\begin{aligned} & 3.9998 \\ & 3.9995 \end{aligned}$	$\begin{aligned} & 5.7087 \\ & 5.7083 \end{aligned}$	$\begin{aligned} & 5.7091 \\ & 5.7087 \end{aligned}$	MM9321W1-3	4413	5.296	. 039

lecting A Standard Precision Ball Bearing S rew

SPECIFICATIONS

vimensions: Series ト

Dimensions: Dog Stops

When using dog stops. determine ball thread length by adding desired travel to dimensions shown

G-0705	365	606	6.25	6.25	53	1.12
G-1004	434	725	743	7.43	59	143
G-1205	412	675	693	693	53	162
G-1505	437	700	715	715	65	193
G-1504	475	775	800	800	71	200
G-2005	475	737	750	750	78	243
G-2004	512	812	837	837	81	250
G-2002	775	1300	1350	1350	93	3.18
G-2202	775	1300	1350	1350	93	3.43
G-2504	512	812	837	837	81	306
G-2502	162	1287	1337	1337	93	368
G-3002	762	1287	1337	1337	93	4.18
G-3502	825	1350	1400	1400	106	468
G-4002	906	1450	15	12	1512	1.18
G-5001	1506	2525	2587	2587	150	783
G-6001	1506	2525	2587	2587	162	843

Selection Factors

SPRING PATE

Spring Rate vs. Preioa

Spring rate (in millions of pounds per inch) is the applied load divided by the linear deflection of the ball nut under that load This chart gives the rate for each Beaver Precision Standard ball bearing screw set at a preload of one-third the working load.

Spring Rate vs. Length

This chart shows the spring rate of each Beaver Precision Standard ball bearing screw considering the screw only as a bar under compression or tension loading. The values are based on thrust bearings at both ends if bearings are used at one end only, divide values by four Center of ball nut package is considered as mounting on one end or the other.

SPEED VS. TORQUE CHARACTERISTICS STMIO TKANSLATOR MODULE AND PIMI 53 PRESET INDEXER MODULE

REPRODUCIBIIITY OF THE ORIGINAL PAGE IS POOR

3000 STEP P2. SECOND S:OUR COR1ROL TYPE P1R:153 SEO-3'口! PRESE HJDEXER MODULE

- Precise positioning control of SLO-SYid Stepping Motors
- Drive SLO-SYN motors in holi-step (0.7) or full-step (1.8) mode
- Rates to 3000 full-steps or 6000 t.cti-staps per second
- Adjustable acceleration and decularation
- Count selection from simple BCD lo is switches

The PIM153 preset indexer module is a single printed circuit board which incorporates the translator functions of sequencing and switching logic and also includes an internal oscillator and pulse counting circuitry to provide complete control of the stepping rate, direction and number of steps taken. The unit will drive the motor in either the full-step (1.8° steps) or half-step (0.9° steps) modes. Operation in the half-step mode allows finer positioning resolution with no sacrifice in positioning speed.

External BCD logic switches (not supplied) are used for count insertion. Switches such as BCD thumbwheel types containing 5 -digits plus the direction function are ideal for this purpose. Other input data includes Index Stort, Run and Single-Step Jog. A "Count Complete" signal is issued upon completion of motor motion.

The PIM153 requires an external power supply capable of providing $24 \mathrm{VDC}, 10$ ampere/5VDC, 1 ampere. The MPS 3000 and MPS3000X SLO-SYN Power Supplies described on page 7 are recommended for this purpose.

Performance curves for appropriate SLO-SIN motors when driven by PIMI 53 preset indexer modules are shown on page 11.

SPECIFICATIONS

Board Dimensions Edge Connector (Supplied)	54" $(146 \mathrm{~mm}) \times 11^{\prime \prime}(279 \mathrm{~mm})$
	36-pin, Elco part number 00-6114-036-433-001;
	Superior Electric part number BM144878-G1
Required Power Supply	$24 \mathrm{VDC} \pm 10 \%, 10$ amperes. ripple: 10% max. peok-10peok
	$5 \mathrm{VDC} \pm 5 \%$, 1 ompere, ripple: 2% max. peak-topeak
Temperature Range	operating: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ storage: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
internal Oscillator Ronge	0 to 6000 , vises per second
High Speed Control	500 Kohm , ten-turn, CCW
	logarithmic potentiometer (supplied)
Base Speed Control	10K ohni, single-turn, linear potentiometer (supplied)

High Speed Range Full-Step Mode 100 'o 3000 steps per second Half-Step Mode 200 to 6000 steps per second
Base Speed Range Full-Step Mode 0 to 1000 steps per second Holf-Step Mode 0 to 2000 steps per second Oscillator Stability $\pm 10 \%$ or 20 steps per second, whichever is greater, over temperature and voltoge range
Acceleration/Deceleration Range (Adjustable)

50 milliseconds to 1 second

Index Stort, Run, Jog, High Speed:

High Level	$\begin{aligned} & \text { open circuit, + } 10 \mathrm{VDC} \text { to } \\ & +20 \mathrm{VDC} \end{aligned}$
Low Level	3 to 1.7VDC
Loading	10 ma sink max.
Pulse Width.	20 milliseconds min.
Rise and Foll Times	1 millisecond max.
Bounce (Settling Time)	10 millissconds max.

Stepping Mode Selection Controls:
High Level_............ 2 VDC to 5.25 VDC
Low tevel 0 to 0.5 VIC
Loading

Count Complete Signal: High Level. open collector rated 30VDC
mox., clamped to 24 VDC
0 to IVDC
100 mÁ sink max.
Clear Signal.
High tevel. 2VDC to 5.25 VDC
Low Level 0 to +0.5 VDC
Looding 7 mA max
Minimum Duration..... 20 milliseconds

3000 STEP PER SECOND MOTOR CONTEROL

Motor Compatability drives M061 through M112 motors (using appropriate series resistors)
full-step, one winding or two windings on, 2 -phase, bifilar; half-step, 2 -phase, bifilor

OROPPING RESISTORS

moton	STEP INCREMENT		DROPPING GESISTOR (2 REQUIRED)	
	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline \text { MODEP } \end{array}$	$\begin{aligned} & \text { FULL-STEP } \\ & \text { MODE } \end{aligned}$	hating	Part mumber
$\begin{aligned} & \text { M061 FC08 } \\ & \text { M061:FDOB } \end{aligned}$	$0.9{ }^{\circ}$	$1.8{ }^{\circ}$	$\begin{aligned} & 6 \text { ohm } \pm 5 \% \text {, } \\ & 100 \text { watt } \end{aligned}$	DR103788.69
$\begin{aligned} & \text { M062.fc09 } \\ & \text { N062.f007 } \end{aligned}$	$0.9{ }^{\circ}$	1.80	$\begin{aligned} & 4.5 \text { ohin } \pm 5 x_{\text {, }} \\ & 160 \text { watt } \end{aligned}$	EM133832-66
M063-FCO9 M053-F009	$0.9{ }^{\circ}$	$1.8{ }^{\circ}$	$\begin{aligned} & 4.50 \mathrm{hm} \\ & 160 \mathrm{matt} \end{aligned}=5 \% \text {. }$	BM133832-66
M091-fC09 M091-FC09	$0.9{ }^{\circ}$	$1.8{ }^{\circ}$	$\begin{aligned} & 4.50 \mathrm{hm} \pm 5 \% \text {, } \\ & 160 \text { watt } \end{aligned}$	BM133832-66
$\begin{aligned} & \text { MO92 FC09 } \\ & \text { MOS2 FDO9 } \end{aligned}$	$0.9{ }^{3}$	1.80	$\begin{aligned} & 4.5 \text { onm } \pm 5 \% \text {, } \\ & 160 \text { watt } \end{aligned}$	BM133832.65
$\begin{aligned} & \text { M093 FC11 } \\ & \text { M093-FO11 } \end{aligned}$	$0.9{ }^{\circ}$	$1.8{ }^{\circ}$	$\begin{array}{\|l} \hline 4 \mathrm{chm}+5 \%, \\ 160 \mathrm{watt} \\ \hline \end{array}$	8M133832.69
M111-5012	$0.9{ }^{\circ}$	$1.8{ }^{\circ}$	$\begin{aligned} & 4.50 \mathrm{~nm} \pm 5 \% \text {, } \\ & 160 \text { watt } \end{aligned}$	8M133832-66
M112.5012 M112-F112	0.90	$1.8{ }^{\circ}$	$\begin{aligned} & 4 \text { ohm } \pm 5 \% \text {, } \\ & 160 \text { watt } \end{aligned}$	8M133832-69

SLO-SYM POUER SUPPMES FOR TRANSLATOR MODULES An. .aESET NDEEKER MODULES
 TYPES EAPS1000 and :1PS1000:
 TYPES MPPS3000 and MPS3000X

- For use with STM101 Translutor Module or PIM151 Preset Indexer Module
- STMIO1 or PIM151 can be mounted on power supply to form a single unit

The MPS 1000 and MPS1000X are open chossis, base mounting power supplies which have output voltage and current ratings compatible with STM101 translator modules and PIM151 preset indexer modules. The power supply chassis has provisions for mounting the STM101 or PIM15) to form a single unit. If desired, the translator or preset indexer module can be mounted separate from the power supply. Terminal strips ore provided on the power supply chassis for all a-c input, d-c output and motor connections.

SPECIFICATIONS

- For use with STM103 Translator Module or PIM153 Preset Indexer Module
- STM1103 or PIM153 can be mounted on power supply to form a single unit

SLO-SYN Power Supplies types MPS3000 and MPS3000X have voltage and current ratings compatible with the STM103 translator module and PIM153 preset indexer module. The power supplies are of open chassis design and are designed for base mounting. Provisions are made on the chassis for mounting the STM103 or PIM153 unit to form a single unit combining both power supply and motor drive control. If desired, the translator or preset indexer module can be mounted separate from the power supply. The power supply has terminals for all a-c input, d-c output and motor connections.

SPECIFICATIONS

