General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

LARGE-EDDY SIMULATION OF A TURBULENT MIXING LAYER

by
N. N. MANSOUR,
J. H. FERZIGER,
and
W. C. Reynolds
(NASA-CR-156575) LARGE-EDDY SIMULATION OF A
N78-22027
TURBULENT MIXING LAYER (Stanford Univ.) 210 р HC A $10 / \mathrm{MF}$ A01

CSCL 01A
Uncles
G3/02 16615
Prepared from work done under Grant
NASA-NgR-05-020-622

Report No. TF-11

Thermosciences Division
Department of Mechanical Engineering
Stanford University
Stanford, California

LARGE-EDDY SIMULATION OF A TURBULENT MIXING LAYER

by

N. N. Mansour, J. H. Ferziger, and W. C. Reynolds

Prepared from work done under Grant NASA-NgR-05-020-622

Technical Report Number TF-11

Thermosciences Division Department of Mechanical Engineering Stanford University Stanford, California

Acknowledgments

The authors gratefully acknowledge the many useful discussions and contributions of Mr. P. Moin. We are indebted to Dr. U. B. Mehta for helping get this work started and familiarizing the senior author with the computation facility at NASA-Ames Research Center. Dr. A. Leonard made numerous suggestions and corrections to the manuscript which the authors gratefully acknowledge.

The senior author is indebted to the National Council for Scientific Research (Lebanon) for its support at the initial stages of his graduate studies.

The diligent efforts and editing of Ms. Ruth Korb resulted in a superb job of preparation of the final copy. This work was supported by NASA-Ames Research Center under Grant NASA-NgR-05-020-622.

Abstract

The three-dimensional, time-dependent (incompressible) vorticity equations have been used to simulate numerically the decay of isotropic box turbulence and time-developing mixing layers. The vorticity equations are spatially filtered to define the large-scale turbulence field, and the subgrid scale turbulence is modeled. A general method has been developed to show numerical conservation of momentum, vorticity, and energy that is much simpler than previous methods and is widely applicable. The terms that arise from filtering the equations have been treated (for both periodic boundary conditions and no-stress boundary conditions) in a fast and accurate way by using fast Fourier transforms. Use of vorticity as the principal variable is shown to produce results equivalent to those obtained by use of the primitive variable equations.

A new subgrid scale model is used in conjunction with the vorticity equations and is shown to produce results that compare well with the experimental results. The new model offers advantages both in computational speed and in storage.

The vortex-pairing mechanism, observed in the spatially developing counterpart of the time-developing mixing layer, has been simulated numerically. It is interesting to note that with simply two vortices pairing, self-similar mean velocity and mean turbulence intensity profiles are obtained. The vortex-pairing mechanism is shown to be persistent even with the presence of large-amplitude, three-dimensional background turbulence. A number of different initial fields have been studied. The presence of large organized structures, in the initial conditions, is shown to be essential in order to predict growth rates of the mixing layers comparable to those observed experimentally. The rate of growth is found to be very dependent on the initial field, a fact al so observed experimentally.

Table of Contents

Page
Acknowledgments iii
Abstract iv
List of Tables vii
List of Figures viii
Nomenclature xiii
Chapter
1 INTRODUCTION 1
1.1 Background 1
1.2 Experimental Background 3
1.3 Motivation and Objectives 5
1.4 Overview 6
2 THEORETICAL FOUNDATIONS 8
2.1 Definitions of the Large and Subgrid Scales 8
2.2 Dynamical Equations in Vorticity Form 9
2.3 Subgrid Scale Models 10
2.3.1 Model ω-1 11
2.3.2 Model ω-2 12
2.4 Filtering 13
2.4.1 Sharp Cut-off (SCK) Filter 13
2.4.2 Gaussian (GS) Filter 14
2.5 Computing Velocity Field from the Vorticity Field 14
2.6 Summary 15
3 NUMERICAL METHOD 17
3.1 Notations 17
3.2 Numerical Approximation 17
3.2.1 Fourth-Order Scheme 18
3.2.2 Pseudo-Spectral Method 20
3.3 Time Differencing 25
3.4 Conservation Properties 25
3.5 Differenced Vorticity Equations 29
3.6 Poisson Equation 30
3.7 Numerical Filtering 31
3.8 Summary 34
4 DECAY OF ISOTROPIC TURBULENCE 36
4.1 Background 36
4.2 Initial Conditions 36
4.3 Selection of C_{v} 37
4.4 Results 37
4.4.1 Fourth-Order Finite Differences 38
4.4.2 Pseudo-Spectral Method 38
4.5 Computational Details 39
Chapter Page
5 MIXING LAYER: TWO-DIMENSIONAL COMPUTATIONS 41
5.1 Preview 41
5.2 Some Experimental Results 41
5.3 Boundary Conditions 44
5.4 Initial Conditions 45
5.5 Mesh Size Selection 46
5.6 Selection of β 48
5.7 Mean Velocity Profiles 48
5.8 Mean Turbulence Intensity Profiles 49
5.9 Summary 49
6 MIXING LAYER: THREE-DIMENSIONAL COMPUTATIONS 51
6.1 Preview 51
6.2 Boundary Conditions and Mesh-Size Selection 51
6.3 Initial Conditions 52
6.4 Momentum Thickness 53
6.5 Mean Velocity Profiles 54
6.6 Mean Turbulence Intensity Profiles 54
6.7 Vorticity Contours 56
6.8 Two-Point Correlations 57
6.9 Sunmary and Conclusions 59
7 CONCLUSIONS AND RECOMMENDATIONS 60
References 63
Appendix
A Subgrid Scale Models for the Vorticity Equations 136
B Fast Discrete Sine Transform (FDST); Fast Discrete Cosine Transform (FDCT) 138
C Effect of a Sinusoidal Vorticity Perturbation on a Uniform Vortex Array 140

1. Initial Conditions 140
2. Results 140
D Interactions Between Streamwise and Spanwise Vorticity 142
3. Initial Conditions 142
4. Results 142
E Computer Program Written to Calculate Turbulent Mixing Layers 160
Table Page
1.1 Experimental Results 67
4.1 Computations of the Decay of Isotropic Turbulence 75
6.1 Three-Dimensional Computations of Turbulent Mixing Layers 103

List of Figures

Figure Page
1.1 r.m.s. streamwise velocity profiles for different initial conditions (experimental results from Foss, 1977) 69
1.2 Mean velocity profiles for different initial conditions (experimental results from Foss, 1977). 70
2.1 Filtered point vortex with SCK (sharp cut-off in k-space) filter 71
2.2 Filtered point vortex with a GS (Gaussian in real space) filter 72
3.1 Comparison of modified wave number 73
3.2 Filtered top-hat function 74
4.1 Decay of mean square filtered velocity for $16 \times 16 \times 16$ mesh. $<>=$ average over all space 76
4.2 Filtered energy spectra. Fourth-order differencing with 16^{3} mesh; model $w-1, C_{v}=0.235$ 77
4.3 Filtered energy spectra. Pseudo-spectral computation with 16^{3} mesh; model $\omega-1, C_{v}=0.212$ 78
4.4 Filtered energy spectra. Pseudo-spectral computation with 16^{3} mesh; model $\omega-1, c_{v}=0.213$ 79
4.5 Filtered energy spectra. Pseudo-spectral computation with 16^{3} mesh; model $\omega-2 . C_{v}=0.186$ 80
4.6 Filtered energy spectra. Pscudo-spectral computation with 16^{3} mesh; model $w-2 . \quad C_{v}=0.188$ 81
4.7 Filtered energy spectra. Pseudo-spectral computation with 32^{3} mesh, 2nd-order differencing for model $\omega-2 . C_{v}=0.188$ 82
5.1 Coherent structure in a mixing layer (Roshko, 1976). Dashed box: schematic of a computational box that moves approxi- mately with the mean velocity 83
5.2 Mixing layer. Experimental setup and coordinate system 84
5.3 Computational box and coordinate system 85
5.4 Initial conditions setup $\left(\beta=\frac{1}{2}-\frac{\left(x_{1}-x_{2}\right)}{L}\right)$ 86
5.5 Non-dimensional momentum thickness $\left(\theta / \theta, n_{n}\right)$ as a function of time for various β. Two-dimensional computations 87

5.6b Contour plots of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ for $\beta=$
$5 / 16$, at time $\mathrm{T}=0$. Constant vorticity lines are
plotted at eight levels. Higher numbers on these lines
\quad indicate higher levels $\left(\bar{\omega}_{2 \text {, max }}=0.564\right) \quad . \quad . \quad . \quad .89$
5.6c Contour plots of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ for $\beta=$ $4 / 16$, at time $T=0$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels $\left(\omega_{2, \max }=0.444\right)$ 90
5.6d Contour plots of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ for $\beta=$ $3 / 16$, at time $T=0$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels ($\bar{\omega}_{2, \max }=0.421$) 91
5.6e Contour plots of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ for $\beta=$ $2 / 16$, at time $T=0$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels $\left(\bar{\omega}_{2, \max }=0.416\right)$ 92
$5.6 f$ Contour plots of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ for $\beta=$ $1 / 16$, at time $T=0$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels $\left(\bar{\omega}_{2, \text { max }}=0.415\right)$ 93
5.7a Contour plots of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ for $\beta=$ $6 / 16$, at time $T=16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels $\left(\bar{\omega}_{2 \text {, max }}=0.394\right)$ 94
$5.7 b$ Contour plots of the spanwise vorticity $\left(\omega_{2}\right)$ for $\beta=$$5 / 16$, at time $T=16.78$. Constant vorticity lines areplotted at eight levels. Higher numbers on these linesindicate higher levels $\left(\bar{\omega}_{2, \text { max }}=0.358\right)$95
3.7c Contour plots of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ for $\beta=$ 4/16, at time $T=16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines Indicate higher levels $\left(\bar{\omega}_{2, \text { max }}=0.322\right)$ 96
5.7d Contour plots of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ for $\beta=$ $3 / 16$, at time $T=16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels $\left(\bar{\omega}_{2, \text { max }}=0.276\right)$ 97

List of Figures (cont.)

Figure Page
5.7e Contour plots of the spanwise vorticity ($\bar{\omega}_{2}$) for $\beta=$ $2 / 16$, at time $T=16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels $\left(\bar{\omega}_{2, \max }=0.248\right)$ 98
5.7f Contour plots of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ for $\beta=$ $1 / 16$, at time $T=16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels $\left(\bar{\omega}_{2 \text {,max }}=0.245\right)$ 99
5.8 Mean velocity profiles. Two-dimensional computations ($\beta=3 / 16$) 100
5.9 Mean turbulence intensity profiles. Two-dimensional computations ($\beta=3 / 16$) 101
6.1 Three-dimensional computation box. Random velocity setup and coordinate system 102
6.2 Non-dimensional momentum thickness $\left(\theta / \theta_{\text {in }}\right)$ as a function of time. Three-dimensional computations 103
6.3 Non-dimensional momentum thickness $\left(\theta / \theta_{\text {in }}\right)$ as a function of time 104
6.4a Mean velocity profiles. Three-dimensional computation (case a) 105
6.4b Mean velocity profiles. Three dimensional computation (case b) 106
6.4c Mean velocity profiles. Three-dimensional computations (case c) 107
6.5 Integral of the turbulence energy as a function of time 108
6.6a Mean turbulence intensity profiles. Three-dimensional computations (case a) 109
6.6b Mean turbulence intensity profiles. Three-dimensional computations (case b) 110
6.6c Mean turbulence intensity profiles. Three-dimensional computations (case c) 111
6.7 Mean turbulence intensity profiles. Three-dimensional computation $\left(\mathrm{C}_{\mathrm{v}}=0\right)$ 112
6.8 Integral of the turbulence energy as a function of time 113

List of Figures (cont.)

Page6.9a Contour plots of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ in an $x-z$ plane, at time $T=0$. Constant vorticity lines are plot- ted at eight levels. Higher numbers on these lines indi- cate higher vorticity levels $\left(\bar{\omega}_{2, \max }=0.228\right)$ 11.4
6.9 b Contour plots of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ for differ- ent $x-z$ planes, at time $T=0$. In each plane, constant vorticity lines are plotted at eight levels. Higher num- bers on these lines indicate higher vorticity levels 115
6.9 c Contour plots of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ for differ- ent $x=z$ planes, at time $T=0$. In each plane, constant vorticity lines are plotted at eight levels. H igher num- bers on these lines indicate higher vorticity levels 119
6.10a Contour plots of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ in an $x-z$ plane, at time $T=16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these Ines in- dicate higher vorticity levels $\left(\bar{\omega}_{2, \max }=0.185 \ldots 123\right.$
6.10b Contour plots of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ for different $\mathrm{x}=\mathrm{z}$ planes, at time $\mathrm{T}=16.78$. In each plane, constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels 124
6.10 c Contour plots of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ for different $x-z$ planes, at time $T=16.78$. In each plane, constant vorticity Ifnes are plotted at eight levels. Higher numbers on these lines indicate higher levels 128
6.11a Two point correlations $(z=17$ is the center plane of the mixing layer, $\Delta z / \theta_{\text {in }}=1.023$; case a) 132
6.11b Two-point correlations $(z=17$ is the center plane of the mixing layer, $\Delta z / \theta_{\text {in }}=1.023$; case b) 133
6.11 c Two-point correlations $(\mathrm{z}=17$ is the center plane of the mixing layer, $\Delta z / \theta_{\text {in }}=1.023 ;$ case c) 134
7.1 Formation of streamwise cellular structures in a mixing layer 135
C. 1 Non-dimensional momentum thickness $\left(\theta / \theta_{\text {in }}\right)$ as a function of time for various $\mathrm{C}_{2} / \mathrm{C}_{1}$ 145
C. 2 Mean velocity profiles $\left(C_{2} / C_{1}=0.1\right)$ 146
C. 3 Mean turbulence intensity profiles $\left(C_{2} / C_{1}=0.1\right)$ 147

List of Figures (cont.)

PageD. 1 Contour plots of the streamwise vorticity $\left(\bar{\omega}_{1}\right)$ at time $T=0$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels 148
D. 2 Non-dimensional momentum thickness $\left(\theta / \theta_{i n}\right)$ as a func- tion of time 149
D.3a Mean velocity profiles (case a) 150
D.3b Mean velocity profiles (case b) 151
D. 4 a Mean turbulence intensity profiles (case a) 152
D.4b Mean turbulence intensity profiles (case b) 153
D. 5 a Contour plots of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ in an $x-z$ plane $\left(y / \theta_{\text {in }}=4.09\right)$, at time $T=16.78$. Constant vor- ticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels (case a) 154
D. 5 b Contour plots of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ in an $\mathrm{x}-\mathrm{z}$ plane $\left(y / \theta_{\text {in }}=4.09\right)$, at time $T=16.78$. Constant vor- ticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels (case b) 155
D. 6 a Contour plots of the streamwise vorticity $\left(\bar{\omega}_{1}\right)$ in an $x-z$ plane $\left(y / \theta_{\text {in }}=4.09\right)$, at time $T=16.78$. Constant vor- ticity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels (case a) 156
D. 66 Contour plots of the streamwise vorticity $\left(\bar{\omega}_{1}\right)$ in an $x-2$ plane $\left(y / \theta_{\text {in }}=4.09\right)$, at time $T=16.78$. Constant vor- ticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels (case b) 157
D. 7 Projection of the vorticity vector in an $x-z$ plane $\left(y / \theta_{\text {in }}=4.09\right)$ at time $T=16.78$ 158
D. 8 Contour plots of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ in a $y-z$ plane $\left(x / \theta_{\text {in }}=9.55\right)$, at time $T=16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels$\left(\omega_{2, \text { max }}=0.714\right) \cdot .159$

Nomenclature

A	Integral of the Gaussian filter
A_{1}	Integral of the Gaussian filter in the i-direction
C_{v}	Subgrid scale constant
$\overline{\mathrm{E}}(\mathrm{k})$	Filtered energy spectrum
f, g	Flow variables
$\overline{\mathrm{f}}, \overline{\mathrm{g}}$	Filtered (large-scale) components of flow variables
f^{\prime}, g^{\prime}	Subgrid scale components of flow variables
G(x)	Filter function
$\hat{\mathrm{G}}(\mathrm{k})$	Fourier transform of the filter function
$\mathrm{G}_{\mathrm{D}}(\mathrm{x})$	Discretized filter in real space
$\hat{G}_{\mathrm{D}}(\mathrm{k})$	Discretized filter in k-space.
h	Mesh size in any given direction
h_{i}	Mesh size in the i-direction
k	Wave number
k_{1}	Wave number in the i-direction
k_{i}^{\prime}	Modified wave number in the i-direction
k_{c}	Cut-off wave number
\mathcal{L}	Length scale of large eddies
L	Length of computational box in any given direction
L_{i}	Length of computational box in the i-direction
M	Size of the experimental turbulence-generating grid
N	Number of mesh points in any given direction
N_{i}	Number of mesh points in the i-direction
q	r.m.s. velocity
$=$	$\mathrm{u}_{2} / \mathrm{u}_{1}$ velocity ratio

${ }^{R_{T}}=\mathscr{X} / \nu$, Reynolds number based on large eddy length
$R_{\lambda}=q \lambda / \nu$, Reynolds number based on Taylor micro-scale
S Scalar
$s_{i j} \equiv \frac{1}{2} \frac{\partial}{\partial x_{j}} \bar{u}_{i}+\frac{\partial}{\partial x_{i}} \bar{u}_{j}$, strain rate tensor
$T=$ Non-dimensional time
$\equiv \frac{U_{0} t}{M}$, decay of isotropic turbulenc-
$\equiv \frac{\Delta u t}{\theta_{\text {in }}}$, mixing layer
t
Real time
$u_{i} \quad$ Velocity in the i-direction
$\bar{u}_{i} \quad$ Filtered velocity in the i-direction
$u_{i}^{\prime} \quad$ Subgrid scale velocity in the i-direction
$u_{1} \quad$ Velocity of high-speed side
$\mathbf{u}_{2} \quad$ Velocity of low-speed side
V General vector
$V_{i} \quad$ Component of a general vector in the i-direction
$W_{i j} \quad$ Curl of subgrid scale stress
$x \quad$ Streamwise coordinate
x_{0}
Virtual origin of a mixing layer
y spanwise coordinate
$2 \quad$ Cross-flow coordinate

Greek letters

$\Delta \quad$ Filter width $(=2 h)$ in any direction
$\Delta_{i} \quad$ Filter width in the i-direction
$\Delta u=u_{1}-u_{2}$ velocity difference
$\varepsilon \quad$ Total energy dissipation
$\varepsilon_{i j k} \quad$ The completely anti-symmetric tensor of rank 3

n	$z /\left(x-x_{0}\right)$ self-similarity coordinate
γ	Constant ($=6$) in Gaussian filter
λ	Taylor microscale
ν_{T}	Eddy viscosity
$\omega_{1} \equiv$	$\varepsilon_{1 p q} \frac{\partial}{\partial x_{p}} u_{q}$, vorticity component in the i-direction
$\bar{\omega}_{1}$	Filtered vorticity component in the i-direction
ω_{i}^{\prime}	Subgrid scale vorticity component in the i-direction
ψ_{1}	Component of vector potential in the i-direction
ρ	Density
$\tau_{\mathbf{1 j}} \equiv$	$\overline{u_{i}^{\prime} u_{j}^{\prime}}+\overline{u_{j}^{\prime} u_{i}}+\overline{u_{i}^{\prime}} \bar{j}_{j}-\frac{1}{3}\left(\overline{u_{k}^{\prime} u_{k}^{\prime}}+2 u_{k}^{\prime} \bar{u}_{k}\right) \delta_{i j}$
σ	Spread parameter
σ_{0}	Spread parameter for $\mathbf{r}=0$
θ	Momentum thickness
$<\rangle_{x y}$	Horizontal planar average
Arguments	
(i,j,k)	Computational mesh index for (x, y, z)
Superscripts	
(n)	Time step

Chapter 1

INTRODUCTION

1.1 Background

Turbulent flows have been the subject of experimental and theoretical Investigations since the last century. Despite the formidable amount of effort invested in this ield, our ability to predict flows of technical importance remains severely limited. The major difficulty encountered by the theoretical investigations arises from the nonlinear character of the equations of motion. Statistical averages of the equations of motion give rise to the so-called Reynolds stresses. The equations for the Reynolds stresses in turn give rise to higher-order statistical quantities, and so on. The usual approach to computing turbulent flows is to model the terms that arise from the nonlinear character of the equations of motion. This approach usually requires a great deal of experimental information.

We know the underlying physical principles of most fluid flows, and the quantities of interest are completely determined by known equations. With the introduction of large computers, three-dimensional, time-dependent computation of turbulent flows has become possible. However, in order to resolve all the scales of motion even in the simplest turbulent flow, namely, the isotropic homogeneous case, Kwak et al. (1975) estimated the number of mesh points needed in any given direction to be

$$
\begin{equation*}
\mathrm{N}=\mathrm{R}_{\mathrm{T}}^{3 / 4} \tag{1.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{T}}=(\mathrm{q} \mathcal{L} / v), \\
& \nu=\text { kinematic viscosity, } \\
& \mathcal{L}=\text { length scale of large eddies, and } \\
& \mathrm{q}=\text { r.m.s. velocity. }
\end{aligned}
$$

Equation (1.1) shows that one can do a full simulation only at very low Reynolds number. Indeed, Clark et a1. (1977), using a $64 \times 64 \times 64$ mesh system, were able to solve the isotropic homogeneous turbulence
problem for $R_{\lambda}=q \lambda / \nu=38.1$, where λ is the Taylor microscale. Their predicted results compared well with the experimental results. However, turbulent flows of technical importance have much higher Reynolds numbers, and all the scales of motion cannot be resolved for these flows.

One of the more promising approaches to solving turbulence problems is "large-eddy simulation". In large-eddy simulation, one calculates the large-scale turbulent motions with a relatively coarse time-dependent, three-dimensional computation that uses some sort of model (the "subgrid scale model") for the small scales. The basic motivations for this approach are twofold. First, experimental observations of turbulent flows show that the large turbulent structures differ markedly from one flow type to another (e.g., jet vs. boundary layer), but the small-scale turbulent structures are quite similar. Thus, while there is little hope of concocting a "universal" model for the large structures, it may be possible to do so for the small-scale motions. Second, as computer capabilities grow, our capability of resolving smaller scales will grow and the effects of the subgrid scale model will diminish. Thus, while we are limited to simple flows with the present computer capabilities, largeeddy simulation is a tool that may be used on future generation computers.

Kwak et a1. (1975) and Shaanan et al. (1975) have shown that homogeneous turbulent flows can be simulated reasonably well with a relatively small number of mesh points ($16 \times 16 \times 16$). Orszag and Pao (1974), using a $32 \times 32 \times 32$ mesh system, predicted the momentumless wake of a selfpropelled body. Deardorff (1970) and Schuman (1973) computed the central region of a plane channel flow using the large-eddy simulation approach. While Deardorff and Schumann did not handle the wall (no slip) problem, Moin et al. (1978) have solved the channel flow problem, including the laminar sublayer, In this work we shall study the time-developing, twostream mixing layer.

Previous works on prediction of the two-stream mixing layer have concentrated on the initial stages (roll-up) of the development of the layer. Patnaik et al. (1976), starting with an initial distribution that is an unstable elgensolution of the Taylor-Goldstein equation, predicted the two-dimensional roll-up of a stably stratified horizontal mixing layer. Another method that has been used to compute the mixing layer in two
dimensions is the vortex-tracing method used by Ashurst (1977). This method suffers from high computational costs and ad-hoc assumptions concerning the effects of viscosity. The high computational cost of the vortex-tracing method can be reduced by using the vortex-in-cell method (Wang, 1977). These works have treated two-dimensional cases, but the mixing layer exhibits three-dimensionality. This is apparent from the shadowgraph pictures of Brown and Roshko (1974) and the spanwise velocity fluctuation measurements of Spencer and Jones (1971).

1.2 Experimental Background

The two-dimensional turbulent mixing layer plays an essential role in many technological problems. For example, the initial regions of planar jets can be approximated as two independent, two-dimensional mixing layers. Flow over a backward-facing step (with a large step height) is another example of the two-dimensional mixing layer. Many other flow situations can be identified with the mixing layer. In combustion processes, fluid mechanics plays a major role in mixing the reactants, and better understanding of turbulent mixing is needed. The mixing layer is perhaps the simplest situation in which two flows come into contact; obviously the ability to analyze simple problems is necessary before one can analyze more complicated ones.

In 1947, Liepmann and Laufer studied the mixing layer and estab1ished the general features of the flow. However, the fundamental understanding of the structure of the flow is still far from complete, and many controversial questions need to be answered. We shall address some of these questions. The reader is referred to Murthy (1975) for an extensive review and interpretation of the available literature on the mixing layer. With the advancement of the techniques of hot-wire anemometry, Wygnanski and Fiedler (1970) attempted to reproduce Liepmann and Laufer data and extend it to include other measurements. However, differences in intensity levels and rate of growth of the layer emerged. These differences were attributed to the presence of a trip wire in the Wggnansky and Fiedler experiment that was not used by Liepmann and Laufer. Batt (1975) studied both configurations and showed that the differences are due to the tripping of the layer. Foss (1977) investigated the effects of the
laminar/turbulent boundary layer states on the development of a plane mixing layer. He found that the development of the layer is dependent on the initial conditions (the status of the boundary layers before the two streams merge). Figs. 1.1 and 1.2 show r.m.s. fluctuations of the streamwise velocity and the mean velocity profiles obtained by Foss. These figures show that different self-similar stages are obtained for different initial conditions. Foss argues that this is due to the sensitivity of choosing the virtual origin of the mixing layer (x_{0}) and that the character of the (inith disturbance, not its amplitude, is responsible for the substantial effect on the virtual origin. More recently, Oster et al. (1977) showed that by oscillating the initial conditions of the mixing layer they can more than double the growth rate of the layer. The effect depends on the frequency and amplitude of the oscillations introduced. These experimental results show that the "universality" of the self-similar stage of the mixing layer is in doubt, at least up to $\mathrm{Re}=1.5 \times 10^{6}$. Fiedler and Thies (1977) showed that the two-dimensional shear layer only slowly reaches a self-similar state and that every disturbance is of long influence. Table 1.1 shows tabulated results extracted from the Fiedler and Thies paper, and it can be clearly seen that different experiments predict different growth rate of the layer.

Winant and Browand (1974), using dye visualization in a mixing layer, observed that initially the fluid rolls up into discrete, two-dimensional vortical structures. These structures then interact by rolling around each other to form a single larger structure. This pairing process controls the growth of their mixing layer. Brown and Roshko (1974) also observed the amalgamation process at Reynolds number 2.5×10^{5}. Chandrsuda and Bradshaw (1975) argue that the two-dimensional, large-eddy structure observed by Brown and Roshko is unlikely to survive indefinitely if the ambient entrained fluid is weakly turbulent. They advance the argument: "It is probable that if the Brown and Roshko type of orderly structure is once formed it can last for a large number of characteristic wavelengths that is, up to high Reynolds numbers based on streamwise distance - but not indefinitely. The question can be settled only by measurements in a two-stream mixing layer at a much higher Reynolds number than was used by Brown and Roshko." Dimotakis and Brown (1976) showed the existence of
large structures at Reynolds number $=3 \times 10^{6}$ and attributed the growth of the mixing layer to both pairing and "tearing". Tearing is described in their paper as an event where "a large structure will occasionally find itself in the vicinity of another, or in between two others, in whose straining field it disintegrates." The tearing process was first advanced by Moore and Saffman (1975) on the basis of exact solutions for uniform vortices in straining fields.

1.3 Motivation and Objectives

In many flows of practical interest there are interactions between irrotational regions and turbulent regions. Examples of such flows are the shear layer, turbulent jets, and turbulent boundary layers with irrotational free stream flow. In such flows, the regions are separated by a very thin superlayer across which there is normally a jump in the vorticity components parallel to the layer. The dynamical equations for the vorticity seem to be suited to simulate such flows, since the vorticity is identically zero in the irrotational region. However, previous workers used the dynamical equations in the primitive variables (velocity, pressure) and there has been doubt (Orszag and Israeli, 1974) that the vorticity equations could be used to solve turbulent flow problems. Our objectives were therefore as follows:

- To explore the feasibility of using the vorticity equation to simulate turbulent flows.
- To find a subgrid scale model appropriate to the vorticity equations and to determine any constants in this model.
- To simulate a turbulent flow with interactions between turbulent regions and non-turbulent irrotational regions; we chose the mixing layer.

In order to use the three-dimensional, time-dependent vorticity equations, we need to develop a numerical approximation based on these equations that conserves mass, momentum, vorticity, and energy. We also need to assess numerical finite-difference methods and, in particular, the fourth-order and pseudo-spectral methods.

1.4 Overview

The equations of motion of the large eddies are derived by averaging (filtering) the vorticity equations in space. In Chapter 2, we describe the approach to solving turbulent flow problems that is called large-eddy simulation. We show that the use of a filter that is smooth in the real space is required to handle rotational-irrotational regions. We present a new subgrid scale model to be used in conjunction with the vorticity equations that is much simpler and faster than the one that would be obtained from the more commonly used Smagorinsky model.

In Chapter 3, we describe the numerical methods used in this work, briefly discussing the fourth-order and pseudo-spectral approximations and numerical filtering. We develop a numerical approximation to the vorticity equation that conserves mass, momentum, vorticity, and energy, and a method of deriving conservation properties that is much simpler than previous methods and is widely applicable. We present a new treatment of the filtered convective and stretching terms that is more accurate and faster than previously used methods.

In Chapter 4, the isotropic homogeneous turbulence problem is solved using both fourth-order differencing and the pseudo-spectral approximation. The numerical approximations to the partial derivatives of the subgrid scale model are discussed. We show that the use of the vorticity equation to solve turbulent flow problems is feasible and that the new model produces results equivalent to those produced by previously established models.

In Chapter 5, we discuss the two-dimensional computation of a mixing layer. An array of vortices is perturbed, and the momentum thickness growth rate is discussed as a function of the perturbation. It is interesting to note that self-similar, mean velocity and turbulence intensity profiles are obtained with vortex pairing.

In Chapter 6 a three-dimensional computation of a turbulent mixing layer is studied. It is found that the presence of large structures in the initial conditions is essential for the successful prediction of turbulent mixing layers. Our studies of different initial conditions produce different growth rates of the layer - a fact supported experimentally. Self-similar, mean-velocity profiles are obtained with different flow structures. However, turbulence intensity profiles show a rapid decay when
large turbulent structures are not present. We show that our subgrid scale model inhibits the production of turbulent fluctuations when we start with random turbulent fluctuations added to a mean velocity profile, i.e., the model is incapable of handling transitional flows, with present computational limitations.

Chapter 2

THEORETICAL FOUNDATIONS

2.1 Definitions of the Large and Subgrid Scales

In the previous chapter it was shown that, due to computer limitations, one cannot do a full simulation of the dynamical equations of turbulent fluid motion except at extremely low Reynolds numbers. We pointed out that the large-scale turbulent structures differ markedly from one flow to another (e.g., jet vs. boundary layer), while the small-scale turbulent structures are quite similar, and that large-eddy simulation is a promising approach.

In the large-eddy simulation approach, the first and most fundamental step is defining the large-scale field. A general approach that recognizes the continuous nature of the flow variables is the "filter function" approach of Leonard (1973). If f is some flow variable, we can decompose it as follows:

$$
\begin{equation*}
f=\bar{f}+f^{\prime} \tag{2.1}
\end{equation*}
$$

where \bar{f} is the large-scale (filtered) component and f^{\prime} is the residual field. Leonard defined the filtered field by:

$$
\begin{equation*}
\bar{f}=\int_{0} G\left(\underline{x}-\underline{x}^{\prime}\right) f\left(\underline{x}^{\prime}\right) d \underline{x} \tag{2.2}
\end{equation*}
$$

where $G\left(\underline{x}-\underline{x}^{\prime}\right)$ is the filter function, and the integral is extended over the whole flow field. One can think of \bar{f} as a local spatial-averaged field.

It can be shown that if G is piecewise continuously differentiable and $G(\underline{r})$ goes to zero as $r \rightarrow \infty$ and is integrable over an infinite domain, then

$$
\begin{equation*}
\frac{\overline{\partial f}}{\partial x}=\frac{\partial \bar{f}}{\partial x} \tag{2.3a}
\end{equation*}
$$

However, in general,

$$
\begin{equation*}
\overline{\bar{f} \bar{g}} \neq \overline{\mathrm{f}} \tag{2.3b}
\end{equation*}
$$

Properties (2.3a) and (2.3b) will be used in deriving the dynamical equations of the large scales motion.

2.2 Dynamical Equations in Vorticity Form

In Chapter 1, we pointed out that in many flows of practical interest there are interactions between irrotational regions and rotational turbulent regions. Examples of such flows are shear layers, turbulent jets, and turbulent boundary layers with irrotational free streams. In such flows the regions are separated by a very thin superlayer across which there is normally a jump in the vorticity parallel to the layer. These flows are a challenge to the experimentalist; the difficulties arise from the fact that it is hard to determine the region of the flow in which the measurements are made. One faces a similar problem in trying to simulate such flows numerically. The difficulty arises from the fact discussed earlier, that it is impossible to capture all of the scales of motion in the turbulent region. The best we can do is to filter the dynamical equations to obtain equations that describe the behavior of the large eddies, and to model the small scales. Since in the irrotational region the vorticity is identically zero, the dynamical equations for the vorticity seem to be suited to simulate such flows.

Now let us derive the dynamical equations for the large-scale vorticity field. For an incompressible fluid with constant viscosity, the equations of motion for the primitive variables may be written:

$$
\begin{gather*}
\frac{\partial u_{i}}{\partial t}-\varepsilon_{i j k} u_{j} w_{k}=-\frac{\partial}{\partial x_{i}}\left(\frac{p}{\rho}-\frac{1}{2} u_{i} u_{i}\right)-v \varepsilon_{i j k} \frac{\partial}{\partial x_{j}} \omega_{k} \tag{2.4}\\
\frac{\partial u_{i}}{\partial x_{i}}=0 \tag{2.5}
\end{gather*}
$$

The vorticity equation is obtained by taking the curl of Eqn. (2.4). Operating on it with $\varepsilon_{p q i} \partial / \partial x_{q}$ gives:

$$
\begin{equation*}
\frac{\partial}{\partial t} \omega_{i}+\frac{\partial}{\partial x_{j}}\left(u_{j} \omega_{i}-u_{i} \omega_{j}\right)=v \frac{\partial^{2} \omega_{i}}{\partial x_{j} x_{j}} \tag{2.6}
\end{equation*}
$$

Multiplying Eqn. (2.6) by a filtering function $G\left(\underline{x}-\underline{x}^{\prime}\right)$ and integrating over the whole flow field, we obtain:

$$
\begin{equation*}
\frac{\partial}{\partial t} \bar{\omega}_{i}+\frac{\partial}{\partial x_{j}}\left(\overline{u_{j} \omega_{i}-u_{i} \omega_{j}}\right)=v \frac{\partial^{2} \bar{\omega}_{i}}{\partial x_{j} \partial x_{j}} \tag{2.7}
\end{equation*}
$$

The fact that a finite-difference approximation of Eqn. (2.7) would involve approximating higher derivatives of the velocity than would be the case with the primitive equations (Orszag and Israeli, 1974) need not worry us in this case. Since the equations are filtered, we shall be dealing with smooth functions.

As can be expected, when averaging nonlinear equations, we run into the closure problem; i.e., we need to express the quantities $\overline{u_{j} \omega_{i}}$ and $\bar{u}_{i}{ }_{j}{ }_{j}$ in terms of \bar{u} and $\bar{\omega}$. Expanding u and ω as in Eqn. (2.1), one obtains

$$
\begin{equation*}
\overline{u_{j} \omega_{i}-u_{i}{ }_{j}}=\overline{\bar{u}_{j} \bar{w}_{i}-\bar{u}_{i} \bar{\omega}_{j}}+w_{i j} \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
w_{i j}={\overline{u_{j}}}_{j} \omega_{i}+u_{j}^{\prime} \bar{\omega}_{i}-\bar{u}_{i} \omega_{j}^{\prime}-u_{i}^{\prime} \bar{\omega}_{j}+u_{j}^{\prime} \omega_{i}^{\prime}-u_{i}^{\prime} \omega_{j}^{\prime} \tag{2.9}
\end{equation*}
$$

We note that $W_{i j}$ contains subgrid scale quantities and hence must be modeled.

2.3 Subgrid Scale Models

We first note that the model of $W_{i j}$ should satisfy the following necessary conditions:

1. Antisymmetry, since $W_{i j}$ is an antisymmetric tensor and therefore

$$
\begin{equation*}
\frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{j}} w_{i j}=0 \tag{2.10}
\end{equation*}
$$

It is important to preserve the antisymmetry property of $W_{i j}$ in order to assure $\partial \omega_{i} / \partial x_{i}=0$, since the dynamical equations for the
vorticity do not contain a pressure-like term which could be used to adjust the divergence of the vorticity,
2. It should vanish in an irrotational region, since $W_{i j}$ vanishes in such regions.
3. It should be an energy sink, since it represents subgrid-scale effects.

2.3.1 Model $w-1$

Previous workers (Kwak et al., 1975; Shaanan et al., 1975), working with the filtered dynamical equations in the primitive variables, used an eddy-viscosity model for their subgrid-scale model. They modeled the term:

$$
\tau_{i j}=\overline{u_{i}^{\prime} u_{j}^{\prime}}+\overline{u_{j}^{\prime} \bar{u}_{i}}+\overline{u_{i}^{\prime} \bar{u}_{j}}-\frac{1}{3}\left(\overline{u_{k}^{\prime} u_{k}^{\prime}}+\overline{2 u_{k}^{\prime} \bar{u}_{k}}\right) \delta_{i j}
$$

by setting

$$
\begin{equation*}
\tau_{i j}=-2 \nu_{T} \bar{S}_{i j} \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{s}_{i j}=\frac{1}{2}\left(\frac{\partial}{\partial x_{i}} \bar{u}_{j}+\frac{\partial}{\partial x_{j}} \bar{u}_{i}\right) \tag{2.12}
\end{equation*}
$$

is the strain rate tensor of the filtered field and ν_{T} is an eddy viscosity associated with the subgrid scale motions.

Smagorinsky (1963) suggested a model for ν_{T}

$$
\begin{equation*}
v_{T}=\left(c_{s} \Delta\right)^{2}\left(2 \bar{S}_{i j} \bar{S}_{i j}\right)^{\frac{1}{2}} \tag{2.13}
\end{equation*}
$$

where C_{s} is a constant and Δ is the filter width. We note that in a non-turbulent region this model of v_{T} may have a non-zero value, and hence it may give rise to residual stresses. Since our main objective is to handle interactions between a turbulent region and a non-turbulent region, this model was rejected for the present work.

One way to avoid this difficulty is to relate V_{T} directly to vorticity. Previous workers (Kwak et al., 1975; Donaldson, 1972) used

$$
\begin{equation*}
\nu_{\mathrm{T}}=\left(\mathrm{c}_{\mathrm{v}} \Delta\right)^{2}\left(\bar{\omega}_{i} \bar{\omega}_{i}\right)^{\frac{1}{2}} \tag{2.14}
\end{equation*}
$$

where C_{v} is a constant. Clark et al. (1977) have shown that this model is as accurate as Smagorinsky's for homogeneous isotropic turbulence.

The dynamical equesions for large-scale vorticity field could have been derived by taking the curl of the filtered dynamical equations for the primitive variables. Hence the curl of Eqn. (2.11) could be used to model $W_{i j}$; this would give

$$
\begin{equation*}
W_{i j}=-\varepsilon_{i j k} \frac{\partial}{\partial x_{\ell}}\left(2 v_{T} \bar{S}_{k \ell}\right) \tag{2.15}
\end{equation*}
$$

where $\overline{\mathrm{S}}_{\mathrm{k} \ell}$ and ν_{T} are defined by Eqns. (2.12) and (2.14), respectively. We shall refer to this as Model $\omega-1$.

2.3.2 Mode1 $\omega-2$

We note that the model given by Eqn. (2.15) involves computing the strain-rate tensor $\bar{S}_{k l}$, which is an expensive process. It also uses the velocity field and hence requires storage space for the velocity fields even after the convective and stretching terms have been computed. Much computational saving could be obtained with a model that involves only the vorticity field; one such model is

$$
\begin{equation*}
W_{i j}=-\frac{\partial}{\partial x_{j}}\left(\nu_{T} \bar{w}_{i}\right)+\frac{\partial}{\partial x_{i}}\left(\nu_{T} \bar{\omega}_{j}\right) \tag{2.16}
\end{equation*}
$$

Where v_{T} is defined by Eqn. (2.14). We shall refer to this as model $\omega-2$.
Both models $\omega-1$ and $\omega-2$ can be shown to satisfy all three properties mentioned previously (see Appendix A). Model $\omega-2$ offers computational as well as storage advantages over model $w-1$ and will be tested in Chapter 4 (along with model $\omega-1$), for the case of isotropic homogeneous turbulence.

2.4 Filtering

2.4.1 Sharp Cut-off (SCK) Filter

Analytically, a filter that divides the large scales and the subgrid scales into two distinct regions in the Fourier sense would be convenient. Then \bar{f} would contain all scales larger than a cut-off scale, and the subgrid scales (f^{\prime}) would contain all scales smaller than this cut-off scale. A one-dimensional version of such a filter is

$$
\begin{equation*}
G\left(x-x^{\prime}\right)=\frac{\sin \left[k_{c}\left(x-x^{\prime}\right)\right]}{\pi\left(x-x^{\prime}\right)} \tag{2.17}
\end{equation*}
$$

and its Fourier transform is

$$
H(k)= \begin{cases}0 & \text { if }|k|>k_{c} \tag{2.18}\\ 1 & \text { otherwise }\end{cases}
$$

We shall refer to this as the SCK (Sharp cut-off in k-space) filter.
In inhomogeneous flows with turbulent rotational regions and irrotational regions, the two regions are separated by a sharp vorticity jump. In order to evaluate the ability of the SCK filter to smooth out jumps in the vorticity field, we apply it to a point vortex situated at the origin:

$$
\begin{equation*}
\omega(x, y)=\delta(x) \quad \delta(y) \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\omega}(x, y)=\frac{\sin \left[k_{c} x\right]}{\pi x} \frac{\sin \left[k_{c} y\right]}{\pi y} \tag{2.20}
\end{equation*}
$$

$\bar{\omega}$ is plotted in Fig. 2.1.
First we note that this filter creates oscillations and negative vorticity, which are undesirable from a physical point of view. Second, those oscillations decay slowly (they go as x^{-1}), so the spreading into the irrotational region is excessive.

2.4.2 Gaussian (GS) Filter

Another filter that has been used by previous workers (Kwak et al., 1975) is the Gaussian spatial (GS) filter:

$$
\begin{equation*}
G\left(x-x^{\prime}\right)=\sqrt{\frac{\gamma}{\pi}} \frac{1}{\Delta} \exp \left\{-\gamma\left(x-x^{\prime}\right)^{2} / \Delta^{2}\right\} \tag{2.21}
\end{equation*}
$$

where γ is a constant and Δ is the filter width.
Applying this filter to a point vortex situated at the origin, we get

$$
\begin{equation*}
\bar{\omega}(x, y)=\frac{\gamma}{\pi} \frac{1}{\Delta^{2}} \exp \left\{-\frac{\gamma}{\Delta^{2}}\left(x^{2}+y^{2}\right)\right\} \tag{2.22}
\end{equation*}
$$

$\bar{\omega}$ is plotted in Fig. 2. 2.
We note that in this case we have created neither oscillations nor negative vorticity. By filtering the point vortex (Eqn. (2.19)), we have created another vortex with a Gaussian core of width Δ.

We conclude that a Gaussian filter smoothes out jumps better than the sharp cut-off filter. Therefore, the GS filter was used in the cases investigated in this work.

2.5 Computing Velocity Field from the Vorticity Field

When the vorticity equation is used, the velocity becomes a diagnostic variable; i.e., the time variation of the velocity is not given explicitly by the equations but can be deduced once the vorticity is known. To do so, we sha11 define a vector potential ψ_{k} (see Lamb, 1932) such that:

$$
\begin{equation*}
\bar{u}_{i}=\varepsilon_{i j k} \frac{\partial}{\partial x_{j}} \psi_{k} \tag{2.23}
\end{equation*}
$$

ψ_{k} can be chosen to be solenoidal; i.e.,

$$
\begin{equation*}
\frac{\partial}{\partial x_{k}} \psi_{k}=0 \tag{2.24}
\end{equation*}
$$

Taking the curl of (2.23) and using (2.24), we get

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x_{j} \partial x_{j}} \psi_{i}=-\bar{w}_{i} \tag{2.25}
\end{equation*}
$$

Solving the Poisson equation (2.25) and using (2.23), we get the velocity field from the vorticity field.

Note that the velocity field could have been deduced in another fashion by setting

$$
\begin{equation*}
\bar{\omega}_{i}=\varepsilon_{i j k} \frac{\partial}{\partial x_{j}} \bar{u}_{k} \tag{2.26}
\end{equation*}
$$

then taking the curl $\varepsilon_{p q i} \partial / \partial x_{q}$ of Eqn. (2.26) to get:

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x_{j} \partial x_{j}} \bar{u}_{i}=-\varepsilon_{i j k} \frac{\partial}{\partial x_{j}} \bar{w}_{k} \tag{2.27}
\end{equation*}
$$

and finally, solving the Poisson equation (2.27), we get the velocity field. This approach involves differentiation of the vorticity field, followed by a double integration, whereas the first approach of (2.25) involves double integration followed by differentiation (2.23). Numerically, the first approach is usually more desirable; but in our case the two approaches are equivalent. Eqns. (2.23)-(2.25) will be used in this study.

2.6 Summary

Neglecting the molecular viscosity, the filtered dynamical equations in vorticity form become

$$
\begin{gather*}
\frac{\partial \bar{\omega}_{i}}{\partial t}+\frac{\partial}{\partial x_{j}}\left(\bar{u}_{j} \bar{\omega}_{i}-\bar{u}_{i} \bar{\omega}_{j}\right)=-\frac{\partial}{\partial x_{j}} w_{i j} \tag{2.28}\\
\frac{\partial^{2} \psi_{i}}{\partial x_{j} \partial x_{j}}=-\bar{\omega}_{i} \tag{2.25}\\
\bar{u}_{i}=\varepsilon_{i j k} \frac{\partial}{\partial x_{j}} \psi_{k} \tag{2.23}
\end{gather*}
$$

where $W_{i j}$ is modeled as

$$
\begin{equation*}
W_{i j}=-\varepsilon_{i j k} \frac{\partial}{\partial x_{\ell}}\left(2 \nu_{\mathrm{T}} \mathrm{~S}_{k \ell}\right) \tag{2.15}
\end{equation*}
$$

or
or

$$
\begin{equation*}
W_{i j}=-\frac{\partial}{\partial x_{j}}\left(\nu_{T} \bar{w}_{i}\right)+\frac{\partial}{\partial x_{i}}\left(\nu_{T} \bar{w}_{j}\right) \tag{2.16}
\end{equation*}
$$

where

$$
\begin{equation*}
\nu_{T}=\left(C_{v} \Delta\right)^{2}\left(\bar{\omega}_{i} \bar{\omega}_{i}\right)^{\frac{1}{2}} \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{s}_{i j}=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}} \bar{u}_{i}+\frac{\partial}{\partial x_{i}} \bar{u}_{j}\right) \tag{2.12}
\end{equation*}
$$

with

$$
\begin{equation*}
G\left(\underline{x}-\underline{x}^{\prime}\right)=\sqrt{\left(\frac{\gamma}{\pi}\right)^{3}} \frac{1}{\Delta_{1} \Delta_{2} \Delta_{3}} \exp \left\{-\gamma\left[\frac{\left(x_{1}-x_{1}^{\prime}\right)^{2}}{\Delta_{1}^{2}}+\frac{\left(x_{2}-x_{2}^{\prime}\right)^{2}}{\Delta_{2}^{2}}+\frac{\left(x_{3}-x_{3}^{\prime}\right)^{2}}{\Delta_{3}^{3}}\right]\right\} \tag{2.29}
\end{equation*}
$$

and

$$
\Delta=\left(\Delta_{1} \Delta_{2} \Delta_{3}\right)^{1 / 3}
$$

It is in this form that the problem will be solved numerically.

Chapter 3

NUMERICAL METHOD

Analytical solutions of the governing equations discussed in the previous chafter can be found for only very special cases, none representing turbulence. Therefore, we propose using large computing machines to solve these equations for particular cases of interest. Numerical approximations of the governing equations require special care. In this chapter we discuss these approximations and present the methods we use to solve the difference approximation to the governing differential equations.

3.1 Notations

A region of continuous space is divided into a uniform rectangular mesh; $h_{i}(i=1,2,3)$ represents the mesh width in the $i{ }^{\text {th }}$ direction. The mesh width need not be the same as the averaging width introduced in the previous chapters; we have used $\Delta_{i}=2 h_{i}$ and $\gamma=6$. For details on the effects of the filter width on the computational results see Kwak et al. (1975).

We then write the ℓ-component of the filtered flow quantity f_{ℓ} at the $n^{\text {th }}$ time step as

$$
\begin{equation*}
\mathrm{f}_{\ell}^{(\mathrm{n})}(\mathrm{i}, \mathrm{j}, \mathrm{k}), \quad \ell=1,2,3 \tag{3.1}
\end{equation*}
$$

where (i, j, k) are the mesh point index for (x, y, z).
We define the operator notation $\delta / \delta \xi$ to be the numerical approximation to the continuous derivatives $(\partial / \partial \xi)$.

3.2 Numerical Approximation

Once space is discretized into mesh points, it remains to approximate the partial derivatives in terms of the values of the functions at those points. We have used two different approximation schemes: a fourth-order scheme and a pseudo-spectral method.

3.2.1 Fourth-Order Scheme

Using Taylor series expansions one can easily show that the approxmation to the partial derivatives,

$$
\begin{equation*}
\frac{\delta \bar{u}}{\delta x_{1}}=\frac{1}{12 h_{1}}\{\bar{u}(i-2)-8 \bar{u}(i-1)+8 \bar{u}(i+1)-(\bar{u}(i+2)\} \tag{3.2}
\end{equation*}
$$

is fourth-order accurate, i.e., the error in this approximation is of $o\left(h^{4}\right)$. (For simplicity, the arguments j and k are not shown.)

If periodic boundary conditions are to be used, \bar{u} can be represented by a discrete Fourier expansion (see next section).

$$
\begin{equation*}
\bar{u}=\sum_{\underline{n}} \hat{u}(k) e^{i \underline{k} \cdot \underline{x}} \tag{3.3}
\end{equation*}
$$

where, for $i=1,2,3$,

$$
\begin{aligned}
& k_{i}=\frac{2 \pi}{N_{i} h_{i}} n_{i}=\text { wave number in the } x_{i} \text { direction } \\
& n_{i}=-\frac{N_{i}}{2}, \ldots, 0, \ldots, \frac{N_{i}}{2}-1 \\
& N_{i}=\text { number of mesh points in } x_{i} \text { direction }
\end{aligned}
$$

$\hat{u}(k)$ is the discrete Fourier transform of \bar{u}. Taking the discrete Fourier transform of (3.2), we get

$$
\begin{aligned}
\frac{\delta \hat{u}}{\delta x_{1}} & =\frac{1}{12 h_{1}}\left\{e^{-i 2 h_{1} k_{1}}-8 e^{-i h_{1} k_{1}}+8 e^{i h_{1} k_{1}}-e^{i 2 h_{1} k_{1}}\right\} \hat{u} \\
& =\frac{i}{6 h_{1}}\left\{8 \sin \left(h_{1} k_{1}\right)-\sin \left(2 h_{1} k_{1}\right)\right\} \hat{u} \\
& =i k_{1}^{\prime} \hat{u}
\end{aligned}
$$

where

$$
\begin{equation*}
k_{1}^{\prime}=\frac{1}{6 h_{1}}\left\{8 \sin \left(h_{1} k_{1}\right)-\sin \left(2 h_{1} k_{1}\right)\right\} \tag{3.4}
\end{equation*}
$$

is called the modified wave number.

Representation (3.4) allows us to evaluate the numerical approximation (3.2) for the range of wave numbers up to π / h_{1}, the highest wave number that can be represented on a grid of size h_{1}. The Fourier transform of the exact derivative is $i k_{1} \hat{\bar{u}}$, so that, by comparing the modified wave number k_{1}^{\prime} with k_{1}, we see how well the approximation works (see Fig. 3.1).

A more important consequence of representation (3.4) is that it allows us to integrate numerically in a manner consistent with our difference approximation. In order to make this point clear, suppose we know the value, f, of the numerical approximation of the differential equation

$$
\begin{equation*}
\frac{\delta \bar{u}}{\delta \mathbf{x}_{1}}=\mathrm{f} \tag{3.5}
\end{equation*}
$$

and we would like to find \bar{u}, which when fourth-order finite differenced, gives us f exactly (to machine round-off). One way to do this is to write

$$
\begin{equation*}
\overline{A u}(i)=f(i) \tag{3.6}
\end{equation*}
$$

where

$$
A=\frac{1}{12 h_{1}}\left[\begin{array}{ccccccc}
0 & 8 & -1 & 0 & 0 & 1 & -8 \\
-8 & 0 & 8 & -1 & 0 & 0 & 1 \\
1 & -8 & 0 & 8 & -1 & & \\
1 & & & & \\
-1 & 0 & 0 & & & \\
8 & -1 & 0 & . & 1 & -8 & 0
\end{array}\right]
$$

for the case of periodic boundary conditions. This system of equations can then be solved in some standard way.

Another way to handle this problem is by taking the discrete Fourier trunsform of (3.5) to get

$$
\begin{equation*}
i k_{1}^{\prime} \hat{\bar{u}}=\hat{\mathbf{f}} \tag{3.7}
\end{equation*}
$$

Then, by solving for \hat{u},

$$
\begin{equation*}
\hat{\hat{u}}=\frac{\hat{f}}{i k_{1}^{\prime}} \tag{3.8}
\end{equation*}
$$

multiplying (3.8) by $e^{i k \cdot \underline{x}}$, and summing over all k, we obtain \bar{u}. In this case only the one-dimensional transform is needed. This method, which is much more powerful than the previous one when integration in more than one direction is needed, will be used extensively for the solution of the Poisson equations (2.21).

3.2.2 Pseudo-Spectral Method

Periodic boundary conditions

Suppose $f\left(x_{1}\right)$ is periodic in the x_{1} direction with period L (in the following we shall consider the one-dimensional case) and satisfies the "Dirichlet condition", i.e.,

- $f\left(x_{1}\right)$ is defined at every point of the interval $0 \leq x_{1} \leq L$,
- $f\left(x_{1}\right)$ is everywhere single-valued, finite, and sectionally continuous,
- $f\left(x_{1}\right)$ is of "bounded variation", i.e., $f\left(x_{1}\right)$ does not have an infinite number of maxima and minima.

It can be shown (Lanczos, 1956) that a function of this type can be expanded in a convergent Fourier series.

$$
\begin{equation*}
f\left(x_{1}\right)=\sum_{n_{1}}^{\infty} \hat{f}\left(k_{1}\right) e^{i k_{1} x_{1}} \tag{3.9}
\end{equation*}
$$

where

$$
k_{1}=\frac{2 \pi}{L} n_{1} \quad n_{1}=-\infty, \ldots, 0,1, \ldots, \infty
$$

and

$$
\begin{equation*}
f\left(k_{1}\right)=\frac{1}{L} \int_{0}^{L} f\left(x_{1}\right) e^{-i k_{1} x_{1}} d x_{1} \tag{3.10}
\end{equation*}
$$

Since computers cannot handle infinite series, we have to truncate (3.9). This is justifiable if $f\left(k_{1}\right)$ falls off rapidly for large $\left|k_{1}\right|$; this is the case of interest, since we filler the flow variables. Also, as mentioned before, we need to discretize in space. If N_{1} mesh points are used in the x_{1} direction, the discrete analogs of Eqns. (3.9) and (3.10) become:

$$
\begin{equation*}
f\left(x_{1}\right)=\sum_{n_{1}=-N_{1} / 2}^{N_{1} / 2-1} \hat{f}\left(k_{1}\right) e^{i k_{1} x_{1}} \tag{3.11}
\end{equation*}
$$

where

$$
\begin{array}{ll}
k_{1}=\frac{2 \pi}{N_{1} h_{1}} n_{1} & n_{1}=-\frac{N_{1}}{2}, \ldots, 0, \ldots, \frac{N_{1}}{2}-1 \\
x_{1}=j h_{1} & j=0, \ldots, N_{1}-1 \\
h_{1}=L / N_{1} &
\end{array}
$$

$$
\begin{equation*}
\hat{f}\left(k_{1}\right)=\frac{1}{N_{1}} \sum_{j=0}^{N_{1}-1} f\left(x_{1}\right) e^{-i k_{1} x_{1}} \tag{3.12}
\end{equation*}
$$

Fast algorithms (for $\mathrm{N}_{1}=2^{\mathrm{n}} ; \mathrm{n}=1,2, \ldots$) have been developed (Fast Fourier Transform - FFT) by various workers (Cooley and Tukey, 1965; Singleton, 1967) to evaluate the series (3.11) and (3.12) for the inversetransform and the forward-transform, respectively. These will not be described in this work (we used a routine developed by Singleton, 1967).

If we regard the expansion (3.11) as an interpolating formula, so that we treat x_{1} as a continuous variable, and differentiate the entire equation, we obtain

$$
\begin{equation*}
\frac{\delta f}{\delta x_{1}}=\sum_{n_{1}} \hat{f}\left(k_{1}\right) i k_{1} e^{i k_{1} x_{1}} \tag{3.13}
\end{equation*}
$$

The expansion (3.13) can be considered an approximation to the partial derivatives. Thus, to compute the partial derivatives of $\overline{\mathrm{u}}$, for the case of periodic boundary conditions, we proceed as follows: we find the discrete Fourier transform of the function in the direction in which the partial derivative is needed, i.e., we compute $\hat{f}\left(k_{1}\right)$ from $f\left(x_{1}\right)$.

Mition $i k_{1} x_{1}$
Multiplying $f\left(k_{1}\right)$ by $i k_{1} e^{1}$ and summing over all k_{1}, we obtain $\delta \mathrm{f} / \delta \mathrm{x}_{1}$. This is called the "pseudo-spectral" approach. This method has been analyzed by Lanczos (1956) and, with the development of techniques to compute the summations (3.11) rapidly, it has been proposed by Kreiss and Oliger (1973) as an approximation method and advocated by Orszag (1973) and Fox and Orszag (1973).

For the range of wave numbers that can be captured with a given spacing and number of grid points and for perioaic boundary conditions, the pseudo-spectral method yields extremely accurale values of the partial derivatives (see Fig. 3.1).

The above method is limited to the case of periodic boundary conditions. However, the idea can be applied to other types of boundary conditions by using a set of orthogonal functions appropriate to the given boundary conditions.

$\underline{f}=0$ boundary conditions

If $f\left(x_{1}\right)$ is required to vanish at the boundary, i.e., $f\left(x_{1}\right)=0$ for $x_{1}=0$ and $x_{1}=L$, and is twice differentiable (a physically reasonable assumption), the Hilbert-Schmidt theory shows that its Fourier sine series

$$
\begin{equation*}
f\left(x_{1}\right)=\sum_{n_{1}=0}^{\infty} \hat{f}_{n_{1}} \sin \left[\frac{n_{1} \pi}{L} x_{1}\right] \tag{3.14}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{f}_{n_{1}}^{s}=\frac{2}{L} \int_{0}^{L} f\left(x_{1}\right) \sin \left[\frac{n_{1} \pi}{L} x_{1}\right] d x_{1} \tag{3.15}
\end{equation*}
$$

is absolutely and uniformly convergent. As in the previous section, we shall use the discrete analogs to (3.14) and (3.15), i.e.,

$$
\begin{align*}
& f\left(x_{1}\right)=\sum_{n_{1}=0}^{N_{1}-1} f^{s}\left(n_{1}\right) \sin \left[\frac{n_{1}{ }^{\pi}}{\left(N_{1}^{-1)} h_{1}\right.} x_{1}\right] \tag{3.16}\\
& \hat{f}^{s}\left(n_{1}\right)=\frac{2}{\left(N_{1}-1\right)} \sum_{j=0}^{N_{1}-1} f\left(x_{1}\right) \sin \left[\frac{n_{1}{ }^{\pi}}{\left(N_{1}-1\right) h_{1}} x_{1}\right] \tag{3.17}
\end{align*}
$$

where

$$
\begin{aligned}
& n_{1}=0, \cdots, N_{1}-1 \\
& h_{1}=L /\left(N_{1}-1\right) \\
& x_{1}=j h_{1}, \quad j=0, \ldots, N_{1}-1
\end{aligned}
$$

and $\hat{f}\left(n_{1}\right)$ is the Fourier sine transform of $f\left(x_{1}\right)$. By using the FFT routine, a technique to compute the summation in Eqns. (3.16) and (3.17) can be rapidly developed. A detailed development of the Fast Discrete Sine Transform (FDST) is given in Appendix B. Generally, the FDST requires twice as much computation (for a given number of mesh points) as does the FFT.

If we regard the expansion (3.16) as an interpolating formula, treating x_{1} as a continuous variable, and differentiate, one obtains:

$$
\begin{equation*}
\frac{\delta f}{\delta x_{1}}=\sum_{n_{1}=0}^{N_{1}-1} \hat{f}^{s}\left(n_{1}\right) k_{1} \cos \left[\frac{n_{1} \pi}{\left(N_{1}-1\right) h_{1}} x_{1}\right] \tag{3.18}
\end{equation*}
$$

where $k_{1}=n_{1} \pi /\left(N_{1}-1\right) h_{1}$. In order to be able to use (3.18) as an approximation formula for the partial derivatives, we need an FDST to find $\hat{f}^{s}\left(n_{1}\right)$; we also need a Fast Discrete Cosine Transform (FDCT). The discrete Fourier cosine series is defined in analogy to (3.16):

$$
\begin{equation*}
f\left(x_{1}\right)=\sum_{n_{1}=0}^{N_{1}-1} \hat{f}^{c}\left(n_{1}\right) \cos \left[\frac{n_{1} \pi}{\left(N_{1}-1\right) h_{1}} x_{1}\right] \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{f}^{\mathrm{c}}\left(n_{1}\right)=\frac{2}{\left(N_{1}-1\right)} \sum_{j=0}^{N_{1}^{-1}} f^{\prime}\left(x_{1}\right) \cos \left[\frac{n_{1}^{\pi}}{\left(N_{1}-1\right) h_{1}} x_{1}\right] \tag{3.20}
\end{equation*}
$$

with

$$
\begin{aligned}
& \hat{f}^{c}\left(n_{1}\right)= \begin{cases}\frac{1}{2} \hat{f}^{c}\left(n_{1}\right) & n_{1}=0, N_{1}-1 \\
\hat{f}^{c}\left(n_{1}\right) & n_{1} \neq 0, N_{1}-1\end{cases} \\
& f^{\prime}\left(x_{1}\right)= \begin{cases}\frac{1}{2} f\left(x_{1}\right) & x_{1}=0, L \\
f\left(x_{1}\right) & x_{1} \neq 0, L\end{cases}
\end{aligned}
$$

where $\hat{f}^{\mathcal{C}}\left(n_{1}\right)$ is the Fourier cosine transform of $f\left(x_{1}\right)$.
Note that in (3.18) $\hat{\mathbf{f}}^{\mathbf{s}}(0)=\hat{\mathbf{f}}_{\hat{\mathrm{s}}}\left(\mathrm{N}_{1}-1\right)=0$, making (3.18) exactly a discrete cosine transform of $k_{1} \hat{f}^{s}\left(n_{1}\right)$.

By using the FFT routine, a technique of computing the summations in Eqn. (3.19) and (3.20) can be rapidly developed. A detailed development of the Fast Discrete Cosine Transform (FDCT) is given in Appendix B.

Thus, to compute the partial derivatives of a function which is zero at the boundary, we find its discrete sine transform $\hat{f}\left(n_{1}\right)$, multiply it by $n_{1} \pi /\left[\left(N_{1}-1\right) h_{1}\right]$ and inverse transform using an FDCT routine. This method yields an extremely accurate approximation of the partial derivative when the function vanishes at the boundary, but its use is restricted to cases with a uniform mesh.

$\partial f / \partial x=0$ boundary conditions

If $f\left(x_{1}\right)$ is our function whose partial derivative $\partial f / \partial x_{1}$ vanishes at the boundary, i.e., $\partial f / \partial x_{1}=0$ for $x_{1}=0$ and $x_{1}=L$, then, by using arguments similar to those used before, it can be shown that its Fourier cosine series,

$$
\begin{equation*}
f\left(x_{1}\right)=\sum_{n_{1}=0}^{\infty} \hat{f}_{n_{1}}^{c} \cos \left[\frac{n_{1} \pi}{L} x_{1}\right] \tag{3.21}
\end{equation*}
$$

where

$$
\begin{align*}
& \hat{f}_{n_{1}}^{0}=\frac{2}{L} \int_{0}^{i} f^{L}\left(x_{1}\right) \cos \left[\frac{n_{1} \pi}{L} x_{1}\right] d x_{1} \tag{3.22}\\
& \quad \hat{f}_{n_{1}}^{\prime}=\left\{\begin{array}{l}
\hat{f}_{n_{1}}^{c}, n_{1} \neq 0 \\
\frac{1}{2} \hat{f}_{n_{1}}^{c}, n_{1}=0
\end{array}\right.
\end{align*}
$$

is uniformly and absolutely convergent.
Equations (3.19) and (3.20) are the discrete equivalents of the above equations. If we regard expansion (3.19) as an interpolating formula treating x_{1} as a continuous variable, then differentiate, we obtain:

$$
\begin{equation*}
\frac{\delta f}{\delta x_{1}}=\sum_{n_{1}=0}^{N_{1}}-\hat{f}^{c}\left(n_{1}\right) k_{1} \sin \left[\frac{n_{1}{ }^{\pi}}{\left(N_{1}^{-1}\right)_{1}} x_{1}\right] \tag{3.23}
\end{equation*}
$$

Obviously (3.23) satisfies the conditions $\partial f / \partial x_{1}=0$ at $x_{1}=0$ and $x_{1}=L$, and (3.23) is the discrete sine expansion of the partial derivative.

Thus, to compute the partial derivative of a function for which $\partial f / \partial x_{1}=0$ at the boundary, we find its discrete cosine transform $f\left(n_{1}\right)$, multiply it by $-k_{1}$, and take the inverse transform using an FDST routine.

The three methods described in this section will be used extensively as our approximation tools.

3.3 Time Differencing

To advance in time, a second-order Adams-Bashforth method was used. This method has been used by previous workers (Kwak et al., 1975; Shaanan et al., 1975), and use of a higher-order method was not felt necessary.

If $\partial \bar{w}_{i} / \partial t=M_{i}$, the Adams-Bashforth formula for $\bar{\omega}_{i}$ at time-step $n+1$ is

$$
\begin{equation*}
\bar{\omega}_{i}^{n+1}=\bar{\omega}_{i}^{n}+\Delta t\left(\frac{3}{2} M_{i}^{(n)}-\frac{1}{2} M_{i}^{(n-1)}\right) \tag{3.24}
\end{equation*}
$$

In our case,

$$
M_{i}=-\frac{\partial}{\partial x_{j}}\left(\bar{u}_{j} \bar{\omega}_{i}-\bar{u}_{i} \bar{\omega}_{j}\right)-\frac{\partial}{\partial x_{j}} W_{i j}
$$

Note that this is a two-step explicit method. It is started with the Euler method:

$$
\begin{equation*}
\omega_{i}^{1}=\omega_{i}^{0}+\Delta t M_{i}^{(0)} \tag{3.25}
\end{equation*}
$$

3.4 Conservation Properties

As was pointed out by Phillips (1959), numerical integration of the finite-difference analog of the Navier-Stokes equations may introduce nonlinear instabilities if proper care is not taken. Arakawa (1966), working with the two-dimensional vorticity equation, showed that by properly conserving vorticity, energy, and enstrophy $\left(\omega_{i} \omega_{i}\right)$, these instabilities disappear. Lilly (1965), working with the primitive variables, developed a spatial-differencing scheme that conserves momentum and energy. By
conservation we mean that, in the absence of external forces and viscous dissipation, the only way that the momentum and kinetic energy in a control volume can change is by flow through the surface. This property must be retained by the numerical approximation. In the simple case of periodic boundary conditions, we have

$$
\begin{align*}
& \frac{d}{d t} \int_{D} \bar{u}_{i} d v=0 \quad \text { (i.e., momentum conservation) } \tag{3.26}\\
& \frac{d}{d t} \int_{D} \frac{1}{2} \bar{u}_{i} \bar{u}_{i} d v=0 \quad \text { (i.e., energy conservation) } \tag{3.27}
\end{align*}
$$

It is usually easy to devise a numerical approximation to the dynamisal equations in primitive form that conserves momentum, i.e., summation over the flow volume of the approximate equations would give the discrete equivalent of Eqn. (3.26). However, the difficulties arise when trying to show energy conservation, since in general the identity

$$
\begin{equation*}
u_{i} \frac{\partial}{\partial x_{j}} u_{i}=\frac{\partial}{\partial x_{j}} \frac{1}{2} u_{i} u_{i} \tag{3.28}
\end{equation*}
$$

does not hold in finite-difference form.
Writing the equations of motion in the following form (Tennekes and Lumley, 1972):

$$
\begin{align*}
\frac{\partial}{\partial t} u_{i}+u_{j}\left(\frac{\partial u_{i}}{\partial x_{j}}-\frac{\partial u_{j}}{\partial x_{i}}\right) & =-\frac{\partial}{\partial x_{i}}\left(\frac{p}{\rho}+\frac{1}{2} u_{j} u_{j}\right) \tag{3.29}\\
\frac{\partial}{\partial x_{i}} u_{i} & =0 \tag{3.30}
\end{align*}
$$

and integrating over the flow volume, we get

$$
\begin{equation*}
\frac{\partial}{\partial t} \int_{\mathcal{L}} u_{i} d v+\int_{\mathcal{D}} u_{j}\left(\frac{\partial u_{i}}{\partial x_{j}}-\frac{\partial u_{j}}{\partial x_{i}}\right) d v=-\int_{\mathcal{D}} \frac{\partial}{\partial x_{i}}\left(\frac{p}{\rho}+\frac{1}{2} u_{j} u_{j}\right) d v \tag{3.31}
\end{equation*}
$$

For periodic boundary conditions, integration by parts yields:

$$
\begin{gathered}
\int_{D_{0}} u_{j} \frac{\partial}{\partial x_{j}} u_{i} d v=-\int_{D_{D}} u_{i} \frac{\partial}{\partial x_{j}} u_{j} d v=0 \quad \text { (using (3.30)) } \\
\int_{D} u_{j} \frac{\partial}{\partial x_{i}} u_{j} d v=-\int_{D_{-}} u_{j} \frac{\partial}{\partial x_{i}} u_{j} d v=0
\end{gathered}
$$

and

$$
\int \frac{\partial}{\partial x_{i}}\left(\frac{p}{\rho}+\frac{1}{2} u_{j} u_{j}\right) d v=0
$$

Hence Eqn. (3.31) reduces to Eqn. (3.26) and we have momentum conservation.
Now, multiplying Eqn. (3.29) by u_{i}, we get:

$$
\begin{equation*}
\frac{\partial}{\partial t} \frac{1}{2} u_{i} u_{i}=-u_{i} \frac{\partial}{\partial x_{i}}\left(\frac{P}{\rho}+\frac{1}{2} u_{j} u_{j}\right) \tag{3.32}
\end{equation*}
$$

where the convective terms sum to zero by symmetry.
Integrating (3.32) over the entire domain yields:

$$
\begin{equation*}
\frac{\partial}{\partial t} \int_{D^{2}} \frac{1}{2} u_{i} u_{i} d v=-\int_{0} u_{i} \frac{\partial}{\partial x_{i}}\left(\frac{p}{\rho}+\frac{1}{2} u_{j} u_{j}\right) d v \tag{3.33}
\end{equation*}
$$

For periodic boundary conditions, integration by parts yields:

$$
\begin{aligned}
\int_{D} u_{i} \frac{\partial}{\partial x_{i}}\left(\frac{p}{\rho}+\frac{1}{2} u_{j} u_{j}\right) d v & =-\int\left(\frac{P}{\rho}+\frac{1}{2} u_{j} u_{j}\right) \frac{\partial}{\partial x_{i}} u_{i} d v \\
& =0 \quad \text { (using (3.30)) }
\end{aligned}
$$

Hence Eqn. (3.33) reduces to Eqn. (3.27) and we have energy conservation.
We notice that, with the equations written in the form Eqn. (3.29), we did not need the identity (3.28) to show energy conservation from the dynamical equations in primitive form. The conservation properties were obtained by making use of only integration by parts and the continuity equation.

Consider the numerical approximation of Eqns. (3.29) and (3.30):

$$
\begin{gather*}
\frac{\partial}{\partial t} u_{i}+u_{j}\left(\frac{\delta u_{i}}{\delta x_{j}}-\frac{\delta u_{j}}{\delta x_{i}}\right)=-\frac{\delta}{\delta x_{i}}\left(\frac{p}{\rho}+\frac{1}{2} u_{j} u_{j}\right) \tag{3.34}\\
\frac{\delta}{\delta x_{i}} u_{i}=0 \tag{3.35}
\end{gather*}
$$

where we are using $\delta / \delta x_{i}$ to denote the numerical approximations to the partial derivatives $\partial / \partial x_{i}$, and the same approximations are used in both equations ($3.34,3.35$) for any given independent variable. In order to
have long-term integration stability, Eqn. (3.34) should numerically conserve momentum and energy.

If we follow the steps used in deriving the conservation properties from Eqns. (3.29) and (3.30), we realize that the conservation properties will follow if we can establish numerical summation by parts. Consider the on-dimensional case, where we have, for periodic boundary conditions,

$$
\int u(x) \frac{\partial}{\partial x} f(x) d x=-\int f(x) \frac{\partial}{\partial x} u(x) d x
$$

The numerical analog of the above equation is:

$$
\begin{equation*}
\sum_{j=0}^{N-1} u(j) \frac{\delta}{\delta x} f(j)=-\sum_{j=0}^{N-1} f(j) \frac{\delta}{\delta x} u(j) \tag{3.36}
\end{equation*}
$$

Expanding $u(j)$ in Fourier series, we get:

$$
u(j)=\sum_{n=-N / 2}^{N / 2-1} \hat{u}(n) \exp (2 \pi i j n / N) \quad ; \quad j=0,1, \ldots, N-1
$$

where the $\hat{u}(n)$ are given by the inverse transform:

$$
\hat{u}(n)=\frac{1}{N} \sum_{j=0}^{N-1} u(j) \exp (-2 \pi i j n / N), \quad n=-\frac{N}{2}, \ldots, \frac{N}{2}-1
$$

Also,
$\frac{\delta}{\delta x} f(j)=\sum_{n=-N / 2}^{N / 2-1} i k^{\prime}(n)\left\{\frac{1}{N} \sum_{j^{\prime}=0}^{N-1} f\left(j^{\prime}\right) \exp \left(-2 \pi i j^{\prime} n / N\right)\right\} \exp (2 \pi i j n / N)$
where $k^{\prime}(n)$ is the modified wave number. The modified wave numbers for the numerical methods we are using are

- $i k^{\prime}=i k$ for pseudo-spectral,
- $i k^{\prime}=i \frac{1}{6 h}[8 \sin (\mathrm{kh})-\sin (2 \mathrm{kh})]$ (fourth-order approximation. Substituting Eqn. (3.37) into the left-hand side of Eqn. (3.36) yields

$$
\begin{aligned}
\sum_{j=0}^{N-1} u(j) \frac{\delta}{\delta x} f(j)= & \frac{1}{N} \sum_{j=0}^{N-1} \sum_{j}^{N-1} \sum_{n=-N / 2}^{N / 2-1} i k^{\prime}(n) u(j) f\left(j j^{\prime}\right) \\
& \cdot \exp \left(-2 \pi i j^{\prime} n / N\right) \exp (2 \pi i j n / N)
\end{aligned}
$$

Now, changing the summation index in the last sum from n to $-n$, we see that this expression will agree with the right-hand side of Eqn. (3.36), provided that:

$$
\begin{array}{r}
k^{\prime}(n)=-k^{\prime}(-n) \\
k^{\prime}\left(-\frac{N}{2}\right)=0 \tag{3.40}
\end{array}
$$

Condition (3.39) is satisfied by all the methods under consideration, and $k^{\prime}(-N / 2)=0$ is true for the finite-difference method. The pseudospectral method cannot differentiate between $f=\exp (i j \pi)$ and $f=$ $\exp (-i j \pi)$, and, due to this confusion at $n=-N / 2, k^{\prime}(-N / 2)$ is set equal to zero for the pseudo-spectral method. Hence, summation by parts is obtained when (3.39) and (3.40) hold. Summing Equation (3.34) over all mesh points, using the generalization of (3.36) to three dimensions and using Eqn. (3.35) yields the numerical equivalent of (3.26). Multiplying Eqn. (3.34) by u_{i}, the nonlinear term in the left-hand side of (3.34) will sum to zero by symmetry; then, using as before the three-dimensional generalization of (3.36) and (3.35), summing over all mesh points will yield the numerical equivalent of Eqn. (3.27).

3.5 Differenced Vorticity Equations

In order to insure that the numerical approximation to the vorticity equations are equivalent to the numerical primitive equations, we must take the numerical curl of Eqn. (3.34). Before doing so, we note that, numerically,

$$
\begin{align*}
& \nabla \cdot \nabla \times V=\varepsilon_{i j k} \frac{\delta}{\delta x_{i}} \frac{\delta}{\delta x_{j}} v_{k} \tag{3.41}\\
& \nabla \times \nabla s=\varepsilon_{i j k} \frac{\delta}{\delta x_{j}} \frac{\delta}{\delta x_{k}} s \tag{3.42}
\end{align*}
$$

where V and S are any vector or scale, respectively, the above expressions are identically zero, if for each direction the same approximation is used for all operators.

The numerical curl of (3.34) is

$$
\begin{equation*}
\frac{\partial}{\partial t} \omega_{i}+\frac{\delta}{\delta x_{j}}\left(u_{j} \omega_{i}-u_{i} \omega_{j}\right)=0 \tag{3.43}
\end{equation*}
$$

Equation (3.43) conserves vorticity, i.e., summing it over all space the total vorticity in any control volume (subject to periodic boundary conditions) does not change with time. Herre in the form (3.34), the primitive equations also conserve vorticity.

The numerical divergence of (3.43) is

$$
\frac{\partial}{\partial t} \frac{\delta}{\delta x_{i}} \omega_{i}=0
$$

Therefore, an $\underline{\omega}$ field solenoidal at time t will remain solenoidal at time $t+\Delta t$.

3.6 Poisson Equation

Having the vorticity field ω_{i} at time step n, we have to find the velocity field in order to be able to advance in time. To do so, we shall define a vector potential (also called the vector stream function) ψ_{k}, such that

$$
\begin{equation*}
\bar{u}_{i}=\varepsilon_{i j k} \frac{\delta}{\delta x_{j}} \psi_{k} \tag{3.44}
\end{equation*}
$$

ψ_{i} can be chosen to be solenoidal; i.e.,

$$
\begin{equation*}
\frac{\delta}{\delta x_{i}} \psi_{i}=0 \tag{3.45}
\end{equation*}
$$

Taking the curl of Eqn. (3.44) and using Eqn. (3.45), we get

$$
\begin{equation*}
\frac{\delta}{\delta x_{j}} \frac{\delta}{\delta x_{j}} \psi_{i}=-\bar{w}_{i} \tag{3,46}
\end{equation*}
$$

The Poisson equations (3.46) will be integrated using the approach introduced in Section 3.2. For the case of periodic boundary condition, the discrete Fourier transform of Eqn. (3.46) is

$$
\begin{equation*}
-k_{j}^{\prime} k_{j}^{\prime} \hat{\psi}_{i}=-\hat{\omega}_{i} \tag{3.47}
\end{equation*}
$$

where k_{1}^{\prime} is the modified wave vector introduced in Section 3.2. Solving for ψ_{1}, we have

$$
\begin{equation*}
\hat{\psi}_{i}=\frac{\hat{\bar{\omega}}_{i}}{k_{j}^{\prime k} k_{j}^{\prime}} \tag{3.48}
\end{equation*}
$$

and by inverting the transform we obtain the stream vector consistent with our numerical differencing. It satisfies two conditions. First, the velocity field obtained using (3.44) will be solenoidal. We have in Fourier space:

$$
\begin{equation*}
k_{i}^{\prime} \hat{u}_{i}=\varepsilon_{i j k} k_{i}^{\prime} k_{j}^{\prime} \hat{\psi}_{k}=0 \tag{3.49}
\end{equation*}
$$

Second, taking the curl of (3.44), we have in Fourier space:

$$
\begin{align*}
\hat{\omega}_{i} & =\varepsilon_{i j k} i k_{j}^{\prime} \hat{u}_{k}=-\varepsilon_{i j k} \varepsilon_{k p q} k_{j}^{\prime} k_{p}^{\prime} \hat{\psi}_{q} \\
& =-k_{j}^{\prime} k_{j}^{\prime} \hat{\psi}_{i}+k_{i}^{\prime} k_{j}^{\prime} \hat{\psi}_{j} \tag{3.50}
\end{align*}
$$

Since $k_{j}^{\prime} \hat{\psi}_{j}=0,(3.50)$ is exactly the Poisson equation (3.47).

3.7 Numerical Filtering

Examination of Eqn. (3.24) reveals that the only numerical problem left is the numerical evaluation of the $\bar{u}_{j} \bar{\omega}_{i}-\bar{u}_{i} \bar{\omega}_{j}$ term. Since $\bar{u}_{j} \bar{\omega}_{i}$ $\bar{u}_{i} \bar{\omega}_{j}$ can be computed easily, the problem is that of numerical filtering. Filtering is the evaluation of a convolution integral

$$
\begin{equation*}
\overline{u_{j} \bar{\omega}_{i}}=\int_{-\infty}^{+\infty} \bar{u}_{j} \bar{\omega}_{i} G\left(x-x^{\prime}\right) d x^{\prime} \tag{3.51}
\end{equation*}
$$

If this integral is evaluated using conventional integration routines, the computation cost is prohibitive. Previous workers (Leonard, 1973; kwak et a1., 1975; Shaanan et al., 1975) argued that the filtered terms $\bar{u}_{j}\left(x^{\prime}\right)$ and $\bar{\omega}_{i}\left(x^{\prime}\right)$ are smooth, and they expanded those terms in a Taylor series about x. Using a Gaussian for $G(x)$, they obtained:

$$
\begin{equation*}
\bar{u}_{j} \bar{\omega}_{i}=\bar{u}_{j} \bar{\omega}_{i}+\frac{\Delta^{2}}{4 \gamma} \nabla^{2}\left(\bar{u}_{j} \bar{\omega}_{i}\right)+o\left(\Delta^{4}\right) \tag{3.52}
\end{equation*}
$$

and the $0\left(\Delta^{2}\right)$ term was called the Leonard term. The above approximation will require the use of a fourth-order, finite-differencing method (Kwak et al, 1975) or a modified second-order method (Shaanan et al., 1975) that yields the Leonard term as its truncation error. However, when higher-order methods are used the expansion (3.52) needs to be extended to higher orders, and the computational expense becomes prohibitive. When periodic boundary conditions are used, we can take the Fourier transform of Eqn. (3.51) to get:

$$
\begin{equation*}
\frac{\bar{u}_{j} \bar{\omega}_{i}}{}=\left(\hat{u}_{j} \bar{\omega}_{i}\right) \hat{G} \tag{3.53}
\end{equation*}
$$

Thus, given \bar{u}_{i} and $\bar{\omega}_{i}$, one can compute the term $\left(\bar{u}_{j} \bar{\omega}_{i}\right)$, multiply it by \hat{G}, then simply invert the transform to obtain $\overline{\bar{u}}_{j} \bar{\omega}_{i}$.

When $\bar{u}_{j} \bar{\omega}_{i}$ vanishes at the boundaries, i.e., $\bar{u}_{j} \bar{\omega}_{i}=0$ at $x=0$ and $x=L$, we can expand it in a Fourier sine series. Taking the onedimensional case, for simplicity, we set

$$
\begin{equation*}
\bar{u}_{j} \bar{\omega}_{i}=\sum_{n=0}^{\infty}\left(\bar{u}_{j} \stackrel{\omega}{w}_{i}\right) \sin \left(\frac{n \pi}{L} x\right) \tag{3.54}
\end{equation*}
$$

Substituting (3.54) in (3.51), we get

$$
\overline{u_{j}} \bar{w}_{i}=\int_{-\infty}^{+\infty} \sum_{n=0}^{\infty}\left(\bar{u}_{j} \bar{\omega}_{i}\right) \sin \left(\frac{n \pi}{L}\left(x-x^{\prime}\right)\right) G\left(x^{\prime}\right) d x^{\prime}
$$

Since the series (3.54) is absolutely and uniformly convergent, we can take the summation outside the integration to obtain

$$
\begin{aligned}
\bar{u}_{j} \bar{\omega}_{i}= & \sum_{n=0}^{\infty}\left(\bar{u}_{j} \hat{w}_{i}\right)\left(\int_{-\infty}^{+\infty} \sin \left(\frac{n \pi}{L} x\right) \cos \left(\frac{n \pi}{L} x^{\prime}\right) G\left(x^{\prime}\right) d x^{\prime}\right. \\
& \left.+\int_{-\infty}^{+\infty} \cos \left(\frac{n \pi}{L} x\right) \sin \left(\frac{n \pi}{L} x^{\prime}\right) G\left(x^{\prime}\right) d x^{\prime}\right\}
\end{aligned}
$$

If $G(x)$ is an even function, which is the case when (2.21) is used, the second term in the bracket vanishes and one ob tains

$$
\begin{align*}
\frac{\bar{u}_{j} \bar{\omega}_{i}}{} & \left.=\sum_{n=0}^{\infty}\left(\bar{u}_{j} \frac{s}{\omega_{i}}\right) \int_{-\infty}^{+\infty} G\left(x^{\prime}\right) \cos \left(\frac{n \pi}{L} x^{\prime}\right) d x^{\prime}\right\} \sin \left(\frac{n \pi}{L} x\right) \tag{3.55}\\
& =\sum_{n=0}^{\infty}\left(\bar{u}_{j} \frac{s}{\omega_{i}}\right) \hat{G}^{c} \sin \left(\frac{n \pi}{L} x\right)
\end{align*}
$$

where

$$
\hat{G}^{c}=\int_{-\infty}^{+\infty} G\left(x^{\prime}\right) \cos \left(\frac{n \pi}{L} x^{\prime}\right) d x^{\prime}
$$

is the Fourier cosine transform of the Gaussian filter.
What Eqn. (3.55) tells us is that, for the case in which $\bar{u}_{j} \bar{\omega}_{i}=0$ for $x=0$ and $x=L, \overline{\bar{u}}_{j} \bar{\omega}_{i}$ can be computed by the following procedure: we first compute the Fourier sine transform $\left(\bar{u}_{j} \omega_{i}\right)$ of $\bar{u}_{j} \bar{\omega}_{i}$, and then multiply it by the Fourier cosine transform $\hat{\mathrm{G}}^{\mathrm{c}}$ of the filter, to obtain the Fourier sine transform $\left(\bar{u}_{j} \bar{\omega}_{i}\right)$ of $\bar{u}_{j} \bar{\omega}_{i}$. Finally, inverting the sine transform, we obtain $\bar{u}_{\mathbf{j}} \bar{\omega}_{i}$.

Similarly, it can be shown that, for the case in which $\frac{\partial}{\partial x} \bar{u}_{j} \bar{\omega}_{i}=0$ at $x=0$ and $x=L$, we have

$$
\begin{equation*}
\overline{\bar{u}_{j} \bar{\omega}_{i}}=\sum_{n=0}^{\infty}\left(\bar{u}_{j} \frac{c}{\omega_{i}} \hat{G}^{c} \cos \left(\frac{n \pi}{L} x\right)\right. \tag{3.56}
\end{equation*}
$$

or

$$
\frac{\left.\hat{\bar{u}_{j}} \overline{\omega_{i}}\right)}{\left(\bar{u}_{j} \bar{\omega}_{i}\right) \hat{G}}
$$

By the use of the FFT, FDST, and FDCT, "exact" filtering can be obtained for all boundary conditions of interest with acceptable computational speed.

An important property required of a filter is that the filtered value of a constant must be the same constant. Numerically, it is desirable to preserve this property, which is equivalent to requiring the integral of the filter function be unity or $\hat{G}(0)=1$. The exact continuous Fourier transform of (2.21) is

$$
\begin{equation*}
\hat{\mathrm{G}}(\mathrm{k})=\exp \left(-\frac{\Delta^{2}}{4 \gamma} \mathrm{k}^{2}\right) \tag{3.57}
\end{equation*}
$$

When $\hat{G}(k)$ is discretized, we get

$$
\begin{equation*}
\hat{G}_{D}(k)=\exp \left(-\frac{\Delta^{2}}{4 \gamma}\left(\frac{2 \pi}{L} n\right)^{2}\right), \quad n=0, \pm 1, \pm 2, \ldots \tag{3.58}
\end{equation*}
$$

Hence $\hat{G}_{D}(0)=1$.

Another property required of a filter is that it smooth out jumps (see Section 2.4) without introducing oscillations. We have modeled the situation with a top-hat function:

$$
f(x)= \begin{cases}1 & x_{1} \leq x \leq x_{2} \tag{3.59}\\ 0 & \text { otherwise }\end{cases}
$$

Analytically, we have

$$
\bar{f}(x)=\frac{1}{2}\left(\operatorname{erf}\left(x_{1}-x\right)-\operatorname{erf}\left(x_{2}-x\right)\right)
$$

which is a smooth function with no oscillations.
When (3.59) is discretized and filtered numerically using $\hat{G}_{D}(k)$, the top-hat function, Eqn. (3.59), is smoothed out (see Fig. 3.2). However, small oscillations are introduced. This is due to the fact that the discrete inverse transform of (3.58) is not smooth. For this reason we have used a discrete Gaussian in x-space,
where

$$
\begin{equation*}
G_{D}(x)=\frac{1}{A} \exp \left(-\gamma \cdot \frac{(n h)^{2}}{\Delta^{2}}\right) \tag{3.60}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\sum_{n}^{x} \exp \left(-\frac{h n}{(n h)^{2}} \Delta^{2}\right) \tag{3.61}
\end{equation*}
$$

as our filter function. The oscillations in the x-space (see Fig. 3.2) do not appear when this filter is used.

3.8 Summary

The dynamical equations in vorticity form will be solved as follows:

$$
\begin{equation*}
\omega_{i}^{n+1}=\omega_{i}^{n}+\Delta t\left(\frac{3}{2} M_{i}^{n}-\frac{1}{2} M_{i}^{n-1}\right) \tag{3.24}
\end{equation*}
$$

where

$$
M_{i}=-\frac{\delta}{\delta x_{j}}\left(\overline{\left.\bar{u}_{j} \bar{w}_{i}-\bar{u}_{i} \bar{w}_{j}\right)}-\frac{\delta}{\delta x_{j}} W_{i j}\right.
$$

$$
\begin{equation*}
w_{i j}=-\varepsilon_{i j k} \frac{\delta^{\prime}}{\delta x_{\ell}}\left(2 v_{T} \bar{S}_{k \ell}\right) \tag{3.25}
\end{equation*}
$$

or

$$
\begin{gather*}
W_{i j}=-\frac{\delta^{\prime}}{\delta x_{j}}\left(\nu_{T} \bar{\omega}_{i}\right)+\frac{\delta^{\prime}}{\delta x_{i}}\left(\nu_{T} \bar{\omega}_{j}\right) \tag{3.26}\\
\nu_{T}=\left(C_{V} \Delta\right)^{2}\left(\bar{\omega}_{i} \bar{\omega}_{i}\right)^{\frac{3}{2}} \tag{3.27}
\end{gather*}
$$

and

$$
\begin{equation*}
\bar{s}_{i j}=\frac{1}{2}\left(\frac{\delta^{\prime} \bar{u}_{i}}{\delta x_{j}}+\frac{\delta^{\prime} \bar{u}_{j}}{\delta x_{i}}\right) \tag{3.28}
\end{equation*}
$$

The numerical differencing $\frac{\delta^{\prime}}{\delta x}$ used to compute the terms in the model $\left(W_{i j}\right)$ need not be of the same order as the numerical differencing $\frac{\delta}{\delta x}$ used to compute the terms in the momentum equation. Filtering of the terms $\overline{\bar{u}}_{j} \bar{\omega}_{i}-\bar{u}_{i} \bar{\omega}_{j}$ is achieved using the method described in Section 3.7.

Chapter 4

DECAY OF ISOTROPIC TURBULENCE

4.1 Background

In order to assess the feasibility of using the vorticity equations as the governing equations for turbulent flows, we applied the computational methods described in Chapter 3 to the simplest problem in turbulence, namely, the decay of homogeneous isotropic turbulence. This flow was also used to determine the value of the subgrid scale model constant for use in subsequent calculations of other flows.

The grid turbulence experiment of Comte-Bellot and Corrsin (1971) was used as the "target" for our numerical predictions. When viewed in a coordinate frame moving with the mean velocity, this experiment approximates homogeneous isotropic turbulence.

This study was presented in an earlier report (P. Moin et al., 1978) and is rediscussed in this work to support the argument that model $\omega-2$ used in conjunction with the vorticity equations produces similar results to those obtained using the more commonly used model $\omega-1$. The contributions of Mr. P. Moin are gratefully acknowledged.

4.2 Initial Conditions

We started with an initial field that is divergence-free and has a spectrum obtained by filtering the experimental spectrum at the nondimensional experimental time $T=U_{0} t / M=42 . \quad U_{0}=10 \mathrm{~cm} / \mathrm{sec}$ is the experimental free-stream air speed, $M=5.08 \mathrm{~cm}$ is the size of the experimental turbulence-generating grid, and t is the real time in seconds. The initial field was otherwise random. The generation of such a field is discussed in detail by Kwak et al. (1975) and will be briefly outlined herein. The filtered field is generated in k-space by setting:

$$
\begin{equation*}
\hat{\bar{u}}_{i}(k)=\left(\frac{2 \pi}{L}\right)^{3}\left(\frac{\bar{E}(k)}{2 \pi k^{2}}\right)^{\frac{2}{2}}\left(\mathrm{aA}_{i}+i b B_{i}\right) \tag{4.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\bar{E}(k) & =\text { filtered experimental energy spectrum at time } T=U_{0} t / M=42, \\
a & =\cos (\theta) \\
b & =\sin (\theta)
\end{aligned}
$$

where θ is a random angle, A_{i} and B_{i} are unit vectors picked such that $A_{i} k_{i}^{\prime}=B_{i} k_{i}^{\prime}=0$, otherwise random.

To insure that (4.1) is the Fourier transform of a real field, we must have

$$
\begin{equation*}
\hat{\bar{u}}_{i}(\underline{k})=\hat{\bar{u}}_{i}^{*}(-\underline{k}) \tag{4.2}
\end{equation*}
$$

where $*$ indicates complex conjugate. Now, by inverse transforming $\hat{\bar{u}}_{i}$, \bar{u}_{i} is obtained.

Using the above initial field, we shall use the methods of Chapters 2 and 3 to predict the spectrum at $T=98$. The predicted spectrum will be compared with the filtered experimental spectrum at $\mathrm{T}=98$.

4.3 Selection of C_{v}

The model constant was obtained by matching the computational rate of filtered energy decay to that of the experiment (Fig. 4.1). The values of the constants obtained using different numerical schemes and different models were in most cases within ten percent of each other $\left(C_{v}=0.2 \pm 0.02\right.$, see Table 4.1).

4.4 Results

Under the assumption that the computational box size is large compared to the scale of the energy-containing motions, we can use periodic boundary conditions in all three directions. A uniform cubic mesh system was used with N, the mesh number in each direction, and h, the mesh spacing, chosen such that the computation captures as much of the turbulence energy as possible (Kwak et a1., 1975). We used the sets

$$
\mathrm{N}=16, \mathrm{~h}=1.5 \mathrm{~cm}, \quad \mathrm{t}=6.25 \times 10^{-3} \mathrm{sec}
$$

and

$$
\mathrm{N}=32, \mathrm{~h}=1.0 \mathrm{~cm}, \mathrm{t}=6.25 \times 10^{-3} \mathrm{sec}
$$

When periodic boundary conditions are used, it was shown in Chapter 3 that the pseudo-spectral method is more powerful than any finite-difference method. However, when the periodic pseudo-spectral methods cannot be used, we may have to use finite-difference methods. Since one of our objectives is to determine the model constant for the vorticity equations, both the fourth-order finite differencing and the pseudo-spectral methods were applied to the case of isotropic homogeneous turbulence.

4.4.1 Fourth-Order Finite Differences

Figure 4.2 shows the energy spectrum obtained by fourth-order finitedifferencing the vorticity equation, using model $\omega-1$ (Eqn. (2.1)) for the subgrid-scale model, on a 16^{3} mesh. Our results compare well with the experimental results up to wave number 2.5 , after which the inaccuracy of fourth-order differencing begins to show. Fourth-order differencing the primitive equations (Kwak et al., 1975; Moin et al., 1978) produced good agreement with the filtered experimental results using the primitive variable version of this model. This shows that the vorticity approach is equivalent to the primitive variable method. Thus the use of the vorticity equations is definitely feasible in turbulent flow computations.

4.4.2 Pseudo-Spectral Method

Figures $4.3-4.6$ show the energy spectra obtained using the pseudospectral method, with 16^{3} mesh. Fig. 4.3 shows the results obtained using model $\omega-1$ (Eqn. (2.15)). We note that for $k \geq 1$ the computed results are considerably lower than the experimental values. This indicates that the subgrid-scrle model is draining too much energy from the small structures, and, since our total energy is equal to that of the filtered experimental value, too little energy is taken out from the large structures. In this case, we used the pseudo-spectral approximation to calculate the subgrid scale terms as well as the other terms.

Figure 4.4 shows the energy spectrum obtained using second-order central differencing to approximate the derivatives appearing in the subgridscale model (see Section 3.8):

$$
\frac{\delta^{\prime}}{\delta x} f=\frac{f(i+1)-f(i-1)}{2 h}
$$

We note a considerable improvement in the spectrum, except for a small accumulation of energy at the extreme (high wave number) end of the spectrum, which was present to a lesser extent in Fig. 4.2,

Figures 4.5 and 4.6 are the results from a 16^{3} computation using the pseudo-spectral method and model $\omega-2$ (Eqn. (2.16)) for the subgridscale model. We note the same behavior in Fig. 4.5 as in Fig, 4.3; the computed spectrum falls below the experimental spectrum, indicating that using the pseudo-spectral method to compute the spatial deriyatives in the subgrid-scale model damps too much energy in the wave number range $k \geq 1$. Using second-order finite differencing to compute the partial derivatives in the model $\omega-2$ (Eqn. (2.16)), we obtain a significant improvement in the computed spectrum (ig. 4.6). These results are similar to the results obtained using model $\omega-1$, indicating that the two models are equally good.

Figure 4.7 shows the energy spectrum obtained from a 32^{3} pseudospectral calculation, using second-order finite differencing to compute the partial derivatives in model $w-2$. The results are similar to those of the 16^{3} computation.

It can be concluded from these results that the vorticity equations provide a satisfactory basis for the simulation of homogeneous isotropic turbulence. Both models $\omega-1$ and $\omega-2$ produce similar results. Model $\omega-2$, given by Eqn. (2.16), will be used in the following computations, due to the computational advantages it offers over model $\omega-1$ (see section 2.3). Finally, a relatively coarse 16^{3} mesh is sufficient to capture interesting features of the homogeneous isotropic turbulence, and no significant improvement in the energy spectrum was obtained by using a 32^{3} mesh system.

4.5 Computational Details

The calculations described above were executed on the $\operatorname{CDC}-7600$ at NASA-Ames Research Center, using programs written in Fortran. The total storage requirements (octal) were as follows:
16^{3} Calculation
Large Core Memory: Fourth-order 310,360
Pseudo-spectral 230,000
Small Core Memory: Fourth-order 104,465
Pseudo-spectral 61,334
32^{3} Calculation
Large Core Memory: Pseudo-spectral 1,110,000
Small Core Memory: 126,605
The computing time per computational time step was approximately as fol-
lows:
16^{3} Calculation
Fourth order $=2.5 \mathrm{sec} \mathrm{CPU}$ time
Pseudo-spectral $=4.0 \mathrm{sec} \mathrm{CPU}$ time.
32^{3} Calculation
Pseudo-spectral $=34 \mathrm{sec} \mathrm{CPU}$ time.

Chapter 5

MIXING LAYER: TWO-DIMENSIONAL COMPUTATION

5.1 Preview

It is well documented (Winant and Browand (W\&B), 1974; Brown and Roshko (B\&R), 1974; Konrad, 1976; Dimotakis and Brown (D\&B), 1976) that in some cases the spatially developing mixing layer contains coherent structures (in the terminology of $B \& R$) or discrete vortices (in the terminology of $W \& B$). In these experiments, the mixing layer grows via the interaction of neighboring vortex-like structures that rotate around and combine with each other to form a similar but larger structure (see Fig. 5.1). This mechanism is called vortex pairing. In this chapter we study the vortex-pairing mechanism by perturbing an infinite array of vortices. The effect of the initial perturbation on the roll-up is discussed. All cases treated in this chapter are completely two-dimensional; threedimensional cases are discussed in the next chapter.

5.2 Some Experimental Results

The mixing layer is generated in a laboratory by bringing together two streams of fluid of different streanmise velocity (see Fig. 5.2). The measured mean velocity profiles, at different streanwise positions, are self-similar and can be fitted by an error-function (Spencer and Jones (S\&J), 1971):

$$
\begin{equation*}
\frac{u}{u_{1}}=r+\frac{(1-r)}{2}\left(1-\operatorname{erf}\left(\sigma\left(n-n_{0}\right)\right)\right) \tag{5.1}
\end{equation*}
$$

where

$$
\begin{aligned}
r & =u_{2} / u_{1}, \\
u_{1} & =v^{\prime} \\
u_{2} & =\text { velocity of the high-speed side, } \\
n & =z /\left(x-x_{0}\right) \\
\sigma & =\text { spread parameter } \\
z & =\text { cross-flow coordinate, }
\end{aligned}
$$

$x=$ streamwise coordinate, and
$x_{0}=$ virtual origin of the layer.
Rearranging (3.1) and normalizing the velocity on $\Delta u=u_{1}-u_{2}$, we get

$$
\begin{equation*}
\frac{u-U}{\Delta u}=0.5 \operatorname{erf}\left(\sigma\left(n-n_{0}\right)\right) \tag{5.2}
\end{equation*}
$$

where $U=\left(u_{1}+u_{2}\right) / 2$ is the mean velocity. The spread parameter σ is a function of r, and the spread data can be fitted by the expression:

$$
\begin{equation*}
\frac{\sigma}{\sigma_{0}}=\frac{1+r}{1-r} \tag{5.3}
\end{equation*}
$$

where σ_{0} is the spread parameter for $r=0$. S\&J report $\sigma_{0}=11$ for other values of σ_{0}; see Table 1.1.

Defining the momentum thickness, θ, to be

$$
\begin{align*}
\theta & =\frac{1}{(\Delta u)^{2}} \int_{-\infty}^{+\infty}\left(u-u_{2}\right)\left(u_{1}-u\right) d z \\
& =\int_{-\infty}^{+\infty}\left(\frac{1}{4}-\frac{(u-U)^{2}}{(\Delta u)^{2}}\right) d z \tag{5.4}
\end{align*}
$$

and substituting (5.2) in (5.4), we get

$$
\begin{gather*}
\theta=\frac{x-x_{0}}{\sigma \sqrt{2 \pi}}=\frac{x-x_{0}}{\sigma_{0}^{2} \sqrt{2 \pi}} \frac{\Delta u}{U} \tag{5.5}\\
\sigma=\frac{x-x_{0}}{\theta \sqrt{2 \pi}} \tag{5.6}
\end{gather*}
$$

Since σ is constant, Eqn. (5.5) shows that the momentum thickness grows linearly with x.

Substituting (5.6) in (5.2), we get:

$$
\begin{equation*}
\frac{u-U}{\Delta u}=0.5 \operatorname{erf}\left(\frac{\left(z-z_{0}\right)}{\theta \sqrt{2 \pi}}\right) \tag{5.7}
\end{equation*}
$$

Due to computer limitations, one cannot set up a uniform grid that covers the length of the experimental set-up (1.8 m for the $W \& B$ case) and
at the same time resolves the large-eddy scale ($\sim 1-4 \mathrm{~cm}$). We propose to use a uniform grid that moves with the mean speed U. The size of the computational domain is chosen so that two vortices are captured in the initial fleld; 1.e., we can imagine that we are following the fluid in the dashed box in Fig. 5.1 as it moves downstream.

In our frame the layer will develop in time rather than space. We shall in fact be studying a portion of a time-developing mixing layer. This layer can be thought of as being created by having two infinite countermoving streams of velocity $\pm \Delta u / 2$ brought in contact suddenly at $T=0$. For this flow, the mean quantities will be horizontal planar-averaged quantities; for example, the mean velocity profile will be defined as

$$
\begin{equation*}
\langle\bar{u}\rangle_{x y}=\frac{1}{A} \int_{A} \int \bar{u}(x, y, z, t) d x d y \tag{5.8}
\end{equation*}
$$

The momentum thickness, defined as

$$
\begin{equation*}
\theta(t)=\int\left[\frac{1}{4}-\left(\frac{\langle\bar{u}\rangle x y}{\Delta u}\right)^{2}\right] d z \tag{5.9}
\end{equation*}
$$

will be a function of time instead of space. According to the Taylor hypothesis, the state of the flow at the experimental streamwise distance x is the same as that of the computed layer at the computational time variable t. The variables x and t are related by the expression:

$$
\begin{equation*}
x=U t \tag{5.10}
\end{equation*}
$$

Substituting (5.10) in (5.5), we get an expression for the expected momentum thickness of the time-developing layer:

$$
\begin{equation*}
\theta(t)=\frac{t-t_{0}}{\sigma_{0}^{2} \sqrt{2 \pi}} \Delta u \tag{5.11}
\end{equation*}
$$

Equation (5.11) shows that $\theta(t)$ should grow linearly with time, with

$$
\begin{equation*}
\frac{\mathrm{d} \theta}{\Delta u d t}=\frac{1}{\sigma_{0}^{2} \sqrt{2 \pi}} \tag{5.12}
\end{equation*}
$$

5.3 Boundary Conditions

The coordinate system used is shown in Fig. 5.3, where the x-direction is the streamwise direction, the y-direction is the spanwise direction, and the z-direction is the cross-flow direction. We shall use periodic boundary conditions in the x - and y-directions; this is allowed if the size of the computational box is sufficiently greater than the integral scale in a given direction. At a large enough z location the flow is essentially horizontal and uniform. We can use no stress boundary conditions in the z-direction (i.e., $\partial u / \partial z=\partial v / \partial z=w=0$ at $z=0$ and $z=L$) if the boundaries of our box in this direction are sufficiently far from the center of the layer. This will allow us to expand the velocity fields as follows:

$$
\begin{align*}
& \bar{u}=\sum_{n} \sum_{k_{2}} \sum_{k_{1}} \hat{u}\left(k_{1}, k_{2}, n\right) e^{i\left(k_{1} x+k_{2} y\right)} \cos \left(\frac{n \pi z}{L_{3}}\right) \tag{5.13}\\
& \bar{v}=\sum_{n} \sum_{k_{2}} \sum_{k_{1}} \hat{v}\left(k_{1}, k_{2}, n\right) e^{i\left(k_{1} x+k_{2} y\right)} \cos \left(\frac{n \pi z}{L_{3}}\right) \tag{5.14}\\
& \bar{w}=\sum_{n} \sum_{k_{2}} \sum_{k_{1}} \hat{w}\left(k_{1}, k_{2}, n\right) e^{i\left(k_{1} x+k_{2} y\right)} \sin \left(\frac{n \pi z}{L_{3}}\right) \tag{5.15}
\end{align*}
$$

and the vorticity fields as follows:

$$
\begin{align*}
& \bar{\omega}_{1}=\sum_{n} \sum_{k_{2}} \sum_{k_{1}} \frac{\hat{\omega}_{1}\left(k_{1}, k_{2}, n\right) e^{i\left(k_{1} x+k_{2} y\right)} \sin \left(\frac{n \pi z}{L_{3}}\right)}{\bar{\omega}_{2}=\sum_{n} \sum_{k_{2}} \sum_{k_{1}} \hat{\omega}_{2}\left(k_{1}, k_{2}, n\right) e^{i\left(k_{1} x+k_{2} y\right)} \sin \left(\frac{n \pi z}{L_{3}}\right)} \tag{5.16}\\
& \bar{\omega}_{3}=\sum_{n} \sum_{k_{2}} \sum_{k_{1}} \hat{\omega}_{3}\left(k_{1}, k_{2}, n\right) e^{i\left(k_{1} x+k_{2} y\right)} \cos \left(\frac{n \pi z}{L_{3}}\right) \tag{5.17}
\end{align*}
$$

The pseudo-spectral method will be used to approximate the partial derivatives. The numerical technique was discussed in Chapter 3.

5.4 Initial Conditions

We want to prescribe an initial profile that corresponds to a pair of vortices. It has been shown in Chapter 2 that filtering a line vortex produces a vortex with a Gaussian distribution of vorticity in the core. We shall use this fact to generate our initial conditions.

The initial conditions are generated by starting with two line vortices in the spanwise direction at $\left(x=x_{1}, z=L_{3} / 2\right)$ and ($\left.x=x_{2}, z=L_{3} / 2\right)$ (see Fig. 5.4), and filtering in the $x-z$ plane with the relatively wide Gaussian filter:

$$
\begin{equation*}
G(x, z)=\frac{1}{A_{1} A_{3}} \exp \left(-\frac{x^{2}}{6 h_{1}^{2}}-\frac{z^{2}}{6 h_{3}^{2}}\right) \tag{5.19}
\end{equation*}
$$

where h_{i} is the mesh size in the i-th direction $(i=1,3)$ and A_{i} ($i=1,2$) is defined by Eqn. (3.61). This will produce the vorticity field:

$$
\begin{gather*}
\bar{\omega}_{2}=C_{1} \frac{1}{A_{1} A_{3}}\left(\exp \left(-\frac{\left(x-x_{1}\right)^{2}}{6 h_{1}^{2}}\right)+\exp \left(-\frac{\left(x-x_{2}\right)^{2}}{6 h_{2}^{2}}\right)\right) \exp \left(-\frac{\left(z-L_{3} / 2\right)^{2}}{6 h_{3}^{2}}\right) \\
0 \leq x<L_{1}, 0 \leq 0<L_{3} \tag{5.20}\\
\bar{\omega}_{1}=\bar{\omega}_{3}=0
\end{gathered} \quad \begin{gathered}
0
\end{gather*}
$$

where C_{1} is an arbitrary constant that adjusts the strength of the vortices. Note that these vortices can be elliptical; they are h_{1} / h_{3} times as long in the streamwise direction as in the cross flow direction.

Equations (5.20) correspond to a perturbed infinite array of vortices with a perturbation parameter β equal to:

$$
\begin{equation*}
\beta=\frac{1}{2}-\frac{\left|x_{1}-x_{2}\right|}{L_{1}} \tag{5.21}
\end{equation*}
$$

$\beta=0$ corresponds to a uniform (unperturbed) vortex array, and we need to deal only with the case $\beta>0$.

Figures 5.6a-f show constant vorticity contours for $\beta=6 / 16,5 / 16$, $4 / 16,3 / 16,2 / 16$, and $1 / 16$. Note that for large β the vorticity contours look like those for a single distorted vortex.

5.5 Mesh Size Selection

We have shown in Chapter 4 that a $16 \times 16 \times 16$ mesh system can resolve isotropic homogeneous turbulence with acceptable accuracy. For the cases considered in this chapter there are no variations in the spanwise direction. We dropped the number of meshes in the spanwise direction to $N_{2}=4$, the minimum number of meshes that our three-dimensional code was designed to handle. In the cross-flow direction the mesh number was increased to $N_{3}=33$ in order to allow the layer to grow in this direction. This gives a total number of mesh points of $N_{1} \times N_{2} \times N_{3}=16 \times 4 \times 33$ $=2112$.

The spanwise vorticity is defined by

$$
\begin{equation*}
\bar{\omega}_{2}=\frac{\partial}{\partial z} \bar{u}-\frac{\partial}{\partial x} \bar{v} \tag{5.22}
\end{equation*}
$$

Averaging (5.22) over $x-y$ planes and using periodic boundary conditions, we get

$$
\begin{equation*}
\left\langle\bar{\omega}_{2}\right\rangle_{\mathrm{xy}}=\frac{\mathrm{d}}{\mathrm{dz}}\langle\overline{\mathrm{u}}\rangle_{\mathrm{xy}} \tag{5.23}
\end{equation*}
$$

If we substitute in (5.23) the vorticity distribution given by Eqn. (5.20), we get:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dz}}\left\langle\overline{\mathrm{u}}>_{x y}=C_{1} \frac{2}{\mathrm{~L}_{1} \mathrm{~A}_{3}} \exp \left(-\frac{\left(\mathrm{z}-\mathrm{L}_{3} / 2\right)^{2}}{6 \mathrm{~h}_{3}^{2}}\right)\right. \tag{5.24}
\end{equation*}
$$

This ordinary differential equation can be solved together with the boundary condition:

$$
\begin{equation*}
\langle\bar{u}\rangle_{x y}=0 \quad \text { at } z=L_{3} / 2 \tag{5.25}
\end{equation*}
$$

The solution is obtained by simple integration:

$$
\begin{equation*}
\langle\bar{u}\rangle_{x y}=\frac{c_{1}}{L_{1}} \operatorname{erf}\left(\frac{z-L_{3} / 2}{\sqrt{6} h_{3}}\right) \tag{5.26}
\end{equation*}
$$

Non-dimensionalizing the velocity Δu, we get:

$$
\begin{equation*}
\langle\bar{u}\rangle_{x y}=0.5 \operatorname{erf}\left(\frac{z-L_{3} / 2}{\sqrt{6} h_{3}}\right) \tag{5.27}
\end{equation*}
$$

Equating Eqns. (5.26) and (5.27) and solving for C_{1}, we get:

$$
\begin{equation*}
\mathrm{c}_{1}=0.5 \mathrm{~L}_{1} \tag{5.28}
\end{equation*}
$$

The length scales are non-dimensionalized on the momentum thickness. The mesh size was chosen such that the initial momentum thickness is equal to unity. Substituting (5.27) in Eqn. (5.9), we get:

$$
\theta_{\text {in }}=\frac{\sqrt{6}}{\sqrt{2 \pi}} h_{3}=1
$$

and solving for h_{3}, we obtain

$$
\begin{equation*}
h_{3}=\sqrt{\frac{2 \pi}{6}}=1.023 \tag{5.29}
\end{equation*}
$$

The mesh size in the streamwise direction was set equal to:

$$
\begin{equation*}
h_{1}=\frac{4}{3} h_{3}=1.364 \tag{5.30}
\end{equation*}
$$

The non-dimensional time step was picked up to be equal to:

$$
\begin{equation*}
\Delta T=\frac{\Delta u \Delta t}{\theta_{\text {in }}}=0.0799 \tag{5.31}
\end{equation*}
$$

which yields a Courant number such that:

$$
\mathrm{N}_{\mathrm{c}}=\mathrm{U}_{\infty} \frac{\Delta \mathrm{t}}{\mathrm{~h}_{1}} \leq 0.03
$$

which is well within the stability criterion and assures that the error caused by the time advancement will be acceptably small.

The mesh size in the spanwise direction is irrelevant for the cases considered in this chapter. We have set $h_{2}=h_{3}$.

We have shown in Section 5.2 that, to accord with the experimental observations, the momentum thickness $\theta(t)$ must grow linearly with time; and, using $\sigma_{0}=11$ (S\&J), we expect:

$$
\begin{equation*}
\frac{d \theta}{\Delta u d t}=\frac{1}{\sigma_{0} 2 \sqrt{2 \pi}}=0.018 \tag{5,32}
\end{equation*}
$$

We have run a series of calculations for different values of β. Fig. 5.5 shows the momentum thickness $\theta / \theta_{\text {in }}$ plotted vs. T for the cases run. For the highly perturbed cases, $\beta \geq 4 / 16$, the momentum thickness $\theta(t)$ does not grow linearly in time. However, for $\beta=3 / 16,2 / 16$, and $1 / 16, \theta(t)$ does grow linearly in time, with $d \theta / \Delta u d t=0.020,0.015$, and 0.009 , respectively.

Figures 5.6 and 5.7 show constant vorticity (contour) plots for the various cases at times $T=0$ and $T=16.78$, respectively. Figs. 5.6a-c and $5.7 \mathrm{a}-\mathrm{c}$ show that for large β we have essentially one elliptical vortex which grows "fatter" in time, to become more or less circular at time $T=16.78$. Figs. $5.6 \mathrm{~d}-\mathrm{f}$ show that for small β, we have initially two distinct vortices; these vortices draw closer and rotate around each other (Figs. 5.7d-f). For the case $\beta=3 / 16$, the two vortices merge to form one vortex at time $T=16.78$ (Fig. 5.7d).

The above observations indicate that case $\beta=3 / 16$ gives results comparable to the experimental observations. The spread parameter σ_{0} obtained for $\beta=3 / 16$ is equal to

$$
\sigma_{0}=\frac{1}{\frac{d \theta}{\Delta u d t} 2 \sqrt{2 \pi}}=9.97
$$

which is within 10% of the experimental results of S\&J.

5.7 Mean Velocity Profiles

The mean velocity profile $\langle\bar{u}\rangle$ xy defined by Eqn. (5.8) is a function of z and T. Fig. 5.8 shows $2\langle\bar{u}\rangle\rangle_{x y} / \Delta u$ plotted vs. z / θ at $\Delta T=2.4$ intervals, for $\beta=3 / 16$. The profiles collapse into one, indicating self-similarity of the mean velocity profiles.

Self-similarity is also observed in the experimental data. Thus, as far as the mean profile is concerned, the data can be fit by pairing vortices with $\beta=3 / 16$.

5.8 Mean Turbulent Intensity Profiles

In our computational box, the non-dimensional mean turbulence intensity is defined as

$$
\begin{equation*}
\frac{q^{2}}{2(\Delta u)^{2}}=\frac{1}{2(\Delta u)^{2}}\left\langle\left(\bar{u}-\langle\bar{u}\rangle_{x y}\right)^{2}+\left(\bar{v}-\langle\bar{v}\rangle_{x y}\right)^{2}+\left(\bar{w}-\langle\bar{w}\rangle_{x y}\right)^{2}\right\rangle_{x y} \tag{5,33}
\end{equation*}
$$

where $<\rangle_{x y}$ are planar averages defined by Eqn. (5.8).
Figure 5.9 shows the mean turbulence intensity plotted vs. z / θ, for the case $\beta=3 / 16$, at $\Delta \mathrm{T}=2.4$ intervals. We note that the turbulence intensity decays slightly at the early stages of the pairing and then reaches a self-similar situation.

Compared with the experimental results, our peak intensity $q^{2} / 2(\Delta u)^{2} \mid$ max $=2.06 \times 10^{-2}$ is substantially lower than the experimental value reported by S\&J (3.5×10^{-2}). The low value of the maximum turbulence intensity is due to the fact that we did not take into account the subgrid scale contributions, and that our field is strictly two-dimensional, whereas in reality spanwise fluctuations are present in the experiment of $S \& J$.

5.9 Summary

It is interesting to note that vortex pairing is capable of producing self-similar mean velocity and turbulence intensity profiles, and a linear growth of the momentum thickness that compare with experimental results (for $\beta=3 / 16$). We note that, due to periodic boundary conditions, once the vortices have paired we get a uniform vortex array $(\beta=0)$ and the pairing and layer growth stop. If we want the pairing to continue, we would have to perturb the array by displacing the vortices in the streamwise direction. We have not done this because in the actual flow successive airings are not clearly separated and are random.

A uniform array of vortices can be perturbed in several different ways; for example, by adding a cosine distribution of vorticity to a uniform array, we can enhance the pairing (see Appendix c) and get results similar to the
results presented in this chapter. One could also make the vortices of different strengths or use any combinations of these perturbations.

The perturbation $\beta=3 / 16$ (vs. $\beta=0$ for the unperturbed layer) needed to achieve the observed experimental growth rate of the shear layer may, at first, seem excessive. In the experiments, the downstream vortices exert a significant influence on those in the initial portions of the layer ($D \& B$); recall that the influence of a distant vortical structure on a given point decreases inversely with distance. The cumulative effect of the downstream vortices can be considerable, and, since they tend to be highly turbulent, they may strongly perturb the vortices in the initial section of the mixing layer. Therefore, the value $\beta=3 / 16$ may in fact be quite reasonable.

Chapter 6

MIXING LAYER: THREE-DIMENSIONAL COMPUTATIONS

6.1 Preview

In Chapter 5 we started with a two-dimensional initial field, and the numerical simulation of the governing equations stayed two-dimensional. However, actual flows are rarely two-dimensional, and truly turbulent flows are always three-dimensional. (Two-dimensional turbulence is approximated by certain atmospheric structures and in highly stratified fluids.) In this chapter we evaluate the importance of large structures in the development of the mixing layer, which is two-dimensional in the conventional mean sense but contains the three-dimensional structures.

6.2 Boundary Conditions and Mesh-Size Selection

The boundary conditions and coordinate system of Chapter 5 will be used. Periodic boundary conditions will be used in the streamwise (x_{1}) and spanwise $\left(x_{2}\right)$ directions, and no-stress boundary conditions in the cross-flow $\left(x_{3}\right)$ direction.

The number of meshes used for the cases discussed in this chapter is $16 \times 16 \times 33=8448$. The mesh sizes and time step are the same as in the previous chapter. After non-dimensionalizing all coordinates on the initial momentum thickness and the velocity on Δu, the mesh size in the crossflow $\left(x_{3}\right)$ direction is:

$$
h_{3}=1.023
$$

In a mixing layer the eddies are suspected of being elongated in the streamwise direction, so we have set:

$$
h_{1}=\frac{4}{3} h_{3} .
$$

and

$$
h_{2}=h_{3}
$$

We note that if the mixing layer is completely coherent in the spanwise direction the size of the mesh in this direction $\left(h_{2}\right)$ is not critical.

The non-dimensional time step was set equal to

$$
\Delta T=\frac{\Delta u \Delta t}{\theta_{\text {in }}}=0.0799
$$

6.3 Initial Conditions

We begin by taking the view that the mixing layer is a superposition of a random velocity (u) and a mean velocity profile (u/ Δ_{u}). We want the initial random profile to be solenoidal (i.e., $\nabla \cdot \underline{\tilde{u}}=0$), random in a region of space (see Fig. 6.1), and to decay to zero outside this region.

In Chapter 3 we showed how to generate an isotropic random velocity field $\underline{u}_{\mathrm{I}}$ on a 16^{3} grid. To generate the random part of the initial field that we need here, we start with the field of Chapter 3 and form:

$$
\begin{gather*}
\Psi(I, J, L)=u_{I}(I, J, L-9) \quad L=14, \ldots, 20 \tag{6.1}\\
\Psi(I, J, L)=0 \quad \text { otherwise }
\end{gather*}
$$

(where I, J, L are the mesh point indices); i.e., a random field over the middle of the shear layer that drops abruptly to zero outside. In order to smooth out the jump between the two regions, Ψ is filtered in the z-direction with a Gaussian filter. We get:

$$
\begin{equation*}
\Psi=\int \psi\left(z^{\prime}\right) G\left(z-z^{\prime}\right) d z^{\prime} \tag{6.2}
\end{equation*}
$$

where

$$
G(z)=\frac{1}{A_{3}} \exp \left(-\frac{z^{2}}{6 h_{3}^{2}}\right)
$$

The random portion of the initial field is generated by setting

$$
\begin{equation*}
\underline{\underline{u}}=\nabla \times \underline{\psi} \tag{6.3}
\end{equation*}
$$

The initial conditions were completed by adding to $\underline{\tilde{u}}$ an error function mean velocity:

$$
\begin{equation*}
\frac{u}{\Delta u}=0.5 \operatorname{erf} \frac{\left(z-L_{3} / 2\right)}{\sqrt{6} h_{3}} \tag{6.4}
\end{equation*}
$$

Two cases were run:
Case a: $\quad \frac{\left|\tilde{u}_{i}\right|_{\text {max }}}{\Delta u}=0.01 \quad(i=1,2,3)$
Case b: $\quad \frac{\left|u_{i}\right|_{\max }}{\Delta u}=0.30 \quad(i=1,2,3)$
In these two cases the large (grid) structures are assumed to be random fluctuations.

The two-dimensional cases studied in Chapter 5 could be considered as unsteady laminar flows, since there is no randomness. We emphasize that there are at least two kinds of randomness:
i) Randomness of the pairing in which the vortices vary in shape, separation distance, strength, number, etc., in a random way. In Chapter 5 we computed realizations using spacing as the perturbation.
ii) Randomness meaning noisy (random) fluctuations.

The calculations described above are designed to look into the second type of randomness. To see what the combined effect would be, we ran still another case in which the initial field contained a vortex pair (with $\beta=$ 3/16) and a superimposed random field. For the latter, we took the random field of case (b) described above. This case will be called (c).

Table 6.1 summarizes the cases studied in this chapter. In Appendix D we investigate the interaction between streamwise cellular structures and spanwise vortex pairing.

6.4 Momentum Thickness

In order to study the development of the mixing layer, we would need a measure of the effects of the turbulent rotational region on the nonturbulent irrotational region; the momentum thickness $\theta(t)$ is one such measure. We note that $\theta(t)$, as defined by Eqn. (5.4), is a measure of the momentum defect of the irrotational region. The momentum defect is due to the spreading of vorticity into the irrotational region. Since, in our computation, we have dropped the viscous terms, the growth of the momentum
thickness measures the inviscid mixing or the entrainment of irrotational fluid.

Figure 6.2 shows the non-dimensional momentum thickness $\theta / \theta_{\text {in }}$ ($\theta_{\text {in }}$ is the initial momentum thickness) plotted vs. T for the three cases considered. We note that in all three cases θ grows linearly with time. The growth rates ($d \theta / \Delta u d t$) for cases (a) and (b) are not very different, despite the large differences in turbulence levels. The values of 0.008 and 0.011 , respectively, are also substantially lower than the growth rate (0.018) reported experimentally by $S \& J$; they are, in fact, lower than any of the values in Table 1.1. The rate of growth of the momentum thickness is only slightly dependent on the intensity of the turbulent fluctuations in cases (a) and (b), and a higher turbulence intensity produces a higher growth rate. Furthermore, when large organized structures are present (case (c)), the momentum thickness growth rate, $\quad d \theta / \Delta u d t=$ 0.02 is equal to what it was in the absence of random fluctuations. Fig. 6.3 shows the non-dimensional momentum thickness θ / θ in plotted vs. T, for case (c) and the two-dimensional case with $\beta=3 / 16$. Only at the early stages of the development of the layer do the random fluctuations affect the growth of the momentum thickness.

6.5 Mean Velocity Profiles

An important characteristic of the experimental turbulent mixing layer is the self-similarity of the mean velocity profiles. In our computation, the mean velocity $\langle\overline{\mathrm{u}}\rangle_{x y}$ is defined by Eqn. (5.8).

Figures 6.4a, b, and c show $2\langle\bar{u}\rangle_{x y} / \Delta u$ plotted vs. z / θ at $\Delta T=2.4$ intervals, for cases (a), (b), and (c), respectively. We obtain self-similar profiles in all cases. This means that self-similarity may be obtained from a wide variety of different flow structures, and does not provide much information about which initial conditions best represent physical reality.

6.6 Mean Turbulence Intensity Profiles

Experimental observations show that the mean turbulence intensity profiles are very nearly self-preserving (Townsend, 1956). This means that:

$$
\begin{equation*}
\frac{a^{2}}{2(\Delta u)^{2}}=f\left(\frac{z}{\theta}\right) \tag{6.5}
\end{equation*}
$$

Defining the integral of the turbulent energy I_{T} at a given downstream distance to be

$$
\begin{equation*}
I_{T}=\int_{-\infty}^{+\infty} \frac{q^{2}}{2(\Delta u)^{2}} d z \tag{6.6}
\end{equation*}
$$

and substituting (6.5) in (6.6), we get

$$
\begin{equation*}
I_{T}=\theta \int_{-\infty}^{+\infty} f\left(\frac{z}{\theta}\right) d\left(\frac{z}{\theta}\right)=c \theta \tag{6.7}
\end{equation*}
$$

where

$$
c=\int_{-\infty}^{+\infty} f(n) d(n)
$$

Non-dimensionalizing on the initial integral of the turbulent energy, $I_{T, \text { in }}$ we get

$$
\begin{equation*}
\frac{I_{T}}{T_{T, \text { in }}}=\frac{\theta}{\theta_{\text {in }}}=\frac{t-t_{0}}{t_{i n}^{-t_{0}}} \tag{6.8}
\end{equation*}
$$

Equation (6.8) shows that I_{T} grows linearly with time if the profiles of $q^{2} / 2(\Delta u)^{2}$ are self-similar. To compute I_{T}, the mean turbulent energy defined by Eqn. (5.33) was integrated numerically in the z-direction.

Figure 6.5 shows I_{T} / I_{T}, in plotted vs. T, for the three cases. We note that for all three cases $\mathrm{I}_{\mathrm{T}} / \mathrm{I}_{\mathrm{T}}$, in decays with time. However, only for case (c), in which large structures are present, did the decay level off.

Figures $6.6 \mathrm{a}, \mathrm{b}$, and c show $\mathrm{q}^{2} / 2\left(\Delta_{u}\right)^{2}$ plotted vs. z / θ, at $\Delta \mathrm{T}=$ 2.4 intervals, for cases (a), (b), and (c), respectively. Consistent with the integral of the turbulence energy results, the turbulence intensity decays in time. The most significant drop of the maximum turbulence intensity occurs in the early stages of the development of the layer.

The fact that the integral of the turbulence energy decays, instead of growing linearly with time, is a clear indication that the term (Eqn. (2.16)) used in our equations (2.28) to model the subgrid scale motions,
has too much of an inhibiting effect on the growth of the turbulent fluctuations.

In order to support the above argument, we ran a case in which we started with the same initial conditions as in case (b), but set $C_{v}=0$. Fig. 6.7 shows $q^{2} / 2(\Delta u)^{2}$ plotted vs. z / θ, and Fig. 6.8 shows I_{T} / I_{T}, in plotted vs. T, for this case. It is clear that the turbulence intensity grows with time, indicating that in case (b) the subgrid scale model is inhibiting the growth of the turbulence energy.

Recall that when the initial conditions contain nothing but lavge structures we obtain self-similar turbulent intensity profiles (see Section 5.8), even with $C_{v}=0.188$. The decay of the total turbulence energy (Fig. 6.5) might suggest that the subgrid scale constant determined for the decay of the isotropic turbulence case might be too high for the mixing layer case. However, the growth rate of the momentum thickness for case (b) is much lower than the growth rate reported experimentally. With $C_{v}=0$, the case (b) layer did not grow, i.e., $d \theta / \Delta u d t=0$, at least up to $T=9.6$, which indicates that lowering the subgrid scale constant will not give us a momentum growth comparable to the experiments. We thus surmise that it is essential that large structures be included in the initial conditions if the numerical results are to reproduce significant features of the experimental mixing layer. In principle, we could begin with a laminar shear layer and some small perturbations. The Kelvin-Helmholtz instability would then produce large vortical structures and would eventually produce a velocity field with the experimentally observed features. A computation of this type would require at least an order of magnitude more computing time. As we have noted earlier, the subgrid scale model would inhibit the growth of the perturbations and is not adequate for a computation of transitional flow. We shall need to modify the model if transitional flows are to be computed. An alternative approach would be to increase the amplitude of the perturbations and lower the constant of the subgrid scale model, or use a finer mesh.

6.7 Vorticity Contours

In order to investigate the eddy structures and their dynamics, vorticity contours in $x-2$ planes have been plotted in Figs. 6.9 and 6.10, for the three cases considered, at times $T=0$ and $T=16.78$.

Figure 6.9 a shows the spanwise vorticity contours for case (a), at time $T=0$. The combination of a weak random velocity field and a smooth mean velocity distribution yields vorticity contours that are almost unaffected by the randon fluctuations. The development at $T=16.78$, shown in Fig. 6.10a, does not indicate any significant effect of the random fluctuations on the mean. The mean field simply masks the weak fluctuations in both the initial conditions and at $T=16.78$.

Figures 6.9 b show the spanwise vorticity contours for case (b), at different spanwise $(x-z)$ planes. The combination of a strong random velocity field and a mean velocity yields vorticity contours that look spotty. At time $T=16.78$, Figs. 6.10 b show that the spots appear much more elongated. At some planes (e.g., plane 5), there are two vortex tubes that appear as if they might pair, while other planes show only one vortex tube. This indicates that the initially strong random fluctuations are being organized by the mean field, and that the layer is developing through a combination of diffusion (due to the subgrid scale model) and vortex pairing.

Figures 6.9 c show the spanwise vorticity contours for case (c) at different spanwise $(x-z)$ planes. Adding random fluctuations to the two spanwise vorticities causes the contour lines of the spanwise vorticity to become irregular. At time $T=16.78$, the vortices have merged in some planes (e.g., planes 1-4) in Figs. 6.10a, whereas in other planes (e.g., planes $5-6$) the vortices are still in the process of merging. This indicates that strong random fluctuations can affect the dynamics of vortex pairing.

6.8 Two-Point Correlations

In order to investigate whether or not the mixing layer shows a tendency to increased or decreased spanwise coherence, the spanwise correlation of the streamwise velocity fluctuations ($R_{u u}(r, z)$) was computed. R_{uu} is defined as

$$
\begin{equation*}
R_{u u}(r, z)=\frac{\int_{x} \int_{y} u^{\prime \prime}(x, y, z) u^{\prime \prime}(x, y+r, z) d x d y}{\int_{x} \int_{y} u^{\prime \prime}(x, y, z) u^{\prime \prime}(x, y, z) d x d y} \tag{6.9}
\end{equation*}
$$

where

$$
\mathbf{u}^{\prime \prime}=\overline{\mathbf{u}}-\langle\overline{\mathrm{u}}\rangle_{\mathrm{xy}}
$$

Numerically, this quantity is computed as follows. We first calculate $u^{\prime \prime}$, then take its discrete Fourier transform in the y-direction to yield $\hat{u}^{\prime \prime}\left(x, k_{2}, z\right) . \hat{R}\left(x, k_{2}, z\right)$ is then defined to be equal to

$$
\begin{equation*}
\hat{R}\left(x, k_{2}, z\right)=\hat{u}^{\prime \prime}\left(x, k_{2}, z\right) \hat{u}^{\prime \prime *}\left(x, k_{2}, z\right) \tag{6.10}
\end{equation*}
$$

where $\hat{\mathbf{u}}^{\prime \prime}$ * is the complex conjugate of $\hat{\mathbf{u}}^{\prime \prime}$. Inverse transforming (6.10) yields the discrete equivalent of

$$
\begin{equation*}
R(x, r, z)=\int_{y} u^{\prime \prime}(x, y, z) u^{\prime \prime}(x, y+r, z) d y \tag{6.11}
\end{equation*}
$$

Finally, line-averaging (6.11) in the x-direction and normalizing yields the discrete equivalent to (6.9).

Figures 6.11 show $R_{\text {uu }}$ at $T=0$ and $T=16.78$, plotted vs. r at various z locations. We shall define the correlation length to be the abscissa of the point where R_{uu} first crosses the r-axis.

For case (a), Figs. 6.11a show no significant changes in the correlation length between time $T=0$ and $T=16.78$. In some parts of the flow the correlation length seems to increase, whereas in other parts the correlation length seems to decrease. These variations are not significant.

Figures 6.11 b show that when we start with a large random initial fluctuation superimposed on a mean profile (case (b)), the correlation length increases with time. This indicates that the layer is becoming more organized in the spanwise direction and is consistent with the result stated earlier that the vorticity tends to clump. Apparently there is a tendency toward the formation of two-dimensional vortices.

Figures 6.11 c show that when we add a random field to coherent structures (case (c)), the correlation length decreases slightly with time. The only increase in the correlation length occurs at the center of the layer (plane 17 in our case).

If the spanwise correlation length of the streamwise velocity is taken as a measure of the coherence of the layer, our results tend to indicate that a layer that begins with a random field becomes more coherent, and one that starts with two-dimensional vortical structures loses coherence when the random fluctuations are strong.

6.9 Summary and Conclusions

We have shown that the development of the mixing layer is highly dependent on the initial conditions. This dependence is partly physical and partly numerical. Experimentally, the importance of the initial conditions on the development of the two-dimensional mixing layer has been pointed out by several workers (Bradshaw, 1966; Batt, 1975). Analytically, the subgrid scale models have been developed under the assumption that all the energy transferred by the large resolvable scales to the subgrid scales is dissipated. The decay of the turbulence intensity in cases (a) and (b) indicates that it is doubtful that we can compute transition with the present subgrid scale models. The presence of large structures in the initial conditions is essential to the computation of inhomogeneous turbulent flows.

From the above observations we can conclude that in order to predict the initial development of a shear layer one would need a subgrid scale model that allows the energy of the small scale field to build up and eventually reach equilibrium with the large eddies. However, the later development of a shear layer can be predicted with the present subgrid scale models, provided the large structures are explicitly included in the initial conditions. For other flows, it would appear that inclusion of large structures that at least approximate those of the physical flow is essential to obtain reasonable results. Bass and Orszag (1976) attempted to study the evolution of a passive scalar field in a sheared turbulent velocity field, but were unable to obtain physically realistic results. This may have been due to the omission of the large structures in their initial conditions.

Chapter 7

CONCLUSIONS AND RECOMMENDATIONS

In this work we have developed an approach to three-dimensional, timedependent computations of flows using the vorticity equations. A general method of deriving conservation properties that is applicable to any numerical method in incompressible fluid mechanics was given; its use simplifies the analysis of numerical schemes.

The use of a filter which is smooth in real space has been shown to be essential for the treatment of rotational-irrotational region interactions. The use of Fourier transform methods allows accurate and fast treatment of the term $\bar{u}_{j} \bar{\omega}_{i}-\bar{u}_{i} \bar{\omega}_{j}$, which arises as a consequence of filtering. This is a definite improvement over the expansion in Taylor series (Leonard, 1973) used in previous studies (Kwak et al., 1975), which we believe should be used only when the use of transform methods is not justifiable.

The vorticity equations have been shown to provide a satisfactory basis for the simulation of homogeneous isotropic turbulence. Comparison of our results with results obtained using the primitive variable equations (Mansour et al., 1977; Moin et al., 1978) shows no significant differences.

A new subgrid scale model has been developed and shown to give results comparable to those obtained using the vorticity model (Kwak et al., 1975). The new model offers advantages both in computational speed and in storage. We found that, for the calculation of isotropic homogeneous turbulence, the subgrid scale constant depends only slightly on the numerical method used. The variation is about ten percent and is not likely to have a significant effect on the computed results in shear flows. The use of Fourier spatial differencing has allowed us to look more carefully at the subgrid scale model, and it has been found that replacing exact derivatives with secondorder differences (roughly equivalent to averaging the model spatially (Love and Leslie, 1977)) produces improved behavior of the spectrum.

No-stress boundary conditions in one direction and periodic boundary conditions in the other two directions have been incorporated in a threedimensional, time-dependent code. Flows in which these boundary conditions
can be justified (e.g., two-dimensional wakes, planar jets, mixing layer) can be investigated using this code. We chose the mixing layer.

Two-dimensional computations of the turbulent mixing layer have shown that pairing vortices produce self-similar mean velocity and turbulence intensity profiles. The growth rate of the layer is strongly dependent on the initial conditions, a fact also observed experimentally.

Three-dimensional computations have shown that the presence of large, organized (i.e., not random) structures is essential if the simulation is to reproduce the essential features observed in the experiments. These computations suggest that in order to simulate the initial development of a shear layer one would need a subgrid scale model that allows the energy of the small scale field to build up with time and eventually reach equilibrium with the large eddies. However, the later development of a shear layer can be predicted with the present subgrid scale models, provided the large structures are explicitly included in the initial conditions.

Our results using different initial conditions indicate that selfsimilarity of the mean velocity profiles can be obtained more easily than self-similarity of the turbulence intensities. The addition of strong random fluctuations to a flow containing pairing vortices disturbs the pairing in a way that causes the vortex tubes to exhibit spanwise variations, and whether or not the merging is completed depends on the spanwise locations. This may explain the onset of three-dimensionality seen in experiments. Fig. 7.1 is a conjecture of what we think might happen. The section of the vortex tube that did not merge could interact with the vortex structure just ahead (or just behind) to form a horseshoe vortex. This horseshoe vortex may get stretched over several rollers, giving the appearance of cellular structures ($B \& R$, Konrad).

Li Appendix D we study the interaction between streamwise and spanwise vorticity. Again, the detailed results depend strongly on the initial conditions. Each free shear flow is unique, and the universality that is sought exists only at large downstream distances. This may mean that the computational "prediction" of free shear flows is feasible only to moderate accuracy; the precise behavior of an individual free shear flow may depend on physical details that are not easily controlled. This means that some experimentation will always be necessary.

Work remains to be done on the development of a subgrid scale model that incorporates flow-regime dependence. Ideally, one would like a model that can handle both transition and developed turbulence. Wi.th such a model, problems associated with the initial conditions can be studied more carefully, since the linear stability theory is well understood and the initial conditions can be chosen to be solutions of the Orr-Sommerfeld equations. This kind of computation will help understand the effect of the initial conditions on the development of the mixing layer, but will not reproduce experiments exactly.

In the case of the mixing layer, the use of periodic boundary conditions is justifiable only if we move with the mean speed of the flow. However, the size of the eddies grows linearly with the streamwise distance (in our frame linearly in time), and we reach a point at which the size of the box must be increased. In a stationary frame this problem can be avoided, but inflow-outflow boundary conditions must be used. We suggest that future work should concentrate on developing a method of treating the inflow-outflow boundary conditions.

Eventually, it may be possible to treat practical flows such as airfoils, combustion chambers, etc., by these methods. Before that can be done, much more effort should first be devoted to developing subgrid scale models, treatment of boundary conditions, mesh layout and/or mapping, numerical methods, filters, etc., which are the important building blocks of large-eddy simulation.

References

1. Arakawa, A. (1966), "Computational Design for Long-Term Numerical Integration of the Equations of Fluid Motion: Two-Dimensional Incompressible Flow. Part I," Jour. of Computational Physics, 1 , No. 1, 119-143.
2. Ashurt, W. T. (1977), "Numerical Simulation of Turbulent Mixing Layers via Vortex Dynamics," Proceedings of Symposium on Turbulent Shear Flows, Penn. State Univ.
3. Bass, A., and Orszag, S. A. (1976), "Spectral Modeling of Atmospheric Flows and Turbulent Diffusion," EPA-600/4-76-007.
4. Batt, R. G. (1975), "Some Measurements on the Effect of Tripping the Two-Dimensional. Shear Layer," AIAA J., 13, No. 2, Tech. Notes, 245-247.
5. Brown, G. L., and Roshko, A. 1974), "On Density Effects and Large Structures in Turbulent Mixing Layers," J. Fluid Mech., 64, 775-816.
6. Champagne, F. H., Pao, Y. H., and Wygnanski, I. J. (1976), "On the Two-Dimensional Mixing Regions," J. Fluid Mech., 74, Part 2, 209-250.
7. Chandrsuda, C., and Bradshaw, P. (1975), "An Assessment of the Evidence for Orderly Structure in Turbulent Mixing Layers," I.C. Aero Report 75-03.
8. Clark, R, A., Ferziger, J. H., and Reynolds, W. C. (1977), "Evaluation of Subgrid-Scale Turbulence Models Using a Fully Simulated Turbulent Flow," Report TF-9, Mechanical Engrg. Dept., Stanford University.
9. Comte-Bellot, G., and Corrsin, S. (1971), "Simple Eulerian Time Correlation of Full and Narrow-Band Signals in Grid-Generated Isotropic Turbulence," J. Fluid Mech., 48, Part 2, 273-337.
10. Cooley, J. W., and Tukey, J. W. (1965), "An Algorithm for the Machine Calculation of Complex Fourier Series," Math. Comput., 19, 90, 297-301.
11. Deardorff, J. W. (1970), "A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers," J. Fluid Mech., 41 , Part 2, 453-480.
12. Dimotakis, P. E., and Brown, G. L. (1976), "The Mixing Layer at High Reynolds Number: Large-Structure Dynamics and Entrainment," J. Fluid Mech., 78, Part 3, 535-560.
13. Donaldson, C. duP. (1972), "Calculation of Turbulent Shear Flows for Atmospheric and Vortex Motions, ALAA J., 10, No. 1, 4-12.
14. Fiedler, H., and Thies, H. J. (1977), "Some Observations in a Large, Two-Dimensional Shear Layer," Proceedings of Symposium on Turbulence, Berlin; Springer.
15. Foss, J. F. (1977), "The Effects of the Laminar/Turbulent Boundary Layer States on the Development of a Plane Mixing Layer," Proceedings of Symposium on Turbulent Shear Flows, Penn. State Univ., 11.33-11.42.
16. Fox, 0. G., and Orszag, S. A. (1973), "Pseudo-spectral Approximation to Two-Dimensional Turbulence," J. of Comp. Physics, 11, No. 4, 612-619.
17. Konrad, J. H. (1976), "An Experiemntal Investigation of Mixing in TwoDimensional Turbulent Shear Flows with Applications to DiffusionLimited Chemical Reactions," Project SQUID, Tech. Rept. CIT-8-PU.
18. Kreiss, H. O., and Oliger, S. (1973), Methods for the Approximate So1ution of Time-Dependent Problems, GARP Publications, Series No. 10, WMO, Geneva.
19. Kwak, D., Reynolds, W. C., and Ferziger, J. H. (1975), "ThreeDimensional, Time-Dependent Computation of Turbulent Flow," Report No. TF-5, Mech. Engrg. Dept., Stanford University.
20. Lamb, H. (1932), Hydrodynamics, Dover Pub., N. Y.
21. Lanczos, C. (1956), Applied Analysis, Prentice-Hall Pub. Co., Englewood, N. J.
22. Leonard, A. (1974), "On the Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows," Adv. in Geophysics, 18A, 237.
23. Liepmann, H. W., and Laufer, J. (1947), "Investigations of Free Turbulent Mixing," NACA Tech. Note No. 1257.
24. Lilly, D. K. (1965), "On the Computational Stability of Numerical Solutions of Time-Dependent, Nonlinear Geophysical, Fluid Dynamic Problems," Monthly Weather Review, 93, No. 1, 11-26.
25. Love, M. D., and Leslie, D. C. (1977), "Studies of Subgrid Modeling with Classical Closures and Bergers' Equation, "Proc. of Symposium on Turbulent Shear Flows, Penn. State Univ.
26. Mansour, N. N., Moin, P., Reynolds, W. C., and Ferziger, J. H. (1977), "Improved Methods for Large-Eddy Simulations of Turbulence," Proc. of Symposium on Turbulent Shear Flows, Penn. State Univ.
27. Moin, P., Mansour, N. N., Mehta, U. B., Ferziger, J. H., and Reynolds, W. C. (1978), "Improvements in Large-Eddy Simulation Technique: Special Methods and High -order Statistics," Report TF-10, Mech. Engrg. Dept., Stanford University.
28. Moin, P., Reynolds, W. C., and Ferziger, J. H. (1978), "Large-Eddy Simulation of an Incompressible Turbulent Channel Flow, "Rept. TF-12, Mech. Engrg. Dept., Stanford University.
29. Moore, D. W., and Saffman, P. G. (1975), "The Density of Organized Vortices in a Turbulent Mixing Layer," J. Fluid Mech., 69, Part 3, 465-473.
30. Murthy, J. N. B. (1975), "Turbulent Mixing in Non-Reactive and Reactive Flows - a Review," Proceedings of SQUID Workshop on Turbulent Mixing in Non-Reactive and Reactive Flows, Purdue Univ.
31. Orszag, S. A. (1973), "Comparison of Pseudo-Spectral and Spectral Approximation," Studies in Applied Mathematics, LI, No. 3, 253-259.
32. Orszag, S. A., and Israeli, M. (1974), "Numerical Simulation of Viscous Incompressible Flows," Annual Review of Fluid Mechanics, 6, 281318.
33. Orszag, S. A., and Pao, Y. H. (1974), "Numerical Computation of Turbulent Shear Flows," Advances in Geophysics, 18A, Academic Press, Inc., N. Y. C., 225-236.
34. Oster, D., Wygnanski, I. J., and Fiedler, H. (1976), "Some Preliminary Observations on the Effect of Initial Conditions on the Structure of the Two-Dimensional Turbulent Mixing Layer," Proc. of SQUID Conference, Plenum Press.
35. Oster, D., Dziomba, B., Wygnanski, I., and Fiedler, H. (1977), "On the Effect of Initial Conditions on he Two-Dimensional Turbulent Mixing Layer," Proceedings of Symposium on Turbulence, Berlin; Springer.
36. Patel, R. P. (1973), "An Experimental Study of a Plane Mixing Layer," AIAA J, 11, 1, 67-71.
37. Patnaik, P. G., Sherman, F. S., and Corcos, G. H. (1976), "A Numerical Simulation of Kelvin-Helmholtz Waves of Finite Amplitude," J. Fluid Mech., 73, Part 2, 215-240.
38. Phillips, N. A. (1959), "An Example of Nonlinear Computational Instability," The Atmosphere and Sea in Motion, Rockefeller Inst. Press, N. Y., 501-504.
39. Roshko, A. (1976), "Structure of Turbulent Shear Flows: A New Look," AIAA J., 14, No. 10, 1349-1357.
40. Schumann, U. (1973), "A Procedure for the Direct Numerical Simulation of Turbulence Flows in Plate and Annular Channels and Its Application in the Development of Turbulence Models," Dissertation, Univ. of Karlsruhe, NASA Tech. Translation NASA TT T 15, 391.
41. Shanaan, S., Ferziger, J. H., and Reyno1ds, W. C. (1975), "Numerical Simulation of Turbulence in the Presence of Shear," Report TF-6, Mech. Engrg. Dept., Stanford University.
42. Singleton, R. C. (1967), "On Computing the Fast Fourier Transforms," Communications of the ACM, 10, No. $10,647-654$.
43. Smagorinsky, J. (1963), "General Circulation Experiments with the Primitive Equations. I. The Basic Experiment," Monthly Weather Review, 91, No. 3, 99-165.
44. Spencer, B. W., and Jones, B. G. (1971), "Statistical Investigation of Pressure and Velocity Fields in the Turbulent Two-Stream Mixing Layer," AIAA Paper \#71-613.
45. Tennekes, H., and Lumley, J. L. (1974), A First Course in Turbulence, MIT Press, Cambridge, Mass.
46. Thies, H. J. (1977), "Experimentelle Untersuchung der freien Scherschicht mit gestörten Angangsbedingungen," Diplomarbeit Tu - Berlin, FB 9.
47. Townsend, A. A., The Structure of Turbulent Shear Flow, Cambridge Univ. Press, Cambridge, England.
48. Wang, S. S. (1977), "A Study of the Kelvin-Helmholtz Instability by Grid-Insensitive Vortex Tracing," Ph.D. thesis, Stanford University, Institute of Plasma Research Report No. 710.
49. Winant, C. D., and Browand, F. K. (1974), "Vortex Pairing: the Mechanism of Turbulent Mixing-Layer Growth at Moderate Reynolds Number," J. Fluid Mech., 63, Part 2, 237-255.
50. Wygnanski, I., and Fiedler, H. E. (1970), "The Two-Dimensional Mixing Region," J. Fluid Mech., 41, Part 2, 327-361.
51. Yule, A. J. (1971), "Spreading of Turbulent Mixing Layers," AIAA J., 10, No. 5, Tech. Notes, 686-687.

Table 1.1
EXPERIMENTAL RESULTS
(Table from Fiedler and Thies, 1977)

Author (s)	$\mathrm{u}_{2} / \mathrm{u}_{1}$	$\operatorname{Re}_{\mathrm{L}}^{*}$	$\begin{gathered} \mathrm{L}^{*} \\ (\mathrm{~mm}) \end{gathered}$	σ_{0}	$\frac{\mathrm{d} \theta}{\text { Sudt }}$	Remarks
Liepmann \& Laufer (1947)	0	$9 \cdot 10^{5}$	900	11.76	0.016	No trip
Wygnanski \& Fiedler (1970)	0	$5 \cdot 10^{5}$	600	8.70	0.022	Trip
Batt (1975)	0	$7 \cdot 10^{5}$	640	8.89	0.022	Trip
	0	$7 \cdot 10^{5}$	640	11.76	0.016	No trip
Spencer \& Jones (1971)	0	$1 \cdot 10^{6}$	560	10.52	0.018	No trip
Champagne, Pao \& Wygnanski (1976)	0	$4 \cdot 10^{5}$	600	9.62	0.020	$\begin{aligned} & \text { Trip (B.L. } \\ & \text { not turb.) } \end{aligned}$
Patel (1973)	0	$2 \cdot 10^{6}$	1020	10.53	0.018	No trip
Oster, Wygnanski \& Fiedler (1976)	0	1.1.10 ${ }^{6}$	1100	9.21	0.021	Trip
	0	$1.1 .10^{6}$	1100	11.29	0.017	No trip
Foss (1977)	0	$6.7 \cdot 10^{5}$	510	9.00	0.021	Turb. B.L.
	0	$6.7 \cdot 10^{5}$	510	12.12	0.016	Lam. B.L.
Dimotakis \& Brown (1976)	0.2	$3 \cdot 10^{5}$	600	9.87	0.020	No trip
Oster, Wygnanski \& Fiedler (1976)	0.4	$2.8 \cdot 10^{5}$	470	12.12	0.016	Trip
	0.4	$2.8 \cdot 10^{5}$	470	10.81	0.018	No trip
Spencer \& Jones (1971)	0.3	$1 \cdot 10^{6}$	680	12.31	0.016	No trip
	0.6	$2.8 \cdot 10^{5}$	320	13.14	0.015	No trip
Yule (1971)	0.3	$5 \cdot 10^{5}$	650	9.44	0.020	No trip
	0.61	$1.4 \cdot 10^{5}$	290	9.23	0.021	No trip
						No B.L.suction
Thies (1977)	0	$2.4 \cdot 10^{6}$	3600	10.05	0.019	
		$3.8 \cdot 10^{6}$		9.52	0.020	No trip
		$5.1 \cdot 10^{6}$		9.09	$0.021)$	
		$2.4 \cdot 10^{6}$		10.31	0.019	
		$4 \cdot 2 \cdot 10^{6}$		9.37	0.021)	$2 \mathrm{~mm} \operatorname{tr}$
		$2.4 \cdot 10^{6}$		10.24	0.019	
		$3.7 \cdot 10^{6}$		9.57	0.020	4 mm trip
		$5.1 \cdot 10^{6}$		9.15	0.021	
		$2.4 \cdot 10^{6}$		10.23	0.019	Zig-zag trip

Table 1.1 (cont.)

The following assumptions were used to reduce the data:

$$
\begin{gathered}
\sigma_{0}=\sigma \frac{\Delta u}{\Sigma u} \\
L^{*}=L \frac{\Delta u}{\Sigma u} \\
R_{L}^{*}=\frac{\Delta u L^{*}}{v} \\
L=x_{\text {max }} \\
=\frac{2}{n_{0.1}-\eta_{0.95}} \\
\Delta u=u_{1}-u_{2} \\
\Sigma u=u_{1}+u_{2} \\
\frac{d \theta}{\Delta u d t}=\frac{2.07 \sigma_{0} \sqrt{2 \pi}}{2}
\end{gathered}
$$

——Boundary layer turbulent at the splitter plate

- -- Boundary layer laminar at the splitter plate

Fig. 1.1. r.m.s. streanwise velocity profiles for different initial conditions (experimental results from Foss, 1977).

Boundary layer turbulent at the splitter plate
--- Boundary layer laminar at the splitter plate

Fig. 1.2. Mean velocity profiles for different initial conditions (experimental results from Foss, 1977).

Fig. 2.1. Filtered point vortex with an SCK (sharp cut-off in k-space) filter, $y=0$.

Fig. 2.2. Filtered point vortex with a GS (Gaussian in real space) filter, $y=0$.

Fig. 3.1. Comparison of modified wave numbers.

Fig. 3.2. Filtered top-hat function.

Table 4.1
Computations of the Decay of Isotropic Turbulence

No. of Mesh Points	Subgrid Scale Model	Numerical Scheme	Numerical Scheme for the Subgrid Scale Model	Model Constant	Figure
$16 \times 16 \times 16$	Model ω-1	Fourth-order diff.	Second-order diff.	$C_{v}=0.235$	4.2
$16 \times 16 \times 16$	Mode1 ω - 1	Pseudo-spectral	Pseudo-spectral	$C_{v}=0.212$	4.3
$16 \times 16 \times 16$	Model ω-1	Pseudo-spectral	Second-order diff.	$C_{v}=0.213$	4.4
$16 \times 16 \times 16$	Model ω-2	Pseudo-spectral	Pseudo-spectral	$c_{v}=0.186$	4.5
$16 \times 16 \times 16$	Model ω-2	Pseudo-spectral	Second-order diff.	$C_{v}=0.188$	4.6
$32 \times 32 \times 32$	Model ω-2	Pseudo-spectral	Second-order diff.	$C_{v}=0.188$	4.7

Fig. 4.1. Decay of mean square filtered velocicy for $16 \times 16 \times 16$ mesh. < > = average over all space.

Fig. 4.2. Filtered energy spectra. Fourth-order differencing with 16^{3} mesh; model $u-1, C_{v}=0.235$.

Fig. 4.3. Filtered energy spectra. Pseudo-spectral computation with 16^{3} mesh; model $\omega-1 . C_{v}=0.212$.

Fig. 4.4. Filtered energy, spectra. Pseudo-spectral computation with 16^{3} mesh; 2 nd-order differencing for model w-1. $C_{V}=0.213$.

Fig. 4.5. Filtered energy spectra. Pseudo-spectral computation with 16^{3} mesh; model $\omega-2 . \quad C_{v}=0.186$.

Fig. 4.6. Filtered energy spectra. Pseudo-spectral compu- $_{\text {- }}$ tation with 16^{3} mesh; 2nd-order differencing for model $\omega-2 . \quad c_{v}=0.188$.

Fig. 4.7. Filtered energy spectra. Pseudo-spectral computation with 32^{3} mesh; 2nd-order differencing model $\omega-2 . \quad C_{v}=0.188$.

Fig. 5.1. Coherent structure in a mixing layer (Roshko, 1976). Dashed box: schematic of a computational box that moves approximately with the mean velocity.

Fig. 5.2. Mixing layer. Experimental setup and coordinate system.

Fig. 5.3. Computational box and coordinate system.

Fig. 5.5. Non-dimensional momentum thickness $\left(\theta / \theta_{i n}\right)$ as a function of time for various β. Two-dimensional computations.

Fig. 5.6a. Contour plots of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ for $\beta=6 / 16$, at time $T=0$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels $\left(\bar{\omega}_{2, \text { max }}=0.702\right)$.

Fig. 5.6b. Contour plots of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ for $\beta=5 / 16$, at time $T=0$. Constant vorticity lines are plotted at eight levels. Higher numbers on these 1 ines indicate higher levels $\left(\bar{\omega}_{2, \max }=0.564\right)$.

Fig. 5.6c. Contour plots of the spanwise vorticity $\left(\bar{w}_{2}\right)$ for $\beta=4 / 16$, at time $T=0$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels ($\omega_{2, \text { max }}=$ $0.444)$.

Fig. 5.6d. Contour plots of the spanwise vorticity $\left(\bar{w}_{2}\right)$ for $\beta=3 / 16$, at time $T=0$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels $\left(\bar{\omega}_{2, \max }=0.421\right)$.

Fig. 5.6e. Contour plots of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ for $\beta=2 / 16$, at time $T=0$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels $\left(\bar{\omega}_{2, \text { max }}=0.416\right)$.

Fig. 5.6f. Contour plots of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ for $\beta=1 / 16$, at time $T=0$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels $\left(\omega_{2, \max }=0.415\right)$.

Fig. 5.7a. Contour pluts of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ for $\beta=6 / 16$, at time $T=16.78$. Constant vorticity 1 ines are plotted at eight levels. Highor numbers on these lines indicate higher levels $\left(\omega_{2, \text { max }}=\right.$ $0.394)$.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

Fig. 5.7b. Contour plots of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ for $\beta=5 / 16$, at time $T=16.78$. Constant vorticity lines are plotted at eight level.s. Higher numbers on these lines indicate higher levels ($\omega_{2 \text {, max }}=$ 0.358).

Fig. 5.7c. Contour plots of the spanwise vorticity (ω_{2}) for $\beta=4 / 16$, at time $T=16.78$. Constant vorticity lines are plotted at eight levels. Hi.gher numbers on these lines indicate higher vorticity levels $\left(\bar{\omega}_{2, \text { max }}=0.322\right)$.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

Fig. 5.7d. Contour plots of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ for $\beta=3 / 16$, at time $T=16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels $\quad\left(\bar{\omega}_{2}\right.$, max $=$ 0.276).

Fig. 5.7e. Contour plots of the spanwise vorticity (ω_{2}) for $\beta=2 / 16$, at time $T=16.78$. Constant vorticity lines are plotted at cight levels. Higher numbers on these lines indicate higher levels $\left(\omega_{2, \text { max }}=0.248\right)$.

Ftg. 5.7f. Contour plots of the spanwise vortteity $\left(\bar{\omega}_{2}\right)$ for $B=1 / 16$, at the $T=16.78$, Constant vorticity 1 nes are plotted at etght levels. Higher numbers on these tines Indicate higher levels $\left(\bar{\omega}_{2, \text { max }}=\right.$ $0.245)$.

Fig. 5.8. Mean velocity profiles. Two-dimensional computations $(\beta=3 / 16)$.

Fig. 5.9. Nean turbulence intensity profties. Noodimensional computations ($\beta=3 / 16$).

Fig. 6.1. Three-dimensional computation box. Random velocity setup and coordinate system.

Table 6.1
Three-Dimensional Computations of Turbulent Mixing Layers

Case	Amplitude of Randon Field	Initial Conditions
a	$\frac{\left\|u_{i}\right\|_{\text {max }}}{\Delta u}=0.01$	Random field + mean
b	$\frac{\left\|u_{i}\right\| \text { max }}{\Delta u}=0.30$	Random field + mean
c	$\frac{u_{i j} \mid \max }{\Delta u}=0.30$	Random field +2 spanwise vortices $(\beta=3 / 16)$

Fig. 6.2. Non-dimensional momentum thickness $\left(\theta / \theta_{\text {in }}\right)$ as a function of time. Three-dimensional computations.

Fig. 6.3. Non-dimensional momentum thickness $\left(\theta / \theta_{\text {in }}\right)$ as a function of time.

Fig. 6.4a. Mean velocity profiles. Three-dimensional computation (case a).

Fig. 6.4b. Mean velocity profiles. Three-dimensional computation (case b).

Fig. 6.4c. Mean velocity profiles. Three-dimensional computations (case c).

Fig. 6.5. Integral of the turbulence energy as a function of time.

Eig. 6.6a. Mean turbulence intensity profiles. Three-dimensional computations (case a).

Fig. 6.6b. Mean turbulence intensity profiles. Three-dimensional computations (case b).

Fig. 6.6c. Mean turbulence intensity profiles. Three-dimensional computations (case c).

Fig. 6.7. Mean turbulence intensity profiles. Three-dimensfonal computation $\left(C_{V}=0\right)$.

Fig, 6.8. Integral of the turbulence energy as a function of time. Three-dimensional computation $\left(C_{v}=0\right)$.

Fig. 6.9a. Contour plots of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ in an $x-z$ plane, at time $T=0$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels $\left(\omega_{2, \text { max }}=0.228\right.$, case a).

$\frac{\mathrm{y}}{\theta_{\text {in }}}=0 ; \bar{\omega}_{2, \text { max }}=0.314$

$\frac{\mathrm{y}}{\theta_{\text {in }}}=2.026 ; \bar{\omega}_{2, \text { max }}=0.376$

$$
\frac{y}{\theta_{\text {in }}}=1.023 ; \bar{\omega}_{2, \max }=0.331
$$

Figs. 6.9b. Contour plots of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ for different $x-z$ planes, at time $T=0$. In each plane, constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels (case b).

Figs. 6.9b (continued)

Figs. 6.9b (continued)

Figs. 6.9b (continued)

Figs. 6.9c. Contour plots of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ for different $x-z$ planes, at time $T=0$. In each plane, constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels (case c).

Figs. 6.9c (continued)

Figs. 6.9c (continued)

Figs. 6.9 c (continued)

Fig. 6.10a. Contour plots of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ in an $\mathrm{x}-\mathrm{z}$ plane, at time $\mathrm{T}=16.78$. Constant vortieity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels $\left(\omega_{2, \text { max }}=0.185\right.$, case $\left.a\right)$.

Fig. 6.10b. Contour plots of the spanwise vorticity $\left(\omega_{2}\right)$ for different $x-z$ planes, at time $T=16.78$. In each plane, constant vorticity linss are plotted at eight levels. Higher numbers on these lines indicate higher levels (case b).

Figs. 6.10b (continued)

$\frac{\mathrm{y}}{\theta_{\text {in }}}=8.184 ; \bar{\omega}_{2, \text { max }}=0.231$

$$
\frac{y}{\theta_{\text {in }}}=10.230 ; \bar{\omega}_{2, \text { max }}=0.191
$$

$$
\frac{y}{\theta_{\text {in }}}=9.207 ; \bar{\omega}_{2, \max }=0.207
$$

$$
\frac{y}{\theta_{\text {in }}}=11.253 ; \bar{\omega}_{2, \text { max }}=0.221
$$

Figs. 6.10b (continued)

Figs. 6.10b (continued)

$\frac{y}{\theta_{\text {in }}}=0 ; \bar{\omega}_{2, \text { max }}=0.337$

$\frac{y}{\theta_{\text {in }}}=2.026 ; \bar{w}_{2, \max }=0.335$

$$
\frac{y}{\theta_{\text {in }}}=1.023 ; \bar{w}_{2, \max }=0.347
$$

$\frac{y}{\theta_{\text {in }}}=3.069 ; \bar{\omega}_{2, \text { max }}=0.286$

Figs. 6.10c. Contour plots of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ for different $x-z$ planes, at time $T=16.78$. In each plane, constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels (case c).

Figs. 6.10c (continued)

$$
\frac{y}{\theta_{i n}}=8.184 ; \quad \bar{\omega}_{2, \text { max }}=0.322
$$

$$
\frac{y}{\theta_{\text {in }}}=10.230 ; \bar{w}_{2, \text { max }}=0.286
$$

$\frac{y}{\theta_{\text {in }}}=11.253 ; \bar{\omega}_{2, \text { max }}=0.292$

Figs. 6.10c (continued)

$$
\frac{y}{\theta_{\mathrm{in}}}=12.276 ; \bar{\omega}_{2, \max }=0.279
$$

$$
\frac{\mathrm{y}}{\theta_{\text {in }}}=14.322 ; \bar{\omega}_{2, \text { max }}=0.293
$$

Figs. 6.10 c (continued)

Fig. 6.11a. Two point correlations $(z=17$ is the center plane of the mixing layer, $\Delta z / \theta_{\text {in }}=1.023$; case a).

Fig. 6.11b. Two point correlations $(z=17$ is the center plane of the mixing layer, $\Delta z / \theta_{\text {in }}=1.023$; case b).

R_{uu}

Fig. 6.11c. Two-point correlations $(z=17$ is the center plane of the mixing layer, $\Delta z / \theta_{\text {in }}=1.023$; case c).

Fig. 7.1. Formation of streamise cellular structures in
a mixing layer.

Appendix A

SUBGRID SCALE MODELS FOR THE VORTICITY EQUATIONS

In Chapter 2 we propose to use the following models for $W_{i j}$ (Eqn. (2.9)):

Mode1 $\omega-1$

$$
\begin{equation*}
W_{i j}=-\varepsilon_{i j k} \frac{\partial}{\partial x_{\ell}}\left(2 \nu_{T} \bar{S}_{k \ell}\right) \tag{2.1.5}
\end{equation*}
$$

Model $\omega-2$

$$
\begin{equation*}
W_{i j}=-\frac{\partial}{\partial x_{j}}\left(\nu_{T} \bar{\omega}_{i}\right)+\frac{\partial}{\partial x_{i}}\left(\nu_{T} \bar{\omega}_{j}\right) \tag{2.16}
\end{equation*}
$$

where

$$
\begin{gather*}
v_{T}=\left(c_{v} \Delta\right)^{2}\left(\bar{\omega}_{i} \bar{\omega}_{i}\right)^{\frac{1}{2}} \tag{2.14}\\
\bar{S}_{i j}=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}} \bar{u}_{i}+\frac{\partial}{\partial x_{i}} \bar{u}_{j}\right) \tag{2.12}
\end{gather*}
$$

The models should satisfy the following necessary conditions:

1. they should be antisymmetric,
2. they should vanish in an irrotational region, and
3. they should be an energy sink.

Condition 1 is readily seen to be satisfied by these models. We note that in an irrotational region, $\bar{\omega}_{i}=0$. Hence, $v_{T}=\left(C_{V} \Delta\right)^{2}\left(\bar{\omega}_{i} \bar{\omega}_{i}\right)^{\frac{1}{2}}=0$, and the model vanishes in an irrotational region; i.e., condition 2 is also satisfied.

In order to show the dissipative nature of the subgrid scale model.s $\omega-1$ and $\omega-2$, consider the following equation:

$$
\begin{equation*}
\frac{\partial \bar{\omega}_{i}}{\partial t}=-\frac{\partial}{\partial x_{j}} w_{i j} \tag{A.1}
\end{equation*}
$$

where the nonlinear terms in Eqn. (2.28) have been dropped. Multiplying Eqn. (A.1) by ψ_{i}, and integrating over the flow volume, we get:

$$
\begin{equation*}
\int \psi_{i} \frac{\partial}{\partial t} \bar{\omega}_{i} d v=-\int \psi_{i} \frac{\partial}{\partial x_{j}} w_{i j} d v \tag{A.2}
\end{equation*}
$$

We want to show that Eqn. (A.2) reduces to

$$
\begin{equation*}
\frac{\partial}{\partial t} \int \frac{1}{2} \bar{u}_{i} \bar{u}_{i} d v=-\varepsilon \tag{A.3}
\end{equation*}
$$

where $\varepsilon \geq 0$.

Model $\omega-1$
Substituting Eqn. (2.15) in Eqn. (A.2) for $W_{i j}$, integrating by parts, and using periodic boundary conditions, we obtain

$$
\begin{equation*}
\frac{\partial}{\partial t} \int \frac{1}{2} \bar{u}_{i} \bar{u}_{i} d v=-2 \int v_{T} \bar{s}_{k \ell} \bar{s}_{k \ell} d v \tag{A.4}
\end{equation*}
$$

and we have for this case:

$$
\varepsilon=2 \int \nu_{\mathrm{T}} \overline{\mathrm{~S}}_{\mathrm{kl}} \overline{\mathrm{~s}}_{\mathrm{kl}} \mathrm{dv} \geq 0
$$

since $v_{T} \geq 0$.

Mode1 ω-2
In a similar way, substituting Eqn. (2.16) into Eqn. (A.2) for $W_{i j}$, we can show that

$$
\begin{equation*}
\frac{\partial}{\partial t} \int \frac{1}{2} u_{i} u_{i} d v=-\int \nu_{T} \bar{\omega}_{i} \omega_{i} d v \tag{A.5}
\end{equation*}
$$

and we have for this case

$$
\varepsilon=\int \nu_{T} \bar{\omega}_{i} \bar{\omega}_{i} d v \geq 0
$$

Appendix B

Fast Discrete Sine Transform (FDST)

The discrete analogs to the expansion in Fourier sine series (Eqns. (3.14) and (3.15)) are

$$
\begin{gather*}
f(x)=\sum_{n=0}^{N-1} \hat{f}^{s}(n) \sin \left[\frac{n \pi x}{(N-1) h}\right] \tag{3.16}\\
\hat{f}^{s}(n)=\frac{2}{(N-1)} \sum_{j=0}^{N-1} f(x) \sin \left[\frac{n \pi x}{(N-1) h}\right] \tag{3.17}
\end{gather*}
$$

where $n=0,1, \ldots, N-1$,
$h=L /(N-1)$,
$x=j h, \quad j=0,1, \ldots, N-1$,
$\mathrm{N}=$ number of miesh points,
$\mathrm{L}=1$ ength of the computational box.

Both the forward and inverse sine transforms involve identical sums. Eqn. (3.17) can be rewritten as:

$$
\begin{equation*}
\hat{\mathbf{f}}^{\mathrm{s}}(\mathrm{n})=-\frac{2}{(N-1)} \operatorname{Im}\left[2(N-1)-1 \sum_{\mathrm{J}=0}^{-1} \mathrm{~F}(x) \exp \left(\frac{-2 \pi i n x}{2(N-1) h}\right)\right] \tag{B,1}
\end{equation*}
$$

where

$$
\begin{array}{rlrl}
F(x) & =f(x) & j & =0,1, \ldots, N-1, \\
& =0 & j & =N, N+1, \ldots, 2(N-1)-1
\end{array}
$$

We note that the summation

$$
\begin{equation*}
\sum_{j=0}^{2(N-1)-1} F(x) \exp \left(\frac{-2 \pi i n x}{2(N-1) h}\right) \tag{B,2}
\end{equation*}
$$

is equivalent to (3.12) with $N_{1}=2(N-1)$, and an FFT routine can be used to evaluate this sum.

Fast Discrete Cosine Transform (FDCT)

The discrete analog to the expansion in Fourier cosine series (Eqns. (3.21) and (3.22)) are:

$$
\begin{gather*}
f(x)=\sum_{n=0}^{(N-1)} \hat{f}^{C}(n) \cos \left(\frac{n \pi x}{(N-1) h}\right) \tag{3.19}\\
\hat{f}^{c}(n)=\frac{2}{(N-1)} \sum_{j=0}^{(N-1)} f^{\prime}(x) \cos \left(\frac{n \pi x}{(N-1) h}\right) \tag{3.20}
\end{gather*}
$$

where

$$
\begin{aligned}
& \hat{f}^{c}(n)= \begin{cases}\frac{1}{2} \hat{f}^{c}(n) & n=0, N-1 \\
\hat{f}^{c}(n) & n=1, \ldots, N-2\end{cases} \\
& f^{\prime}(x)=\left\{\begin{aligned}
\frac{3}{2} f(x) & j=0, N-1 \\
f(x) & j=1, \ldots, N-2
\end{aligned}\right.
\end{aligned}
$$

where

$$
\begin{aligned}
& n=0, \ldots, N-1 \\
& h=\mathrm{L} /(\mathrm{N}-1), \\
& \mathrm{x}=\mathrm{jh} \quad \mathrm{j}=0, \ldots, \mathrm{~N}-1, \\
& \mathrm{~N}=\text { number of mesh points, } \\
& \mathrm{L}=\text { length of the computational box. }
\end{aligned}
$$

Both the forward and inverse transforms involve identical sums. Eqn. (3.19) can be rewritten as:

$$
\begin{equation*}
f(x)=\operatorname{Re}\left[{ }^{2}\left(\sum_{11=0}^{-1} F(n) \exp \left(\frac{-2 \pi \cdot n x}{2(N-1) h}\right)\right]\right. \tag{B.3}
\end{equation*}
$$

where

$$
\begin{array}{rlrl}
F(n) & =\frac{1}{2} \hat{f}^{c}(n) & n & =0, N-1, \\
& =\hat{f}^{c}(n) & n & =1, \ldots, N-2, \\
& =0 & n & =N, \ldots, 2(N-1)-1 .
\end{array}
$$

We note that the sum in (B.3) is identical to the sum(B.2), and an FFT routine can be used to evaluate it. In fact, the sine and cosine transforms can be done simultaneously, if it is necessary to have both.

Appendix C

Effect of a Sinusoidal Vorticity Perturbation on a Uniform Vortex Array

In Chapter 5 we have studied the effect of perturbing a uniform array of vortices by offsetting the spacing of the vortices ($\beta>0$). In this appendix we study the effect of adding a sinusoidal vorticity perturbation to a uniform array of vortices ($\beta=0$).

1. Initial Conditions

The initial conditions studied in this appendix were generated by starting with a uniform array of point vortices on the centerline of our computational box:

$$
\begin{equation*}
\omega_{2 u}=C_{1}\left(\delta\left(x-L_{1} / 4\right)+\delta\left(x-3 L_{1} / 4\right)\right) \delta\left(z-L_{3} / 2\right) \tag{C.1}
\end{equation*}
$$

We then add a cosine vorticity distribution to (C.1):

$$
\begin{equation*}
\omega_{2}=\omega_{2 u}-c_{2} \cos \left(\frac{2 \pi x}{L}\right) \delta\left(z-L_{3} / 2\right) \tag{C.2}
\end{equation*}
$$

Eqn. (C.2) is then filtered with a relatively wide Gaussian filter (Eqn. (5.19)) to yield the initial conditions. The initial velocity is then non-dimensionalized on Δu and the length scales on $\theta_{\text {in }}$. The computational details, i.e., number of mesh points, mesh size, time steps, and boundary conditions, are the same as in Chapter 5. Only the initial conditions were changed.

2. Results

The momentum thickness (A) is defined by Eqn. (5.4). Fig. C. 1 shows $\theta / \theta_{\text {in }}$ plotted vs. T for $C_{2} / C_{1}=0.1 / 20,1 / 20,2 / 20,4 / 20$. We note that the growth rate of the layer is highly dependent on the strength of the perturbation. The growth rate more than doubles from 0.016 to 0.035 when the strength of the perturbation is doubled $\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right.$ from $2 / 20$ to $\left.4 / 20\right)$.

We note also that for high amplitude perturbations, $C_{2} / C_{1}=4 / 20$, the growth rate starts to level off for $T>12.0$. This saturation is also observed experimentally by Oster et al. (1978); they have oscillated the initial conditions of a two-dimensional mixing layer.

Figures C. 2 and C. 3 show the non-dimensional mean velocity and turbulence intensity (as in Sections 5.7 and 5.8) plotted vs. z / θ for $C_{2} / C_{1}=$ $2 / 20$. We note that the mean velocity profiles are self-similar. This is not surprising, since self-similarity of the mean velocity profiles is easily obtained (see Section 6.5). Turbulence intensity profiles (Fig. C.3) show that self-similarity is also more or less obtained for the present case.

These results are similar to those obtained in Chapter 5 by using a spacing perturbation. Apparently the perturbation can take any of a number of forms, and the characteristics of the shear layer will be nearly the same. Under experimental conditions, the nature of the perturbation is difficult to determine. What we do note is that reproduction of the experimentally observed growth rate does require large perturbations, which are apparently created by either the inflow or outflow conditions of the experiment.

Appendix D
 INTERACTIONS BETWEEN STREAMWISE AND SPANWISE VORTICITY

In Chapter 6 we studied the effect of a random fluctuation on vortex pairing. In this appendix we study the interactions between a streamwise cellular vortex structure and spanwise vortex pairing.

1. Initial Conditions

The initial conditions studied in this appendix were generated by adding to a row of spanwise vortices $(\beta=3 / 16)$ a row of streamwise vortices of alternating signs:

$$
\bar{\omega}_{1}=C_{2} \sin \left(\frac{2 \pi y}{L_{2}}\right) \exp \left(-\frac{\left(z-L_{3} / 2\right)^{2}}{6 h_{3}^{2}}\right)
$$

The same computational setup described in Chapter 6 is used, i.e., the same boundary conditions, number of mesh points, mesh sizes, and time step.

Figure D. 1 shows a contour map in the $y-z$ plane of the streamwise vorticity. We note that $\bar{\omega}_{1}$ displays a cellular structure and that $\bar{\omega}_{1}$ does not initially have a streanwise variation. We ran two cases:

Case a:

$$
\left\lvert\, \frac{\left.\omega_{1}\right|_{\max }}{\left|\omega_{2}\right|_{\max }}=0.037\right.
$$

Case b:

$$
\left|\omega_{1}\right|_{\text {max }}=0.370
$$

2. Results

We first look at the development of the momentum thickness, $\theta(t)$, defined by Eqn. (5.4), in time. The non-dimensional mean velocity (Section 5.7) and mean turbulence intensity (Section 5.8) are also considered. The interaction between the spanwise vortices and the streamwise vortices is studied using contour plots. Note that we have a three-dimensional box and that contour plots in different planes for different vorticity directions will be considered.

Figure D. 2 shows $\theta / \theta_{\text {in }}$ plotted vs. T. The momentum thickness growth rate, $d \theta / \Delta u d t=0.020$, for Case (a) is the same as it was in the absence of the streamwise vortices. However, the momentum thickness growth rate, $\mathrm{d} \theta / \Delta \mathrm{udt}=0.040$, doubled for Case (b).

Figures D. 3a and -b show $2\langle u\rangle_{x y} / \Delta u$ plotted vs, z / θ for Cases (a) and (b), respectively, at $\Delta T=2.4$ intervals. We note that both cases produce self-similar mean velocity profiles.

Figures D. 4 a and -b show $\mathrm{q}^{2} / 2(\Delta \mathrm{u})^{2}$ plotted vs. z / θ for Cases (a) and (b), respectively, at $\Delta T=2.4$ intervals. The mean turbulence intensity results for Case (a) are similar to those we obtained when the streamwise vortices were not present. As in the $2-D$ case (with $\beta=3 / 16$), the mean turbulence intensity decays slightly, then reaches a self-similar situation. For Case (b), in which we have strong streamwise vortices, Fig. D.4b shows that the turbulence intensity grows with time, and the profiles do not show self-similarity.

(a) Contour P1ots in the $x-z$ Planes

Figures D. 5 show constant vorticity contours of the spanwise $\left(\bar{\omega}_{2}\right)$ vorticity at time $T=16.78$. In both cases the spanwise vortices have paired. The shapes are similar, but the roller is slightly distorted for Case (b) as compared to Case (a) and to the $2-\mathrm{D}$ results (see Fig. 5.7d). This indicates that the streamwise vortices did not affect the merging of the spanwise vortices, but the strong streamwise vortices (Case (b)) have affected the shape of the roller.

Figures D. 6 show constant vorticity contours of the streamwise vorticity for Cases (a) and (b). These figures indicate that the streamise vortices have been convected to the edges of the mixing layer by the spanwise vortices. There is also clear evidence of vortex stretching.

Figure D. 7 shows the projection of the vorticity vector at $T=16.78$, for Case (b). We can see clearly that the originally straight vortex lines have been convected and stretched by the spanwise vortices to assume an inverted S shape.

(b) Contour Plots in the $y-z$ Planes

Figure D. 8 shows constant vorticity contours of the spanwise vorticity for Case (b). The spanwise vortices have been convected and stretched by the strong counter-rotating streamwise vortices and exhibit spanwise waviness. This means that the contact area between the rotational fluid and the irrotational fluid has increased, which leads to an increase in the entrainment rate. This waviness also explains the increase in the turbulence intensity and high growth of the momentum thickness of the mixing layer. te that the mean quantities are defined as horizontal planar averages and, with this definition, the wavy layer appears thicker and more turbulent than a strictly two-dimensional layer.

The above results indicate that the effect of the streamwise vorticity on the spanwise vorticity is almost independent of the effect of the spanwise vorticity on the streamwise vorticity. Indeed, a straight line of particles placed at the center of the layer in the streamise direction would be convected to form an inverted S shape in the presence of the twodimensional vortex pairing. A straight line of particles initially passing through the center of an array of counter-rotating vortices will be convected to assume a wavy shape.

Fig. C.1. Non-dimensional momentum thickness $\left(\theta / \theta_{i n}\right)$ as a function of time for various C_{2} / C_{1}.

Fig. C.2. Mean velocity profiles $\left(C_{2} / C_{1}=0.1\right)$

Fig. C.3. Mean turbulence intensity profiles $\left(C_{2} / C_{1}=0.1\right)$.

Fig. D.1. Contour plots of the streamwise vorticity $\left(\bar{\omega}_{1}\right)$ at time $T=0$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels.

Fig. D.2. Non-dimensional momentum thickness $\left(\theta / \theta_{\text {in }}\right)$ as a

Fig. D.3a. Mean velocity profiles (case a)

Fig. D.3b. Mean velocity profiles (case b)

Fig. D.4a. Mean turbulence intensity profiles (case a).

Fig. D.4b. Mean turbulence intensity profiles (case b).

Fig. D.5a. Contour plots of the spanwise vorticity $\left(\bar{w}_{2}\right)$ in an $x-z$ plane $\left(y / \theta_{\text {in }}=4.09\right)$, at time $T=16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels (case a).

Fig. D.5b. Contour plots of the spanwise vorticity $\left(\bar{w}_{2}\right)$ in an $x-z$ plane $\left(y / \theta_{\text {in }}=4.09\right)$, at time $T=16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels (case b).

Fig. D.6a. Contour plots of the streanmise vorticity $\left(\bar{\omega}_{1}\right)$ in an $x-z$ plane $\left(y / \theta_{\text {in }}=4.09\right)$, at time $T=16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels (case a).

Fig. D.6b. Contour plots of the streamwise vorticity $\left(\bar{\omega}_{1}\right)$ in an $x-z$ plane $\left(y / \theta_{\text {in }}=4.09\right)$, at time $T=16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels (case b).

REPPRODUCIBILTTY OF THE DRIGINAL PAGE IS PMR

Fig. D.7. Projection of the vorticity vector in an $x-z$ plane ($\mathrm{y} / \theta_{\text {in }}=4.09$) at time $\mathrm{T}=16.78$.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

Fig. D.8. Contour plots of the spanwise vorticity $\left(\bar{\omega}_{2}\right)$ in a $y-z$ plane $\left(x / \theta_{\text {in }}=9.55\right)$, at time $T=16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on_these lines indicate higher vorticity levels $\left(\bar{\omega}_{2, \text { max }}=0.714\right.$ case b).

C--------COMPUTER PROGRAM WRITTEN TO CALCULATE TURBULENT MIXING LAYERS
c
c
c

* COMDECK AVG

COMMON/AVG/ AVGI,AVG2,AVG3,CCF
*COMDECK BLANK COMMON DUDX $(16,16,33)$
*COMDECK DATA7 COMMON/DATAT/ FR(16,16),FI(16,16)

* COMDECK DATA9 COMMON/DATA9/ IMAX,JMAX,LMAX
* COMDECK DAT21 COMMON/DAT21/ XR(64),XI(64)
*COMDECK DEL COMMON/DEL/ DELTAX,DELTAY,DELTAZ
*COMDECK DIM COMMON/DIM/N1,N2,N3
*COMDECK FLT COMMON/FLT/ FILTI(16),FILT2(16),FILT3(33)
*COMDECK LARGE2 COMMON LARGE2/ U($16,16,33), V(16,16,33), W(16,16,33)$ LEVEL $2, \mathbf{U}, \mathrm{~V}, \mathrm{~W}$
* COMDECK LARGE3 COMMON/LARGE3/ GU(16,16,33),GV(16,16,33),GW(16,16,33) LEVEL 2,GU,GV,GW
* comdeck larges COMMON/LARGE5/ O1(16,16,33),02(16,16,33),03(16,16,33) LEVEL 2,01,02,03
*COMDECK MEANVOR COMMON/MEANVOR/ VOR(32,33)
*COMDECK PR COMMON/PR/ CCPW, CCPF,CCPD
*COMDECK WV COMMON/WV/ WAVEX(16), WAVEY(16),WAVEZ(33),WAVEXS(16),WAVEYS(16) 1 ,WAVEZS(33)
*COMDECK XL COMMON/XL/ XPART(160),YPART(160),ZPART(160),NCHAR(160)
*DECK MAIN PROGRAM MAIN(INPUT, OUTPUT, TAPE8, TAPE9,TAPEI0)

C MAIN CONTROLS THE COMPUTATION SEQUENCES.
c IN THIS ROUTINE WE ADVANCE IN TIME
c
THE EXTERNALS USED IN THIS ROUTINE ARE CFILTER CONVEC
CURLO
datared
EDVIS
INVERS
MEANINI MOVLEV SFILTER SFILTER SGS STFILT STREAD STWV

*

NVERS
$C *$ INTEGER TIME,TSTART,TEND
COMMON/TIM/ TSTART,TEND
COMMON/LARGE4/ RU(16,16,33),RV(16,16,33),RW(16,16,33)
COMMON/NORM/ DELU,THETA
LEVEL 2,RU,RV,RW
COMMON/DATCNT/ IDATCNT
*CALL MEANVOR
*CALL XL
COMMON/CONST/C100,C101,IJK,IJ,NHP1, HALF
*CALL DAT21
*CALL Largez
*CALL BLANK
*CALL LARGE5
*CALL DEL
*CALL DATAS
*CALL WV
*CALL DATA7
※CALL FLT
*CALL LARGE3
*CALL DIM
*CALL AVG
C START THE READOUT OF INPUT
CALL STREAD
C SET THE COEFICIENT OF THE SUBGRID SCALE MODEL
$c=0.188$
C \quad SET COF = 1 FOR THE FIRST TIME STEP
COF=1.0
$\mathrm{I} J=\mathrm{N} 1 \times \mathrm{N} 2$
$I J K=N 1 \times N 2 \times N 3$
DO 1 L=1, LMAX
DO $1 \mathrm{j}=1, \mathrm{JMAX}$
DO 1 I $=1$, IMAX
$U(I, J, L)=0$.
$V(I, J, L)=0$.
$W(I, J, L)=0$.
$01(I, J, L)=0$.
$02(I, J, L)=0$.
$03(I, J, L)=0$.
1 CONTINUE
C SET THE WAVE NUMBERS
CALL STWV
C*****SET THE INITIAL CONDITIONS
CALL MEANINI
C NON DIMENSIONALIZE THE TIME STEP ON DELU/THETA
DT $=0.03125 \times D E L U / T H E T A$
C SET THE FILTER WIDTH = $2 \times$ MESH SIZE
AVGI $=2.0$
AVG2 $=2.0$
AVG3 $=2.0$
COEF2 $=(C \times(A V G 1 * D E L T A X * A V G 2 * D E L T A Y * A V G 3 * D E L T A Z) * *(1 . / 3)) * *$.
DO $123 L=1$, LMAX
DO $123 \mathrm{~J}=1$, JMAX
DO $123 \mathrm{I}=1$, IMAX
$R \cup(I, J, L)=0$.
$R V(I, J, L)=0$.
$R W(I, J, L)=0$.
123 CONTINUE
I COUNT $=0$
TIME $=0$
C WRITE ON TAPE 9 TO BE STORED ON DISC PACK
PRINT 1IOO,TIME
WRITE(9) TIME,01,02,03, DT, DELTAX, DELTAY, DELTAZ, DELU,THETA
IDATCNT $=0$
C COMPUTE THE STATISTICS OF THE INITIAL CONDITIONS
CALL DATARED
C. SET THE FOURIER TRANSFORM OF THE GAUSSIAN FILTER

CALL STFILT
IDUM $=30$
DO 300 TIME=TSTART, TEND
C*****COMPUTE THE ADVECTIVE AND STRETCHING TERMS
CALL CONVEC
CALL SFILTER(GU,DUDX,N1,N2,N3)
CALL SFILTER(GV,DUDX,N1,N2,N3)
CALL CFILTER(GW, DUDX,N1,N2,N3)
C*****COMPUTE THE EDDY VISCOSITY
CALL EDVIS(COEF2,DUDX,N1,N2,N3)
C*****COMPUTE THE SGS MODEL
CALL SGS(U,V,N,N1,N2,N3)
C*****ADVANCE IN TIME
DO $800 \mathrm{~L}=1$, LMAX
DO $800 \mathrm{~J}=1$, JMAX
DO $800 \mathrm{I}=1$, IMAX

```
    01(I,J,L)=01(I,J,L)+DT*(COF*GU(I,J,L)-0.5*RU(I,X,L))
    O2(I,J,L)=02(I,J,L)+DT*(CDF*GV(I,J,L)-0.5*RV(I,J,L))
    03(I,J,L)=03(I,J,L)+DT*(COF*GW(I,J,L)-0.5*RW(I,J,L))
    800 CONTINUE
C*****STORE THE PREVIOUS TIME STEP
    CALL MOVLEV(GU(1,1,1),RU(1,1,1),IJK)
    CALL MOVLEV(GV(1,1,1),RV(1,1,1),IJK)
    CALL MOVLEV(GW(1,1,1),RW(1,1,1),IJK)
C*****THE VORTICITY AT THE NEXT TIME STEP HAS BEEN COMPUTED
C*****FIND THE CORESPONDING VELOCITY FIELD
    CALL INVERS(O1,GU,DUDX,I,N1,N2,N3)
    CALL INVERS(02,GV,DUDX,2,N1,N2,N3)
    CALL INVERS(O3,GW,DUDX,3,N1,N2,N3)
    CALL CURLO(GU,GV,GN,U,V,W,NI,N2,N3)
C SET COF = 1.5 FOR SUBSEQUENT TIMES (ADAMS-BASHFORTH)
    COF=1.5
    ICOUNT = ICOUNT+1
    II COUNT =ICOUNT-IDUM
    IF (IICOUNT .NE. O) GO TO 300
    I COUNT=0
    PRINT 1100,TIME
    WRITE(9) TIME,01,02,03
    CALL DATARED
    300 CONTINUE
1100 FORMAT(IH1,5X,* TIME STEP =*,I5)
1000 FORMAT(1P8E15.7)
    STOP
    END
*DECK CFILTER
    SUBROUTINE CFILTER(HR,HI,N1,N2,N3)
C******************************************************************************
C CFILTER COMPUTES THE FILTER OF THE HR VARIABLE BY EXPANDING IN
    FOURIER SERIES IN THE X- AND Y- DIRECTIONS AND FOURIER COSINE
    SERIES IN THE Z-DIRECTION
    THIS ROUTINE USES AS EXTERNALS
    FDCT
    FFTX
    FFTY
    A CALL TO STFILT INITIATE THE VALUES OF FILTI,FILT2,AND FILT3
C************************************************************************
    DIMENSION HR(N1,N2,N3),HI(N1,N2,N3)
*CALL DATAG
*CALL FLT
*CALL DATAT
*CALL DAT21
    LEVEL 2,HR
    CC=1.0/(IMAX*JMAX)
    IJ=NI*N2
    DO 10 J=1, JMAX
    DO 10 I=1,IMAX
    DO 20 L=1,LMAX
    XR(L)=HR(I,J,L)
    20 CONTINUE
    CALL FDCT(1.0)
    DO }30\textrm{L}=1\mathrm{ , LMAX
    HI(I,J,L)=XR(L)
    30 CONTINUE
    10. CONTINUE
    DO 40 L=1,LMAX
    CALL MOVLEV(HI(1,I,L),FR(1,1),IJ)
    CALL FFTX(1.0)
    CALL FFTY(1.0,1.0)
    DO 50 J=1,JMAX
    DO 50 I=I,IMAX
    FR(I,J)=FR(I,J)*FILT1(I)*FILT2(J)*FILT3(L)
    FI(I,J)=FI(I,J)*FILTI(I)*FILT2(J)*FILT3(L)
50 CONTINUE
    CALL FFTX(-1,0)
    CALL FFTY(-1,0,CC)
    CALL MOVLEV(FR(1,1),HI(1,1,L),IJ)
```

```
    40 CONTINUE
    DO }60\textrm{J}=1\mathrm{ , JMAX
    DO 60 I=1,IMAX
    DO }70\mathrm{ L=1,LMAX
    DO 60 I=1,IMAX
    DO 70 L=1,LMAX
    XR(L)=HI(I,J,L)
7 0 ~ C O N T I N U E ~
    CALL FDCT(-1.0)
    DO 80 L=1,LMAX
    HR(I,J,L)=XR(L)
8 0 \text { CONTINUE}
60 CONTINUE
        RETURN
    END
*DECK CONVEC
    SUBROUTINE CONVEC
```



```
C THIS SUBROUTINE COMPUTES THE CONVECTIVE AND STRETCHING
```



```
C THIS ROUTINE USES AS EXTERNALS
    COSPART
    PARTIAL
```

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

```
C*************************************************************************
*CALL LARGE2
*CALL LARGE3
*call larges
*CALL BLANK
*CALL DATA9
*CALL DIM
    I JK=N1*N2*N3
C*****TERM FOR THE X-DIRECTION
    DO 10 L=1, LMAX
    DO 10 J=1,JMAX
    DO 10 I=1,IMAX
    GU(I,J,L)=U(I,J,L)*02(I,J,L)-V(I,J,L)*01(I,J,L)
    GV(I,J,L)=U(I,J,L)*03(I,J,L)-W(I,J,L)*0I(I,J,L)
    10 CONTINUE
    CALL PARTIAL(2,GU,N1,N2,N3)
    CALL MOVLEV(DUDX(1,1,1),GU(1,1,1),IJK)
    CALL COSPART(GV,N1,N2,N3)
    DO 20 L=1, LMAX
    DO 20 J=1,JMAX
    DO 20 I=1,IMAX
    GU(I,J,L)=GU(I,J,L)+DUDX(I,J,L)
    20 CONTINUE
C*****TERM FOR THE Y-DIRECTION
    DO 30 L=1, LMAX
    DO 30 J=1,JMAX
    DO 30 I=1,IMAX
    GV(I,J,L)=V(I,J,L)*01(I,J,L)-U(I,J,L)*02(I,J,L)
    GW(I,J,L)=V(I,J,L)*03(I,J,L)-W(I,J,L)*02(I,J,L)
    30 CONTINUE
    CALL PARTIAL(I,GV,NI,NC,N3)
    CALL MOVLEV(DUDX(1,1,1),GV(1,1,1),IJK)
    CALL COSPART(GW,N1,N2,N3)
    DO 40 L=1, LMAX
    DO 40 J=1, JMAX
    DO 40 I=1,IMAX
    GV(I,J,L)=GV(I,J,L)+DUDX(I,J,L)
    40 CONTINUE
C*****TERM FOR THE Z-DIRECTION
    DO 50 L=1, LMAX
    DO }50,j=1,JMAX
    DO 50 I=1, IMAX
    GW(I,J,L)=W(I,J,L)*01(I,J,L)-U(I,J,L)*03(I,J,L)
    U(I,J,L)=W(I,J,L)*02(I,J,L)-V(I,J,L)*03(I,J,L)
    5 0 ~ C O N T I N U E ~
    CALL PARTIAL(1,GW,N1,N2,N3)
```

```
    CALL MOVLEV(DUDX(1,1,1),GW(1,1,1),IJK)
    CALL PARTIAL(2,U,N1,N2,N3)
    DO 60 L=1,LMAX
    DO 60 J=1.JMAX
    DO 60 I =1, IMAX
    GW(I,J,L)=GW(I,J,L)+DUDX(I,J,L)
    60 CONTINUE
    RETURN
    END
*DECK COSPART
    SUBROUTINE COSPART(U,N1,N2,N3)
C*****************************************************************************
C COSPART COMPUTES THE PARTIAL IN THE Z-DIRECTION OF U BY EXPANDING
C IN FOURIER COSINE SERIES
c THE EXTENALS USED IN THIS SUBROUTINE ARE
C FDCT
C FDST
C*********************************************************************************
        DIMENSION U(N1,N2,N3)
*CALL BLANK
*CALL DAT2l
*CALL WV
*CALL DATA9
    LEVEL 2,U
    DO 10 J=1, JMAX
    DO 10 I=1,IMAX
    DO 20 L=1, LMAX
    XR(L)=U(I,J,L)
    20
    CONTINUE
    SIGN=1.0
    CALL FDCT(SIGN)
    DO 30 L=1,LMAX
    XR(L)=-XR(L)*WAVEZ(L)
    30 CONTINUE
    SIGN=-1.0
    CALL FDST(SIGN)
    DO 40 L=1,LMAX
    DUDX(I,J,L)=XR(L)
    40 CONTINUE
    10 CONTINUE
    RETURN
    END
*DECK CURLO
    SUBROUTINE CURLO(U,V,W,01,02,03,N1,N2,N3)
    DIMENSION Ol(N1,N2,N3),02(N1,N2,N3),O3(N1,N2,N3)
    DIMENSION U(N1,N2,N3),V(N1,N2,N3),W(N1,N2,N3)
*CALL DATA9
*CALL BLANK
    LEVEL 2,U,V,W,01,02,03
C*********************************************************************************
C THIS SUBROUTINE COMPUTES THE CURL OF THE VORTICITY FIELD
    THE EXTERNALS USED IN THIS ROUTINE ARE
    PARTIAL
    SINPART
C******************************************************************************
C*****CURL IN THE X-DIRECTION
    IJK =NI NN2*NS
    CALL PARTIAL(2,W,N1,N2,N3)
    CALL MOVLEV(DUDX(1,1,1),01(1,1,1),IJK)
    CALL SINPART(V,N1,N2,N3)
    DO 10 L =1, LMAX
    DO 10 J=1,JMAX
    DO 10 I=1,IMAX
    O1(I,J,L)=01(I,J,L)- DUDX(I,J,L)
    10 CONTINUE
C*****CURL IN YHE Y-DIRECTION
    CALL SINPART(U,N1,N2,N3)
    CALL MOVLEV(DUDX(1,1,1),02(1,1,1),IJK)
    CALL PARTIAL(1,W,N1,N2,N3)
    DO 20 L=1,LMAX
```

```
        DO 20 J=1,JMAX
        DO 20 I=1,IMAX
        02(I,J,L)=02(I,J,L)-DUDX(I,J,L)
        20 CONTINUE
C*****CURL IN THE Z-DIRECTION
    CALL PARTIAL(1,V,N1,N2,N3)
    CALL MOVLEV(DUDX(1,1,1),03(1,1,1),IJK) REXPRODUCIBLLILI ON IBH
    CALL PARTIAL(2,U,N1,N2,N3) ORIGINAL PAGE IS POOR
    DO }30\quadL=1,LMAX
    DO 30 J=1,JMAX
    DO }30\mathrm{ I=1,IMAX
    03(I,J,L)=03(I,J,L)-DUDX(I,J,L)
    30 CONTINUE
    RETURN
    END
*DECK CURLU
    SUBROUTINE CURLU(U,V,W,01,02,03,N1,N2,N3)
    DIMENSION O1(N1,N2,N3),02(N1,N2,N3),O3(N1,N2;N3)
    DIMENSION U(N1,N2,N3),V(N1,N2,N3),W(N1,N2,N3)
KCALL DATAG
*CALL BLANK
    LEVEL 2,U,V,W,01,02,03
```



```
C THIS ROUTINE COMPUTES THE CURL OF THE VELOCITY FIELD *
C AND STORES IT IN OI,O2,O3,' SUBROUTINE ARE *
c COSPART
C PARTIAL *
```



```
    IJK=N1 KN2*N3
    CALL PARTIAL(2,W,N1,N2,N3)
    CALL MOVLEV(DUDX(1,1,1),01(1,1,1),IJK)
    CALL COSPART(V,N1,N2,N3)
    DO 10 L=1,LMAX
    DO 10 J=1,JMAX
    DO 10 I=1,IMAX
    01(I,J,L)=01(I,J,L)- DUDX(I,J,L)
    10 CONTINUE
C*****CURL IN YHE Y-DIRECTION
    CALL COSPART(U,N1,N2,N3)
    CALL MOVLEV(DUDX(1,1,1),02(1,1,1),IJK)
    CALL PARTIAL(I,W,N1,N2,N3)
    DO 20 L=1,LMAX
    DO 20 J=1, JMAX
    DO 20 I=I,IMAX
    02(I,J,L)=02(I,J,L)-DUDX(I,J,L)
    20 CONTINUE
C*****CURL IN THE Z-DIRECTION
    CALL PARTIAL(I,V,N1,N2,N3)
    CALL MOVLEV(DUDX(1,1,1),03(1,1,1),IJK)
    CALL PARTIAL (2,U,NI,N2,N3)
    DO 30 L=1, LMAX
    DO 30 J=1,JMAX
    DO 30 I=1,IMAX
    03(I,J,L)=03(I,J,L)-DUDX(I,J,L)
    30 CONTINUE
    RETURN
    END
*DECK DATARED
    SUBROUTINE DATARED
C**************************************************************************
C THIS SUBROUTINE COMPUTES THE STATISTICS OF THE COMPUTATION
    USUM = PLANAR AVERAGE OF THE STREAMWISE VELOCITY *
    VSUM=PLANAR AVERAGE OF THE SPANWISE VELOCITY *
    WSUM = PLANAR AVERAGE OF THE CROSSFLOW VELOCITY 
    OISUM = PLANAR AVERAGE OF THE STREAMWISE VORTICITY *
    O2SUM = PLANAR AVERAGE OF THE SPANWISE VORTICITY 
    O3SUM = PLANAR AVERAGE OF THE CROSSFLOW VORTICITY 
    USQ = R.M.S STREAMWISE VELOCITY *
```

```
C VSQ = R.M.S. OF THE SPANWISE VELOCITY ETC... *
C UVSTRES = PLANAR AVERAGE OF UAWA 
C ENERGY = INTEGRAL OF THE TURBULENCE ENERGY
```



```
*CALL DEL
*CALL MEANVOR
*CALL PR
*CALL large2
*CALL LARGE3
*CALL LARGE5
*CALL DAT2I
*CALL dATA9
*CALL BLANK
*CALL DIM
DIMENSION USM(33),VSM(33),US(33),VS(33),WS(33),01S(33),025(33)
    1 ,035(33),ES(33),ENS(33),20(33)
        DINENSION DUMSP(33)
        COMMON/DATCNT/ IDATCNT
    IDATCNT=IDATCNT+1
    LMAXML = LMAX-1
    C3=1./LMAXM1
    CNORM3=1./(IMAX*JMAX)
    PRINT 1100
    UTOT=0.
    VTOT=0.
    WTOT=0.
    O1TOT=0.
    02TOT=0.
    O3T0T=0.
    OURALE=0.
    TOTENER=0.
    TOTENST=0.
    DO 100 L=1,LMAX
    USUM=0.
    VSUM=0.
    WSUM=0.
    O1SIM=0.
    02弓UM=0.
    035UM=0.
    USG=0.
    VSQ=0.
    WSQ=0.
    01SQ=0.
    02SQ=0.
    03SQ=0.
    ENERGY=0
    ENSTROP=0.
    UVSTRES=0.
    PLOVALE=0.
    DO 110 J=1, JMAX
    DO 110 I=1,IMAX
    USUM=USUM+U(I,J,L)
    VSUM=VSUM+V(I,J,L)
    WSUM=WSUM+W(I,J,L)
    01SUM=01SUM+01(I,J,L)
    02SUM=02SUM+02(I,J,L)
    03SUM=03SUM+03(I,J,L)
    110 CONTINUE
    USUM=USUM*CNORM3
    VSUM=VSUM*CNORM3
    WSUM=WSUM*CNORM3
    OISUM=01SUM*CNORM3
    02SUM=02SUN*CNORM3
    03SUM=03SUM*CNORMS
    GW(1,1,L)=USUM
    GW(2,1,L)=VSUM
    GW(3,1,L)=WSUM
    DO 160 J=1, JMAX
    DO 160 I=1,IMAX
```

```Reproducibility of the
ORIGINal page is poor
    USQ=USQ+(U(I,J,L)-USUM)**2
    VSQ=VSQ+(V(I,J,L)-VSUM)**2
    WSQ=WSQ+(W(I,J,L)-WSUM)**2
    01SQ=01SQ+(01(I,J,L)-01SUM) **2
    02SQ=02SQ+(02(I,J,L)-02SUM)**2
    03SQ=03SQ+(03(I,J,L)-03SUM)**2
    UVSTRES=UVSTRES+(U(I,J,L)-USUM)*(W(I,J,L)-WSUM)
    PLOVALE=PLOVALE+(U(I,J,L)**2+V(I,J,L)**2+W(I,J,L)**2)
160
    USQ=USQ*CNORM3
    VSQ=VSQ*CNORM3
    WSQ=WSQ*CNORM3
    O1SQ=01SQ*CNORM3
    02SQ=02SQ*CNORM3
    O3SQ =O3SQ*CNORM3
    ENERGY=(USQ+VSQ+WSQ)*0.5
    ENSTROP=(01SQ+02SQ+03SQ)*0.5
    UVSTRES =UVSTRES*CNORM3
    USQ=SQRT(USQ)
    VSQ=SQRT(VSQ)
    WSQ=SQRT(WSQ)
    O1SQ=SQRT(O1SQ)
    O2SQ=SQRT(O2SQ)
    O3SQ=SQRT(OUSQ)
    US(L)=USQ
    VS(L)=VSQ
    WS(L)=WSQ
    01S(L)=01SQ
    02S(L)=025Q
    03S(L)=03SQ
    USM(L)=USUM
    VSM(L)=VSUM
    ES(L)=ENERGY
    ENS(L)=ENSTROP
    GW(4,1,L)=01SUM
    GW(5,1,L)=02SUM
    GW(6,1,L)=03SUM
    GV(1,1,L)=USQ
    GV(2,1,L)=WSQ
    XI(L)=UVSTRES
    CC=1.
    IF(L.EQ. 1) CC=0.5
    IF(L .EQ. LMAX) CC=0.5
    OVRALEEOVRALE+PLOVALE*CC*0.5
    UTOT =UTOT +USUM*CC
    VTOT=VTOT+VSUM*CC
    WTOT=WTOT+WSUM*CC
    01TOT=01TOT+01SUM*CC
    O2TOT=02TOT+02SUM*CC
    O3TOT=O3TOT+OJSUM*CC
    TOTENER=TOTENER+ENERGY*CC
    TOTENST=TOTENST+ENSTROP*CC
    CONTINUE
    UTOT=UTOT*C3
    VTOT=VTOT*CS
    WTOT=WTOT*CJ
    O1TOT=O1TOT*C3
    02TOT=02TOT*C3
    OSTOT=O3TOT*C3
    TOTENER=TOTENER*C3
    TOTENST=TOTENST*CS
    DELU=GW(1,1,LMAX)-GW(1,1,1)
    DELU=1./DELU
    THETA =(0.25-(GW(1,1,1)*DELU)**2)*0.5
    DO 170 L=2,LMAXMI
    THETA =THETA+(0.25-(GW(1,1,L)*DELU)**2)
        170 CONTINUE
    THETA=THETA+(0.25-(GW(1,1,LMAX)*DELU)**2)*0.5
    THETA=THETA*DELTAZ
    DO 300 L=I. LMAX
```

```
    ZO(L)=(L-((LMAX-1)/2+1))*DELTAZ/THETA
    USM(L)=USM(L)*DELU*2.0
    VSM(L)=VSM(L)*DELU
    GW(5,1,L)=GW(5,1,L)*DELU*THETA
    XI(L)=XI(L)*(DELU**2)
    US(L)=US(L)*DELU
    VS(L)=VS(I.)*DELU
    WS(L)=WS(L)*DELU
    035(L)=03S(L)*(DELU*THETA)
    01S(L)=01S(L)*(DELU*THETA)
    02S(L)=02S(L)*(DELU*THETA)
    ES(L)=ES(L)*DELU**2
    ENS(L)=ENS(L)*(DELU*THETA)**2
    PRINT 3000,USM(L),VSM(L),XI(L),GW(5,1,L),US(L),VS(L),WS(L),
    101S(L),02S(L),03S(L),ES(L),ENS(L),ZO(L)
    300 CONTINUE
    WRITE(8) USM,VSM,XI,US,VS,WS,01S,025,03S,ES,ENS,ZO,THETA
    PRINT 1700,THETA
    PRINT 1200
    PRINT 1000,UTOT,VTOT,WTOT,OITOT,O2TOT,O3TOT,TOTENER,TOTENST
    PRINT 2400,OVRALE
2400 FORMAT(1X,* OVER ALL ENERGY IN COMPUTATION BOX =*,1PE15.7)
    DO 180 L=1,LMAX
    DO 180 I =1,IMAX
    GU(I,I,L)=0.
    GU(I,2,L)=0.
    GU(I, 3,L)=0.
    GU(I,4,L)=0.
    180
    CONTINUE
    ClOY=1./FFLOAT (JMAX)
    DO 190 L=1,LMAX
    DO 190 J=1, JMAX
    DO 190 I=1,IMAX
    GU(I,I,L)=GU(I,I,L)+02(I,J,L)*C1OY
    GU(I,2,L)=GU(I, 2,L)+U(I,J,L)*C1OY
    GU(I, 3,L)=GU(I, 3,L) +W(I,J,L)*C1OY
    190 CONTINUE
    DO 230 L =1, LMAX
    DO 230 I=1,IMAX
    GU(I,2,L)=GU(I,2,L)-GW(1,1,L)
    GU(I,3,L)=GU(I,3,L)-GW(3,I,L)
    230 CONTINUE
    PRINT 2200
2200 FORMAT (IH1,1X,* LINE AVERAGE OF VORTICITY*)
    PRINT 2300,(((GU(I,1,L),I= 1,16 ),L),L=1,LMAX)
    IF(CCPD.NE.1.) GO TO 240
    PRINT 2500
2500 FORMAT(IH1,IX,* LINE AVERAGE OF U-COMPONENT *).
    PRINT 2300,(((GU(I,2,L),I= 1,16) ),L),L=1,LMAX)
    PRINT 2500
    PRINT 2300,(((GU(I,2,L),I=17,IMAX),L),L=1,LMAX)
    PRINT 2600
2600 FORMAT(IHI,1X,* LINE AVERAGE OF W-COMPONENT *)
    PRINT 2300,(((GU(I,3,L),I=1,16 ),L),L=1,LMAX)
    FRINT 2600
    PRINT 2300,(((GU(I,3,L),I=17,IMAX),L),L=1,LMAX)
2300 FORMAT(IX,16F8,3,I3)
    240 CONTINUE
    PRINT 2000
    DO 250 L =14,20
    DO 260 I=1,IMAX
    XR(I)=GU(I,I,L)
    XI(I)=0.
    260 CONTINUE
    CALL FFT(XR,XI,IMAX,-1)
    IF(IDATCNT.EQ.1) DUMSP(L)=SQRT(XR(2)**2+XI(2)**2)
    IF(DUMSP(L).LT.0.0000001) GO TO 250
    DO 270 I=1,IMAX
    XR(I)=SQRT(XR(I)**2+XI(I)**2)/DUMSP(L)
    2 7 0
    CONTINUE
```


REPRODUCIBILITY OF THE DRIGINAL PAGE IS P~a

PRINT $1800, L,(X R(I), I=1,8)$
250 CONTINUE
1800 FORMAT (1 X, *WVO2*, I5,1P8E14.6)
1000 FORMAT (IP8E15.7)
1100 FORMAT ($2 X, *$ USUM $*, 6 X, * V$ SUM $*, 5 X, * U W S T R *, 5 X, * 02 S U M *, 7 X, * U S Q *, 7 X, * V S Q *$ $1,7 X, \ldots W S Q *, 6 X, * 015 Q *, 6 X, * 025 Q *, 6 X, * 03 S Q *, 5 X, * E N E R G Y *, 4 X, * E N S T R O P *, 3$ $2 X, * P L A N E *)$
1200 FORMAT(///, IX,* UTOT IN $X-Y$ VTOT IN $X-Y$ WTOT IN $X-Y$ OITOT
IIN $X-Y$ 02TOT IN $X-Y$ O3TOT IN $X-Y$ *)
1300 FORMAT (IX,* USUN IN Y-Z VSUM IN Y-Z WSUM IN Y-Z OISUM IN Y 1-Z 025UM IN Y-Z 03SUM IN Y-Z *)
1400 FORMAT $/ / / /, I X, *$ UTOT IN $Y-Z$ VTOTIN Y-Z WTOT IN Y-Z OITOT
 $1-X \quad 025 U M$ IN $2-x \quad 03$ SUM IN $2-x$ *)
1600 FORMAT(///I, $1 X, *$ UTOT IN $Z-X$ VTOT IN $Z-X$ WTOT IN $Z-X \quad O I T O T$
IIN Z-X 02TOT IN Z-X 03TOT IN Z-X *)
1700 FORMAT($1 X, *$ MOMENTUM THICKNESS $*, 1 P E 15.7$)
2000 FORMAT(IHI)
3000 FORMAT(IPI3E10.2)
C TEST THE DIVERGENCE OF THE VELOCITY AND VORTICITY FIELDS CALL DIV
C TEST THE SOLUTION OF THE POISSON EQUATIONS I.E. THAT
C THE CURL OF OUR VELOCITY FIELD IS EQUAL TO THE VORTICITY FIELD CALL CURLU(U,V,W,GU,GV,GW,N1,N2,N3)
ERRMAXI=0.
ERRMAX2=0.
ERRMAX3=0.
DO 17 L=1, LMAX
DO $17 \mathrm{~J}=1$, JMAX
DO $17 \mathrm{I}=1$,IMAX
$\operatorname{GU}(I, J, L)=\operatorname{ABS}(\operatorname{GU}(I, J, L)-01(I, J, L))$
$\operatorname{GV}(I, J, L)=A B S(G V(I, J, L)-02(I, J, L))$
GW(I, $J, L)=\operatorname{ABS}(\operatorname{GW}(I, J, L)-03(I, J, L))$
IF (GU(I,J,L) GT. ERRMAXI) ERRMAXI=GU(I,J,L)
IF (GV(I,J,L) .GT. ERRMAX2) ERRMAX2=GV(I,J,L)
IF (GW(I,J,L) GT. ERRMAX3) ERRMAX $3=G W(I, J, L)$
17 CONTINUE
PRINT 1110,ERRMAX1,ERRMAX2,ERRMAX3
 RETURN
END
*DECK DIV
SUBROUTINE DIV

C THIS ROUTINE TESTS THE DIVERGENCE OF THE VELOCITY FIELD
C AND THE DIVERGENCE OF THE VORTICITY FIELD. .

*CALL LARGE2
*CALL LARGE3
*CALL LARGE5
*CALL BLANK
*CALL DATA9
*CALL DIM
IJK $=\mathrm{N} 1 * N 2 * N 3$
CALL PARTIAL(I, U,N1,N2,N3)
CALL MOVLEV(DUDX (1,1,1), GU(1,1,1),IJK)
CALL PARTIAL(2,V,N1,N2,N3)
CALL MOVLEV(DUDX(1,1,1),GV(1,1,1),IJK)
CALL SINPART(W,N1,N2,N3)
DIVMAX $=0$.
DO $1 \quad \mathrm{~L}=1$, LMAX
DO $1 \mathrm{~J}=1$, JMAX
DO 1 I =I, IMAX
DUM $=A B S(G U(I, J, L)+G V(I, J, L)+\operatorname{DUDX}(I, J, L))$
IF (DUM.GT. DIVMAX) DIVMAX=DUM
1 CONTINUE
PRINT 1100, DIVMAX
CALL PARTIAL (1, O1, N1,N2,N3)
CALL MOVLEV(DUDX $(1,1,1), \operatorname{GU}(1,1,1), I J K)$

```
    CALL PARTIAL(2,02,N1,N2,N3)
    CALL MOVLEV(DUDX(1,1,1),GV(1,1,1),IJK)
    CALL COSPART(O3,N1,N2,N3)
    DIVMAX=0.
    DO 2 L=1, LMAX
    DO 2 J=1,JMAX
    DO 2 I=1,IMAX
    DUM=ABS(GU(I,J,L)+GV(I,J,L)+DUDX(I,J,L))
    IF (DUM,GT. DIVMAX) DIVMAX=DUM
    2 CONTINUE
    PRINT 1200,DIVMAX
    1100 FORMAT(1X,* MAXIMUM VELOCITY DIVERGENCE =*,E15.7)
    1200 FORMAT(1X,* MAXIMUM VORTICITY DIVERGENCE =*,El5.7)
    RETURN
    END
*DECK EDVIS
    SUBROUTINE EDVIS(COEF2,E,N1,N2,N3)
    DIMENSION E(N1,N2,N3)
C****************************************************************************
    THIS SUBROUTINE COMPUTES THE EDDY VISCOSITY AND STORES IY IN E *
C.|************************************************************************
*CALL LARGE5
*CALL DATA9
    DO 3 L=1,LMAX
    DO 3 J=1,JMAX
    DO 3 I=1,IMAX
    E(I,J,L)=01(I,J,L)**2+02(I,J,L)**2+03(I,J,L)**2
    E(I,J,L)=SQRT(E(I,J,L))*COEF2
    3 CONTINUE
        RETURN
            END
*DECK FDCT
    SUBROUTINE FDCT(SIGN)
C**************************************************************************
C FDCT COMPUTES THE FAST DISCRETE COSINE TRANSFORM OF THE VARIABLE *
C XR AND STORES IN XR
```



```
*CALL DAT2I
*CALL DATA9
    LM1=LMAX-1
    CC=2./FLOAT(LMI)
    LL=2*LM1
    XR(1)=XR(1)/2.
    XR(LMAX)=XR(LMAX)/2.
    LPl=LMAX+1
    DO 1LL=LPI,LL
    XR(L)=0.
    1 CONTINUE
    DO 3L=1,LL
    XI(L)=0.
    3 CONTINUE
    ISN =-SIGN
    CALL FFT(XR,XI,LL,ISN)
    IF (SIGN.GT. O.) GO TO 200
    DO 100 L=1,LMAX
    XR(L)=XR(L)*CC
    100 CONTINUE
    200 CONTINUE
    RETURN
    END
*DECK FDST
    SUBROUTINE FDST(SIGN)
C****************************************************************************
C FDST COMPUTES THE FAST DISCRETE SINE TRANSFIRM OF THE VARIABLE *
C XR AND STORES IT IN XR
*
C**************************************************************************
*CALL DAT21
*CALL DATA9
    LM1 = LMAX-1
    CC=2./FLOAT(LMI)
```


REPRODUCBILITY OF THE ORIGINAL PAGE IS POOR

END
*DECK FFTX
SUBROUTINE FFTX(SIGN)

C FAST FOURIER TRANSFORM IN X-DIRECTION

*CALL DATA9
*CALL DATA7
*CALL
DAT21
ISN $=-$ SIGN
IF (SIGN .LT. O.) GO TO 3
DO $1 \mathrm{~J}=1, J M A X$
DO 1 I=1,IMAX
$F I(I, J)=0$.
1 CONTINUE
3 CONTINUE
DO $100 \mathrm{~J}=1, \mathrm{JMAX}$
DO 110 I $=1$, IMAX
$X R(I)=F R(I, J)$
$X I(I)=F I(I, J)$
CALL FFT (XR, XI, IMAX,ISN)
DO 120 I=1, IMAX
$F R(I, J)=X R(I)$
$F I(I, J)=X I(I)$
120
CONTINUE
100 CONTINUE
RETURN
END
*DECK FFTY
SUBROUTINE FFTY(SIGN, COEF3)

C FAST FOURIER TRANSFORM IN Y-DIRECTION

*CALL DATA9
*CALL DATA?
*CALL DAT21
ISN $=-S I G N$
DO $100 \mathrm{I}=1$, IMAX
DO $110 \mathrm{~J}=1$, JMAX
$X R(J)=F R(I, J)$
$X I(J)=F I(I, J)$
110 CONTINUE
CALL FFT (XR,XI, JMAX, ISN)
IF (SIGN.LT. O.) GO TO 200
DO $120 \mathrm{~J}=1$, JMAX
$\operatorname{FR}(I, J)=X R(J)$
$F I(I, J)=X I(J)$
120 CONTINUE
GO TO 100
200 DO $130 \quad \mathrm{~J}=1$, JMAX
$\operatorname{FR}(I, J)=X R(J) * \operatorname{COEF} 3$
$F I(I, J)=X I(J) * C O E F 3$
130 CONTINUE
100 CONTINUE
RETURN
END
*DECK FIX
SUBROUTINE FIX(IMI,I,IPI,IMAX)
$I M I=I-1$
$I P I=I+1$
IF (I.EQ. 1) IMI =IMAX
IF(I.EQ. IMAX) IPI=1
RETURN
END
*DECK INICON

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

```
    SUBROUTINE INICON(C,COF,DT,UR,VR,WR,UI,VI,WI,LI,L2,L3)
    REAL NDIV,N12,NSQR
    DIMENSION UR(L1,L2,L3),VR(L1,L2,L3),WR(L1,L2,L3)
    DIMENSION UI(LI,L2,L3),VI(LI,L2,L3),WI(LI,L2,L3)
Cx*******************************************************************************
C THIS SUBROUTINE INITIATES THE PROGRAM, FOR STARTING PROBLEM, THE INI-*
C TIAL FIELD IS GENERATED. FOR CONTINUATION PROBLEM, THE DATA STORED *
C ON TAPE AT THE END OF THE PREVIOUS RUN ARE READ IN.
C*****************************************************************************
C----NSTART=1 STARTING FROM TIME STEP=0
C----NSTART =2 CONTINUED FROM PREVIOUS RUN
C-----IMAX=MAXIMUM MESH NUMBER IN X-DIRECTION
C-----JMAX=MAXIMUM MESH NUMBER IN Y-DIRECTION
C-----LMAX=MAXIMUM MESH NUMBER IN Z-DIRECTION
C----TSTART=STARTING TIME STEP
C-----TEND=ENDING TIME STEP
C-----DELTA= MESH SIZE
C-----DT=TIME STEP
CMODEL CONSTANT
    NAVG=DELTA(AVERAGING)/DELTA(MESH)
    ANISO=R IN EQUATION (5.16B)
    GAMMA = STRAIN RATE
    REAL NAVG
    COMHON/LARGEl/EN(1024),ENl(1024),WN(2048)
    LEVEL 2,UR,VR,WR,UI,VI,WI
    LEVEL 2,EN,EN1,WN
*CALL DATA7
    READ 4, DELTA,DT,C, NAVG,ANISO,UTM,GAMMA
    IMAX=16
    JMAX=16
    LMAX=16
    IJK=IMAX*JMAX*LMAX
    IJ=IMAX*JMAX
    IMMI =IMAX-1
    IMP1 =IMAX+1
    NMESH=IMAX
    TDIV =1.0/(IMAX*JMAX*LMAX)
    NHALF=NMESH/2
    NHP1 = NHALF+1
    HALF=FLOAT(NHALF)
    NM1 =NMESH-1
    RISO=3./(3.+ANISO)
    TEMP=ANISO/3.
    RANISO=SQRT (TEMP)
    CC=1.
    TFAC = IMAX*JMAX*LMAX
    FAC=SQRT(TFAC)
    COEF1O=3.1415926535898/NHALF
    COEF11=COEF10
    COEF12=3.1415926535898*2.
    CONST=COEF10/ DELTA
    COEF15=COEF12*FAC
    PII=COEF1O
    PI2=PI1*2.
    COF=1.0
    NCONT=1
    DO 2 M =1,25
    Y9=RGEN(X9)
    2 CONTINUE
C-----ENERGY SPECTRUM DATA
C---- 0.1 INTERVAL UP TO 1.0 THEN . 5 INTERVALL UP TO 6.0
C-----EN IS THE ENERGY SPECTRUM FOR THE ISOTROPIC PART. ENI IS FOR THE
C ANISOTROPIC PART.
    PRINT 1960
    WN(1)=0.1
    DO 1900 M=2,10
    1900WN(M)=0.1+WN(M-1)
    DO 1950 M=11,24
    1950WN(M)=0.5+WN(M-1)
    1960 FORMAT(/5X,*WAVE NUMBER*,/)
```


PRINT 4, (WN(M), M=1,24)

PRINT 2000

2000 FORMAT(/5X, ※UNFILTERED SPECTRUMK, /)
DO $3 M=1,24,8$
$M 7=M+7$
READ 4, (EN(MM), MM $=M, M 7$)
PRINT 702, (EN(MM),MM=M,M7)
3 CONTINUE
DO $503 \mathrm{M} 1,24,8$
M7 $=\mathrm{M}+7$
READ 4, (EN1 (MM), MM =M,M7)
PRINT 702, (EN1 (NM),MM=M,M7)

503 CONTINUE

4 FORMAT (8E10.4)
DELAVG $=(D E L T A * N A V G) * * 2 / 12.0$
PAI $=5.1415926535898$
DO $2100 \quad M=1,24$
EXPF=EXP(-DELAVG*WN(M)*WN(M))
$\operatorname{EN}(M)=E N(M) * E X P F$
2100 ENI (M) $=$ ENI (M) \times EXPF
PRINT 2200
2200 FORMAT(/5X,*FILTERED SPECTRUM*,/)
PRINT 702, (EN(M), M=1,24)
PRINT 702, (ENI (M), M=1,24)
DO $5 L=1$, LMAX
DO $5 \mathrm{~J}=1$, JMAX
DO $5 I=1$, IMAX
$\operatorname{UR}(I, J, L)=0$.
$\operatorname{VR}(I, J, L)=0$.
$W R(I, J, L)=0$.
$\operatorname{UI}(I, J, L)=0$.
$V I(I, J, L)=0$.
$W I(I, J, L)=0$.
5 CONTINUE
DO $40 \mathrm{~L}=1$, NHALF
$L L=L$
N3 $=\mathrm{L}-1$
N3S $=\mathrm{N} 3 \times 22$
DO $30 \mathrm{~J}=1$, NMI
JINDEX=J/NHALF
$J J=J+N H P 1$-JINDEX*JMAX
$N 2=J-N H A L F$
$\mathrm{N} 2 \mathrm{~S}=\mathrm{N} 2 * * 2$
DO $20 \quad I=1$, NMI
IINDEX=I/NHALF
II =I + NHPI-IINDEX*IMAX
$N 1=I-N H A L F$
N1S $=$ N1 $\because 22$
NSQR $=\mathrm{N} 15+\mathrm{N} 2 S+\mathrm{N} 35$
IF (NSQR LT. O.1) GO TO 20
WAVN =SQRT (NSQR)
NDIV $=1$. /WAVN
N12 $=$ N1S+N2S
IF (NI2.LT, 0.1) NCONT $=2$
IF (IABS(N1).EQ. NHALF.AND.IABS(N2).EQ. NHALF) NCONT=2
C----GET FOURIER AMPLITUDE OF THE INITIAL FIELD AD DESCRIBED IN SEC 4.4 $X=$ CONST $* W A V N$
NREG $=X+1$.
GO TO $(310,315,315,315,315,315,315)$ NREG
$310 M=x / 0.1$
$Y M=X-0.1 * M$
$M 1=M+1$
$E D=E N(M I)-E N(M)$
ENERGY=EN(M)+ED*YM*10.
$E D A=E N 1(M 1)-E N I(M)$
EANISO $=E N 1(M)+E D A * Y M * 10$.
GO TO 320
$315 \mathrm{M}=(\mathrm{X}-1) *$.2 .
$Y M=X-1 .-0.5 * M$
$M=M+10$

```
        MI=M+1
        ED=EN(M1)-EN(M)
        ENERGY=EN(M)+EDKYM*2.
        EDA=ENI(MI)-ENI(M)
        EANISO=EN1 (M)+EDAKYM*2
    320 QS=ENERGY*RISO/(COEF15*X**2)
    QN=SQRT(QS)
    QSA=EANISO*RISO/(COEF15*X**2)
    QNA=SQRT(QSA)
C----CHANGE WAVE NUNBER VECTOR TO SATISFY NUMERICSL DIV FREE
C-----R1,R2 AND R3 ARE THE MODIFIED WAVE NUMBER
    IF(NGONT.EQ.2)GO TO }34
    ARGI=PII*NI
    ARG2=PI2*N1
    RI=ARGI/DELTA
    ARG1=PI1*N2
    ARG2=P12*N2
    R2=ARG1/DELTA
    ARGI=PII*N3
    ARG2=PI2*N3
    R3=ARGI/DELTA
    R1S=R1**2
    R2S=R2**2
    R3S=R3**2
    R12S=R1S+R2S
    RSQ=R12S+R3S
    IF(NCONT.EQ.2) GO TO 340
    R12=SQRT(R12S)
    R12DIV=1./R12
    R12=SQRT(R12S)
    R12DIV=1./R12
    RDIV=1,/SQRT(RSQ)
C ----GET A & B VECTOR
C FIRST CHOOSE RANDOM PHI
    340 CONTINUE
        YY=RGEN(XX)
    PHI=YY*COEF12
    CPHI=COS(PHI)
    SPHI=SIN(PHI)
    IF(NCONT.EQ.2)GO TO 11
    Al=(-R2*CPHI+RI*R3*RDIV*SPHI)*RI2DIV
    A2=(R1*CPHI+R2*R3*RDIV*SPHI)*RI2DIV
    A3=-RI2*RDIV*SPHI
C CALL RANDOM PHI
    Y2=RGEN(X2)
    PHI=Y2*COEF12
    CPHI=COS(PHI)
    SPHI=SIN(PHI)
    BI=(-R2*CPHI +RI*R3*RDIV*SPHI)*RI2DIV
    B2=(RI*CPHI+R2*R3*RDIV*SPHI)*RI2DIV
    B3=-R12*RDIV*SPHI
    GO TO 12
    11 CONTINUE
    INDEX=(YY+0.25)*4
    PHI=0.7853982*(2*INDEX-1)
    Al=SIN(PHI)
    A2=COS(PHI)
    A3=0
    Y1=RGEN(X1)
    INDEX=(Y1+0.25)*4
    PHI=0.7853982*(2*INDEX-1)
    BI=SIN(PHI)
    B2=COS(PHI)
    B 3 =0.
    NCONT=1
        12 CONTINUE
C
    DETERMINE A AND B IN EQUATION (4.6)
    RANDOM THETA
    Y3=RGEN(X3)
```

```
    THETA=Y3*COEF12
    CA=COS(THETA)
    CB=SIN(THETA)
    UR(II,JJ,LL) =QN*CA*AI
    VR(II,JJ,LL)=ON*CAKAZ
    WR(II,JJ,LL)=QN*CA*A3
    UI(II,JJ,LL)=QNKCB*BI
    VI(II,JJ,LL)=QN*CB*B2
    WI(II,JJ,LL)=QN*CB*B3
    IF (N3.NE. O) GO TO 20
    WSIGN=ABS(A3)/A3
    VSIGN=ABS(B3)/B3
    WRAN =QNA*CA*RANISO
    WIAN=QNA*CB*RANISO
    WR(II,JJ,LL)=WR(II,JJ,LL)+WRAN*WSIGN
    WI(II,JJ,LL)=WI(II,JJ,LL)+WIANKVSIGN
    CONTINUE
    30 CONTINUE
    40 CONTINUE
    NOW THE UPPER HALF OF THE K-SPACE HAS BEEN DETERMINED
    GET THE TRANSFORMED VELOCITY AT THE CONJUGATE POINTS
C-----CONJUGATE FORM
    N3=1 TO 7.N1 & N2=-7 TO 7
    N3=L-1 -N3=LM
    N2=J-1 -N2=JM
    IMP2 = IMAX +2
    DO 41 L=2,NHALF
    LM=L+IMP2-2*L
    DO 41 J=1,JMAX
    M=(J+IMM1)/IMPI
    JM=J+(IMP2-2*J)*M
    DO 41 I=1,IMAX
    M=(I+IMM1)/IMPI
    IM=I+(IMP2-2*I)*M
    UR(IM,JM,LM)=UR(I,J,L)
    VR(IM,JM,LM)= VR(I,J,L)
    WR(IM,JM,LM)=WR(I,J,L)
    UI(IM,JM,LM)=-UI(I,J,L)
    VI(IM,JM,LM)=-VI(I,J,L)
    WI(IM,JM,LM) =-WI(I,J,L)
    41 CONTINUE
    N3=0,N1=1 TO 7,N2=-7 TO 7
    DO 42 I=2,NHALF
    IM=I+(IMP2-2*I)
    DO 42 J=1,JMAX
    M=(J+IMMI)/IMPI
    JM=J+(IMP2-2*J)*M
    IF(J.EQ.NHPI) GO TO 42
    UR(IM,JM,I )= UR(I,J,1)
    VR(IM,JM,1 ) = VR(I,J,I)
    WR(IM,JM,1 )=WR(I,J,1)
    UI(IM,JM,I )=-UI(I,J,I)
    VI(IM,JM,1 )=-VI(I,J,1)
    WI(IM,JM,1 )=-WI(I,J,I)
    4 2
    Nl=N3}=
    DO 43 J=2,NHALF
    JM=J+(IMP2-2*J)
    UR(1,JM,1)=UUR(1,J,1)
    VR(1,JM,1)=VR(1,J,1)
    WR(1,JM,1)=WR(1,J,1)
    UI(1,JM,1)=-UI(1,J,1)
    VI(1,JM,1)=-VI(1,J,1)
    WI(1,JM,1)=-WI (1,J,1)
    43 CONTINUE
    X AND Y TRANSFORM
    SIGN=-1.
    DO 50 L=1, LMAX
    CALL MOVLEV(UR(1,1,L),FR(1,1),IJ)
    CALL MOVLEV(UI(1,1,L),FI(1,1),IJ)
```

```
        CALL FFTX(SIGN)
        CALL FFTY(SIGN,CC)
        CALL MOVLEV(FR(1,1),UR(1,1,L),IJ)
        CALL MOVLEV(FI(I,1),UI(I,I,L),IJ)
        CALL MOVLEV(VR(1,1,L),FR(1,1),IJ)
        CALL MOVLEV(VI(1,1,L),FI(I,1),IJ)
        CALL FFTX(SIGN)
        CALL FFTY(SIGN,CC)
        CALL MOVLEV(FR(1,1),VR(1,1,L),IJ)
        CALL MOVLEV(FI(1,1),VI(1,1,L),IJ)
        CALL MOVLEV(WR(1,1,L),FR(1,1),IJ)
        CALL MOVLEV(WI(1,1,L),FI(1,1),IJ)
        CALL FFTX(SIGN)
        CALL FFTY(SSIGN,CC)
        CALL MOVLEV(FR(1,1),WR(1,1,L),1J)
        CALL MOVLEV(FI(1,1),WI(1,1,L),IJ)
            50 CONTINUE
            2 TRANSFORM
        DO 51 I=1, IMAX
        DO 52 L=1,LMAX
        DO 52 J=1,JMAX
        FR(J,L)=UR(I,J,L)
            FI(J,L)=UI(I,J,L)
        52
            CALL FFTY(SIGN,1.O)
            DO 53 L=1,LMAX
            DO 53 J=1,JMAX
            UR(I,J,L)=FR(J,L)
        53 CONTINUE
        51 CONTINUE
            DO 54 I=1,IMAX
            DO 55 L=1,LMAX
            DO 55 J=1, JMAX
            FR(J,L)=VR(I,J,L)
            FI(J,L)=VI(I,J,L)
        55 CONTINUE
            CALL FFTY(SIGN,I.0)
            DO 56 L=1,LMAX
            DO 56 J=1,JMAX
            VR(I,J,L)=FR(J,L)
        56 CONTINUE
        54 CONTINUE
            DO }57\mathrm{ I=1, IMAX
            DO 5% L=1, LMAX
            DO 58 J=1,JMAX
            FR(J,L)=WR(I,J,L)
            FI(J,L)=WI(I,J,L)
            58 CONTINUE
            CALL FFTY(SIGN,1.0)
            DO 59 L=1,LMAX
            DO 59 J=1,JMAX
            WR(I,J,L)=FR(J,L)
    59 CONTINUE
    57 CONTINUE
C---THE INITIAL FIELD HAS BEEN GENERATED. THE FOLLOWING IS TO PRINT
    OUT INFORMATION ON THE GENERATED FIELD
C VELQCITIES ARE STORED IN UR. VR AND WR
C----TURBULENT ENERGY CHECK
    TKU=0.
    TKV=0.
    TKW=0.
    DO }95\textrm{L}=1, LMA
    DO 95 J=1, JMAX
    DO 95 I=I, IMAX
    TKU=TKU+UR(I,J,L)**2
    TKV=TKV +VR(I,J,L)**2
    TKW=TKW+IJR(I,J,L)**2
    95 CONTINUE
    TKU=TKU*TDIV
    TKV=TKV*TDIV
```

TKW=TKW*TDIV
TKSUM=TKU+TKV+TKW
TKUR = TKU/TKSUM
TKVR = TKV/TKSUM
TKWR = TKW/TKSUM
PRINT 707
PRINT 706
PRINT 700, DT, DELTA, C,NAVG, ANISO,UTM, GAMMA
PRINT 702, TKU,TKV,TKW, TKSUM
PRINT 702,TKUR,TKVR,TKWR
PRINT 706
PRINT 601.
UTOT=0.
VTOT=0.
WTOT $=0$.
DO $120 \mathrm{~L}=1$, LMAX
PRINT 710,L
USUM $=0$.
VSUM $=0$.
WSUM $=0$.
DD $116 \mathrm{~J}=1$, JMAX
DO $116 \mathrm{I}=1$,IMAX
USUM=USUM+UR(I,J,L)
$V S U M=V S U M+V R(I, J, L)$
WSUM=WSUM+WR (I,J,L)
116 CONTINUE
PRINT 702, (UR(I, 10,L), I=1,NHALF)
PRINT 702, (VR(I,10,L),I=1,NHALF)
PRINT 702,(WR(I,10,L),I=1,NHALF)
PRINT 702, USUM, VSUM,WSUM
UTOT =UTOT + USUM
VTOT = VTOT + VSUM
WTOT=WTOT+WSUM
120 CONTINUE
PRINT 702,UTOT, VTOT,WTOT
700 FORMATCIX, \because INITIAL CONDITION. DT $=* 1$ PE10.4,* DELTA=*IPEIO.4,
$1 * C=*, 0 P F 7.4,3 X, * A V E R A G I N G$ GRID=*,F4.1, * DELTA*, /,18X,
$2 *$ ANI $50=*, E 12.5,3 X, * \cup T M=*, E 12.5,3 X, * G A M M A=*, E 12.5$)
702 FORMAT(1P8E15.7)
705 FORMAT(1X, *CONTINUED AT TIME STEP $=*, 14,1,1$)

707 FORMAT (1 HI)
710 FORMAT(IX, *PLANE $=*, I 3$)
711 FORMAT(IX,* INITIAL CONDITION*,/1X,*DT=*1PE10.4,* DELTA=*1PE10.4
$-\quad$ * $C=*, F 7.4, * \quad \cup 0=* 1 P E 10.4,1)$
601 FORMAT ($1 X$, *UM, VM, WM*)
RETURN
END
*DECK INIFILT
SUBROUTINE INIFILT(U,N1,N2,N3)
DIMENSION U(NI,N2,N3)
$C *$ C THIS SUBROUTINE IS USED TO FILTER THE INITIAL FIELD WITH A WIDE C FILTER ONLY IN THE Z-DIRECTION.

*CALL FLT
*CALL DAT21
*CALL DATAT
*CALL DATA9
LEVEL 2,U
LMAXM1 = LMAX-1
DO $5 L=1$, LMAX
$\operatorname{XR}(L)=\operatorname{EXP}(-F L O A T(L-1) * * 2 / 8,0)$
5 CONTINUE
AREA $=0.5 * \times R(1)$
DO 6 L $=2$, LMAXM1
AREA =AREA + XR(L)
6 CONTINUE

```
    AREA=AREA+0.5*XR(LMAX)
    DO }7\mathrm{ L=1,LMAX
    XR(L)=XR(L)/AREA
    7 \text { CONTINUE}
    CALL FDCT(1.0)
    DO }8\mathrm{ L=1,LMAX
    FILT3(L)=XR(L)
    8 CONTINUE
    DO 1 J=1, JMAX
    DO 1 I=1,IMAX
    DO }2\mathrm{ L=1, LMAX
    XR(L)=U(I,J,L)
    2. CONTINUE
    CALL FDCT(1.0)
    DO }3\mathrm{ L=1,LMAX
    XR(L)=XR(L)*FILT3(L)
    3 CONTINUE
    CALL FDCT(-1.0)
    DO 4 L=1,LMAX
    U(I,J,L)=XR(L)
    4 CONTINUE
    I CONTINUE
        RETURN
    END
*DECK INVERS
    SUBROUTINE INVERS(G,PM,HM,IC,N1,N2,N3)
C*#************************************************************************
C INVERS IS A POISSON SOLVER. IC = IT EXPANDS THE VARIABLE G
C IN COSINE SERIES IN THE Z-DIRECTION OTHERWISE IT EXPANDS G
C IN SINE SERIES IN THE Z-DIRECTION. IN THE OTHER TWO DIRECTIONS
C F FOURIER SERIES ARE USED TO EXPAND G
C**************************************************************************
    DIMENSION G(N1,N2,N3),PM(N1,N2,N3),HM(N1,N2,N3)
*CALL DATA?
*CALL DAT2I
*CALL DATA7
*CALL WV
    LEVEL 2,G,PM
    IJ=NI*N2
    CC=1.((IMAX*JMAX)
C*****TRANSFER G TO HM
    DO 10 J=1,JMAX
    DO 10 I=1,IMAX
    DO 20 L=1,LMAX
    XR(L)=-G(I,J,L)
    20
    IF (IC.EQ. 3) GO TO 100
    CALL FDST(1.0)
    GO TO 200
    100 CALL FDCT(1.0)
    200 DO 30 L=1, LMAX
    HM(I,J,L)=XR(L)
    30 CONTINUE
    10 CONTINUE
    DO 40 L=1,LMAX
    CALL MOVLEV(HM(1,1,L),FR(1,1),IJ)
    CALL FFTX(1.0)
    CALL FFTY(1.0,1.0)
    DO 50 J=1, JMAX
    DO 50 I=1,IMAX
    WAV=WAVEXS(I)+WAVEYS(J)+WAVEZS(L)
    IF (ABS(WAV).LT.0.00001) GO TO 500
    WAV =1./WAV
    FR(I,J)=FR(I,J)*WAV
    FI(I,J)=FI(I,J)*WAV
    GO TO 50
    500 FR(I,J)=0.
    FI(I,J)=0.
    5 0 ~ C O N T I N U E ~
    CALL FFTY(-1.0,CC)
```

```
    CALL FFTX(-1.0)
    CALL MOVLEV(FR(1,1),HM(1,1,L),IJ)
    40 CONTINUE
    DO 60 J=1.JMAX
    DO }60\mathrm{ I=1,IMAX
    DO }70\quadL=1,LMAX
    XR(L)=HM(I,J,L)
    70 CONTINUE
    IF (IC.EQ. 3) GO TO 300
    CALL FDST(-1.0)
    GO 10 400
    300 CALL FDCT(-1.0)
    400 DO 80 L=1,LMAX
    PM(I,J,L)=XR(L)
    80 CONTINUE
    6 0 ~ C O N T I N U E ~
        RETURN
    END
*DECK MEANINI
    SUBROUTINE MEANINI
    COMMON/NORM/ DELU,THETA
*CALL DEL
C
    COMMON/LARGE4/01D(16,16,33),02D(16,16,33),03D(16,16,33)
    LEVEL 2,01D,02D,03D
*CALL BLANK
*CALL DIM
*CALL LARGE2
*CALL LARGE3
*CALL LARGE5
*CALL DATA9
C
C THIS ROUTINE CREATS THE MEAN INITIAL FIELD. INITIAL SPICKS *
C ARE STORED IN GU THEN FILTERED TO THE CREAT THE GAUSIAN CORE
C*********************************************************************************
    DO 500 L=1,LMAX
    DO 500 J=1, JMAX
    DO 500 I=1,IMAX
    GU(I,J,L)=0.
    500 CONTINUE
    DO 501 J=1,JMAX
    GU( 6, J,17)=20.
    GU(11,J,17)=20.
    501 CONTINUE
    PRINT 1110
1110 FORMAT(IHI,5X,* INITIAL VORTEX AT PLANE 1*)
    PRINT 1115,(((GU(I,I,L),I=1,IMAX),L),L=1,LMAX)
1115 FORMAT(1X,16F8.2,I3)
    CALL STFILT
    CALL SFILTER(GU,DUDX,N1,N2,N3)
    PRINT 1113
1113 FORMAT(1H1,5X,*FILTERED VORTEX AT PLANE 1*)
    PRINT 1115,(((GU(I,1,L),I= 1,16 ),L),L=1,LMAX)
    DO 508 L=1,LMAX
    DUDX(1,1,l)=0.0
    DO 508 J=1,JMAX
    DO }508\textrm{I}=1,IMA
    DUDX(1,1,L)=\operatorname{DUDX(1,1,L)+GU(I,J,L)/(IMAX*JMAX)}
    508 CONTINUE
    DO 509 L=1,LMAX
    DO 509 J =1,JMAX
    DO 509 I=1,IMAX
    GU(I,J,L)=\operatorname{DUDX(I,I,L)}
509 CONTINUE
    DO 502 L=1,LMAX
    DO 502 J=1, JMAX
    DO 502 I=1,IMAX
    02(I,J,L)=02(I,J,L)+GU(I,J,L)
502 CONTINUE
    CALL INVERS(O1,GU,DUDX,1,N1,N2,N3)
```

```
    CALL INVERS(O2,GV,DUDX,2,N1,N2,N3)
    CALL INVERS(O3,GW,DUDX,3,N1,N2,N3)
    CALL CURLO(GU,GV,GW,U,V,W,N1,N2,N3)
    COMPUTE THE MEAN INITIAL VELOCITY FIELD AND NORMILIZE THE EQUATION
    WITH DELTA U(DELU) FOR THE VELOCITY SCALE AND THETA THE MOMENTUM
    THICKNESS FOR THE LENGTH SCALES.
    CDUM=1./(IMAX*JMAX)
    DO 506 L=1,LMAX
    DUDX (1,1,L)=0.
    DO 506 J=1, JMAX
    DO 506 I=1,IMAX
    DUDX(1,1,L)=DUDX(1,1,L)+U(I,J,L)*CDUM
    506 CONTINUE
    DELU=DUDX(1,1,LMAX)-DUDX(1,1,1)
    THETA=(0.25-(DUDX(1,1,1)/DELU)**2)*0.5
    LMAXMI = LMAX-1
    DO 504 L=2,LMAXM1
    THETA=THETA+(0.25-(DUDX(1,1,L)/DELU)**2)
504 CONTINUE
    THETA=THETA+(0.25-(DUDX(1,1,LMAX)/DELU)**2)*0.5
    THETA=THETA*DELTAZ
    DELTAX=DELTAX/THETA
    DELTAY=DELTAY/THETA
    DELTAZ=DELTAZ/THETA
    CALL STWV
    DO 505 L=1,LMAX
    DO 505 J=1, JMAX
    DO 505 I=1,IMAX
    U(I,J,L)=U(I,J,L)/DELU
    V(I,J,L)=V(I,J,L)/DELU
    W(I,J,L)=W(I,J,L)/DELU
505 CONTIAHE
    CALL CURIU(U,V,W,O1,02,03,N1,N2,N3)
    PRINT }70
708 FORMAT(1HO,130H********************************************************
    l ###************************************************************************
    2************** )
        DT =0.03125*DELU/THETA
        PRINT 1116,DELU,THETA,DT
1116 FORMAT(IX,1H*,* DELU=*,E15.7,10X,* THETA=*,E15,7,10X,* DT=*,E15.7.
    $46X,IH*)
        PRINT 1117,DELTAX,DELTAY,DELTAZ
1117 FORMAT(1X,1H*,* DELTAX=*,E15.7,10X,* DELTAY=*,El5.7,10X,* DELTAZ=*
    &,E15.7,35X,1H*)
        PRINT }70
        CALL RNDINIC
        UDUM=0.
        DO 507 L=1,LMAX
        DO }507\textrm{J}=1,\textrm{JMAX
        DO 507 I=1,IMAX
        IF(ABS(U(I,J,L)).GT.UDUM) UDUM=ABS(U(I,J,L))
        IF(ABS(V(I,J,L)).GT.UDUM) UDUM=ABS(V(I,J,L))
        IF(ABS(W(I,J,L)).GT.UDUM) UDUM=ABS(W(I,J,L))
        507 CONTINUE
        CUDUM=0.30/UDUM
        DO 510 L=1,LMAX
        DO 510 J=1,JMAX
        DO 510 I =I,IMAX
    U(I,J,L)=U(I,J,L)*CUDUM
        V(I,J,L)=V(I,J,L)*CUDUM
        W(I,J,L)=W(I,J,L)*CUDUM
        510 CONTINUE
            CALL CURLU(U,V,W,O1D,O2D,O3D,N1,N2,N3)
        DO 512 L=1, LMAX
        DO 512 J=1,JMAX
        DO 512 I=1,IMAX
    01(I,J,L)=01(I,J,L)+01D(I,J,L)
    02(I,J,L)=02(I,J,L)+02D(I,J,L)
        O3(I,J,L)=03(I,J,L)+O3D(I,J,L)
        512 CONTINUE
```

```
    CALL INVERS(O1,GU,DUDX,1,N1,N2,N3)
    CALL INVERS(02,GV,DUDX,2,N1,N2,N3)
    CALL INVERS(O3,GW,DUDX,3,N1,N2,N3)
    CALL CURLO(GU,GV,GW,U,V,W,N1,N2,N3)
    DO 513 L=1, LMAX
    DO 513 J=1,JMAX
    DO 513 I=1,IMAX
    01D(I,J,L)=0.
    02D(I,J,L)=0.
    03D(I,J,L)=0.
    513 CONTINUE
    DUMM1 =0.
    DUMM2=0.
    DO 3333 I=1,IMAX
    DO 3333 J=1, JMAX
    DO 3333 L=1,LMAX
    IF(OI(I,J,L.).GT.DUMM1) DUMMI=O1(I,J,L)
    IF(O2(I,J,L).GT.DUMM2) DUMM2=02(I,J,L)
3333 CONTINUE
    PRINT 3334,DUMM1,DUMM2
3334 FORMAT(1X,* DUMM1 = *,E15.7,2X,* DUMM2= *,E15.7)
    RETURN
    END
*DECK PARPLOT
    SUBROUTINE PARPLOT
```



```
C THIS ROUTINE PLOTS THE PARTICLES TRACKS . *
C XMIN IS FIXED TO BE ZERO
    ZMIN IS FIXED TO BE ZERO
    XMAX IS FLOATINE AND DEPENDS ON NUMBER OF MESHES USED AND DELTAX *
    ZMAX IS FLOATING AND DEPENDS ON NUMBER OF MESHES USED AND DELTAZ *
    SCX IS THE SCILING FACTOR TO ADJUST TO A PAGE LENGHT OF 8 INCHES *
    SCZ IS THE SCALING FACTOR TO ADJUST TO A PAGE LENGHT OF 8 INCHES *
```



```
*CALL DATA9
*CALL DEL
*CALL XL
    DATA LB/IHX/
    DATA NLJIHZ/
    XHIN=O.
    XMAX=(IMAX-1)*DELTAX
    ZMIN=0.
    ZMAX=(LMAX-1)*DELTAZ
    PPXMAX=13.0
    PPZMAX=10.
    SCX=PPXMAX/XMAX
    SCZ=PPZMAX/ZMAX
    CALL LINAXS(0.,0,,PPXMAX,PPZMAX,.1,-1,10,1,XMIN,XMAX,3,4,LB)
    CALL LINAXS(0.,0.,PPXMAX,PPZMAX,.1,+1,10,1,ZMIN,ZMAX,3,4,NL)
    DO 1 N=1,140
    X=XPART(N)*SCX
    Z=ZPART(N)*SCZ
    NC=NCHAR(N)
    CALL SYMBOL(X,Z,0,1,0,0,,-NC)
    1. CONTINUE
    CALL PLOT(0,,0,,6)
    RETURN
    END
*DECK PARTRAC
    SUBROUTINE PARTRAC(NPART,DT)
C***************************************************************************
    THIS SUBROUTINE COMPUTES THE PARTICLES TRACK OF A TWO DIM MEAN.
    IT USES LINEAR INTERPOLATION TO COMPUTR THE VELOCITIES BETWEEN
    THE MESHES. TIME ADVANCING IS A FIRST ORDER EULER METHOD.
C************ K***********************************************************
*CALL LARGE2
*CALL DATA9
*CALL DEL
*CALL LARGE3
*CALL XL
```

```
        RLX=(IMAX-1)*DELTAX
        RLY=(JMAX-1)*DELTAY
        RLZ=(LMAX-1)*DELTAZ
        DO 1 M=1,NPART
        IX=XPART(M)/DELTAX+I
        IY=YPART(M)/DELTAY+1
        LZ=2PART(M)/DELTAZ+I
        IXPI=IX+1
        IYPI=IY+1
        LZP1=LZ+1
        IF(IX.EQ.IMAX) IXPI=1
        IF(IY .EQ. JMAX) IYPI=1
        IF(LZ.EQ.LMAX) LZPI=LZ
        CCX=(XPART(M)-(IX-1)*DELTAX)/DELTAX
        CCY=(YPART(M)-(IY-1)*DELTAY)/DELTAY
        CCZ=(ZPART(M)-(LZ-1)*DELTAZ)/DELTAZ
        UIPART=U(IX,IY ,LZ )+(UCIXPI,IY
        VIPART=V(IX,IY ,LZ )+(V(IXPI,IY
        WIPART=W(IX,IY ,LZ )+(W(IXPI,IY
        U2PART=U(IX,IY, LZPI)+(U(IXPI,IY
        V2PART=V(IX,IY ,LZPI)+GV(IXPI,IY
        WZPART=W(IX,IY, LZPI)+(W(IXPI,IY
        UIPART=U1PART+(U2PART-UIPART)*CCZ
        W2PART=W(IX,IY, LZPI)+(W(IXPI,IY, LZPI)-W(IX,IY, LZPI))*CCX
        UIPART=UIPART+(U2PART-UIPART)*CCZ
        VIPART =VIPART+(V2PART-VIPART)*CCZ
        WIPART=W1PART*(W2PART-WIPART)*CCZ
        U2FART=U(IX,IYP1,LZ )+(U(IXPI,IYPI,LZ )-U(IX,IYPI,LZ ))*CCX
        V2PART=V(IX,IYPI,IZ )+(V(IXPI,IYPI,LZ )-V(IX,IYPI,LZ ))*CCX
        W2PART=W(IX,IYPI,LZ )+(W(IXPI,IYPI,LZ )-W(IX,IYPI,LZ ))*CCX
        U3PART=U(IX,IYPPI,LZPP1)+(U(IXP1,IYP1,LZP1)-U(IX,IYP1,LZP1))*CCX
        VZPART=V(IX,IYPI,LZPI)+(V(IXPI,IYP1,LZP1)-V(IX,IYPI,LZPI))*CCX
        W3PART=W(IX,IYPI,LZP1)+(W(IXP1,IYP1,LZP1)-W(IX,IYPI,LZPI))*CCX
        U2PART =U2PART+(U3PART-U2PART)*CCZ
        V2PART =V2PART+(V3PART-V2PART)*CCZ
        W2PART=W2PART+(W3PART-W2PART)*CCZ
        UIPART=UIPART+(U2PART-U1PART)*CCY
        VIPART=V1PART+(V2PART-VIPART)*CCY
        WIPART =WIPART+(W2PART-WIPART)*CCY
        XPART(M)=XPART(M)+DT*UIPART
        YPART(M)=YPART(M)+DT*VIPPART
        ZPART(M)=ZPART(M)+DT*W1PART
        IF(XPART(M).GT.RLX) GO TO 10
        GO TO 20
    10 XPART(M)=XPART(M)-RLX
    20 IF(XPART(M).LT.O.) GO TO 30
    GO TO 40
    30 XPART(M)=XPART(M)+RLX
    40 IF(YPART(M).GT.RLY) GO TO 70
    GO TO }8
    70 YPART(M)=YPART(M)*RLY
    80 IF(YPART(M).LT.O.) GO TO 90
        GO TO 100
    90 YPART(M)=YPART(M)+RLY
    100 IF(ZPART (M).GT.RLZ) GO TO 50
    GO TO 60
    50 ZPART(M)=RLZ
    60 IF(ZPART(M).LT.0.) ZPART(M)=0.
    1 CONTINUE
        RETURN
        END
*DECK PARTIAL
    SUBROUTINE PARTIAL(M,U,N1,N2,N3)
    DIMENSION U(N1,N2,N3)
*CALL DATA9
*CALL BLANK
*CALL WV
*CALL DATAT
    LEVEL 2,U
```

$I J=N 1 * N 2$
IF (M, EQ. 2) GO TO 30
C*****DERIVATIVE IN THE X-DIRECTION $* *$ DO $10 L=1$, LMAX
CALL MOVLEV(U(1,1,L),FR(1,1),IJ)
CALL FFTX (1.0)
DO $15 \mathrm{~J}=1$, JMAX
DO $15 \mathrm{I}=1$, IMAX
$\operatorname{DUM}=F I(I, J)$
FI(I, J) =WAVEX(I) KFR(I, J)
$\operatorname{FR}(I, J)=-W A V E X(I) * D U M$
CALL FFTX -1.0)
CALL $\operatorname{MOVLEV}(F R(1,1), \operatorname{DUDX}(1,1,1), I J)$
CONTINUE
GO TO 300
 30 CONTINUE

DO 35 L=1,LMAX
CALL MOVLEV(U $1,1, L), \operatorname{FR}(1,1), I J)$
DO $32 \mathrm{~J}=1$, JMAX
DO $32 I=1$, IMAX
$F I(I, J)=0.0$

CALL FFTY(1.0.1.0)
DO $40 \mathrm{~J}=1$, JMAX
DO $40 \quad I=1$, IMAX
DUM=FI(I,J)
$\operatorname{FI}(I, J)=\operatorname{WAVEY}(J) * F R(I, J)$
FR(I,J) $=-W A V E Y(J) * D U M$

CONTINUE
CALL FFTY(-1.0,1.0)
CALL MOVLEV(FR(1,1), DUDX(1,1,L),IJ)
35 CONTINUE
300 CONTINUE
RETURN
END
*DECK RGEN
$\begin{array}{ll}* * * & \text { FUNCTION RGEN(D) } \\ * & \text { CALLED AS A FUNCTION WITH } 1 \text { ARGUMENT (WHICH IS IGNORED) }\end{array}$
RETURNS IN $\times 6$ A RANDOM NUMBER GENERATED BY MULTIPLYING 1 OF 5 INTEGER CONSTANTS BY THE CORRESPONDING GENERATOR SEE BKY USERS HANDBDOK FOR REFERENCES
SST
RGENCOM - USED TO STORE THE GENERATORS AND POINTER
GEN USE /RGENCOM/ \quad DATA 1048015011 DHE 5 GENERATORS
$\begin{array}{ll}\text { DATA } & 1048015011 \mathrm{D} \\ \text { DATA } & 236846573 \mathrm{D}\end{array}$
DATA $\quad 4216793093 \mathrm{D}$
DATA 7792106907 D

USE * ENTRY RGN
IF -DEF,FTN,I
ENTRY RGENS
COMMENT RANDOM NUMBER GENERATOR (\#MODLEVEL\#)
VFD $\quad 42 / 4 \mathrm{LRGEN}, 18 / R G E N$
IF ${ }^{\text {ELSE }} 2 \mathrm{FF}, \mathrm{FTN}$
RGEN
RGENS

ELSE 2
EQU RGE
EQU
RGEN
PTR RGEN
SA3 1
5×7
SA4 XI GEN-1 GET GENERATOR
SA5 XI CON-I GET CONSTANT

ENTRY / EXIT
SINCE ARG IS IGNORED
GET POINTER
GET ENTRY POINT

	MX2
	AX3
	IXO
	SB7
	0X6
	P1
	MX1
RGEN1	BSS
	SA3
	5×7
	SA7
	BX7
	BX5
	SA7
	NX6
	JP
CON	data
	data
	data
	DATA
	dATA
EXP	dATA
	END

```
60-35
```

4 - PTR

UNLESS PTR $=5$ IF PTR WAS 5

INCREMENT PTR STORE NEW POINTER MASK LOW 35 BITS PUT IN EXPONENT STORE NEN GENERATOR

JUMP DIRECTLY BACK CONSTANTS TO MULTIPLY BY
FIELD TO THE MIDDLE OF THE BOX
LEVEL 2,01,02,03

* Call datag
*CALL DIM
COMMON/DUM1/ UM $(16,16,16)$, $\operatorname{VM}(16,16,16)$, $\operatorname{WM}(16,16,16)$
COMMON/DUM2/ GUI $(16,16,16)$, $\operatorname{GVI}(16,16,16)$, $\operatorname{GWI}(16,16,16)$
LEVEL 2, UM, UM, WM, GUI,GVI, GWI
CALL INICON(C,COF,DT,UM,VM,WM,GUI,GVI, GWI, 16, 16,16)
IMAX $=\mathrm{NI}$
JMAX $=\mathrm{N} 2$
LMAX $=\mathrm{N} 3$
DO $1 \quad L=1,16$
DO $1 \mathrm{~J}=1$, JMAX
DO 1 I $=1$,IMAX
$\mathrm{LI}=25-\mathrm{L}$
L2=17-L
$U(I, J, L 1)=U M(I, J, L 2)$
$V(I, J, L I)=V M(I, J, L 2)$
$W(I, J, L 1)=W M(I, J, L 2)$
1 CONTINUE
DO $2 L=1,13$
DO $2 \mathrm{~J}=1, \mathrm{JMAX}$
DO $2 \mathrm{I}=1$,IMAX
$U(I, J, L)=0$.
$V(I, J, L)=0$.
$W(I, J, L)=0$.
2 CONTINUE
DO 3 L=21, LMAX
DO $3 \mathrm{~J}=1$, JMAX
DO $3 \mathrm{I}=1$, IMAX
$U(I, J, L)=0$.
$V(I, J, L)=0$.
$W(I, J, L)=0$.
3 CONTINUE
CALL TNIFILT(U,N1,N2,N3)

```
    CALL INIFILT(V,N1,N2,N3)
    CALL INIFILT(W,N1,N2,N3)
    CALL CURLO(U,V,W,01,02,03,N1,N2,N3)
    DO 16 L=1,LMAX
    DO 16 J=1,JMAX
    DO 16 I=1,IMAX
    U(I,J,L)=01(I,J,L)
    V(I,J,L)=02(I,J,L)
    W(I,J,L)=03(I,J,L)
    16 CONTINUE
    CALL CURLU(U,V,W,01,02,03,N1,N2,N3)
    CALL INVERS(O1,GU,DUDX,1,N1,N2,N3)
    CALL INVERS(02,GV,DUDX,2,N1,N2,N3)
    CALL INVERS(O3,GW,DUDX,3,N1,N2,N3)
    CALL CURLO(GU,GV,GW,U,V,W,N1,N2,N3)
    RETURN
    END
*DECK SINPART
    SUBROUTINE SINPART(U,N1,N2,N3)
```



```
C THIS ROUTINE CONPUTES THE PARTIAL DERIVATIVE OF U IN THE Z-
C DIRECTION BY EXPANDING IN FOURIER SINE SERIES.
C**************************************************************************
    DIMENSION U(N1,N2,N3)
*CALL BLANK
*CALL WV
*CALL DAT21
*CALL DATA9
    LEVEL 2,U
    DO 10 J=1,JMAX
    DO 10 I=1,IMAX
    DO 20 L=1,LMAX
    XR(L)=U(I,J,L)
    20 CONTINUE
    SIGN=1.0
    CALL FDST(SIGN)
    DO }30\mathrm{ L=1,LMAX
    XR(L)=XR(L)*WAVEZ(L)
3 0
    SI
    CALL FDCT(SIGN)
    DO 40 L=1, LMAX
    DUDX(I,J,L)=XR(L)
    4O CONTINUE
    10 CONTINUE
    RETURN
    END
*DECK SFILTER
    SUBROUTINE SFILTER(HR,HI,N1,N2,N3)
C*********************************************************************************
C SFILTER FILTERS HR BY EXPANDING IT IN A FOURIER SINE SERIES IN
C THE Z/DIRECTION AND FOURIER SERIES IN THE OTHER TWO DIRECTIONS.
C*******************************************************************************
    DIMENSION HR(N1,N2,N3),HI(N1,N2,N3)
*CALL FLT
*CALL DATA9
*CALL DATA7
*CALL DAT2l
    LEVEL 2,HR
    CC=1.0/(IMAX×JMAX)
    IJ=N1*N2
    DO 10 J=1,JMAX
    DO 10 I=1,IMAX
    DO 20 L =1,LMAX
    XR(L)=HR(I,J,L)
20 CONTINUE
    CALL FDST(1.0)
    DO 30 L=1,LMAX
    HI(I,J,L)=XR(L)
```

```
        30 CONTINUE
    10 CONTINUE
        DO 40 L=1, LMAX
        CALL MOVLEV(HI(1,1,L),FR(1,1),IJ)
        CALL FFTX(1.0)
        CALL FFTY(1.0,1.0)
        DO 50 J=1,JMAX
        DO 50 I=I,IMAX
        FR(I,J)=FR(I,J)*FILTI(I)*FILT2(J)*FILT3(L)
        FI(I,J)=FI(I,J)*FILTI(I)*FILT2(J)*FILT3(L)
    50 CONTINUE
    CALL FFTX(-1.0)
    CALL FFTY(-1.0,CE)
    CALL MOVLEV(FR(1,1),HI(1,1,L),IJ)
    40 CONTINUE
    DO 60 J=1,JMAX
    DO 60 I=1,IMAX
    DO 70 L=1,LMAX
    XR(L)=HI(I,J,L)
    70 CONTINUE
    CALL FDST(-1.0)
    DO 80 L=1,LMAX.
    HR(I,J,L)=XR(L)
    80 CONTINUE
    60 CONTINUE
    RETURN
    END
*DECK
    SGS
    SUBROUTINE SGS(U,V,E,N1,N2,N3)
    DIMENSION U(N1,N2,N3),V(N1,N2,N3),E(N1,N2,N3)
*CALL DEL
*CALL LARGE3
*CALL LARGE5
*CALL BLANK
*CALL DATA9
    LEVEL 2,U,V,E
C*****************************************************************************
C THE SGS MODEL IS COMPUTED IN THIS ROUTINE BY SECOND ORDER DIFF
C AND STORED IN GU,GV,GW
C************************************************************************
    CSGSX=1.,(2,*DELTAX)
    CSGSY=1./(2.*DELTAY)
    CSGSZ=1./(2. *DELTAZ)
    IJK=N1*N2*N3
    CALL MOVLEV(DUDX(1,1,1),E(1,1,1),IJK)
    DO 210 L=1,LMAX
    LM1=L-1
    LP\=L+1
    IF (L,EQ. 1) LMI=LPI
    IF (L .EQ. LMAX) LPI=LMI
    DO 210 J=1,JMAX
    CALL FIX(JM1,J,JP1,JMAX)
    DO 210 I =1,IMAX
    CALL FIX(IMI,I,IP1,IMAX)
    U(I,J,L)=(E(I,JP1,L)*0I(I,JPI,L)-E(I,JM1,L)*OI(I,JMI,L))*CSGSY
    1.-(E(IP1,J,L)*02(IP1,J,L)-E(IM1,J,L)*02(IMMI,J,L))*CSGSX
    V(I,J,L)=(E(I,J,LPI)*OI(I,J,LPI)-E(I,J,LMI)*OI(I,J,LMI))*CSGSZ
    I-(E(IP1,J,L)*03(IP1,J,L)-E(IM1,J,L)*03(IM1,J,L))*CSGSX
    210 CONTINUE
    CALL PARTIAL(2,U,N1,N2,N3)
    CALL MOVLEV (DUDX(1,1,1),U(1,1,1),IJK)
    CALL COSPART(V,N1,N2,N3)
    DO 220 L=1,LMAX
    DO 220 J=I,JMAX
    DO 220 I=1,IMAX
    GU(I,J,L)=GU(I,J,L)+U(I,J,L)+DUDX(I,J,L)
    220 CONTINUE
    DO 230 L=1, LMAX
    LM1 =L-1
    LP\ =L+1
```

 IF (L .EQ. I) LMI=LPI
 IF (L OQ. LMAX) LPI=LMI
 DO 230 J=1,JMAX
 CALL FIX(JMI,J,JPI,JMAX)
 DO 230 I=1,IMAX
 CALL FIX(IMI,I,IPI,IMAX)
 U(I,J,L)=(E(IPI,J,L)*02(IPI,J,L)-E(IMI,J,L)*02(IMI,J,L))*CSGSX
 1-(E(I,JP1,L)*01(I,JP1,L)-E(I,JM1,L)*01(I,JMI,L))*CSGSY
 V(I,J,L)={E(I,J,LPI)*O2(I,J,LPI)-E (I,J,LMI)*O2(I,N,IMI))*CSGSZ
 1 -(E(I,JPI,L)*O3(I,JPI,L)-E(I,JMI,L)*O3(I,JMI,L))*CSGSY
 230 CONTINUE
CALL PARTIAL(1,U,N1,N2,N3)
CALL MOVLEV(DUDX(1,1,1),U(1,1,1),IJK)
CALL COSPART(V,N1,N2,N3)
DO 240 L=1,LMAX
DO 240 J=1, JMAX
DO 240 I =1,IMAX
GV(I,J,L)=GV(I,J,L)+U(I,J,L)+DUDX(I,J,L)
240 CONTINUE
DO 250 L=1. LMAX
LMl=L-1
|P\ =L+1
IF (L .EQ. 1) LMI=LPI
IF (L.EQ. LMAX) LPI=LMI
DO 250 J=1,JMAX
CALL FIX(JMI,J,JP1,JMAX)
DO 250 I=1, IMAX
CALL FIX(IMI,I,IPI,IMAX)
U(I,J,L)=(E(IPI,J,L)*03(IP1,J,L)-E(IMI,J,L)*03(IMI,J,L))*CSGSX
1-(E(I,J,LPI)*O1(I,J,LPI)-E(I,J,LMI)*OI(I,J,LMI))*CSGSZ
V(I,J,L)=(E(I,JP1,L)*03(I,JPI,L)-E(I,JM1,L)*O3(I,JMI,L))*ESGSY
1-(E(I,J,LPI)*02(I,J,LPI)-E(I,J,LMI)*02(I,J,LMI))*CSGSZ
250 CONTINUE
CALL PARTIAL(1,U,N1,N2,N3)
CALL MOVLEV(DUDX(1,1,1),U(1,1,1),IJK)
CALL PARTIAL(2,V,NI,N2,N3)
DO 260 L=1,LMAX
DO 260 J=1,JMAX
DO 260 I=1,IMAX
GW(I,J,L)=GW(I,J,L)+U(I,J,L)+\operatorname{DUDX}(I,J,L)
260 CONTINUE
RETURN
END
*DECK STFILT
SUBROUTINE STFILT
C**
C THIS SUBROUTINE INITIALIZE THE TRANSFORM OF THE FILTER IN EACH
DIRECTION. THE TRANSFORM IS STORED IN FILTI,FILTZ,FILT3,FOR USE
IN SUBROUTINE FILTER.
C***
*CALL AVG
*CALL FLT
*CALL DATA7
*CALL DAT2I
*CALL DATA9
KCALL PR
NHP IX =IMAX/2+1
NHP1Y = JMAX / 2+1
NHP2X=NHP1X+1
NHP2Y=NHP1Y+1
LMAXM1 = LMAX-1
IF(CCF .NE. O.) GO TO 400
C*****FIX THE TRANSFORM OF THE FILTER IN THE X-DIRECTION
DO 100 J=1,JMAX
DO 100 I=1,NHPIX
FR(I;J)=EXP(-6,*(FLOAT(I-1)/AVG1)**2)
100 CONTINUE
DO 110 J=1,JMAX
DO 110 I =NHP2X,IMAX
II=IMAX-I+2

```
\(\operatorname{FR}(I, J)=F R(I I, J)\)
110 CONTINUE
\(A R E A=0.0\)
DO \(120 \mathrm{I}=1\), IMAX
AREA \(=A R E A+F R(I, 1)\)
120
CONTINUE
DO \(130 \mathrm{~J}=1\), JMAX
DO \(130 \mathrm{I}=1\), IMAX
\(\operatorname{FR}(\bar{I}, J)=F R(I, J) / A R E A\)
\(F I(I, J)=0.0\)
130 CONTINUE
CALL FFTX(1.0)
DO \(140 \mathrm{I}=1\), IMAX
FILTI(I) \(=F R(I, 1)\)
140 CONTINUE
C※※¥**FIX THE TRANSFORM OF THE FILTER IN THE Y-DIRECTION
DO \(200 \mathrm{~J}=1\). NHPIY
DO \(200 \mathrm{I}=1\), IMAX
\(\operatorname{FR}(I, J)=\operatorname{EXP}(-6 . *(\operatorname{FLOAT}(J-1) / A V G 2) * * 2)\)
200 CONTINUE
DO \(210 \mathrm{~J}=\) NHP \(2 Y\), JMAX
DO \(210 \mathrm{I}=1\), J.MAX
\(J J=J M A X-J+2\)
\(F R(I, J)=F R(I, J J)\)
210 CONTINUE
AREA \(=0.0\)
DO \(220 \mathrm{~J}=1\), JMAX
AREA \(=A R E A+F R(1, J)\)
220 CONTINUE
DO \(230 \mathrm{~J}=1\), JMAX
DO 230 I=1, IMAX
\(\operatorname{FR}(I, J)=F R(I, J) / A R E A\)
FI \((I, J)=0.0\)
230 CONTINUE
CALL FFTY(1.0,1.0)
DO \(240 \mathrm{~J}=1\), JMAX
FILT2(J)=FR(1, J)
240 CONTINUE
C*****FIX THE TRANSFORM OF THE FILTER IN THE Z-DIRECTION
DO \(300 \mathrm{~L}=1\), LMAX
\(X R(L)=\operatorname{EXP}(-6 . *(F L O A T(L-1) / A V G 3) * * 2)\)
300 CONTINUE
AREA \(=0.5 * \times R(1)\)
DO \(310 \mathrm{~L}=2\), LMAXMI
\(A R E A=A R E A+X R(L)\)
310 CONTINUE
AREA \(=A R E A+0.5 * X R\) (LMAX)
DO \(320 \mathrm{~L}=1\). LMAX
\(X R(L)=X R(L) / A R E A\)
320 CONTINUE
CALL FDCT(1.0)
DO 330 L=I, LMAX
FILT3(L) =XR(L)
330 CONTINUE
FILTI(NHPIX) \(=0\).
FILT \(2(\) NHPIY \()=0\).
FILT3 (LMAX) \(=0\).
GO TC 410
400 IF (CCF.NE. 1.0\()\) GO TO 410
MC \(=(\operatorname{LMAX}-1) * 2 / 3\)
DO 7 L=1, LMAX
FILT3(L) \(=0\).
7 CONTINUE
DO \(8 \quad L=1, M C\)
FILT3(L) \(=1.0\)
8 CONTINUE
MC \(=\) JMAX \(/ 3+1\)
DO \(9 \mathrm{~J}=1\), JMAX
FILT2(J) \(=0\).
9 CONTINUE
```

 DO 10 J=1,MC
 FILT2(J)=1.0
 JJ=JMAX-J+1
 FILT2(JJ)=1.0
 MC=JMAX-MC+1
 FILT2(MC)=0.
 MC=IMAX/3+1
 DO 11 I=1,IMAX
 FILTI(I)=0.
 11 CONTINUE
 DO 12 I=1,MC
 FILTl(I)=1.0
 II=IMAX+I-I
 FILTI(II)=1.0
 12 CONTINUE
 MC = IMAX-MC+1
 FILTI(MC)=0.
 410 PRINT 1119,CCF
 1119 FORMAT(IHO,* CCF=*,1PE15.7)
IF(CCPF.NE. 1.C) GO TO 340
PRINT 1116,(FILTI(I),I=1,IMAX)
PRINT 1117,(FILT2(J),J=1,JMAX)
PRINT 11I8,(FILT3(L),L=1,LMAX)
1116 FORMAT(IX,* FILTI =*,IPE15.7)
1117 FORMAT(1X,* FILT2 =*,IPE15.7)
1118 FORMAT(1X,* FILT3 =*,1PE15.7)
340 CONTINUE
RETURN
END
*DECK STPART
SUBROUTINE STPART(NPART)
*CALL LARGE5
*CALL XL
*CALL DATA9
*CALL DEL
YPART(1)=0.
YPART(17)=0.
XPART(1)=(6-1)*DELTAX
XPART(17)=(11-1)*DELTAX
ZPART(1j=(17.-1.)*DELTAZ
ZPART(17)=(17.-1.)*DELTAZ
NCHAR(1)=1
NCHAR(17)=2
YPART(33)=0.
YPART(49)=0.
YPART(65)=0.
YPART(81)=0.
YPART (97)=0.
YPART(113)=0.
YPART(129)=0.
YPART(145)=0.
XPART(33)=XPART(1)+0.5*DELTAX
XPART(49)=XPART(1)-0.5*DELTAX
XPART(65)=XPART(1)
XPART (81) =XPART (1)
ZPART(33)= ZPART(1)
ZPART(49)=ZPART(1)
ZPART(65)=2PART(1)+0.5*DELTAZ
ZPART(81)=2PART(1)-0.5*DELTAZ
XPART(97)=XPART(17)+0.5*DELTAX
ZPART(97)=ZPART(17)
XPART(113)=XPART(17)-0.5*DELTAX
ZPART(113)=ZPART(17)
XPART:129)=XPART(17)
ZPART(129)=ZPART(17)+0.5*DELTAZ
XPART(145)=XPART(17)
ZPART(145)=2PART(17)-0.5*DELTAZ
NCHAR(33)=3
NCHAR(49)=4

```
```

 NCHAR(65)=5
 NCHAR(81)=6
 NCHAR(97)=7
 NCHAR(113)=8
 NCHAR(129)=9
 NCHAR(145)=10
 NPART=160
 DELX=0.
 DELZ=0.
 N=0
 DO 1 M=1,10
 N=N+1
 DO 2 J=2,JMAX
 N=N+1
 NCHAR(N)=M
 IX=XPART(N-1)/DELTAX+1
 LZ=ZPART(N-1)/DELTAZ+1
 IXPI=IX+1
 LZPI=LZ+I
 CCX=(XPART(N-1)-(IX-1)*DELTAX)/DELTAX
 CCZ=(ZPART(N-1)-(LZ-1)*DELTAZ)/DELTAZ
 01P1=01(IX,J,LZ)+(01(IXP1,J,LZ)-01(IX,J,LZ))*CCX
 02PI=02(IX,J,LZ)+(02(IXPI,J,LZ)-02(IX,J,LZ))*CCX
 03P1=03(IX,J,LZ)+(03(IXPI,J,LZ)-03(IX,J,LZ))*CCX
 01P2=01(IX,J,LZP1)+(01(IXP1,J,LZP1)-01(IX,J,LZP1))*CCX
 02P2=02(IX,J,LZP1)+(02(IXP1,J,LZP1)-02(IX,J,LZP1))*CCX
 03P2=03(IX,J,LZPI)+(03(IXP1,J,LZPI)-03(IX,J,LZP1))*CCX
 01P1=01P1+(01P1-01P2)*CCZ
 02F1=02P1+(02P1-02P2)*CCZ
 03P1=03P1+(03P1-03P2)*CCZ
 DELX=01P1*DELTAY/02P1
 DELZ=03P1*DELTAY/02P1
 XPART(N)=XPART(N-1)+DELX
 YPART(N)=YPART(N-1)+DELTAY
 ZPART(N)=ZPART(N-1)+DELZ
 2 CONTINUE
 1 CONTINUE
 RETURN
 END
 *DECK STREAD
SUBROUTINE STREAD
C*****************:***
THIS SUBROUTINE READ THE INPUT PARAMETERS
IMAX=NUMBER OF GRID POINTS IN THE X-DIRECTION
JMAX=NUMBER OF GRID POINTS IN THE Y-DIRECTION
LMAX=NUMBER OF GRID POINTS IN THE Z-DIRECTION
AVG2=FILTERING WIDTH IN THE Y-DIRECTION
AVG3=FILTERING WIDTH IN THE Z-DIRECTION
AVGI=FILTERING WIDTH IN THE X-DIRECTION
DELTAX = MESH SIZE IN THE X-DIRECTION
DELTAY = MESH SIZE IN THE Y-DIRECTION
DELTAZ = MESH SIZE IN THE Z-DIRECTION
NI = ARRAY SIZE IN THE X-DIRECTION
N2= ARRAY SIZE IN THE Y-DIRECTION
N3= ARRAY SIZE IN THE Z-DIRECTION
CCFW= 1 IF PRINT OUT OF WAVE IS WANTED,OTHERWIZE NO PRINT OUT
CCPF=1 IF PRINT OUT OF FILT IS WANTED,OTHERWIZE NO PRINT OUT
CCPD=1 IF PRINT OUT OF LINE AVERAGE OF U-COMPONENT:
LINE AVERAGE OF W-COMPONENT AND ENSEMBLE AVERAGE PERTURBATIONS*
IS REQUIRED, OTHERWIZE NO PRINT OUT:
C***
INTEGER TSTART,TEND
*CALL DATA9
COMMON/TIM/ TSTART,TEND
*CALL DEL
*CALL DIM
*CALL AVG
\#CALL
PR
READ 703, IMAX, JMAX, LMAX, TSTART, TEND
READ 704,DELTAX,DELTAY,DELTAZ

```

READ 704,AVG1,AVG2,AVG3,CCF
READ \(703, \mathrm{~N} 1, \mathrm{~N} 2, \mathrm{~N} 3\)
READ 704, CCPW, CCPF,CCPD
PRINT 708
PRINT 705,IMAX, JMAX, LMAX,TSTART,TEND
PRINT 706, DELTAX,DELTAY,DELTAZ
PRINT 707,AVGI,AVG2,AVG3
PRINT 709,N1,N2,N3
PRINT 708
703 FORMAT(1015)
704 FORMAT (4E10.4)
705 FORMAT \(1 X\) * \(*\) IMAX \(=*, I 5,5 X, *\) JMAX \(=*, I 5,5 X, *\) LMAX \(=*, I 5,5 X, *\) TSART \(=* I 5\) \(+, 5 X, *\) TEND \(=*, I 5,52 X, I H *)\)
706 FORMAT(1X,* DELTAX \(=*\), IPE10.4,5X,* DELTAY=*, 1 E10.4,5X,* DELTAZ \(=*, 1\)
+PE10. \(4,64 X, 1 H *)\)
707 FORMAT \(1 X, *\) AVGIX \(=x, 1\) PE10.4,5X,* AVG2 \(=*, 1\) E10.4,5X,* AVG3=*, 1
+PE10. \(4,64 \mathrm{X}, 1 \mathrm{H} *)\)

 \(2 * * * * * * * * * * * * * ~) ~\)
709 FORMAT(1X,* N1=*,I5,5X,* N2=*,I5,5X,* N3=*,I5,5X,70X,1H*) RETURN
END
*DECK STWV
SUBROUTINE STWV

c STWV SETS THE WAVE NUMBERS FOR A GIVEN MESH SIZE DELTA AND *
C NUMBER OF MESH POINTS NMAX THIS ROUTINE MUST BE CALLED
c TO INITIALIZE THE WAVE NUMBERS FOR THE PARTIAL ROUTINES AND *

 *CALL WV
*CALL DATA9
*CALL DEL
*CALL PR
PAI =3. 1415926535898
\(C X=2.0 \times P A I /(F L O A T(I M A X) * D E L T A X)\)
\(C Y=2.0 * P A I /(F L O A T(J M A X) * D E L T A Y)\)
\(C Z=P A I /(F L O A T(L M A X-1) * D E L T A Z)\)
C2X \(=C X / F\) LOAT (IMAX)
\(C 2 Y=C Y / F L O A T\) (JMAX)
NHPIX \(=\) IMAX \(/ 2+1\)
NHPIY \(=\) JMAX \(/ 2+1\)
DO 100 L \(=1\), LMAX
WAVEZ(L) =CZ*FLOAT (L-1)
WAVEZS(L) \(=-\) WAVEZ \((L) * * 2\)
100 CONTINUE
DO \(101 \mathrm{~J}=1\), JMAX
\(M M=J / N H P 1 Y\)
\(M=M M * J M A X+1\)
WAVEY(J) =C2Y*FLOAT (J-M)
WAVEYS \((J)=-(C Y * F L O A T(J-M)) * * 2\)
101 CONTINUE
DO \(102 I=1\), IMAX
MM \(=1 /\) NHP I \(X\)
\(M=M M * I M A X+1\)
WAVEX (I) \(=\mathrm{C} 2 \mathrm{X} *\) FLOAT (I-M)
WAVEXS \((I)=-(C X * F L O A T(I-M)) * * 2\)
102 CONTINUE
WAVEX \(\operatorname{NHP} 1 X)=0\).
WAVEY \(\operatorname{NHPIY})=0\).
WAVEXS \((N H P 1 X)=0\).
WAVEYS (NHPIY) \(=0\).
WAVEZ \((L M A X)=0\).
WAVEZS (LMAX) \(=0\).
IF (CCPW. NE. 1) GO TO 104
PRINT 1000, (WAVEX(I), WAVEXS (I), I =I, IMAX)
PRINT 1001, (WAVEY(J), WAVEYS(J), \(j=1\), JMAX)
PRINT 1002 , (WAVEZ (L), WAVEZS (L), \(L=1, L\) MAX)

104 CONTINUE
1000 FORMAT (1X,* WAVEX \(=*, 1\) PE15.7.5X, \({ }^{*}\) WAVEXS \(=*, 1\) PE15.7)
1001 FORMAT (IX,* WAVEY \(=*, 1\) PEI5.7.5X,* WAVEYS \(=*, 1 P E 15.7\) )
1002 FORMAT (1X,* WAVEZ \(=*, 1\) PE15.7,5X,* WAVEZS \(=*, 1\) PE15.7) RETURN END```

