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Abstract

The three-dimensional, time-~dependent (incompressible) vorticity
equations have been used to simulate numerically the decay of isotropic
box turbulence and time-developing mixing layers. The vorticity equa-
tions are spatially filtered to define the large-scale turbulence field,
énd the subgrid scale tufbulence is modeled. A general method has been
developed to show numerical conservation of momentum, vorticity, and
energy that is much simpler than previous methods and is widely appli-
cable. The terms that arise from filtering the equations have Been
treatéd (for both periodic boundary cbnditions and no-stress boundary -
conditions) in a fast and accurate way by.uéing fast Fourier transforms.
Use of vorticity as the principal variable~is shown to preduce results
equivalent to those oBtained by use of the primitive variable equations.

A new subgrid scale model is used in conjunction with the vorticity
equations and is shown to produce results that compare well with the ex-
perimental results. Thernew model offers advantages both in computational
speed and in storage.

The voftex—pairing mechanism, observedkin the spatially develdping
counterpart of the time-developing mixing layer, has been simulated nu-
merically. It is interesting to note that with simply two vortices pair-
ing, self-similar mean velocity and mean turbulence intensity profiles
are obtained. 'The;vofteerairing mechanism is shown to be persistent
evén'with the presence of large-amplitude, thrée~dimensional backgroundtit
'turbuience. A nuﬁber of different initiaivfields have been studied. The
presencé of lérge orgénized structures, in the initial conditions, is ‘
shown to be essential in order to predict growth rates of the mixing lay-
ers comparable to those observed experimentally. The rate of growth is
found to be very dependent.bn the initial field, a fact also observed

expetiméntally.'
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Chapter 1

INTRODUCTION

1.1 Background

Turbule&% flows have been the subject of experimental and theoretical
investigationslsiﬁee the last century. Despite the formidable amouit of
effort invested in this {ield, our ability to predict flows of technical
importance remains severely limited.  The major difficulty encountered by

the theoretical investigations arises from the nonlinear character of the

~equations of motion. Statistical averages of the eiﬁations of motion give

rise to the so-called Reynolds stresses. The equations for the Reynolds
stresses in turn give rise to higher~order statistical quahtities,’and s0
on. The usual approach to computing turbulent flows is to model the terms

that arise from the nonlinear character of the equations of motion. This

approach usually requires a great deal of experimental information.

. We know the underlying physical principles of most fluid flows, and
the quantlties of interest are completely determined by known equatlons.

With the introduction of large computers, three-dlmen51onal time-dependent

.-computation of turbulent flows has become possible. However, in order to

vresolve all the scales of ‘motion even in the simplest turbulent flow,

namely, the 1sotrop1c homogeneous case, Kwak et al, (1975) estimated: the

‘number of mesh points needed in any given direction to be

N = RS @)
whefek
Ry = (gd/v),
Vo= hklnematic v1scosity,
‘ ,gf = ,1ength scale of large eddies, and -
q = “r.m.s. velocity.

Equationn(l.l) shows that one can do a full simulation -only et'very

“low Reynolds"number. Indeed, ~Clerk'et al. (1977), using a 64X 64 X 64

mesh system, were able to solve the 1sotrop1c homogeneous turbulence
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problem for Rk = qA/v = 38.1, where )\ dis the Taylor microscale. Their
predicted results compared well with the experimental results. However,
turbulent flows of technical importance have much higher Reyﬁolds num-
bers, and all the scales of motion cannot be resolved for these flows.
One of the more promising approaches to solving turbulence problems
is "large-eddy simulation". In large-eddy simulation, one calculates
the large-scale turbulent motions with a relatively coarse time-dependent,
three-dimensional computation that uses‘some sort of model (the "subgrid
scale model") for the small scales. The basic motivations for this ap-
ptoach are tﬁofold. First, experimental observationg of turbulent flows
show that the large turbulent structures differ markedly from one flow
type to anOthef (e.g., jet vs. boundary layer), but the small-scale tur-
bulent structuresvare quite similar. Thus, while there is little hope
of concocting a "universal" model for the large structures, it may be

possible to do so for the small-scale motions. Second, as computer.

'capabilitiés»grow, our capability of resolving smaller scales will grow

and the effects of the subgrid scale model will dlmlnlsh Thus, whlle we

are limited to 51mple flows with the present computer capabllltles, large~-

eddy simulation is a tool that may be used on future generation computers.

Kwak et al. (1975) and Shaanan et al. (1975) have shown that homoge—
neous turbulent flows can be 31mulated reasonably well w1th a relatively
small number of mesh points (16X4l6><l6) Orszag and Pao (1974), using a
32><32><32,mesh;system, pred1¢ted’the momentumless wake of a self-
propelled body. Deardorff (1970) and Schuman (1973) computed the central

région of a plane channel floﬁ uéing the large-eddy simUlation approach.

- While Deardorff and Schumann did not handle the wall (no Sllp) problem,

Moin et al (1978) have solved the channel flow problem, including the

lamlnar sublayer.‘ In thlS work we shall study the tlme—developlng, two=

stream mlxing layer.

Previous works on prediction of the two-stream m1x1ng layer have con-

’ centrated on the initial stages (roll-up) of the development of the layer. ‘
’Patnaik et al (1976), starting with.an initial dlscributlon that is an .

:  iunstable eigensolutlon of the Taylor-Goldsteln equatlon, predicted the

two—dimen51onal roll—up of a stably stratlfled horlzontal m1XLng 1ayer.

_Another method that has been used to compute the’m1x1ng‘1ayer in two
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dimensions is the vortex-tracing method nsed bybAshurst (1977). This
method suffers from high computational costs and ad-hoc assumptions con-
cerning the effects of viscosity. The high computational cost of the
Vortex—tracing method can be reduced by using the vortex-in-cell method
(Wang, 1977). These works have treated two-dimensional cases, but the
mixing layer exhibits three-dimensionality. This is apparent from the
shadowgraph pictures of Brown and Roshko fl974) and the spanwise velocity

fluctuation measurements of Spencer and Jones (1971).

1.2 Experimental Background

The two-dimensional turbulent mixing.layer plays an essential role
in many technological problems., For example, the initial regions of pla-
nar jets can be approximated as two independent, two-dimensional mixing
-layers. . Flow over a backward-facing step (with a large step height) is
another example of the two-dimensional mixing layer. Many other flow
situations can be identified with the mixing layer. In combustion pro-
cesses, fluid mechanics plays a major role in mixing the reactents, and
better understanding of turbulent mixing is needed. Thermixing layer is
perheps the simplest situation in which two flows come into contact; ob-
viously the ability to anelyze,simple probiems is necessary before one can
analyze more complicated ones.

In 1947 Llepmann and Laufer studied the ‘mixing layer and establlshed
the general features of the flow. However, the fundamental understanding

of the structure of the flow is still far from complete, and many contro-

versial questlons need to be answered. We shall address some of these

questlons. The reader is referred to Murthy. (1975) for an extensive re-
view. and interpretation of the avallable llterature on the mixing 1ayer.

‘With the advancement of the technlques of hot-w1re anemometry, Wygnansk1
and Fledler (1970) attempted to reproduce Liepmann and Laufer data and

extend it to include other measurements. ‘However, differences,in inten-

:sity levels and rate of growth of the layer emerged v These differences

were attributed to the presence of a trip wire in the- Wygnansky ‘and Fied—

ler experlment that was not used by Liepmann and Laufex.k Batt (1975)

- studied both conflgurations and showed that the dlfferences are due to the

- tripping oﬁlthe layer. . Foss (1977) 1nvest1gated the effects of the
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laminar/turbulent boundary layer states on the development of a plane
mixing layer. He found that the development of the layer is dependent on
the dinitial conditions (Ehe status of the boundary layers before the two
streams merge). Figs. 1.1 and 1.2 show r.m.s. fluctuations of the stream-
wise velocity and the mean velocity profiles obtained by Foss.  These
figures show that different self-similar stages are obtained for different
initial conditions. -Foss argues that this is due to the sensitivity of
choosing the v1rtual origin of the mixing layer (x ) and that the charac-
ter of the (1n1t' l) disturbance, not its amplltude, is responsible for

the substantial effect on the virtual origin.  More recently, Oster et al.
(1977) showed that by oscillating the initial conditionsbaf the mixing 1ayer
they can more than double the growth rate of the layer. The effect depends
on’the frequency and amplitude of the oscillations intnbduced._ These ex-
perimental results show that the "universality'" of the self-similar stage
of the mixing layer is in doubt, at least up to Re = 1.5X% 106. Fiedler
and Thies (1977) showed that the two-dimensional shear layer only slowly
reaches a self-similar state and that every disturbance is of long influ-
ence. Table 1.1 shows tabulated results extracted from the Fiedler and
Thies paper, and it can be clearly seen that different experiments predict
'dlfferent growth rate of the layer. '

Winant and Browand (1974), using dye v1suallzat10n in a m1x1ng layer,
observed that 1n1t1ally‘the fluid rolls up into discrete, two-dimensional
vorﬁical stﬁuctures. Thesekstruetures then interact by rolling around
each other to form a single larger structure. This pairing process con-
trols the grawth of their mixingvlayer.' Brown and Roshko (1974) also ob-

- served the amalgamation process at ReYuolds number 2. 5><105k ChandrSuda
and Bradshaw (19/5) argue that the two-dimensional, large—eddy structure
observed by Brown and Roshko is unllkely to survive indefinitely if the
‘ambient entralned f1u1d is weakly turbulent. They advance the argument:
"It is probable that lf the Brown and Roshko type of orderly struccure is
once formed it can last for a large number of characterlstlc wavelengths ——
"that is, up to hlgh Reynolds numbers based on streamw1se dlstance -- but k
»295.1ndeflnitely5 The question can be settled only by measurements in a
two-stream mixingﬂlayerkat a,much_hlgher Reynolds number than was used by

“B:ownkand Roshko." Dimotakis and Brown (1976)‘shomed thenexistence;of

4




large structures at Reynolds number = 3><1O6 and attributed the growth

of the mixing layer to both pairing and "tearing". Tearing is described
in their paper as an event where "a large structure will occasionally

find itself in the vicinity of another, or in between two others, in whose
straining field it disintegrates." The tearing process was first advahced

by Moore and Saffman (1975) on the basis of exact solutions for uniform

vortices in straining fields.

1.3 Motivation and Objectives

In many flows of practical imterest there are interactions between
irrotational regions and turbulent regions. Exdmples of such flows are
the shéar layer, turbudlent jets,‘and turbulent boundary layers with irro-
tationél free stream flow. In such-flows, the regions are separated by
a very thin superlayer across which(zmere is normally a jump in the vor-
ticity components parallel to the 1ayer.‘ The dynamical equations for the.
vorticity seem to ‘be sumted to simulate such flows, since the vorticity is
identically zero in the 1rrotat10nal Tegion. However, previous workers
used the dynamical equations in the primitive variables (velocity, pfes—
sure) and theré has been dbubt‘(Orszag and Israeli, 1974) that the vor-
ticity equations could be used:to solve turbulent flow problems. Ourx
objectives»wére therefore as follows: i

e To explore the feasibility of using the votticit& equatioﬁ to simu-
1aCe turbmleht fiows., = |
o To find a subgrid scale model approprlate to the vort1c1ty equations i

and to determine any constants 1n thls model.

To-.simulate a turbulent flow with 1nteractlons betWeen turbulent re-.
_gions and non—turbulent irrotatlonal reglons, we chose the mixing
layer. '

: ;:‘In order to use the three—dlmensional time—dependent vortic1ty equa~-
'tlons, we need to deVelop a numerical approximatlon based on these equa-
tions-. that conserves mass, momentum, vortic1ty, and . enexgy. We also need

to: assess numerical finite-~difference methods and, in partlcular, the

i fourth—order and pseudo—spectral methods.'




1.4 Overview

The equations of motion of the large eddies are derived by averaging
(filtering) the vorticity equations in space. 1In Chapter 2, we describe
the approach to solving turbulent flow problems that is called large-eddy
simulation. We show that the use of a filter that is smooth in the real
space is required to handle rotational-irrotational regions. We present
a new subgrid scale model to be used in conjunction with the vorticity
equationé that is much simpler and faster than the one that would be ob-
tained. from the more commonly used Smagorinsky model.

In Chapter 3, we describe the numerical methodskused in this work,
briefly discussing the fourth-order and pseudo-spectral approximations and
numerical filtering. We develop a numerical approximation to the verticity
equation that'conserVes mass, momentum, vorticity, and energy, and é method

of deriving conservation properties that is much simpler than previous
methods and is widely applicable. We present a new treatment of the fil-
tered convective and strétching terms that is more accurate and faster
than previously uéed methods.

In Chapter 4, the isotropic homogeneous turbulence problem is solved

using both fourth-order differencing and the pseudo-spectral apprdximation.

- The numetical approximations to Ehepartialderivatives of the subgrid scale

model are discussed. We show that the use of the vorticity equaLlon to

solve turbulent flow problems is fe351ble and that the new model produces

results equivalent to those produced by prev;ously established models. .
Ianhaptet 5, we discuss the two—dimensional computation of a mixing

layer. An array of vortices is perturbed, and the momen tum thickness

- growth rate is discussed as a function of the perturbation. It is inter-

~esting to note. that self—51m1lar mean veloc1ty and turbulence intensity
profiles are obtalned with vortex palrlng.‘f

In Chapter 6 .a three-dlmen51ona1 computation of a turbulent mixing'
layer is studied. It is found that the presence of large structures in

the 1nitlal condltlons is. essential for the successful predlctlon of tur-

“bulent m1x1ngrlayers.k Our studies of dlfferent initial condltlons pro--

ducekdifferent growthkra;esrdfvthe iayer é—,a:fact supportedkexpétimentally.

Self-similar, mean-velocity profiles are dbtained with different flow struc—

- tdres.;‘However, turbulence intensity profiles'show;a rapid decay when




large turbulent structures are not present. We show that our subgrid
scale model inhibits the production of turbulent fluctuations when we
start with random turbulent fluctuations added to a mean velocity pro-
file, i.e., the model is incapable ofhandlingtfansitional flows, with

present computational limitations.
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' Chapter 2

THEORETICAL FOUNDATIONS .

2.1 Definitions of the Large and Subgrid Scales

field.

In the previous chapter it was shown that, due to computer limita-
tions, one cannot do a full simulation of the dynamical equations of tur-
bulent fluid motion,excgpt at extremely low Reynolds numbers. We pointed
out that the large—scalé turbulent structures differ markedly from one
flow to another (e.g., jet vs. boundary layer), while the small-scale

turbulent structures are quite similar, and that large-eddy simulation

~is a promising apprbach.

In the large-eddy simulétion approach, the first and most fundamental
step is defining the large-scale field. A general approach that recognizes
the continuous nature of the flow variables is the "filter function" ap- .
proach of Leonard (1973). If f is some flow variable, Qe"can decompose

it as follows::
£ = f+£ (2.1)

where f is the large-scale (filtered) component and f' is the residual

- field. Leonard defined the filtered field by:

?%/G(z-z') £(x") dx" e e (2.2)

whéfé G(x-x') is the filter function, and the integral is extended over

the whole flow field. One can think‘ofp~f' as a local spatial-averaged

It can be shown that if G is piecewise continuously differentiable

and G(x) goes Lo zero as T + » and is integrable over an infinite do-

main, then

b,(Z.Sa)
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However, in general,

FRv—

fg + Fg (2.3b)

Properties (2.3a) and (2.3b) will be used in deriving the dynamical

equations of the large scales motion.

2.2 Dynamical Equations in Vorticity Form

In Chapter 1, we pointed out that in many flows of practical interest
there are interactions between irrotational regions and rotational turbu-
lent regibns. Examples of such flows are shear layers, turbulent jets,
and turbulent boundary layers with irrotational free streams. In such
flows the regions are_sebarated byia very thin superlayer acioss which
there is normally a jump in the vérticity parallel to the layer. These
flows are a challenge to the experimentalist; the difficulties arise from
the fact that it is hard to determine the region of the flow in which the
measurements are made. One faces a similar problem in trylng‘to simulate
such flows numerically. The difficulty arises from the fact discussed
earlier,’thét it is impossible to capture all of the scales of motion in
the turbulent region. The best we can do is to filter the dynamical equa-
tions t0‘obtain‘equations that describe the behavior of the large eddies,
and to mddel the small scales. Since in the irrotational region the vor-

| ~ticity is identically zero, the dynamical equations for the vorticity seem
to be suited to simulate such flows. |

- Now let us derlve the dynamlcal equatlons for the large-scale vortic-

bity field ~For an 1ncompressib1e fluid w1th constant v1sc051ty,,the equa~-

E tlons of motlon fox the prlmltlve variables may be written.

du
i - 3 P 1 o\ ]
5t~ C13k%% T T 5%, (p' 2‘“1“1‘)* " VEijk B, Uy (2.4)
:  5ui‘~‘ et , . L
— = 0 R N B
Bxi’ ’ o

The vortlcity equatlon is obtained by taklng the curl of Eqn. (2 4)‘

Operatlng on lt with ‘sp 8/ 8x gives:




2w+t (ww —uw) = v azwi (2.6)
3t i ij Rt A et | ijxj e

Multiplying Eqn. (2.6) by a filtering function G(x-x') and inte-
grating over the whole flow field, we obtain:

2_.
ia-iarxm=vii 2.7)
ot 8xj 34 437 Bx.axj '

The fact that a finite-difference approximation of Eqn. (2.7) would
involve approximating higher derivatives of the velocity than would be the
case with the primitive equations (Orszag and Israeli, 1974) need not worry
us in this case. Since the equations are filtered, we shall be dealing
with smooth functions.

As can be expected, when averaging nonlinear equations, we run into
the closure problem; i.e., we need to express the quagtities ;;;3; and
u,w, in terms of u and - Ww. Expanding u and ® as in Eqn. (2.1),

i
one obtains

LW, - uw, = IE.-Q@.+WU (2.8)

(2=
=
=X

[

[}
H

| where

W.. = uw!' + ug m -’Gﬂw - u.w +ule! - ulw! (2.9)
ij ji i3 i] Ji 1] :

We note that Wij contains subgrid scale quantities and hence must be

modeled.

2.3 Subgrid Scale Models

We: first note that the model of WiJ~ should satisfy'ﬁhe~fOllowing

necessary conditlons

1. Antisymmetry, since wij is an antisymmetric tensor ahd therefore

BT TR
LT P B (2100

‘It’is‘important to preserve the antisymmetry property of Wij‘fin :

order to éssure 8wi/8xi"='0, since the dynamical equations for the

0 ST .
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vorticity do not contain a pressure-like term which could be used

to adjust the divergence of the vorticity.

2, It should vanish in an irrotational region, since wij vanishes in

such regions.

3. It should be an energy sink, since it represents subgrid-scale effects.

2.3.1 Model w-1

Previous workers (Kwak et al., 1975; Shaanan et al,, 1975), working
with the filtered dynamical equations in the primitive variables, used an
eddy-viscosity model for their subgrid-scale model. They modeled the term:

= T (I vv"",_l;, T 7 !"
Tij uiuj + ujui + uiuj 3 (ukuk + 2ukuk) 613
by setting
ij = - 2\)TSij (2.11)
where
= _ 1{53 — _ .8 —
Sij =3 (9“1 u.j + ij ui) (2.12)

is the strain rate tensor of the filtered field and V., is an eddy vis-

cosity'associated with the subgrid scale motions.

Smagorinsky (1963) suggested a model for Vip

) (2.13)

Si1 ij

vy = v’(CSA) (25

‘where C iszd constant and A is the filter width. We note that in a

non—turbulcnt rchon thlS model of / Vo may have a non-zero value, and
hence it may give rise to residual stresses. Sane our main obJective is

to handle interactions between & turbulent region and a nou—turbulent re-

‘ gion, this model was rejected for the present work.

One way to avoid thls difficulty is to relate Vg directly to vor
ticity. Prev1ous workers (Kwak et al., 1975 Donaldson 1972) used

v, = :(%“)2 <‘c5i’t3i)“? s (',2'-14)','




where Cv is a constant. Clark et ai.‘(1977) have shown that this model
is as accurate as Smagorinsky's for homogeneous isotropic turbulence.

The dynamical equaiions for large-scale vorticity field could have
been derived by taking the curl of the filtered dynamical equations for
the primitive variables. Hence the curl of Eqn. (2.11) could be used to

model wij; this would give
W.. = -6, = (205, 0)
ij ijk Bx& T k& (2.15)

| where Ekl and vT are defined by Eqns. (2.12) and (2.14), respectively.
i We shall refer to this as Model w-1.

2.3.2 Model w-2

We note that the model given by Eqn. (2.15) involves computing the

strain-rate tensor '§k£, ~which is an expensive process. It also uses

the velocity field and hence requires storage space for the velocity fields
even after the convective and stretching terms have been computed. Much
computational saving could be obtained with a model that involves only the
vorticity field; one such model is

_ 9 -
Wij = - 3X3 (v o, ) + ax (v w ) (2.16)

_ where Vg is defined by Eqn. (2.14). Wé Shall refer to this as model w-2.
4 Both models w-1 and w-2 can be shown to satlsfy all three proper-
| tles mentloned prcviously (see Appendlx A). Model w-2 offers computa-
t1ona1 as well as storage advantages over model w-1 and will be tested
in Chapter 4 (along with model m—l), for the case of isotropic homoge-

neous turbulence.
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2.4 Filtering

2.4,1 Sharp Cut-off (SCK) Filter

Analyticaily, a filter that divides the large scales and the subgrid
scales into two distinct regions in the Fourier sense would be convenient.
Then ‘E‘ would contain all scales larger than a cut-off scale, and the
subgrid scales (f') would contain all scales smaller than this cut-off

scale. A one-dimensional version of such a filter is

sin[kc(x—x')]

S
G(x-x") TOx ") (2.17)
and its Fourier transform is
0 if [k| >k,
H(k) = : (2.18)

1 otherwise

We shall refer to this as the SCK (Sharp CUt—off in k-space) filter.

In inhomogeneous £lows with turbulent rotational regions and irrota-
tional regions, the two regioﬁs are séparated,by a sharp vorticity jump.
In order to evaluaté the ability of the SCK filter to smooth out jumps in
the vorticity field, we apply it to a point vortex situated at the origin:

Wey) = G 8B (2.19)

and:

rsin[kczx] sin [kcy]‘

Wxy) = - = ‘”5"(2.20)

s is plotted in Fig. 2.1.

i First we note that this-filter creates oséillations and negative'vof—f
ticity, which are undésirabie ffom a physical point of view. Secbnd;
“those oscillations;decay 510w1y (they.go'aév‘x.l),;,so‘thé~spreading into

the irrotational region is excessive.
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2.4.2 Gaussian (GS) Filter

Another filter that has been used by previous workers (Kwak et al.,

1975) is the Gaussian spatial (GS) filter:
G(x-x') = | J% —1A— exp{—y(x-x')z/Az} (2.21)

where Y 1is a constant and A is the filter width.
ApplYing'thiS filter to a point vortex situated at the origin, we

get

Wy = %—Alé-exp{-fz‘ Py (2.22)

'@ is plotted in Fig. 2.2.
‘ We note that 1n this case we have created neither osc1llat10ns nor
negatlve vorticity. By filtering the point vortex (Eqn. (2. 19)), we have
~created another vortex with a Gaussian core of width A.
We ‘conclude that a Gau551an filter smoothes out jumps better than the
o sharp cut-off filter. Therefore, the GS filter was used in the cases in-

‘vestlgated in this work.

2 5 Computlng Veloclty FLeld from the Vorticity Field

When the vort1c1ty equatlon is used, the veloc1ty becomes a diagnostic
variable; i.e., the tlme variation of the velocity is not glven exp11c1tly
be the equatlons but can be deduced once the vort1c1ty is known. To do. so,

we shall deflne a vector potentlal w (see- Lamb,tl932) such that:

: 3 -, 7 f}_,f:f’:’“ i o i
v.u:,L = Ele——a lp £ ; e (2.23)
':kwk _can be chosen to be solenoidal; i,e;,;
ox, k- , Lo o
- Taking theycﬁfl;of (2.23)‘and using‘(2.24), we get:
: s _"_‘,Vb‘éz g | : R
S 3;?&:‘1’1 = Ty (2.29)




Solving the Poisson equation (2.25) and using (2.23), we get the
velocity field from the vorticity field.

Note that the velocity'field could have been deduced in another
fashion by setting

; 9 = ‘
W= ey o, ™ (2.26)

then taking the curl quika/axq of Eqn. (2.26) to get:

32— 5 — P
ek YT T €14k x, Wy (2.27) "=

and finally, solving the Poisson equation (22f7), we get the velocity field.
This approach involves differentiation gﬁftﬁé vorticity field, followed by
a double integration, whereas théyfiféélapproach of (2.25) involves double 55
integration followed by differentiation (2.23).' Numerically, the first |
approach is usually more desirable; but in our case the two approaches are
equivalent. Equs. (2.23)-(2.25) will be used in this study. |

2.6 Summary

Neglecting the molecular viscosity, the filtered dynamical equations

in vorticity form become

Smi 9 e e 9 :
TS + x. (ujwi—uiwj) Rt Wij : (2.28)
: 3 J
3%y o ~ |
ox.0x, Y1 | | 1 (2:29)
TR R s (2.23)
i i1k 9%, Yk ‘
where -Wij ‘is modeled as .
e S e &) e 3 2:13)

ot .

B e s e e i R




or

R TN SN SN |
where
_ 2 == %
Vp = (¢, (wiwi) (2.14)
and
T o L8 - 3 — ‘
Sij T2 (Bx. ug + ax uj) , (2.12)
3 i
with ]
: R 2 k 2 2
, . 3 ' (x,-x! (x,-x1) (x,-x1)
C(x-x") = (%) AA1A expl -y 121 . 222 . 333
17253 | A2 % A3
(2.29)
and
o a 813
A = (A1A2A3)

it,is in this form that the problem will be solved numerically.
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at the nth‘ time step as

Chapter 3

' NUMERICAL METHOD

AnalytiCal solutions of the governing equations discussed in the

previous chéﬁter can be found for only very special cases, none repre-

senting turbulence. Therefore, we propose using large computing machines

to solve these equations for particular cases of interest. Numerical
‘approximations of the governing equations require special care. In this
- chapter we discuss these approximations and present the methods we use

to solve the difference approximation to the governing differential equa-
tions.

3.1 Notations

A region of continuous space is divided into a uniform rectangular

mesh; i (1—1 2 »3) Trepresents the mesh width in the 1th direction.

' The mesh width need not be the same as the averaging width 1ntroduced in

the previous chapters; we have used Ai = 2hi and Y = 6.  For details

on the effects of the filter width on the computational results see Kwak
et al. (1975).

We then write the £—compcnent of the filtered flow quantity fR

f,én) (isjk’k) ’ k‘.Q, = 1',2,,‘37 T ' L (3.1)

':’mhere (i,j,k) are the mesh p01nt 1ndex for (x,y,2).

We deflne the operaror notation 6/65 to be the numerical approxi-

 mation to the continuous derivatives (8/85)

3.2 Numerical Approximatien

Once space is dlscretized into mesh points, it remalns to approxlmate
the partlal derivatlves in terms ‘of the values of the functlons at those

points. We have used two different approxlmatlon schemes a fourth-orderv
scheme and a pseudo spectral method




3.2.1 TFourth-Order Scheme

Using Taylor series expansions one can easily show that -the approxi-

mation to the partial derivatives,

i
if

Su _ _1
Bxl 12h1

{u(i-2) - 8u(i-1) + 8u(i+l) -:;’ff;(uz)} (3.2)

is fourth-order accurate, i.e., the error in this approximation is of
0(h4). (For simplicity, the arguments j and k are not shown.)
If periodic boundary conditions are to be used, u can be represen-

ted by a discrete Fourier expansion (see next section).

T o= ) uk) EE (3.3)
T
where, for i = 1,2,3,"
: 2T ‘ : ,
k, = n. =  wave number in the x, direction
i Nihi i ; i :
N N,
n, = - ‘—2-,..._,0,..., —2——1
Ni = number of mesh points in x; direction

u(k) is the discrete Fourier transform of u. Téking'the discrete

Fourier ttﬁgéform of (3.2), we get

1

& 1 itk -ihgkg ihk,  i2hk)) o
ox = 1on e = 8e 7 + 8e T=e Tou
1 1 .
= 6h1 {8 31n(hlkl) 91n(2hlkl)}.q |
= ikiu
where
ki = gno (8 sin(hjky) sin(2h;k,)} L

is called the modified wavebnumber;
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Representation (3.4) allows us to evaluate the numerical approxima-
tion (3.2) for the range of wave numbers up to ﬂ/hl, the highest wave
number that can be reprcsented on a Erid of size hl. The Fourier trans-
form of the exact derivative is iklu, so that, by comparing the modified
wave number ki with kl, we see how well the approximation works (see
Fig. 3.1).

A more important consequence of representation (3.4) is that it
allows us to integrate numerically in a manner consistent with our differ-
ence approximation., In order to make this point clear, suppose we know

the value, £, of the numerical approximation of the differential equation .
Su _ ¢ (3.5)

and we would like to find wu, which when fourth-order finite differenced,

gives us f exactly (to machine'round-off). One way to do Ehis is to

write
Au(d) = £(4) (3.6)
where o
‘- "0 -1 0 0 -87]
A = ok
12h; -8 -1 1
' 1 -8 8 -1
-1-0 0 S e
| 8 -1 0 . . . 1 -8 0f

for the case of. periodic boundary condltlons This systeﬁ,df/equations can
then be solved in some standard way.. : S ) :

Another way to handle this problem is by taklng the dlscrete Fourier

trunsform ot (3 5) to get

ikje = £ | BN & PR




A

Then, by solving for 4;,

u = Ef(-,— (3.8)
multiplying (3. 8) by eik-z- and summing over all k, we obtain u.
In this case only the one-dimensional transform is needed. This method,
which is much more powerful than the previous one when integration in more
than one direction is needed, will be used extensively fér the solution of

the Poisson equations (2.21).

3.2.2 Pseudo-Spectral Method

Periodic boundary conditions

Suppose f(xl) is periodic in the Xy direction with period L (in
the following we shall,cohsider the one-dimensional case) and satisfies

the "Dirichlet condition", i.e.,
o f(xl) is defined at every pbint of the interval 0 < x; < L,
° f(xl) is everywhere'single—valued, finite, and Sectionally continuous,

o f(x)) is of nbounded variation", i.e., f(xl) does not have an iﬁfi_’

nite number of max1ma and minima.
It can be shown (Lanczos, 1956) that a function of this type can be
expanded in a convergent Fourier series. ' '

© ~ ik

LT {;i’ o 1% B
Fx) = 2, Ek) e 3.9)
o omEe
where . ’
om :
kl = _I—‘_.nl nl= _w’ e o0 ’ 0’ l’ o 0o y o]
and
S g ik, x R
R N ) 171 o Nt
f(kl) L= 'L_/: f(xl)ve s ;dxl’ 3 = (3110)
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Since computers cannot handle infinite series, we have to truncate
(3.9). This is justifiable if f(kl) falls off rapidly for large lkl|;
this is the case of interest, since we filter the flow variables. Also,
as mentioned before, we need to discretize in space.  If N, mesh points
are used in the x, direction, the discrete analogs of Eqns. (3.9) and
(3.10) become:

N,/2-1 . ikl X
f(xl) = f(kl) e (3.11)
| n=-Ny/2
where
N N
2T 1 1
kl = Nihl ny Ny = =5, eee o, s 5T 1
X, = Jhl i = 0,5 us Nl -1
hl = L/Nl ,
- Ny=1 .
A l -ikx
= L 171 ;
£(k,) = N Y £Gxy) e . | (3.12)

Fast algorithms (for‘ N, = 2n;

n=1,2,...) have been developed
(Fast Fourier Transform ——-FFT)‘ by various workers (Cooley and~Tukey, 1965;
Singleton, 1967) to evaluate the series (3.11) and (3.12) for the inverse-
transform and the torward-transform, respectively. These will not be de=
scribed in this work (we used ‘a routine developed by Singleton, 1967).

If we regard the expansion (3.11) as an interpolating formula, so that

we treat xl' as a continuous variable, and differentiate the entire equa-

tion, we obtain
s L R ~
= zn: £(ky) dky e | -~ (3.13)

The expansion (3.13) can be considered an appfoximation to the partial

-~ derivatives. Thus, to compute the partial derivatxves of u, - for the case

of periodic boundary condltlons we proceed as: follows we flnd the dis-

crete Fourier transform of the function 1n the direction in which the par-

_tial derxvatxve 1is needed, i.e., we compute f(kl) from f(x ),
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where

is absolutely and uniformly convergent.

ik, x
Multiplying f(kl) by ikl e and summing over all Akl, we obtain
5f/6x1.

This is called the "pseudo-spectral" approach. This method has
been analyzed by Lanczos (1956) and, with the development of techniques
to compute the summations (3.11) rapidly, it has been proposed by Kreiss

and Oliger (1973) as an approximation method and advocated by Orszag
(1973) and Fox and Orszag (1973).

For the range of wave numbers that can be captured with a given~spac~g
ing and number of grid points and for periodic boundary conditions, the
pseudo-spectral method yields extremely accuraﬁe values of the partial

derivatives (see Fig. 3.1).

The above method is limited to the case of periodic boundary condi-

tions. However, the idea can be applied to other types of boundary con-

ditions by using a set of orthogonal functions appropriate to the given
boundary conditions.

f = 0 boundary conditions

If f(xl) is required to vanish at the boundary, i.é., f(xl) =0

for X = 0 and X = L, and‘is twice differentiable (a physically rea-

sonable assumption), the Hilbert-Schmidt theory shows that its Fourier
sine series’

Q0 -AS . anr -
f(xl) = Z fn sin T ¥ - (3.14)

”1:— X, dxl e (3.15)

_As in the previous section, we

,shallAuse the dlscrete analogs to (3.14) and (3.15), i. e.,'

-1 '

Ny SRS nlw X 1 | i =
f(x z t (n ) sin DR, | S (3as)
o 1—0 s : L
ﬁ%S  R - Nl-l‘ ‘l nm , "  ,
Eop - o X s e | D
. gm0 S e




e
N .

n, = o, cee s Nl-l

L/(N; - 1)

X, = jh1 5 3 =04 ¢0s Nl-l
and ;‘S(nl) is the Fourier sine transform of f(xl). By using the
FFT routine, a technique to compute the summation in Eqns. (3.16) and
(3.17) can be rapidly developed. A detailed development of the Fast Dis-
crete Sine Transform (FDST) is given in Appendix B. Generally, the FDST
requires twice as much computation (for a given number of mesh points) as
does the FFT.

If we regard ‘the expansion (3.16) as an interpolating formula, treat-

ing x; asa continuous varia’ble, and differentiate, one obtains:

N

1- n,m

Sf 1

ox %] 2 f (n ) k; cos (N -.L)h ] (3.18)
nl-o

whrere kl = anr/(Nl-l)hl" In order to be able to use (3.18) as an approxi-

s
mation formula for the partial derivatives, we need an FDST to find f (nl);

we also need a Fast Discrete Cosine Transform (FDCT). The discrete Fourier

cosine series is defined in analogy to (3.16):

N1 aiit.
f(x z f (nl) cos (N l)h (3'19)

nl—o
and
A~ N -l ' n. W _ ) Co .
£%(n,) = z f'(x,) cos -———]-'-——— - (3.20)
1 <N -1 1 (Nl-l)h 240y
j=o : _ SR
with
| LE =0, N, -1
i 5 f (nl) n; =0, Nl,—
] i :
,f (nl) ~ Ao ‘ -
£ (ny) n, #0, N-1
: | fz f(xi) Xy = 0, L
fi'(xl) = |
f(xl) #0, L
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where f (nl) is the Fourler c051ne transform of f(x ).

Note that in (3.18) f 0) = f (N -1) =0, making (3.18) exactly
a discrete cosine transform of k f (n ).

By using the FFT routine, a technique of computing the summations in
Eqn. (3.19) and (3.20) can be rapidly developed. A detailed development
of the Fast Discrete Cosine Transform (FDCT) is given in Appendix B.

Thus, to compute the partial derivatives of a function which is
zero at the boundary, we find its discrete sine transform Es(nl), mul-
tlply itby n ﬂ/[(N l)hl] and inverse transform using an FDCT routine.
This method yields an extremely accurate approximation of the partial
derivative when the function vanishes at the boundary, but its use is re-

stricted to cases with a uniform mesh.

9f/9x = 0 boundary conditions

If f(xl) is our function whose partial derivative Bf/axl vanishes
at the boundary, i.e., Bf/Bxl =0 for X, = 0 and X = L, then, by
using arguments similar to those used before, it can be shown that its

Fourier cosine series,

o0 Ac nl'n’, ‘ )
_ T —_—
f(xl) = 2 fn cos [ 5~ %; : (3.21)
n, =o 1
1
where
~Ae 2 L . —nl'n'
fn = i,/‘ f(xl) cos | =7 X dxlu (3.22)
1 o
N
AC fnl ’ nl # 0
£1 =
n
1 17¢
2 fnl. » M= 0

is uniformly and absolutely convergent. :
Equations-(3.l9) and (3.20) are thé—discrete equivalents of the above
equations, If we regard expansion (3.19) as an interpolating formula treat-

ing ‘xl as’a continuous variable,  then differentiate, we obtain:

Sf : Nl-l ’ nl'ﬂ' N ’ :
T > - £ (n) k; sin [ (3.23)
. n,=o : ’ ‘
T L R )
TP S




Ik

_

Obviously (3.23) satisfies the conditions Bflaxl =0 at X = 0
and X = L, and (3.23) is the discrete sine expansion of the partial
derivative.

Thus, to compute the partial derivative of a function for which
Bflaxl = 0 at the boundary, we find its discrete cosine transform Ec(nl),
multiply it by —kl, and take the inverse transform using an FDST routine.

The three methods described in this section will be used extensively

as our approximation tools.

3.3 Time Differencing

To advance in time, a second-order Adams-Bashforth method was used.
This method has been used by previous workers (Kwak et al., 1975; Shaanan
et al., 1975), and use of a higher-order method was not felt necessary.

If Bmilat = Mi’ the Adams-Bashforth formula for Ei at time~step
n+ 1l is '

0

—n+l _ -n 3 ,(n) 1, (n-1)
wy = wy +At (2 My 57 M (3.24)
In our case,
- 9 == ——.
Moo= - %, (ugoy - u0,) - ‘agwig

Note that this is a two-step explicit method. It is started with the
Euler method:

1 _ .0 (0) |
wy = wi+At Mo (3’.2,5)

3.4 Conservation Properties

As was pointed out by Phillips (1959), numerical integration of the

finite-difference analog of the Navier-Stokes equations may introduce non-

~linear instabilities if proper care is not taken. Arakawa (1966), working

with the two-dimensional vorticity equation,  showed that'by properly con-
serving vorticity, energy, and enstrophy (wiwi), these instabilities
disappear. Lilly (1965), working with the primitive variables, developed

"~ a spatial-differencing scheme that conserves momentum and energy. By




conservation we mean that, in the absence of external forces and viscous
dissipation, the only way that the momentum and kinetic energy in a con-
trol volume can change is by flow through the surface. This property must
be retained by the numerical approximation. In the simple case of periodic

boundary conditions, we have

.ﬁ%.lg‘ﬁidv = 0 (i.e., momentum conservation) (3.26)
d fLida =0 / '
< s Z uudv = (i.e., energy conservation) (3.27)

It is usually easy to devise a numerical approximation to the dynamical

equations in primitive form that conserves momentum, i.e., summation over
: the flow volume of the approximate equations would give the discrete
i equivalent of Eqn. (3.26). However, the difficulties arise when trying
to show energy conservation, since in general the identity
3 y Lo
Yiax, Y1 T B, 2 Yi% (3.28)
J J
does not hold in finite-difference form. A
Writing the equations of motion in the following form (Tennekes and

Lumley, 1972):

du Ju
Rl i3} . 2 (R L :
5c Y1 T U (ex 8x.> T T, <p t2 uj”j) (3.29)
1 . 1
9 30
EET S (3.39)
1

and integrating over the'flow,volume, we get

, 3 3‘:&. E)u 7
‘ Bt u, dv +f Bx BX = f ‘Bx ( 5 ju,) dv

l ; For periodlc boundary condltlons, integration by parts yields.

(3.31)

| . Lo . f 5 : 3
8 u, mT Uy dv = —;/r U 5o Us dv. = 0 (using (3.30))
f - -3 8xy Jo— 1 9%y




and

) P 1. =
L_axi(p+2ujuj)dv = 0

Hence Eqn. (3.31) reduces to Eqn. (3.26) and we have momentum conservation.

‘Now, multiplying Eqn. (3.29) by u;, we get:

3 1 9 (P .1 \ ’
3¢ 2 Wy = -uisa-(-p--i--iujuj) (3.32)

where the convective terms sum to zero by symmétry;;‘

Integrating (3.32) over the entire domain yields:

3 1 e 3 (2, 1
-3—12‘/‘:_5 uiui dv = —’Luia—xi_{-5+_2~ujuj)dv ,(3.33)

For periodic boundary conditions, integration by parts yields:

9 (P 1 (P 1 )
— =+ = u,u }d - —+=uu | =—u, d
L_ui axi (p 2‘,13“3) v / 0 ZuJug)Sxi u; dv

0 (using (3.30))

Hence th. (3.33) reduces to Eqn. (3.27) and we have energy conservation.

We notice that, with the equations written in the form Eqn} (3.29),

. we did not need the identity (3.28) to show energy conservation from the

dynamical'equationslin primitive form. The conservation properties were

obtained by making use of only,integration b& parts and the continuity

‘ fequatiOn, 

. Consider the numerical approximation of Eqns. (3.29) ahd (3.30): R

N fsu, su\ . o
2\ e e ) OO T £ G K |
3t %1 + Y (ij Gxi) - ,_'Gxi (p + 2 %Y ) s (3.34)
” b (8o e G s e (3 355
Ox i ' L - e

where‘we‘are using:;6/6xi td denote the numerical approximations to the

' pétﬁial_derivatives ~8/3xi, ‘and the Same‘approximations&are used in both

 equations (3.34, 3.35) for any given independent variable. In order to

B0 N s A B T S R PR ST



have long-term integration stability, Eqn. (3.34) should numerically con-
serve momentum and energy. , '

If we follow the steps used‘in deriving the conservation properties
from'Eqns. (3.29) and (3.30), we realize that the conservation properties
will follow if we can establish numerical sﬁmmation by parts. ‘Consider

‘the onc-dimensional case, where we have, for periodic boundary conditions,

fu(x) £x) dx = —ff(x) _aa; u(x) dx

The numerical analog of the above equation is:

N-1 5 =
2w g £ = E £(3) 53 u() (3.36)
j=o . J50.

Expanding u(j) _in Fourier series, we get:

O N/2-1 L _
u(j) = ‘\ﬁ u(n) exp(2mijn/N) ; j = 0,1,...,N~1
' n=-N/2 :

where the u(n) are given by the inverse transform:

A N-1 K ;
)6 1 V) Perooy N N
g(n) = ¥ u(;) exp(fcﬂljn/N)~ 3oon= -5, ... ,iﬂ-l
j=o ' : :
Also;k
T ED = 1k' () {5 E £G3 ") exp( 2'rr13 n/N) exp(Z'NiJn/N)

g n=-N/2 =0 g 3 | G 37)
where k'(n) is the modified wave numbere__The modified.wave'humbersvfor”‘

- the numerical methods we are using are

W

e ik' ik for pseudo—spectral _ SN (3 38)
® ik' = [8 31n(kh) - sin(2kh)] (fourth-order approx1mation
Substltutlng Eqn.~(3 37) into the left—hand side ‘of Eqn. (3 36) yields

a e
Z f: ik'(n)'u(j)‘f(j')r

o j'=o n=-N/2"

,N-‘

MZ'

u(i) £ £G) —ﬁ—

J=0

.
A

T exp(-ZWij n/N),exp(Zﬁijn/N)~“'




Now, changing the summation index in the last sum from n to =-n, we
see that this expression will agree with the right-hand side of Eqn. (3.36),
provided that:

k'(n)

k' (-

Conditioﬁ (3.39) is satisfied by all the methods under consideration,
and k'(-N/2) = 0 is true for the finite-difference method, The pseudo-

- k'(-n) (3.39)

N2

) = o . (3.40)

- spectral method cannot differentiate between f = exp(ijv) and f =
exp(-1jm), and, due to this confusion at n = -N/2, k'(-N/2) is set

equal to zero for the pseudo-spectral method. Hence, summation by parte

is obtained when (3.39) and (3.40) hold. Summing Equation (3.34) over

all mesh points, using the generalizationof (3.36) to three dimensions and
using Eqn. (3.35) yields the nuﬁetical equivalent of (3;26). Mnltiply-
ing Eqn. (3.34) by u;, the nonlinear term in the left-hand side of‘(3.34)
will sum to zero by symmetry; then, using as before the three-~dimensional

generalization of (3.36) and (3.35), summing over all mesh points will

‘yield the numerical. equivalent of Eqn. (3.27).

- 3.5 Differenced Vorticity Equations

In order to insure that the numerical approximation to the vorticity

equations are. equivalent to the numerical primitive equations we must

takevthe numerical curl of Eqn.- (3.34). Before doing so, we mote that,

 numerically,

§ &

B &) S Gn
R Y 6 gy
Rk ijk 6gj Sxk L 2

where kV-'and 'S 'are any vector or'scale, respectively, the above ex-

4 ‘pressions are 1dentically zero, if for each direction the same approxima-

‘ ,tion 1is used for all operators-f

Bge




The numerical curl of (3.34) is

i—m + S (ujw

ot Y5 *sx i-—uiwj) = 0 (3.43)
J

Equation (3.43) conserves vorticity, i.e., summing it over all space
the total vorticity in any control volume (subject to periodic boundary
cohditions) does not change with time. Herice in the form (3.34), the
primitive equations also conserve vorticity.

The numerical divergence of (3.43) is
9 & . _ .
3t ox, 0

Therefore, an w field solenoidal at time t will remain solenoidal at

time t + At.

3.6 Poisson Equation

Having the vorticity field wi at time step n, we have to find the
velocity field in order to be able to advance in time. To do so, we shall

define a vector potential (also called the vector stream function) Yo

such that

A S
'ui = Eijkg}_(J—;wk . : . (3.44)‘

wik can be chosen to be solenoidal; i.e.,

o wi ,é 'O: N ." R _d(3;45)"

T Taking the curl of Eqn. (3.44) and using Eqﬂ. (3.45), we get

56 R P
8x, Ox, by =iy : - (3.46)
I J‘ ' :
The Poisson equaLions (3 46) w1ll be integrated using the approach
introduced in Secrioa 3.2. TFor the case of periodic boundary‘conditlon,

the discrete Fourler transform of Eqn. (3. 46) is

~

B L T € R YR

30




where ~ki is the modified wave vector introduced in Section 3.2. Solving

for wi’ we have

v, = == C(3.48)

and by inverting the transform we obtain the stream vector consistent with
our numerical differencing. It satisfies two conditions. First, the vel-
ocity field obtained using (3.44) will be solenoidal. We have in Fourier

space:

[ >

k!
i

(4

= ! = - :
1 iJk klkj wk 0 | (3.49)

Second, taking the curl of (3.44), we have in Fourier space:

~ ~

PRI S = - V T 9
95 = g5t U T T Cagk ke 5% Y

(3.50)

N

N
—kikivy, o+ kikd
J le 13 v

N

Since k5;Wj =0, (3.50) is exactly the Poisson equation (3.47).

3.7 Numerical Filtering

»kExamihation of Eqn. (3.24) reveals that the only numerical problem

left is the numerical evaluation of the Gﬁﬂ&;-iiéﬁﬁ term. Since Eﬁﬂ%‘-
EQES’ éan»bé computed'eaSily, the problem is that of numerical filtering.
_Filtering is the evaluation of a convolution integral

i ,=’ o ey | 1
qui ujwi G(x-x") dx (3.51)

-0

If this 1ntegral is evaluated using conventional integration routines, the

' computation cost is prohlbltive. Previous workers (Leonard, 1973; Kwak et

al., 1975' Shaanan'et al;,»1975) argued that the filtered terms u x")

;and w (x ) are smooth, and they expanded those terms in a Taylor series

about’  x. Using a Gaussman for G(x),v they obtained:

R A G 4
594 + W,V (ujmi-) + 0(A7) | (3.52)

3L




and the O(Az) term was called the Leonard term. The above approxima-
tion will require the use of a fourth-order, finite-differencing method
(Kwak et al, 1975) or a modified second~order method (Shaanan et al., 1975)
that yields the Leonard term as its truncation error. However, when
higher-order methods are used the expansion (3.52) needs to be extended to
higher orders, and the computational expense becomes prohibitive. When
periodic boundary conditions are used, we can take the Fourier transform
of Eqn. (3.51) to get:

‘uj(ui = (ujwi) G , (3.53)

h ™
Thus, given ui and w;, one can compute the term (“j=“’i) s multiply

1t by G then simply invert the transform to obtain Kjai' .

When qu vanishes at the boundaries, i.e., Ejai =0 at x=0

and x = L, we can expand it in a Fourier sine series. Taking the one-

dimensional case, for simplicity, we set .
o AS T : ) ! :
= w- Y. o e . : N
“jwi n§=o; (uj 'i) sin ( I x) _ : (3.54)

'Substituting (3.54) in (3.51), we get

40 00 AS y ’
;J.Bi" = f E (Gjai) sin (ELE (x—-x')) G(x') dx'

00 n=0
Since the series (3.54) is abéolutely and uniformly convergent, we

can take the summation outside the integration to obtain

4 O(E;%i){,f-:m s‘in(%—}r- x) cos | (_nf?[ x')' Gk(k?'(')k dx'
+f_:°° cos(iLTl x) sin(—L"l x,) G‘x')‘dx'}’

If G(x) 4s an even function, which is the case when (2.21) is usle’d,‘

0
u.w

~the second term in the bracket vanishés and ‘one obtains

B Ej.“-’i - zm: (E B" {fw G(x') c§S(EL-TI~X') d#"z Sin(BLﬂ kX)

(3.55)




where

AC /qm nm
G = G(x') cos{— x'} dx'
B (T =)
is the Fourier cosine transform of the Gaussian filter.

‘What Eqn. (3.55) tells us is that, for the case in which E&Gi =0
for x =0 ‘and x =1L, Ujmi can be computed by the following procedure:

we first compute the Fourier sine transform (Gﬁwi) of ujw and then'
multiply it by the Fourier cosine transform ¢S of the filter, to obtain
the Fourier sine trahsform (Ejﬁi) of Eﬁ&i. Finally, inverting the sine

transform, we obtain ujw .
Slmllarly, it can be shown that, for the case in which E? 1;53 =0

at x =0 and x =1L, we have

0 e ~e S
— _ i s . i’"‘_
ujm:L = Z (ujwi) G cos(L x) (3.56)
n=o
or
—— R
;(ujwi) = (ujwi) G

By the use of the FFT, FDST, and FDCT, "exact" filtering can be ob-
tained - for all bodndary conditions of interest with acceptable computa-
tional speed. ' s ' o '

An important property requ1red of a filter is that the filtered value
of a constant must be the same constant. Numerically, it is desirable to

preserve this property, which is equivalent to requiring the integral of

 the fllter functlonbetunty or G(O) .. The exact continuous Fourier-

transform,of (2. 21) is
G(k) = exp(— — k ) B b (3.57)
When G(k) iS;diScfetized, we get

o L _A__ _,2_1 2 . v
GD(k) = exp(- 4y’(Ip‘n) ) 2 '”'n'

0,%#1,#2,...  (3.58)

Hence aD(O) =1.




Another property required of a filter is that it smooth out jumps
(see Section 2.4) without introducing oscillations. We have modeled the

situation with a top-hat function:

1 x;<x<x
£(x) = = 2 (3.59)
0 otherwise :
- Analytically, we have
f(x) = L (erf(x, - x) - erf(x,-x))
: 2 1 ‘ 2

which is a smooth function with no oscillations. N

When (3.59) is discretized and filtered numerically using GD(k),
the top-hat function, Eqn. (3.59), is smoothed out (see Fig. 3.2). Howr
ever, small oscillations are introduced. This is due to the fact that the
discrete inverse transform of (3.58) is not smooth. For this reason we

have used a discrete Gaussian in x-space,

. A ,
GD(x) = :}I exp(— Y@-}-%—-) 7 (3.60)
‘ _ | A v
where : :
where
v X =__hn ; : e
D > O IR
- ; , V : ‘ , ,

~as our filter function. The oscillations in the‘x-space (see Fig.‘3.2)

“do not appear when this filter is used.

3.8 Summary

i The dynamical equations in Qortiéity‘fbrm'will be solved as 55110W55’

o+l on ;‘-3 . 1  n1) - taiony
wp o= mi*f“(?”ﬁi -5 ) (3.24)
where
- § = s
Mpo= k(g ey - Wy



6!

Wi3 T T 15k TR, (Z“T ke
or
Wiy = - gij (Vgoy) + 5 (vaJ
vy = (ch)‘ (w Bi)z
and

8", &%
5., = =+ E
S 2 6xj Gxi

(3.25)

(3.26)

(3.27)

(3.28)

The numerical differencing g;- used to compute the terms in the

model (wij) need not be of the same order as the numerical differencing

% used to compute the terms in the momentum equation.

Filtering of

the terms E&E@;»Giaﬁ is achieved using the.ﬁe;hod described in Section

3;.7. :
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Chapter 4

DECAY OF ISOTROPIC TURBULENCE

4.1 Batkground

“In order to assess the feasibility of using the vorticity equations
as the governing equations for turbulent flows, we applied the computa- ’
tional methods described in Chapter 3 to the simplest problem in turbu-
lencé, namely, the decay of homogeneous isotropic turbulence. This flow
was also used to determine the value of the subgrid scale model constant
for use in subsequent calculations of other flows. ’

The grid turbulence experiment of Comte-Bellot and Corrsin (1971) was.
used as the "target' for our numerical predictions. When viewed in a co-
ordinate frame moving with the mean velocity, this experiment approximates
homogeneous isotropic turbdlence.

This sfudy was presentéd in an earlier report (P. Moin et al};_1978)
and is.rediscuSsed.in this work to support the argument that model w-2 used
in conjunction with the vorticity equations produces similar results fbv
those obtained using the more commonly used model w-1. The contributions

of Mr. P. Moin are gratefully acknowledged.

4.2 Initial Conditions

We started with an initial field that iskdivergence—free and has a
spectrum obtained by filtering the experimental spectrum at the non-
dimensional expérimental time T = Uot/M = 42, v, =’10 cm/sec is the
experimental free-stream air speed, M = 5.08 cm is the size of the ex-
perimental turbdlence—generating grid, andr t is the real time~in seconds.
~ The initial field was otherwise random. Thebgenetation of such a field is |
discussedkin detail by Kwak et -al. (1975)‘and will bé briefly outiined |

herein. The filtered field is generated in k-space by setting:

T
L Zﬂkz R 4

~ , 3= ‘% - ’
: }xi(k)‘ Fath (‘2—) (E-gk—)—) (aA, +1bB,) o (4.1)

-where
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E(k)
a
b

]

filtered experimental energy spectrum at time T = Uot/M = 42,
cos(8)
sin(9)

where 0 d1s a random angle, Ai and Bi are unit vectors picked such
that Aiki = Biki‘= 0, otherwise random.
To insure that (4.1) is the Fourier transform of a real field, we

must have

u k) = k) ; (4.2)

A

where * indicates complex conjugate. Now, by inverse transforming .Ei’

ug is obtained.
Using the above initial field, we shall use the methods of Chapters
2 and 3 to predict the spectrum at T = 98. The predicted spectrum will

be compared with the filtered experimental spectrum at T = 98.

4,3 Selection of C,

The model constant was obtained by matching the computational rate
of filtered energy decay to that of the experiment (Fig. 4.1). The values
of the constants obtained using different numerical schemes and different

models were in most cases within ten percent of each other (Cv = 0.2 + 0.02,

' see Table 4.1).

4.4 Results

Under the'assumption that the computational box size is large compared
to the scale of the energy-containing motions, we can-use periodic boundary

conditions in all three directions.. A uniform cubic mesh system was used

with - 'N, the mesh number in each direction, and h, the mesh spacing,

_chosen such that the computation captures as much of the turbulence energy

as possible (Kwak et al., 1975). We used the sets

6,25 x 1073 sec

"N = 16 , h = 1.5em , t

and

N =32, h = 1.0em , t = 6.25x107 sec
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When periodic boundary conditions are used, it was shown in Chapter 3
that the pseudo-spectral method is more powerful than any finite-difference
method. Howéver, when the periodic pseudo-spectral methods cannot be used,
we may have to use finite-difference methods. Since one of our objectives
is to determine the model constant for the vorticity equations, both the
fourth-order finite differencing and the pseudo-spectral methods were ap-

plied to the case of isotropic homogeneous turbulence.

4.4.1 Fourth-Order Finite Differences

v

Figure 4.2 shows the energy spectrum obtained by fourth-order finite-
differencing the vorticity equatlon, using model w-1 (Eqn. (2.1 )) for
the subgrld-ucale model, on a 16 mesh. Our results compare well with
the experimental results up to wave number 2.5, after which the inaccu-
racy of fourth-order differenéing begins to show. Fourth~ozder differenc-
ing the primitive equations (Kwak et al., 1975; Moin et al., 1978) produced
good agreement with the filtered experimental results using the primitive
variable version of this model. This shows that the vorticity approach is
equivalent to the primitive vafiable method. Thus the use of the vorticity

equations is definitely feasible in turbulent flow computations.

4.4.2 Pseudo-Spectral Method

Figures 4.3-4.6 show the energy spectra obtalned using the pseudo-
spectral method, w1th 16 mesh Fig. 4.3 shows the results obtained using

model w-1 (Eqn. (2.15)). We note that for k > 1 the computed results

are considerably lower than.the experimental values. This indicates that

_the subgrid-sczle model is draining too much energy from the small struc-

tures, and, since our total energy is equal to that,of the filtered experi-
mental value, too little energy is taken out from the large structures. In
this case, we used the pseudo-spectral approximation to calcuiate the sub-
grid scale terms as well as the other terms. : ,
Figure 4. 4~shows the energy spectrum obtained using second-order cen-

tral differenclng_CO approximate the derivatives appearing in the subgrid—~

scale model‘(see Section 3.8):
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We note a considerable improvement in the spectrum, except for a small
accumulation of energy at the extreme (high wave number) end of the spec-

trum, which was present to a lesser extent in Fig. 4.2, : /

Figures 4.5 and 4.6 are the results from a 163 computat;én using
the pseudo-spectral method and model w-2 {(Eqn. (2.16)) for ﬁhe subgrid-
scale model. -We note the same behavior in Fig. 4.5 as in Fig# 4.3; the
computed spectrum falls below the experimental spectrum, indieating that
using the pseudo-spectral method to compute the spatial deri&atives in
the subgrid-scale model damps too much energy in the wave nuﬁber range
k > 1. Using second-order finite differencing to compute the partial
derivatives in the model w-2 (Eqn. (2.16)), we obtain a significant
improvement in the computed spectrum {¥ig. 4.6). These results are similar
to the‘xesults obtained using model w-1, indicating that the two models
are equally good.

Figure 4.7 shows the energy spectrum obtained from a 32 pseudo-
spectral calculation, using second-order finite differencing to compute
the partial derivatives in model w-2. The results are similar to those
of the 163‘ computation.

It can be concluded frem these results that the vorticity equations
provide a'Satisfactéry basis for the simulation of homogeneous isotropic
turbulence. Both models w-1 and ®-2 produce similar results. Model
w=-2, given by'Edn. (2.16), will be used in the following computations,
due to the computational ‘advantages it offers over model ®w=-1 .(see Sec~-
tion 2.3). Finally, a relatively coarse 16 mesh is sufficient to cap-
ture interesting features of the ‘homogeneous ‘isotropic turbulence, and no
significant improvement in the enetgy spectrum was obtained by using a

323 mesh system.

4.5 Computational Details

The calculations described above were executed on the CDC47600 at

NASA~Ames Research Center, using programs written in Fortran. The total

storage requirements (octal) were as follows‘
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16 Calculation
Large Core Memory: Fourth-order 310,360
Pseudo-spectral 230,000
Small Core Memory: Fourth-order 104,465

Pseudo-spectral 61,334

32 Calculation

Large Core Memory: Pseudo-spectral 1,110,000
Smali Core Memory: 126,605

The computing time per computational time step was approximately as fol-
lows:

3

16 Calculation

Fourth order = 2.5 sec CPU time

4.0 sec CPU time.

|

Pseudo-spectral

32 Calculation

Pseudo-spectral 34 sec CPU time.
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Chapter 5

MIXING LAYER: TWO-DIMENSIONAL COMPUTATION

5.1 Preview

Itvis well documented (Winant and Browand (W&B), 1974§”Brown and
Roshko‘(B&R),vl974; Konrad, 1976; Dimotakis and Brown (D&B), 1376) that
in some céses fhe spatially developing mixing layer contains coherent
structures (in the terminology-of‘B&R) or discrete vortices (in the termi-
nology of W&B). 'In these experiments, the mixing layer grows via the
interaction of neighboring vortex—-like structures that rotate around and
combine with each other to form a similar but larger structure (see Fig.
5.1). This mechanism is called vortex pairing. 1In this chapter we study
the vortex-pairing mechénism by perturbing an infinite array of vortices.
The effect of the initial perturbation on the roll-up is discussed. All
cases treated in this chapter are completely two—dimensiohal; three~-

dimensional cases are discussed in the next chapter.

5.2 Some Experimental Results

The mixing layer is generated. in a laboratofy‘by bringing together
two streams of fluid of different streamwise velbcity (see Fig. 5.2).
The measured mean velocity proflles, at different streamwise positions,
are self-similar and can be fitted by an error—functlon (Spencer and Jones
(s&J), 1971):

s (l g (1 erf(o(ﬂ-n >))v' (5.1
u, g e
where
Lr.= /ul,‘
u = veloci*y of the high—speed side,;
u, = veloc1ty of the 1ow—speed side,:‘
m = __Z/(x X)) i
0 = :spread parameter .
e

= cross=flow coordlnate,




X =  streamwise coordinate, and g
X, = virtual origin of the layer. K\ B
Rearranging (3.1) and normalizing the velocity on Au = u; = Uy, we
get
2=l - 0.5 erf(o(n-n_)) (5.2)
Au e o *

where U = (uli-uz)/Z is the mean velocity. The spread parameter O is

a function of r, and the spread data can be fitted by the expression:

o _ l+r-
-0 l1-r
(o]

(5.3)

where T is the spread parameter for ‘r = 0. S&J report o, = 11  for
other values of o, see Table 1.1. ‘

Defining the momentum thickness, 6, to be

; ) o ’ o
6 = 2/ (u-—uz)(ul-u) dz
(AU) -0 .
, (5.4)
B /*‘”(1- (u-U)2>d
- B WA R
-00 (Au)
‘and substituting (5.2) in (5.4), we get
d ;/Er- 002‘/2-1-]: U ) (5.5)“
X=X .
g = /jj (5.6)
6 V2w

Since O is constant, Eqn.~(5 5) shows that. the momentum thickness grows

‘ llnearly with x. ,
' Substltutlng (5 6) in (5 2), we get:

T k (z-2z)\ SR .

u=U ‘ '
| & OSerf— (5.7)
el (e/z_w) SNl S

Due to computer 11m1tat10ns, one cannot set. up a uniform grid that

’ m>covers the length of the “experimental set-up. (1 8 m for the W&B case) and

T
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at the same time resolves the large-eddy scale (v1-4 cm). We propose to
use a uniform grid that moves with the mean speed U. The size of the »
computational domain is chosen so that two vortices are cabtured in the
initial field; i.e., we can imagine that we are following the fluid in

the dashed box in Fig. 5.1 as it moves downstream.

In our frame the layer will develop in time rather than space. We

shall in fact be studying a portion of a time-developing mixing layer.
 This layer tan be thought of as being created by having two infinite coun-
termoving streams of velocity *Au/2 brought in contact suddenly at T = 0.
For this flow, the mean quantities will be horizontal pianar-averaged quan-
tities; for example, the mean Veldcitytptefile will be defined as

<u> =1 ﬁ(x,y‘,z,t) dx dy (5.8)
Xy A A 7 , :

Thevmomentum thickness, defined as

’ , v '—1 <3 > N2 k ;
R L

will be a function of time instead of space. According to the Taylor
hypothesis, the state of the flow at the experimental streamwise distance
x is the same as . that of the computed layer at *he computational time

variable t. "The variables x and t are re’ated by the expression'
x = Ut | ~(5.10)

Substituting (5 10) in (5. 5), we get an expre581on for. ‘the expected

: i_momentum thickness of the tlme—developing 1ayer'

o) = — Aw o (5.11)
‘ 02421 L '

Equatlon (5 ll) shows that G(t) should grow 11nearly w1th time, with

Ai?lg= b T e

S0
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5.3 Boundary Conditions

The coordinate system used is shown in Fig. 5.3, where the x-direction
is the streamwise direction, the y~direction is the spanwise direction, and
the z-direction is the cross-flow direction. We shall use periodic bound-
ary conditions in the x- and y-directions; this is allowed if the size of
the computational box is sufficiently greater than the integral scale in
a given direction. At a large enough 2z location the flow is essentially
horizontal and uniform. We can use no stress bouhdary conditions in the
z?direction (i.e., k8u/8z =9v/dz =w=0 at z=0 and z = L) if the
boundaries of our box in thie direction are sufficiently far from the cen-

ter of the layer. This will allow us to expand the velocity fields as fol-

lows:
. ~ 1@k x+k,y)
u = ZZZ u(kl’kzsn) e 1 2 Cos("r%rﬁ) (5.13)
n ~k2 k 3
1 N
_ A Coilk,x+kyy)
v = ZZZ v(kl,kz,n) e 1! 2 COS(%“—Z-> (5.14)
n ‘k k ~ : 3
1(k x+k y)
— 1 2y . T
W= ZZZw(kl, 2,n) e 51n(nL—:) : (5.15)
and the vorticity fields as follows: |
: ‘ ~ e i(k,x+k,y) N
= ph p 1 2 nmz
u, ;;‘k_, 0 (K, Tepm) e U affE) 6as)

o RGN o ikxtky) R
o= Y , — 1= "2 . (nTz
w, = ;;;uﬁz(kl’k?n) e T s:m,(——L ) B (5.17)
I S R : e : , ,

3
- | iox+ky) oy
o, = ) T nnz s
m f‘;;;%(kl e @ | cos(LB) (5.18)
. 2:- %1 , ' -

The pseudo -spectral method will be used to approximate the part1a1 ‘

derivatives - The numerical technique was discussed in Chapter 3.
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5.4 1Initial Conditions

We want to préscribe an initial profile that corresponds to a pair
of vortices. 'It has been shown in Chapter 2 that filtering a line vortex
produces a vortex with a Gaussian distribution of vorticity in the core.
We shall use thiskfact to generate our initial conditions.

The initial conditions4are generated by starting with two line vor-
tices in the spanwise direction at (x=x1, 2=L3/2) and (x=x2, z=L3/2)
(see Fig. 5.4), and filtering in the x~z plane with the relatively wide
Gaussian filter: B

1 x2 z2 |
G(x,z) = ‘K—A—exp - T 3" "3 (5.19)
13 6h1' 6h3 ;

where hi is the mesh size in the i-th direction (i = 1,3) and Ai

(i =1,2) 1is defined by Eqn. (3.61). ‘This will produce the vorticity
field: ;

: . (x-x )2" [ (x-x )2 (z-L /2)2
w, = C, —;L—f'exp‘-'————l—— + expl- — exp Sty A
2 LA )0\ 6hi‘ | 6h ens /

1 > 0<z<L

0 f_x <L 3

(5.20)

‘w1=w3=0

, Gé(xl,z) = mé(x-FnLl,z)k : n.= #1,#2,5..(periodici;y)

. where Cl ‘1s an arbitrary Constant;that‘adjuéts the strength of the vor-
 tices. Note that these vortices can be elliptical; they are hl/h3 times

~as long in the streamwise direction as in the cross flow direction.

Equations (5.20) correspond to a perturbed infinite array;of vortices

'ﬁith a perturbation parameter B8 equal to:

R LI , o

B = Ef-  - e B ; (5-2l) v
B.=.0 _correspoﬁds;tq'a;uniformw(unperturbed)vvortex'array, and‘Wé.need B
to deal only 'with, .-'thé_ case B >0, ' ' S

“*5,




Figures 5.6a-f show constant vorticity contours for B = 6/16, 5/16,
4/16, 3/16, 2/16, and 1/16. Note that for large B the vorticity con-

tours look like those for a single distorted vortex.

5.5 Mesh Size Selection

We have shown in Chaptervd that a 16x16% 16 mesh system can re-
solve isotropic homogeneous turbulence with acceptable accuracy. For the
cases considered in this chapter there are no variations in the spanwise
direction. We dropped the number of meshés in the spanwise direction to
N2 = 4, 'the minimum;number‘ofrmeshes that ourkthree—dimensional code was
designed to handle. In the cross-flow direction the mesh number was in-
creased to N3 = 33 in order to allow the layer to grow in this direction.
This gives a total number of mesh points of Ny X N, X Ny = 16 X 4 x 33
=. 2112.

The spanwise vorticity iS‘defined.by,b;b

- = 3 = e ey
W, = F-U=F=V (5.22)

“Averaging (5.22) over x-y planes and using periodic boundary conditions,

we get
<w, > = 4 .55 o : (5.23)
2 xy dz Xy . _ :

If we‘sﬁbstitute,in (5.23) the vorticity disttibutidn given by Eqn. (5.20),

we get: :
4 e ( <z4L3/z>2) 0
eyl = . Cy = expl- ——5—] = (5.24)
dz Xy 1 LA 7 -6_h§’- : | ;

This ordinary differential équatioﬁ*can be solved togethef with_the‘bound—

«.ary.condition:

<uW>. =0 at z = L,/2 o (5.25)

XY -

‘The solution is obtained by simple integration:
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_ C z=L,/2
<a> = & erf(———:l—) (5.26)

xy oL /6 h
3
Non-dimensionalizing the velocity Au, we get:
_ v -z—L3/2
<u> o= 0.5 erf (5.27)
y /6 hy |

Equating Eqns. (5.26) and (5.27) and solving for vC1, we get:

¢, = 0.51, (5.28)
'Theylength scales are non-dimensionalized on the momentum thickness.
The mesh size was chosen such that the initial momentum thickness is equal

. to unity. Substituting (5.27) in Eqn. (5.9), we get:

0, = B
n JZ—TT- 3
and solving for h3, we .obtain
h, = V/—ZTT—_ = 1.023 (5.29)
: 3. %6 o =

The mesh size in the‘streamwisé direction was set équal to:
Chy o= %, = 1.364 (5.0
b =3 : Qo
The non-dimensibhal time.step was picked up to be equal to:

AT “= AUAt

s LT 3 = 0.0799 _ (5.31)
which yields a Courant number such that:
a5 _ g = o At
DT i s o : Nc = U, h < 0,03
j f'x'vv - which is wéll.within'the,stability'criterion and assures.that:the~ér:or

caused.by the time advancémentvwili be acceptably small.
The mesh size in the spanwise direction is irrelevant' for the cases
considered in this chapter. We have set h2 = h3;




5.6 Selection of B

e have shown in Section 5.2 that, to accord with the experimental
observations, the momentum thickness ©0(t) must grow linearly with time;
and, using o, = 11 (S&J), we expect:

0 _ 1
Aedt =..0.018 ; (5.32)

0,2 Vo

We have run a series of calculations for different values of 8.

Fig. 5.5 shows the momentum thickness B/Sin plotted vs.. T for the
cases run. - For the highly perturbed cases, B > 4/16, the momentum thick-
ness 0(t) does not grow linearly in time. However, for B = 3/16, 2/16,
and 1/16, ©(t) does grow linearly in time, with d68/Audt = 0.020, 0.015,
and 0.009, respectively.

Figures 5.6 and 5.7 show constant vorticity (contour) plots for the
various cases at times T =0 and T = 16;78, respectively. . Figs. 5.6a-c
and 5.7a-c show that fof large B we have essentially one elliptical vor-~
tex which grows “fatter" in time, to bécome more or less circular at time
T =16.78. Figs. 5.6d-f show that for small 8, we have initially two
distinct vortices; ' these vortices draw closer and rotate around each
other (Figs. 5.7d-f). For the case B = 3/16, the two vortices merge to
form one vortex at,time T =16.78 (Fig. 5;76).

The ‘above observations indicate‘that_case B = 3/16 gives results
comparablé to the experimental observations. The spread parameter o,

obtained for B = 3/16 is equal to

R 1 ;
g E el = G 97
() do el ,
: Audt 2‘ vam

‘which is within 10% of the expérimental results of S&J.

5.7 Mean Veibcity Profiles

 The mean y§1ocity“pr§fi1e <'-1;'>xy ﬁéefinedfby Eqn. (5.8) is a func-
~ tion qf z and T. Fig. 5.8 shows 2<u >xy/Aq plotted vs. ~z/86 at |
AT = 2.4 1intervals, for B = 3/16. The profiles collapse into one, indi-
catiﬁg-sélf-similarity of the mean velocity profiles. o ' |
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Self-similarity is also observed in the experimental data. Thus, as

far as the mean profile is concerned, the data can be fit by pairing vor-
tices with B8 = 3/16.

5.8 Mean Turbulent Intensity Profiles

In our computational box, the non-dimensional mean turbulence inten-

sity is defined as

q22 = }12<(F-<Tf> Yt G-<Vs )4 @-<w> )2
2(Au) © 2(Au) X x Xy xy
‘ ' (5.33)

where < >xy are planar averages defined by Eqn. (5.8).

Figure 5.9 shows the mean. turbulence intensity plotted vs. z/0, for
the case B = 3/16, at AT = 2.4 intervals. We note that the turbulence
intensity decays slightly at the early stages of the pairing and then

reaches a self-similar situation.

Compared with the experimental results, our peak intensity qZ/Z(Au)2
= 2,06 % 10-2 is substantially lower than the experimental value reported
by S&J (3.5 X 10_2).v The low value of the maximum turbulence intensity is
due to the fact that we did not take into accnunt the subgrid scale contri-
bntions, and that our field is strictly two-dimensional, whereas in reality

spanwise fluctuations are present in the experiment of S&J.

5.9 ‘Summary Y

It is interesting to note that vortex paiiing is capable of producing
v.se1f~51milar mean.velocity and turbulence intensity profiles, and a linear
_growth of  the momentum thickness that compare with experimental results
(for .B_, '3/16). We note that, due to perlcdic boundary conditions, once l .
‘the ertices’have paired we get a gniform vortex array (B = 0) and the |
pairing'and layer growth stop. If we want the pairing to continue, we

would have to perturb the array by displacing the vortices in the stream— .
wise direction We have not done this because in the actual flow succes—i
'siVﬁ\)airlngs are not clearly separated and are random

k'_‘ A uniform array of vortices can be perturbed in several different ways;
' for example, by adding a cosine distribution of vorticity to a uniform array,

we can enhance the pairing (see Appendix C) and get results similar to the

Ig_ﬁ,,T.,T‘,;;,;», B — """""“’b""'“:‘:—?agb.»!*‘ .1’;], S e
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results presented in this chapter. One could also make the vortices of
different strengths or use any combinations of these perturbations.

The perturbation B8 = 3/16 (vs. B =0 for the unperturbed layer)
needed to achieve the observed experimental growth rate of the shear layer
may, at first, seem excessive. In the experiments, the downstream vor-
tices exert a significant influence on those in the initial portioms of
the layer (D&B); recall that the influence of a distant vortical struc-
ture on a given pbint decreases inversely with distance. The cumu-
lative effect of the downstream vortices can be considerable, and, since
they -tend to be highiy turbulent, they may strongly perturb the vortices in
the initial séction of the mixing layer. Therefore, the value B = 3/16

may in fact be quite reasonable.
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Chapter 6

MIXING LAYER: THREE-DIMENSIONAL COMPUTATIONS

6.1 Preview .

In Chapter 5 we started with a two-dimensional initial field, and the
simulation of the governing equations stayed two-dimensional.
However, actual flows are tarely two-dimensional, and truly turbulent
flows are always three-dimensional. (Two-dimensional turbulence is ap-
proximated by certain atmospheric structures and in highly stratified
fluids.) 1In this chapter we evaluate the importance of large structures
in the development of the mixing layer, which is two-dimensional in the

conventional mean sense but contains the three-dimensional structures.

6.2 Boundary Conditions and Mesh-Size Selection

The boundary conditions and coordinate'system.of Chapter 5 will be
used. Periodic boundary conditions will be used in the streamwise (x,)

and spanwise (xz) directions, and no-stress boundary conditions in the

cross~flow (x3) direction.

~ The number of meshes used for the cases discussed in this chapter is

-16x 16 % 33 = 8448. The mesh sizes and time step are the same as in the

previous chapter. After non-dimensionalizing allrcoordinates on the ini-
tial momentum thickness and the velocity on Au, the mesh size in the cross-
flow ‘(x3) direction is: '

h3 = 1.023

In a mlxing layer the eddies are suspected of being elongated in the stream-~

fwise directlon, S50 we have set'

and
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We note that if the mixing layer is completely coherent in the spanwise
direction the size of the mesh in this direction (hz) is not critical.

The non-dimensional time step was set equal to

bubt
in

AT = = 0.0799

6.3 Initial Conditicns

We begin by taking the view that the mixing layer is a superposition
of a random velocity (Q) and a mean velocity profile (u/Ay). We want
the ini;ial random profile to be solenoidal (i.e., V-‘i = 0), random in
a‘regioﬂ of space (see Fig. 6.1), and to decay to zero outside this region.

In Chapter 3 we showed how to generate an isotropic random velocity

field u, omna 163 grid. To generate the random part of the initial
field that we need here, we start with the field of Chapter 3 and form:

..w.(I’J;L) = EI(I’J,L‘9) L = 14,.&-,20 (6.1)

PIJ,L) = 0 otherwise

(where I, J, L are the mesh point indices); i.e., a random field over
the middle of the shear layer that drops abruptly to zero outside. 1In
order to smooth out the jump between the two regions, Y is filtered in

the z-direction with a Gaussian filter. We get:
¥ = f_ljg(z') G(z~-2') dz' : (6.2)

where

' 1 sz
G(z) = A exp(— -
-3 \ _6h
: 3 oo
The random portion of the initial field is generated by setting

§‘= Vx'\j)-

(6.3)
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The initial c¢onditions were completed by adding to E. an error function
mean velocity:

(z-L,/2)
ii- = 0.5 erf - 3 (6.4)
u V6 h
3
Two cases were run:
;i max
Case a: AL = 0.01 (i =1,2,3)
;i max
Case b: - = 0.30 (1 =1,2,3)

In these two cases the large (grid) structures are assumed to be random
fluctuations.

The two-dimensional cases studied in Chapter 5 could be considered as

unsteady laminar flows, since there is no randomness. We emphasize that

there are at least two kinds of randomness:

i) Randomness of the pairing in which the vortices vary in shape, sepa-
ration distance, strength, number, etc., in a random way. In Chap-
ter 5 we computed realizations using spacing as the perturbation. ’

ii) Randomness meaning noisy (random) fluctuations.
The calculations described above are designed to look into the second
type'of randomness. To see what the combined effect would be, we ran still

another case in which the initial field contained a vortex pair (with 8 =

3/16) and a superimposed random field. For the latter, we took the random

field of case (b) described above. This case will be called (c).
~Table 6.1 summarizes the cases studied in this chapter. In Appendix D
we investigate the interaction between streamwise cellular structures and

spanwise vortex pairing.

6.4 Momentum Thickness

In order to study the‘development of the mixing layer, we would need 
a measure of the effects of the turbulent rotational region on the non-
turbulent irrotational regiony the momen tum thickness - 6(t) ~is one such
measure. . We note ﬁhat g(t), -as definedkby Eqn. (5.4), is a measure of
the momentum defect of the irrotational region. The mOmentum defect is,due’
to the spreading of vorticity into the irrotational region. Since, in our

computation, we have dropped the viscous terms, the growth of the momentum
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thickness measures the inviscid mixing or the entrainment of irrotational
fluid.
| Figure 6.2 shows the non-dimensional momentum thickness G/Gin ({‘3:.m .
is the initial momentum thickness) plotted vs. T for the three cases
considered. We note that in all three cases 0 grows linearly with time.
The growth rates (d6/Audt) for cases (a) and (b) are not very different,
despite the large differences in turbulence levels. The values of 0.008
and 0.011, respectively, are also substantially lower than the growth
rate (0.018) reported experimentally by S&J; they are, in fact, lower
than any of the values in Table 1.,1. The rate of growth of the momentum

thickness is only slightly depehdent on the intensity of the turbulent

fluctuations in cases (a) and (b), and a higher turbulence intensity pro-

duces a higher growth rate. Furthermore, when large organized structures
are present (case (c)), the momentum thickness growth rate, df/Audt =
0.02 is equal to what it was in the absence of random fluctuations.

Fig. 6.3 shows the non-dimensional momentum thickness Q/ein plotted vs.

b e e P t phammt

T, for case (c) and the two-dimensional case with B = 3/16. Only at the
early stages of the development of the layer do the random fluctuations

affect the growth of the momentum thickness.

profiles are very nearly self-preserving (Townsend, 1956). This means

6.5  Mean Veldcity Profiles

An important characteristic of the experimental turbulent mixing

layer 1is the_self—similarity of the mean velocity profiles. In our com-

‘putation, the mean velocity <u >ky is defined by Eqn. (5.8).

Figures 6.4a, b, and ¢ show 2 < G.>xy/Au plotted vs. z/6 at

‘AI = 2.4 intervals, for cases (a), (b), and (c), respectively. We obtain

self-similar profiles in all cases.  This means that self-similarity may
be obtained from a wide variety of different flow structures, and does not
provide much information about which initial conditions best répresent

physical reality.

6.6 Mean Turbulence Intensity Profiles

‘Experimental observationé show that the mean turbulence intensity

that: _ R :
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2
-4 - = f(%) O (6.5)

2(Au)?
Defining the integral of the turbulent energy IT at a given downstream

distance to be

I, = ——‘1———dz (6.6)
Z(Au)

and substituting (6.5) in (6.6), we get

'fIT = e_/‘me f(—g‘—) d(g)‘{ 1ce' | o (6.7)
where

‘ 4o
¢ = f £(n) d(m)

00

Non-dimensionalizing on the initial integral of the turbulent energy,

Ip,in> Ve g6t

g g et
T _ 8 _ 6

TT'in ein‘ tin—to

- Equation (6.8) shows that I, grows linearly with time if the profiles of
q2/‘2(Au)2 are self-31m11ar. To compute IT’ ‘
defined by Eqn. (5.33) was integrated numerically in the z-direction.
| - Figure 6.5 Shous I‘T/IT in

-note that for all three cases I /I

the mean turbulent energy

plotted vS.. T,' for the three cases. We

; T,in decays with t1me. However,’onlyr’
_for case (c), in whlch large structurts are present did the decay level

: Off-j e v o s R

Figures 6. 6a, b and c showl q /Z(Au) 'plotted vs. ”z/G,'vat’AT =

2. 4 intervals, for cases (a), ), and- (c), respectively. Consistent with
he integral of the turbulence energy results, the turbulence 1nten31ty :
decays 1n tlme. The most s1gn1ficant drop of the max1mum turbulence inten-v

| sity occurs-in the early stages of the development of the layer.. :

: The fact that the 1ntegral of the turbulence energy decays, 1nstead

‘of grow1ng linearly w1th time,,is a clear indication that the term (Eqn.

h(2 16)) used 1n our equations (2 28) to model the subgrid scale motions,




has too much of an inhibiting effect on the growth of the turbulent fluc-
tuations.

In order to support the above argument, we ran a case in which we

started with the,same 1n1t1a1 conditions as in case (b), but set C = 0.

Fig. 6.7 shows q /2(Au) plotted vs. z/0, and Fig. 6.8 shows IT/IT,in
plotted vs. T, for this case. It is clear that the turbulence intemsity
grows with time, indicating that in case (b) the subgrid scale model is
inhibiting the growth of the turbulence energy.

Recall thatwhen the initial conditions contain mothing but 1aivo struc—
tures we obtain self-similar turbualent intensity profiles (see Section 5.8),
even with C = 0.188. The decay of the total turbulence energy (Fig. 6.5)
might suggest that the subgrid scale constant determined for the decay of the
isotropic turbulence case might be too high for the mixing layer case. How-
ever, the growth rate of the momentum thickness for case (b) is much lower
than the growth rate reported experimentally. With Cv =0, the case (b)
layer did not grow, i.e., d6/Audt = 0, at least up to T = 9.6, which
indicates that lowering the subgrid scale constant will not give us a momen-
tum growth comparable to- the experlments. We thus surmise that it is essen-
t1al that large structures be included in the initial conditions if the
numerical results are to reproduce significant features of the experimental

mixing layer. In principle, we could begin w1th a laminar shear layer and

: t»some small perturbations. The Kelv1n-He1mholtz 1nstab111ty would then pro-

duce large vortical structures and would eventually produce a velocity fleld

““with the experimentally observed features. A computation of this type would

require at 1east an order of magnitude more computing. tlme. As. we have

noted earller, t‘e subgrid scale model would inhibit the growth of the per-

turbations and is not adequate for afcomputatlon of transitional flow. We

shall need toAmodifyithe'model if transitional flows are to be computed.

An alternative approach would be to increase . the amplltude of the perturba-

tions and lower the constant of the: subgrld scale model or use a finer mesh.

6.7 VorticityoContOUrs’_v

In order to 1nvest1gate the eddy structures and thelr dynamlcs, vor-

»'ticity contours 1n x=-z planes have been plotted in Figs. 6 9 and 6 10 for

 the three cases con31dered, at times T O and ‘T = 16. 78
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Figure 6.9a shows the spanwise vorticity contours for case (a), at

time T = 0. The combihation of a weak random velocity field and a smooth

‘mean velocity distribution yields»vorticity contours that are almost unaf-

fected ﬁy the random fluctuations. The development at T = 16.78, shown
in Fig. 6.10a, does not indicate-any significant.effect of the random
fluctuations on the mean. The mean field simply masks the weak fluctua-
tions in both the initial conditions and at T = 16.78. 7

Figures 6.9b show the spanwise vorticity contours for case (b), at
different spanwise (x-z) planes. The combination of a strong random
Velocity field and a mean velocity yields vorticity cbntouxs tﬁat look i
spotty. At time T = 16.78, Figs. 6.10b show that the spots appear much

more elongated. At some planes (e.g., plane 5), there are two vortex tubes

 that appear as if they might pair, while other planes show only one vortex

tube. This indicates that the initially strong random fluctuations are
being organized by the mean field, and that the layer is developing through

a‘éombination~of diffusion (due to the subgrid scale model) and vortex pair-

ding.

Figures 6.9¢ show the'spanwise vorticity contours for case (c) at dif-

ferent spanwiée (fo) planes. Adding random fluctuations to the two span-

wise vorticities causes the contour lines of the spanwise vorticity:to be-

come itregular, At time T = 16.78, the vortices have merged inwsome
planes (e.g., planes 1-4) in Figs. 6.10a, whereas in other planes (e.g.,
planes 5- 6) the vortices are still in the process of merging. This indi—

cates” thdt strong random fluctuations can affect the dynamlcs of vortex

pairing

6.8  Two-Point threlatiohs

In'order‘to inveStigate whether or not the mixing 1ayef shows a ten-~

‘dency to 1ncreased or decreased spanwise . coherenc#,. the spanwise correla-

tion of the StreamW1se veloclty fluctuations (R u(r,z)) was computed.

!

ff U"(X.Y,Z) u"(x,y+r z) dxdy

R (r 4) : (6.9).
| f f 1Gry22) u"cx,y,z> aay
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is defined as




where

o u = u-<u>
. Xy

Numerically, this duantity is computed as follows.

We first calculate

u", then take its discrete Fourier transform in the y-direction to yield

R(x k2,z)

, lation,length between time T =

can_t .

G"(x,vz,z). is then defined to be equal to

~ ,\v A *
R(x,kz,z) = u"(x,kz,z) u" (x,kz,z) (6.10)

: Ak ! A .
where u" is the complex conjugate of u'". Inverse transforming (6.10)

yields the discrete equivalent of

R(x,r,2) = fu"'(x,y,z) u"(x,y+r,z) dy -(6.11)
y : :

Finally, 1ine—averaging (6.115 in the x-direction and normalizing yields

the discrete equivalent to (6.9). :

Figures 6.11 show R at T=0 and T=16.78,

We shall define the correlation length to be

plotted vs. T

‘at various 2z - locations.

the abscissa of the point where R first crosses the r-axis.
~ For case (a), Figs. 6.11a show no significant changes in the corre-
Q0 and T = 16.78.

'flow the correlation length seems to increase, whereas in other parts the

In some parts of the -

correlatlon length seems to decrease. These variations are not signifi-

Flgures 6.11b show that when we start with a large random 1n1t1a1

‘fluctuation superimposed on a mean profile (case (b)), the correlation

1ength increases.with time. This: indicates that the layer is becoming

more organized in the spanwise direction and is consistent ﬁith the result
stated earlier that the vorticity tends to clump. Apparently there is a
tendency toward the formation of two-dimensional vortices. :

Figures 6 11c show that when we add a random field to coherent struc—7

" h] tures (case (c)), the - correlatlon 1ength decreases slightly with time. The

only increase in. the correlation length occurs at. the center of the 1ayer

(plane 17 4in our case)

TR




If the spanwise correlation length of the streamwise velocity is

taken as a measure of the coherence of the layer, our results tend to
indicate that a layer that begins with a random field becomes more co-
herent, and one that starts with two-dimensional vortical structures loses

coherence when the random fluctuations are strong.

6.9 Summary and Conclusions

We have shown that the development of the mixing layer is highly de-
pendent on the initial conditions. ‘This dependence is. partly physical and
partly numerlcal. Experlmentally, the dimportance of the initial conditlons
on the development of the two~dimensional mixing layer has been pointed
out by several workers (Bradshaw, 1966; Batt, 1975). Analytically, the
snbgrid scale models have been developed under the assumption that all the
energy transferred by the large resolvablekscales to the subgrid scales is
dissipated. The4decay of'therturbulence intensity in cases. (a) and (b)
indicates that it is doubtful thatmwe can compute transition with the pres-

ent subgrid scale models. The presence of large structures in the initial

~conditions is essential to the computation of inhomogeneous turbulent flows.

From the above observations we can conclude that in order to predict

the initial development of a shear layer one would need a subgrid scale

,model that- allows the energy of the small scale field to build up and even-

tually reach~equillbr1um with the 1arge eddies., However, the later devel-
opment of a shear layer can be predicted with the present subgrld scale
models, provided the large structures are expllcitly 1ncluded in- the inltlal

condltlons.' For other flows, it would appear that 1nclu31on of large struc—

-~ tures: that at least approximate those of the phy51ca1 flow is essent1al to
‘obtain reasonable results. Bass and Orszag (1976) attempted to study the
‘evolutlon of a- passive scalar field in a sheared turbulent velocity field,

but were unable to obtain physically realistic results. This may have been

due to the: omlssion of the 1arge structures in their in1t1al conditlons.




S e PR S . E—

Chapter 7

CONCLUSTONS AND RECOMMENDATIONS

In this work we have developed an approach to three-dimensional, time-
dependent computations of flows using the vorticity equations. ' A general

method of deriving conservation properties that is applicable to ‘any numer-

~ical method in incompressible fluid mechanics was given; its use simplifies

the analysis of numerical schemes.
The use of a filter which is smooth in real space has been shown to
be essential for the treatment of rotational-irrotational region interac-

tions.” 'The use of Fourier transform methods allows accurate and fast treat-

ment of the term qu -u, mj, which arises as a consequence of'filtering

This is a definite improvement over the expansion in Taylor series (Leonard
1973) used in previous studies (Kwak et al., 1975), which we believe should
be‘used only when the use of transform methods is not justifiable.

The vorticity equations have been shown to provide a satisfactory
basis for the simulation‘of homogeneous isotropic turbulence. Comparison
of our results with results obtained using the primitive variable equations
(Mansour et al., 1977; Moin et al., 1978) shows no 51gn1f1cant dlfferences.

A new subgrid scale model has been developed and shown to give results
comparable to those obtalned;u51ng~the vorticity model (Kwak et al., 1975).
The new- model offers advantages both in computational speed and in storage.
We foundlthat; for the caleulation of isotropic homogeneous turbulence, ‘the

subgrld scale constant depends only slightly on the numerical method used

~The varlatlon is about ten percent and is not 11kely to ‘have a 51gn1f1cant

'effect on the computed results in shear flows. = The use of Fourier spatlal

d1fferenc1ng has allowed us to look -more carefully at the subgrid scale

- ‘model, and it" ‘has been found that replacing exact derlvatlves W1th second—f'

'order dlfferences (roughly equivalent to averaging the model spatlally

(Love and Leslie, 1977)) produces‘improved behavior of ‘the spectrum
No-stress boundary cond1tlons 1n one dlrectlon and perlodlc boundary

condltions in the other two dlrectlons ‘have been 1ncorporated in a three-

i dimen51onal, time-dependent code. Flows in whlch these boundary condltlons




can be justified (e.g., two-dimensional Qakes, planar jets, mixing layer)
can be investigated using this code. We chose the mixing layer.

Two-dimensional computations of the turbulent mixing layer have shown
that pairing vortices produce self-similar mean velocity and turbulence
intensity profiles. The growth rate of the layer is strongly dependent on
the initial conditions, a fact also observed experimentally.

“ Three~dimensional computations have shown that the presence of large,
;§rganized (i.e., not random) structures is essential if the simulation is

to reproduce the essential features observed in the experiments. These
éomputations suggest that in order to simulate the initial'development of

a shear layer one would need a subgrid scale model that allows the energy
of the small scale field to build up with time and eventually reach equilib-
rium with the large eddies. However, the later development of a shear layer
cén be predicted with the present subgrid scale models, provided the large
structufes are explicitly included in the initial conditions.

Our results using different initial conditions indicate that self-
similarity of the mean velocity profiles can be obtained more easily than
self*similaritykof the turbulenée intensities. The addition of strong ran—
dom fluctuations to a flow containing pairing vortices disturbs the pairing
in‘a way that causes the vortexktubes to exhibit spanwise variations, and
whether or not the merging is completed depends on the spanwise locations.
This may explain the onset of three-dimensionality seen in eXperiméntS. Fig.
7.1 is a conjecture of what we think might happen.. The section of the vor-
tex tube ghat did not'merge could interact with:the vortex structure just
ahead (or just behind) to form a horseshoe vortex. ‘This horseéhoe vor tex
may get stfetched over several follers, giving the appearance of cellular
‘strquures (B&R,'Konrad); S V :

‘ iﬂ Appendix D we study the interaction between streamwise and -spanwise .
'vorticity. Again, the detailed results depend strongly on the initial con-
ditions. ’Each free shear flow,is unique, and the universélity‘that is
'sought exists only at large downstream distances. This may mean that the
computational "prediction" of free shear flows is feasible only to moderate
accuracys the‘precise behavior’of an individual free shear flqw'may depend
'on'thSical details that are not easily controlled. This means that some ‘

experimentation will always be necessary.
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Work remains to be done on the development of a subgrid scale model
that incorporates flow-regime dependence. Ideally, one would like a model
that can handle both transition and developed turbulence. = With such a
model, problems associated with the initial conditions can be studied
more carefully, since the linear stability tbeory is well understood and
the initial conditions can be chosen to be solutions of the Orr-Sommerfeld
equations. This kind of computation will help understand the effect of the
initial conditions on the development of the mixing layer, but will not
reproduce experiments exactly.

~In the case of the mixing layer, the use of periodic boundary condi-

tions is justifiable only if we move with the mean speed of the flow.  How-.

ever, the size of the eddies grows linearly with the streamwise distance
(in our frame 11nearly in tlme), and we reach a point at which the size of
the box must be 1ncreased.' In a stationary frame this problem can be
avoided, but inflow-outflow boundary conditions must be used. We suggest
that future work should concentrate on developing a method of treatlng

the inflow-outflow boundary conditions.

“Eventually, it may be possible to treat practical flows such as air-
foils, combustion chambers, etc., by these methods; “ Before that can be
done, much more;effort should first be devoted to developing subgrid scale
: models, treatment of boundary conditions, mesh layout and/or mapping,
_numerical methods, filters, etc., which are the important building blocksv

of large-eddy simulation.
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Table 1.1

EXPERIMENTAL RESULTS
(Table from Fiedler and Thies, 1977)

Author(s) u,/u Re* L* ] do Remarks
2% L (om) 0 budt
Liepmann & Laufer (1947) 0 9+10° | 900 | 11.76 10.016 | No trip
Wygnanski & Fiedler (1970) | O 50105 600 ; 8.70 10.022 Trip
Batt (1975) 0 7.10° | 640! 8.89 | 0.022 | Trip
| 0 7.10° | 640 | 11.76 | 0.016 | No trip
Spencer & Jones (1971) 0 1.10% | 560 }10.52 {0.018 | No trip
Champagne, Pao & Wyg— I 0 4-10S 600 | 9.62i0.020 | Trip (B.L.
nanski (1976) : not turb.)
Patel (1973) 0 2.10% | 1020 {10.53 | 0.018 | No erip
Oster, Wygnanski & I 0 l.l-lO6 1100 | 9:.21 {0.021 | Trip
Fledler (1976) 0 ]1.1.10% {1100 §11.29 1 0.017 | Mo trip
Foss (1977) 0 6.7.10° | 510 | 9.00 | 0.02L | Turb. B.IL.
0  |6.7.10° | 510112.12{0.016 | Lam. B.L.
Dimotakis & Brown (1976) 0.2 | 3.10° | 600 | 9.87 | 0.020 | No trip
Oster, Wygnanski & 0.4 2.8-105 470 112,12 {0.016 | Trip
Fiedler (1976) 0.4 |2.8-10° | 470 |10.81 |0.018 | No trip
Spencer & Jones (1971) 0.3 | 1.10°| 680 |12.31 |0.016 | No trip
| 0.6 |2.8.10° | 320 |13.14 |0.015 | Mo trip
Yule (1971) 0.3 | 5-10° | 650 | 9.44 |0.020 |No trip
- 0.61 |1.4-10° | 290 | 9.23 [0.021 | No trip
| No B.L.—
Thies (1977) 0 2.4+10% | 3600 | 10.05 { 0.019 i
* 3.8-10° 9.52 |0.020(| No trip
5.1.10° 9.09 |0.021 '
2.4.10° 10.31 | 0.019
, 6 B , ¢ 2 mm trip
4.2410° 9.37 | 0.021
| 2.4010% 10.24 | 0.019Y|
3.7.10° 9.57 [ 0.020¢ 4 mm trip
5.1.10% 9.15 | 0.021 S
2.4+10° 110.23 | 0.019 | zig-zag trip|




Table 1,1 (cont.)

*
Author(s) uz/ul Re; (;m) o, zg%; Remarks
B.L.-suction
Thies (1977) (cont.) 0 8.0'106 3600 | 9.17 ! 0.021\| No trip
2.5’106 -~ 110.10 : 0,019 ("near" re-
0.8'106 13.13 }0.015 gion)
2.4+10° 9.80 | 0.020)| 2 mm trip
0.8+10° 9.43 | 0.020{| ("near re-
gion)
8.0-106 8.95 [ 0.022 | 4 mm trip
2.0+10° 0.020) _
8.0-10° 9.0 |0.022f|° ™ TP
2.,4+10° 10.21 { 0.019 | zZig-zag trip

The following assumptions were used to reduce the data:

- glu
Oo = 0 Zu

Au o =

Tu = ‘ul + ﬁé

Ca oy
Aude 2.07 o V2T
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" ————- Boundary layer turbulent at the splitter plate

----- Boundary layer laminar at the splitter plate

2-2(05)
X-Xo
Fig.fl,l. r.m.s. streamwise velocity profiles for differ-

ent initial conditions (experimental results
from Foss, 1977).
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- <~~~ Boundary layér laminar at the splitter plate
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Fig. 1.2. Mean velocity profiles for different initial
conditions (experimental results. from Foss,
1977). ' : :




Fig. 2.1.

Filtered point vortex with an SCK (sharp
cut-off in k-space) filter, y = 0.
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Fig. 2.2, TFiltered point vortex with a GS (Gaussian
in real space) filter, y = 0.
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Fig. 3.1. Comparison of mOdifiedrwave numbers.
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—-—=- Using a discretized Gaussian in k-space (GD(k))

Using a discretized Gaussiaﬁﬁin real-space (GD(x))

 Fig. 3.2. TFiltered top-hat function.
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’Computations of the Decay of Isotropic Turbulence

 Table 4.1

i P AR , Numerical
v ,NO'-?f Subgrid Numerical Scheme Scheme for the ; Model Figure
-Mesh ‘Points Scale Model . X Constant :
o _ : Subgrid Scale Model
16 % 16 x 16 Model w-1 ’Fobu'rth—order diff. ‘Sec‘ond-order diff. C, = 0.235 4.2
| 16 X‘l6~x 16 - Model w-1:: Pseudo-spectral ' Pséudo—spectral CV =0.212 4.3
16 %16 X 16,  Modelvw,-l Pseudo-spectral Second-order diff. Cv =0.213 A
116 X16X 16 Model w-2 Pseudo-spectral Pseudo-spectral Cv =0.186 : 4.5
16 x16 %16 ‘Model w=2 Pseudo-spectral Second-order diff. _ Cv = 0.188 4.6
32x32% 32 " Model w-2 PSeudo-spectfal Second-order diff. Cv = 0.188 4.7
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Fig. 4.1. kDeca‘y of mean square filtered veloé’it;;for 16X 16 X 16
: - ‘mesh. < > = average over all space. : '
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‘,kFig. 4.2, Filtrye'r‘ed enet'gy spectra. Foufth;—order differ-
, ~ encing with 163 mesh; model w-1, C_ = 0.235.
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Fig. 5.5. Non-dimensional momentum thickness (0/64,) as a function
of time for various. f. 'Iwo-dimensional computations.
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Contour plots of the spanwise vorticity 032)
for B =-6/16, at time T = 0. Constant vor-—
ticity lines are plotted at eight levels.
Higher anbers’on:these lines indicate higher
levels (w, = 0.702).
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Contour plots of the spanwise vorticity 032) for
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Fig. 5.6f. Contour plots of the spanwise vorticity (wjy) for
B8 =1/16, at time T = 0. Constant vorticity lines
are plotted at eight levels. Higher numbers on these
- lines indicate higher levels (wz S 0.415).
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Contour plots of the spanwise vorticity ,032) for

‘B =5/16, at time T = 16.78. Constant vorticity

lines are plotted at eight levels. "Higher numbers

on these lines indicate higher levels (w, . =
0.358). ’
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5.7d.

Contour plots of the spanwise vorticity (wp) for
B = 3/16, at time T = 16.78. Constant vorticity
lines are plotted at eight levels. Higher numbers
on these lines indicate higher levels (w2 =
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vorticity lines are plotted at eight levels.
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Table 6.1

Three-Dimensional Computations of

Turbulent Mixing Layers

Case Anplitude of Random Field Initial Conditions
Y4 lmax
a S = 0.01 Random field + mean
ui max
b Au = (.30 Random field + mean
U |
¢ Aumax = 0.30 Random field + 2 spanwise
vortices (B = 3/16)
6 T 1 I l l
o.d8 o .
5 1— 0O CASE a =0, -
.5 Audt 0.008
14— A caseb 38 0011 —
‘ Audt '
6 L _d48 | L
Ein L3 O CASE ¢ Aud,’i =0.020
2 —
. €
" [ ‘ B
. 1t o ;
o b—— G—% 1 t 1 l
9.6 12,0 14.4

0 2.4 4.8 7.2

16.8

 Fig. 6.2. Non-dimensional momentum thickness (8/8;,) as a func-
‘ tion of time. Three-dimensional computations.

103



i

:

]

,

;

:
i
I
|
!

i

T l

O 2-DCASE = %

O CASE ¢

| |

0 24 4.8 72
| T

Fig. 6.3. Non-dimensional momentum thickness (6/6in) ‘

of time.

104

96

12.0 144

6.8

as a function



sl A D N

A + 0 X + » G 3

—noo

[

l |

2.0 4.0 6.0

z/0

Fig. 6.4a. Mean velocity profiies. Three—dimenéional c¢omputation
(case a).

105 .

6.0

10.0



R D

.20

0.00

2< 4 >
Au

.20

X+ e X + b OO

| I l l

2.0 4.0 6.0 8.0

z/0

-~ Fig. 6.4b. Mean velocity profil.es. Three-dimensional computation
(case b).

106




o) Bl 5T ik i

i

0.00

2< u >
Au

'520

X + 6 X 4+ » 0 3

-.40

-.60

=-.80

L 41 1 1

0.0 2.0 4.0 6.0 8.0 10.0
z/08 : :

5  Fig. 6.4c. Mean velocity profiles. ’Three—dim‘ensional computations
00 : (case c). ‘

107



R i e —

T

Ir
T 0.5
]
A CASE a
03 | , _
O CASE b
0.2 - -
O CASE ¢
o.l : —
o I | | I I 1
0 24 48 7.2 9.6 2.0 14.4 16.8

T
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Mean turbulence intensity profiles. Three-dimensional
computations (case a).
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Appendix A

SUBGRID SCALE MODELS FOR THE VORTICITY EQUATIONS

In Chapter 2 we propose to use the following models for wi. (Eqn.

j
(2.9)):
Model w-1
W = =g —-8-—(2\)§) (2.15)
i3 ijk 9x, TIkRA y
Model w-2
W.. = - 20 (U + = (V.3.) (2.16)
1j Bx, V1 T g 5 :
where
B 2 —= % 2.14
Vp = (CVA) (miwi) (2.14)
T - ifo = . 3 = 2.12
543 5 (ij ui+8xi “j) (2.12)

The models should satisfy the following necessary conditions:
1. they should be antisymmetric,
2. they should vanish in an irrotational region, and
3. they should be an energy sink.

Condition 1 is readily seen to be satisfied by these models. We note

. ; , ] o 2 —— 1

that in an irrotational region, w, = 0. Hence, Vg = (CVA) (miwi)2 = 0,
and the model vanishés in an irrotational region; i.e., condition 2 is also
satisfied. '

In order to show the dissipative nature of the subgrid scale models

w-1 and w-2, consider the following equation:

5t T Ow, i | (4.1

where the nonlinear terms in Eqn. (2.28) have been dropped. Multiplying

~ Eqn. (A.1) by wi’ and integrating over the flow volume, we get:
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wl-é—gm dv = vy 1 dy (A.2)
_/ﬁ _/~ Bx

We want to show that Eqn. (A.2) reduces to

= f5um o = - (4.3)

where € > 0.

Model w-1

Substituting Eqn. (2.15) in Eqn. (A.2) for wij’ integrating by parts,

and using periodic boundary conditions, we obtain

= 3EE w = -2 fv 55, (4.4)

and we have for this case:

g = ZfVTSkQSde'?_ 0

i > 0.
since \)T > 0.

Model w-2

In a similar way, substituting Eqn. (2.16) into Eqn. (A.2) for Wij’

we can show that

3 | S R
€ -:5_-ulu:L dv = —f\)T W, dv (A.5)

and we have for this case



Appendix B

Fast Discrete Sine Transform (FDST)

The discrete analogs to the expansion in Fourier sine series (Eqns.

(3.14) and (3.13)) are

X s . nmx
f(x) = 2 f7(n) sin m] (3.16)
~s 2 - , nmx
£ (n) = '-("N—_—..L‘)‘E f(x) sin l:'(—ﬁ:m] (3.17)
where vn = 0;1,.;§,N—1,
= L/(N‘l),

= jh, j=0,1,...,N-1,

number of wmesh points,

2oz X
fl

= length of the computational box.

Both the forward and inverse sine transforms involve identical sums.
Eqn. (3.17) can be rewritten as:
2(N=1)-1 Y
©As _ 2 f =27 inx
f(n) = WD Im[ 2 ‘F(x) exp,(——-——-—z(N_l)h) (B.1)
where

F(x)

f(x) 3
0 k|

0,1,...,N-1,
N, N1, ...,2(N-1)-1

We note that the 5qmmation

2(N=1)-1 oY
F(x) exp(%%) : (B.2)

is equivalent to (3.12) with N

1= 2(N-1), and an FFT routine can be

used to evaluate this sum.

138



Fast Discrete Cosine Transform (FDCT)

The discrete analog to the expansion in Fourier cosine series (Eqns.
(3.21) and (3.22)) are: ’

(N=1) ¢
f(x) = E £7(n) cos(ﬁ%ﬁ) (3.19)
=0
) = s (E) £'(x) A (3.20)
, D & & P lEDR .
where v
e 5E°(n) n = 0,81
f'(n) - ~c ’
f (n) n=1,...,N-2
Li(x) j = 0,N-1
f£'(x) =
£(x) o =l 0,N=2
where
n = 0,...,N-1
h = L/(N"l)’
x = jh  §=0,...,N1,
N = number of mesh points,
L

=  length of the computational box.

Both the forward and inverse transforms involve identical sums.

Eqn. (3.19) can be rewritten as:

£( = 2R : =27 inx
%) = Re F(n) exp m-)-—h' (B.3) .
=0 ; N ‘ ;
where PR
F(n) = 1ﬁfc(n) n = 0,N-1,
= gc(n) n=I...,N2,
= 0 n =

N, e, 2(N-1)-1.

We note that the sum:inrtB.S) is identical to the sum(B.2), and an
FFT routine can be used fo evaluate it. In fact, the sine and cosine

traﬁsforms can be done simultaneously, if it is necessary to have both.
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Appendix C

Effect of a Sinusoidal Vorticity Perturbation on a Uniform Vortex Array

In Chapter'S we have studied the effect of perturbing a uniform array
of vortices by offsetting the spacing of the vortices (B > 0). In this

appendix we study the effect of adding a sinusoidal vorticity perturbation

‘to a uniform array of vortices (B = 0).

1. Initial Conditions

The initial conditions studied in this appendix were generated by
starting with a uniform array of point vortices on the centerline of our

computational box:

Wy = Cl(é(‘x—Ll/A) + 5(x—-3Ll/4)>6(z~-L3/2) (C.1)

'We then add a cosine vorticity distribution to (C.1)3

L 2Tx | :
w, = w, - C, cos (T)é(z—L3/2) (C.2)

Eqn. (C.2) is then filtered with a relatively wide Gaussian filter (Eqn.

- (5.19)) to yield the initial conditions. The initial velocity is then

non-dimensionalized on Au and the length scales on ein. The computa-
tional details, i.e., number of mesh points, mesh size, time steps, and
boundary conditions, are the same as in Chapter 5. Only the initial con-

ditions were changed.

2. Results

The momentum thickness ;(9> is defined by Eqn. (5.4). Fig. C.l shows

,e/eink plotted vs. T  for VCZ/Cl =.0,1/20, 1/20, 2/20, 4/20. We note that

the growth rate of the layer is highly dependent on the strength of the
perturbation. The growth rate more than doubles from 0.016 to 0.035 when
the strength of the perturbation is doubled (Cz/Ci from 2/20 to 4/20).
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We note also that for high amplitude perturbations, CZ/Cl = 4/20, the
growth rate starts to level off for T > 12.0. This saturation is also
observed experimentally by Oster et al. (1978); they have oscillated the
initial conditions of a two-dimensional mixing layer.

Figures C.2 and C.3 show the non~-dimensional mean velocity and turbu-
lence intensity (as in Sections 5.7 and 5.8) plotted vs. z/6 for CZ/Cl =
2/20. We note that the mean velocity profiles are self-similar. This is
not surprising, since self-similarity of the mean velocity profiles is
easily obtained (see Section 6.5). Turbulence intensity profiles (Fig. C.3)
show that self~similarity is also more or less obtained for the present
case.

These results are similar to those obtained in Chapter 5 by using a
spacing perturbation. Apparently the perturbatioﬁ can take any of a number
of forms, and the characteristics of the shear layer will be nearly the
same. Under experimental conditions, the nature of the perturbation is
difficult to determine. What we do note is that reproduction of the ex-
perimentally observed growth rate does require large perturbations, which
are apparently created by either the inflow or outflow conditions of the

experiment.
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Appendix D
INTERACTIONS BETWEEN STREAMWISE AND SPANWISE VORTICITY
In Chapter 6 we studied the effect of a random fluctuation on vortex
pairing. In this appendix we study the interactions between a streamwise

cellular vortex structure and spanwise vortex pairing.

1. Initial Conditdions

The initial conditions studied in this appendix were generated by

adding to a row of spanwise vortices (B = 3/16) a row of streamwise vor-

tices of altermating signs:

2
_ (z-L,/2)
wy = C2 sin (%?X) expl- —'——;%f——— (D.1)
2 6h3

The same computational setup described in Chapter 6 is used, i.e., the same
boundary conditions, number of mesh points, mesh sizes, and time step.

‘Figure D.l shows a contour map in the y-z plane of the streamwise

vorticity. We note that Ei displays a cellular structure and that Wy

does not initially have a streamwise variation. We ran two cases:

Case a:
: w
Limax _ 4 037
w
2|max
Case b:
w
Limax _ 4.370
2 |max

2. Results

We first look at the development of the momentum thickness, e(f), de~
fined by Eqn. (5.4), in time. The non-dimensional mean velocity (Section

5.7) and mean turbulence intensity (Section 5.8) are aléo:considéred; The

interaction between the spanwise vortices and the streamwise vortices is

studied using contour plots. Note that we have a three-dimensional box

and that contour plots in different planes for different vorticity direc-

" tions will be considered.
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Figure D.2 shows 8/6in plotted vs. T. The momentum thickness
growth rate, df/Audt = 0.020, for Case (a) is the same as it was in the
absence of the streamwise vortices. However, the momentum thickness
growth rate, d86/Audt = 0.040, doubled for Case (b).

Figures D.3a and -b show 2< u >xy/Au plotted vs., z/60 for Cases (a)
and (b), respectively, at AT = 2.4 intervals. We note that both cases

produce self-similar mean velocity profiles.

Figures D.4a and -b show q2/2(Au)2 plotted vs. z/0 for Cases (a)
and (b), respectively, at AT = 2.4 intervals. The mean turbulence inten-

sity results for Case (a) -are similar to those we obtained when the stream-

‘wise vortices were not present. As in the 2-D case (with B = 3/16), the

mean turbulence intensity decays slightly, then reaches a self-similar
situation. For Case (b), in which we have strong streamwise vortices,
Fig. D.4b shows that the turbulence intensity grows with time, and the pro-

files do not show self-similarity.

(a). Contour Plots in the x-z Planes

Figures D.5 show constant vorticity contours of the spanwise (Eé)
vorticity at time T = 16.78. - In both cases the spanwise vortices have
paired. The shapes are similar, but the roller is slightly distorted for
Case (b) as compared to Case (a) and to the 2-D results (see Fig. 5.7d).
This indicates that the streamwise vortices did not affect the merging of"
the spanwise vortices, but the strong streamwise vortices (Case (b)) have
affected the shape of the roller.

Figures D.6 show constant vorticity contours of the streamwise vortic-

ity for Cases.(a) and (b). These figures indicate that the streamwise vor-

‘tices have been convected to the edges of the mixing layer by the spanwise

vortices. There is also clear evidence of vorteX'stretching.

Figure D.7 shows the projection of the vorticity vector at T = 16.78,
for Case (b). We can see clearly that the originally straight vortex lines
have been convected and stretched by the spanwise vdrtices to assume an

inverted S shape.
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(b) _Contour Plots in the y-z Planes

Figure D.8 shows constant vorticity contours of the spanwise vortic-
ity for Case (b). The spanwise vortices have been convected and stretched
by the strong counter-rotating streamwise vortices and exhibit spanwise
waviness. This means that the contact area between the rotational fluid
and the irrotational fluid has increased, which leads to an increase in
the entrainment rate. This waviness also explains the increase in the
turbulence intensity and high growth of the momentum thickness of the mix-

ing layer. 1! te that the mean quantities are defined as horizontal planar

averages and, with this definition, the wavy layer appears thicker and more

turbulent than a strictly two-dimensional layer.

The above results indicate that the effect of the streamwise vorticity

on the spanwise vorticity i1s almost independent of the effect of the span-
wise vorticity on the streamwise vorticity. Indeed, a straight line of

particles placed at the center of the layer in the streamwise direction

would be convected to form an inverted S shape in the presence of the two-

dimensional vortex pairing. A straight line of particles iﬁitially passing

through the center of an array of counter-rotating vortices will be con-

vected to assume a wavy shape.
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© Fig. D.b5a.
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Contdur,plots of the spanwise vorticity (Eé) in an  x~z
plane (y/ei“ = 4.09), at time T = 16.78. Constant vor-

‘ticity lines are plotted at eight levels. Higher numbers

on these lines indicate higher levels (case a).




Fig. D.5b.

Contour plots of the spanwise vorticity (wz) inan  x-z
plane (y/ein =4.09), at time T = 16.78. Constant vor-
ticity lines are plotted at eight levels. Higher numbers
on these lines indicate higher levels (case b).
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Fig, D.6a.

Contour plots of the streamwise varticity (Bi) in an  x-z
plane (y/8; = 4.09), at time T = 16.78. Constant vor-
ticity lines are plotted at eight levels. Higher numbers
on these lines indicate higher vorticity levels (case a).
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Fig. D.6b.

e

Contour plots of the streamwise vorticity f(ﬁi) in an

. x-z plane (y/ein = 4.,09), at time T = 16.78. Con-

stant vorticity lines are plotted at eight levels.
Higher numbers on these lines indicate higher levels
(case b). ‘
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Fig. D.8.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

I i 1 5 Il It A

Contour plots of the spanwise vorticity (wy)
in a y-z plane (x/8;, =9.55), at time

T = 16.78. Constant vorticity lines are plotted
at eight levels. Higher numbers on_these lines

‘ indicate higher vqrticity levels  (w = 0.714

: 2,max
case b).
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Crmmmm—- COMPUTER PROGRAM WRITTEN TO CALCULATE TURBULENT MIXING LAYERS

*COMDECK AVG
COMMON/AVG/ AVG1,AVG2,AVG3,CCF
¥COMDECK BLANK
COMMON DUDX(16,16,33)
#¥COMDECK DATA7
COMMON/DATA7/7 FR(16,16),FI(16,16)
¥COMDECK DATA9
COMMON/DATA97 IMAX,JMAX, LMAX
¥COMDECK DAT21
COMMON/DAT217 XR(64),XI1(64)
¥COMDECK DEL
COMMON/DEL/7 DELTAX,DELTAY,DELTAZ
¥*COMDECK DIM .
COMMON/DIM/N1,N2,N3
¥COMDECK FLT
COMMON/FLT/Z FILT1(16),FILT2(16), FILT3(33)
¥COMDECK LARGEZ2
COMMON/LARGE2/ U(16,16,33),V(16,16,33),W(16,16,33)
LEVEL 2,U,V,W
¥COMDECK LARGE3
COMMON/LARGE3” GU(C16,16,33),GV(16,16,33),GW(16,16,33)
LEVEL 2,6U,GV,GHW
*COMDECK LARGEJ
COMMON/LARGESZ 01(16,16,33),02(16,16, 33) 03(16,16,33)
LEVEL 2,01,02,03
*COMDECK MEANVOR
COMMON/MEANVOR/ VOR(32,33)
¥COMDECK PR
COMMON/PR/ - CCPW,CCPF,CCPD
*COMDECIK WV
COMMON/WV/ WAVEX(16),WAVEY(16),WAVEZ(33),WAVEXS(16),WAVEYS(16)
1 ,WAVEZS(33)
*COMDECK XL
COMMONZXL/ XPART(160) YPART(160), ZPART(160) NCHAR(160)
¥DECK MAIN
PROGRAM MAINCINPUT,QUTPUT,TAPES, TAPE9 TAPElO)
cxxxxxxxxxxxxxxxxxxxxxx*xxxxxxxxxxxxxxxxxxx**x*x*x*xxxxxxxxxxxxxxxxxxxx*
MAIN. CONTROLS THE COMPUTATION SEQUENCES. *
C IN THIS ROUTINE WE ADVANCE IN TIME . *
C THE EXTERNALS USED IN THIS ROUTINE ARE *
C CFILTER *
(o CONVEC *
C CURLO ¥
C DATARED ¥
c EDVIS : o %
c INVERS g . . b
C MEANINI *
c ‘ *
C b4
c *
C ¥
C ¥
c %
c ¥
(o ¥

(g

MOVLEV
SFILTER
SFILTER
SGS
STFILT
STREAD
STWV ‘
*XX**XXX*XXXXX******X*X****X*X***X**X*****X***X*X**********K*XK*****X*
INTEGER TIME,TSTART,TEND ,
COMMON/TIM/ TSTART, TEND '
COMMON/LARGE4/ RUC16,16,33),RV(16, 16,33),RWC16, 16,33)
COMMON/NORM/ DELU,THETA
LEVEL 2,RU,RV,RW
COMMON/DATCNT/ IDATCNT
¥CALL MEANVOR ,
¥CALL XL : , :
COMMON/CONST/C100,C101,TJK,IJ,NHPI,HALF
¥CALL DAT21
*CALL LARGE2

- 160




®CALL
¥CALL
¥CALL
¥CALL
¥CALL
XCALL
®CALL
XCALL
¥CALL
c

c

LARGES REPRODUCIBILITY OF THE
DATA9 ORIGINAL PAGE IS POOR

AVG
START THE READOUT OF INPUT

CALL STREAD ,

SET IHE COEFICIENT OF THE SUBGRID SCALE MODEL
€=0.188

SET COF = 1 FOR THE FIRST TIME STEP

COF=1.0

1J=N1XN2

TJK=N1XN2%N3

DO 1 L=1,LMAX

DO 1 J=1,JMAX

DO 1 I=1,IMAX
U(I.J,L)=0.
V(I,J,L)=0.
W(I,J,L)=0.
01(I,J,L)=0.
02(I,J,L)=0,
03(I,J,L)=0.
CONTINUE

SET THE WAVE NUMBERS
CALL STWV

Cx¥¥xXSET THE INITIAL CONDITIONS

c
c

123

CALL MEANINI

NON DIMENSIONALIZE THE TIME STEP ON DELU/THETA
DT=0.03125%DELU/THETA

SET THE FILTER WIDTH = 2XMESH SIZE

AVG1=2.0

AVG2=2. o

AVG3=2,

COEF2: <cx<AvclanLTAXxAVGZ*DELTAYxAvcsxDELTAZ)*xt1 73.))%%2
DO 123 L=1,LMAX

DO 123 J=1, JMAX

DO 123 I=1,IMAX

RUCI,J,L)=0.

RVCI,J,L2=0.

RWCI,J, L)

CONTINUE

ICOUNT=0

TIME=0 , ,

WRITE ON TAPE 9 TO BE STORED ON DISC PACK

PRINT 1100, TIME

¥§§¥§§$)OTIME »01,02,03,DT, DELTAX, DELTAY, DELTAZ, DELU, THETA
COMPUTE THE STATISTICS OF THE INITIAL CONDITIONS
CALL DATARED

SET THE FOURIER TRANSFORM OF THE GAUSSIAN FILTER
CALL STFILT

IDUM=30

DO 300 TIME=TSTART,TEND

 CX%XXXCOMPUTE THE ADVECTIVE AND STRETCHING TERMS

CALL CONVEC

CALL SFILTER(GU,DUDX,N1,N2,N3)
CALL SFILTER(GV,DUDX;NI,NZ.NS)
CALL CFILTER(GW,DUDX,N1,N2,N3)

CX¥¥Xx¥COMPUTE THE EDDY VISCOSITY

CALL EDVIS(COEF2,DUDX,N1,N2,N3)

Cxx¥¥¥COMPUTE THE SGS MODEL

CALL SGS(U,V,W,N1,N2,N3)

Cxx%XXADVANCE 1IN TIME

DO 800 L=1,LMAX
DO 800 J=1;JMAX
DO 800 I=1,IMAX
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01(¢I,J,L)=01(¢I,J,L)+DT*¥(COFXGU(I,J,L)-0.5%RUCI,J,L))
02(I,J,L)=02CI,J,L)+DTX(COFXGV(I,J,L)~0.5%RV(I,J,L)) .
03(1,J,L)=03CI,J,L)+DTH(COFXGUW(I,J,L)~0.5%RW(I,J,L))
800 CONTINUE
CxxxX¥STORE THE PREVIOUS TIME STEP
CALL MOVLEV(GU(l,1,1),RU(1,1,1),IJK)
CALL MOVLEV(GY(1,1,1),RV(1,1,1),IJK)
CALL MOVLEV(GN(I,I,I):RN 1, 1 1), IJK)
Cx¥¥¥XTHE VORTICITY AT THE NEXT TIME STEP HAS BEEN COMPUTED
Cxx%x¥FIND THE CORESPONDING VELOCITY FIELD
CALL INVERS(O1l,GU,DUDX,1,N1,N2,N3)
CALL INVERS(OZ,GV;DUDX,Z N1,N2,N3)
CALL INVERS(03,GW,DUDX,3,N1,N2,N3)
CALL CURLO(GU,GV;GN;U;V;N;NI;NZ.NS)
c gg; go; = 1.5 FOR SUBSEQUENT TIMES (ADAMS-BASHFORTH)
ICOUNT=ICOUNT+1
IICOUNT=ICOUNT-IDUM
IF (IICOUNT .NE. 0) GO TO 300
ICOUNT=0
PRINT 1100,TIME
WRITE(9) TIME,01,02,03
CALL DATARED
300 CONTINUE
1100 FORMAT(1H1,5X,% TIME STEP =x%,I5)
1000 FORMAT(1P8E15.7)
STOP
END
*¥DECK CFILTER ‘
SUBROUTINE CFILTERCHR,HI,N1,N2,N3) »

€ 23636 36 3 3 33 3 26 3 3 33 3 I I 33636 .3 3 36 3 I 3 33X 336 I 2 3 36263 33 3 336 262263 I X 36 26 3 X 223N 26K XK 6 333 ¢ %

c CFILTER COMPUTES THE FILTER OF THE HR VARIABLE BY EXPANDING IN

C FOURIER SERIES IN THE X- AND Y- DIRECTIONS AND FOURIER COSINE ‘

C SERIES IN THE Z-DIRECTION .
c THIS ROUTINE USES AS EXTERNALS

C FDCT

c FFTX

C FFTY

c A CALL TO STFILT INITIATE THE VALUES OF FILT1,FILT2,AND FILT3

(3,333 2232333333333 3¢3333 388332333333 333328323 2333333333233 8333333 33333339
DIMENSION HR(N1,N2,N3),HI(N1,N2,N3)
¥CALL DATAS9
XCALL FLT
xCALL DATA7
¥CALL DAT21
LEVEL 2,HR
CC=1. 0/ ( IMAX*JMAX)
TJ=N1XN2
DO 10 J=1,JMAX
DO 10 I=1,IMAX
DO 20 L=1,LMAX
XRCL)=HR(I,J, L)
20 CONTINUE
CALL FDCT(1.0)
DO 30 L=1,LMAX
HICI,d,L)=XR(L)
- 30 CONTINUE
10 CONTINUE
DO 40 L=1,LMAX
CALL MOVLEV(HI(I 1,13, FR(1,1),14)
CALL FFTX(1.0)
CALL FFTY(1.0,1.0)
DO 50 J=1,JMAX
DO 50 I=1,IMAX
FRCI,J)=FR(I, JIXFILTICI)XFILT2(JIXFILT3(L
CFICI,=FICI, JIXFILTICIXFILT2CIIXFILTICL
50 CONTINUE
CALL FETX(=1.0)
CALL FFTY(~1.0,CC)
CALL MOVLEV(FR(I,1),HICL,1,L),1J)

)
)



40 CONTINUE
DO 60 J=1,JMAX
' Do 50 L1’ iMAx
: 00 60 11.1MAX REPRODUCIBILITY OF THE
DO 70 L=1,LMAX ORIGINAL PAGE IS POOR
XRCL)=HI(I,J, L) }

70 CONTINUE

CONTINUE
CONTINUE
RETURN
END
¥DECK CONVEC
SUBROUTINE CONVEC
CHHH MMM M NN IEM N NI I NI NI K HEN KM NI I IE0 3 I I I 206 0 3 36 36 26 36 3 36 2

o~ 00
oo

c THIS SUBROUTINE COMPUTES THE CONVECTIVE AND STRETCHING *
C TERMS AND STORES THEM IN GU,GY,GW %
c THIS ROUTINE USES AS EXTERNALS %
c COSPART *
c PARTIAL *
€ 269636 2 3 36 303 I 33636 363K 36 36 6 36 3 36 36 6 36 3 363 36 36 3 36 363 36 3 36 36 34 36 0 36 36 26 26 3 33 36 36 3 3 3E 36 3 3 36 36 3 3 3 JE I 2 3 36 36 36 3¢ 3¢

¥CALL LARGE2

¥CALL LARGE3

*CALL LARGES

XCALL BLANK

¥CALL DATA9

¥CALL DIM
IJK=N1XN2XN3

CXXK**TERM FOR THE X-DIRECTION
DO 10 L=1,LMAX

y DO 10 J-1 JMAX
DO 10 I=1,IMAX
GUCT,J,L)=UCT,J,LI%02¢T,J,L)=-V(I,J,L)%01(I,J,L)
GVC(I,J,L)=UCI,J,L)%03CI,J,L)-W(I,J,LI*01CI,J,L)
10 CONTINUE .
CALL PARTIAL(2,GU,N1,N2,N3)
CALL MOVLEV(DUDX(1,1,1),6U(1,1,1),IJK)
CALL COSPART(GV,N1,N2,N3)
DO 20 L=1,LMAX
DO 20 J=1,JMAX
DO 20 I=1,IMAX
GUCI,J,L)=6UCT,d,L)+DUDX(I,J,L)
20 CONTINUE
CXXXXXTERM FOR THE Y-DIRECTION
DO 30 L=1,LMAX
DO 30 J=1,JMAX
DO 30 I=1,IMAX ,
GVCI,J,L)=V(I,J,L)%01( J.L)-U(I;J,L)XOZ(I.J;L)
CGWCT,J,0=VeTL, L, LI%03CT,J, L) -W(T,J,L)%02¢T,J,L)
‘ 30 CONTINUE
P CALL PARTIALCL,GV,N1,NZ,N3)
| ~ v CALL MOVLEV(DUDX(1,1,1),6V(1,1,1),IJK)
CALL COSPART(GW,N1,N2,N3)
DO 40 L=1,LMAX
DO 40 J=1,JMAX
DO 40 I=1,IMAX
GVC(I,J,L)=6GY(I,J,L)+DUDX(I,J,L)
. 40 CONTINUE
CXXX¥XTERM FOR THE Z-DIRECTION
, DG 50 L=1,LMAX
v _ DO 50 J=1,JMAX
. : DO 50 I=1,IMAX
| o GWCTL I, L)ZWCT, Y, LI*0L(T, J L)-UCI,J,L)I%03(¢1,J,L)
UCT, J, L)=MCT, 35 00%02CT, 3, 0)=VCT, J,LI%03C¢I,J,L)

50 CONTINUE
CALL PARTIALCL,GMW,N1,N2,N3)
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H Wil 55 . anliidon

60

¥DECK

G2 X360 366 206 26 2606 06 3696 06 006 M0N0 M 062006 30 06 06 34 36 3 36 36 36 06 06 3 0636 2606 3 36 06 36 3636 6 36 36 06 36 36 36 36 36 D D6 2 6 6 36 36 3 6 3 3¢
COSPART COMPUTES THE PARTIAL IN THE Z-DIRECTION OF U BY EXPANDING

¢
c
c
c
c

(0 €36 36 26 36 3 36 26 36 2 36 3 36 26 36 3 2 IE 3 36 36 26 3 3 36 3623 0 3 I 3 3 3 I 2636 3 3 26 36 23 2 26 2 36 26 23 3¢ 336 I 3 3 I I I I W M 3 MMM M K

*CALL
XCALL
¥CALL
XCALL

20

30

Ll ]
o0

%¥DECK

XCALL
XCALL

cxxxxxxxxxxxxxxxxxxxxkxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx***xxxxx%xxxxxxxx
'THIS SUBROUTINE COMPUTES THE CURL OF THE VORTICITY FIELD

c
c
c
c

CALL MOVLEV(DUDX(I 1,1)
CALL PARTIAL(2,U,N1,N2,N
D0 60 L=1,LMAX

DO 60 J=1,JMAX

DG 60 I=1,IMAX
GWCI,J,L)=GW(I,J,L)+DUDX(I,J,L)
CONTINUE

RETURN

END

COSPART

SUBROUTINE COSPART(U,N1,N2,N3)

(1;1 1),1JK)

IN FOURIER COSINE SERIES

THETEXTENALS USED IN THIS SUBROUTINE ARE
FD

FDgT

DIMENSION UCN1,N2,N3)
BLANK
DAT21
Wy
DATA9
LEVEL

SIGN==-1.
CALL FDST(SIGN)

DO 40 L=1,LMAX

DUDX(I;J,L)=XR(L)

CONTINUE

CONTINUE

RETURN

END

CURLO

SUBROUTINE CURLO(U,V,W,01,02,03,N1,N2,N3)

DIMENSION O1(N1,N2,N3),02(N1,N2,N3},03(N1,N2,N3)
DIMENSION U(N1, N2 N3),V(N1 N2,N3),MW(NI1, N2 N3)

DATAY.
BLANK
LEVEL 2,U,V,W,01,02,03

THE EXTERNALS USED IN THIS ROUTINE ARE
PARTIAL
SINPART

CHxxxxCURL IN THE X-DIRECTION

10

TJK=NIXN2XN3

CALL PARTIAL(2,W,N1,N2,N3)

CALL MOVLEV(DUDX(1,1,15,01¢1,1,1),IJK)
CALL SINPART(V,NI,N2,N3)

DO 10 L=1,LMAX

DO 10 J=1,JMAX ,

DO 10 I=1,IMAX

OLCI, 4, L)Z01CT, J, L)~ DUDX(T, J,L)

L
CONTINUE

J
N

Cx¥xx%x*%CURL IN YHE Y-DIRECTION

CALL SINPART(U,N1,N2,N3) v

CALL MOVLEV(DUDX(1,1,1),02(1,1,1),IJK)
CALL PARTIAL(1l,W,N1,N2;N3)

DO 20 L=1,LMAX
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DO 20 J=1, JMAX
DO 20 I=1,IMAX
02¢I,J,L)302¢1,J,L)-DUDXCI,J,L) ;

20 CONTINUE

XN EREL PARTIALCIV NTINZN3) 1Y OF THE
14 ? » 14

CALL MOVLEV(DUDX(1,1,1),03¢1,1,1),1JK) REPRODUCIBIL POOR
CALL PARTIAL(2,U,N1,N2,N3) ORIGINAL PAGE IS
DO 30 L=1,LMAX
DO 30 J=1,JMAX
DO 30 I=1,IMAX
03¢I,J,L)=03CI,J,L)-DUDXCI,J L)

30 CONTINUE
RETURN
END

¥DECK CURLU

SUBROUTINE CURLUtU,V,W,01,02,03,N1,N2,N3)
DIMENSION O1(N1,N2,N3),02(N1,N2, NS) 03(N1,N2,N3)
DIMENSION U(N1,N2,N3),V(NL,N 2 N3) N(Nl N2,N3)

XCALL DATAS9
X¥CALL BLANK
LEVEL 2,U,V,W,01,02,03
(€263 36 36 3636 36 36 36 36 36 2636 3 36 36 363 36 36 26 363 3 06 00 26 36 3006 36263 32 333 36 3 36 2 36 36 36 36 36 36 36 3 3006 26 336 3 36 36 36 36 36 3 X

¢ THIS ROUTINE COMPUTES THE CURL OF THE VELOCITY FIELD *
c AND STORES IT IN 01,02,03, *
¢ THE EXYERNALS USED IN THIS SUBROUTINE ARE X
c COSPART *
c PARTIAL X
(533383838353 8383.5333383 8838333 33333333333833333333.33.313333333333.883.223

CX¥X¥XCURL IN THE X-DIRECTION

IJK=N1XN2¥N3

CALL PARTIAL(2,W,N1,N2,N3)

CALL MOVLEV(DUDX(1,1,1),01¢1,1,1),IJK)

CALL COSPART(V,N1,N2,N3)

DO 10 L=1,LMAX

DO 10 J=1,JMAX

DO 10 I=1,IMAX

01¢I,J,L)=01CI,J,L)- DUDX(I,J,L)

10 CONTINUE
CXXXXXCURL™ IN YHE Y-DIRECTION

CALL COSPART(U,N1,N2,N3)

CALL MOVLEV(DUDX(1,1,1),02¢1,1,1),1JK)

CALL PARTIALCI,W,N1,N2,N3)

DO 20 L=1,LMAX

DO 20 J=1,JMAX

DO 20 I=1,IMAX

02(I,J,L)=02(I,J,L)=DUDXCI,J,L)

20 CONTINUE
C¥¥¥XXCURL IN THE Z-DIRECTION

CALL PARTIAL(1,V,N1,N2,N3)

CALL MOVLEV(DUDX(I,1.1),03(1,1,1),IJK)

CALL PARTIAL(2,U,N1,N2,N3)

DO 30 L=1,LMAX

DO 30 J » JMAX

DO 30 I=l,IMAX'

03¢I,J,L)=03(I,J,L)-DUDX(I,J,L)

30 CONTINUE

RETURN

END
XDECK DATARED ;

SUBROUTINE DATARED - '
(2333333333353 3 3323833332233 3333333333233 88333333.333.3538.33.3.33.3.2.3.3.3.3.3.3.3.8.2.3.1
THIS SUBROUTINE COMPUTES THE STATISTICS OF THE COMPUTATION
USUM = PLANAR AVERAGE OF THE STREAMWISE VELOCITY
VSUM=PLANAR AVERAGE OF THE SPANWISE VELOCITY
WSUM = PLANAR AVERAGE OF THE CROSSFLOW VELOCITY
015UM = PLANAR AVERAGE OF THE STREAMWISE VORTICITY
025UM = PLANAR AVERAGE OF THE SPANWISE VORTICITY
035UM = PLANAR AVERAGE OF THE CROSSFLOW VORTICITY
USQ = R.M.S STREAMWISE VELOCITY

BOOOOOOOO
KX KK XK XK X
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VSQ = R.M.S5. OF THE SPANWISE VELOCITY ETC...

C ¥
c UVSTRES = PLANAR AVERAGE OF UaWa ¥
c PLOVALE = VOLUME AVERAGE OF THE TOTAL ENERGY %
c ENERGY = INTEGRAL OF THE TURBULENCE ENERGY ¥
(€ 36 36 369 36 06 3 36 36 6 36 36 36 36 36 36 36 6 36 26 36 36 36 36 36 36 36 36 36 D6 JE I 36 36 36 26 36 36 36 96 36 36 36 26 6 26 26 2696 36 36 26 96 6 3 36 36 3¢ 36 26 6 36 6 36 96 36 3 3¢ ) 36
¥CALL DEL

¥CALL MEANVOR

¥CALL PR

XCALL LARGE2
¥CALL LARGE3
XCALL LARGES
XCALL DAT21
%CALL DATA9
XCALL BLANK
¥CALL DIM , | .
'DIMENSION USM(33),VSM(33),US(33),VS(33),WS(33),015(33),025(33)
1 ,035(33),ES(33),ENS(33),20(33)
DIMENSION DUMSP(33)
COMMON/DATCNT/ IDATCNT
IDATCNT=IDATCNT+1
LMAXM1=LMAX-1
C3=1./LMAXML
CNORM3=1./ ( IMAX*JMAX)
PRINT 1100
UTOT=0.
VTOT=0.
WTOT=0.
017T0T=0.
02707=0.
03707=0.
OVRALE=0.
TOTENER=0
TOTENST=0.
DO 100 L=1,LMAX
Usum=o0.
VSUM=0.
WSUM=0.
0151!M=0,
025UM=0.
035UM=0,
Use=0.
VsSQ=0.
WSQ=0.
015Q=0.
025Q=0.
035Q=0.
ENERGY=0.
ENSTROP=0.
UYSTRES=0.
PLOVALE=0.
DO 110 J=1,JMAX
DO 110 I=1,IMAX
USUM=USUM+U(T, J
VSUM=VSUM+V(I, J
WSUM=WSUM+WCT , J
01SUM=015UM+01(
025UM=025UM+02(
03SUM=035UM+03C
110 CONTINUE
USUM=USUMXCNORM3
VSUM=VSUMXCNORM3
WSUM=WSUMXCNORM3
01SUM=01SUMXCNORM3
025UM=02SUMXCNORM3
035UM=035UMXCNORM3

2
2
I
1
I,

GW(1,1,L)=USUM
GW(2,1,L)=VSUM
GW(3,1,L)=WSUM
DO 160 J=1,JMAX
DO 160 I=1,IMAX
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USQ=USQ+(UCT,J,L)-USUM)I»*x2 Gl g
VSQ=VSQ+(V(I,J,L)-VSUM) xx2 :
WSQ=WSQ+(WCI,J,L)-WSUM)%¥%2
015Q=015Q+(01(I,J,L)-01SUM)*x*2
025Q=025Q+(02(¢I,J,L)-02SUM) %¥2
035Q=035Q+(03(I,J,L)-03SUM)**2
UVSTRES=UVSTRES+(UCI,J,L)~USUMI*¥(W(I,J,L)~WSUM)
PLOVALE=PLOVALE+(U(I,J,

LI®X2+VC(T, J, LIXN2+W(T, J, L) %x2)
160 CONTINUE
USQ=USQXCNORM3
VSQ=VSQXCNORM3J
WSQ=WSQXCNORM3
01SQ=015Q*CNORM3
02SQ=02SQXCNORM3
03SQ=035Q%¥CNORM3
ENERGY=(USQ+VSQ+WSQ)I*0.5
ENSTROP=(015Q+025Q+035Q)%0.5
UVSTRES=UVSTRESXCNORM3
USQ=SQRT(USQ)
VSQ=SQRT(VSQ)
WSQ=SQRT(WSQ)
015Q=SQRT(01S5Q).
025Q=SQRT(02SQ)
035Q=5QRT(035Q)

UscL)=usQ
VS(L)=V5Q
WSCL)=WSQ
01S(L)=01sQ
025(L)=025¢Q
03s(L)=03sQ
USN(L)zUSUN
VSM(L)=VSUM
ESC(L)=ENERGY
ENS(L)=ENSTROP
GW(4,1,L)=015UM
GW(5,1,L)=025UM
GW(6,1,L)=035UM
GV(1l,1,L)=USQ
GV(2,1,L)=WSQ
XICL)=UVSTRES
cC=1.
IFCL .EQ. 1) CC=0.5

IF(L .EQ, LMAX) CC=0.5
OVRALE=OVRALE+PLOVALEXCC*0.5
UTOT=UTOT+USUMXCC
VTOT=VTOT+YSUMXCC
WYOT=WTOT+WSUMXCC
OlTOT=01lTOT+01SUMXCC
02707T=02T0T+025UM%CC
03TOT=03TOT+03ISUMXCC
TOTENER=TOTENER+ENERGY*CC
TOTENST=TOTENST+ENSTROPXCC
100 CONTINUE
UTOT=UTOTXC3
VIOT=VTOT®C3
WTOT=WTOTXC3
0170T=01TOT%C3
02T0T=02T0T%C3
0370T=03T0T%C3
TOTENER=TOTENERXC3
TOTENST=TOTENSTXC3
DELU=GW(]1, )1, LMAX)-GW(1,1,1)
DELU=1./DELU ‘
THETA=(0. °5 (GW(1,1,1)XDELU)I%%2)%0.5
DO 170 L=2,LMAXML
THETA= THETA+(0 25=(GW(1,;1,L)XDELY)I*%2)
170 CONTINUE
THETA=STHETA+(0.25-(GW(1,1,LMAX)XDELU)X%2)%0. 5
THETA=THETAXDELTAZ
DO 300 L=1,LMAX
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300

26400

130

190

230
2200

2500

AX-1)/2+1) YXDELTAZ/THETA

g e R e

20(L)=(L-((LM

USM(L)=USM(L)XDELUX2.0

VSM(L)=VSM(L)XDELU

GW(5,1,L)=GW(5,), L)XDELUXTHETA

XT(L)=XI(L)*CDELUX¥%2)

US(L)=USCL)XDELU

VS(L)=VS(L)IXDELU

WS(L)=WS(L)IXDELU

035(L)=03S(L)X(DELUXTHETA)

015(L)=01S(L)X(DELUXTHETA)

025(L)=025(L)X(DELUXTHETA)

ES(L)=ES(L)*DELUX*2

ENSCL)=ENSCL)X(DELUXTHETA) ¥x2

PRINT 3000,USM(L),VSMCL),XICL),6W(5,1,L),USCL),VSCL),WSCL),
1 01S¢L),025(L),038(L),ESCL),ENS(L),20(L)

CONTINUE

WRITEC8) USM,VSM,XI,US,VS,WS,015,025,035,ES,ENS,20,THETA
PRINT 1700, THETA

PRINT 1200

PR%NT 1000,UTOT,VTOT,WTOT,01T0T,02T0T,03TOT, TOTENER, TOTENST
PRINT 2400,0VRALE ) _
FORMATC1X,% OVER ALL ENERGY IN COMPUTATION BOX =%,1PE15.7)
DO 180 L=1,LMAX

DO 180 I=1,IMAX

GUCI,1,L)=0.

GUCI,2,1)=0.

6UCI,3,L)=0.

GUCI,4,L)=0.

CONTINUE

C10Y=1./FLOAT CJMAX)

DO 190 L=1,LMAX

DO 190 J=1,JMAX

DO 190 I=1,IMAX

GU(I,1,L)=6UCI,1,L)+02(I,J,L)*%C1OY
GUCI,2,L)=6UCI,2,L)+U(I,J,LI*clOY
GUCI,3,L)=6UCT,3,L)+W(I,J,L)*ClO0Y

CONTINUE

DO 230 L=1,LMAX

DO 230 I=1,IMAX

GUCI,2,L)=6UCI,2,L)-6W(1,1,L)
GUCI,3,L)=6UCI,3,L)-GW(3,1,L)

CONTINUE

PRINT 2200

FORMATCIH1,1X,% LINE AVERAGE OF vonrrcrrvx)

PRINT 2300, ((CGUCI,1,L),I= 1,16 ),L),L=1,LMAX)

IFC(CCPD .NE.1.) GO TO 240

PRINT 2500

FORMATC1HL,1X,% LINE AVERAGE OF U-COMPONENT %)°

PRINT 2300,C((6UCI,2,L),I= 1,16 ),L),L=1,LMAX)

PRINT 2500

2600

2300
240

260

270

PRINT 2300, (C(GUCI,2,L),I=17,IMAX),L),L=1,LMAX)
PRINT 2600

FORMATC(1H1,1X,* LINE AVERAGE OF W-COMPONENT %)
PRINT 2300, (((GUCI,3,L),I= 1,16 ),L),L=1,LMAX)
PRINT 2600

PRINT 2300,(((GUCI,3,L),I=17,IMAX),L),L=1,LMAX)
FORMAT(1X,16F8.3,13)

CONTINUE

PRINT 2000

-~ DO 250 L=14,20

DO 260 I=1,IMAX

XRCIY=GUCI,1,L)

XI(I)=0.

CONTINUE

CALL FFT(XR,XI,IMAX,~1)

IFCIDATCNT.EQ.1) DUMSP(L)=SQRT(XR(2)¥¥2+XI(2)%¥2)
IFCDUMSP(L).LT.0.0000001) GO TO 250

DO 270 I=1,IMAX
XR(I)=SQRTCXRCI)%%2+XI(I)%%2)/DUMSP(L)

CONTINUE
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PRINT 1800,L,(XR(I),I=1,8)
250 CONTINUE
. 1800 FORMAT(1X,%WV02%,1I5,1P8ElG., 6)
1000 FORMAT(1P8El15.7)
1100 FORMAT(2X,%USUM¥,6X,%VSUMX, 5X, XUWSTRX,5X, ¥025UMx, 7X, *USQ* 7X,*VSQx
- x7Xé:%:Q*)6X »X015QX,6X,%025Q%,6X, XOSSQ*,SX *ENERGY* 4X,¥ENSTROP*, 3
2X, % Ex
1200 FORMAT(///,1X,% UTOT 'IN X-Y VTOT IN X-Y WTOT IN X-Y 01707
1IN X-Y 02707 IN X-Y 03707 IN X-Y %)- . ,
1300 FORMAT(1X,% USUN IN Y-2Z VSUM IN Y-2 WSUM IN Y-2 O1SUM IN Y
1-2 025UM IN:Y-Z 03SUM IN Y-Z %) i
'1400 FORMAT(///7,1X, % UTOT IN Y-2 VTOT IN Y-Z WTOT IN Y-Z 0l170T
IN Y-Z 02707 IN Y-Z 03T0T IN Y-Z X}
1500 FORMAT(IX % USUN IN Z VSUM IN 2-X WSUM IN Z2-X 0l1SUM IN 2
: 1-X 02SUM IN Z=X OSSUM IN 2-X %) ‘
4 1600 FORMAT(//77,1X,%¥ UTOT IN 2-X VTOT IN 2Z2-X WTOT IN Z-X 01707
5 1IN Z-X 0270T IN Z-X 03T0T IN Z-X %)
a3 1700 FORMAT(1X,% MOMENTUM THICKNESS ,1PE15.7)
2000 FORMAT(1H1)
3000 FORMATC(1P13E10.2)

? c gEEI ;HE DIVERGENCE OF THE VELOCITY AND VORTICITY FIELDS
. IV
; ¢ TEST THE SQLUTION OF THE POISSON EQUATIONS ,I.E. THAT ¥
i c THE CURL OF OUR VELOCITY FIELD IS EQUAL TO THE VORTICITY FIELD
: CALL CURLU(U,V,W,GU,GV,GW