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Abstract {

•	 The three-dimensional, time-dependent (incompressible) vorticity
i

equations have been used to simulate numerically the decay of isotropic

box turbulence and time-developing mixing layers.	 The vorticity equa-

tions are spatially filtered to define the large-scale turbulence field,

and the subgrid scale turbulence is modeled. 	 A general method has been

developed to show numerical conservation of momentum, vorticity, and

energy that is much simpler than previous methods and is widely appli-

cable.	 The terms that arise from filtering the equationshave been tL

treated (for both periodic boundary conditions and no-stress boundary'

conditions) in a fast and accurate way by using -fast,Fourier transforms.

Use of vorticity as the principal variable is shown to produce results

equivalent to those obtained by use of the primitive variable equations. ^{

A new subgrid scale model is used in conjunction with the vorticity

equations and is shown to produce results that compare well with the ex-

perimental results.	 The new model offers advantages both in computational

speed and in storage.

The vortex-:pairing mechanism, observed in the spatially developing

counterpart of the tame-developing mixing layer, has been simulated nu-

merically.- It is interesting to note that with simply two vortices pair-

ing, self-similar mean velocity and mean turbulence intensity profiles

are obtained.	 The vortex-pairing mechanism is shown to be persistent

even with the presence of large-amplitude, three-dimensional background

turbulence.	 A number of different initial fields have been studied. 	 The
presence of large organized structures, in the initial conditions, is

shown to be essential in order to predict growth rates of the mixing lay-

ers comparable to those observed experimentally. 	 The rate, of growth is
found to be very ,dependent on the initial field, a fact also observed

experimentally.
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RT 	= qoe/v,	 Reynolds number based on large eddy length

RX 	= qX/V,	 Reynolds number based on Taylor micro-scale

S Scalar

l	 a	 —	 a-
S ij

u	 +	 u	 ,	 strain rate tensor2	 ax	
i	

axi	
j

I

T	 = Non-dimensional time
•

Uo t

,	 decay of isotropic turbulenc-
M

=_ eut	 mixing layer
in

t Real time

ul Velocity in the i-direction 	 3
r^ u Filtered velocity in the i-direction

u^ Subgrid scale velocity in the i-direction

Velocity of high-speed sideul

u2 Velocity of low-speed side

V General vector

V Component of a general vector in the i-direction
i

j W.. Curl of subgrid scale stress
ij

X Streamwise coordinate;

xo Virtual origin of a mixing layer 	 E-`

Y s anwise coordinate
'

P	 I

z Cross-flow coordinate

Greek letters

' A Filter width (_' 2h) in any direction

A. Filter width in the i-direction

'	 Du r=	 u
l
 -.u2 	velocity difference	 }

E Total energy dissipation
t
z.

E ijk The completely anti-symmetric tensor of rank 3
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z/(x-x0 	 self-similarity coordinate

Constant (= 6) in Gaussian filter

Taylor microscale

V
T

Eddy viscosity

wi vorticity component in the i-directionF_ ipq ax	
-

q
p

Filtered vorticity component in the i-direction

Subgrid. scale vorticity component in the i-direction

Component of vector potential in the i-directiou

P Density

T
r

75,, 1 + uU	 + u!uj	 -^ (	 ,i	 'Vk + 
2ukuk	 ijij I	 j

CT Spread parameter

Spread parameter for	 r	 o
0

8 Momentum thickness

< > Horizontal planar average
xy

Arguments
(i,j,k.) Computational mesh index for 	 (x.,y,z)

Superscripts
(n) Time step
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-	 Chapter l

INTRODUCTION

1.1	 Background

Turbulent flows have been the subject of experimental and theoretical

investigations since the last century.	 Despite the formidable amount of
effort invested in this 'ield, our ability to predict flows of technical

iC{ importance remains severely limited. 	 The major difficulty encountered by

t the theoretical investigations arises from the nonlinear character of the

equations of motion.	 Statistical averages of the equations of motion give
rise to the so-called Reynolds stresses.	 The equations for the Reynolds
stresses in turn give rise to higher-order statistical quantities, and so
on.	 The usual approach to computing turbulent flows is to model the terms
thatt' arise from the nonlinear character of the equations of motion.- 	 This

approach usually requires a great deal of experimental information.

We know the underlying physical principles of most fluid flows, and	 4

the quantities of interest are completely determined by known equations. 	 a

With the introduction of large computers, three-dimensional, time-dependent

computation of turbulent flows has become possible.	 However, in order to

resolve all the scales of motion even in the simplest turbulent flow,

namely, the isotropic homogeneous case, Kwak et al. 	 (1975) estimated the

number of mesh points needed in any given direction to be
d

y N	 R3/4	 (l.l)T

I - where

r Rr	 (qz/ V)
tt
4k V	 =	 kinematic viscosity,l

length scale of large eddies, and

q	 =	 r.m.s. velocity.

Equation (1.1) shows that one can do a full simulation only at very
low Reynolds number. 	 Indeed, Clark et al. 	 (1977), using a 64 x 64 X 64
mesh,system, were able to solve the isotropic homogeneous turbulence

'' l
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p roblem for	 Rp	 ^ = qa/V = 38.1,	 where	 1	 is the Taylor microscale. Their ''^^

predicted results compared well with the experimental results. 	 However,

1 turbulent flows of technical importance have much higher Reynolds num- a

1
*4

bers- and all the scales of motion cannot be resolved fo r these flows.' -P. -
!' One of the more promising approaches to solving turbulence problems m

i
4	 ; is "large-eddy simulation".	 In large-eddy simulation, one calculates ..

the large-scale turbulent motions with a relatively coarse time-dependent,

' three-dimensional, computation 	 that	 uses some sort of model (the "subgrid s	 r:^

r scale model") for the small scales. 	 The basic motivations for this -ap-

proach are twofold. 	 First, experimental observations of turbulent flows
•

! show that the large turbulent structures differ markedly from one flow
t	 i

C

type to another (e.g., jet vs. boundary layer), but the small-scale tur-

bulent structures are quite similar. 	 Thus, while there is little hope

of concocting a "universal" model for the large structures,	 it maybe
`possible to do so for the small-scale motions. 	 Second	 as computer

k

capabilities grow, our capability of resolving smaller scales will grow;

and the effects of the subgrid scale model will diminish.-' Thus, while we

are limited to simple flows	 with the present computer capabilities, large-

' eddy simulation is a tool that may be used on future generation computers. ..

Kwak et al.	 (1975) and Shaanan et al. (1975) have shown that homoge-

neous turbulent flows can be simulated reasonably well with a relatively

small number of meshoints	 16 x 16 x 16	 Orsza	 and Pao	 1974p	 C	 ).	 g	 (	 )^ using a k 't^.

32 x 32 X 32 mesh system, predicted the momentumless wake of a self-..a

propelled body. 	 Deardorff (1970) and Schuman (1973) computed the central

region of a plane channel flow using the large-eddy simulation approach. n

While Deardorff and Schumann did not handle the wall (no slip) problem,

Moin et al., (1978) have solved the channel flow problem, including the

? laminar sublayer,	 In this work we shall study the time-developing, two-

stream mixing layer.

Previous works on prediction of the two-stream mixing layer have con-

centrated on the initial stagesg	 (roll-up	 of the development of the layer.

Patnaik et al., (1976), starting with an initial distribution that is an

unstable eigensolution of the Taylor-Goldstein equation, predicted the

two-dimensional roll-up or a stably stratified horizontal mixing layer.

Another method that has been used to compute the mixing layer, in two

2 t.
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dimensions is the vortex-tracing method used by Ashurst (1977). 	 This

method suffers from high computational costs and ad-hoc assumptions con-

cerning the effects of viscosity.	 The high computational cost of the

vortex-tracing method can be reduced by using the vortex-in-cell method

y	 I (Wang, 1977).	 These works have treated two-dimensional cases, but the 	 j

F	 i
mixing layer exhibits three-dimensionality. 	 This is apparent from the 	 f

shadowgraph pictures of Brown and Roshko (1974) and the spanwise velocity

i

fluctuation measurements of Spencer and Jones (1971).

1.2	 Experimental Background

The two-dimensional turbulent mixing layer plays an essential role

in many technological problems. 	 For example, the initial regions of pla-

nar jets can be approximated as two independent, two-dimensional mixing

I layers. - Flow over a backward-facing step (with a large step height) is

}	 ' another example of the two-dimensional mixing layer. 	 Many other flow

situations can be identified with the mixing layer. 	 In combustion pro-
t cesses, fluid mechanics plays a major role in mixing the reactants, and

better understanding of turbulent mixing is needed.	 The mixing layer is

perhaps the simplest situation in which two flows come into contact; ob-

viously the ability to analyze simple problems is necessary before one can
I^

analyze more complicated ones.

In 1947, Liepmann and Laufer studied the mixing layer and established

the general features of the flow.	 However, the fundamental understanding

}	 j' of the structure of the flow is still far from complete, and many contro-

versial questions need to be answered. 	 We shall address some of these<

j questions.	 The reader is referred to	 Murthy (1975) for an extensive re-

view and interpretation of the available literature on the mixing, layer.

x
r-.

With the advancement of the techniques of hot-wire'anemometry, Wygnanski

F and `Fiedler (1970) attempted to reproduce Liepmann and Laufer data and

+ extend it to include other measurements. 	 However,;.differences in inten-

sity levels and rate of growth of the layer emerged. 	 These differences

} were attributed to the presence of a trip wire in the Wygnansky and Fied-

ler 'experiment that was not used by Liepmann and Laufer'. 	 Batt (1975)

studied both configurations and showed that the differences are due to the

tripping of the layer. 	 Foss ;(1977) investigated the effects of the

3	 '
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laminar/turbulent boundary layer states on the development of a plane
i

mixing layer.	 He found that the development of the layer is dependent on

j; the initial conditions (the status of the boundary layers before the two

streams merge).	 Figs. 1.1 and 1.2 show r.m.s. fluctuations of the stream-

wise velocity and the mean velocity profiles obtained by Foss.	 These

figures show that different self-similar stages are obtained for different ;g

{ initial conditions.. Foss argues that this is due to the sensitivity of

choosing the virtual origin of the mixing layer	 (xo) and that the charac- >:

ter of the (init},4) disturbance, not its amplitude, is responsible for

the substantial effect on the virtual origin.- More recently, Oster et al.

(1977) showed that by oscillating the initial conditions of the mixing layer-

they can more than double the growth rate of the layer. 	 The effect depends

on the frequency and amplitude of the oscillations introduced. 	 These ex-

perimental results show that the "universality" of the self-similar stage

of the mixing layer is in doubt, at least up to 	 Re = 1.5 X 10 6 .	 Fiedler

and Thies (1977) showed that the two-dimensional shear layer only slowly
,s

reaches a self-similar state and that every disturbance is of long influ-

ence.	 Table 1.1 shows tabulated results extracted from the Fiedler and

^ Thies paper, and it can be clearly ` seen that different experiments predictP P	 ^ 	 P	 P
f different growth rate of the layer.
E

Winant and Browand (1974), using dye visualization in a mixing layer,

observed that initially the fluid rolls up into discrete, two-dimensional

i vortical structures. 	 These structures then interact by rolling around

} each other to form a single larger structure.- 	 This pairing process con-

trols the growth of their mixing layer.	 Brown and Roshko (1974) also ob-

served the amalgamation process at Reynolds number 	 2.5x 105 .	 Chandrsuda

1 ( and Bradshaw (1975) argue that the two-dimensional, large-eddy structure

observed by Brown and Roshko is unlikely to survive indefinitely if the

ambient entrained fluid is weakly turbulent. 	 They advance the argument:

"It is probable that if the Brown and Roshko type of orderly structure is

once formed it can last for a large number of characteristic wavelengths --

that is, up to high Reynolds numbers based on`streamwise distance -- but

not .indefinitely.	 The question can be settled only by measurements in a 	 E

two-stream mixing layer at a much higher Reynolds number than was used by

Brown and Roshko."	 Dimotakis ;and Brown ,(1976) showed the existence of

4
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10large structures at Reynolds number	 3 x 	 and attributed the growth

of the mixing layer to both pairing and "tearing". 	 Tearing is described

in their paper as an event where "a large structure will occasionally

find itself in the vicinity of another, or in between two others, in whose
t

straining f1eld it disintegrates." 	 The tearing process was first advanced

by Moore and Saffman (1975) on the basis of exact solutions for uniform

vortices in straining fields.

1.3	 Motivation and Objectives

-n many flows of practical interest there are interactions between

irrotational regions and turbulent regions. 	 Examples of such flows are 4

the shear layer, turbulent jets, and turbulent boundary layers with irro-
jj

tational. free stream flow.	 In suck.-flows, the regions are separated by

a very thin superlayer across which there is normally a jump in the vor-

ticity components parallel to the layer.	 The dynamical equations for the

vorticity seem to be suited to simulate such flows, since the vorticity is

• identically zero in the irrotational region. 	 However, previous workers

used the dynamical equations in the primitive variables (velocity, pres-

sure) and there has been doubt (Orszag and Israeli, 1974) that the vor- i

ticity equations could be used to solve turbulent flow problems. 	 Our

objectives were therefore as follows:

•	 To explore the feasibility of using the vorticity equation to simu

late turbulent flows.

•	 To find a subgrid scale model appropriate to the vorticity equations

and to determine any constants in 'this model.

•	 To simulate a turbulent flow with interactions between turbulent re-

it
gions And	 -turbulent irrotational regions; we chose the mixing-non

layer.

In order to use the three-dimensional, time-dependent vorticity equa

tions, we need to develop a -numerical approximation based on these equa

tions that conserves mass, momentum, vorticity, and energy. 	 We also need

Co assess numerical finite-difference methods and, 
in particular, the

fourth-order and 'pseudo-spectral methods.

5
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[ 1.4	 Overview

The equations of motion of the large eddies are derived by averaging
t.

(filtering) the vorticity equations in space. 	 In Chapter 2, we describe

the approach to solving turbulent flow problems that is called large-eddy

j simulation.	 We show that the use of 'a filter that is smooth in the real

`space is required to handle rotational -irrotational regions. 	 We present

a new subgrid scale model to be used in conjunction with the vorticity

'equations that is much simpler and faster than the one that would be ob- {
rr

is tained from the more commonly used Smagorinsky model.
f.

In Chapter 3, we describe the numerical methods used in this work,

briefly discussing the fourth-order and pseudo-spectral approximations and

numerical filtering. 	 We develop a numerical approximation to the vorticity

equation that conserves mass, momentum, vorticity, and energy, and a method >'

of deriving conservation properties that is much simpler than previous

f methods and is widely applicable. 	 We present a new treatment of the fil-

tered convective and stretching terms that is more accurate and faster
than previously used methods.

In Chapter 4, the isotropic homogeneous turbulence problem is solved

us ing both fourth-order differencing ' and the pseudo-spectral approximation.

The numerical approximations to the partial derivatives of the subgrid scale
model are discussed.	 We show that the use of the vorticity equation to

solve turbulent flow problems is feasible and that the new model produces

{r results equivalent to those produced by previously established models.
. f 	f

In Chapter 5, we discuss the two-dimensional computation of a mixing

I layer.	 An array of vortices is perturbed, and the momentum thickness

growth rate is discussed as a function of the perturbation. 	 It is inter-

esting to note that self-similar, mean velocity and turbulence intensity-

profiles are obtained with vortex pairing.

In Chapter , - 6 a three-dimensional computation of a turbulent mixing
t,

layer is studied.	 It is found that the presence of large structures in

the initial conditions is essential for the successful prediction of tur-

bulent mixing layers. 	 Our studies of different initial conditions pro-

duce different growth rates of the layer -- a fact supported experimentally.

Self-similar, mean-velocity profiles are obtained with different flow struc-

SI tures.	 However, turbulence intensity profiles show a rapid decay when

6
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q Chapter 2=

+i

THEORETICAL FOUNDATIONS

2.1	 Definitions of the Large and Subgrid Scales

In the previous chapter it was shown that, due to computer limita-

tions, one cannot do a full simulation of the dynamical equations of tur-

bulent fluid motion except at extremely low Reynolds numbers. 	 We pointed
out that the large-scale turbulent structures differ markedly from one t

flow to another (e.g., jet vs	 boundary layer), while the small-scale f;

turbulent structures are quite similar, and that large-eddy simulation

is a promJsing approach.

In the large-eddy simulation approach, the .first and most fundamental

step is defining the large-scale field.	 A general approach that recognizes
the continuous nature of the flow variables is the "filter function" ap-

proach of Leonard (1973).	 If	 f	 is some flow variable, we can decompose	 -

it as follows
j

f	 f+f 	 (2.1)
,^ I

t where	 f	 is the large-scale (filtered) component and	 f'	 is the residual

field. ,	Leonard defined the filtered field by:
t

f	 = J G(x-x') ,f(x') dx'	 (2.2)

E iswhere	 G(x-x')	 is the filter function., and the integral 	 extended over
^t the whole flow field. 	 One can think of f	 as a local spatial-averaged

field.
. It can be shown that if	 G	 is piecewise continuously differentiable

and	 G(r)	 goes ,to zero as	 r -}	 and is integrable over an ;infinite do-

i
main, then

F of	 of	 (2.3a) i.

8
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Properties (2.3a) and (2.3b) will be used in deriving the dynamical

±^1 equations of the large scales motion. x'

! f	 ! 2.2	 Dynamical Equations in Vorticit 	 Formy	 q	 ^ .e
j

In Chapter 1, we pointed oat that in many flows of practical interest

there are interactions between irrotational regions and rotational turbu-

lent regions.	 Examples of such flows are shear layers, turbulent jets,'

and turbulent boundary layers with irrotational free streams. 	 In such

jr flows the regions are separated by a very thin superlayer across which

there is normally a jump in the vorticity parallel to the layer.- These_'

flows are a challenge to the experimentalist; the difficulties arise from

t:"A the fact that it is hard to determine the region of the flow in which the

measurements are made.	 One faces a similar problem in trying to simulate

t such flows numerically. 	 The difficulty arises from the fact discussed

earlier, that it is impossible to capture all of the scales of motion in
j

4 ' the turbulent region. 	 The best we can do is to filter the dynamical equa-

tions to obtain equations that describe the behavior of the large eddies,
and to model the small scales.' 	 Since in the irrotational region the vor-

ticity is identically zero, the dynamical equations for the vorticzty seem

to be suited to simulate such flows.

Now let us derive the dynamical equations for the large-scale vorti:c-

ity field.	 For an incompressible fluid with constant viscosity, the equa-

tions of motion for the primitive variables may be 'written:

au. ` 
s	 u.w	 --	 a	 / P	 1 u u l	 - ve	 a	

w	 {2.4)at	 ijk , k	 -	 ax 	 4p	 2	 i it	 33k ax.	 k

d' ( au.
i	

=	 0	 (2.5)
axi

The vorticity equation is obtained by taking the curl of Eqn. (2.4).

Operating on it with	 Epq	 a/axq	gives:



I

t___l	 I	 I

i

a2w

at Wi + ax; (u wi - uiW.)	 ax.x.	 (2.6)
j	 J

i

Multiplying run. (2.6) by a filtering function G(x-x') and inte-

grating over the whole flow field, we obtain:
2

_	 8 w

at W
i + ax . (ujw - uiwj )	 v ax.ax	

(2.7)
	I	 J	 J Jt ;	 ^

t	
1

The fact that a finite-difference approximation of Eqn. ( 2.7) would

involve approximating higher derivatives of the velocity than would be the

case with the primitive equations (Orszag and Israeli, 1974) need not worry

	

G	 us in this case. Since the equations are filtered, we shall be dealing

i with smooth functions.

As can be expected, when averaging nonlinear equations, we run into
4

the closure problem; i.e., we need to express the quantities u jWi and

UP. in terms of u and W. Expanding u and W as in Eqn. (2.1),

Eone obtains

uW-uW = uW	 U. W. +W	 (2.8)
j :L i j	 j i	 i	 ij

where

	

W.	 = u w' + u l t^	 u w' - u'.w. + u'.W!	 UM	 (2.9)

	

1j	 j i	 j 1	 i J	 J	 J	 i J

We note that W.. contains subgrid scale quantities and hence must be

modeled.

2.3 Subgrid Scale Models

We first note that the model of W j should satisfy the following

necessary conditions:

P

1.	 Antisymmetry, ' since Wig is an antisymmetric tensor and therefore
r

j =l	 ax. Wi	
0	 (2.10)

ax 
	 II

	

l ?"	 It is important to preserve the antisymmetry property of W.• in

order to assure awi/ax = 0,, since the dynamical equations for the

	

!	 10
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vorticity do not contain a pressure-like term which could be used

to adjust the divergence of the vorticity,

y ; 2.	 It should vanish in an irrotational region, since	 Wij	 vanishes in

such regions.

3.	 It should be an energy sink, since it represents subgrid-scale effects.

2.3.1	 Model	 w- l

' Previous workers (Kwak et al., 1975; Shaanan et al., 1975), working	 r

with the filtered dynamical equations in the primitive variables, used an
eddy-viscosity model for their subgrid-scale model.	 They modeled the `term:

T. 	 =	 u'u' + u'u. + u !u. = -.
	
(u'u' + 2u'u)

iJ	 3.	 1J	 3	 k 	 k 	 ijl^	 j

i

d

by setting

^.

Tij	
_	 - 2VTSij	 (2.11)

where
r

+^ U. + 
8x	 ui	

2,1z
2	 ate.

t^J
l	

'

is the strain rate tensor of the filtered field and 	 VT	 is an eddy ttis-

j cosity associated with the subgrid scale motions.

}{^ Smagorinsky (963), suggested a model for	 VT

vT	 (CSQ)2 (2$i1 5
j

)	 (2.13)

where	 GS	 is a constant and	 A	 is the filter width.	 We note that iii-a

,; non''=turbulent region this modal of	 VT	 may have a non-zero value, and

1
hence i.t'may give rise to residual stresses.- 	 Since our main 'objective is
to handle interactions between 6 turbulent region and a non-turbulent re-
gion, this model was rejected for the present work.

One way to avoid this difficulty is to relate	 V	 directly to vor-

t
• tici.ty.	 Previous workers (Kwak et al., 1975 6, Donaldson, 1972) used

1>

vT	 =	 (Cvp) '` (wiw)	 (2.14)

F .
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	where Cv is a constant. Clark et al. (1977) have shown that this model 	 j

is as accurate as Smagorinsky's for homogeneous isotropic turbulence.

	

The dynamical equations for large-scale vorticity field could have 	 m

been derived by taking the curl of the filtered dynamical equations for

the primitive variables. Hence the curl of Eqn. (2.11) could be used to

model Wij ; this would' give

	

Wij	 sij k axQ (2VTSklL)	 ( 2.15)	 c

where Skz andvT are defined by Eqns. (2.12) and (2.14), respectively.

We shall refer to this as Model w-1.

2.3.2 Model w-2

We note that the model given by Eqn. (2.15) involves computing the 	 a

strain-rate tensor SkQ, which is an expensive process. It also uses

the velocity field and hence requires storage space for the velocity fields

even after the convective and stretching terms havebeen computed. Much

computational saving could be obtained with ,a model that involves only the

vorticity field; one such model is

- = a	 v iil , + a	 v w	 2.16

	

id	 axj	 T i	 ax. 	 T

where 
V  

is defined by Eqn. (2.14). We shall refer to this as model w-2..

J	
Both models w-1 and w-2 can be shown to satisfy all three proper

f

	

	 ties mentioned previously (see Appendix A). Model W-2 offers computa-

tional as well as storage advantages over model w -1 and will be tested

J

	

	 in Chapter 4 (along with model w-1), for the case of isotropic homoge-

neous turbulence.

sl

t

1 	 '

1	
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2.4	 Filtering

2.4.1	 Sharp Cut-off (SCK) Filter

Analytically, -a filter that divides the large scales and the subgrid

f scales into two distinct regions in the Fourier sense would be convenient.
Then	 f	 would contain all scales larger than a cut-off scale, and the
subgrid scales	 (f')	 would contain all scales smaller than this cut-off

" scale.	 A one-dimensional version of such a filter is

sin[k(x-x')]
G (x-x')	 =	

Tr ( x-x')	 (2.17) 

and its Fourier transform is

0	 if	 Jkl	 > k
H(k) c	 (2.18)

4 1	 otherwise

We shall refer to this as the SCK (Sharp cut-off in k-space) filter.
In inhomogeneous flows with turbulent rotational regions and irrota-

? tional regions, the two regions are separated by a sharp vorticity jump.
In order to evaluate the ability of the SCK filter to smooth out jumps in
the vorticit	 field	 we a	 1	 it to a point vortex situated at the origin:Y	 ,	 apply	 P	 g

r

W(x,Y)	 =	 d('x)	 8(Y)	 (2.19)

and

sin [k :x]	 sin [k y]
W (X,Y)	 =	 c	 c	 (2.20)

Trx	 Try

of	 is plotted in Fig.	 2.1.

First we note that this-filter creates oscillations and negative vor-

•. ticity, which are undesirable from a physical point of view. 	 Second,

those oscillations decay slowly (they go as 	 x 1),	 so the spreading into

the irrotational region is excessive.

13
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2.4.2	 Gaussian (GS) Filter

Another 'filter that has been used by previous workers (Kwak et al.,

1:975) is the Gaussian spatial (GS) filter:

G(x-x')	 _	 exp{-y(x-x' )2/A2} 	 (2.21)

where 	 is a constant and	 A	 is the filter width.

Applying this filter to a point vortex situated at the origin, we°-

I+ get

w(x,y)	 _	 2 exp{^	 (x2 +y2)}	 (2.22)
A

W	 is plotted in Fig. 2.2.

pi^., We note that in this case we have created neither oscillations nor-

negative vorticity.	 By filtering the point vortex (Eqn. (2,19)),, we have

I created another vortex with a Gaussian core of width	 A.

' We conclude that a ` Gaussian filter smoothes out jumps better than the
sharp cut-off filter.	 Therefore, the GS filter was used in the cases in-

vestigated in this work.

2.5	 Computing Velocity Field from the Vorticity Field

When the vorticity equation is used, the velocity becomes a diagnostic

variable; i.e., the time variation of the velocity is not given explicitly
by the equations but can be deduced once the vorticity is known. 	 To do- so,

we shall define a vector potential 	 t 
	 (see Lamb, 1932) such that:

a	
2.23)ui	 (Eijk ax. wk	

._ - -
J

^k	 can be chosen to be solenoidal; i.e._,

r^
a

= 	 (2.14)
ax	 ^k	 0

^

k

Taking the curl of {2.23) and using (2.24), we get"

2

ax 3x.

14
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Solving the Poisson equation (2.25) and using (_2.23), we get the

.I
velocity field from the vorticity field. -`

Note that the velocity field could have been deduced in another

fashion by setting

'i l

ijk ax.	 k	 (2.26)

a :!	 I
} then taking the curl	 epgi a/axq 	of Egn. (2.26) to get:

`, m

n-

a2 =	 —	 ;k ax. Wk	 2.27)ax. ax, ui	 e	 (
F I J	 J	 J `^

p and finally, solving the Poisson equation (2.,27), we get the velocity field.

This approach involves differentiation of"the vorticity field, followed by

# a double integration, whereas the'-first approach of (2.25) involves double

`^a} integration followed by differentiation (2,23). 	 Numerically, the first"

j!?	 i approach is ,usually more desirable; but in our case the two approaches are

- equivalent.	 Egns.	 (2,23)-.(2.25) will be used in this study.

^!I 5

I 2.6	 Summary

Neglecting the molecular viscosity, the filtered dynamical equations 1

in vorticity form become

(
at	 + ax.	 (u .W	 - ukW.)	 =	 — ax

	 W.	 (2.28)
J	 J	 J

I J	 J
1

a 2
(2.25)

E.I	 i ^

ui 	 —	 ^jk ax. '^k	 (2.23)

where	 W.,	 is modeled as
1J

a
Wig	 _	 - ^

iJ k ax	
(2vTSkQ)	 ( 2.15)

f
or

E



Nor- Y

t

1

S+y <

a

or	

#

W. 	 =	 ax.	
( -V	 + 

8x.	
(vTwj )	 (2.16)	 ?

i

wheret

vT	 =	 (Cv0) 2 (Wwi) z 	(2.14)r

1	 ?

'	 and	 '.

S ij	 2 ^ax. ui + ax	 uj	 (2.12)
i

with
I i 
lit

^_	
3	 (x -x') 2 	(x -x') 2 	(x -x')2

f	 4 1	 C(x-x') 	_	 ^^^	 0102A3 exp -Y	 1021	 +	 2022	 +	 3Q33

1	 2	 3	
s

(2.29)

and
u

0	 _	 (A A A3)1/3

i

^F	 It is in this form that the problem will be solved numerically.

1 i

I

i

d

^r

h

I"

j
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Chapter 3

NUMERICAL METHOD

Analytical]; solutions of the governing equations discussed in the

previous'chapter can be found for only very special cases, none repre-

senting turbulence. Therefore, we propose using large computing machines

to solve theseequations for particular cases of interest. Numerical 	 3

approximations of the governing equations require special care. In this

chapter we discuss these approximations and Present the methods we use

to solve the difference approximation to the governing differential equa-

tions.

a

3.1 Notations`

A region of continuous spaceis divided into a uniform rectangular

mesh; h
i (

i=1,2,3) represents the mesh width in the ith direction.
The mesh width need not be the same as the averaging width introduced in

the previous chapters; we have used Al = 2hi and y = 6. For details

on the effects of the filter width on the computational results see Kwak

et al. (1975). i

We then write the k-component of the filtered flow quantity fk

at the nth time step as

I	 fRn) (i 3pj ► k)	 k = 1,2,3	 (3.1)

1

where (ij,k) are the mesh point index for (x,y,z).
We define the operator notation S/;S to be the numerical approxi-

mation to the continuous 'derivatives 0/30.

1	 3.2- Numerical Approximation

Once space is discretized into mesh; points, it remains to approximate

the partial derivatives in terms of the values of the functions at those

points. We have used two different approximation schemes: a fourth-order

scheme and a pseudo-spectral method.

17
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i

S	 I

3.2.1	 Fourth-Order Scheme	 " A'

r Using Taylor series expansions one can easily show that-the approxi-

mation to the partial derivatives, -

{u(i-2) - 8u(i-1) + 8u(i+l) 	 u(1+2)}
-	 12h

(3.2)
^:t 1	 1

I

is fourth-order accurate, i.e., the error in this approximation is of

i 0(h4).	 (For simplicity, the arguments j 	 and	 k	 are not shown.)

If periodic boundary conditions are to be used, 	 u	 can be represen-

!; ted by a discrete Fourier expansion (see next section).

u	 _	 (k) eik•x
L.rU (3.3)
n',.

r. where, for	 i_= 1,2;3, x 'SS,

ki	 N2h	
n	 =	 wave number in the x. direction

3

N.	 N.
ni	 _	 -	

2	
0,	 2 - 1

^^	 r
N.	 =	 number of mesh points in x• direction

I -I
'

^

u k	 is, the discrete Fourier transform of	 u.	 Taking the discrete'

Fourier tr3._sform of (3.2) , we get

2hlk1ih 1 1+i2hlkl	
1du	 _	 l Se lh1

e-
8e	

e
uxl	 12h1

=	
6h

` {8 sin(hlkl) - sin(2h1k1)'} u
t 	 i 1

' ikl'u

where.

! k'	 =	
1	 {$ sin(h k) - sin(2h k )}1 1	 1 (3.4); -1	 6hl	 1

.' I .s
is called" the modified wave number.

18 r



Representation (3.4) allows us to evaluate the numerical approxima-

tion (3.2) for the range of wave numbers up to 	 ff/h,,	 the highest wave

number that can be represented on a grid of size 	 h
V
	The Fourier trans-

form of the exact derivative is 	 ikI	 mU,	 so that, by comparing the	 odified

wave number	 kj	 with	 kl ,	 we see how well the approximation works (see

Fig.	 3.1).

A more important consequence of representation (3.4) is that it

allows us to integrate numerically in a manner consistent with our differ

ence approximation.	 In order to make this point clear, suppose we know

the value,	 f,	 of the numerical approximation of the differential equation

6U
f	 (3.5)

6x

and we would like to find	 u,	 which when fourth-order finite differenced,

gives us	 f	 exactly (to machine round-off).	 One way to do this is to

write

Au(i)	 f(i)	 (3.6)

where

0	 8	 -1	 0	 0	 1	 -8

A
12h -8	 0	 8	 -1	 0	 0	 1

1	 -8	 0	 8	 -1

-1	 0	 0

8	 -1	 0	 1	 -8	 Oj

for the case of periodic boundary conditions. 	 This system of equations can

then be solved in Some standard way..

Another way to handle this problem is by taking the discrete Fourier

tr,'Ansform of (3.5)	 to get

A

ik'u	 f	 (3.7)

=Paw

19
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Then, by solving for u,

U

	

	 f	 (3.8)
ikl'

-
multiplying (3.8) by e

ik x and summing over all k, we obtain u.

In this case only the one-dimensional transform is needed. This method,

which is much more powerful than the previous one when integration in more

than one direction is needed, will be used extensively for the solution of

the Poisson equations (2.21).

3.2.2 Pseudo-Spectral Method

Periodic boundary conditions

Suppose f(x) is periodic in the x 1 
direction with period L (in

the following we shall consider the one-dimensional case) and satisfies

the "Dirichlet condition", i.e.,

• f,(x ) is defined at every point of the interval 0 < x <

• f(xl) is everywhere single-valued, finite, and sectionally continuous,

• f(xl) is of "bounded variation", i.e., f(x l) does not have an infi-

20
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i

Since computers cannot handle infinite series, we have to truncate }

(3.9).	 This is justifiable if	 f(kl)	 falls off rapidly for large 	 Jkll, `'

this is the case of interest, since we filter the flow variables. 	 Also,
a

as mentioned before, we need to_discretize in space.	 If	 Nl	 mesh points
are used in the xl direction, the discrete analogs of Eqns. (3.9) and

( 3.10) become:

N /2-1	 .,	 iklx!

f(x)	 =	 f(k) e	 (3.11)1	 1'
nl - 

^	 ?

r,

where

N	 N '!
=a

k1	
-	 N hx n1	 n1	 -	 -	 2 ,	 ...	 , 0,

	 ...	 ,	
2	
- 1'

...	 -xl	 j h1	 j	 =	 0,	 , Nl	 1

h	 LAN'
1	 1 ^

N1-1
iklxl

f(kl)	 =	
N 

E 
f
(xl ) e	 (3.12)1 j=o	 -}

?	 Fast algorithms (for	 N1 = 2n; n = 1,2,...)	 have been developed

(Fast Fourier Transform -- FFT)	 by various workers (Cooley and Tukey, 1965;

Singleton, 19 67) to evaluate the series (3.11) and (3.12) for the inverse-
transform and the forward-transform,-respectively. 	 These will not be de-

scribed in this work (we used a routine developed by Singleton, 1967).

If we regard the expansion (3.11) as an interpolating formula, so that .,

we treat	 xl	as a continuous variable, and differentiate the entire equa-

tion,'we obtain -

^t ik x
T `	

1 1
r dx	 =	 f(k

l) ikl e	 (3.13)'
f ' l	 nl

t' The expansion (3.13) can be considered an approximation to the partial

derivatives.	 Thus, to compute the partial derivatives of	 u,	 for the case

of periodic boundary conditions 	 we proceed as follows:	 we find the dis-

crete Fourier transform of the function in the direction in which the par-

tial derivative is needed, _i.e., we compute	 f (k)	 from	 f (x ) . '

a:
21 j
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+i 	 iklxl
'	

I

ME

	Multiplying f(kl) by ikl e	 and summing over all ;k l , we obtain
6f /6x	 This is called the "pseudo-spectral" approach. This method has

1
been analyzed by Lanczos (1956) and, with the development of techniques

1	

4

j to compute the summations (3.11) rapidly, it has been proposed by Kreiss

and Oliger (1973) as an approximation method, and advocated by Orszag

(1973) and Fox and Orszag (1973)
a	

For the range of wave numbers that can be captured with a given spac -
ing and number of grid points and for periodic boundary conditions, the
pseudo-spectral method yields extremely accurai:e values of the partial

I

derivatives (see fig. 3.1)

The above method is limited to the case of periodic boundary condi-

tions. However, the idea can be applied to other types of _boundary con-
i

ditions by using a set oforthogonal functions appropriate to the given

boundary conditions.

f = 0 boundary conditions

'

	

	 If f(x) is required to vanish at the boundary, i.e., f(x l)' 0
for x1,= 0 and xl =;L, and is twice differentiable (a physically rea-
sonable assumption), the Hilbert-Schmidt -theory 'shows that its Fourier

sine series

I	 Co ^s
	 [n ]

l^f	 f (xl) _	 fn'' sin	 L xl	 (3.14)
r	

nl-o	 1
where

1 _ „s	 2 	 nht
fnL 

fL

	

 
f(xl) sin L x dx	 (3.15)

1	 0

is absolutely and uniformly convergent. As in the previous section, we^	
I

shall use the discrete analogs to (3.14) and (3.15), i.e., 	 I

N -1

	

1	 , s	 nlr

44	 f(xl) _	 £ (nl) sin[TNT1)h xl(3.115)
 ln=o

s	 Z 
Nl-1	 nhr

f (nl )	 (N _ 1)	 f(xl) sin f1Y -1)h xl	 (3.,17)
1

	

	 1	 1
j=0

1	 22
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where

n1 = 0,	 , ' N1 - 1

hl _ L/ (N1 - 1)
K	 xl = jhl 	j = 0, ,... , NI - 1

^s
and	 f (n1) is the Fourier sine transform of f(x1) By using the

t	 FFT routine, a technique to compute the summation in Eqns. (3.16) and

(3.17) can be , rapidly developed. A detailed development of the Fast -Dis

Crete Sine Transform (FDST) is given in Appendix B. Generally, the FDST

requires twice as much computation (for a given number of mesh points) as

does the FFT.

If we regard the expansion _(3.16) as an interpolating formula, treat-
ing x1 as a continuous variable, and differentiate, one obtains:

N1-1
Sf	 ^s	 nl

	

=	 f (nl) kl cos	 x	 (3.18)8X I

	

	 (Nl-1) hl lnl=o

where kl = nl7r/(Nl-1)hl. In order to be able to use (3.18) as an approxi-

	

^s	 r
mation formula for the partial derivatives, we need an FDST to find f (n1)

we also needa Fast Discrete Cosine Transform (FDCT). The discrete Fourier

cosine series is defined in analogy to (3.16)

- N
1 

l f'	 cos[-(N
n1Tr	

x	 3.19	f^xl)	 (nl)	 1-1)hl 1	 (	 )

nl o
i

and

^ c	 2	 N1-1	
lr

	

f (nl) =	 r f'(x_,) cos	 x	 (3.20)(Nl-1) Li [(N 
1 

) hj 1

sj =o
4 with

1 ^c

^c ;, 2 f (n1)	 nl- 0, N1 - 1
a	 f' (nl ) -

	

fG(nl )	 nl # 0, N1-1

f ( x
i
)	 xl 0, L

f^(X1) _

	

f (x)	 x -	 0, L
l	 1 ,	 1	 '.

F
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^c

where	 f'(nl )	 is the Fourier cosine transform of	 f(xl).

j Note that in (3.1$)	 fs (0) = fs (N1 - 1) = 0,	 making (3.18) exactly
^s

a discrete cosine transform of 	 kl f (nl).
By using the FFT routine, a technique of computing the summations in 	 1

4

Eqn	 (3.19) and (3.20) can be rapidly developed.	 A detailed development

of the Fast Discrete Cosine Transform (FDCT) is given in Appendix B.

Thus, to compute the partial derivatives of a function which is
^s

zero at the boundary, we find its discrete sine transform 	 f (nl),	 mul-
tiply it by	 n1Tr/[(N	 I)hi l	 and inverse transform using an FDCT routine.

This method yields an extremely accurate approximation of the partial

derivative when the function vanishes at the boundary, but its use is re-

stricted to cases with _a uniform mesh. 	 i

1 8f/ax	 0	 boundary conditions

If	 f(xl)	 is our function whose partial derivative	 of/axl	 vanishes

at the boundary, i.e.,	 of/ax1 = 0	 for	 x 	 = 0	 and	 xl = L, then, by

using arguments similar to those used before,- it can be shown that its

Fourier cosine series,

y
00	 ^c

f(xl)	 _	 fn	 cos
[n111	 ]

L	 xl (3.21)
nl=o	 l

r where
A

2	
L n17r

? fn	 L f	 f (xl ) cos L	 xl dxl	(3.22)
l	

o ^ c^c	 fn	 nl #0
 lV

fr
nl

2 fn 	 nl _ 0

is uniformly and absolutely convergent.
.wEquations (3.19) and (3.20) are the discrete equivalents of the above

^6
equations.	 If we regard expansion (3.19) as an interpolating formula treat-`

ing	 x 
	 as a'continuous variable,-' then differentiate, we obtain:'

Nl-1 -
I S £	 ^c

Sx1	 =	 - f (n) kl sin
n1 ^r

[-(—N1-1)h1 xl (3.23)

•,, nl=o	 _

=	 24	 --	 __	 _	 _	 __ _ .
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Obviously (3.23) satisfies the conditions	 3fJaxl	0	 at	 x1 - 0

and	 xl - L,	 and	 (3623) is the discrete sine expansion of the partial

derivative.

Thus, to compute the partial derivative of a function for which
„cof/ax

	 = 0	 at the boundary,, we find its discrete cosine transform 	 f (nl),

multiply it by -kl ,	 and take the inverse transform using an FDST routine.
EThe three methods described in this section will be used extensively

+ as our approximation tools.

3.3	 Time Dfferenc3

To advance in time, a second-order Adams-Bashforth method was used.

This method has been used by previous workers (Kwak et al., 1975; Shaanan

et al., 1975), and use of a higher-order method was not felt necessary.

If	 awi/at	 Mi ,	 the Adams-Bashforth formula for	 wi	 at time-step

r
n + 1	 is

+1	 -r 	 3	 (n)	 1	 {n-1)`
wi	 =	 Wi + D	

(2 
Mi	-	 Mi	

1	
(3.24)

2

In our case,

E
Mi8x.

	 u wi	 uiw	 Wi^

Note tha	 this is a two-step explicit method.	 It is started with the

r Euler method:

I^ w	 =	 w0 + At M(0)	 (3.25)

I

^ 3.4	 Conservation Properties 	 }

f As was pointed out by Phillips (1959), numerical integration of the

finite-difference analog of the Navier-Stokes equations may introduce non-

linear instabilities if proper care is not taken. 	 Arakawa (1966), working	
3

with the two-dimensional vorticity equation, showed that by properly con-

serving vorticity, energy, and enstrophy 	 (wiwi),	 these instabilities

R disappear.	 Lilly (1965), working with the primitive variables, developed

a spatial-differencing scheme that conserves momentum and energy.	 By

25.
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conservation we mean that, in the absence of external forces and viscous

dissipation, the only way that the momentum and kinetic energy in a con-

trol volume can change is b 	 flow through the surface.	 This	 ropers	 must	 yg	 y	 $	 property	 i

be retained by the numerical approximation.	 In the simple case of periodic

boundary conditions, we have

dtf uidv	 =	 0	 (i.e., momentum conservation)	 (3.26)

/'D
at J 2 uiuidv	 =	 0	 (.e., energy conservation)	 (3.27)

D

It is usually easy to devise a numerical approximation to the dynami^,.al

equations in primitive form that conserves momentum, i.e., summation over

I the flow volume of the approximate equations would give the discrete

equivalent of Eqn.. (3.26). 	 However, the difficulties	 arise when trying

to show energy conservation, since in general the identity

r

ui_ax. u	 ax.	 2 uiui	 (3.28)f J

does not hold in finite-difference form.

Writing the equations of motion in the following form (Tennekes and

Lumley, 1972)

a	 /au. 	 au. 	 a	 P	 1
_ ^_	 2+ — u.0 	 (3.29)

P	 2	 J J)34 u	 + uj8t	 ^-^X'	 ax,	 ax.
1. 1	 1

1	 F ui	
_	 °	 (3.30)X.

and integrating over the flow volume, we get

if^ft

OU.	 au.
- —^	 _ - r a P	 2 u . u	 dvudv +^ u	 ax	 ax	 dv	 +	 ,

ax. (p,	 J	 JJ  ii ( 3.31)

'4 ^t For periodic boundary conditions, integration by parts yields: 

ax	 ui dv	 _	 -1 ui ax. u^ dv	 =	 0	 (using (3.30))

J °j ax. u^ dv
	 =	 - f uj ax	

u. dv	 =	 0
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have long-term integration stability, Eqn , . (3.34) should numerically con-

serve momentum and energy.
i

If we follow the steps used in deriving the conservation properties

from Egns. (3.29) and (3.30), we realize that the conservation properties

will follow if we can establish numerical summation by parts.	 Consider

the op—dimensional case, where we have, for periodic boundary conditions,

fu(x) 8	 f (x) dx	 - f f (x) ex u(x) dx =

The numerical analog of the above equation is:

N-1	 -
-u(j)	 Sx f0	 _	 -	 f(j	 _X) 	 u (j)	 (3.36)

J=o	 3=0

Expanding	 u(j)	 in Fourier series, we get:

u(j:)	 u(n)	 exp(2Trijn/N)
n=- /2

where the	 u(n)	 are given by the inverse transform:

^	 1 N-1	 N	 Nu(n)	 =	 u(j) exp(-Trijn/N)	 ;	 n 	 , ... ,	 - 1N	 2	 2J -o

Also,
<a

-1	 N-1

dx f (j)	 =	 k' (n)	 N	 f(j t) exp(-27rij'n/N)	 exp(27Tijn/N)
i	 n=- /2 ° (3.37)

i.	 where	 k'(n)	 is the modified wave number.	 The modified wave numbers for

the numerical methods we are using are

•	 ik'	 ik	 for pseudo-spectral, 	 (3.38)

•	 ik'	 =	 i	 [8 sin(kh) `= sin(2kh)] 	 (fourth-order approximation.'1;	 6h
Substituting Eqn. (3.37) into the left-hand side of Eqn. (3.36) yields

^	 N-	 N-1	 N-1	 N	 -1
UM	 f ( j )	 _	 N	 ik' (n) u(J) f (j ):fix

J=°	 j=o	 j' =o	 n=-N/2

t

• exp(-27rij'n/N) exp(2Trijn/N)
,
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Now, changing the summation index in the last sum from 	 n	 to	 -n,	 we

see that this expression will agree with the right-hand side of Eqn. (3.36),"

provided that:

k' ( n)	 _	 - k'(-n)	 ( 3.39)

I,

i
k, ^_ 2 1	 =	 0	 (3.40)/

Condition (3.39)- is satisfied by all the methods under consideration,

_	 and	 k'(-N/2) = 0	 is true for the finite-difference method. 	 The pseudo-

' spectral method cannot differentiate between 	 f = exp(ijff)	 and	 f
exp(-ijTr),	 and, due to this confusion at 	 n = -N/2, k'(-N/2)	 is set .'

equal to zero for the pseudo-spectral method. 	 Hence, summation by parts Ji

is obtained when (3.39) and (3.40) hold. 	 Summing Equation (3.34) over

all mesh points, using the generalization of (3.36) to three dimensions and
using Eqn. (3.35) yields the numerical equivalent of (3.26). 	 Multiply-:
ing Eqn. (3,34) by 	 u,	 the nonlinear term in the Left-hand side of (3.34)

will sum to zero by symmetry; then, using as before the three-dimensional

generalization of (3.36) and (3.35), summing over all mesh points will

yield_ the numerical, equivalent of Eqn.	 (3627).

I 3.5	 Differenced Vorticity Equations,,

In order to insure that the numerical, approximation to the vorticity

equations are equivalent to the numerical primitive equations, we must

take the numerical curl of Eqn. (3.34). 	 Before doing so, we note that,

numerically,

r! ^	
d

=	 (3.41)°	 ° x V	
^ijk 6xi 6x	 ^ k

E
i l	 j^

V x VS	 e	
8	 S	

S	 (3.42)i3k 6x
j

'. 6xk

k'

f

where	 V	 and	 S	 are any vector or scale, respectively, 	 the above ex-

pressions are identically zero, if for each direction the same approxima-

tion is used for all operators.
A.
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The numerical curl of (3.34) is	 `$

	

;	 a w+ -d (u .w - u w)	 0	 (3.43)	 ^ y

	

i F	 at 1	 Sxj

Equation (3.43) conserves vorticity, i.e., summing it over all space

71 tlle_total vorticity in any control volume (subject to periodic boundary

	

I,°^	 I

	.0	 conditions) does not change with time. Heh:-e in the form (3.34), the 	 is

I!
t

	

I
=f i	 primitive equations also conserve vorticity.

The numerical divergence of (3.43) is

_	 -at ax wi — o

	

"i	 Therefore, an w field solenoidal at time t will remain solenoidal at 	 __f

	

C	 time t + At.

	

'	 3.6 Poisson Equation 	 '?
.$

Having the vorticity field w. at time step n, we have to find the	
g

i	 }
II, velocity field in order to be able to advance in time. To do so, we shall

define a vector potential (also called the vector stream function) Vk,

such that

	

^^C	 I

	ui - Eijk 6x: ^k	
(3.44)

can be chosen to be solenoidal; i.e.,
IY, {

	

C	
8	

0	 (3.45)

	

1	 ^	 .1
Taking the curl of Eqn. (3.44) and using Eqn. (3.45), we get 	 r.

i	 &	 d ^.
	 w	 (3.46)

I	 I

dx x r	 i3

	

E	 The Poisson equations ,(3.46) will be integrated using the approach

introduced in Sec7.ion'3.2. For the case of periodic boundary condition,

the discrete Fourier transform of Eqn. (3.46) is

	

k!k^ ^i = --wi	 (3.47)
i
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where	 k!	 is the modified wave vector introduced in Section 3..2. 	 Solving

for	 we have }
f

wi
(3.48)k'k !

and by inverting the transform we obtain the stream vector consistent with
-.1

? our numerical differencing. 	 It satisfies two conditions. 	 First, the vel-

ocity field obtained using (3.44) will be _solenoidal. 	 We have in Fourier
a

space:

ki ui	 =	 e	 k'k'	 =	 0	 (3.49)i 
a
k	 k

a :

Second:, taking the curl of (3,44), we have in Fourier space: l'

wi	 =	 eij k ik! uk	- E:	 EkPq k!k' ^q
(3.50)

-k,k'^	

+ k'k!J	 J

Since	 k'	 = 0,	 (3.50) is exactly the Poisson equation (3.47) .

3.7	 Numerical Filtering

Examination of Eqn. (3.24) reveals that the only numerical problem

left is the numerical evaluation of the 	 uwi - uiW^ ` term.	 Since	 u wi

'
uiw.	 can be computed easily, the problem is that of numerical filtering.

F

J
Filtering is the evaluation of a convolution integral

{
s

u 	 =	 uryw. G(x-x')	 dx'	 (3.51)
i

} —O°

If this integral is evaluated using conventional integration routines, the

computation cost is prohibitive. 	 Previous workers (Leonard, 1973; Kw.ak et

{ al., 1975; Shaanan et al., 1975) argued that the filtered terms 	 u (x')

and	 are smooth, and they expanded those terms in a Taylor seriesi (x')

about	 x.	 Using a Gaussian for 	 G(x),	 they obtained:

be

2

uJwi	 uJwi }	 p2(u^wi) + 0(p4)	 (3.52)
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and the 0(A2) term was called the Leonard term. The above approxima-

tion will require the use of a fourth-order, finite-differencing method

(Kwak et al, 1975) or a modified second-order method (Shaanan et al., 1975)

that yields the Leonard term as its truncation error. However, when
i higher-order methods areused the expansion (3.52) needs to be extended to

higher orders, and the computational expense becomes prohibitive. When

periodic boundary conditions are used, we can take the Fourier transform.T	
of Eqn. (3 ..51) to get:

^

	

u^Wi	 (uJWi) G	 (3.53)

Thus, given u i, and Wi , one can compute the terra _(U.W.), multiply

it by G, then simply invert the transform to obtain u.Wi.

When u^Wl vanishes-at the boundaries, i.e., u^Wi = 0 at x = 0

'	 and x = L, we can expand it in a Fourier sine series. Taking the one-

dimensional case, for simplicity, we set

^s

U.W. =

	

	 (u.Wi) sin L 
x)	 (3.54)

n=o

Substituting (3.54) in (3.51), we get

f 
+C0 M ^s

	

uJ W =	
(u^wi) sin ( L (x-x')) G(x') dxr

n=o

k Since the series (3.54) is absolutely and uniformly convergent, we

,.	 can take the summation outside the integration to obtain

00
—	 — 

S	 +	 n1T	 ri7Tu.W. _(u.W.	 sin(— x) cos (	 x') G(x') dx'
E	 J i	 n=o J	 ^	 L	 L

cos (L x) sin (Lx ') G(x') dx'

{

	

	 If G(x) is an even function, which is the case when (2.21) is used,

the second term in the bracket vanishes and one obtains

^s	
(' +^	

ti

	

u^ W =	 (u^ Wi) J	 G(x') cos(L x') dx ' sin(Ear x)

	

n= o	 °O (3.55)
°° —^s

(u^Wi) Gc sin (L x)
nuo

i

t'

I

i
i
I
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u

where

Gc = J	 G(x') cos( L x') dxl

is the Fourier cosine transform of the Gaussian filter.

What Eqn. (3.55) tells us is that, for the case in which ujW1 0

for x = 0 and x = L, u jw. can be computed by the following procedure:

we first compute the Fourier sine transform (u^W i) of ujWi , and then

multiply it by the Fourier cosine transform Gc of the filter, to obtain

	

the Fourier sine transform (u.w 	 of ujWi . Finally, inverting the sine

transform, we obtain ujWi._

Similarly, it can be shown that, for the case in which ax 
a W3 0j

at x=0 and x = L, we have
^

_
00

_ 	 c
uj t^i 	(ujWl) G Cos EEL x,	 (3.56)

Eo

or

	

^ c
	 ^c

^c

	(ujWi) 	 (ujWi) G
4

By the use of the FFT, ,FDST, and FDCT, "exact" filtering can be ob-
tained for all boundary conditions of interest with acceptable computa-

tional speed.

An important property required of a filter is that the filtered value'

of a constant must be the same constant. Numerically, it is desirable to

preserve this property, which is equivalent, to requiring the integral of
1 the filter function be unity or G(0) 1. The exact continuous Fourier

transform of (2.21) is
i

/	 2
	G(k)	 expl- 4y k2 )	 (3.57)

When G(k) is discretized, we get

{	 .,	 -	 2
I	 GD(k)	 exp(- 4y 27r n) 2 ^	 n	 0,±1,±2,.	 (3.58)

Hence GD (0) = 1.
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Another property required of a filter is that it smooth out jumps

(see Section 2.4) without introducing oscillations. We have modeled the

situation with a top-hat function;

1	 x1 <x <x2
f(x) _	 (3.59)

0	 otherwise

Analytically, we have
r
i

_	 1
f (x) = 2 (erf (xi - x) - - erf (x2 - x) )

which is a smooth function with no oscillations.

	

'	 When (3,.59) is discretized and filtered numerically using GD(k),

the top-hat function, Eqn. (3.59), is smoothed out (see Fig. 3.2). How-

ever, small oscillations are introduced. This is due to the fact that the

discrete inverse transform of (3.58) is not smooth. For this reason we

have used a discrete Gaussian in x-space,

2

	

GDW	 A exp _ 
y. nh2 	

(3.60)

i	
where

A

where
x = hn

2
A =exp Y^"	 ( 3.61)

n

as our filter function. The oscillations in the x-space (see Fig. 3.2)

do not appear when this filter is used.

3.8 Summary

1
The dynamical equations in vorticity form will be solved as follows:

W.	 Wi + At(2 Mi - 2 M
n )-1 	 (3:24)

E	 ^

{
where

i

Mi	 Sx, (ujWi - uiWj} -	 J_ 6- Wi j

l	 ^
i	
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':
i

Wij	 -	 Eijk dxQ (2VTSkR)	 (3.25)

j

or

Wij, _	 dx	 (uTwi) + dx	 (^Twj )	 (3.26)
Xi	 i

r

VT	 =	 ( C A) 2 (wiwi) z	 0.27)
1

i
s	 4

and

f	
l (6'U,Pui)S	 +	 ( 3.28)	 3ij	 2	 dx,	 dx

a	 i

The numerical differencing	
dx	

used to compute the terms in the

model	 (Wij )	 need not be of the same order as the numerical differencing

dx	
used to	 compute the terms in the momentum equation. 	 Filtering of

q

the terms 	 u	 wwi - u	 is achieved using the method described in Section
i	 j

f	 t 
3.7.

i

P{	 ,

•	 l

,

i

t

}

I,	 x

,
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- Chapter 4

I	 y DECAY OF ISOTROPIC TURBULENCE

4.1	 Batkg^round

In order to assess the feasibility of using the vorticity equations`

as the governing equations for turbulent flows, we applied the computa-

tional methods described in Chapter 3 to the simplest problem in turbu-

lence, namely, the decay of homogeneous isotropic turbulence.	 This flow

was also used to determine the value of the subgrid scale model constant

for use in subsequent calculations of other flows.
i

The grid turbulence experiment of Comte-Bellot and Corrsin (1971) was

used as the "target" for our numerical predictions.	 When viewed in a co-

ordinate frame moving with the mean velocity, this experiment approximates

- 'homogeneous isotropic turbulence.

This study was presented in. an earlier report (P. Moin et al., 1978)

and is« rediscussed in this work to support the argument that model w-2 used

in conjunction with the vorticity equations produces similar results to

those obtained using the more commonly used model w-1. 	 The contributions

of Mr. P. Moin are gratefully acknowledged.

4.2	 Initial Conditions

We started with an initial field that is divergence-free and has a

spectrum obtained by .filtering the experimental spectrum at the non-

dimensional experimental time 	 T = Uo t/M = 42.	 U 	 = `10 cm/sec	 is the

experimental free-stream air speed,	 M = 5.08 cm	 is the size of the ex-

3 perimental' turbulence-generating grid, and	 t	 is the real time in seconds.

r
The initial field was otherwise random. 	 The generation of such a field is

discussed in detail by Kwak et al. (1975) and will be briefly outlined
4

herein.	 The filtered field is generated in k-space by setting:-

z
ui(k)	

_	 ^2^^ ^
E(k^^ 	 (aAi +ibBi)	 (4.1)

_27rk

where

^'

IS
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aA a _

I

^i E(k)	 =	 filtered experimental energy spectrum at time	 T	 U t/M	 42,
i

a	 =	 cos(e) 	 1

b	 =	 sin(6)

where	 9	 is a random angle,	 Ai	 and	 Bi	are unit vectors picked such

that	 Aiki = Biki = 0,	 otherwise random.

To insure that (4.1) is the Fourier transform of a real field, we

must have

i

ui(k)	 =	 u*(-k)	 (4.2)

where	 *	 indicates- complex conjugate.	 Now, by inverse transforming	 u,

U. 	 is obtained.

Using the above initial field, we shall use the methods of Chapters 	 I

2 and 3 to predict the spectrum at 	 T = 98.	 The predicted spectrum will

y
a

be compared with the filtered experimental spectrum at 	 T = 98.	 €

4.3	 Selection of	Cv1

The model constant was obtained by 'matching the computational rate

of filtered energy decay to that of the experiment (Fig. 4.1). 	 The values

of the constants obtained using different numerical schemes and different 	 _	
;g

models were in most cases within ten percent of each other 	 (Cv	 0.2 +_ 0.02,	 f

see Table 4.1).

4.4	 Results

Under the assumption that the computational box size is lar$e compared

f to the scale of the energy-containing motions, we can use periodic boundary
f conditions in all three directions. 	 A uniform cubic mesh system was used	 f'
t

with	 N,	 the mesh number in each direction, and 	 h,	 the mesh spacing,

± chosen such that the computation captures as much of the turbulence energy

# as possible (Kwak et al., 1975). 	 We used the sets

3{ N	 =	 16	 h	 =	 1.5 cm	 t	 =	 6.25 x 10	 sec
1

!; I
and

-3
j _	 _	 secN	 =	 32	 h	 -	 1.0 cm	 t	 -	 6.25 x 10

-	 y,
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When periodic boundary conditions are used, it was shown in Chapter 3

that the pseudo-spectral method is more powerful than any finite-difference

method.	 However, when the periodic pseudo-spectral methods cannot be used,

we may have to use finite-difference methods. 	 Since one of our objectives
is to determine the model constant for the vorticity equations, both the 	 +

x' fourth-order finite differencin 	 and -the pseudo-spectral methods were a -_g	 p	 p	 m	 pf{.

plied to the case of isotropic homogeneous turbulence.

4.4.1	 Fourth-Order Finite Differences

Figure 4-.2 shows the energy spectrum obtained by fourth-order finite-

differencing the vorticity equation, using model 	 w--1	 (Egn.. (2.1 )) for
the subgrid-acale model, on a 	 163	 mesh.	 Our results compare well with
the experimental results up to wave number 	 2.5,	 after which the inaccu-

racy of fourth-order differencing begins to show. 	 Fourth-order differenc-

ing the primitive equations (Kwak et al., 1975; Moin et al.,- 1978) produced

good agreement with the filtered experimental results using the primitive
variable version of this model.	 This shows that the vorticity approach is
equivalent to the primitive variable method. 'Thus the use of the vorticity

equations is definitely feasible in turbulent flow computations.

4.4.2	 Pseudo-Spectral Method

Figures 4.3-4.6 show the energy spectraobtained using the pseudo-

spectral method, with 	 16 3	 mesh.	 Fig. 4.3 shows the results obtained using

model	 w-1	 (Eqn. (2.15))'•	 We note that for	 k > 1	 the computed results

are considerably lower than the experimental values.	 This indicates that

I?	 the subgrid-scale model is drainingtoo much energy from the small struc-

tures, and, since our total energy is equal to that of the filtered experi-

mental value, too little energy is taken out from the large structures. 	 In

this case, we used the pseudo-spectral approximation to calculate the sub-
I `	 .grid scale terms as well as the other terms

'	 Figure 4.4 -shows the energy spectrum obtained using second-order cen-
tral differencing to approximate the derivatives appearing in the subgrid-

scale model (see Section 3;.$):
.f
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61 f _ f(i+l) - f (i-1)
Sx	 2h

^ ^  X^	 ^^ R	

^	 ,..5 wad,

We note a considerable improvement in the spectrum, except for a small

'''
accumulation of energy at the extreme (high wave number) end of the spec-

trum, which was present to a lesser extent in Fig. 4.2.

Figures 4.5 and 4.6 are the results from a	 16 3	computation using

the pseudo-spectral method and model	 w- 2	 (Eqn. (2.16)) for the subgrid-
scale model.	 We note the same behavior in Fig. 4.5 as in Fig., 4.3; the

computed spectrum falls below the experimental spectrum, indicating that

using the pseudo-spectral method to compute the spatial derivatives in	 t

the subgrid-scale model damps too much energy in the wave number range	 3

k > 1.	 Using second-order finite differencing to compute the partial

derivatives in the model	 W -2	 (Eqn. (2.16)) , we obtain a significant

improvement in the computed spectrum (fig. 4.,6). 	 These results are similarx.

to the results obtained using model 	 W- 1,	 indicating that the two models

are equally good..

Figure 4.7 shows the energy spectrum obtained from a	 32	 pseudo-'

spectral calculation, using second-order finite differencing to compute 	 r
the partial derivatives in model 	 w- 2.	 The results are similar to those 	 k

of the	 16 3	computation.

.. It can be concluded from these results that the vorticity equations

provide a satisfactory basis for the simulation of homogeneous isotropic'

turbulence.	 Both models	 w -1	 and	 w- 2	 produce similar results. 	 Model?

W- 2,	 given by Eqn. (2.16), will be used in the following computations, 	 p;

due to the computational advantages it offers over model 	 W- 1	 (see Sec-

s	 coarse	 16	 ^tion 2.3).	 Finally,	 p-y, a relatively	
3	

mesh is sufficient to ca

! Lure interesting features of the homogeneous -zsotro is turbulence	 and nog	 g	 isotropic	 ,
' significant improvement in the energy spectrum was obtained by using a 	 is

323	 mesh system.

4.5	 Computational Details

The calculations described above were executed on the CDC-7600 at

NASA-Ames Research Center, using programs written in Fortran.	 The total

storage requirements (octal) were as follows:
r

_	 39	 s



16 3 Calculation

Core Fourth-orderLarge	 Memory: 310,360

Pseudo-spectral 230,000

Small Core Memory: Fourth-order 104,465

Pseudo-spectral 61,334

32
3 Calculation

Large Core Memory: Pseudo-spectral 1,110,000

Small Core Memory: 126,605

The computing time per computational time step was approximately as fol-

Aows:

16 3 Calculation
gI

Fourth order	 2.5 sec CPU timeit

Pseudo-spectral 4.0 sec CPU time.

32
3 Calculation

Pseudo-spectral 34 sec CPU time.

A

it

jy
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Chapter 5

j	 MIXING LAYER: TWO-DIMENSIONAL COMPUTATION

F^k	
5.1 Preview

It is well documented (Winantand Browand (W&B), 1974; Brown and

Roshko (B&R), 1974; Konrad, 1976; Dimotakis and Brown (D&B), 1976) that

in some cases the spatially developing mixing layer contains coherent
^	 S

structures (in the terminology of B&R) or discrete vortices (in the termi-

nology of W&B). In these experiments, the mixing layer grows via the

interaction of neighboring vortex-like structures that rotate around and

, combine with each other to form a similar but larger structure (see Fig._

5.1). This mechanism is called vortex pairing. In this chapter we study

the vortex-pairing mechanism by perturbing an infinite array of vortices.

The effect of the initial perturbation on the roll-up is discussed. All
cases treated in this chapter are completely two-dimensional;' three-

I+'	 dimensional cases are discussed in the next chapter.

5.2 Some Experimental Results

The mixing layer is generated in a laboratory by bringing together

two streams of 'fluid of different streamwise velocity (see Fig. 5.2).
1

	

	 The measured mean velocity profiles, at different streamwise positions,
are self-similar and can be fitted by an error-function (Spencer and Jones

r	
(S&J), 1971):

u - r + (1 
2 

r) (1 - erf (G(T1-T1'))) 	 (5.1)

_
k

where

r = u/u,
2 1

ul = velocity of the high-speed side,

u2 = velocity of the low-speed side,	 a

T1	 z/ (x - xo)

a = spread parameter

z - cross -flow coordinate,

	

_	 41



 T.
I
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43r
^U

x	 =	 streamwise coordinate, and ^^^ -	 ^^ 	 -.:
: xo	 -	 virtual origin of the layer.

y

Rearranging (3.1) and normalizing the velocity on 	 Au = u1 - u2 ,	 we
i

A

:^
t

get
Y

U = , 0.5 erf (6(p-r>
0

)) (5.2)
ry

s	
xr ;

ff
Au

I "^

'^

where	 U = (ul + u2) /2	 is the mean velocity.	 The spread parameter	 G	 is - ?
a function of	 r,	 and the spread data can be fitted by the expression:

I

CY	 1-r ;

where	 cr	 is the spread parameter for 	 r	 0.	 S&J report 60	 11	 for f	
^.'

other values of	 a ;	 see Table 1.1.

Defining the momentum thickness,	 6,	 to be z

fO° 	 -
6	 =	

2	
(u - u2) (ul - u) dz

(AU)	 ^
(5.4)

^	 l	 (u-U)2— -	 dz
1	 i	 f^	 4,	 2 '^

t(^u)

and substituting (5.2) in (5.4), we get

X_X
X_ xO	 o	 nu

e_
a /27r	 a 2	 U (5.5)

x °o	

-

(5.6)

e , 2^^r

Since	 a	 is constant	 E n.	 5.5	 shows that the momentum thickness grows

linearly with	 x.'

Substituting (5.6) in (5.2), we get:
I

(Z— Z0)
u — U	 =111 	 ^u	 0.5 erf (5.7) r

6 427r

Due to computer limitations, one cannot set up a uniform grid that

covers the length of the experimental set-up (1.8 m for the W&B case) and
42 - ;
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at the same time resolves the large-eddy scale (ti l-4 cm).	 We propose top" i
^i

use a uniform	 rid that moves with the mean s peed	 U.	 The size of theg	 p

computational, domain is chosen so that two vortices are captured in the

initial field; i.e., we can imagine that we are following the fluid in

the dashed box in Fig. 5.1 as it moves downstream.
^^

11 In our frame the layer will develop in time rather than space. 	 We

shall in fact be studying a portion ofa time-developing, mixing layer.

This layer can be thought of as being created by having two infinite coun-

termoving , streams of velocity ± Au/2	 brought in contact suddenly at 	 T = 0. a
this flow, the mean quantities will be horizontal planar-averaged quan-

or ,	 example, the mean velocity profile will be defined as

` < u >	 =	 a ffu x, y,z,t	 dx dy	 (5.8)x
y

.
I The momentum thickness, defined as ^?

< u >	 2

e(t)_ 4	 Du
xy

dz	 (5.9).{i
will be a function of time instead of space. 	 According to the Taylor

hypothesis, the state of the flow at the experimental streamwise distance

x	 is the same as that of the computed layer ar `'the computational time

variable	 t.	 The variables	 x	 and	 t	 are related by the expression:'

x	 =	 Ut	 (5.10) -,

.! Substituting (5.10) in (5.5), we get an expression for the expected £:

momentum thickness of the time-developing layer:

I

U t.- t
"

6(t)	 =	 o	 Au	 (5.11) t
` + Q 2	 277o^

Equation (5.11) shows that ,e(t)`	 should grow linearly with time, with
t

de	
1

=
Ludt	

(5.12)
2	 27r

0
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5.3	 Boundary Conditions

4

i' The coordinate system used is shown in Fig. 5.3, where the x-direction

is the streamwise direction, the y-direction is the spanwise direction, and

the z-direction is the cross-flow direction. 	 We shall use periodic bound-
ary conditions in the x- and y-directions; this is allowed if the size of

the computational box is sufficiently greater than the integral scale in

a given direction.	 At a large enough	 z	 location the flow is essentially

horizontal and uniform. 	 We can use no stress boundary conditions in the

z-direction (i.e., 	 3u/3z = Dv/8z = w = 0	 at	 z = 0	 and	 z = L)	 if the

boundaries of ourbox in thisdirection are sufficiently far from the cen-

ter of the layer.	 This will allow us to expand the velocity fields as fol-

lows:

^`r^`„
	 i(kx+k2y)l	 n7rz

U,	 - 	 u(kl ,k29n) a	 cos(L	 1	 (5.13)
k2 kln	 3

v= E
r	 ^	 i(klx+k2y)	 n7rzE E v(kl ,k2,n) a	 (5.14)cos(L

n	 k2 kl	 \	 3

i(klx+k2y)
	 (

^(kIk
n7rz

w =	 E;;a	 sin )	 (5.15)l^.^L	 ,2,n)	 Lk2n	 kl	3

I
and the vorticity fields as follows:

_	 i(klx+k2y)rr	 nTrz`1 wl - L.^EE W1(kl ,k29 n) a	 sin
1	

(5.16)L
n	 k2 kl -	 `	 3

_	 i (klx + k2y)	 n7rz
w 2	 ^^ w2 (kl llk22n) e	 sin	 (5.17)

L3
j

2	 1
Z^	

i (klx + k2y)	 nfrz
= r^W3 (kl ,k2 ,n) a	 cos	 (5.18)W	

l
3	 ` L3

22 kl

The pseudo-spectral method will be used to approximate the partial

derivatives.	 The numerical technique was discussed in Chapter 3.'

t
r
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5.4	 Initial Conditions

1f' We want to prescribe an initial profile that corresponds to a pair

I: of vortices.	 It has been shown in Chapter 2 that filtering a line vortex
produces a. vortex with a Gaussian distribution of vorticity in the core..

We shall use this fact to generate our initial conditions.

+a The initial conditions are generated by starting with two line vor-

tices in the spanwise direction at 	 (x= xi, z= L3 /2)	 and	 ( x = x2 1' z= L3/2)
(see Fig. ;5,4), and filtering in the	 x- z	 plane with the relatively wide

-	
Gaussian filter:

2	 2

G(x,z)	 =	
1	 exp -	 x	 -	 z	 (5.19)'

A1A3	 6hi	 6h3

where	 hi 	is the mesh size in the i-th direction 	 (	 = 1,3)	 and	 Ai

(i = 1,2)	 is defined by Eqn. (3.61). 	 This will produce the vorticity

i
field:

1	 (x-x1)2	 (x-x2)2	 (z-L3/2)2_
W2	 =	 G1 A A	 exp -	 2	 + exp -	 2	 exp -	 -21 _3	 6h1	 6h

0<x<Ll 	0<z<L3
(5.20)

j wl	 =	 w3	 =	 0

W (xl ,z)	 =	 w2 (x+nLl ,z)	 n = ±1,±2,... (periodicity)

where	 C1 	is an arbitrary constant that adjusts the strength of the vor--

tices.:	 Note that these vortices can be elliptical; they are 	 h
1
 /h

3
	times

as long in the streamwise direction as in the cross flow direction.
Equations (5.20) correspond to a perturbed infinite array of vortices

i! with a perturbation parameter 	 S	 equal to:
1t

^^,

j'..
xl-x2 

1- ^	 =	 _	 (5.21),
(
! i'I!

2	 L1

a S = 0	 corresponds to `a uniform (unperturbed) vortex array, and we need

to deal only with the case	 S > 0.
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;.r Figures 5.6a-f show constant vorticity contours for 	 = 6/16, 5/16,

4/16, 3/16, 2/16, and 1/16.	 Note that for large '$ 	 the vorticity con- ,r
tours look like those for a single distorted vortex. 3

5.5	 Mesh Size Selection }

We have shown in Chapter 4 that a 	 16 x 16'x 16	 mesh system can re- xi
;f	 solve isotropic homogeneous turbulence with acceptable accuracy. 	 For the

cases considered in this chapter there are no variations in the spanwise
k

direction.	 We dropped the number of meshes in the spanwise direction to

N2 -= 4,'_ the minimum number of meshes that our three-dimensional code was

designed to handle. 	 In the cross-flow direction the mesh number was in-

creased to	 N3 = 33	 in order to allow the layer to grow in this direction.;
to

This	 gives a total number of mesh points of	 Nl x N2 x N3	 =	 16 x 4 x 33
-, 2112.

The spanwise vorticity is defined by `;	 {

W2	 8z u	
8x v	 (5.22)

f

Averaging (5.22) over 	 x-y	 planes and using periodic boundary conditions,

we get	 -

< w2 >x	 =	 dz < u >x	 (5.23)
y	 y

If we substitute in (5.23) the vorticity distribution given by Egn. (5.20),, :{

we 'get:

Y

(Z-L3
 /2d	 -	 2

dz < u >	 =	 C1 L1A3 exp -	
6h2	

(5.24)x y
3

`	 This ordinary differential equation can be solved together with the bound-

r	 ary condition:

< u >	 =	 0	 at	 z	 =	 L3/2	 (5.25)x
.	 y

The solution is obtained by simple integration:
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.1
i

I

i

is	 I
I	 .

C1	z-L3/2	
g

< u >_	 — erf	 -	 (5.26)
xy	 L	

3
1	 T h

Non-dimensionalizing the velocity 	 Au,	 we get;

z-L3/2
< u > y
	

=	 0.5 erf	 (5.27)
Th 3

Equating Egns. (5.26) and (5.27) and solving for 	 Cl,	 we get:
'	 _	 9

C1	 =	 0.5 L1	 (5.28)

^a

The length scales are non-dimensionalized on the momentum thickness.
1

f	 The mesh size was chosen such that the initial momentum thickness is equal 	 a

to unity.	 Substituting (5.27) in Egn.	 (5.9), we get:

T i s

-	 - 
ein	 h3	 l	 i

L,	
and solving for	 h 39	 we obtain

h3	 =	
6	

=	 1.023	 (5.29);	

3

The mesh size in the streamwise direction was set equal toI	
^

i	 hl	 =	 3 h3	 =	 1.364	 (5.30)

The non-dimensional time step was picked up to be equal to:
i

DuAt
AT=	

6.	
=	 0.0799	 (5.31)

f	 in

f	 which yields a Courant number such that:

I	 Nc	 =	
Uco At	

<	 0.03

I i	 which is well within the stability criterion and assures that the error

caused by the time advancement will be acceptably small.

'	 The mesh size in the spanwise direction is irrelevant for the cases

considered in this chapter. 	 We have set	 h 2 = h3.
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5.6 Selection of R

Ve have shown in Section 5.2 that, to accord with the experimental

observations, the momentum thickness 6(t) must grow linearly with time;

and, using a0 11 (SO), we expect:

de
Qudt-	

- 0.018	 (5.32)'

a 2 2,T	 a

oWe have run a series of calculations for different values of
g

Fig. 5.5 shows the momentum thickness a/b in plotted vs. T for the

cases run. For the highly perturbed cases, ^ > 4/16, the momentum thick-	 l

ness 0(t) does not grow linearly in time. However, for 0 3/16-, 2/16,

and 1/16, 0(t) does grow linearly in time, with d8/Qudt = 0.020, 0.015,' 	 j

and 0.009, respectively.

Figures 5.6 and 5.7 show constant vorticity (contour) plots for the

various cases at times T = 0 and T = 16.78, respectively. Figs. 5.6a-c

and 5.7a-c show that for large $ we have essentially one elliptical vor-

tex which grows "fatter" in time, to become more or less circular at time

T = 16.78. Figs. 5.6d-f 'show that for small R, we have initially two

distinct vortices; these vortices draw closer and rotate around each

other (Figs. 5.7d-f)• For the case ^ = 3/16, the two vortices merge to

form one vortex at time T = 16.78 (Fig. 5.7d).

The 'above observations indicate that case	 =;3/16 gives results

comparable to the experimental observations. The spread parameter Go

obtained for	 3/16 is equal to

6o	
d6 1	

= 9.97

end t 2

which is within 10% of the experimental results of SO.

5.7 Mean Velocity Profiles

The mean velocity profile < u > y defined by Eqn. (5.8) is a`func-`

tion of z and T. Fig. 5.8 shows 2< u >xy/Au plotted vs. z/0 at

AT = '2.4 intervals, for 5 = 3/16. The profiles collapse into one, indi-

cating self-similarity of the mean velocity profiles.
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Self-similarity is also observed in the experimental data. Thus, as

vor
—

far as the mean profile is concerned, the data can be fit by pairing

tices with	 _ 3/16.

5.8	 Mean Turbulent Intensity Profiles y

In our computational box, the non-dimensional mean turbulence inten-

sity is defined as

2

— q--	 =	 l	 - < (u- < u >) 2 -+ (v- < v >	 ) 2 + (w - < w >	 )	 >2	 2 xy	 xy	 xy2(Au)	 2(Au)
(5.33)

x

where	 <	 >xy	 are planar averages defined by Egn. (5.8).

Figure 5.9 shows the mean turbulence intensity plotted vs. 	 z/6,	 for
4
i	 the case	 S = 3/16,	 at	 AT = 2.4	 intervals.	 We note that the turbulence

intensity decays slightly at the early stages of the pairing and then

reaches a self-similar situation.

Compared with the experimental results, our peak intensity	 q2/2(Au)2 1max-2
= 2.06 x 10is substantially lower than the experimental value reported 	 -

by S&J	 (3.5 x 10 2 )	 The low value of the maximum.turbulence intensity is

due to the fact that we did not take into account the subgrid scale contri-

butions, and that our field is 'strictly two-dimensional, whereas in reality

spanwise fluctuations are present in the experiment of S&J.
t

5.9	 Summary

E

{	 It is interesting to note that vortex pairing as capable of producing a
^
!	 self-similar mean velocity and turbulence intensity profiles, and a linear

growth of the momentum thickness that compare with experimental results

i (for	 V= '3/16)'.	 We note that, due to periodic boundary conditions, once

j the vortices have paired we get a uniform vortex array	 ((3 = 0)	 and the

I
! pairing and layer growth stop. 	 If we want the pairing to continue, we

would have to perturb the array by displacing the vortices in the stream

^j wise direction.	 We have not done this because in the actual flow succes-

j
I„

sivikI)airings are not clearly separated and are random.

! A uniform array of vortices can be perturbed in several different ways;

for example, by adding a cosine distribution of vorticity to a uniform array,

-	 -we can enhance the pairing (see Appendix C) and get results similar to the

-	 -	 --	 -
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Chapter 6

MIXING LAYERS THREE-DIMENSIONAL COMPUTATIONS

6.1	 Preview

In Chapter 5 we started with a two-dimensional initial field, and the
3

i	 numerical	 simulation	 of the governing equations stayed two-dimensional.
o,

However, actual flows are rarely two-dimensional, and truly turbulent

flows are always three-dimensional.	 (Two-dimensional turbulence is ap-

proximated by certain atmospheric structures and in highly stratified

fluids.)	 In this chapter we evaluate the importance oflarge structures1
3

in the development of the mixing layer, which is two -dimensional in the

conventional mean sense but contains the three-dimensional structures.

6.2	 Boundary Conditions and Mesh-Size Selection

the boundary conditions and coordinate system of Chapter 5 will be

used.	 Periodic ` boundary conditions will be used in the s 'treamwise	 (xl)
j

)	 directions, and no-stress 	 conditions in theand spanwise	 (x2	s

r ^ cross-flow	 (x3 )	 direction.
r

1
The number of meshes Used for the cases discussed in this chapter is

16x 16X 33 = 8448.	 The mesh sizes and time step are the same as in the

previous chapter.	 After non-dimensionalizing all coordinates on the ini-

tial momentum thickness and the velocity on 	 Au,	 the mesh size in the cross-

flow	 (x3)" direction is:

h3	 =	 1.023.

In a mixing layer the eddies are suspected of being elongated in the stream-

wise direction, so we have set:

4h	 =	 h `.

a	 f and

h2	 -	 h3
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We note that if the mixing layer is completely coherent in the spanwise

direction the size of the mesh in this direction 	 (h2)	 is not critical.

i
The non-dimensional time step was set equal to

QuA t
AT	 _	 _	 0.0799

I
Bin

I

,`	 1 6.3	 Initial Conditions

We begin by taking, the view that the mixing layer is a superposition

of a random velocity	 (u)	 and a mean velocity profile	 (u/Au)•	 We want

I' the initial random profile to be solenoidal' (i.e., 	 0 • u = 0),	 random in
_ a

a region of space (see Fig. 61), and to decay to zero outside this region. 	 $

I In Chapter 3 we showed how to generate an isotropic random velocity

field	 u-	 on a	 163 	rid .	 To generate the random	 art of the initialg	 g	 P 

j

_I
field that we need here, we start with the field, of Chapter 3 and forma

I ^'( I , J , L)	 =	 !1 
I 
(I,J L-9)	 L = 14,...,20	 (6.1)	 ra

a

0	 otherwise	 f
i

(where	 I, J, L	 are the mesh point indices);	 i.e., a random field over

the middle of the shear layer that drops abruptly to zero outside. 	 In

order to smooth out the jump between the two regions,	 is filtered in

the z-direction with a Gaussian filter. 	 We get:

=	 I ^i(z')	 G(z-z')	 dz'	 (6.2)
JJ

f	 r where

l	 z2F	 +
3	 6h 3

the initial field is 	 by settingThe random portion of	 generated

t u	 =	 0x	 (6.3)

—i
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The initial 4onditions were completed by adding to a an error function

mean velocity:

(Z-L3 /2)
U
4u	 =	 0.5 erf	

(6.4)

h3

Two cases were run:
i

Case a:	
ui max	

0.01	 -(i	 1,2,3)
Au

ui
Case be	

max	
0.30	 (1 = 1,2,3)

Au

In these two cases the large (grid) structures are 'assumed to be random
x fluctuations.

The two-dimensional cases studied in Chapter 5 could be considered as
unsteady laminar flows, since there is no randomness.	 We emphasize that

theme are at least two kinds of randomness:

i)-- Randomness, of the pairing in which the vortices vary in shape, sepa-

ration distance, strength, number, etc., in a random way.	 In Chap-

i
ter 5 we computed realizations using spacing as the perturbation., 	 j

ii)	 Randomness meaning noisy (random) fluctuations.

The calculations described above are designed to look into the second

type of randomness. 	 To see what the combined effect would be, we ran still

^I another case in which the initial field contained a vortex pair (with

3/16)	 and a superimposed random field.	 For the latter, we took the random-

field of case (b) described above. 	 This case rill be called (c) .
Table 6.1 summarizes the cases studied in this chapter.	 In Appendix D

we investigate the interaction between streamw ;ise cellular structures and

i; spanwise vortex pairing.

a
6.4	 Momentum Thickness

^t
In order to study the development of the mixing layer, we would need

A a measure of the effects of the turbulent rotational region on the non-
^s

turbulent' irrotational region; the momentum thickness 	 A(t)	 is one such

measure.	 We note that	 0(t),	 as defined by Eqn. (5.4), is a measure of

i
the momentum defect of the irrotational region.	 The momentum defect is due

to the spreading of vortioity into the irrotational region. 	 Since, in our

ti computation, we have dropped the viscous terms, the growth of the momentum
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h
thickness measures the inviscid mixing or the entrainment of irrotational

fluid.

Figure 6.2 shows the non-dimensional momentum thickness	 0/6	 (0 ,i n	 .n
is the initial momentum thickness) plotted vs. 	 T	 for the three cases

considered.	 We note that in all three cases	 6	 grows linearly with time.

The growth rates	 (d6/Audt)	 for cases (a) and (b) are not very different,

[	 despite the large differences in turbulence levels. The values of	 0.008

3!	 and	 0.011,	 respectively, are also substantially lower than the growth

rate	 (0.018)	 reported experimentally by S&Jr  they are, in fact, lower

than apy of the values in Table 1.1.	 The rate of growth of the momentum
thickness is only slightly dependent on the intensity of the turbulent
fluctuations in cases (a) and (b), and a higher turbulence intensity pro-

duces a higher growth rate.	 Furthermore, when large organized structures

are present (case (c)), the momentum thickness growth rate, 	 de/Audt

0.02	 is equal to what it was in the absence of random fluctuations.

Fig._ 6.3 shows the non-dimensional momentum thickness 	 6/0 in	plotted vs.

T,	 for case (c) and the-two-dimensional case with	 = 3/16.	 Only at the

early stages of the development of the layer do the random fluctuations
affect the growth of the momentum thickness.

3x

6.5	 Mean Velcici.ty Profiles

An important characteristic of the experimental turbulent mixing
3	 layer is the self-similarity of the mean velocity profiles.	 In our com-

putation, the mean velocity 	 < u >xy	 is defined by Egn. (5.8).'.	 _
Figures 6.4a, b,, and c 	 show	 2-< u >xy/Au	 plotted vs.	 z/6	 at

AT = 2.4	 intervals, for cases (a) ,	 (b) , and (c) , respectively'. 	 We obtain

self-similar profiles in all cases.	 This means that self-similarity may

be obtained from a wide variety of different flow structures, and does not

I	 provide much information about which initial conditions best represent
physical reality.

.' 6.6	 Mean Turbulence Intensity Profiles

Experimental observations show that the mean turbulence intensity

profiles are very nearly self-preserving (Townsend, 1956).	 This means

that
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2

-	qf(6)	 (6.5). 2 
(Au)

Defining the integral of the turbulent energy 	
IT	

at a given downstream

distance to be

2

I
T 
= f	 —	 2 dz	 (6.6)

-°° 2 (pu)

and substituting (6,5) in (6-.6), we get

IT	 =	 Of 	 f 16) dQ0	 _	
C6	 (6.7)	 a

^	 I where	 f,

1

C	 J	 f(TI) d(Ti)
ao

' Non-dimensionalizing on the initial integral of the turbulent energy,

4:7	 Ii T,in'	 we get,

}
IT	

6	
t-to

r -	 -----	 -	 (6.8)
TT,in	 ein	 tin-to

Equation (6.8) shows that 	 IT	 grows linearly with time if the profiles of
2	 2

q /2(Au)	 are self-similar.	 To compute	 IT ,	 the mean turbulent energy

r defined by Eqn. (5,33) was integrated numerically in the z-direction.

' Figure 6,5 shows	 I /I	 plotted vs.	 T,	 for the three cases. 	 WeT	 T,in
j note that for all three cases 	 I /I	 decays with time.	 However, onlyT	 T,in

for case (c), in which large structures are present, did the decay level

off.
Figures 6.6a, b, and c	 show 'q 2/2(Au) 2	plotted vs.	 z/6,	 at AT4 ._

2.4	 intervals, for cases (a), (b), and (c), respectively.	 Consistent with

the integral of the turbulence energy results, the turbulence intensity

decays in-time.	 The most significant drop of the maximum turbulence inten-

sity occurs in the early stages of the development of the layer.

The fact that the integral of the turbulence energy decays, instead

of growing linearly with time, is a clear indication that the term (Eqn.

(2.16)) used in our equations (2.28) to model' the subgrid scale motions,
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has too much of an inhibiting effect on the growth of the turbulent flue-

{ i tuations.
E) In order to support the above argument, we ran a case in which we

started with the same initial conditions as in case (b), but set 	 C	 = 0. q
v

Fig. 6.7 shows	 q2/2(Au)2	 plotted vs.	 z/0,	 and Fig. 6.8 shows `-I /IT	 T,in

plotted vs.	 T,	 for this case.	 It is clear that the turbulence intensity

1

grows with time, indicating that Li case (b) the subgrid scale model is
a

inhibiting the growth of the turbulence energy.

Recall that when the initial conditions contain nothing but large strue-' -'

tunes we obtain self-similar 	 ur_bulent intensity profiles (see Section 5.8),

{ even with Cv = 0.188.	 The decay of the total turbulence energy (Fig. 6,5){

i might suggest that the subgrid scale constant determined for the decay of the

t
isotropic turbulence case might be too high for the mixing layer case. 	 How-

7
ever, the growth rate of the momentum thickness for case (b) is much lower }-

4 than the growth rate reported experimentally. 	 With	 Cv = 0, the case (b)

layer did not grow, i.e.,	 d6/Audt = 0,	 at least up to	 T = 9.6,	 which #,

_ indicates that lowering the subgrid scale constant will not give us a momen-

tum growth comparable to the experiments. 	 We thussurmise that it is essen-

tial that large structures be included in the initial conditions if the
,^

i numerical results are to reproduce significant features of the experimental
z

- mixing layer. ` In principle, we could begin with a laminar shear layer and

some small perturbations. 	 The Kelvin-Helmholtz, instability would then pro- n

duce large vortical 'structures and would eventually produce a velocity field

G j with the experimentally observed features. 	 A computation of this type would

require at least an order of magnitude more computing time. 	 As,we have

noted earlier, toe subgrid scale model would inhibit the growth of the per- ?'

turbations and is not adequate for a computation of transitional flow.	 We
shall need to modify the ,model if transitional flows are to be computed.

An alternative approach would be to increase;.the amplitude of the perturba-

tions and lower the constant of the subgrid scale model, or use a finer mesh.

6.7	 Vorticity Contours

In order to investigate the eddy structures and their dynamics, vor-

ticity contours in x-z planes have been plotted in ` Figs. 6.9 and 6.10, for fitt;

the three cases considered, at times	 T	 0	 and	 T = 16.78.
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Figure 6.9a shows the spanwise vorticity contours for case (a), at

j time	 T = 0.	 The combination of a weak random velocity field and a smooth -"

mean velocity distribution yields vorticity contours that are almost unaf-

fected by the random fluctuations.	 The development at 	 T = 16.78,	 shown

in Fig. 6.10a, does not indicate any significant effect of the random
fluctuations on the mean.	 The mean field simply masks the weak fluctua-

tions in both the initial conditions and at	 T = 16.78. 4,

Figures 6.9b show	 the spanwise vorticity contours for case (b), at 1

different spanwise	 (x-z)	 planes.	 The combination of a strong random 4
velocity field and a mean velocity yields vorticity contours that look

spotty.	 At time	 T = 16.78, Figs. 6.10b show that the spots appear much;

j^ more elongated. 	 At some planes (e.g., plane 5)	 there are two vortex tubes =

that appear as if they might pair, while other planes show only one vortex

tube.	 This indicates that the initially strong random fluctuations are

being organized by the mean field, and that the layer is developing through
a combination of diffusion (due to the subgrid scale model) and vortex pair-

i ing'

r-.

Figures 6.9c show the spanwise vorticity contours for case (s) at df- j

ferent spanwise	 (x-z)	 planes.	 Adding random fluctuations to the two span-'
wise vorticities causes the contour :lanes of the spanwise vorticity to be-

come irregular,	 At time	 T = 16.78,	 the vortices have merged in some

k; planes (e.g., planes 1-4) in Figs. 6,Oa 	 whereas in ;other 	 lanes (eg	 ,	 g.,p `

planes 5-6) the vortices are still in the process of merging. 	 This indi-
sates that strong random fluctuations can affect the ,dynamics of vortex k';

pairing,

6.8	 Two-Point Correlations y.

In order to investigate whether or not the mixing layer shows a ten-
deny to increased or 'decreased spanwise coherence, the spanwise correla-

tion of the streamwise velocity fluctuations 	 (R IU (r,z))	 was computed.
Ruu	 is defined as I ;F

J	 u°( X ,Y, z) u"(x,y+r, z) dxdy
R	 (r,z)	 -	

x	 Y	 (6.9)
uu Jxf(x ,u Y, Z ) u`r ( x ,Y, z ) dx dy

y
s'
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where

1

a

xy

Numerically, this quantity is computed as follows.	 We first calculate

' u",	 then take its discrete Fourier transform in the y-direction to yield^	
^.

n"(x,k ,z).	 R(x,k ,z)	 is then defined to be equal to2	
2h

R(x,k21 z)	 =	 u"(x,k29Z) 'u * (x,k2 ,z)	 (6.10) {'
a

i where	 u"*	is the complex conjugate .of 	 u".	 Inverse transforming (6.10)'

yields the discrete equivalent of

^

R(x,r,-z)	 u"(x,y,Z) u"(x,y+r,z) dy `	 (b.11)fy

Finally, line-averaging (6.11) in the x-direction and normalizing yields i

the discrete equivalent to (6.9).

Figures 6.11 show	 Rui	 at	 T	 0	 and	 T	 16.78,	 plotted vs.	 r;

at various -z	 locations.	 We shall define the correlation length to be

the abscissa of the point where 	 Ruu	 first crosses the r-axis.

For case (a), Figs. 6.11a show no significant changes in the corre-

lation length between time 	 T =- 0	 and	 T = 16.78.	 In some parts of the

flow the correlation length seems to increase, whereas in other parts the

correlation length seems to decrease. 	 These variations are not signifi-

cant.

Figures 6.11b show that when we start with a large random initial

fluctuation superimposed on a mean profile (case (b)), the correlation
t

length increases with time. 	 This indicates that the layer is becoming

more organized in the spanwise direction and is consistent with the result

stated earlier that the vorticity tends to clump. 	 Apparently there is a

.'" tendency toward the formation of two-dimensional vortices.

Figures 6.11e show that when we add a random field to coherent struc-

tures (case (0), the correlation length decreases slightly with time.	 The

only increase in the correlation length occurs at the center of the layer

(plane 17 in our case).
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I If the spanwise correlation length of the streamwise.velocity is

f taken as a measure of the coherence of the layer, our results tend to

Indicate that a layer that begins with a random field becomes more co-
_'

herent, and one that starts with two-dimensional vortical structures loses

coherence when the random fluctuations are strong.

6.9	 Summary and Conclusions
i I

We have shown that the development of the mixing layer is highly de-

pendent on the initial conditions. 	 This dependence is partly physical and

partly numerical.	 Experimentally, the importance of the initial conditions

on the development of the two-dimensional mixing layer has been pointed
M i

F
out by several workers (Bradshaw, 196b; Batt, 1975). 	 Analytically, the

subgrid scale models have been developed under the assumption that all the

energy transferred by the large resolvable scales to the subgrid scales is  ';

dissipated.	 The decay of the turbulence intensity in cases (a) and (b)

indicates that it is doubtful that we can compute transition with the pres-

ent subgrid scale models.	 The presence of large structures in the initial

conditions is essential to the computation of inhomogeneous turbulent flows.

From the above observations we can conclude that in order to predict;

the initial development of a shear layer one would need a subgrid scale

model that allows the energy of the small scale field to build up and even-;
s tually'reach equilibrium with the large eddies. However, the later devel-

opment of a shear layer can be predicted with the present subgrid scale

models, provided the large structures are explicitly included in the initial {

conditions.	 For other flows, it would appear that inclusion of large strut- se-.

tures that at least approximate those of the physical flow is essential to

obtain reasonable results.	 Bass and Orszag (1976) attempted to ` study the
7,

evolution of a passive scalar field in a sheared turbulent velocity field,

but were unable to obtain physically realistic results.	 This may have been

I
due to the omission of the large structures in their initial conditions. _i
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Chapter 7

CONCLUSIONS AND RECOMMENDATIONS
t

j

In this work we have developed an approach to three-dimensional, time-

dependent computations of flows using the vorticity equations.	 A general

method of deriving conservation properties that is applicable to any numer-,

'	 cal method in incompressible fluid mechanics was given; its use simplifies

the analysis of numerical schemes.	 .'
x

The use of a filter which is smooth in real space has been shown to

I	 be essential for the treatment of rotational-irrotational region interac-

tions. '	 The use of Fourier transform methods allows accurate and fast treat-
- —	 — —	

4

ment of the term	 U.W.- u.w ,	 which arises as a consequence of filtering.
3

This is a definite improvement over the expansion in Taylor series (Leonard,

I

k	
1973) used in previous studies (Kwak et al., 1975), which we believe should

be used only when the use of transform methods is not justifiable.

The vorticity equations have been shown to provide a satisfactory
4 

basis for the simulation of homogeneous isotropic turbulence.	 Comparison

of our results with results_ obtained using the primitive variable equations

(Mansour et al., 1977; Moin et al., 1978) shows no significant differences.

A, new subgrid scale model has been developed and shown to give results
comparable to those obtained using the vorticity model (Kwak et al., 1975).

The new model offers advantages both in computational; speed and in storage.
„j

{	
We found that, for the calculation of isotropic homogeneous turbulence, the

fI,
subgrid scale constant depends only slightly on the numerical method 'used.

The variation is about ten percent and is not likely to have a significant

effect on the computed' results in shear flows. 	 The use of Fourier spatial

i
^ 	 differencing has allowed us to look more carefully at the subgrid scale

!	 model,; and it has been found that replacing exact derivatives with second-

I	

order differences (roughly equivalent to averaging the model spatially

(Love and Leslie,, 1977)) produces improved behavior of the ,spectrum.

No-stress boundary conditions in one direction and periodic boundary

conditions in the other two directions have been incorporated in a three-,

S

1	 dimensional, time-dependent code.	 Flows in which these boundary conditions
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can be justified (e.g., two-dimensional wakes, planar jets, mixing layer)

can be investigated using this code. 	 We chose the mixing layer.

Two-dimensional computations of the turbulent mixing layer have showni'`

" that pairing vortices produce self-similar mean velocity and turbulence

intensity profiles.	 The growth rate of the layer is strongly dependent on

the initial conditions, a fact also observed experimentally.

Three-dimensional computations have shown that the presence of large,

Organized (i. e. 	 not random) structures is essential if the simulation is

to reproduce the essential features observed in the experiments. 	 These

computations suggest that in order to simulate the initial development of 0.a

a shear layer one would need a subgrid scale model that allows the energy

of the small scale field to build up with time and eventually reach equilib-,

rium with the large eddies.	 However, the later development of a shear layer

can be predicted with the present subgrid scale models, provided the large s

structures are explicitly included in the initial conditions. Ar

Our results using different initial conditions indicate that self-
similarity of the mean velocity profiles can be obtained more easily than

'self-similarity of the turbulence intensities. 	 The addition of strong ran-

dom fluctuations to a flow containing pairing vortices disturbs the pairing
in a way that causes the vortex tubes to exhibit spanwise variations, and

whether or not the merging; is completed depends on the spanwise locations.

This may explain the onset of three-dimensionality seen in experiments. 	 Fig.

°7.1 is a conjecture of what we think might happen. 	 The section of the vor-

tex tube that did not merge could interact with the vortex structure just
"ahead (or just behind) to'- forma horseshoe vortex. 	 This horseshoe vortex

} may get stretched over several rollers, giving the appearance of cellular

- structures' (B&R, Konrad) .
it Appendix D we study the interaction between streamwise and spanwise '•

; vorticity.	 Again, the detailed results depend strongly on the initial con-

ditions.	 Each .free shear ,flow is unique, and the universality that is

^R4 sought exists only at large downstream distances. 	 This may mean that the

computational "'prediction" of free shear flows is feasible only to moderate

accuracy= the precise behavior ofan individual free shear flow may depend

` on physical details that are not easily controlled.	 This means that some

experimentation will always be necessary.
i
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Work remains to be done on the development of a subgrid'scale model

(	 that incorporates flow-regime dependence. Ideally, one would like a model

that can handle both transition and developed turbulence. With such a
a
r

model, problems associated with the initial conditions can be studied

more carefully, since the linear stability theory is well understood and

the initial conditions can be chosen to be solutions of the Orr-Sommerfeld

equations. This kind of computation will help understand the. effect of the

i
initial conditions on the development of the mixing layer, but will not

reproduce experiments exactly.

In the case of the mixing layer, the use of periodic boundary condi-

tions is justifiable only if we move with the mean speed of the flow., -How-

ever, the size of the eddies grows linearly with the streamwise distance

(in our frame linearly in time), and we reach a point at which the size of	 9

i the box must be increased. In a stationary frame this problem can be

avoided, but inflow-outflow boundary conditions must be used. We suggest

that future work should concentrate on developing a method of treating

the inflow-outflow boundary conditions.

Eventually, it may be possible to treat practical flows such as air-

foils, combustion chambers, etc., by these methods. Before that can be

done, much more effort should first be devoted to developing subgrid scale
I .

'	 models, treatment of boundary conditions, mesh layout and/or mapping,

numerical methods, filters, etc., which are the important building blocks 	 3
#	 of large-eddy simulation.

I
1
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Table 1.1

EXPERIMENTAL RESULTS

;i
(Table from Fiedler and 'Thies, 1977)

a

P

r

Author(s) u2/ul ReL L
(mm)

qo d8^
Remarks

Liepmann & Laufer (1947) 0 9.105 900 11.76 :0.016 No trip

Wygnanski & Fiedler (1970)- 0 5.105 600 8.70 10.022 Trip

Batt (1975)	 11 7.105
I

640 ! 8.89 j 0.022 Trip

0 7.105 640 11.76 10.016 No trip

Spencer & Jones (1971) 0 1.106 560 it IO.52 '0.018 No trip

Champagne, Pao & Wyg-- 0 4.105 600 9.62 10.020 Trip (B.L.
nanski (1976) f̂ not turb.)

Patel (1973)	 ` 0 2.106 1020 10.53 10.018 No trip

1.1.106Oster, Wygnanski & 0 1100 9'.21 10.021 Trip
Fiedler (1976)

!	 0
61.1•10 1100 i11. 29 10.017 No trip

Foss '(1977) O 6.7.105 510 9.00 10.021 Turb. B.L.
0- 6.7.105 510 12.12 

1
0.016 Lam. B.L.

Dimotakis & Brown (1976) j	 0.2 3.105 600 9.87	 0.020 No trip_

Oster, Wygnanski & 0.4 2.8.10 5 470 12.12	 0.016 Trip
Fiedler (1976) 2.8 . 105 10.0180.4 470 10.81 No trip

Spencer & Jones (1971) 0.3 1.106 680 12.31 10.016 No trip

0.6 2.8.105 320 13.14	 0.015 No trip

Yule - (1971) 0.3 5.105 650 9.44	 0.020 No trip

0.61 1.4 . 105 290 9.23	 0.021 No trip

No-B.L.-
suction

Thies (1977) 0 2.4.106 3600 10.05	 0.019

3.8 . 106 9.52	 0.020 No trip

5.1 . 106 9.09	 0.021

2.4 . 106 10.31	 0.0191
2 mm trip

4.2 . 106 9.37	 0.021

2.4 . 106 10.24	 0.019

3_7 . 106 9.57	 0.020 4 mm trip

5.1 . 10 6` 9.15	 0.021

2.4 . 106 10.23	 0.019; Zig-zag trip
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Table 1.1 (cont.)

Author(s) u /u
2	 1 ReL

L
(mm)

cro
de

Audt Remarks

B.L.-suction

Thies (1977)	 (cont.) 0 8.0.106 3600 9.17 0.021 No trip

2.5 . 10 6 10.10 1 0.019 ( "near" re-
0.8 . 105 13.13 0.015 gion)

2.4 .106 9.80 0.020 2 mm trip

0.8 .106 9.43 0.0201 ("near re-
gion)

8.0.106 8.95 0.022 4 mm trip

2.0 . 10 6 9.6 0.020)

8_.0 . 10 6 9.0 0.021
8 mm trip

2.4 . 106 10.21 0.019 Zig-zag trip
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No. of Subgrid
Numerical

Model
Numerical Scheme Scheme for the Figure

Mesh Points . Scale Model Sub rid Scale Model Constant 

16 x 16 x-16 Model w-1 Fourth-order diff. Second-order diff. C	 = 0.235 4.2
v

16x 16x 16 Model w-1 Pseudo-spectral Pseudo-spectral C	 = 0.212 4.3

16 x 16 x 16 Model w-1 Pseudo-spectral Second-order diff. C	 = 0.213
I

4.4
v

16 x 16 x 16 Model w-2

j

Pseudo-spectral Pseudo-spectral Cv = 0.186 4.5

i 16 x 16 x 16 Model w-2 Pseudo-spectral Second-order diff. C 	
= 0.188 4.6

32 x 32 x 32 Model w-2 Pseudo-spectral Second-order diff.
C 
	 = 0.188 4.7
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Table 6 1

Three-Dimensional Computations of Turbulent Mixing Layers

Case Amplitude of Random Field Initial Conditions

ui 
1°axa =	 0.01

Au
Random field + mean

ui
U

max

Au	
=	 0.30 Random field + mean

c Lei max	 _	 0.30
Au

Random yield + 2 spanw se
vortices	 (R = 3/16)
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Appendix A

SUBGRID SCALE MODELS FOR THE VORTICITY EQUATIONS 	
+ e

In Chapter 2 we propose to use the following models for W.. (Eqn.

(2.9`))

Model w-1

CJij	 ijk ax (2VTSkd	 (2.15)
R

Model W-2

Wig	 Sa. (VT Wi) + axi (Vlwj )	 (2.16)
J

where
Sf

vT	 -	 (Cvo) 2 (W.w^) Z	 (2.14)

s
_	 1	 a	 +	 u	 (2.12)

^;	 z	 ax.	 i	 aX.	 ^ ^	 ,

 9
The models should satisfy the following necessary conditions:	

A

1. they should be antisymmetric,

{{` 2. they should vanish in an irrotational region, and
f

r
3. they	 should be an energy sink.

Condition 1 is readily seen to be satisfied by these models. 	 We note

that in an irrotational region, 	 wi = 0.	 Hence,	
VT	

(C A)
	 (Wiwi)	

0'

and the model vanishes in an irrotational region; i.e., condition 2 is also

satisfied.
Y

In order to show the dissipative nature of the subgrid scale models.

w-1 and	 W-2,	 consider the following equation:

u @W. a
-	

W.	 (A.1)
at	 -	 a

4 where the nonlinear terms in Eqn. (2.28) have been dropped. 	 Multiplying

Eqn. (A.1) by	 ^V	and integrating over the flow volume, we get:

t;
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t 	
^v
	 x

Pi 8 t mi dv = - J ' i ax Wig dv
	

(A. 2)

We want to show that Eqn. (A.2) reduces to

att ,-2 uiui dv -	 E	 (A. 3)

where e > 0.

Model	 w-1

Substituting Eqn. (2.15) in Eqn. 	 (A.2)	 for	 W ig , integrating by parts,
and using periodic boundary conditions, we obtain

at J 2 u ui dv	 2 f vT S k S dv	 (A.4)
9

and we have for this case:

= 2f vi, S Q S	 dv	 >	 0

since	 VT > 0.
a•

Model	 w-2
r

In a similar way, substituting Egn.'(2.16) into Egn.'(A.2) for	 Wlj,

I
we can show that

2 uiu	 dv	 _	 _ fV	 w wi dv	 (A.5)
at

and we have for this case

<I	 I
E= J vT W wi dv	 >	 0

-
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Appendix B

Fast Discrete Sine Transform (FDST)

The discrete analogs to the expansion in Fourier sine series (Egns.

(3.14) and (3.1$)) are

'	 A f(x)	 _	 fs(n)_-sin	 n7ix
(N

-	
-1)h

(3,16)
I'
l

{
fs(n)	 =	 N21)	 f(x) sin )h(N (3.17)

( J=o

{ where	 n

x	 =	 jh,	 j = 0,1....,N-1,

N	 number of mesh points,
i

L	 -	 length of the computational box.

' Both the forward and inverse sine transforms involve identical sums.

Eqn.	 (3.17) can be rewritten as:
It

^
(N- l-1 sI	 ;:

'
^
fs(n)	 =	 -	 2	 Im(N-1) F(x) exp'( -2Tr inx

2(N-l)h
(B,1)

0

_.
where

F(x)	 _	 f(x)

_	 0	 j = N,N+1,.._.,2(N-1)-1

We note that the summation

2(N-	 -1	
l-	 F(x) exp

N . I)h/
(B.2)

241	 \

is equivalent to (3.12) with 	 N1 = '2(N-1),	 and an FFT routine can be

used to evaluate this sum.

1 t

t
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Fast Discrete Cosine Transform (FDCT)

The discrete analog to the expansion in Fourier cosine series (Egns.

(3.21) and (3.22)) are:

`	 f (x)	 _	 f ° (n)	 cos 1
	

n7rx
1)h

1
	 (3.19)-	 1 (N-	 J

c	 n7rx
(n)	

2	
f'{x)	 cos

(N-1)	 (N-1)h
f 	 (3.20)

J	
,=o

where

^c	 sfC(n)	 n	 0,N-1
f

, (n)
K	

f	 (n)	 _ n	 1,...,N-2

if(x),,	 j = 0,N-1
I _f'(x) 

t 
f(x)	 j	 = 1,,..,N-2

where

n	 =	 0,...,N-1,

x-	 jh	 j = 0,...,N-1,

N	 =	 number of mesh points,

L	 length of the computational box.

Both the forward and inverse transforms involve identical sums.,

Eqn.	 (3.19) can be rewritten as: ,

2(2'-1 -1
f (x), =	 Re	 F (n) exp \	 (B.3)(- 2,rf inx

11=0
2(N-1)h

where
^C

r	 ;'	 F(n)	 =	 z'f	 (n)	 n	 0,N-1,
fc(n)	 n - %,,...,N-2,

=	 0	 n = N,.`..,2(N-1)-1.

, i	r
We note that the sum in (B3) is identical to the 8um(B.2), and an

FFT routine can be used to evaluate it. 	 In fact, the sine and cosine

>>'	 transforms can be done simultaneously, if it is necessary to have both.

4i
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Appendix C

.^

j
Effect of a Sinusoidal Vorticity Perturbation on a Uniform Vortex Array'

In Chapter-5 we have studied the effect of perturbing a uniform array

? of vortices by offsetting the spacing of the vortices	 (S > 0) .	 In this

appendix we study the effect of adding a sinusoidal vorticity perturbation

to a uniform array of vortices	 0).
'j

4 1.	 Initial Conditions

The initial conditions studied in this appendix were generated by

t starting with a uniform array of point vortices on the centerline of our

z computational box:

I:t -w2u	 -	 C l S(x-Ll/4) + S(x-3L1/4) S(z-L3/2) 	 (C.1)
•	

j
\ 	 /

.^f	 a

i We then add a cosine vorticity distribution to (C.1):
,

1

W2
	 =	 w2u - C2 cos	

2
L

Cos 	 (C.2)

r

} Egn. (C.2) is then filtered with a relatively wide Gaussian filter (Egn.

'initial. (5.'19)) to yield the initial conditions. 	 The	 velocity is then

non-dimensionalized on	 Au	 and the length scales on 	 s in.	 The computa-

tional details, i.e., number of mesh points, mesh size, time steps, and

' boundary conditions, are the same as in 'Chapter 5.- Only the initial con-

ditions were changed.

I I 2.	 Results^

The momentum thickness	 (9)	 is defined by Eqn. (5.4).	 Fig. C.1 shows

s/bin	 plotted vs.	 T	 for	 C 2 /Cl = 0.1/20, 1/20, 2/20, 4/20.- We note that

the growth rate of the layer is highly dependent on the strength of the

perturbation.	 The growth rate more than doublesfrom 0.016 to 0.035 when

the strength of the perturbation is doubled 	 (C2/C1	 from	 2/20 to '4/20).

,: 140



i

x We note also that for high amplitude perturbations, 	 C 2 /C1 = 4/20,-	 the

growth rate starts to level off for 	 T > 12.0.	 This saturation is also
observed experimentally by'Oster et al. (1978); they have oscillated the 
initial conditionsof a two-dimensional mixing layer,

a Figures C.2 and C.3 show the non-dimensional mean velocity and turbu-

lence intensity (as in Sections 5.7 and 5.8) plotted vs. 	 z/8	 for	 C2/C1 =

2/20.	 We note that the mean velocity profiles are self-similar.	 This is
not surprising, since self-similarity of the mean velocity profiles is

easily obtained ('see Section 6.5).	 Turbulence intensity profiles (Fig. C.3)

' show that self-similarity is also more or less obtained for the present
case.

These results are similar to those obtained in Chapter 5 b using a
i

`. spacing perturbation.- Apparently the perturbation can take any of a number
of forms, and the characteristics of the shear layer will be nearly the
same.	 Under experimental conditions, the nature of the perturbation is

difficult to determine.	 What we do note is that reproduction of the ex-
perimentally observed growth rate does require large perturbations, which

are apparently created by either the inflow or outflow conditions of the

experiment.

r

k

P
1

1
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Appendix D

INTERACTIONS BETWEEN STREAMWISE AND SPANWISE VORTICITY

^.. In Chapter 6 we studied the effect of a,random fluctuation on vortex

pairing. In this appendixwe study the interactions between a streamwise

cellular vortex structure and spanwise vortex pairing.

i

1. Initial Conditions

The initial conditions studied in this appendix were generated by

adding to a row of spanwise vortices ((3 3/16) a row of streamwise vor-

tices of alternating signs;
i

2^Y	 (z-L3/2)2
W1	 C2 sin 

L	
exp	 2	 (D.1)

	

f {	 2	 6h3

The same computational setup described in Chapter 6 is used, i.e., the same
boundary conditions, number of mesh points, mesh sizes, and time step.

Figure D.1 shows a contour map in the y-z ,plane of the streamwise

	

I	 _
vorticity. We note that W displays a cellular structure and that Wl

does not initially have a streamwise variation. We ran two cases:

	^.	 Case a:

wl max.

	

f	 = 0.037

	

r i

	
^2 max

^f

Case b:
f

wl max _ 0.370

k 2. Results

We first look at the development of the momentum thickness, 8(t), de-

i
fined by Eqn. (5.4), in time. The non-dimensional mean velocity (Section

r
5.7) and mean turbulence intensity (Section 5.8) are also considered. The

interaction between the spanwise vortices and the strea mwise vortices is

studied using contour plots. Note that we have a three-dimensional box

and that contour plots in different planes for different vorticity direc-

tions_will be considered.
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^	 r

Figure D.2 shows 8/0 in plotted vs. T. The momentum thickness;

growth rate,	 d8/Audt = 0,020,	 for Case (a) is the same as it was in the

absence of the streamwise vortices.	 However, the momentum thickness

growth rate,	 d8/dudt = 0.040, 	 doubled for Case (b).

Figures D.3a and -b show	 2< u >xy/Au	 plotted vs.	 z/8	 for Cases (a)

and (b) , respectively, at	 AT	 2.4	 intervals.	 We note that both cases
f! produce self-similar mean velocity profiles.

Figures D.4a and -b show 	 q2 /2(Au) 2	plotted vs.	 z/6	 for Cases (a)

and (b), respectively, at 	 AT = 2.4	 intervals.	 The mean turbulence inten-

sity results for Case (a) are similar to those we obtained when the stream-

thewise vortices were not present. 	 As in	 2-D case (with	 3 = 3/16),	 the

mean turbulence intensity decays slightly, then reaches a self-similar

situation.	 For Case (b), in which we have strong streamwise vortices,

Fig. D.4b shows that the turbulence intensity grows with time, and the pro-

x files do not show self-similarity.

(a)	 Contour Plots in the	 x-z	 Planes

Figures D,5 show constant vorticity contours of the spanwise 	 (w2)

vorticity at time 	 T = 16.78.	 In _both cases the spanwise vortices have

paired.	 The shapes are similar, but the roller is slightly distorted for
Case (b) as compared to Case (a) and to the 2-D results (see Fig. 5.7d).

This indicates that the streamwise vortices did not affect the merging of

the spanwise vortices, but the strong streamwise vortices (Case (b)) have

affected the shape of the roller.

i
Figures D.6 show constant vorticity contours of the streamwise vortic-

ity for Cases (a) and (b) .	 These figures indicate that the streamwise vor-
tices have been convected to the edges of the mixing layer by the spanwise

vortices.	 There is also clear evidence of vortex stretching.

Figure D.7 shows the projection of the vorticity vector at 	 T = 16.78•,

for Case (b).	 We can see clearly that the originally straight vortex lines

have been convected and stretched by the spanwise vortices to assume an

inverted S shape,

ci
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(b) Contour Plots in the X-z Planes

I	
Figure D.8 shows constant vorticity contours of the spanwise vortic-

ity for Case (b)	 The spanwise vortices have been convected and stretched

r-
by the strong counter-rotating streamwise vortices and exhibit spanwise

waviness. This means that the contact area between the rotational fluid

	

k
:	 and the irrotational fluid has increased, which leads to an increase in

the entrainment rate. This waviness also explains the increase in the

., turbulence intensity and high growth of the momentum thickness of the mix-

ing layer. 1 to that the mean quantities are defined as horizontal planar

averages and, with this definition, the wavy layer appears thicker and more

	

'	 turbulent than a strictly two-dimensional layer.

The above results indicate that the effect of the streamwise vorticity

on the spanwise vorticity is almost independent of the effect of the span-

wise vorticity on the streamwise vorticity. Indeed, a straight line of

particles placed at the center of the layer in the streams ise direction
would be convected to form an inverted S shape in the presence of the two-
dimensional vortex pairing. A straight line of particles initially passing

through the center of an array of counter-rotating vortices will be con-
r

vected to assume a wavy shape.
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Fig. D.l. Contour plots of the streamwise vorticity, (wl) at
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Appendix E	
Aoi POW

C--------COMPUTER PROGRAM WRITTEN TO CALCULATE TURBULENT MIXING LAYERS

CC
*COMDECK AVG

COMMON/AVG/ AVGI,AVG2,AVG3,CCF
*COMDECK BLANK

COMMON DUDX(16,16,33)
*COMDECK DATA7

COMMON/DATA7/ FR(16,16),FI(16,16)
*COMDECK DATA9`

COMMON/DATA9/ IMAX,JMAX,LMAX
*COMDECK DAT21

COMMON/DAT21/ XR(64),XI(64)
*COMDECK DEL

COMMON/DEL/ DELTAX,DELTAY,DELTAZ
*COMDECK DIM

COMMON/DIM/N1,N2,N3
*COMDECK FLT

COMMON/FLT/ FILT1(16),FILT2(16),FILT3(33)
*COMDECK LARGE2

COMMON/LARGE2/ U(16,16 , 33),V(16,16,33) ,W(16,16,33)

	

f	 LEVEL 2,U,V,W
*COMDECK LARGE3

COMMON/LARGE3/ GU(16,16,33),GV(16,16,33),GW(16,16,33)
LEVEL 2,GU,GV,GW

*COMDECK LARGES
COMMON/LARGE5/ 01(16,16,33),02(16,16,33),03(16,16,33)
LEVEL 2,01,02,03

*COMDECK MEANVOR
COMMON/MEANVOR/ VOR(32,33)

*COMDECK PR
COMMON/PR/ CCPW,CCPF,CCPD

*COMDECK WV
COMMON/WV/ WAVEX(16),WAVEY(16),WAVEZ(33),WAVEXS(16),WAVEYS(16)

1 ,WAVEZS(33)
*COMDECK XL

COMMON/XL/ XPART(160),YPART(160),ZPART(160),NCHAR(160)

	

{	 *DECK MAIN
	t	 PROGRAM MAIN(INPUT,OUTPUT,TAPE8,TAPE9,TAPE10)

C	 MAIN.CONTROLS THE COMPUTATION SEQUENCES.
C	 IN THIS ROUTINE WE ADVANCE IN TIME
C	 THE EXTERNALS USED IN THIS ROUTINE ARE	 *
C	 CFILTER	 *
C	 CONVEC

	

1	 C	 CURLO
C	 DATARED

	

j I	 C	 EDVIS

	

P	 C	 INVERS
C	 MEANINI	 K
C	 MOVLEV

'	 C	 $FILTER
C	 SFILTER
C	 SGS	 Xj^	 C	 STFILT
C	 STREAD	 *
C	 STWV	 X

	

{	 INTEGER TIME,TSTART,TEND
COMMON/TIM/ TSTART,TEND
COMMON/LARGE4/ RU(16,16,33),RV(16,16,33),RW(16,16,33)
COMMON/NORM/ DELU,THETA
LEVEL 2,RU,RV,RW
COMMON/"DATCNT♦ IDATCNT

*CALL MEANVOR
*CALL XL

COMMON/CONST/C100,C101,IJK,IJ,NHPI,HALF
*CALL DAT21

	

i	

*CALL LARGE2

	

(	 *CALL BLANK
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k

k.	 k

*CALL LARGES	 REPRODUCIBILITY OF THZ

X C A ^ DATA 9	 ORIGINAL PAGE IS POOR
*CALL WV
*CALL DATA?

(	 NCALL	 FLT

}	
XCALL
*CALL DIMGE3

r.	 *CALL AVG
C	 START THE READOUT OF INPUT

CALL $TREAD
C	 SET THE COEFICIENT OF THE SUBGR "ID SCALE MODEL

C=0.188
C	 SET COF = 1 FOR THE FIRST TIME STEP

'

^
(	 COF=1.0
f	 IJ=NT*N2
lG	

IJK=N1*N2*N3
rI	 DO 1	 L=1,LMAX

'f	
DO 1	 J=1,JMAX
DO	 1- I = 1, IMAX

4	 U(I,J,L)=0.
VCI,J,L)=0.

^I	 W(I,J,L)=0. 
01(I,J,L)=0,
02(1,J,L)=0. 1;03(I,J,L)=0.,i	 1	 CONTINUE

if

C 	
SET THE	

NUMBERS
WAVE

C*****SET THE INITIAL CONDITIONS
CALL MEANINI s

I ^	 C	 NON DIMENSIONALIZE THE TIME STEP ON DELU/THETA '+
DT=0.03125*DELU/THETA i

C	 SET THE FILTER WIDTH = 2*MESH SIZE:.	 .	 AVG1=2.0
AVG2=2.0
AVG3=2.0
COEF2=(C*(AVG1*DELTAX*AVG2*DELTAY*AVG3*DELTAZ)**(l./3.))**2
DO 123 L=1,LMAX
DO 123 J=1,JMAX
DO 123 I=1,IMAX
RU(I,J,L)=0.•	 RV(I,J,L)=0.
RW(I,J,L)=O.

123 CONTINUE
ICOUNT=O}	 TIME=O

C	 WRITE ON TAPE 9 TO BE STORED ON DISC PACK`	
PRINT	 1100,TIME-
WRITE(9)	 TIME,01, 02,03 ,DT,DELTAX,DELTAY,DELTAZ,DELU,THETA
IDATCNT=O

C	 _COMPUTE THE STATISTICS OF THE INITIAL CONDITIONS
CALL DATARED

C	 SET THE FOURIER TRANSFORM OF THE GAUSSIAN-FILTER—
CALL STFILT
IDUM=30
DO 300 TIME=TSTART,TEND

CX****COMPUTE THE ADVECTIVE AND STRETCHING TERMS
<1( 	CALL	 CONVEC

I	 CALL	 SFILTER(GU,DUDX,NI,N2,N3)
:I{	CALL	 SFILTER(GV,DUDX,NI ,N2,N3)

Y	
CALL CFILTER(GW,DUDX,NI,82,N3)

C*****'COMPUTE THE EDDY VISCOSITY
CALL EDVI5(COEF2,DUDX, NI,N2,N3)'

C*****COMPUTE THE SGS MODEL j
'	 CALL SGS(U,V,l4,N1,N2,N3)

_C*****ADVANCE IN TIME
DO 80 `0	 L=1,LMAX
DO 800	 J=1,JMAX
DO 800 I=I,IMAX

161 a



r	 i

^	 1	 i

y^	

s..	

,.	
ae`.:

O1(I,J,L)=01(I,J,L) + DTX(COF* GU(IrJ , L)•-0,5XRU(I,J,L))
02(I,J,L)=02(I,J,L)+DTX(COFXGV(I,J,L)-0.5*RV(I,J,L))
03(I,J,L)=03(I,J,L)+DT*(COF*GW(I,J,L)-0.5*RW(I,J,L))

800 CONTINUE
CNXXXESTORE THE PREVIOUS TIME STEP

CALL	 MOVLEV(GU(1,1,1),RU(1,1,1),IJK)
CALL MOVLEV(GV(1,1,1),RV(1,1,1),IJK)
CALL MOVLEV(GW(1,1,1),RW(1,1,1),IJK)

CXXXXXTHE VORTICITY'AT THE NEXT TIME STEP HAS BEEN COMPUTED
C**X*XFIND THE CORESPONDING VELOCITY FIELD

CALL	 INVERS(01,GU,DUDX,1,Nl,N2,N3)
CALL	 INVERS(02,GV,DUDX,2,N1,N2,N3)

j; CALL	 INVER'5(03,GW,DUDX,3,Nl,N2,N3)
CALL CURLO(GU,GV,GW,U,V,W,N1,N2,N3)

f C SET COF = 1 . 5 FOR SUBSEQUENT TIMES (ADAMS-BASHFORTH)
{ COF=1.5

t IICOUNTIICOUNT-IDUM
IF (IICOUNT	 0)	 GO TO 300.`NE.
ICOUNT=O

! PRINT 1100,TIME
WRITE(9)	 TIME,01,02,03
CALL DATARED

300 CONTINUE
E 1100 FORMAT(1H1,5X,R TIME STEP =*,L5)

t 1000 FORMAT(1P8E15.7)
STOP
END

XDECK CFILTER
SUBROUTINE CFILTER(HR,H1,N1,N2,N3)

C CFILTER COMPUTES THE FILTER OF THE HR VARIABLE BY EXPANDING IN
C FOURIER SERIES IN THE X- AND Y- DIRECTIONS AND FOURIER COSINE
C SERIES IN THE Z--DIRECTION
C THIS ROUTINE USES AS EXTERNALS
C FDCT

r C FFTX
C FFTY

4 C A CALL TO STFILT INITIATE THE VALUES OF FILTI,FILT2,AND FILT3

DIMENSION HR(Nl,N2,N3),HI(N1,N2,N3)

^r *CALL DATA9
*CALL FLT`
*CALL DATA?
XCALL DAT21

LEVEL 2,HR
CC=1.0/(IMAX*JMAX)
IJ=NIRN2
DO 10 J=1 , JMAX
DO 10 I = 1, IMAX
DO 20-L=1,LMAX
XR(L)`HR(I,J,L)

20 CONTINUE
CALL FDCT( 1.0)

y DO 30 L=1,LMAX
HI(I,J,L)=XR(L)

30 CONTINUE
10 CONTINUE

DO 40 L=1,LMAX
CALL	 MOVLEV(HI(1,1,L),FR(1,1),_IJ)
CALL	 FFTX(1.0)'
CALL	 FFTY(1.0,1.0)	

9

DO 50 J=1,JMAX
DO 50	 I =1,IMAX
FR(I,J)=FR(I,J)*FILT1(I)*FILT2(J)*FILT3(L)
FL(I,J)=FI(I,J)*FTLT1(I)*FILT2(J)XFILT3(L)

30 CONTINUE
CALL	 FFTX(--1.0)
CALL	 FFTY(-1.O,CC)

-CALL MOVLEV(FR(1,1),HI(1,1,L),IJ)



l
40 CONTINUE

DO 60 J=1,JMAX
DO 60	 I=1,IMAX
DO 70	 L=1,LMAX

REPRODUCIBMTrY OF THE 
DO 60 I=1,IMAX PAGE IS POORDO 7 0 L =1, L M AX	 ORIGINAL
XR(L)=HI(I,J,L)

70 CONTINUE	 r

CALL FDCT(-1.0)
DO 80 L=1,LMAX

is HR(I,J,L)=XR(L)
{ 80 CONTINUE

60 CONTINUE
RETURN;. END

XDECK CONVEC
SUBROUTINE CONVEC

.	 I CXXXXXXXXXXX^EX^EXXXXXXXXXX^tX^l^x^^^^)f*R^E^E^EX^E ►E^3^^EN**^E)E^E^t^^t^Ex^^*^x^^t^^^t^^E^E*^E
C THIS SUBROUTINE COMPUTES THE CONVECTIVE AND STRETCHING 	 X
C TERMS AND STORES THEM IN GU,GV,GW 	 X
C THIS ROUTINE USES AS EXTERNALS
C COSPART	 N
C PARTIAL	 *	 °,F

C XXiEXXXXX^#XXX3EX^X X ^ X lEX XX ^EXXXXXXXXXXXXX3fXXX^XX XX ^ XX*XXXX XXX XXXXXX*XXX X **X

*CALL LARGE2
XCALL LARGE3

3 XCALL LARGE5
XCALL BLANK
*CALL DATA4

' XCALL DIM
IJK=NIXN2XN3	 a

CXXXXXTERM FOR THE X-DIRECTION
DO	 10	 L=1,LMAX
DO 10	 J=1,JMAX
DO	 10	 I=1,IMAX
GU(I,J,L)=U(I,J,L)X02(I,J,L)-V(I,J,L)XO1(I,J,L)
GV(I,J,L)=U(I,J,L)X03(I,J,L)-W(I,J,L)XO1(I,J,L)

10 CONTINUE
CALL PARTIAL(2,GU,N1,N2,H3)
CALL	 MOVLEV(DUDX(1,1,1),GU(1,1,1),IJK)

{ CALL	 COSPART(GV,N1,N2,N3),{ DO 20 L=1,LMAX
DO 20 J=1,JMAX
DO 20	 I=1,IMAX
GU(I,J,L)=GU(I,J,L)+DUDX(I,J,L)

20 CONTINUE
CXXXXXTERM FOR THE Y—DIRECTION-

DO 30 L=1,LMAX
DO 30	 J=1,JMAX
DO _30	 I =1,IMAX
GV(I,J,L)=V(I,J,L)XO1(I,J,L)-U(I,J,L)*02(I,J,L)

^
e GW(I,J,L)=V(I,J,L)XO3(I,J,L)-W(I,J,L)XO2(I,J,L)

30 CONTINUE-i
CALL	 PARTIAL(1,GV,N1,N^,N3)
CALL	 MOVLEV(DUDX(1,1,1),GV(1,1,1),IJK)
CALL	 COSP"ART(GW,N1,N2,N3)

i% DO 40 L=1,LMAX
DO 40 J=I,JMAX
DO 40	 I=1,IMAX
GV(I,J , L)=GV(I,J,L) +DUDX ( I,J,L)

40 CONTINUE
CXXXXXTERM FOR THE Z-DIRECTION

DO 50	 L=1,LMAX
DO 50	 J=1,JMAX
DO	 50	 I = 1, IMAX	 !'.
GW(I,J , L)=W(I,J , L)X01 ( I,J,L)-U ( I,J,L)XD3(I,J,L)
U(I,J,L ) =W(I,J,L )X02(I , J,L)-V(I , J,L)X03 ( I,J,L)	 n

50 CONTINUE
CALL PARTIAL ( 1,GW,N1,N2,N3)
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'a

CALL MOVLEV(DUDX(1,1,1),GW(1,1,1),IJK)
CALL PARTIAL(2,U,N1,N2,N3)
DO 60 L=1,LMAX
DO 60 J=1,JMAX
DO 60	 I=1,IMAX

I GWCI,J , L)=GW(I , J,L)+DUDX ( I,J,L)
60 CONTINUE

RETURN
END

xDECK COSPART
SUBROUTINE COSPART(U,N1,N2,N3)

!r Cxx ^?fxxRlfRxRMMN^^^34Rx ?fx x*xx * x^xxx*x^*RRkRXR34lfxXxx^ * kxx?4*X^xxx ***xxxxxxxx
?i C	 COSPART COMPUTES THE PARTIAL IN THE Z-DIRECTION OF U BY EXPANDING

C	 IN FOURIER COSINE SERIES
C	 THE EXTENALS USED IN THIS SUBROUTINE ARE
C	 F D'C T
C	 FDST

^^ CSR*x*xxxR^xx * R34xR3f^RxRxxxxRxxx *xxxxMx ** ^*xxN** ^M)EKXklE * M**fix*^ * x*xKNxxR*
DIMENSION U(Nl,N2,N3)

*CALL BLANK
*CALL DAT21
XCALL WV

€ xCALL DATA9
LEVEL	 2,U
DO 10 J=1,JMAX
DO 10	 I=1,IMAX 1
DO 20 L=I,LMAXj
XR(L)=U(I,J,L)

20 CONTINUE
l

CALL FDCT(SIGN)
DO 30 L =1,LMAX

' XR(L)=—XR(L)XWAVEZ(L)
30 CONTINUE 3

SIGN=-1.0
CALL FDST(SIGN)
DO 40 L=1,LMAX
DUDX(I,J,L) =XR(L) a

40 CONTINUE
10 CONTINUE

RETURN
END

MDECK CURLO
SUBROUTINE CURLO(U,V,W,01,02,03,N1,N2,N3) 1
DIMENSION	 01(N1,N2,N3),02(N1,N2,N3),03(N1,N2,N3)

sDIMENSION	 U(N1,N2,N3),V(Nl,N2,N3),W(NI,N2,N3)
*CALL DATA9{
*CALL BLANK

LEVEL	 2,U,V,W,01,02,03
:f CXxx^xRxx^xxX^*?^^tx^x^^x^^E^*^4^*^E^^^t^^^^*^x^^*^c*^^?^^3^x^x^*3E^X^E3^**^^^E^**x^

C	 THIS SUBROUTINE COMPUTES THE CURL OF THE VORTICITY FIELD
C	 THE EXTERNALS USED IN THIS ROUTINE ARE
C	 PARTIAL
C	 SINPART

y y	 yC 3f if1E )E 3f x^xx ?f^^xxxxxxxx x xxxx x xxxx^xx ^^xxkx x xxxxxM*xxxx^x^*x*Mif***M^xiE^*xxx '

C*M**xCURL IN THE X- DIRECTION
IJK=N1xN2wN3
CALL PARTIAL(2,W,N1N2,N3)
CALL MOVLEV(DUDX(1,1,1),01(1 	 1,1),IJK)
CALL SINPART( V,N1,N2,N3)
DO 10 L=1,LMAX
DO 10 J=1,JMAX
DO 10	 I=1,IMAX
01(I,J,L)=OI(I,J,L)=	 DUDX(I,J,L) i

10 CONTINUE'
C)4xX**CURL IN YHE Y-DIRECTION

CALL	 SINPART(U,N1,`N2,N3)
CALL MOVLEV(DUDX(11,1),02(1,1,1),IJK)
CALL PARTIAL(1,W,N1,N2,N3)
DO 20 L=1,LMAX
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fj_ 1	 t,	 ,

DO 20 J=I,JMAX
DO 20 I=1 ► IMAX

t	 02(I,J,L)=02(I,J,L)-DUDX(I,J,L)
20 CONTINUE

C1434XXXCURL IN THE Z-DIRECTION
'	 CALL PARTIA'L(1,V,N1,N2,H3) $EPR,ODMIBI = OF THE

CALL
CALL PARTIAL((2DU,N11N2,N3J

(1,1,1),IJK) 
ORIGINAL PAGE IS POOR

DO 30 L=1,LMAX
DO 30 J=1,JMAX
DO 30 I=1,IMAX
03(I,J,L)=03(I,J,L)-DUDX(I,J,.L)

30 CONTINUE
RETURN
END

MDECK CURLU
SUBROUTINE CURLU(U,VW,01,02,03,N1,N2,N3)
DIMENSION 01(N1,N2,N3),02(N1,N2,N3),03(N1,N2,N3)
DIMENSION U(N1,N2,N3),V(NI,N2,N3) W(N1,N2,N3)

*CALL DATA9
34CALL BLANK

LEVEL 2,U,V,W,01,02,03
C M 3E 34 3f 34 3f 3434 3f 3E x 3E 34 34 3f 3E 3E 3434 3f 34 3E 34 343E 3E 34 34 3E 3E 34 3E 34?4 3E 3E 3E 34 3f 3f 3E 3f 3E 11.3E 3f 3f 3434 3E 34 3E 3E )4 3E 3f 3E 3E 3E 14 34 34 34 3E 3E 3f 3f 34 3f 34 3f

C	 THIS ROUTINE COMPUTES THE CURL OF THE VELOCITY FIELD
C	 AND STORES IT IN 01,02,03,
C	 THE EXYERHALS USED IN THIS SUBROUTINE ARE 	 *	

s

C	 COSPART	 34

C	 PARTIAL
C *3434 3f 3t 3f 3E 141E 34 34 3E 34 3E 34 34 >E 341E 3E 1414 3E 3f 3f 3E 1E 3E 341E 3E 1E 34 34 3E 3E 141E 3E 3f 3E 3E 3E 34 341E B 34 3E K 34 K 3E 34 34 3E 34 3E 3f 3E 1f 14 3E 34 3E 1E 1f 3434 3E X 	 ^

C343 XXX CURL IN THE X-DIRECTION
IJK=NlXN2XN3
CALL PARTIAL(2,W,N1,N2,N3)
CALL MOVLEV(DUDX(1,1,1),01(1,1,1),IJK)
CALL COSPART(V,N1,H2,N3)
D0 10 L=1,LMAX
DO 10 J=1,JMAX
DO 10 I=1,IMAX
01(I,JL) =01(I,J,L)- DUDX(I,J,L)

1.0 CONTINUE
C14343434XCURL IN YHE Y-DIRECTION

CALL COSPART(U,N1,N2,N3)
CALL MOVLEV(DUDX(1,1,1),02(1,1,1),IJK)
CALL PARTIAL(1,W,Nl,N2,N3)
DO 20 L=1,LMAX
DO 20 J=1,JMAX	 1

DO 20 I=1,IMAX
02(I,J,'L)=02(I,J,L)-DUDX(I,J,L)

20 CONTINUE
C343EXXXCURL IN THE Z-DIRECTION	 !.

CALL PARTI;ALC1,V,N1,N2,N3)
CALL MOVLEV(DUDX(1,1,1),03(1,1,1),IJK)
CALL PARTIAL(2,U,N1,N2,N3)
DO	 3`0	 L = 1, LMAX
DO 30 J=1, JMAX
DO 30	 I=1,IMAX
03(I,J,L)=03(I,J,L)-DUDX(I,J,L`)

30 CONTINUE
RETURN
END

14DECK DATARED
SUBROUTINE DATARED

y	 ', C 3f 34 34 34 34 14 3E 3f 14.3E 3E 3E 3f 34:34 3E 3E 34 34 34 3434 3E 3f 3E 3E 3E 3E 3E 3E 3E 3E 3f 3E 341E 341E 1E 34 9E3E 3E 3E 3E 3f 3E 34 3E 34 3E 3E 34 3E 34 3E 3E K 3E 34 1E 3E 3E 1E 3E X 3E 3E 3E 341E

i C THIS SUBROUTINE COMPUTES THE STATISTICS OF THE COMPUTATION
C USUM = PLANAR AVERAGE OF THE STREAMWISE VELOCITY r
C VSUM=PLANAR AVERAGE OF THE SPANWISE VELOCITY -
C WSUM	 PLANAR AVERAGE OF THE CROSSFLOW VELOCITY

j "C 01SUM =PLANAR AVERAGE OF THE STREAMWISE VORTICITY
C 02SUM = PLANAR AVERAGE OF THE SPANWISE VORTICITY
C 03SUM = PLANAR AVERAGE OF THE CROSSFLOW VORTICITY
C USQ = R.M.S STREAMWISE VELOCITY 34

t
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C VSQ - R.M.S.	 OF THE SPANWISE VELOCITY ETC...	 x
C UVSTRES = PLANAR AVERAGE OF UZWa	 x
C PLOVALE = VOLUME AVERAGE OF THE TOTAL ENERGY

•
C ENERGY = INTEGRAL OF THE TURBULENCE ENERGY	 x
C**^xxRx^ER^^^^R^^^* ^^^R*)t**^^^^l^Rx^**^^^^*RR^)E^F^^^4^^^^Rt^*R^^^^^^^^t^^^* ►tX
*CALL DEL
XCALL MEANVOR
*CALL PR

. RECALL LARGE2
*CALL LARGE3
*CALL LARGES
*CALL DAT21
*CAUL DATA9
RCALL BLANK
RECALL DIM

bIMENSION USM(33),VSM(33),US(33),VS(33),WS(33),01S(33),02S(33)j
1	 ,O3S(33),ES(33)-sENS(33),ZO(33)

DIMENSION DUMSP (33 )
' COMMON/DATCNT/ IDATCNT

IDATCNT=IDATCNT+1
LMAXMI=LMAX-1
C3=1./LMAXMI
CNORM3=1./(IMAX*JMAX)
PRINT 1100
UTOT=O .
VTOT=O. !
WTOT=O.
O1TOT=0.
02TOT=0.
03TOT=O.
OVRALE=O.
TOTENER=O.
TOTENST=O. a
DO 100 L=1,LMAX
USUM=O,
VSUM=O.
WSUM=O.
01SuM=0,
02'SUM=O.

' 03SUM=0. i

W Q=O .
VSQ=O.
WSQ=O.
O1SQ=0.
02SQ=0.
03SQ=0.
ENERGY=O.
ENSTROP=O.
UVSTRES=O,_
PLOVALE=O.
DO 110 J = 1,JMAX
DO 110	 I=1,IMAX 4
USUM=USUM+U(I,J,L)
VSUM=VSUM+V(I,J,L)
WSUM=WSUM+W(I,J,L)
01SUM=0ISUM+01(I,J,L)
02SUM'=02SUM+02(I,J,L)
03.SUM=03SUM+03(I,J,L)

110 CONTINUE
USUM=USUMXCNORM3

f" VSUM='VSUM*CNORM3
WSUM=WSUM*CNOP.M3
01SUMZOISUMNCNORM3
02SUM=02SUM*CNORM3
03SUM=03SUM*CNORM3
GW(1,1,L)=USUM

- GW(2,1,L);=VSUM
GW(3,1,L)=WSUM
DO 160 J=1,JMAX
DO 160	 I=1,IMAX
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USQ+(U(I,J ► L)-USUM )**2	 S'f! USQ- p{ R
VSQ=VSQ+(V(I,J,L)-VSUM)**2
WSQ=WSQ+(W(I,J ► L)-WSUM)**2
O1SQ=01SQ+(01(I,J,L)-O1SUM)**2
02SQ=025Q+(02(I,J,L)-025UM)**2
03SQ=O3SQ+(03(I,J,L)-03SUM)**2
UVSTRES=UVSTRES+(U(I,J,L)-USUM)*(W(I,,J,L)-WSUM)
PLOVALE=PLOVALE+(U(I,J,L)**2+V(I,J,L)**2+W(I,J,L)**2)

160 CONTINUE
USQ=USQ*CNORM3
VSQ=VSQMCNORM3
WSQ=WSQ*CNORM3

r! 01SQ=01SQ*CNORM3
02SQ=02SQ*CNORM3
03SQ=03SQ*CNORM3

I ENERGY=(USQ+VSQ+WSQ)*0.5
ENSTROP=(01 SQ+02SQ+03SQ) *0.5
UVSTRES=UVSTRES*CNORM3
USQ=SQRT(USQ)
VSQ=SQRT(VSQ)
WSQ=SQRTCWSQ)
01SQ=SQRTC0ISQ)

_

02SQ=SQRT(02SQ)
035Q=SQRT(03SQ)_
US(L)=USQ
VS(L)=VSQ
WS(L)=WSQ
01S(L)=01SQ,
025(L)=02SQ
035(L)=03SQ
USM(L)=USUM z=
VSM(L)=VSUM
ES(L)=ENERGY 1ENS(L)=ENSTROP
GW(4,1,L)=01SUM
GW(5,1,L)=02SUM
GW(6,1,L)=035UM
GV(1,1,L)=USQ
GV(2,1,L)=WSQ
XI(L)=UVSTRES
CG=1.
IF(L	 .EQ.	 1)	 CC=0.5
IF(L	 .EQ.	 LMAX)	 CC=0.5
OVRALE=OVRALE+PLOVALE*CC*0.5
UTOT=UTOT+USUMXCC
VTOT=VTOT+VSUM*CC
WTOT=WTOT+WS'UM*CC j
01TOT=OITOT+OISUM*CC t

j 02TOT'=02TOT+025UM*CC
03TOT=03TOT+03SUM*CC
TOTENER=TOTENER+ENERGY*CC
TOTENST=TOTENST+ENSTROP*CG

100 CONTINUE
I UTOT=UTOT*C3

VTOT=VTOT>C3
WTOT=WTOT*C3
OITOT=OITOT*C3
02TOT=02TOTXC3
03TOT=03TOTNC3
TOTENER=TOTENER*C3
TOTENST=TOTENST*C3

# DELU=GW(1,1,LMAX)-GW(1,1,1)
4	 ! DELU=1./DELU

THETA=(0.25-(GW(1,1,1)*DELU)**2)*0.5
DO 170 L=2,LMAXMI

Y THETA=THETA+(0.25-(GW(1,1,L)*DELU)**2)
rr"° 170 CONTINUE

THETA=THETA+(0.25-(GW(1,1,LMAX)*DELU)**2)*0.5
THETA=THETAXDELTAZ
DO 300	 L=I,LMAX

4
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ZO(L) =(L—((LMAX-1)^2+1) YXDELTAZ/THETA
USM(L)=USM(L)XDELU*2.0
VSM(L)=VSM(L)*DELU
GW(5,1,L)=GW(5,1,L)*DELU*THETA
XI(L)=XI(L)X(DELU*X2)
US(L)=US(L)*DELU
VS(L)=VS(L)*DELU
WS(L)=WS(L)XDELU
03S(L)=O3S(L)*(DELU*THETA)
O1S(L)=01S(L)*(DELU*THETA)
02S(U =02S(L)x(DELUXTHETA)
ES(L)=ES(L)XDELUXX2
ENS(L)=ENS(L)X(DELU*THETA)X*2
PRINT 3000,USM(L),VSM(L),XI(L),GW(5,1,L),US(L),VS(L),WS(L),
1 01S(L) A2S(L),03S(L),ES(L),ENS(—L),ZO(L)

300 CONTINUE
WRITE(8)'USM,VSM,XI,US,VS,WS,01S,025,03S,ES,ENS,Z0,THETA
PRINT 1700,THETA
PRINT 1200
PRINT 1000,UTOT,VTOT,WTOT,0ITOT,02TOT,03TOT,TOTENER,TOTENST
PR NT 2400,OVRALE

2400 FORMAT(1X, X OVER ALL ENERGY IN COMPUTATION BOX =X,1PE15.7)	 a
DO 180 L=1,LMAX
DO 180 I = 1,IMAX
GU(I,l,L)=0,
GU(I,2,L)=0.
GU(I,3,L)=0.
GU(I,4,L)=0.

180 CONTINUE
CLOY=1./FLOAT(JMAX)
_DO 190 L=1,LMAX
DO 190 J=1,JMAX
DO 190 I=1,IMAX
GU(I,1,L)=GU(I,l,L)+02(I,J,L)XC10Y
GU(I,2,L)=GU(I,2,L)+U(I,J,L)xC10Y
GU(—I,3,L)=GU(I,-3,L)+W(I,JL)XC10Y

190 CONTINUE
DO 230 L=1,LMAX

E	
DO 230 I=1,IMAX
GU(I,2,L)=GU(I,2,L)—GW(1,1,L)
GU(I,3,L)=GU(I,3,L)—GW(3,1,L)

230 CONTINUE
PRINT 2200

'2200 -FORMAT(1H1,1X,R'LINE AVERAGE OF VORTICITYX)
PRINT 2300, (((GU(I,i,L),I= 1,16	 ),L),L=1,LMAX)
IF'(CCPD .NE.1.) GO TO 240
PRINT 2500

2500 FORMAT(1H1,1X,X LINE AVERAGE OF U-COMPONENT *)
PRINT 2300,(((GU(I,2,L),I,= 1,16 	 ),L),L=I,LMAX)
PRINT 2500
PRINT 2300,(((GU(I,2,L),I=17,IMAX),L),L=1,LMAX)
PRINT 2600

2600 FORMAT(1H1,1X,N LINE AVERAGE OF W — COMPONENT *)
PRINT -2300,(((GU(I,3,L),I 	 1,16— ),L),L=1,LMAX)
PRINT 2600
PRINT 2300,(((GU(3,3,L),T=17,IMAX),L),L=1,LMAX)

2300 FORMAT(1X,16F8.3,I3)
240 CONTINUE

PRINT 2000
DO 250 L=14,20_
DO 260 I=1,IMAX
XR(I)=GU(I,I,L)
XI(I)=0.

260 CONTINUE
CALL FFT(XR,XI,IMAX,-1) 	 —

_IF(IDATCNT.EQ.1) DUMSP(L)=SQRT(XR(2)**2+XI(2)XX2)
IF(DUMSP(L).LT.0.0000001) GO TO 250'
DO 270 I=1,IMAX
XR(I)=SQRT(XR(I)**2+XI(I)0*2)/DUMSP(L)

270 CONTINUE
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PRINT 1800,L,(XR(I),I=1_,8)
250 CONTINUE

1800 FORMA'T(1X,)(WV02*,I5,1P8E14.6?
1000 FORMAT(1P8E15.7)	 !
1100 FORMAT(2X,*USUMX,6X,NVS(fMN,5X,XUWSTRN,5X,*02SUMX,7X,*USQN,7X.*VSQX

1,7X,NWSQX,6X ► *O1SQ*,6X,*02SQX,6X,NO3SQX,SX,XENERGYN,4X,XENSTROP*H3
2X,XPLANEX)

1200 FORMAT(///,1X,* UTOT IN X-Y	 VTOT IN X-Y	 WTOT IN X-Y	 OITOT
1IH X-Y	 02TOT IN X-Y	 03TOT IN X-Y X')

- 1300 FORMAT(1X,* U',SUN IN Y-Z	 VSUM IN Y-Z	 WSUM IN Y-Z	 OISUM IN Y
1-Z	 02SUM IN Y-Z	 03SUM IN Y-Z *)

1400 FORMAT(/%/,1X,* UTOT IN Y-Z 	 VTOT IN Y-Z	 WTOT IN Y-Z	 01TOT
1IN Y-Z	 02T0`T IN Y-Z	 03TOT IN Y-Z *)

1500 FORMAT ( 1X,* USUN IN Z-X	 VSUM IN Z -X	 WSUM IN Z-X	 01SUM IN Z
`	 1-X	 02SUM IN Z-X_' 03SUM IN Z-X X)

1600 FORMAT(///,1X,* UTOT IN Z-X	 VTOT IN Z-X	 WTOT IN Z-X	 OITOT
1IN Z -X	 02TOT IN Z-X	 03TOT IN_Z-X *)

1700 FORMAT(1X,* MOMENTUM THICKNESS *,1PE15.7)
2000 FORMAT(1H1)
3000 FORMAT(1P13E10.2)

C	 TEST THE SOLUTION OF THE POISSON EQUATIONS I.E. THAT nS

C	 TEST THE DIVERGENCE OF THE VELOCITY AND VORTICITY FIEL

*
C	 THE CURL OF OUR VELOCITY FIELD IS EQUAL TO THE VORTICITY FIELD

CALL CURLU(U,V,W,GU,GV,GW,Nl,N2_,N3)
ERRMAXI=O.
ERRMAX2=0.
ERRMAX3=0.
DO 17 L = 1#LMAX
DO 17 J=1,JMAX
DO 17 I = I,IMAX
GU(I,J , L)=ABS ( GU(I,J,L) - O1(I,J,L))
GV(I,J,L)=ABS(GV(I,J,L)-02(I,J,L))
GW(I,J,L)=ABS(GW(I,J,L)-03(I,J,L))
IF (GU ( I,J,L) .GT. ERRMAXI) ERRMAXI=GU(I,J,L)
IF (GV(I,J,L) .GT. ERRMAX2) ERRMAX2=GV ( I,J,L)
IF (GW ( I,J,L) .GT. ERRMAX3) ERRMAX3=GW(I,J,L)

17 CONTINUE
PRINT 1110,ERRMAXI,ERRMAX2,ERRMAX3

i	 1110 FORMAT(1X,* ERRMAXI )(E15.7,*ERRMAX2 =*E15.7,* ERRMAX3 *,E15.7)
(	 RETURN

END
(!	 NDECK DIV

SUBROUTINE DIV
^	 C**XX**XX**XXXXN*NX*NXxXXX*X*NX*X*NNX*X*XNK^****NNNNN*?^*^NNN*N***NNN*N*N

C	 THIS ROUTINE TESTS THE DIVERGENCE OF THE VELOCITY FIELD
C	 AND THE DIVERGENCE OF THE VORTICITY FIELD
CN** *X N*N*NN**XXXX*XXXXX*X^**NXNN*^XNXX*XXXXXXXX*X*X**X***X^*********^**
*CALL LARGE2
*CALL LARGE3,
*CALL LARGE5
*CALL BLANK
*CALL DATA9
XCALL DIM

IJK=NI*N2XN3
CALL PARTIAL(1,U,N1,N2,N3)
-CALL MOVLEV(DUDX(1,1,1),GU(1,1,1),IJK)
CALL PARTIAL(2,V,Nl , N2`,N3)
CALL- MOVLEV ( DUDX ( 1,1,1),GV ( 1,1,1),-IJK)
CALL SINPART(W,N1,N2,N3)
DIVMAX_0
DO 1 L = 1, LMAX
DO 1 J= I,JMAX
DO 1 I = 1,IMAX
OUM=ABS ( GU(I,J , L)+GV(I , J,L)+DUDX ( I,J,L))
I F (DUM .GT. DIVMAX) DIVMAX=DUM

1 CONTINUE
PRINT 1100 , DIVMAX
CALL PARTIAL(1,01,Nl,N2,H3)-
CALL MOVLEV(DUDX(1,1,1),GU(1,1,1),IJK)

169	 F



CALL PARTIAL(2,02 ► N1,N2,N3)
CALL MOVLEV(DUDX(1,1,1),GV(1,L 1),IJK)
CALL COSPART(03,N1,N2N3) 	 }
DIVMAX=0.
DO 2 L=1,LMAX
DO 2 J=1,JMAX
D0 2 I=1,IMAX
DUM=ABS(GU(I,J,L)+GV(I,J,L)+DUDX(I ► J,L))
IF {DUM .GT.	 DIVMAX) DIVMAX=DUM

2 CONTINUE
PRINT 1200,DIVMAX	 9

1100 FORMAT(1X,X MAXIMUM VELOCITY 	 DIVERGENCE =*,E15.7)
1200 FORMAT(1X,.X MAXIMUM VORTICITY	 DIVERGENCE =X,E15.7)

RETURN
END

XDECK EDVIS
SUBROUTINE EDVIS(COEF2,E,N1,N2,N3)
DIMENSION	 E(N1,N2,N3)

^, CXXXxXXXX?^*XXXXX***XXXX*X^XXXXXxXXXXX*XX*XX*XX*XXX*XXXXXXXX**XXX***XXXXX 	 1
v THIS SUBROUTINE COMPUTES THE EDDY VISCOSITY AND STORES IT IN Et C:^XXXX*XXXX*X***XXXX*XXXX*X*XXXXXX*X*XXXXXX*XXXXXX*X*XX*XXXXXXXXX**XXX+(* 	 `;
XCALL LARGE5
XCALL DATA9	 s

i j DO 3 L=l,LMAX
I DO	 3 J=1,JMAX	 Is

DO 3 I=1,IMAX
E(I-,J,L)=01(I,J,L)XX2+02(I,J,L)XX2+03(I,J,L)*x2

{f E(I,J,L)=SQRT(E(I,J,L))XCOEF2
3 CONTINUE

RETURN
END	 .s

*DECK FDCT
SUBROUTINE FDCT(SIGN)

CX*XXXX*X*XXXXXXXXXXXXXXXXX**XXXXXXXX^XX XXXX^**XX**XXX*XXXXXXXX*X^X*X^X^
C FDCT COMPUTES THE FAST DISCRETE COSINE TRANSFORM OF THE VARIABLE X

i C XR AND STORES IN XR 	 X
CXXXX*XXXX XX^XXX*X*XXX*X X*X*XXXXXX^X*X*X XX*XXXXXX*X*X^*XXXXXX*XXX*XXXXXX
XCALL DAT21
XCALL DATA9

LMI=LMAX-1
CC=2./FLOAT(LM1)
LL=2XLM1
XR(1)=XR(1)/2.
XR(LMAX)=XR(LMAX)/2r

j LP'1=LMAX+1
DO	 1	 L=LPI,LL} XR(L)=0_.

1 CONTINUE
DO 3 L=1,LL
XI(L)=0.

3 CONTINUE
ISN=—SIGN
CALL FFT(XR,XI,LL,ISN)
IF	 (SIGN	 .GT.	 0.)	 GO TO 200
DO 100 L=1,LMAX
XR(L)=XR(L)XCC

100 CONTINUE
2.00 CONTINUE'

RETURN
END

XDECK FDST
SUBROUTINE FDST(SIGN)

CXXX*XXX^^^XXXXXX^X^X***X?^XXX*XXXXXXXXXx^XX^*X^XXXxKXXXX^X*XX^*XXXX*XXX*
C FDST COMPUTES THE FAST DISCRETE SINE TRANSFORM OF THE VARIABLE 	 X
C XR AND STORES IT IN XR	 X
CXXXX*XXX**X*XXXXXXXXXXX***XXXXXXXXXXXXX*^XXXX*XXXX^XXXXX^XXXX^XXX**XXXX
XCALL DAT21
*CALL DATA9

LM1=LMAX=1
CC=2'. /FLOAT(LMI)
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1. LP1=LMAX+1
DO	 I	 L=LPI,LL

I XR(L)=0.
1 CONTINUE

DO	 3	 L=1,LL
F. XI(L)-0.

3 CONTINUE
ISN=—SIGN
CALL	 FFT(XR,XI,LL,ISN)
IF	 (SIGN	 .GT.	 0.)	 GO TO 200
DO	 100	 L=l,LMAXA XI(L)=XI(L)*CC

If 100 CONTINUE
200 CONTINUE

l

DO 2 L=1,LMAX
? XR(L)=—SIGN*XI(L)

2 CONTINUE
RETURN
END

*DECK FFT 1

k IDENT	 FFT	 (A, B,N,ISN) FFT2C 2
I —ENTRY	 FFT FFT2C 3	 (,

* RADIX 2 COMPLEX FAST FOURIER TRANSFORM, COMPUTED IN PLACE. FFT2C 4
* SEE	 ON COMPUTING THE FAST FOURIER TRANSFORM, 	 R.	 SINGLETON, FFT2C 5	 I'
* COMM.	 ACM,	 V.10,	 N.10,	 PP.647-654,	 OCT.	 1967. FFT2C 6
K ARRAY A CONTAINS THE REAL COMPONENT OF THE DATA AND RESULT, FFT2C 7

ARRAY B CONTAINS THE IMAGINARY COMPONENT. FFT2C 8
* N,	 THE NUMBER OF COMPLEX DATA VALUES, FFT2C 9
* MUST BE A POWER OF 2 AND GREATER THAN 1 FFT2C 10'
* THE SIGN OF ISN ISTHE SIGN OF THE EXPONENTIAL IN THE TRANSFORM. FFT2C 11
* THE MAGNITUDE OF ISN IS THE INCREMENT SIZE FOR INDEXING FFT2C 12
* A AND B,	 AND IS ONE IN THE USUAL CASE. FFT2C 13
* DATA MAY ALTERNATIVELY BE STORED FORTRAN COMPLEX FFT2C 14

:. * IN A SINGLE ARRAY,	 IN WHICH CASE THE MAGNITUDE FFT2C 15	 Ia
* OF ISN	 IS TWO AND ADDRESS B IS A(2),	 I.E. FFT2C 16
* CALL	 FFT2(A,A(2),N,2) FFT2C 17
* INSTEAD OF FFT2C 18
* CALL	 FFT2(A,B,N,1) FFT2C 19	 ('
* PROGRAM CONTAINS SINE TABLE FOR MAXIMUM N OF 32768 FFT2C 20	 }a

4 * 6400	 TIME FOR K=1024,	 220 M.SEC. FFT2C 21
* 6400 TIME FOR N =2*uM IS 21 .5*NKM MICRO —SEC. FFT2C 22
* 6600 TIME FOR N=1024,	 44 M.SEC. FFT2C 23
* 6600 TIME FOR N = 2K y M IS 4.3KN*M MICRO = SEC. FFT2C 24
* RMS ERROR FOR TRANSFORM — INVERSE IS LESS THAN 1.3E-13 FFT2C 25
* FOR N =32768 OR SMALLER. FFT2C 26
* FORTRAN 2.3 SUBROUTINE FFT2C 27

I * BY R.	 C.	 SINGLETON,	 STANFORD RESEARCH INSTITUTE,	 NOV. 1968 FFT2C 28
L100	 — SX0	 B3	 NN FFT2C 29

SB4	 BO,	 KK=O FFT2C 30	 f
SB3	 B3-B-7	 NN=NN-INC FFT2C 31
AXO	 1	 KSPAN=NN/2 FFT2C 32
SB5	 BO	 K2=0 FFT2C 33
SB6	 XO FFT2C 34
SX1	 B5	 K2=K2 FFT2C 35
EQ	 B6,B7,FFT	 IF(KSPAN	 .EQ.	 INC)	 RETURN FFT2C 36	 1

L110	 SB4	 B3—B4	 KK=NN—K.K FFT2C 37
SB5	 B3—B5	 K2=NN-K2 FFT2C 38

' FFT2C 39SA2	 B1+B4	 EXCHANGE A(KK),A(K2) 	 AND.?+(KK),B(K2)
SA3	 B1+B5 FFT2C 40

a SA4	 B2+B4 FFT2C 41
NX7	 X2 FFT2C_ 42
SA5	 B2+B5 FFT2C 43
NX6	 X3 FFT2C 44f ,. SA7	 A3 FFT2C 45

r SA6	 A2 FFT2C 46
NX7	 X4, -FFT2C 47
NX6	 X5 FFT2C 48

171'



"t

' SA7 A5 FFT2C 49
SA6 A4 END OF EXCHANGE" FFT2C 50
LT B6,B4,L110 IF(KSPAN	 .LT.	 KK) GO TO L110 FFT2C 51

L120 SB4 B4+B7 KK=KK+INC FFT2C 52
SB5 B6+B5 K2=KSPAN+K2 FFT2C 53 tr
SA2 B1+B4 EXCHANGE A(KK)PA(K2) AND B(KK),B(K2) FFT2C 54
SA3 B1+B5 FFT2C 55

- SA4 B2+B4 FFT2C 56
NX7 X2 FFT2C 57
SA5 B2+B5 FFT2C 58
NX6 X3 FFT2C 59
SA7 A3 FFT2C 60
SA6 A2 FFT2C 61
NX7 X4 FFT2C 62

{ y( SX0 B6 K=KSPAN FFT2C 63
NX6 X5 FFT2C 64
SA7 A5 FFT2C 65
SA6 A4 END OF EXCHANGE FFT2C 66

L130 AXO 1 K=K/2 FFT2C 67
IX1 X1-X0 K2=K2-K FFT2C 68
PL X1,L130 IF(K2	 .GE.	 0)	 GO TO L130 FFT2C 69
LXO- 1 K=K+K FFT2C 70
SB4 B4+B7 KK=KK+INC FFT2C 71
IXi X1+XO K2=K2+K FFT2C 72
SB5 X1 K2=K2 FFT2C 73
GE F 9:r8,4,L110 IF(K2	 .GE.- KK)	 GO TO L110 FFT2C 74
LT ` 94,B6,L120 IF(KK	 .LT.	 KSPAN) GO TO L120 FFT2C 75r

FFT FFT2C 76
SB1 X1 INSR1	 _1

i SA1 A1+1 INSR1	 2
SB2 X1 INSR1	 3
SA1 A1+1_ INSR1	 4
SB3 X1 INSR1	 5
SA1 A1+1- INSR1	 6`
SB4 X1 INSR1	 7
SA4 B4 ISN FFT2C 77
MX2 1 MASK FFT2C 78
SA5 L60	 - FFT2C 79
SA3 B3 N FFT2C 80
LX2 57 FFT2C 81
PX7 _ X3 FFT2C 82
BX6 -X2*X5 FFT2C 83

"PL X4,L10 IF(ISN	 .GE.	 0)	 GO TO L10 FFT2C 84 9:
BX6 X2+X5 FFT2C 85
BX4 -X4 INC=-INC - FFT2C 86

L10 LX3 32 FFT2C 87'
SA6 A5 FFT2C 88
NXO B5,X3 FFT2C 39

r 'PX2 X4 FFT2C 90
SB7 X4 FFT2C 91
-0X7 X2)(X7 FFT2C 92
SA1 B5 +5 S(M) FFT2C 93
SB3 X7 NN=INC*N FFT2C 94
SB6 X7 KSPAN=NN FFT2C 95
EQ L40 GO TO L40 FFT2C 96

f	
L20 SA3 CD - FFT2C '97

RX4 X2 )(X1 SD*CN FFT2C 98c
RX7 X2 *XO SD*SN FFT2C 99

! RX5 X3*XO CD*SN FFT2C100
RX6 X31(X1 CONCH FFT2C101

fi

RX4 X4 -k5 FFT2C102
RX6 X6 +X7 FFT2G103

ii NX5 X4 FFT2C104
)I RX7 X1-X6 FFT2C1.05

RXO XO+X5 FFT2C106 ; w
NX1 X7 FFT2CIO7

L30 SB5 B6 +B4 K2=KSPAN+KK FFT2C108
j SA2 B1+B4 A(KK) -FFT2C109

SA3 B1+B5 A(K2) FFT2C110 +
SA4 B2 +B4 B(KK) FFT2C111
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RX6 X2+X3 FFT2C112
SA5 B2+B5	 B(K2) FFT2C113
RX2 X2-X3	 RE FFT2Cll4
SA6 A2	 A(KK) FFT2Cll5

' RX7 X4+X5 FFT2Cll6
RX3 X1*X2	 CNXRE FFT2C117
RX4 X4 —X5	 IM FFT2Cll8

w SA7 A4	 B(KK) FFT2Cll9
RX5 XOXX4	 SN*IM FFT2C120
RX2 X0?(X2	 SN*RE FFT2C1.21
RX6 X3—X5 FFT2C122
RX4 X1*X4	 CN*IM FFT2C123
SA6 A3	 AM) FFT2C124
RX7 X2+X4 FFT2C125
SB4 B6+B5	 KK=KSPAN+K2 FFT2Cl26

— SA7 A5	 B(K2) FFT2C127
LT -B4,B3,L30 —	 IF(KK	 .LT.	 NN) GO TO L30 FFT2C128
SB5 B4-B3	 K2=KK—NN FFT2C129
BX1 —xi	 CN=—CH FFT2C130
SB4 B6-B5	 KK=KSPAN-K2 FFT2C131
LT B5,B4,L30	 IF(K2	 .LT.	 KK) GO TO L30 FFT2C132
SB4 B4+B7	 KK=KK+INC FFT2C133
SA2- SD FFT2C134
LT B4,B5,L20	 IF(KK	 .LT.	 K2) GO TO L20 FFT2C135

t40 SB4 BO	 KK=O FFT2C136
SX5 B6 FFT2C137
AX5 1	 KSPAN=KSPAN/2 FFT2C138
SB6 X5 FFT2C139

L50 SB5 B6+B4	 K2=KSPAN+KK FFT2C140
SA2 B1+B4	 A(KK) FFT2C141
SA3 _ B1+B5	 AM) _	 FFT2C142

f' SA4 B2+B4	 B(KK) FFT2C143
RX6 X2+X3 fFT2C144
SA5 B2+B5	 B(K2) FFT2C145
RX7 X2—X3 FFT2C146

r SA6 A2	 A(KK) FFT2C147
SA7 ` A3	 AM) FFT2C148
RX6 X4+X5 FFT2C149
SB4 B6+B5	 KK=KSPAN+K2 FFT2C150
RX7 X4—X5 FFT2C151
SA6 — A4	 B(KK) FFT2C152
SA7 A5	 B(K2) FFT2C153
LT B4,B3,150	 IF(KK	 .LT.	 NN) GO TO L50. FFT2C154
EQ B6,B7,L100	 IF(KSPAN	 .EQ. INC) GO TO L100 FFT2C155
SAi Al	 S(M) FFT2C156
5B4 B7	 KK=ING FFT2C157
RX6 X1*X1_ FFT2C158
SA1 Al+1	 M=M+1,	 S(M) FFT2C159
FX6 X6 +X6 FFT2C160'
SA3' ONE FFT2C161
SA6, CD	 CD=2*S(M)*R2 FFT2C162'

L60 BXO X1 ""	 SN=SD FFT2C163
RX6 X3 —X6	 CN=1.0-CD FFT2C164
BX7 XO FFT2C165
NX1 X6 FFT2C166
SA7 _SD FFT2C167
EQ' L30	 GO TO L30 FFT2C168

S DATA 9.5873799095977346E-5 FFT2C169
DATA 1.917475973107033.1E-4 FFT2C170
DATA 3.8349518757139559E -4 FFT2C171
DATA 7.6699031874270453E-4' FFT2C172
DATA 1.5339801862847656E-3 FFT2C173
DATA 3.0679567629659763E-3 FFT2C174'
DATA 6.1358846491544754E-3 FFT2C175
DATA 1.2271538285719926E-2 FFT2C176
DATA 2.4541228522912288E-2 FFT2C177
DATA 4.9067674327418014E-2 FFT2C178

` DATA 9.8017140329560602E-2 FFT2C179
DATA 1.9509032201612827E-1 FFT2C180
DATA -3,.8268343236508977E-1 FFT2C181
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DATA	 0.7071067811865475	 FFT2C182
ONE	 DATA	 1.0	 FFT2C183
CD	 FFT2C184
SD	 FFT2C185 i

EN
*DECK FFTX

SUBROUTINE FFTX(SIGN)

C FAST FOURIER TRANSFORM IN X-DIRECTION

*CALL DATA9
*CALL DATA?
*CALL DAT21 }}

ISN =-SIGN t
IF	 (SIGN	 .LT..	 0.)	 GO	 TO 3
DO 1 J=1,JMAX
DO 1 I=1,IMAX
FI(I,J)=0.

1 CONTINUE
3 CONTINUE
DO 100 J=I,JMAX
DO 110 I=1,IMAX
XR(I)=FR(I,J)
XI(I)=FI(I,J)

110 CONTINUE
CALL	 FFT(XR,XI,IMAX,ISN)
DO 120 I=1,IMAX t
FR(I,J)=XR(I)

r FI(I,J)=XI(I)
120 -CONTINUE
100 CONTINUE;.I

RETURN
END

XDECK FFTY
SUBROUTINE FFTY(SIGN,COEF3)

C FAST`_FOURIER TRANSFORM IN Y-DIRECTION

*CALL_DATA9
*CALL DATAz
*CALL DAT21

ISN=-SIGN
DO 100	 I=1,IMAX
DO 110 J=1,JMAX
XR(J)=FR(I,J)
XI(J)=FI(I,J)

110 CONTINUE
CALL FFT(XR,XI,JMAX,ISN)
IF (SIGN	 .LT.	 0.)	 GO	 TO 200
DO 120 J=1,JMAX
FR(I,J)=XR(J)
FI(I,J)=XI(J)

120 CONTINUE
GO TO 100

200 DO 130 J=1,JMAX
FR(I,J)=XR(J)*COEF3
FI(I,J)=XI(J)*COEF3

130 CONTINUE
100 CONTINUE

RETURN
END

( *DECK FIX
{+	

^'
SUBROUTINE FIX(IM1,I,IPI,IMAX)
IM1?I-i
IPI_I+1
IF(I	 .EQ.	 1)	 IMI=IMAX
IF(I	 .EQ.	 IMAX)	 IP1=1
RETURN
END

} *DECK INICON
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SUBROUTINE INICON ( C,COF,DT , UR,VR , WR,UI,VI,WI,L1 , L2,L3)
REAL NDIV, NI2,NSQR
DIMENSION UR(L1 ,L2,L3),VR(L1,L2,L3),WR(Ll,L2,L3)
DIMENSION UI(Ll,L2,L3),VI(LI,L2,L3),WI(L1,L2,L3)

C*X^M *^*****^*********RRR^* RMR***^^***R *** RM****3E**x***^*RxMNRN^ **Xx^xM*
•	 C THIS S-UBROUTINE INITIATES THE PROGRAM, FOR STARTING PROBLEM, THE INI-*

C TIAL FIELD IS GENERATED. FOR CONTINUATION PROBLEM, THE DATA STORED *
C ON TAPE AT THE END OF THE PREVIOUS RUN ARE READ IN. 	 R
C*^***x*****^R**k^^R*************RJR*x*************RRR*NR*********R*kR^R
C-----NSTART =1 STARTING FROM TIME STEP=O
C---- NSTART =2 CONTINUED FROM PREVIOUS RUN
C ----- IMAX=MAXIMUM MESH NUMBER IN X-DIRECTION
C ----- JMAX =MAXIMUM MESH NUMBER IN Y-DIRECTION
C ----- LMAX=MAXIMUM MESH NUMBER IN Z-DIRECTION
C-	 TSTART=STARTING TIME STEP
C ----- TEND =ENDING TIME STEP
C-----DELTA= MESH SIZE
C-	 DT=TIME STEP
C: ----- 	 CONSTANT
C-----NAVG=DELTA(AVERAGING)/DELTA(MESH)
C----- ANISO=  R IN EQUATION (5.168)
C ----- GAMMA=STRAIN RATE

RE'AL NAVG
COMMON/LARGEl/'EH(1024),EN1(1024),WN(2048)
LEVEL 2,UR,VR.WR,UI,VI,WI
LEVEL 2,EN,ENI,WN

*CALL DATA?
READ 4, DELTA,DT,C, NAVG,ANISO,UTM,GAMMA
IMAX=16
JMAX=16
LMAX=1b
IJK=IMAX*JMAX*LMAX
IJ=IMAX*JMAX
IMMI=IMAX-1

x'	 IMPI=IMAX+1
NMESH'=IMAX
TDIV=1.0/(IMAX*JMAX*LMAX)
NHALF=NMESH/2

HALF=FLOAT(HHALF)
NMI=NMESH-1
RISO=3./(3.+ANISO)
TEMP=ANISO/3.
RAHISO=SQRT(TEMP)
CC=1.
TFAC=IMAX*JMAX*LMAX
FAC=SQR'T(TFAC)
COEF10=3.1415926535898 3HHALF
COEFII=COEF10
COEF12=3.141592653.58.98x2,
CONST=COEFlO/ DELTA
COEFI5=COEF12*FAC
P11=COEF10
PI2=PI1*2.
COF=1.0
NCONT=1
DO 2 M=1,25
Y9=RGEN(X9)

2 CONTINUE
C-----ENERGY SPECTRUM DATA
C----- 0.1 INTERVAL UP TO 1.0	 THEN 5 IHTERVALL UP TO 6.0
C----- EN  IS THE ENERGY SPECTRUM FOR THE ISOTROPIC PART. EN1 IS FOR THE
C ANIS'OTROPIC PART.

PRINT 1960
WN(1') =O .1
DO 1900 M=2,10

1900 WN(M)=0.1+WN(M-1)	 -

DO 1950 M=11,24
1950 WN(M)=-0.5+WN(M-1),
1960 FORMAT(/5X,*WAVE-NUMBER*,/)
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; I	 PRINT 4, (WH(M),M=1,24)

	

}	 PRINT 2000
2000 FORMAT(/5;X,NUHFILTERED SPECTRUMx,/)

DO 3 M11,24,8
M7=M+7
READ 41, (EN(MM),MM=M ► 'M7)
PRINT 702,(EN(MM),MM=M,M7)

3 CONTINUE
DO 503 M'41,24,8
M7=M+7
READ 4, (EN1(MM),MM=M,M7)
PRINT 702,(EN1(MM),MM=M,M7)

503 CONTINUE
4 FORMAT (8E10.4)

	

f	 DELAVG=(DELTAXNAVG)xx2/12.0
PAI=3. 1415926535898
DO	 2100 M=1,24
EXPF=EXP(-DELAVG?(WN(M)xWN(M))
EN(M)=EH (M)xEXPF

2100 EN1(M)=EN1(M)xEXPF
PRINT 2200

2200 FORMAT(/5X,xFILTERED SPECTRUMX,/)
PRINT 702,(EN(M),M=1,24)
PRINT 702,(EN1(M),M=1,24)
DO 5 L 1,LMAX
DO 5 J=1,JMAX
DO 5 I=1,IMAX
UR(I,J,L)=O.
VR(I,J,L)=O.
WR(I,J,L)=0.
UI(I,J,L)=0._'
VI(I,J,L)=C.
WI(I,J,L)=0.

5 CONTINUE
DO 40 L=1.NHALF
LL=L
N3=L-1
N3S=N3*x2
DO 30 J=1,NM1
JINDEX=J/NHALF
JJ=J+NHP1-JINDEX*JMAX
N2=J-NHALF
N2S=N2xx2
DO 20 I=1,NM1
IINDEX-I/NHAL,F
II=I+NHP1-IINDEX*IMAX
N1=I-NHALF
N1S=Nlxx'2
HSQR=NIS+N2S+N3S
IF (NSQR .LT. 0.1) GO TO '20
WAVN=SQRT(HSQR)
NDIV =1./WAVN
N12=N1S+N2S
IF (N12 .LT. 0.1) NCONT=2
IF (IABS(N1) .EQ. NHALF .AND.IABS(N2) .EQ. NHALF) NCONT=2

C----- GET FOURIER AMPLITUDE OF THE INITIAL FIELD AD DESCRIBED IN SEC 4.4
X=CONST*WAVN

	

(	 HREG=X+1.
GO TO (310,315,315,315,315,315,315) NREG

310 M=X/0.1
1	 YM=X-O.1xM
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M1=M+1
I n ED=EN(M1)—EN(M)

ENERGY=EN(M)+EDXYM*2.
EDA=EN1(M1)-EN1(M)
EANISO=EN1(M)+EDAXYMx2.

320 QS=ENERGYXRISO/(COEFI5XXXX2)
QFi=SQRT(QS)

J	 r QSA=EANISORRISO/(COEFI5XXXX2)
QNA=SQRT(QSA)

C-----CHANGE WAVE NUMBER VECTOR TO SATISFY NUMERICSL DIV FREEJ
C-----R1,R2 AND R3 ARE THE MODIFIED WAVE NUMBER

IF(NCONT.EQ.2)GO TO 	 340	
yARGI=PIIXNI

ARG2=PI2XN1
R1=ARGI/DELTA
ARGI=PIIXN2: :i
ARG2=PI2XN2
R2=ARG1/DELTA
ARGI=PIIXN3
ARG2=P'I2XN3
R3=ARG1/DELTA
R1S=R1Xx2
R2S=R2xX2
R3S=R3xX2
R12S=R1S+R2S
RSQ=RI2S+R3S
IF(NCONT.EQ.2) GO TO 340
R12=SQRT(R12S)
R12DIV=1./R12	 r

R12=SQRT(R12S)
R12DIV=1./R12
RDIV=I,/SQRT(RSQ)

C ----GET A & B	 VECTOR
r C FIRST CHOOSE RANDOM PHI

340 CONTINUE
YY=RGEN(XX)
PHI=YYXCOEFI2
CPHI =COS(PHI)	 a
SPHI=SIN(P'HI)	

3
IF(NCCNT.EQ.2)GO TO 11
A1=(-R2XCPHI+R1*R3*RDIVXSPHI)XRI2DIV
A2=(RIXCPHI+R2XR3XRDIV*SPHI)XRI2DIV
A3=-R12XRDIVXSPHI

C CALL RANDOM PHI
Y2=RGEN(X2) i
PHI=Y2XCOEFI2
CPHI=COS(PHI)
SPHI=SIN(PHI)
B1=(— R2XCPHI+RIXR3*RDIV*SPHI)xRi2DIV
B2=( Rl*GPHI +R2*R3xRDIVXSPHI)XRI2DIV
B3=-Ri2MRDIVXSPHT
GO TO 12

11 CONTINUE	 3

INDEX=(YY+0.25)X4
PHI=0.7853982X(2XINDEX -1)
A1= SIN(PHI)
A2 =GOS(PHI)
A3 =0_
Y1=RGEN(X1)
INDEX=(Y1 +0,25)X4

. PHI= 0.7853982X(2XINDEX-1)i Bi=SIN(PHI)
B2=COS(PHI),
B3 =0.
NCONT='1

12 CONTINUE
C DETERMINE A AND B IN EQUATION (4.6)
C — RANDOM THETA

Y3=RGEN(X3)
j
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THETA=Y3*COEF12
CA=COS (THETA)
CB=SIN (THETA)

R(I1, JJ, LL)=QNxCAXA1	
REPRODuaBluff

V
R(II ,JJ,LL)=' V QN^CA^A2	 OF THE

WR(II,JJ,LL) =QN*CANA3	 01WINAL PAGE IS POORUI(II ,JJ,LL)= QNXCB*B1
VI(II ,JJ,LL)=QN*CBHB2
WI(II,JJ,LL) =QNXCBXB3	 j
IF (N3	 NE.	 0)	 GO TO 20
WSIGN =ABS(A3)/A3
VSIGN =ABS(.B3)/B3
WRAN=QNA*CAXRANISO
WIAN =QNAXCB * RANISO
WR(II,JJ ► IL)=WR(II,JJ,LL)+WRANRWSIGN
WI(II ,JJ,LL )=WI(II',JJ,LL)+WIANRVSIGN

20 CONTINUE
30 CONTINUE
40 CONTINUE

C NOW THE UPPER HALF OF THE K-SPACE HAS BEEN DETERMINED
C GET THE TRANSFORMED VELOCITY AT THE CONJUGATE POINTS
C-----CONJUGATE FORM
C N3=1 TO 7,	 Nl & N2 =-7 TO 7	 j
C N3=L-1	 -N3=LM
C N2=J-1	 -N2=JM	 i

IMP2=IMAX+2
DO 41 L=2,NHALF
LM=L+IMP2-2*L
DO 41 J=1,JMAX
M=(J+IMM1)/IMP1	 1°
JM=J+(IMP2-2XJ)XM
DO 41	 I=1,IMAX
M=(I+IMM1)/IMP1
IM=I+(IMP2-2*I)*M
UR(IM,JM,LM)= UR(I,J,L)
VR(IM ,JM,LM)=-VR(I,J,L)
WR(IM ,JM,LM)= WP.(I,J,L)
UI,(IM,JM,LM)=-UI(I,J,L)
VI(IM,JM,LM)=-VI(I,J,L)

u WI(IM ,JM,LM)=-WI(I,J,L)
41 CONTINUE

C N3=0,	 N1 = 1 TO 7,	 N2=-7 TO 7
DO 42 I=2,NHALF
IM=I+(IMP2-2*I)
DO 42 J'=l,JMAX
M=(J+IMM1)/IMP1
JM=J+(IMP2-2XJ)XM
IF(J.EQ.NHP1)	 GO TO 42
UR(IM,JM,l	 )= UR(I,J,1)
VR(IM,JM,1	 )= VR(I,J,l)

t
WR(IM,JM,l	 )= WR(I,J,1); UI(IM,JM,1	 )=-UI(I,J,1)
VI(IM,JM,l	 )=-VI(I,J,1)
WI(IM,JM,1	 )7-WI(L,J,1)

42 CONTINUE
C N1=N3=0

. i DO 43 J=2,NHALF
JM=J+(IMP2-2*J)
UR(1,JM,1) = UR(1,J,1)
VR(1,JM,1)= VR(1,J,1)
WR(1,JM,1)=`WR(l,J,l)
UI(l,JM,1)=-UI(1,J,1)
VI(_1,JM,1)=-VI(1,J-,1)

x
WI(1,JM,1)=-WI(l,J,l)

43 CONTINUE
C X AND Y TRANSFORM

SIGN=-1.
DO 50	 L•=1, LMAX
CALL MO'VLEV(UR(l,l,L),FR(l,I),IJ)
CALL	 MOVLEV(UI(1,1,L),FI(1,1),IJ)
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CALL FFTX(SIGN)
CALL	 FFTY(SIGN,CC)
CALL MOVLEV(FR(1,1),OR(1,1,L),IJ)
CALL MOVLEV(FI(1,1),UI(1,1,L),IJ)
CALL MOVLEV(VR(1,1,L),FR(1,1),IJ)
CALL	 MOVLEV(VI(1,1,L),FI(1,1),IJ)
CALL FFTX(SIGN)
CALL FFTY(SIGN,CC)
CALL MOVLEV(FR(1,1),VR(1,I,L),IJ)
CALL MOVLEV(FI(1,1),VI(1,1,L),IJ')
CALL	 MOVLEV(WR(1,1,L),FR(1,1),IJ)
CALL	 MOVLEV(WI(1,1,L),FI(1,1),IJ)
CALL	 FFTX(SIGN)
CALL	 FFTY(SIGN,CC)
CALL MOVLEV(FR(1,1),WR(1,1,L),IJ)
CALL	 MOVLEV(FI(1,1),WI(1,1,L),IJ)

50 CONTINUE
C Z TRANSFORM

E DO 51 I=1, IMAX
DO 52 L= 1, LMAX

k	
i DO 52 J=1,JMAX

FR(J,L)=UR(I,J,L)
FI(J,L)=UI(I,J,L)

52 CONTINUE

°i
FFTY(SIGN,1.0)'1.0) 

Do 53LT 1,LMAX
D0 53 J=1,JMAX a

UR(I,J,L)=FR(J,L)
53 CONTINUE
51 CONTINUE

DO 54	 I=1,IMAX

`'
DO 55 L = 1, LMAX a

I DO 55 J=1,JMAX
FR(J,L)=VR(I,J,L)
FI(J,L)=VI(I,J,L)

( 55 CONTINUE
( CALL	 FFTY(SIGN,1.0)

:j DO 56 L = 1,LMAX i
DO 56	 J=I,JMAX
VR(I,J,L)=FR(J,L)

56 CONTINUE
t 54 CONTINUE

DO 57	 I=1,IMAX a
,. DO 58	 L=I,LMAX

DO 5g J=1,JMAX
FR(J,L)=WR,(I,J,L') I	 ;^
FI(J)L)"=WI(I,J,L)

58 CONTINUE
CALL FFTY(SIGN,1.0)
DO 59 L=1, LMAX r
DO 59 J=I,JMAX
WR(I.J,L)=FR(J,L)

59 CONTINUE
57 CONTINUE

C-----THE INITIAL FIELD HAS BEEN GENERATED. 	 THE FOLLOWING IS TO PRINT
C OUT	 LNFORMATION ON THE GENERATED FIELD
C VELOCITIES ARE STORED IN UR.	 VR AND WR
C-----TURBULENT ENERGY CHECK-

TKU=O.
^_

TKW=O
DO	 95	 L=1,	 LMAX
DO	 95	 J=1,	 ,AMAX
DO 95 I = 1,	 IMAX

` TKU=TKU+UR(I,J,L)XX2
TKV=TKV+VR(I;,J,L)XX2
TKW=TKW+WR(I,J,L)'XX2

95 CONTINUE
TKU=TKUXTDIV
TKV=TKVXTDIV i(

k ,Y^
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TKW=TKWXTDIV
TKSUM=TKU+TKV+TKW

i TKUR=TKU/TKSUM
TKVR=TKV/TKSUM
TKWR=TKW/TKSUM
PRINT 707
PRINT 706
PRINT 700,DT , DELTA , C,NAVG,ANISO , UTM,GAMMA
PRINT 702,	 TKU,TKV,TKW,	 TKSUM
PRINT 702,TKUR,TKVR,TKWR
PRINT 706
PRINT 601.
UTOT=O.

f VTOT=O=
WTOT=O.
DO 120	 L=1,LMAX;
PRINT	 710,E
USUM=O.
VSUM=O.
WSUM=O.

` DO 116 J=1,JMAX
DO 116	 I =1,IMAX
USUM=USUM+UR(I,J',L)
VSUM =VSUM+ VR(I,J,L)
WSUM =WSUM+WR(I,J,L)j

116 CONTINUE ^.
PRINT	 702,(UR(I,10,L),I=1,NHALF)
PRINT 702,(VR(I,10,L),I=1,NHALF)
PRINT	 702, ( WR(I,10 , L),I=1,NHALF)
PRINT 702,	 USUM,VSUM,WSUM {	 '
UTOT=UTOT+USUM
VTOT=VTOT+VSUM

r;
WTOT=WTOT+WSUM

120 CONTINUE
PRINT 702,UTOT,VTOT,WTOT r

700 FORMAT ( 1X	 ,XINITIAL	 CONDITION.	 DT=XIPEIO . 4,*	 DELTA =X1PE10.4,
1 *	 C=*,0PF7.4 , 3X,*AVERAGING GRID= *,F4.1,	 X	 DELTAN ,/, 18X, I
2*ANISO=*,E12.5,3X,*UTM=X,E12.5,3X,*GAMMA=R,E12.5)

702 FORMAT(1P8E15.7)
705 FORMAT ( 1X,	 XCONTINUED AT TIME STEP=X,14,/,/)
706 FORMAT(1H0,130H*N********NX******XX****X***XX**************X^4* j'

• - *****^EXXX****** **XXX* NNXNN*^E*****XXNNNX**X**^E *******^E*****N******* i

707 FORMAT	 (1H1)
710 FORMAT`(1X,*PLANE =X ,I3)

j 711 FORMAT ( 1X,N INITIAL CONDITION *,/1X,XDT = XIPE10 . 4,X	 DELTA=X1PE10.4 {.

C=N,F7.4,	 *	 UO=*1PE10.4,/)
601 FORMAT(IX,XUM,VM,WM*)

RETURN
END

XDECK INIFILT
SUBROUTINE INIFILT ( U,N1,N2,N3)
DIMENSION U(N1,N2,N3)`

c* ^EXX**XXXN *^^*** NX^***^^****^**^*^^*******N****^^*********^*****X***^^^	 ^
C	 THIS SUBROUTINE IS USED TO FILTER THE INITIAL FIELD WITH A WIDE
C	 FILTER ONLY I N THE Z-DIRECTION.
C*********NXN*N*********X**NNN**X**3E*^fN^EN**^f3E*X^E***3EN*****NEE****X******* 	 j ;
XCALL FLT
XCALL DAT21
*CALL DATA7
XCALL DATA9_	 -

:LEVEL 2,U
LMAXMI=LMAX-1
DO 5 L = 1,LMAX
XR(L)=EXP(-FLOAT(L-1)**2/8.0)

5 CONTINUE
AREA=0.5*XR(1)
DO 6 L'= 2, LMAXMI

n_	 AREA=AREA+XR(L)
` r!]	 6 CONTINUE
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j
AREA=AREA+0.5*XR(LMAX)
DO 7 L=1,LMAX

j
XR(L)`—=XR(L)/AREA

7 CONTINUE
CALL	 FDCT(1.0)
DO 8 L=1,LMAX_
FILT3(L)=XR(L)

8 CONTINUE
DO 1 J=1,JMAX
DO 1	 I=1, IMAX,
DO 2 L=1,LMAX
XR(L)=U(I,J,L)

2 CONTINUE
CALL	 FDCT(1.0)
DO 3 L = 1,LMAX a
XR(L)=XR(L)*FILT3(L)

3 CONTINUE
CALL	 FDCT(-1.0)
DO 4 L=1,LMAY,
U(I,J,L)=XR(L) j

I 4 CONTINUE
1 CONTINUE

RETURN
END

I ODECK INVERS
SUBROUTINE INVERS(G,PM,HM,IC,N1,N2,N3)

C INVERS IS A POISSON SOLVER. 	 IC = 3 IT EXPANDS THE VARIABLE G
C IN COSINE SERIES IN THE Z — DIRECTION OTHERWISE IT EXPANDS G	 R
C IN SINE SERIES IN THE Z-DIRECTION.	 IN THE OTHER TWO DIRECTIONS
C FOURIER SERIES ARE USED TO EXPAND G	 * A
Cox * ** *^x* *^**R******xx **x** 3f*x % *x* 3E* ^****x 3f * ***^*** ^E*x*x***xxx*x*xx^xxx r,

( DIMENSION	 G(N1,N2,N3),PM(N1,N2,N3),HM(N1,N2,N3)
xCALL DATA9
XCALL DAT21
*CALL DATA?
*CALL WV

LEVEL 2.G,PM
IJ=N1xN2 sa
CC=I./(IMAX*JMAX)

Cxx***TRANSFER G TO HM
DO 10 J=I,JMAX
DO 10	 I=1,IMAX
DO 20	 L=1, LMAX
XR(L)=—G(I,J,L) l20 CONTINUE
IF	 (IC	 :EQ.	 3)	 GO TO	 100
CALL	 FDST(1.0)
GO TO 200

100 CALL	 FDCT(1'.0)
200 DO 30	 L=1,LMAX

HM(I,J,L)=XR(L)
30 CONTINUE
10 CONTINUE

DO 40	 L=1,LMAX
CALL	 MOVLEV(HM(1,1,L),FR(1,1),IJ)
CALL	 FFTX(1.0)

j CALL	 FFTY(1.0,1.0)
DO 50 J=1,JMAX
D0-50	 I=I,IMAX

j WAV=WAVEXS(I)+WAVEYS(J)+WAVEZS(L)
i IF	 (ABS(WAV)	 .LT.	 0.00001)	 GO	 TO	 500

` WAV=I./WAV
FR(I,J)=FR(I,J)*WAV
FI(I,J)=FI(I,J)*WAV
GO TO 50

}	 " 500 FR(I,J)=0.
( FI(I,J)=0.

50 CONTINUEj(
CALL	 FFTY(-1.'O,CC)
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CALL	 FFTX(-1.0)
t CALL MOVLEV(FR(1,1),HM(l,l,L),IJ)

40 CONTINUE
DO 60 J=1,JMAX
DO 60 I=1,IMAX
DO 70 L=1,LMAX
XR(L)=HM(I,J,L)

70 CONTINUE
,	 QjP'I`KEIf (IC	 . EQ.	 3)	 GO TO 300

CALL F D S T ( - 1. o)	 REpgpDUCTBIGE	 pQOR
400	

INPAL PA	 13
{ 300 CALL O FDCT( -1.0)	 QG

400 DO 80	 L = 1,LMAX	 p
PM(I,J,L)=XR(L)
CONTINUE	

11
80
60 CONTINUE

RETURN
END

,.^ *DECK MEANLNI
SUBROUTINE MEANINI
COMMON/NORM/ DELU,THETA

*CALL DEL
C

I COMMON/LARGE4/O1D(16,16,33),02D(16,16,33),03D(16,16,33)
LEVEL 2,01D , 02D,03D

*CALL BLANK
XCALL DIM

{ *CALL LARGE2
XCALL LARGE3
*CALL LARGE5	

I*CALL DATA9

C THIS ROUTINE CREATS THE MEAN INITIAL FIELD 	 INITIAL SPICKS-
C ARE STORED IN GU THEN FILTERED TO THE CREAT THE GAUSIAN CORE

DO 500	 L=1,LMAX
DO 500 J=1,JMAX

I DO 500	 I=1,IMAX
GU(I,J,L)=0.

j 500 CONTINUE
DO 501 J=1JMAX
GU(	 6,J,17)=20.
GU(11,J,17)=20.i.

501 CONTINUE
i PRINT 1110	 -

s 1110
PRINTT1115,(( ( GU(I,1,L) , I=1,IMAX) , L)AL=1,LMAX)

I

f
1115 FORMAT(1X,16F8.2,I3)

CALL STFILT
CALL SFILTER ( GU,DUDX,NI , N2,N3)
PRINT 1113

1113 FORMAT(1H1,5X,*FILTERED VORTEX AT PLANE 1*)
{ PRINT	 1115,(( ( GU(I , I,L),I=	 1 , 16	 ),L),L = 1,LMAX)

DO 508 L=1,LMAX
DUDX(1,1,L)=0.0
DO 508 J=1,JMAX

`{ DUDX (1,1,L)IDUDX (1,1,L)+GU ( I,J,L)/(IMAX*JMAX)
508 CONTINUE

DO 509	 L = I,LMAX`
DO 509 J=1,JMAX
DO 509 I = 1,IMAX
GU(I,J,L)=DUDX(1,1,L)

509 CONTINUE
f DO 502	 L=1,LMAX}

DO 502 J=1,JMAX
DO 502 I = 1,IMAX

- 02(I,J,L) = 02(I,J , L)+GU(I,J,L)t
502 CONTINUE

CALL	 INVERS(01,GU,DUDX,I,N1,N2,N3)
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CALL INVERS ( 02,GV ,DUDX, 2,N1,N2,N3)
CALL INVERS(03,GW,DUDX,3,N1,N2,N3)
CALL	 CURLO(GU,GV,GW,U,V,W,N1,N2,N3)

C COMPUTE THE MEAN INITIAL VELOCITY FIELD AND NORMILIZE THE EQUATION
r	 C WITH DELTA U(DELU) FOR THE VELOCITY SCALE AND THETA THE MOMENTUM

T	 C THICKNESS FOR THE LENGTH SCALES.
CDUM=1./(IMAX*JMAX)
DO 506 L=1,LMAX
DUDX(1,1,L)=0.

j DO 506 _J=1,JMAX
t DO 506	 I=1,IMAX

DUDX(1,1,L)=DUDX(1,1,L)+U(I,J,L)*CDUM
506 CONTINUE

DELU=DUDX(1,1,LMAX)—DUDX(1,1,1)
#	 ;; THETA=(0.25—(DUDX(1,1,1)/DELU)*X2)X0.5

LMAXMI=LMAX-1
DO 504 L=2,LMAXMI
THETA=THETA+(0.25—(DUDX(1,1,L)/DELU)**2)

504 CONTINUE
L THETA=THETA+(0.25—(DUDX(1,1,LMAX)/DELU)XX2)XO.5

THETA=THETAXDELTAZ
DELTAX=DELTAX/THETA
DELTAY=DELTAY/THETA
DELTAZ=DELTAZ/THETA
CALL STWV

I DO 505 L=1,LMAX
DO 505 J=1,JMAX
DO 505'I=1,IMAX
U(L,J,L)2(1,J,L)/DELU s •

V(I,J,L)=V(I,J,L)/DELU

r	 I W(I,J,L)""4(I,J,L)/DELU
I	 505 CONTINUE

CALL CUfi LU(U,V,W,01,02,03,N1,N2,N3) r
PRINT 708

708 FORMAT(1H0,130H** X34* *** ***XX**X*****XXX*^E *X*X **** *XXX* *** ***3EX**A
11	

^r
1^43f*XX^f^fX*X3E^E*3E 3E*34X*X**X**X3EXX*SEX**^EXX^4^£^EX*3E 3E*X3E*^E***XX*******3E**X* ,
2*?^*** *SEX***XX	 ) `	 t
DT=0.03125KDELU/THETA?

` PRINT 1116,DELU,THETA,DT
1116 FORMAT(1X,1H*,* DELU=X,E15.7,10X,X	 THETA=*,E15.7,10X,X DT=X,E15.7,I

I &46 X,1H*);
PRINT 1117,DELTAX,DELTAY,DELTAZ

1117 FORMAT(1X,lHX,* DELTAX = X,E15.7,10X,* DELTAY=X,E15.7,10X,* DELTAZ=*
&,E15.7,35X,1H*)
PRINT 708`
CALL RNDINIC
UDUM=O.
DO 507	 L=1,LMAX_

j DO 507 J=1,JMAX
DO 507	 I-1,IMAX`'
IF(ABS(U(I,J,L)).GT.UDUM)	 UDUM=ABS(U(I,J,1))
IF(ABS(V(I,J,L)).GT.UDUM)	 UDUM=ABS(V(I,J,L))
IF(ABS(W(I,J,L)).,GT.UDUM) 	 UDUM=A'BS(W(I,J,L))

507 CONTINUE

I CUDUM=0.30/UDUM
DO 510	 L=1,LMAX

} DO 510 J=1,JMAX
DO 510 I=1,IMAX
U(I,J,L)=U(I,J,L)*CUDUM

EI V(I,J,L)=V(I,J,L)*CUDUM

{
W'(I,J,L)=W(I,J,L)*CUDUM

}	
510- CONTINUE

CALL	 CURLU(U,V,W,DID,02D)03D,N1,N2,N3)'
DO 512 L=1,LMAX
DO 512 J=1,JMAX
DO 512	 I=.I,IMAX
O1(I,J,L)=01(I,J,L)+OID(I,J,L)
02(I,J,L)=02(I,J,L)+02D(I,J,L)
03(I,J,L)=03(I,J,L)+03D(I,JL)

512 CONTINUE
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j CALL	 INVERS(01,GUDUDX,I,N1,N2,N3)
CALL	 INVERS(02,GV,DUDX,2,N1,N2,N3)

g CALL	 INVERS(03,GW,DUDX,3,NI,N2,N3)	 t
CALL CURLO(GU,GV,GW,U ► V,W,N1,N2,N3)
DO 513 L=1,LMAX
DO 513 J=1,JMAX
DO 513 I=1,IMAX
01D(I,J,L)=0.
02D(I,J,L)=0.
03D(I,J,L)=0.

513 CONTINUE
DUMM1=0.
DUMM2=0.
DO 3333 I=1.IMAX

i DO 3333 J =i,JMAX
DO 3333 L=1,LMAX
IF(01(I,J,L).GT.DUMM1)	 DUMM1=01(I,J,L)
IF(02(I,J,L).GT.DUMM2) 	 DUMM2=02(I,J,L)

3333 CONTINUE
PRINT 3334,DUMMI ► DUMM2

3334 FORMAT(1X,* DUMM1 = X,E15.7,2X,X DUMM2= *,E15.7)
RETURN
END

*DECK PARPLOT
SUBROUTINE PARPLOT

:{ Cif*^3EXiE^?E * ^3E3Ei4%R3E34^3Ex ?Ex3E?EX3E^^*3E**?E^3f^^^ ?E^Mk * K***^lR^M * iE^*****3E*^*^ ***** ^^

C THIS ROUTINE PLOTS THE PARTICLES TRACKS
C XMIN IS FIXED TO BE ZERO	 R
C ZMIN IS FIXED TO BE ZERO
C XMAX IS FLOATINC AND DEPENDS ON NUMBER OF MESHES USED AND DELTAX
C ZMAX IS FLOATING AND DEPENDS ON NUMBER OF MESHES USED AND DELTAZ *
C SCX IS_ THE SCALING FACTOR TO ADJUST TO A PAGE LENGHT OF 8 INCHES

} C SCZ IS THE SCALING FACTOR TO ADJUST TO A PAGE LENGHT OF 8 INCHES

*CALL DATA9
>) XCALL DEL

XCALL XL
DATA LB/1HX/
DATA NL/1HZ/
XMIN=O.
XMAX=(IMAX-1)*DELTAX
ZMIN=O.
PPXMAXL13XO1)*DELTAZ

PPZMAX=10.
SCX=PPXMAX/XMAX

1 SCZ=PPZMAX/ZMAX
CALL	 LINAXS(O.,O.,PPXMAX,PPZMAX,.1,-1,10,1,XMIH,XMAX 3,4,LB)
CALL	 LINAXS(O.,O.,PPXMAX,PPZMAX,.1,+1,;10,1,ZMIN,ZMAX,3,4,NL)
DO	 1	 N=1,140
X=XPART(N)XSCX
Z=ZPART(N)ASCZ

. NC=NCHAR(N)
CALL	 SYMBOL( X,Z,0.1,0,0.,-NC)

"
1 CONTINUE

CALL _PLOT(0.`,0.,6`)
RETURN
END

*DECK PARTRAG
SUBROUTINE PARTRAC(NPART,DT)

k C THIS SUBROUTINE COMPUTES THE PARTICLES TRACK OF A TWO DIM MEAN.
{ C	 - IT USES LINEAR INTERPOLATION TO COMPUTR THE VELOCITIES BETWEEN

C THE MESHES.	 TIME ADVANCING IS A FIRST ORDER EULER METHOD.

*CALL LARGE2	 1
XCALL DATA9
XCALL DEL

'.• XCALL LARGE3
XCALL XL
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RLX = (IMAX-1)XDELTAX
RLY=(JMAX-1)XDELTAY'

{ RLZ=(LMAX-1)*DELTAZ	 ___	 I
(.^ DO ]	 M=1,NPART

IX =XPART(M)/DELTAX+1	 RUDUCI$jLORLp T

G ^	
+.^

LZ=ZPAR+(M)/DELTAZ+1	 PAGE IS P	 RIxP1 IX 1
rYPl=IY+1
LZPI=LZ+1
I.F(IX. EQ. IMAX) 	 IXP1=1

I IF(IY	 .EQ.	 JMAX)	 IYP1=1
IF(LZ.EQ.LMAX)	 LZPI=LZ
CCX=(XPART(M)—(IX-1)XDELTAX)/DELTAX
CCY=(YPART(M)—(IY-1)*DELTAY)/DELTAY
CCZ=(ZPART(M)—(LZ-1)XDELTAZ)/DELTAZ
UIPART =U(IX,IY	 ,LZ	 )+(U(IXPI,IY	 _,LZ	 ) —U(IX,IY	 ,LZ	 ))XCCX	 f

VIPART=V(IX,IY	 ,LZ	 )+(V(IXPI,IY	 ,LZ	 ) —V('IX,IY	 ,LZ	 ))XCCX
WIPART=W(IX,IY	 ,LZ	 )+(W(IXPI,IY	 ,LZ	 ) —W(IX,IY	 ,LZ	 ))XCCX
U2PART=U(IX,IY	 ,LZPI)+(U(IXPI,IY	 ,LZP1) — U,ltIX,IY	 ,LZP1))XCCX	 f
V2PART =V(IX,IY	 ,LZPI)+(V(IXPIIY	 ,LZPI) — ►%(IX,IY	 ,LZP1))XCCX
WRPART=W(IX,IY.	 ,LZP1)+(W(IXP1,IY 	 ,LZPI) —W(IX,IY	 ,LZP1))xCCX
UIPART=UIPART+(U2PART—UIPART)XCCZ

W2PART =W(IX,IY	 ,LZP1)+(W(IXP1,IY 	 ,LZPI)-W(IX,IY	 ,LZP1))XCCX
UIPART=UIPART+(UIPART-UIPART)XCCZ
VIPART=VIPART+(V2PART—VIPART)*CCZ
W1PAR"T=WIPART*(W2PART—WIPART)*CCZ
U2PART4U(IX,IYPILZ 	 )+(U(IXPI,IYPI,LZ 	 ) —U(IX,IYPI,LZ	 ))XCCX
V2PART=V(IX,IYPI,LZ	 )+(V(IXPI,IYPI,LZ	 )—V(IX,IYPI,LZ	 ))*CCX	 S<.
W2PART=W(IX,IYPI,LZ	 )+(W(IXPI,IYPI,LZ	 ) —W(IX,IYPI,LZ	 ))xCCX

F U3PART=U(IX,IYPI,LZPI)+(U(IXPI,IYPI,LZP1)—U(IX,IYPI,LZP1))XCCX^
V3P.ART=V(IX,IYPI,LZPI)+(V(IXPI,IYPI,LZPI)—V(IX,IYPI,LZP1))XCCX
W3PART=W(IX,IYPI,LZP1)+(W(IXPI,IYPI,LZPI)-W(IX,IYP1,LZP1))*CCX

' 0IPART=UIPART+(U3PART—U2PART)XCCZ;
V2PART=V2PART+(V3PART—V2PART)XCCZ

{ W2PART=W2PART+(W3PART-142PART)XCCZ	 [.
UIPART=UIPART+(U2PART-UIPART)XCC	 r3
VIPART=VIPART+(V2PART—VIPART)XCCY
WIPART =WIPART+(W2PART-WIPART)XCCY	 F7
XPART(M)=XPART(M)+DT*UIPART

I! YPART(M)=YPART(M)+DTXVIPART
ZPART(M)=ZPART(M)+DTXWIPART
IF(XPAP,T(M).GT.RLX)	 GO TO	 10	 fa
GO TO 20

10 XPART(M)=XPART(M)-RLX
20 IF(XPART(M).LT.O.)	 GO	 TO	 30	 i

GO TO 40
30 XPART(M)=XPART(M)+RLX..
40 IF(YPAR`T(M).GT.RLY)	 GO	TO 70:

GO TO 80
70 YPART(M) =YPART(M) • RLY	 —

1 80 IF(YPART(M).LT.O,)	 GO	 TO	 90
GO TO 100

90 YPART(M)=YPART(M)+RLY'
100 IF(ZPART(M).GT.RLZ) 	 GO TO 50

GO TO 6-0
50 ZPART(M)=RLZ
60 IF(ZPART(M).LT.O.) ZPART(M)=0.

1 'CONTINUE
RETURN

h
END

%DECK PARTIAL
SUBROUTINE PARTIAL( M,U',N1 , N2,N3)
DIMENSION U(N1,N2,N3)

*CALL DATA9
XCALL BLANK
XCALL WV	

1

XCALL DATA?
S	 C LEVEL 2,U
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IJ=N1*N2
IF (M .EQ. 2) 00 TO 30

i	 C**R**DERIVATIVE IN THE X-DIRECTIONX)1XXMXXMNXXXXXXXXX*XX*XX*XxX***NXR***
DO 10 L=1,LMAX
CALL MOVLEV(U(I,I,L),FR(1,1),IJ)
CALL FFTX(1.0)
DO 15 J=1,JMAX

r_ DO 15 I=1,IMAX

	

'.^	 DUM=FI(I,J)
FI(I,J)=WAVEX(I)*FR(I,J)
FR(I,J)=-WAVEX(I)*DUM

	

•1	 15 CONTINUE
CALL FFTX(-1.0)
CALL MOVLEV(FR(l,l),DUDX(1,1,L),TJ)

10 CONTINUE
GO TO 300

C*NNNNDERIVATIVE IN THE Y DIRECTION 	 ^E*)E*****x*x ********* SEE*****x
30 CONTINUE

DO 35 L=1,LMAX
CALL MOVLEV(U(1,1,L),FR(1,1),IJ)
DO 32 J=1,JMAX
DO 32 I=1,IMAX

	

} r	 FI(I,J)=0.0
32 CONTINUE

CALL FFTY( 1.0,1.0)
DO 40 J=1,JMAX

	

+ 3	 DO 40 I,=1, IMAX	3	
DUM=FI(I,J)	 w,
FI(I,J)=WAVEY(J)*FR(I,J)
FR(I,J )=-WAVEY(J)*DUM

40 CONTINUE
' CALL,,FFTY(- 1.0,1.0)

CALL MOVLEV(FR(1,1),DUDX(1,1,L),IJ)-
35 CONTINUE
300 CONTINUE

RETURN
END

NDECK RGEN
IDENT RGEN - PSEUDO ,RANDOM NUMBER GENERATOR

***	 FUNCTION RGEN(D)
*	 CALLED AS A FUNCTION WITH I ARGUMENT (WHICH IS IGNORED)

RETURNS IN X6 A RANDOM NUMBER GENERATED BY MULTIPLYING
*	 I OF 5 INTEGER CONSTANTS BY THE CORRESPONDING GENERATOR
*

	

	 SEE BKY USERS HANDBOOK FOR REFERENCES
SST

**	 RGENCOM - USED TO STORE THE GENERATORS AND POINTER

USE	 /RGENCOM/
GEN	 - DATA	 1048015011D THE 5 GENERATORS

DATA	 2236846573D
DATA	 4216793093D
-DATA	 7792106907D
DATA	 9630191977D

PTR	 DATA 1	 POINTER TO CURRENT GENERATOR
USE
ENTRY RGEN
IF	 DEF,FTN,1
ENTRY RGENS
COMMENT RANDOM NUMBER GENERATOR (#MODLEVEL#)

-NAME	 VFD	 4;2/4LRGEH,18/RGEN
IF	 DEF,FTN
ELSE	 2

RGEN	 PS	 ENTRY / EXIT
RGEN$	 EQU	 RGEN	 SINCE ARG IS IGNORED

SAl	 PTR	 GET POINTER
SA3`	 RGEN	 GET ENTRY' POINT
SB1	 1
SX7	 4
SA4	 X1+GEN-1	 GET GENERATOR
SA5	 X1+CON-1	 GET CONSTANT
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MX2	 60-35
AX3	 30
IXO	 X7-X1	 4 - PTR
SB7	 X3	 B7 = RETURN ADDRESS
DX6	 X4*X5	 GEN X CON
P!.	 XO,RGEN1	 UNLESS PTR =5
MX1-	 0	 IF PTR WAS	 5

RGEN1	 BSS	 0
SA3	 EXP
SX7	 B1+X1	 INCREMENT PTR
SA7	 PTR	 STORE NEW POINTER
BX7	 -X2RX6	 MASK LOW 35 BITS
BX5	 X7+X3	 PUT IN EXPONENT
SA7	 A4	 STORE NEW GENERATOR
NX6	 X5

(^:JP	 B7	 JUMP DIRECTLY	 BACK
CON DATA	 131075D	 CONSTANTS TO MULTIPLY BY

DATA	 163843D'
DATA	 196611D
DATA	 229,V79D
DATA	 26R47D

EXP DATA	 1734BS48
END

*DECK RNDINIC 9
SUBROUTINE RNDINIC

CXXR)E^x^E^x*^Ex^3^x^*X?^xxx?t^^*^^^^*^^X^^xX**xx*^^^^*^t^*^^^EX^*^^^^t^x^txx^**^^ I
C THIS SUBROUTINE CREATS THE INITIAL. RANDOM FIELD BY CALL INICON
C INICON WAS INITIALY WRITTEN BY KWAK,D. 	 AND IS USED HERE AS A MEANX

r C TO CREAT A RANDOM INITIAL FIELD.THE ROUTINE WAS WRITTEN FOR EQUAL*
C MESH,AND HENCE THE COMPLICATIONS IN THIS ROUTINE TO TRANSFER THE-*
C FIELD TO THE MIDDLE OF THE BOX

E C ** ***3fXX*34iEX*XXX3E*X*?FX3E*X#E3E XXX*?F^4^E^EXXXX***xX*^xXXX***X^E^^E^EX**?^XXXXXxX^t?^ ^
,I XCALL BLANK

XCALL LARGEZ
r XCALL LARGE3

COF'iMON/LARGE4/01(140.16,33),02(16,16,33),03(16,1.6,33)
LEVEL 2,01,02,03

*CALL DATA9
*CALL DIM

COMMON/DUM1/ UM(16,16,16),VM(16,16,16),WM(16,16,_16)
COMMON/DUM2/	 GUI(16,16,16),GVI(16,16,16),GWI(16,16,16)

f LEVEL 2,UM,VM,WM,GUI,GVI,GWI
r CALL	 INICON(C,COF,DT,UM,VM,WM,GUI,GVI,GWI,16,16,16)

IMAX=N1
JMAX=N2
LMAX=N3
DO	 1	 L-1,16ll

f
DO 1 J=1,JMAX
DO 1 I=I,IMAX

1 L1=25-L
L2=17-L

i U(I,J,L1)=UM(I,J,L2)
V(I,J,L1)=VM(I,J,L2)
W(I,J,Ll)=WM(I,J,L2)

. I 1 CONTINUE
DO 2 L=1,13

! ( DO 2 J=1,JMAX
j DO 2 I=1,IMAX
f; f U(I,J,L)=0.

V(I,J,L)=0. =:
' W(I,J,L)=0.

2 CONTINUE
DO 3 L-'2"1,LMAX
DO '3	 J=1,JMAX'
DO 3 I =1,IMAX

:j U(I,J,L)=0.
V(I,J,L)=0.
W(I,J,L)=0.

3 CONTINUE
CALL	 TN	 FILT(U,N1,N2,N3)-

I
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CALL INIFILT(V,N1,H2,N3)
CALL INIFILT(W,N1,N2,N3)
CALL CURLO(U,V,W,01,02,03,N1,N2,N3)
DO 16 L=1,LMAX
DO 16 J=1,JMAX
DO 16 I=1,IMAX
U(I,J,L)=01(I,J,L)
V(I,J,L)=02(I,J,L)
W(I,J,L )=03(I,J,L)

16 CONTINUE
CALL CURLU(U,V,W,01,02,03,N1,N2,N3)
CALL INVERS(01,GU,DUDX,1,Ni,N2,N3)
CALL INVERS(02,GV,DUDX,2,N1,N2,N3)
CALL INVERS(03,GW DUDX,3,N1,N2,H3)
CALL CURLO(GU,GV,GW,U,V,W,Nl,N2,N3)
RETURN
END

MDECK SINPART
SUBROUTINE SINPART(U,N1,N2,N3)

C x x ^E ?F x ?E x?t ^E 3E 3f ?t 3E x ?E ^E ?^ ^E ^E 3f .^f 3E ?E 3t 3f ?E 3f ?4 ^f ^E ^f x ^ ?'s x 3f 3E 3E ?E x x 3E ^E x x ?E x ^f 3E ^f ^E 3t ?E 3E 3E ^f ?f x ?f 3f ^F 3E ^E ^f ^f 34 3f ^f 3E ^f ^

C	 THIS ROUTINE COMPUTES THE PARTIAL DERIVATIVE OF U IN THE Z — 	X
C	 DIRECTION BY EXPANDING IN FOURIER SINE SERIES.
C	 THE PARTIAL IS STORED IN DUDX.
ClfRX^^^3fXR *)E3EN**xx3f **34**X*******R*R^*^XRM^^ * RX^£iE^^*34 ***** ^***iE**********

DIMENSION U(N1,N2,N3)
*CALL BLANK
*CALL WV
*CALL DAT21
NCALL DATA9

LEVEL 2,U
DO 10 J=1,JMAX
DO 10 I=1,IMAX
DO 20 L=1_, LMAX
XR(L)=U(I,J,L)

20 CONTI
SIGN=
CALL FDST(SIGN)
DO 30 L =1,LMAX
XR(L)=XR(L)*WAVEZ(L)

30 CONTINUE
SIGN=-1.0
CALL FDCT(SIGN)
DO 40 L =1,LMAX
DUDX(I,J,L)=XR(L)

40 CONTINUE
10 CONTINUE

RETURNEND
*DECK SFILTER

SUBROUTINE SFILTER(HR,HI,Nl,N2,N3)
C*ifM^3E**^kk*^?f3f* :**^?f3f**3iY*3E?E*3f*?E3F^^*?E*?^3f3E*?E^^*34^F?f*34^f3E**3f 3E***34****3E 3f*****
C	 SFILTER FILTERS HR BY EXPANDING IT IN A- —FOURIER SINE SERIES IN	 X
C	 THE Z/DIRECTION AND_FOURIER SERIES IN THE OTHER TWO DIRECTIONS.

DIMENSION HR(N1,N2,N3),HI(Nl,N2,N3)
*CALL FLT
*CALL DATA9
*CALL DATA?
XCALL DAT21

LEVEL 2,HR
CC=1.0/(IMAX*JMAX)'
IJ=N1*N2
DO ,10 J=1,JMAX
DO 10 I = 1, IMAX
DO 20 L=1,LMAX
XR(L)=HR(I,J,L)

20 CONTINUE
CALL FDST(1.0)
DO 30 L=1,LMAX
HICI ,J,L)=XR(L)
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II 30 CONTINUE
10 CONTINUE

DO 40 L=1,LMAX
CALL	 MOVLEV(HI(1,1,L),FR(l,l),IJ)

_ f CALL	 FFTX(l.0)
I CALL	 FFTY(1.0,1.0)

DO 50 J=1,JMAX
DO 50 I=1,IMAX
FR(I,J)=FR(I,J)XFILT1(I)34FILT2(J)34FILT3(L)
FI(I,J)=FI(I,J))(FILT1(I)34FILT2(J)34FILT3(L)

{ 50 CONTINUE
CALL FFTX(-1.0)
CALL	 FFTY(-1.0,CC)

{ CALL 	 MOVLEV(FR(1,1),HI(1,1,L),IJ)
40 CONTINUE

DO 60 J=1,JMAX
DO 60	 I=1,IMAX
DO 70` L=1,LMAX
XR(L)=HI(I,J,L)

70 CONTINUE
CALL	 FDST(-1.0)
DO 80 L=1, LMAX .	 OF To

80
HR(I,J,L)=XR(L) DUCM  UZff
CONTINUE ^^r^tAL .PAGE ^ POOR+

60 CONTINUE
RETURN
END

KDECK SGS
SUBROUTINE SGS(U,V,E,N1,N2,N3)-
DIMENSION U(N1,N2,N3),V(N1,N2,N3),E(N1,N2,N3)

r 34CALL DEL
XCALL LARGE3
34CALL LARGE5
34CALL BLANK
XCAL1 DATA9

LEVEL 2,U,V,E
C3E3434 34^**** 343E3E3f3f3E ** 343f^E3f343E^f34343E ^* 343E)E3f34^f ^^ *)E)E)4K^*^)E^ *^E^^^^ * K^EX^^^^^^ * ^x^*^**
C THE SGS MODEL IS COMPUTED IN THIS ROUTINE BY SECOND ORDER DIFF
C AND STORED IN GU,GV,GW —
Cx^* 34 34 34 34 3ti43434343E 3434343E343f3E3E?E3434 ^* 3E3E ^*^^^^^^*^*^^**** 3E 3E^E3E3E343E *^^^*^^***^^^* ^E3E^F343E

CSGSX=1./(2-.*DELTAX)
CSGSY=1./(2.XDELTAY)
CSGSZ=1./(2.*DELTAZ)
IJK=N134N2*N3
CALL MOVLEV(DUDX(1,1,1),E(1,1,1),IJK)
DO 210 L=I LMAX
LM1=L-1
LP1=L+1
IF	 (L	 .EQ.	 1)	 LM1=LP1

4

{ IF	 (L	 .EQ.	 LMAX)	 LP1=LM1
DO 210 J=1,JMAX
CALL FIX(JM1,J,JPI,JMAX)
DO 210	 I=1,IMAX
CALL FIX(IM1,I,IPI,IMAX)

j ,I U(I,J,L)=(E(I,JP1,L))(01^(I,JP1,L)—E(I,JMI,L)3(01(I,JM1,L))*CSGSY
fi 1 -(E(IP1,J,L)3402(IP1,J,L)—E(IM1,J,L)3402(IM1,J,L))XCSGSX

V(I,J,L)=(E(I,J,LP1))t01(I,J,LP1)—E(I,J,LM1)?(01(I,J,LMl))34CSGSZ
1 -(E(IP1,J,L)*03(IP1,J,L)—E(IM1,J,L)XO3(IM1,J,L))XCSGSX

210 _CONTINUE
a ^r CALL	 PARTIAL(2,U,N1,N2,N3)
rK j CALL MOVLEV(DUDX(1,1,1),U(1,1,1),IJK)

CALL	 COSPART(V,N1,N2,N3)
DO 220 L = `l, LMAX

:.! DO 220 J=1,JMAX
DO 220	 I=1,IMAX
GU(I,J,L)=GU(I,J,L)+U(I,J,L)+DUDX(I,J,L)

220 CONTINUE'
DO 230	 L=1,LMAX

}! LM1=L-1

k1 LP1=L+1
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IF (l . EQ. 1) lMl=lPl 
IF (l .EQ. lMAX) lPl=lMl 
DO 230 J=l,JMAX 
CAll FIXCJMl,J,JPl,JMAX) 
DO 230 I=l,IMAX 

o CAll FIXC IMl, I, IPl, IMAX) 
UCI,J,l)=CECIPl,J,l)*02CIPl,J,l)-ECIMl,J,l)*02CIMl,J,l»MCSGSX 

1 -CECI,JPl,L)*OlCI,JPl,l)-ECI,JMl,l)*OlCI,JMl,l»MCSGSY 
V(I,J,l)=(E(I,J,LPl)*02(I,J,lPl)-E(I,J,lMl)M02CI~J,LMl»MCSGSZ 

1 -(ECI,JPl,l)*03CI,JPl,l)-E(I,JMl,l)*03CI,JMl,l»MCSGSY 
230 CONTINUE 

CAll PARTIAlCl,U,Nl,N2.N3) 
CAll MOVlEVCDUDXCl.l,l),UCl,l,l),IJK) 
CAll COSPARTCV.Nl,N2.N3) 
DO 240 l=l,lMAX 
DO 240 J=l,JMAX 
DO 240 I=l.IMAX 
GVCI,J,l)=GVCI,J,l)+UCI,J,l)+DUDX(I,J,l) 

240 CONTINUE 
DO 250 l=l.lMAX 
(Ml=l-l 
(Pl=l+l 
IF (l .EQ. 1) lMl=lPl 
IF Cl .EQ. LMAX) LPl=lMl 
DO 250 J=l.JMAX 
CAll FIXCJMl,J,JPl,JMAX) 
DO 250 I=l,IMAX 
CAll FIXCIMl,I,IPl,IMAX) 
U(I,J,l)=CECIPl,J,l)*03CIPl,J,l)-ECIMl,J.L)*03CIMl,J,l»*CSGSX 

1 -CECI,J,lPl)*OlCI,J,lPl)-ECI,J,LMl)~OlCI,J,LMl»*CSGSZ 
VCI,J,l)=(ECI,JPl,l)*03CI,JPl,l)-ECI,JMl,l)*03CI,JMl,L»MtSGSY 

1 -CECI,J,lPl)M02CI,J,lPl)-ECI,J,lMl)*02CI,J,lMl»MCSGSZ 
250 CONTINUE . 

CALL PARTIAl(1,U,Nl,N2,N3) 
CAll MOVLEV(DUDXCl,l,l),U(l,l,l),IJK) 
CAll PARTIALC2,V,Nl,N2.N3) 
DO 260 l=l,LMAX 
DO 260 J=l,JMAX 
DO 260 I=l,IMAX 
GWCI,J,l)=GWCI,J,L)tUCI,J,l)+DUDX(I,J,l) 

260 CONTINUE 
RETURN 
END 

MDECK STFIL T 
SUBROUTINE STFIlT 

CMMMMMMM*********M***********************M*M**M************************M 
C THIS SUBROUTINE INITIALIZE THE TRANSFORM OF THE FILTER IN EACH 
C DIRECTION. THE TRANSFORM IS STORED IN FILTl,FIlT2,FIlT3,FOR USE 
C IN SUBROUTINE FILTER. 
CMMM**MMMM*MM*MMMMMMM*MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM 
MCAll AVG 
MCAll Fl T 
MCAll DATA7 
MCAll DAT21 
MCAll DATU 
MCAll PR 

NHPIX=IMAX/2+l 
NHPIY=JMAX/2+1 
NHP2X=NHPIX+l 
NHP2Y=NHPIY+l 
lMAXMl=lMAX-l 
IFCCCF .NE. 0.) GO TO 400 

. CMMMMMFIX THE TRANSFORM OF THE FILTER IN THE X-DIRECTION 
DO 100 J=l,JMAX 
DO 100 l=l,NHPIX 
FRCI,J)=EXPC-6.MCFlOATCI-l)/AVGl)MM2) 

100 CONTINUE 
DO 110 J=l. JMAX 
DO 110 I=NHP2X,IMAX 
U=IMAX-I+2 . 
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FR(I,J)=FR(II,J) 
110 CONTINUE 

AREA=O.O 
DO 120 I=I,IMAX 
AREA=AREA+FR(I,I) 

120 CONTINUE 
DO 130 J=I,JMAX 
DO 130 1=1, IM:\X 
FR(!,J)=FRCI,J)/AREA 
FICI,J)=O.O 

130 CONTINUE 
CALL FFTX(1.0) 
DO 140 I=I,IMAX 
FIlTl(I)=FR(I,I) 

140 CONTINUE 

REPRODUCffiILITY OF THE 
ORIGINAL PAGE IS POOR 

CMM*MMFIX THE TRANSFORM OF THE FilTER IN THE Y-DIRECTION 
DO 200 J=l,NHPIY 
DO 200 1=I,IMAX 
FRCI,J)=EXPC-6.*CFlOATCJ-l)/AVG2)M*2) 

200 CONTINUE 
DO 210 J=NHP2Y,JMAX 
DO 210 1=1, IMAX 
JJ=JMAX-J+2 
FRCI,J)=FR(I,JJ) 

210 CONTINUE 
AREA=O.O 
DO 220 J=I,JMAX 
AREA=AREA+FR(I,J) 

220 CONTINUE 
DO 230 J=1.JMAX 
DO 230 I=I,IMAX 
FRCI,J)=FRCI,J)/AREA 
FICI,J)=O.O 

230 CONTINUE 
CALL FFTY(I.0,1.0) 
DO 240 J=l,JMAX 
FIlT2CJ)=FR(l,J) 

240 CONTINUE 
CMMMMMFIX THE TRANSFORM OF THE FilTER IN THE Z-DIRECTION 

DO 300 L=I,lMAX 
XRCl)=EXPC-6.MCFlOAT(l-I)/AVG3)**2) 

300 CONTINUE 
AREA=0.5MXRCl) 
DO 310 L=2,lMAXMl 
AREA=AREA+XRCl) 

310 CONTINUE 
AREA=AREA+0.5MXRCLMAX) 
DO 320 l=l,lMAX 
XR(L)=XRCL)/AREA 

320 CONTINUE 
CAll FDCTC 1. 0 ) 
DO 330 L=I,lMAX 
FIlT3CL)=XRCl) 

3~O CONTINUE 
FIlTlCNHPIX)=O. 
FIl T2(NHPIY)=0. 
FIl 13 CLMAX) =0. 
GO Tr 410 

400 IFCCCF .NE. 1.0) GO TO 410 
M.C= C LMAX-l) *213 
DO 7 l=l,LMAX 
FIl13CU=O. 

7 CONTINUE 
DO 8 L=l,MC 
FIl13CU=1.0 

8 CONTINUE 
MC=JMAXI3+1 
DO 9 J=1.JMAX 
fIl T2(J)=0. 

9 CONTINUE -
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DO 10 J=I,MC 
FIlT2CJ)=l.O 
JJ=JMAX-J+l 
FIlT2CJJ)=1.0 

10 CONTINUE 
MC=JMAX-MC+l 
F Il T 2 C Me) = 0 • 
MC=IMAXI'3+1 
DO 11 I=I,IMAX 
FIl TH 1)=0. 

11 CONTINUE 
DO 12 1=I,MC 
FIlTlCl)=1.0 
II=IMAX+I-I 
FIlTHII)=l.O 

12 CONTINUE 
MC=IMAX-MC+l 
FIlTlCMC)=O. 

410 PRINT 1119,CCF 
1119 FORMATCIHO,M CCF=M,lPE1S.7) 

IFCCCPF .NE. 1.C) GO TO 340 
PRINT 1116,CFILTICI),I=I,IMAX) 
PRINT llI7,CFILT2CJ),J=1,JMAX) 
PRINT ll18.(FILT3CL),L=1,LMAX) 

1116 FORMAHIX,* FILTl =M,lPElS.7) 
1117 FORMATCIX,M FIlT2 =M.IPElS.7) 
1118 FORMATCIX,M FILT3 =~,lPElS.7) 

340 CONTINUE 
RETURN 
END 

MDECK STPART 
SUBROUTINE STPARTCNPART) 

MCAll LARGE5 
NCAll Xl 
MCALl DATA9 
MCAll DEL 

YPARHl>=O. 
YPART(17)=O. 
XPARTCl)=(6-l)MDELTAX 
XPART(17)=Cll-l)MDElTAX 
ZPARTClj=(17.-1.)MDELTAZ 
ZPART(17)=(17.-l.)MDEllAZ 
HCHARCl)=l 
NCHARCl7)=2 
YPARH33)=O. 
YPART(49)=0. 
YPARH6S)=O. 
YPART<81 )=0. 
YPART< 97>=0. 
YP ART< 113) = 0 . 
YPART< 129) =0. 
YP ART< 145 ) = 0 . 
XPARTC33'=XPARTCl)+0.SMDElTAX 
XPART(49)=XPART(1)-0.5MDElTAX 
XPART(6S)=XPARTCl) 
XPART(Sl)=XPARTCl) 
ZPART(33)=ZPARTCl) 
ZPART(49)=ZPARTCl) 
ZPARTC6S)=ZPARTCl)+0.SMDELTAZ 
ZPART(81)=ZPARTCl)-0.5MDELTAZ 
XPART(97)=XPARTCI7)+0.5MDELTAX 
ZPART(97)=ZPARTC17) 
XPARTCl13)=XPARTCI7)-0.SMDELTAX 
ZPARTCl13)=ZPART(17) 
XPART,129)=XPARTC17) 
ZPART(129)=ZPARTC17)+O.5MDElTAZ 
XPARTCI4S)=XPARTC17) 
ZPART(145)=ZPAR~C17)-O.5MDElTAZ 
NCHAR( 33)=3 
NCHAR( 49)=4 
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NCHAR( 65) =5	 ^oNCHAR( 81) = 6	 ^UQY$jL
OGiNCHAR(	 97)=7 PA UF+'

CrZ+	
P^^NCHAR(129)=9

NCHAR(145)=10
NPART=160
DELX'-0.
DELZ=O.
N=0
DO	 1 M=1,10
N=N+1
DO 2 J=2,JMAX
N=N+1
NCHAR(N)=M
IX=XPART(N-1)/DELTAX+1
LZ=ZPART(N-1)/DELTAZ+1
IXPI=IX+1
LZPI=LZ+1
CCX=(XPART(N-1)-(IX-1)*DELTAX)/DELTAX
CCZ=(ZPART(N-1)-(LZ-1)*DELTAZ)/DELTAZ
O1P1=01(IX,J,LZ)+(01(IXPI,J,LZ)-01(IX,J,LZ))*CCX-
02P1=02(IX,J,LZ)+(02(IXPI,J,LZ)-02(IX,J,LZ))*CCX
03P1=03(IX,J,LZ)+(03(IXPI,J,LZ)-03(IX,J,LZ))XCCX
O1P2=01(IX,J,LZP1)+(01(IXPI,J,LZP1)-O1(IX,J,LZP1))*CCX q1
02P2=02(IX,J,LZP1)+(02(IXPI,J,LZP1)-02(IX,J,LZP1)J*CCX
03P2=03(-IX,J,LZPI)+(03(IXPI,J,LZP1)-03(IX,J,LZP1))*CCX
O1P1=01P1+(O1P1-01P2)NCCZ
02F1=02P1+(02P1-02P2)RCCZ
03Pl=03PI+(03PI-OSP2)*CCZ

r DELX=01P1*DELTAY/O2P1
DELZ=03PIMDELTAY/02P1
XPART(N)=XPART(N-1)+DELX
YPART(N)=YPART(N-1)+DELTAY
ZPART(N)=ZPART(N=1)+DELZ

2 CONTINUE
1 CONTINUE
RETURN
END

*DECK STREAD
SUBROUTINE: STREAD'

C * k*^ 3f ^ 3E3E 3f ** ^ *** 3r d* 3E 3f 3E *3f**3E3fR3E********)E3f*3E 3E**X**3f^3E****3E****^* ?E 34^E**** *fie*
C THIS SUBROUTINE READ THE INPUT PARAMETERS
C IMAX=NUMBER OF GRID POINTS IN THE X-DIRECTION
C JMAX=NUMBER OF GRID POINTS IN THE Y-DIRECTION
C LMAX`=NUMBER OF GRID POINTS IN THE"Z-DIRECTION X
C AVG2=FILTERING WIDTH IN THE Y-DIRECTION
C AVG3=FILTERING WIDTH IN THE Z-DIRECTION
C AVG1=FILTERING WIDTH IN THE X-DIRECTION
C DELTAX= MESH SIZE IN THE X-DIRECTION
C DELTAY= MESH 'SIZE IN THE Y-DIRECTION
C DELTAZ=_MESH SIZE IN THE-Z-DIRECTION x
C N1= ARRAY SIZE IN THE X-DIRECTION

t
X

C N2`= ARRAY SIZE I`N THE Y-DIRECTION
C N'3=' ARRAY SIZE IN THE Z-DIRECTION
C CCFW= I IF PRINT OUT OF WAVEIS WANTED,OTHERWIZE NO PRINT OUT
C CCPF= 1 IF PRINT OUT OF FILT IS WANTED,OTHERWIZE NO PRINT OUT
C CCPD= 1 IF PRINT OUT OF LINE AVERAGE OF U-COMPONENT',
C LINE AVERAGE OF W-COMPONENT AND ENSEMBLE AVERAGE PERTURBATIONS*
C IS REQUIRED	 OTHERWIZE NO PRINT OUT
(`YYYYYafYYYiCYXYYYYXYY YYY YYYYYYYXYYYYYYYYYY YYYYYYYYYYYYYYiiYYiOYYYYY1l YiCYYYYY
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READ 704,AVG1 ► AVG2,AVG3,CCF
READ 703,N1,N2,H3
READ 704,CCPW,CCPF,CCPD
PRINT 708
PRINT 705,IMAX,JMAX,LMAX,TSTART,TEND
PRINT 706,DELTAX,DELTAY,DELTAZ
PRINT 707AVGI,AVG2,AVG3
PRINT 709,N1 ► N2,N3
PRINT 708

703 FORMAT(10I5)
704 FORMAT(4E10.4)
705 FORMA 'TQX, X IMAX=X, I5, 5X, X JMAX =X, L5, 5X, x LMAX.=X, I5, 5X,* TS.A-PT=*15

+ ,5X,* TEND=*,I5,52X,lH*)
706 FORMAT(1X,)( ;DELTAX=X,IPE10.4,5X,* DELTAY = X,1 E10.4,5X,* DELTAZ=X,1

+PE10.4,64X,1H*)
707 FORMAT(1X,X AVGIX=)(,.1PE10.4,5X,* 	 AVG2=X,1 EIO.4,5X,X 	 AVG3=X,1

+PE10.4,.64X,lHX)
708 FORMAT('1H0,130HXX** ***3f***3E*X**X** XX***XX*** XX *X*******X **** *XX *

1*^X****if34X*X*X * XXX***^f#EX^EXXX*^EXX^f * ^fM^EX^f**^E^E*^f**3f^fX*XX3EXXX*X*3EX*3f^f*
2X** **X**3E1EX**	 )

709 FORMAT(1X,*	 N1=*,I5,5X,*	 N2=*,I5,5X,X	 N3=*,I5,5X,70X,1HX)
RETURN
END

*DECK STWV
SUBROUTINE STWV

C**^ ***X *XXX ' XX3i^F 3f 3E 3f "3EX*X^f^^f^f *-* **?fXX'**XX*3E 3E3fXX ?f*3E*****34^f^fXXXXX3fXX**^f^E^f*3EX*

C	 STWV SETS THE WAVE NUMBERS FAR A GIVEN MESH SIZE DELTA AND 	 X
C	 NUMBER OF MESH POINTS NMM( . THIS ROUTINE MUST BE CA-LL-E-D
C	 TO INITIALIZE THE WAVE NUMBERS FOR THE PARTIAL ROUTINES AND 	 X
C	 INVERS ROUTINE
CXX**** XX*X** XX* **XXX*^EXXX3FXXX XX***XXX** *** **XX 3E *X*X******* ** * X*SEX* *** 	̂ ^
C* XX*X*****X**** XlE*^E*X**X*X*X ***X*X**X X***iEXX***X* ****X **X*****XX*******
XCALL WV
XCALL DATA9
*CALL DEL
*CALL PR

PAI=3.1415926535898'
CX=2.OXPAI/(FLOAT(IMAX)XDELTAX)
CY=2.OXPAI/(FLOAT(JMAX)XDELTAY)`
CZ=PAI/(FLOAT(LMAX-1)XDELTAZ)
C2X=CX/FLOAT(IMAX)
C2Y=CY/FLOAT(JMAX)
NHPIX=IMAX/2+1
NHPIY=JMAX/2+1
DO 100 L=1,LMAX
WAVEZ(L)=CZ*FLOAT(L-1)
WAVEZS(L)=—WAVEZ(L)X%2

100 CONTINUE
DO 101 J=1,JMAX
MM=J/NHPIY
M=MM*JMAX+1
WAVEY(J)=C2YXFLOAT(J—M)
WAVEYS(J)=—(CY*FLOAT(J-M))*X2

101 CONTINUE
DO 102 I=1,IMAX
MM=I/NHPlX
M=MM*IMAX+1
WAVEX(I)=C2X*FLOAT(I—M)
WAVEXS(I`)=—(CX*FLOAT(I=M))X*Z

102 CONTINUE
WAVEX(NHP1X)=0.
WAVEY(NHP1Y)=0.
WAVEXS(NHP1X)=0.
WAVEYS(NHP1Y)=0.
WAVEZ(LMAX)=0;
WAVEZS(LMAX)=0.
IF(CCPW .NE. 1) GO-T0-104
PRINT 1000,(WAVEX(I`),WAVEXS(I),I=1,IMAX)

_PRINT 1001,(WAVEY(_J) ► WAVEYS(J),J=1,JMAX)
PRINT 1002 (WAVEZ(L),WAVEZS(L),L=1,LMAX)
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104 CONTINUE
1000 FORMAT(1X,% WAVEX =x,1PE15.7,5X,x WAVEXS =*,1PE15.7)
1001 FORMAT(1X,x WAVEY =x,1PE15.7,5X,x WAVEYS =x,1PE15.7)
1002 FORMAT(1X,X WAVEZ =x,1PE15.7,5X,x WAVEZS =x,1PE15.7)

RETURN
END

}( it

Iw

i
a

s

a

i

i

i
J t

195




