NASA Contractor Report 145313

Design and Fabrication of Metallic Thermal Protection Systems for Aerospace Vehicles

```
(NaSA-CK-145313) DESIGN ANE FABRICATICN CF
metalIIC teEFMAI fRCTECTICN SyStemS FCE
AEROSPACE VEyICLES (GIU#man Aerospace Corp.)
188 F HC AO9/MFAC1 CSCL 11F
    G3/26 15693
N78-22204
abrospace vehicles (Giuaran Aerospace corp.)
```


Angelo Varisco
Paul Bell
Willy Wolter

GRUMMAN AEROSPACE CORPORATION
Bethpage, N.Y. 11714
CONTRACT NAS 1-14112
February 1978

N/SN
 National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23665

1 SUMMARY \& INTRODUCTION. 1-1
1.1 Summary 1-1
1.2 Introduction 1-1
1.3 Symbols \& Units 1-2
1.4 References 1-3
2 DESIGN CRITERIA \& ENVIRONMENT DEFINITION 2-1
2.1 Design Criteria 2-1
2. 2 Design Goals: 2-2
2.3 Thermal Conditions 2-3
2.4 Differential Pressure Loading 2-5
2.5 Acoustic Environment 2-7
2.6 References. 2-7
3 MATERIAL PROPERTIES. 3-1
3.1 Candidate Materials - Metallic TPS 3-1
3.2 Haynes 188 Properties 3-1
3.2.1 Chemical Composition. 3-2
3.2.2 Physical \& Mechanical Properties 3-2
3.2.3 Establishment of Creep Allowable Strers 3-4
3.2.4 Design Allowance for Oxidation Losses 3-5
3.3 Rene 41 Properties 3-7
3.3.1 Chemical Composition 3-7
3.3.2 Physical \& Mechanical Properties 3-8
3.3.3 Establishment of Creep Allowable Stress 3-8
3.3.4 Design Allowance for Oxidation Losses 3-10
3.4 References 3-10
4 TIS CONCEPT SELECTION \& DESIGN. 4-1
4.1 State-of-the-Art Assessment \& Review 4-1
4.1.1 Skin Panel Concept 4-1
1.1.2 Expansion Joint 4-1

CONTENTS (continued)

4.2 TPS Concept 4-2
4.3 Surface Panel Design 4-2
4.3.1 Skin/Corrugation Optimization 4-4
4.3.2 Skin Bead Flutter 4-6
4.3.3 Lateral Thermal Expansion 4-9
4.3.' Selection of Optimum Haynes 188 Section 4-14
4.3.5 Selection of Optimum René 41 Section 4-14
4.3.6 Compromise Haynes/René Optimum Section 4-17
4.3.7 Corrugation Sculpturing 4-21
4.3.8 Circular Corrugation Study 4-21
4.3.9 Flutter Check for TPSTF Test Environment 4-23
4.3.10 Surface Panel Thermal-Structural Analysis 4-26
4.4 Expansion Joint/Splice Joint Designs 4-41
4.4.1 Panel Expansion Joint 4-41
4.4.2 Panel Center Joint 4-41
4.4.3 Panel Edge Splice Joint 4-41
4.5 Support Rib Design 4-41
4.6 Drag Support Design 4-45
4.7 Thermal Insulation System Design \& Analysis 4-45
4.7.1 Insulation System Comparisons 4-45
4.7.2 Insulation System Selection 4-49
4.7.3 Effects of Pressure Environment on Insulation Performance 4-51
4. 8 Concept Mass Breakdown 4-51
4.9 Panel Stiffness Properties 4-57
4.10 References 4-57
5 TEST SPECLMEN FABRICATION 5-1
5.1 Haynes 188 Fastener Development 5-1
5.2 Surface-Panel Fabrication 5-1
5.2.1 Skin Fabrication 5-1
5.2.2 Corrugation Fabrication 5-1

CONTENTS (continued)

5.2.3 Surface-Panel Assembly. 5-2
5.2.4 Haynes 188 Panel Surface Emittance Treatment 5-2
5.2.5 René 41 Panel Surface Emittance 1 reatment 5-6
5.3 Support Ribs Fabrication 5-6
5.3.1 Center Support (Fixed) Rib. 5-6
5.3.2 End Flexing Rib 5-6
5.4 Edge Fairings 5-8
5. 5 Test Specimen Final Assembly 5-8
5.6 References 5-8
6 TEST SPECIMEN INSTRUMENTATION \& SUPPORT STRUCTURE 6-1
6.1 Panel Deflection Measurements 6-1
6.2 Insulation System Temperatures 6-1
6.3 Expansion Joint Leakage 6-1
6.4 Edge Se:l Leakage 6-1
6.5 Test Specimen Support Structure 6-4
7 CONCLUSIONS 7-1
Appendices
A Skin/Corrugation Optimization Procedure A-1
B Corrugation Sculpturing Pisfile Determination B-1
C Detail Stress Analysis-Hay nes 188 TPS C-1
D Detail Stress Analysis-René 41 TPS D-1
E Haynes 188 TPS Production Drawings E-1
F René 41 TPS Production Drawings F-1
G Insulation System - Radiation Barriers Analysis G-1
II Thermocouple Number and Location H-1
I Support structural - Detail Stress Analysis 1-1

ILLUSTRATIONS

2-1 Design entry trajectory 2-3
2-2 Maximum su. foce temperatures 2-4
2-3 Surface temperature and pressure profile 2-5
2-4 Desigu boost trajectory 2-6
3-1 Thermal expansion coefficient (α), thermal conductivity (K), and specific heat vs temperature for Haynes 188 3-3
3-2 Oxidation resistapre in dry air, 100-hr test 3-3
3-3 Thermal expansion coefficient (α), thermal conductivity (K), and specific heat vs temperature for René 41 3-9
4-1 Grumman baseline TPS concept 4-3
4-2 Section definition and properties 4-6
4-3 Schematic of least mass designs vs pitch for three neutral axis locations 4-7
4-4 Haynes 188 optimum computer section 4-8
4-5 René 41 optimum computer section 4-8
4-6 Haynes 188 flutter and thermal constraints 4-10
4-7 René 41 flutter and thermal constraints 4-11
4-১ Haynes 188 and René 41 Stress-strain curves at elevated temperature 4-13
4-9 Haynes 188 skin/corrugation optimization 4-15
4-10 Production TPS sections 4-16
4-11 René 41 skin/corrugation optimization 4-18
4-12 René 41 section dimensions 4-19
4-13 Mass study results 4-20
4-14 Circular corrugation panel optimization 4-22
4-15 Constant-thickness trapezoidal corrugation-panel optimizatic 1 4-23
4-16 TPSTF operating envelope 4-24
4-17 Boost heating profile 4-27
4-18 Entry heating profile 4-27
4-19 Panel temperature response, boost heating 4-28
4-20 Panel temperature response, entry heating, cold start 4-29
4-21 TPSTF heatup simulation 4-30
4-22 Panel temperature response, TPSTF heating 4-31
4-23 Boost, condition A 4-33

ILLI'STRATIONS (continued)

4-24 Start of entry, condition E $4-3-1$
4-25 Postentry, condition B $4-35$
4-26 Bead aerodynamic and thermal stresses 4-38
4-27 Baseline rib concept $4-42$
4-28 Mudified baseline rib concept $4-42$
4-29 Truss concept $4-43$
4-30 Trussed web rib concept $4-43$
4-31 Modified web concept $4-4.4$
4-32 Density-conductivity product vs temperature at 1.0 atm $+47$
4-33 Effect of radiation foils on density conductivity product vs temperature at 1.0 atmosphere $4-48$
4-34 Thermal conductivity vs temperature and pressure of $56-\mathrm{kg} / \mathrm{m}^{3}\left(3.5-\mathrm{lbm} / \mathrm{ft}^{3}\right)$ Microquartz $4-50$
4-35 Thermal conductivity vs temperature and pressure of $17.6-\mathrm{kg} / \mathrm{m}^{3}\left(1.1-\mathrm{lbm} / \mathrm{ft}^{3}\right)$ Astroquartz $4-50$
4-36 Thermal conductivity vs temperature and pressure of $16-\mathrm{kg} / \mathrm{m}^{3}\left(1.0-\mathrm{lbm} / \mathrm{ft}^{3}\right)$ TG 15000 t-51
4-37 Haynes 188 pane! insulation system dimensions $4-53$
4-38 René 41 panel insulation system dimensions $4-53$
5-1 Haymes 188 blind fastener $5-2$
5-2 Skin forming tool 5-3
5-3 Formed Haynes 188 skin $\overline{5}-3$
5-4 Cowrusation forming sequence $\overline{5}-1$
5-5 Lené 41 corrugation bend area enlargement $5-5$
5-6 Fully assembled Haynes 188 surface panel $\overline{5}-5$
5-7 Rib web tools and web detail 5-7
5-8 Center support (fixed) rib $5-7$
5-9 lind flexing rib 5-9
5-10 Haynes 188 skin panels and fai. ugs 5-9
5-11 Fully assembled llaynes 188 TPS test specimen. 5-10
5-12 Fully assembled Rene 41 TY's test specimen 5-10

ILLUSTRATIONS (continued)

6-1 Test specimen instrumentation configuration 6-2
6-2 Support structure heat-sink instrumentation - top
f-3
6-3 Support structure - bottom 6-3
6-1 \quad Surface panel instrumentation - lower surface 6-4

TABLES
2-1 Lower surface (mid-fuselage) design corditions 2-1
2-2 Orbiter lower surface maximum differential pressures for boost and postentry flight 2-6
3-1 Haynes 188 mechanical properties 3-6
3-2 René 41 mechanical properties 3-9
4-1 Critical airload design conditions 4-4
4-2 Critical conditions 4-5
4-3 Thermal and mechanical properties 4-12
4-4 Thermal stress summary, cold start on entry 4-32
4-5 Aerodynamic pressures at appropriate times compared with design values 4-37
4-6 Total stresses, allowables, and margins for condition A 4-40
4-7 Haynes 188 and René 41 TPS design trajectory heating and pressure history 4-49
4-8 Haynes 188 insulation system mass comparisons 4-52
4-5 Mass (estimated nominal weights) comparison of original baseline and new design 4-54
4-10 Haynes TPS mass breakdown (new design) 4-55
4-11 René 41 TPS mass breakdown 4-56
4-12 Summary of panel stiffness properties 4-57

Section 1

SUMMARY \& INTRODUCTION

1.1 SUTIMARY

A program was undertaken to develop a lightweight, efficient, metallic thermal protection system (TPS) applicable to future shuttle-type reentry vehicles, advanced space transports, and hypersonic cruise vehicles. Technical requirements and criteria were derived generally from the space shuttle.

Grumman's corrugation-stiffened TPS design was used as the baseline starting point. The system was updated anc' modified to incorporate the latest technology developments and design criteria. Emphasis was placed on minimizing weight for the overall system.

One basic design concept was developed during the program, and this concept was optimized for operation at two different temperatures using two different materials: Kené 41, a nickel-base alloy for use to $1144 \mathrm{~K}\left(1600^{\circ} \mathrm{F}\right)$, and Haynes 188 , a cobalt-base alloy for use to $1255 \mathrm{~K}\left(1800^{\circ} \mathrm{F}\right)$. Significant weight reductions were achieved over existing metallic systems. Moreover, the advanced TPS developed under this program are mass-competitive with the directly bonded RSI system presently used on the space shuttle.

Two, extensively instrumented, full-scale test panels were fabricated, one from each material. Each pan I represented one and one-half bays and included an expansion joint. Both test articles were delivered to NASA/Langley fa; evaluation of cyclic life characteristics in the Langley Thermal Protection Systen, Test Facility, which is capable of test conditions representative of entry flight.

1.2 IN TRODUCTION

The development of high-temperature, metallic heat shield TPS for entry vehicles has been a general subject of attention for many years. (See, for example, ref. 1-1 and 1-2.) Recently, a greater interest in this area has been motivated by the space shuttle and its related technology requirements. As a result of this increased interest, NASA/Langley initiated a broad-based program to develop TPS over the temperature range of $811-1589 \mathrm{~K}\left(1000-2400^{\circ} \mathrm{F}\right)$ and similar work was begun by many aerospace companies. (See ref. 1-3 through 1-11.) As an extension to the NASA program, a contract was awarded to Grumman Aerospace Corporation to advance technology for metallic TPS in the temperature range of $1144-1255 \mathrm{~K}$ (1600 $1800^{\circ} \mathrm{F}$) by incoıporating the latest technology developments and design criteria. The results of this effort are presented herein.

In general, technical requirements and design criteria were derived from the space shuttle orbiter, although the sy stems developed are app! :cable to advanced space transports and hypersonic crl. e vehicles. A state-of-the-art assessment and review was undertaken to : dentify prinising design features of existing systems, including \because יrrent analytical techinques for predicting TPS performance. The review
reaffirmed that a corrugation-stiffened beaded-skin concept offered the most promice for a reliable minimum-mass TPS, and this system was used as the baseline starting point. Primary emphasis was placed on minimizing mass for the overall system.

One basic design concept was developed under the program. The concept consisted of a corrugation-stiffened beaded-skin surface panel, a specially designed support system, and an insulation package. Using the one basic design concept, two TPS were developed and optimized under the program: René 41, a nickel-base alloy for use to $1144 \mathrm{~K}\left(1600^{\circ} \mathrm{F}\right)$, and Ha nes 188 , a cobalt-base alloy, for use to 1255 K $\left(1800^{\circ} \mathrm{F}\right)$. One full-scale panel $61 \mathrm{~cm}(24 \mathrm{in}$.) wide by $91 \mathrm{~cm}(36 \mathrm{in}$.) long was fabricated from each material. Each panel represented one and one-half bays, and included a longitudinal expansion joint. Both test articles, which were instrumented to measure temperature and deflection, were delivered to NASA/Langley for evaluation of cyclic life characteristics.

1.3 SYMBOLS \& LNITS

Although calculations were made in U.S. Customary Units, they are presented in this report in the International System of Units (SI also. Factors relating to the two systems are given in reference 1-12. Symbols throughout this report are defined as they are introduced.

The appropriate quantities for the SI units used in this report are:

Quantity	Unit	SI Symbol
length	meter	m
force	newton	N
pressure	pascal	Pa
mass	kilogram	kg
temperature	kelvin	K

Abbreviations for the followirg prefixes have been employed for multiples of units in this report:

Prefix	Multiplication Factor	Abbre:'? ation
	10^{-2}	c
milli	10^{-3}	m
kilo	10^{3}	k
mega	10^{6}	M
giga	10^{9}	G

Section 2

DESIGN CRITERIA \& ENITRONMENT DEFINITION

2.1 DESIGN CRITERIA

The following thermal and mechanical loading conditions were developed for design of the metallic TPS test specimen. Also discussed are other necessary design requirements to make the TPS compatible with the operating characteristics of a functional reentry vehicle such as a space shuttle orbiter. In general, techr'cal requirements were derived from the space shuttle system; where deviations have been made, they are noted. The design requirements and critical loading conditions are summarized in table 2-1.

Table 2-1. - Lower surface (mid-fuselage) design conditions.

\begin{tabular}{|c|c|c|c|}
\hline Condition \& Pa \& pst \& Fig. \\
\hline \begin{tabular}{l}
Continuous surface presc. at \(T_{\text {max }}\) (entry) \\
\(M_{d x}\) maneuver surface press. at \(T_{\text {max }}\) (entry) \\
Max temp level during entry - Haynes \\
Max temp levsl during entry - René \\
Max dynamic press - entiy \\
Max dynarnic press. - boost \\
Max surface press differential - boost \\
Max surface press. differential - postentry isubsonic fiighi,
\end{tabular} \& \[
\begin{gathered}
862.2490 \\
8618 \\
1255 K \\
1144 K \\
11490 \\
33516 \\
+13885 \\
-20588 \\
+16758 \\
-12448
\end{gathered}
\] \& \[
\begin{gathered}
18.52 \\
180 \\
1800^{\circ} \mathrm{F} \\
1600^{\circ} \mathrm{F} \\
240 \\
700 \\
+290 \\
-43 \mathrm{C} \\
+350 \\
-260
\end{gathered}
\] \& 2.3
2.3
2.3

2.3
2.4

\hline \multicolumn{4}{|l|}{Acoustic environment}

\hline | Liftoff |
| :--- |
| - Overall sound press. level |
| - Critical 1/3-octave band level |
| Max qa (ascent) |
| - Overall sound press. level |
| - Critical $1 / 3$ octave band level |
| Allowable permanent deflection between Panel supports | \& \[

$$
\begin{array}{r}
161 \\
150 \\
158 \\
146 \\
\delta= \\
\hline
\end{array}
$$
\] \& \&

\hline \multicolumn{4}{|l|}{Factors of safety}

\hline | Mechanical loads |
| :--- |
| Thermal eflects | \& \[

$$
\begin{aligned}
& 1.0 \mathrm{lir} \\
& 1.15 \mathrm{y} \\
& 1.4 \mathrm{ul} \\
& 1.0 \mathrm{cr} \\
& 1.0 \mathrm{lir} \\
& 1.4 \mathrm{ul}
\end{aligned}
$$
\] \& ate deflection ate \&

\hline Max pimary structure temp rise

$$
\left(T_{\max }-T_{\text {inintial }}=350^{\circ} \mathrm{F}-120-230^{\circ} \mathrm{F}\right)
$$ \& 383 K \& $230^{\circ} \mathrm{F}$ \&

\hline Flutior \& Refer \& 4.2 \&

\hline
\end{tabular}

The mission profile and environmental parameters considered in the TPS design requirements are:

- Launch/boost - acoustic vibration, maximum aetodynamic pressures
- Orbit - initial TPS temperature at start of entry
- Entry - maximum aerodynamic heating, aerodynamic loads
- Postentry flight - maneuver loads, touchdown loads
- Ground handling - weather, inspection, refurbishment, storage

Specific design requirements are discussed in the following paragraphs.

2.2 DESIGN GOALS

In addition to the loading and thermal criteria, the test specimen was designed to meet the fcllowing goals:

- Reuse capability of 100 missions
- Minimum leakage at expansion joints
- Simple removal of panels
- Surface emittance of $\mathbf{0 . 8 0}$ or higher
- Moisture - In contrast to the current orbiter design, no special design requirements were included in this design to control TPS moisture absorption. It was assumed that during ground storage, prelaunch, and ferrying the vehicle will be protected from exposure to direct water impingement and high humidity conditions of ground support equipment. Immediately after entry and up to one hour after landing, the insulation will not absorb moisture because the residual heat stored in it during entry is sufficient to dry the insulation. This built-in protection would be effective in situations short of heavy rainstorms. If the vehicle is inadvertently exposed to rain or highhumidity condensing cycles, a drying cycle will be required before vehicle launch. The most significant concern in relation to water absorption for fibrous insulation is the associated increase in mass.
- Surface contour - The allowable panel surface normal permanent deflection between supports was $y=0.254+0.01 \mathrm{~L}$, where y is maximum deflection in cm and L is panel span. (This deflection criterion was taken from ref. 2-2, vol. II, p. 7-4.) This requirement will limit the total amount of creep deformation over 100 mission cycles.

2.3 THERMAL CONDITIONS

The primary thermal requirement k 'he TPS is entry heating from orbit, with a 100 -mission reusability goal. Space shuic o orbiter entry trajectory 14040 was used as a design requirement for this program. Its salient features are shown in figure 2-1. The typical, external, heat-flux history for most of the vehicle's lower surface is shown. Maximum-temperature isotherns for the lower surface are shown in figure 2-2. The specific area of concern for the test specimen is the $1144-1255 \mathrm{~K}$ (1600 to $1800^{\circ} \mathrm{F}$) temperature range. The surface-temperature history is shown in figure 2-3.

The thermal condition which determines the insulating requirement for the TPS is that in which the maximum TPS primary structure temperature exists at the beginning of entry. Space shuttle mission 3 , which is a launch into orbit and return to the launch site within a single revolution, creates a condition in which the residual effects of launch aerodynamic heating are still present when the vehicle starts its entry maneuver. The temperature on the lower surface structure at the start of entry for mission 3 is $322 \mathrm{~K}\left(120^{\circ} \mathrm{F}\right)$. This temperature was used as the initial TPS/structure temperature in conjunction with the 14040 entry trajectory heating.

The insulation was sized to limit the temperature of the primary structure to a maximum of $450 \mathrm{~K}\left(350^{\circ} \mathrm{F}\right)$ during entry and subsequent postlanding soak-out. Ground soak-out assumed a $311 \mathrm{~K}\left(100^{\circ} \mathrm{F}\right)$ ambient environment. The primary structure had the equivalent thermal heat-sink capacity of a $.51-\mathrm{cm}(0.2$-in.; thick aluminum plate with an adiabatic back face.

Time atter stant of eminy ur
Figure 2.1. - Design entry trajectory.

2217-3w
Figure 2-3. - Surface temperature and pressure profile.

Another thermal condition of significance is that which produces the maximum temper ure gradients in the TPS/structure. Shuttle studies have shown that this condition is one in which the minimum TPS/structure temperature exists at the start of entry. The minimum starting temperature for the current shuttle orbiter lower surface is the resu' of mission 2 , tail-sun orientation, and results in a $203 \mathrm{~K}\left(-95^{\circ} \mathrm{F}\right)$ temperature for the lower surface. This temperature was used as the minimum starting temperature in this study, in conjunction with entry trajectory 14040.

2.4 DIFFERFNTLAL PRESSURE LOADING

Twu types of static pressure loadings were considered in the design of the TPS. The $f:{ }^{-}, t$ is maximum maneuver load conditions, which are intermittent and of short du. ion. The static strength of the panel must be sufficient to withstand these loads. The maximum maneuver load factor for the current orbiter is 2.5 g during entry and subsonic flight. However, there is insufficient aerodynamic force to produce $\mathbf{2 . 5 g}$ maneuver until about 1200 sec after the start of entry, which is near the end of maximum heating (see fig. 2-3). The maximum maneuver line in figure $2-3$ represents the maximum intermittent pressure differential on the lower surface for the entry maneuver.

The second type of static pressure loading corsidered is the continuous-loading lt.el at high temperature, which was used to determine the amount of creep that occurs in the panel. This is the equilibrium flight pressure loading line shown in rigure 2-3.

The maximum pressure differentials during boost and postentry subsonic flight are shown in table 2－2；they occur at low temperatures．The boost trajectory is shown in figure 2－4．

Table 2．2．－Orbiter lower surface maximum differential pressures for boost and postentry flight．

ここ！ 1 ・ル

＊Temperature on lower suiface approximately $508 \mathrm{~cm}(200 \mathrm{in})$ att

Figure 2.4 －Design boost trajectory．

The program reported herein was limited to optimizing a TPS in both : 'né 41 and Haynes 1 si since the range of temperatures covered by these materials would encompass the major portion of TPS requirements for a typical vehicle. No materials testing was performed vinder the program since adequate data on René 41 and Haynes 188 were already available.

There were, however, two areas of concern with these materials: establishing allowable design stresses under creep conditions and determining a thickness allowance for emittance treatment and oxidation losses. These areas were investigated in the program, and design allowables were established. These areas will be discussed later in this section.

3.2 HAYNES 188 PROPERTIES

Haynes 188 alloy is a cobalt-base alloy possessing excellent high-temperature strength and oxidation resistance to $1367 \mathrm{~K}\left(2000^{\circ} \mathrm{F}\right)$. Its excellent oxidation resis-
tance results from minute additions of lanthanum to the alloy system. The lanthanum modifies the protective oxide scale in such a manner that the oxide becomes extremely tenacious and impervious to diffusion when exposed to temperatures through 1367 K $\left(2000^{\circ} \mathrm{F}\right)$. All properties which follow for Haynes 188 are for the solution-heattreated condition - heating to $1450 \mathrm{~K}\left(2150^{\circ} \mathrm{F}\right)$ followed by either a rapid air-cool or water quench.

3. ․ 1 Chemical Composition

- (hromium: 20-24',
- Nickel: 20-2.4
- Tungsten: 13-16
- Iron: 3, maximum
- (arbon: . 05-. 15
- Silicon: .20-.50
- Manganese: 1.25, maximum
- Lanthanum: .03-. 15
- Cobalt: balance
3.2.2 Phisical \& Mechanical Properties
- Density (RT): $9.13 \mathrm{~g} / \mathrm{cu} \mathrm{cm}(.330 \mathrm{lb} / \mathrm{cu}$ in.)
- Incipient fusion temperature: $1603 \mathrm{~K}\left(2425^{\circ} \mathrm{F}\right)$
- Electrical resistivity (RT): 92. 2 microhm/em
- Poisson's ratio: M . 29 (RT, ref. 3-2)
- Mean coefficient of thermal expansion vs temperature: figure 3-1
- Thermal conductivity vs temperature: figure 3-1
- Specific heat is temperature: figure 3-1
- Oxidation resistance: The outstanding oxidation resistance of Haynes 188 is illustrated m figure $3-2$, where it is conpared to Haynes 25 and Hastelloy X, two alloys known for their resistance to oxidation
- Ilerhanical properties: The design mechanical properties were assumed to be the same as for llaynes 25 , and were taken from reference $3-3$. Table :3-1 gives the properties used in the program.

Figure 3-1 - Thermal expansion ccefficient (a), thermal conductivity (K). and specific heat vs temperature for Haynes 188.

Figure 32 - Oxidation resistance in diy ali, 100 hr test.

3.2.3 Establishment of Creep Allowable Stress

An analysis was made to determine the allowable stress based on creep strains for a typical corrugation-stiffened Haynes 188 panel cross section subiected to uniform pressure loading. The panel was assumed to be a simply supported beam subjected to a uniformly distributed load. The maximum allowable permanent center deflection, taken from reference $2-2$, is:

$$
y-.25 t+.01 L
$$

where L is the span, in cm .
Creep deformations cause nonelastic strain distributions in beam cross section, but the elastic beam relationship was used as a first approximation to obtain an allowable strain. For the simply supported beam, the center deflection is:

$$
\begin{equation*}
y_{\max } \frac{5}{384} \frac{\mathrm{wL}}{\mathrm{EI}}^{4} \tag{3-2}
\end{equation*}
$$

where w is the unit load.
If it is assumed that an optimum panel cross section is one with the neutral axis at the mid-depth, so that tension and compression strains are equal, the outer fiber strain is:

$$
\begin{equation*}
\epsilon \pm \frac{M C_{\text {max }}}{E I} \text { and } M_{\max } \frac{W L^{2}}{8} \tag{3-3}
\end{equation*}
$$

therefore,

$$
\begin{equation*}
\epsilon \pm \frac{w^{2}{ }^{2} C_{\max }}{8 E I} \tag{3-4}
\end{equation*}
$$

If creep stress-strain relationships are assumed to be identical for tension and compression, equations (3-2) and (3-4) combine to obtain strain in terms of center deflection:

$$
\begin{equation*}
\epsilon_{\text {allow. }}-\frac{9.6 y_{\max }{ }^{C} \max }{\mathrm{~L}^{2}} \tag{3-5}
\end{equation*}
$$

Using equation (3-1) to define $y_{\text {max }}$,

$$
\begin{equation*}
\epsilon_{\text {allow. }} \frac{2.44 \mathrm{C}_{\max }+.096 \mathrm{C}_{\max } \mathrm{L}}{\mathrm{I}^{2}} \tag{3-5}
\end{equation*}
$$

From reference 2-2, vol 11, equation 7-1, page 7-1, the following equation for creep strain in Haynes 188 is obtained:

$$
\begin{align*}
\ln \epsilon- & -2.89413-.01743 t+.54892 \ln t+1.31015 \ln \sigma \\
& -6.66548(1 / \mathrm{T})+.19131 \sigma \ln \mathrm{~T}+.00021 \mathrm{~T} \sigma \mathrm{t} \tag{3-6}
\end{align*}
$$

where:
$t=$ total accumulated time at $T_{\text {max }}$ hours

```
\sigma stress level, in MPa
T - temperature, in K/1000
    E strain, in %
```

A typical configuration for a metallic TPS panel is expected to have a span of 48.3 cm (19.0 in.) with a cross-section depth of $1.52-2.54 \mathrm{~cm} \mathrm{(.60-1.0} \mathrm{in).}$. equation (3-5), $\epsilon_{\text {allow. }}$ is a function of cross-section depth, h :

$\mathrm{h}, \mathrm{cm}($ in. $)$	ϵ allow. $\%$
$1.52(0.6)$.23
$2.03(0.8)$.31
$2.54(1.0)$.39

For the design heating mission,
t $\quad 16.7 \mathrm{hr}$ (time at $\mathrm{T}_{\max }$ for 100 cycles at $10 \mathrm{~min} /$ cycle)
$T_{\text {max }}=1255 \mathrm{~K}\left(1800^{\circ} \mathrm{F}\right)$
T $\frac{1255}{1000}-1.255$
Substituting values and rearranging equation (3-6) to solve for stress, σ. that sorresponds to ϵ allow. we obtain the following $\sigma_{\text {allow. }}$:

h, cm (in.)	HS-188 $\sigma_{\text {allow. }}$, MPa
1.52 (0.6)	26.4 (3828)
2.03 (0.8)	29.0 (4175)
2.54 (1.0)	313 (4539)

The allowable stress, the refore, within the depth range of $1.52-2.51 \mathrm{~cm}(.6-1.0 \mathrm{in}$), can be expressed as:

$$
\sigma_{\text {allow. }}-19.1+4.8 \mathrm{~h}(\mathrm{MPa})[2770+1770 \mathrm{~h}(\mathrm{psi})]
$$

Not 2 that the allowables shown are based on simple-element creep data. It was assumed that the coefficients of equation 3-6 do not change with time and that strain hardening and the effects of permanent creep deformations have a negligible effect.

3.2.4 Design Allowance for Oxidation Losses

Since thin-gage material, $0.25 \mathrm{~cm}(.010 \mathrm{in}$.$) or less, was to be employed and$ because Haynes oxidizes at elevated temperatures, it was necessary to include a design allowance (thickness increase) to provide for losses due to pre~oxidation to increase emittance and due to oxidation during service life.

Table 3-1. - Haynes 188 mechanical properties.

Property	Stress at temperature			
	294 K	$70^{\circ} \mathrm{F}$	$1255 \mathrm{~K}^{\text {a }}$	$1800{ }^{\text {F }}$
F_{tu}	$890{ }^{\text {A }} \mathrm{P}$ 3	130 ks 1	145 MPa	21 ksi
F_{1}	379 MFd	55 ksi	76 MPa	11 ks
F_{cy}	$379 \mathrm{MP}_{3}$	55 ksi	$76 \mathrm{MP3}$	11 ks
E	$234 \mathrm{GP}_{\text {a }}$	$34000 \mathrm{k} \leqslant 1$	944 GPa	i 3700 ksl
cannot be used to TPS destgn The values histed are based on 25 h exposure, and wele takentrom teference $2 \cdot 1$, based on a 04° ocreep stram				

2:1. 8 W

The following design requirements were assumed in preparing the estimat. oxidation loss:

- Peak se ivice temper ature will be $1255 \mathrm{~K}\left(1800^{\circ} \mathrm{F}\right)$
- The mission cycle will include 10 min at peak temperature
- Kach panel will have a 100 -mission life

The use of an applied surface coating for emittance control was to be avoided. The surface oxide of the IIS-1ss was to be used, if possible. A total hemispherical emittance of . 80 , or more, at $1255 \mathrm{~K}\left(1800^{\circ} \mathrm{F}\right)$ was a coal.

3.2.4.1 Alowance Required for Emittance Treatment

The emittance requirements were to be fulfilled by a preoxidation treatment during final stages of con sonent fabrication. An oxide film thickness of .00025 cm (. 0001 in .) was thought suificient to achieve the required value.

3.2.4.2 . Illowance Required for Oxidation Losses

()xidation under entry conditions is dependent on peak temperature, number of exposure eycles, atmospheric pressure at peak temperature, and airflow rate. Two experimental oxidation studies have been conducted on IIS-185 under conditions that simulated space shuttie entry conditions.

The first of these activities, reference 3-4, involved the eyclic self-resistance heating of sheet specimens in a reduced-pressure air environment. The thermal cyole involved heatung to $1.477 \mathrm{~K}\left(2200^{\circ} \mathrm{F}\right)$, holding for 30 min , and then cooling to room temperature. The specimens underwent 100 thermal cycles. The test atmosphere, arr, was mantained at a pressure of 1333 la (10 torr). The test specimens underwent a metal thickness loss of $.00089 \mathrm{~cm}(0.00035 \mathrm{in}$.) ber side.

The seromi effort in this area, reference $3-5$, utilized an are-jet to simulate space shutile <ntr? conditions. Sheet specimens were inserted into a Mach 6 test
stream for 30 min and then allowed to cool. The test tenperature was 137 b K $\left(2020^{\circ} \mathrm{F}\right)$, surface pressure was $1013 \mathrm{~Pa}(7.6$ torr). After $6030-\mathrm{min}$ cycles, the test specimens had lost $.0019 \mathrm{~cm}(.00075 \mathrm{in}$.) of thickness per side.

Obviously, the most conservative approaci would be utilization of the ure-jet test data. However, the oxidation which occur at $1378 \mathrm{~K}\left(2020^{\circ} \mathrm{F}\right)$ was a result of a significantly higher oxidation rate than that which occurred at temperatures of $1255 \mathrm{~K}\left(1800^{\circ} \mathrm{F}\right)$ o: below. References $3-2$ and $3-6$ show that the sxidation rate at $1366 \mathrm{~K}\left(2000^{\circ} \mathrm{F}\right)$ is double the rate at $1255 \mathrm{~K}\left(1800^{\circ} \mathrm{F}\right)$. Therefore, an oxidation lose allowance of $.0010 \mathrm{~cm}(.0004 \mathrm{in}$.) was used for the external surfaces of the TPS panel.

3. 2. 1.3 Total Allowance Required for Emittance \& Oxidation

In summary, the allowances provided are:

- External air-passage surface (beaded skin)

- Emittance allowance $(.00025 \mathrm{~cm}$ sidel:	.00051 cm	.0062 in.
- Oxidation allowance $(.0010 \mathrm{~cm}$, exterior $:$	$\underline{.06100}$	-0004
- Total allowance:	.00151 cm	.0006 in.

- Internal surfaces (corrugation)*
- Emittance allowauce $(.00025 \mathrm{~cm} /$ side $): .00051 \mathrm{~cm} \quad .0002 \mathrm{in}$.

3.3 RI:NF 41 PROPERTIES

Kene 41 is a vacuum-melted, nickel-base alloy pussessing exceptionally high strength in the tomperature range of $920-1255 \mathrm{~K}\left(1200-1800^{\circ} \mathrm{F}\right)$. It is a precipitationhardening allos, and its strength is developed by various solutioning and aging heat treatments. . 1.1 properties which follow for 'René 11 are for forging ac 1450 K $\left(2150^{\circ} \mathrm{F}\right)$, age hardening at $1172 \mathrm{~K}\left(1650^{\circ} \mathrm{F}\right)$ for thr , and air cooling.
3.3.1 (hemical Composition

- Chronium:	18.00-20.00	- Titanium:	3.00-3.30
- Iron:	5.00	- Molybienum:	9.00-10.50
- Carbon:	0.05-0.12	- Aluminur :	1.10-1.10
- Silicon:	0.50	- Boron:	0.003-0.010
- Cobalt:	10.00-12.00	- Sulphur:	0.015
- Manganesc:	0.10	- Nickel:	balance

[^0]
3.3.2 Physical \& Mechanical Properties

- Density: 8.25 g.cu cm (. $298 \mathrm{lb} / \mathrm{cu} \mathrm{in}$.)
- Nielting temperature: $1580 \mathrm{~K}\left(2385^{\circ} \mathrm{F}\right)$
- Specific heat: $.108 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}\left(.108 \mathrm{Btu} / \mathrm{lb}^{\circ} \mathrm{F}\right)$
- Poisson's ratio (μ): . 31 at $300 \mathrm{~K}, .35$ at 1150 K
- Mean coefficient of thermal expansion vs temperature: figure 3-3
- Thermal conductivity vs temperature: figure 3-3
- Specific hi t vs temperature: figure 3-3
- Mechanica. properties: The resign mechanical properties were taken from reference 3-3. Table 3-2 gives the properties used in the program

3.3.3 Establishment of Creep Allowable Stress

The procedure for determining the Rene 41 allowable stress based on creep strains is identical to the one developed for Haynes, which is given in para 3.2.3. Equations (3-1) through (3-5) are applicable to Rene 41 with identical results. From reference 2-2, Vol II, equation 7-3, page 7-4, the following equation for creep strain in Rene 41 is obtained;

$$
\begin{aligned}
\ln \epsilon= & -39.558 \mathrm{~B} \mathrm{O}+29.13646 \mathrm{~T}+.71922 \ln \mathrm{t} \\
& +.32125(\ln \sigma-1.931)-.000016 \sigma^{2} \\
& +.08183(\ln \sigma-1.931)^{3}-.000125 \mathrm{t} \sigma \mathrm{~T}+.0000105 \mathrm{~T}^{3}
\end{aligned}
$$

where:
$\mathrm{c}=$ total accumulated time at $\mathrm{T}_{\max }(16.7 \mathrm{hr})$
$T=$ te.nperature, in $K / 1000=1144 / 10000-1.144$
$\epsilon=$ strain, in $\widetilde{\sim}$
$\sigma=$ stress level, in MPa
From equation (3-5), we obtain

Cross-Section Depth, h, cm (in.)	$\frac{\epsilon \text { allow.' }{ }^{\circ}}{1.52(0.6)}$
$2.03(0.8)$.23
$2.54(1.0)$.31

Table 3-2. - René 41 mechanical properties.

Property	Stress at temperature			
	249 K	$70 \cdot \mathrm{~F}$	1144 K	$1600{ }^{\circ} \mathrm{F}$
$F_{\text {tu }}$	1158 MPA	168 ksı	603 MPa	$874 \mathrm{ksı}$
$\mathrm{Fiv}_{\text {iv }}$	876 MPa	127 ksı	524 MPa	$760 \mathrm{ksı}$
F_{cy}	931 MPa	$135 \mathrm{k} \leq 1$	400 MPa	58 ksi
E	218 GPa	31600 ks -	122 GPa	17700 ksi

Substituting values and rearranging equation (3-6) to solve for stress, σ, that cor:esponds to ϵ allow. We obtain:

Cross-section Depth, h, cm (in.)	$\sigma_{\text {allow. }}, \mathrm{MPa}(\mathrm{psi})$
1.52 (0.6)	62.50 (9063)
2.03 (0.8)	$72.06(10456)$
2.54 (1.0)	81.60 (11 832)

The allowable stress, therefore, within the depth range of $1.52-2.54 \mathrm{~cm}$ (.60-1. 0 in.), car be expressed as:
$\left.\sigma_{\text {sllow. }}=33.9+18.8 \mathrm{H}_{1} \mathrm{MPa}\right)[4910+6920 \mathrm{~h}(\mathrm{psi})]$

3.3.4 Design Alluwance for Oxidation Losses

The oxidation resistance of Kené 41 is good up to $1255 \mathrm{~K}\left(1800^{\circ} \mathrm{F}\right)$. Therefore, the allowances required for emittance treatment were assumed to be the same as for Haynes 188. The allowances (thickness increase) required are:

- External air-passage surfaces
- Emittance ailowance (. $00025 \mathrm{~cm} / \mathrm{side}$): $\quad .00051 \mathrm{~cm} \quad .0002 \mathrm{in}$.
- Oxidation allowance $(.0010 \mathrm{~cm}$, exterior $): \frac{.00100}{.00151 \mathrm{~cm}} \frac{.0004}{.0006 \mathrm{in}}$
- Internal surfaces
- Emittance allowance (. $00025 /$ side): $\quad .00051 \mathrm{~cm} \quad$ (. 0002 in.)

3.4 REFERENCES

3-1 Material Choice for Lightest Metallic Heat Shield. Grumman Memorandum B35-197-MO-11, revision A, December 1970.

3-2 Aerospace Structural Metals Handbook, AFML-TR-68-115. 1974.
3-3 . . IL L HDBK-5, Metallic Materials and Elements for Flight Venic!e Structures.
3-4 Sanders, W. A; and Barrett, C. A. ; Oxidation Screening at $1204^{\circ} \mathrm{C}\left(2200^{\circ} \mathrm{F}\right)$ of Candidite Alloys for the Space Shuttle Thermal Protection System. NASA Technical Memorandum TM X-67864, Lewis Research Center, Cleveland, Ohio, October 1971.

3-5 Centolanzi, F. J.; Probst, H. B. ; Lowell, C. E.; and Zimmerman, N. D.: Arc Jet Tests of Metallic TPS Materials. NASA Technical Memorandum TM X-62092, Ames and Lewis Research Centers, October 1971.

3-6 Lund, C. H. ; and Wagner, H. V.: Oxidation of Nickt and Cobalt Base Super Alloys. DMIC Report 214, Battelle, Columbus, March 1, 1965.

- Each panel is individually removable
Additionally, becau: e the skin beads run out to the panel edge, no lateral expansion joints are required.

t. 2 TBS CONCEPT

The TPS considered in this program is a shingled, radiative system. Heatrejection rate, therefore, dependes on th. s \because eth power of the surface temperature, and becomes large if high temperatures can be tolerated. Thur, the intensity of heating which can be accommodated is limited by the temperature apabiity of the pa: material.
An existing Grumman-developed $T^{1} P$ designed for operation at $125 \mathrm{~K}\left(1800^{\circ} \mathrm{F}\right)$ was selected as a baseline design in the program. The concept, shown in figure 4-1, consists of a corrugation-stiffened beaded skin, insulation., and beaded support ribs. The corrugations are welded to the beaded skin to form an efficient panel with high longitudinal bending stiffeners. Applied surface-pressure loading is transferred by beam action to the rib supports. The supports are located on $51-\mathrm{cm}(20.0-\mathrm{in}$.) centers, with an expansion joint every $102 \mathrm{~cm}(40.0 \mathrm{in}$.) to permit longitudinal growth of the panel. Although the panel is considered to be 102 cm (40.0 in .) long, it is fixed at the center support so that a $31-\mathrm{cm}(20.0-\mathrm{in}$.) span expands in each direction. The center support rib includes a drag support to react longitudinal (drag) loads. The panel lateral expansion is absorbed by flexing of the beads in the skin. The e rrugatons have little effective stiffness in the lateral direction.
The advantage of this concept is that the panels are not size-limited in the lateral direction, and an expansion joint is required only in the longitudinal direction. The design also eliminates forward-facing steps and incorporates a simple splice of adjacent panels, thus facilitating panel removal and inspection. A mass breakdown for the baseline system is also shown in figure $\mathbf{t - 1}$.

4. 3 SURFACE PANEL DESIGN:

Several surface panel configurations were considered, including trapezoidal and semicircular corrugation-stiffened skin, double-faced corrugation, integrally stiffened plate, and honeycomb sandwich. Double-faced corrugations and honeycomb sandwich designs were eliminated due to thermal stresses induced by the temperature gradient from outer to inner face sheets. Integrally stiffened plate designs were eliminated because this approach is not mass-competitive. Another disadvantage of those designs which have flat skins is the requirement for expansion joints at four edges. The semicircular corrugation was eliminated because it is not as mass-efficient as the trapezoidat. (para 4.3.8). Examination of the baseline design indicated that the corrugation sidewalls were operating at low stress levels. This resulted from the use of one matertial thickness for the entire cor rogation.
To minimize corrugation mass, two approaches were considered: first, the use of one thickness as before but with the addition of lighting holes; and second, the use of chem-milling. A weight estimate showed that holes would not significantly reduce mass. Moreover, punching holes in thin-gace material and the subsequent deburring would be very costly. Chem-milling, however, permitted the maximum elimination

END SUPPORT RIS
ANSULATOR WhSMER, TYP

Mass Breakelown					
Item	Toted mass, Mem. 40×41 panel	$\begin{gathered} \text { Lbma/f })^{2} \\ (11.3889) \end{gathered}$	\% of item	Sub clam \% of item	Item \% of TPS
Expansion rib Upper clip Lower clip/angle Web Rivets	$\begin{gathered} (2.1589) \\ .4978 \\ .7086 \\ .8389 \\ .1132 \end{gathered}$	$\begin{array}{r} (0.1895) \\ .0937 \\ .0622 \\ .0737 \\ .0099 \end{array}$	$\left.\begin{array}{l}23.1 \\ 32.8\end{array}\right\}$ 38.9 5.2	$\begin{gathered} 55.9 \\ \text { (Clips) } \end{gathered}$	7.7
Center rib Upper clip Lower clip Web Rivats	$\begin{array}{r} 12.8841) \\ 1.3463 \\ 1.0633 \\ .3613 \\ .1132 \end{array}$	$\begin{gathered} 0.25321 \\ .1182 \\ .0934 \\ .0317 \\ .0099 \end{gathered}$	$\left.\begin{array}{c} 46.7 \\ 36.9 \\ 12.5 \\ 3.9 \end{array}\right\}$	$\begin{gathered} 83.6 \\ \text { (clips) } \end{gathered}$	10.3
Drag Eracket (4 per 41 -in. panel)	0.3888	0.0841			1.4
Skin assembly Skin Corrugation	(13.1002) 5.6622 7.4380	$\begin{array}{c\|} \hline(1.1503) \\ .4972 \\ .6531 \end{array}$	$\begin{aligned} & 43.2 \\ & 56.8 \end{aligned}$	20, total 26, total	46.7
Attaching herdware Skin rivets (blind) Primary bolts Insulating washers	$\begin{array}{r} \hline(0.8636) \\ .2278 \\ .3380 \\ .2997 \end{array}$	$\begin{gathered} \hline 0.0768) \\ .0200 \\ .0295 \\ .0263 \end{gathered}$	$\begin{aligned} & 26.4 \\ & 38.9 \\ & 34.7 \end{aligned}$		3.1
Insulation system	8.6368	0.7583			30.8
Toted	28.0316	2.4612			100.0

DIMENSIONS: CM (INCHES)
wEB BEAD.TVP

‘. 6001

$$
\begin{aligned}
& \text { FIB WEB } \\
& \text { SCALIOPED ANGLE } \\
& \text { WEB CLIP }
\end{aligned}
$$

ORAG SLPPPORT
NSULLATOR SPACER
NSULATOR WASMER
double row
RESISTANCE

Section D-D

section E-E
(.830)

1001
$-c$
R1B)

Figure 4-1. - Grumman baseline TPS concept.
of unnecessary material. Moreover, since the skin/corrugations are sized to meet the maximum bending moment at the span center, additional weight could be saved by profiling the chem-mill at the span edges. Additionally, with the use of chem-milling, the thickness of each element of the cross section could be permitted to vary for maximum efficiency. It was decided, therefore, to chem-mill the test specimen.

4.3.1 Skin/Corrugation Optimization

A digital computer program was written to optimize the 51 cm (20 in .) panel. The program accounted for creep due to bending between supports, buckling of the various elements of the skin, corrugation, and flutter of the outer skin. All design variables such as pitch, various element thicknesses, and lengths were initially not constrained, Thus, designs which were developed within specified constraints could be compared with designs developed under other constraints or with designs developed under strength constraints only. Attachment hardware such as clips and rivets were not included in the computer program. This program, which is presented in Appendix A, should not be considered as a true optimization program, since some of the steps necessary to determine the panel cross-section with the least mass are graphical and require the user to interface with the program. Furthermore, thermal stresses which occur due to lateral thermal expansion were not accounted for in the optimization program. Instead, the optimum design was checked against thickness constraints determined from analysis of later:l thermal expansion. (See Section 4.3.3.)

4.3.1.1 Design Loads

The critical airload design conditions selected are listed in table 4-1.

4.3.1.2 Safety Factors

Design allowable stress ($\mathrm{F}_{\text {allow. }}$) is any of the following:

- $\mathrm{F}_{\mathrm{tu}}{ }^{\prime} 1.4$
- $\mathrm{F}_{\text {creep }} / \mathbf{1 . 1 5}$
- $\mathrm{F}_{\mathrm{cy}} / 1.15$
- $\mathrm{F}_{\mathrm{crel}} / 1.4$
- $\mathrm{F}_{\mathrm{ty}}{ }^{1.15}$

Each denominator is the appropriate factor of safety and $F_{c r e l}$ is the local elastic buckling stress.

Table 4-1. - Critical airload design conditions.

Condition	Description	Differential pressure		Temperature			
		kPa	psf	Haynes 188		René 41	
				K	F	K	F
A	Boost	-20.59	-430	294	70	294	70
B	Postentry	16.76	350	294	70	294	70
C	Max maneuver	4.78	100	1255	1800	1144	1600
0	Equil flight	2.39	50	1255	1800	1144	1600

2217-12W

Section definition

Section properties

$$
\begin{aligned}
\Sigma A= & 1.02646 b t_{1}+(p-b)\left(t_{1}+t_{2}\right)+2 h t_{2}+d t_{3} \\
\Sigma A x= & 1.02046 b t_{1}[h+b(.00649)]+(p-b)\left(t_{1}+t_{2}\right)(h) \\
& +2 h t_{2}(h / 2) \\
\Sigma A x^{2}= & 1.02646 b t_{1}[h+b(.00649)]^{2}+(p-b)\left(t_{1}+t_{2}\right)(h)^{2} \\
& +2 h t_{2}(h / 2)^{2} \\
\Sigma I_{o o} \cong & 2 t_{3} h^{3} / 12 \\
\bar{x}= & \Sigma A x / \Sigma A \\
I_{r} . & =\Sigma A x^{2}+\Sigma I_{00}-(\Sigma A)(\bar{x})^{2}
\end{aligned}
$$

2217.13W

Figure 4-2. - Section definition and properties.

It can, therefore, be concluded that the least-weight, strength-constrained section will not necessarily be the least-weight acceptable design.

The skin/corrugation design equations and optimization procedure are given in appendix A. Also given is a listing of the computer program, HAYNES, developed to simplify selection of the optimum configuration. The optimized Haynes 188 section as determined by the computer program is illustrated in Figure 4-4. The section shown and the thickness indicated include no allowance for emittance treatment and oxidation losses expected during the life of the system. The production section which includes these allowances is given later in Figure 4-10.

The Rene 41 section as determined by the computer program is illustrated in Figure $4-5$. The production René 41 section is given later in Figure 4-10.

t.3.2 Skin Bead Flutter

Previous experience with similar designs indicated that flutter requirements could determine the skin thickness. The minimum required face-sheet thickness to prevent local flutter of the skin bead was determined using the anasysis procedure given in reforence 4-2. The procedure is summarized as follows:

Best choice

Pitch, P
1368-004W
Figure 4-3. - Schematic of least mass designs vs pitch for three neutral axis locations.
$t_{1}=\emptyset_{B} L\left[\frac{q}{f(m)}-E\right]^{1 / 3}$
$(1-1)$
where $\quad q_{\max } \quad 3418 \mathrm{~kg}^{\prime} \mathrm{m}^{2}(700 \mathrm{psf})$ at $\mathrm{M}-1.3,11=9144 \mathrm{~m}(30000 \mathrm{ft})$
$q^{\prime} \mathrm{f}_{(\mathrm{m})} \cdot 7080 \mathrm{~kg} \mathrm{~m}{ }^{2}(1450 \mathrm{psf})$ (ref. $4-2$, figure 2)

PS $\quad 1.5$ (ref. 4-3, para 4.5.1.3)
L. $\quad 48.5 \mathrm{~cm}(19.1 \mathrm{in}$.
${ }^{G^{\prime}} \quad \frac{1.284}{2.924+\frac{\mathrm{L}}{b+2 b^{\prime}}}-.019$
(4-2)

Note that equation $(4-2)$ is an empirical fit to \emptyset_{1} vs L / W in ref. $4-2$, where $\| \cdot b+2 b^{\prime}$.

2368.024W

Equation (4-1) was solved for both materials to provide a minimum thickness (or lower bound) for t_{1}. The results are presented in figure $4-6$ for Hay nes 188 and figure 4-7 for Rene 41. The curves were fitted to the empirical equations for use in the computer program, and are:

- $t_{1}=.0155(b+.152) \mathrm{cm}\left(t_{1}=.0061(b+.06) \mathrm{in}.\right)$ for Haynes 188
$-t_{1}=.0198(b+.152) \mathrm{cm}\left(t_{1}=.0078(b+.06)\right.$ in. $)$ for René 41

4.3.3 Lateral Thermal Expansion

The lateral thermal expansion is cunstrained by the adjacent panel, which prohibits lateral growth, and the support ribs, which prevent normal displacements. Thermal strains are absorbed by the face sheet teads in bend'ng. The value b/10 is sufficiently large to avoid thermal buckling of the circular arc (rcf. 2-1).

The edge load, P, and moment, M (per unit length, ℓ) are (from ref. 2-1) given by:

$$
\begin{aligned}
& \xrightarrow{\text { P }} \\
& P=\frac{2 \mathrm{EI} \Delta}{\frac{\mathrm{~b}^{3}}{100} N}\left\{\frac{\mathrm{p}-\mathrm{b}+\pi \mathrm{bN}}{\pi(\mathrm{p}-\mathrm{b})+\mathrm{bN}\left(\frac{2}{\pi}-8\right)}\right\} \frac{1}{l} \\
& M=\frac{4 \mathrm{EI}_{\Delta}}{\frac{\mathrm{b}}{10}}\left\{\frac{1}{\pi(p-b)+b N\left(\pi^{2}-8\right)}\right\} \frac{1}{\ell}
\end{aligned}
$$

where

$$
\mathrm{N}=\frac{1}{\pi\left[1-\frac{\pi}{2}\left(\frac{\pi}{10}\right)^{2}\right]}=.37671
$$

$\Delta \quad \alpha \mathrm{p} \Delta \mathrm{T}$

ℓ unit length 1

The analysis is nonlinear and considers only bending energy. The the rmal and mechanical properties employed are given in table \cdot..a.

Figure 4.6. - Haynes 188 flutter and thermal constraints

136,8 007w
Figure 4.7. - Rene 41 flutter and thermal constraints.

The maximum fiber stress was limited to yield ($0.2^{\circ} \%$ permanent deformation) at peak temperature, resulting in an allowable total strain, ϵ, , and comensurate allowable elastic stress $F_{\text {allow. (figure 4-8). (The factor of safety was taken as }}$ 1.0.) Thus:

$$
\begin{aligned}
\mathbf{F}_{\text {allow. }} & -E \in \mathrm{~T} \\
= & 13.7 \times 10^{6}(.0034)=331 \mathrm{MPa}(46600 \mathrm{psi}) \text { - Haynes } \\
& =17.7 \times 10^{6}(.0052) \quad 634 \mathrm{MPa}(92000 \mathrm{psi}) \text { - liené }
\end{aligned}
$$

It can be shown that the maximum bending moment, M, occurs at the top of the bead, so that:

$$
\bar{M}=p \frac{b}{10}-M
$$

ard

$$
f_{b}=\frac{6 M}{t_{1}^{2}}
$$

taking

$$
I-\frac{t_{1}^{3}}{12}
$$

and setting

$$
f_{b}=F_{\text {allow }}
$$

The maximum allowable t_{1} can be obtained for given values of p and b.

$$
\mathrm{t}_{1_{\max }}=\frac{\mathrm{b}[\pi(\mathrm{p}-\mathrm{b})+\mathrm{b}(.7043)] \mathrm{F}_{\mathrm{al}} \text { ow. }}{10 \mathrm{p}\left[\frac{\mathrm{p}-\mathrm{b}}{\mathrm{~b}(.3767)}+\pi-2\right] \mathrm{E} \alpha \Delta \mathrm{~T}}
$$

The solution of this equation is plotted as the family of dashed curves in figure 4-f for Haynes 188 material and figure 1-7 for René 41. These curves define an upper bound for the face-sheet thickness.
 curves at elevated temperature.

4.3.1 Selection of Optimum Haynes 188 Section

The results of the optimization program for the minimum-mass section are illustrated in figure $\mathbf{4 - 9}$. It can be seen that the optimum design occurred at a pitch of $3.73 \mathrm{~cm} 11 .+7 \mathrm{in} .1$. For convenience and simplicity, a panel with a pitch of 3.81 $\mathrm{cm}(1.50 \mathrm{in}$.) was selected for the final design. Dimensions of the selected section, which define the midspan cross section, are also shown in figure 1-9. This section produced a surface panel with a mass of $4.27 \mathrm{~kg} \mathrm{~m}^{2}\left(0.875 \mathrm{lbm} \mathrm{ft}^{2}\right)$. This section, however, was modified to accommodate surface emittance treatment and material oxidation losses during the 100 -mission life. Additionally, the corrugation lower cap pad was sculptured to minimize mass and provide uniformity of stress. The modified section, which was the section that was fabricated, is shown in Figure $t-10(a)$. The mass of this section, including doublers, attachment rivets, and mass reduction resulting from sculpturing, is $4.536 \mathrm{~kg}^{\prime} \mathrm{m}^{2}\left(.929 \mathrm{lbm} \mathrm{ft}^{2}\right)$. This new design indicated a $22^{\text {© }}$, reduction in mass from the baseline panel. (See figare 4-1.)

4.3.5 Selection of Optimum René 41 Section

The principal differences between René 41 and Haynes 188 is that Rene 41 has superior mechanical properties at room temperature and suffers less degradation in mechanical properties at elevated temperature bec use its service temperatura is lower $-1144 \mathrm{~K}\left(1600^{\circ} \mathrm{F}\right)$ vs $1255 \mathrm{~K}\left(1800^{\circ} \mathrm{F}\right)$. Although the moduli of elasticity a: ; similar, the creep strength of Rene 41 at service temperature is typicall $6,69 \mathrm{Ma}$ (10000 psi) vs $27.6 \mathrm{MPa}(4000 \mathrm{psi})$ for Haynes 188 . The increased creep strength produced two effects on the optimum Rene 41 section relative to the Haynes section: the overall section height (and associated dimensions) decreased, and the width-tothickness ratio for the various elements decreased. The latter effect resulted from satisfying buckling criteria for conditions A, B, or C, while also satisfying creep criteria for condition D. As an illustration of this effect, consider element 5 . For a given moment of inertia and neutral axis location, condition A yields

$$
\begin{equation*}
f=\frac{M_{c}}{I}=M_{A}\left(\frac{\bar{x}}{I_{n a}}\right) \frac{F_{c r e l}}{1.4}=\frac{h_{\mathrm{cr}^{E}}\left(\frac{\mathrm{t}_{3}}{d}\right)^{2}}{1.4} \tag{4-3}
\end{equation*}
$$

and condition D yields

$$
\begin{equation*}
\mathrm{f} \frac{\mathrm{Mc}}{\mathrm{I}}=M_{\mathrm{D}}\left(\frac{\overline{\mathrm{x}}}{\mathrm{I}_{\mathrm{na}}}\right)-\frac{\text { Freep }}{1.1 \overline{5}} \tag{-4-4}
\end{equation*}
$$

where
$M_{A}{ }^{-}$moment from applied pressure, condition A
H_{D} moment from applied pressure, condition D

1. 1 and $1.15-$ factors of safety
$K_{(\cdot r}$ buckling coefficient

Selected section details

1. Hes ousw

Figure 4.9. - Haynes 188 skin/corrugation optimization.

(a) Haynes 188 Production Section

(b) René 41 Production Section

Figure 4.10. - Production TPS sections.

The only significant variable is $F_{\text {creep, }}$, which is about 2.5 times greater for René 41 than for Haynes 188, so that for a given value of $x^{\prime} I_{\text {na }}\left(t_{3} d\right)$ for René is about 1.6 times greater than for an equivalent Haynes panel. In addition, equation (4-4) shows that if the creep allowable is increased by a factor of 2.5 . the value of x lna can increase by the same amount. All of these effects tend to reduce the overall dimensions of the Rene 41 cross section relative to the Haynes.

The René optimization results are presented in figure 4-11. Several values were assumed for beta. (Beta is the ratio of neutral-axis location to overall section height.) Design constraints limiting the face-sheet thickness to $.013 \mathrm{~cm}(0.005 \mathrm{in}$.$) ,$ minimum, and the flat between beads to at least $1.02 \mathrm{~cm}(0.4 \mathrm{in}$.) are also shown. It can be seen that the optimum René panel has a pitch of $1.98 \mathrm{~cm}(0.78 \mathrm{in}$.) and an average weight of $3.58 \mathrm{~kg} / \mathrm{m}^{2}\left(0.734 \mathrm{ibm} / \mathrm{ft}^{2}\right)$. Details of this section are presented in figure 4-12(a). The computer-designed section possesses acute angles at the bend lines, making tre section diff.cult to fabricate. As a result, the section was modified to that shown in figure 4-12(b). Both sections are the same except that the width and thickness of the bottom element were altered as shown. As a result, while the area of the elements and moment of inertia of the sections are identical, the buckling stress of the bottom element is now higher and, therefore, has a positive margin of safety. The computer program sized the dimensions of the element based on buckling with zero margin of safety.

4.3.6 Compromise Haynes René Optimum Section

One objective of the program was to address the problem of "interface" between metallic TPS optimized and fabricated from different metals. It was decided, therefore, that a compromise section geometry would be selected for the skin panel so that the Haynes and Kené systems could be used as adjacent panels. Moreover, the use of one skin geometry could significantly lower fabrication and tooling costs for a flight vehicle.

Since only the skin of each system interfaces at the expansion joint, the corrugation of each configuration can still be optimized independently. It can be seen from figure 4-9 that the pitch of the Haynes section cannot be smaller than 2.95 cm (1.16 in .). This is somewhat above the optimum liene 41 pitch of 1.98 cm (. 78 in .) From a cost and mass standpoint, it is desirable to increase section pitch to reduce the number of clips and attaching rivets on the rib support. io identify a compromise pitch, a simplifies study was conducted; it included the effects of pitch on panel mass, and accounted for upper and lower clip mass for both the center and end support ribs. ltems not included in the study because their mass remains relatively constant with respect to pitch include support rib webs, drag brackets, miscellaneous fasteners, and insulation.

The results of the study are shown in figure 4-13. It can be seen that the Haynes 188 total mass (panel plus clips) is minimized at a pitch of $3.91 \mathrm{~cm}(1.54 \mathrm{in}$). The minimum-mass René 41 panel occurs at a pitch of $2.39 \mathrm{~cm}(0.94 \mathrm{in}$.). The middle curve shows a mass-pitch curve for a $50^{\prime \prime}$ Haynes $188.50^{\prime \prime}$, Rene 41 panel mix. The

[^1]Figure 4.11. - René 41 skin/corrugation optimization.

(c) Optimized section matched to $3.81 \mathrm{~cm}(1.5 \mathrm{in}$.$) pitch$

Figure 4-12. - René 41 section dimensions.

minimum composite mass occurs at a pitch of $3.58 \mathrm{~cm}(1.41 \mathrm{in}$.). The dashed line connects the three calculated points and is an estimated relationship between optimum pitch and surface panel mass. Based on these curves, the greater density of haynes 188, and the desire to space an even number of corrugations across a $61-\mathrm{cm}(24-\mathrm{n}$.) span, it was decided to use a common pitch of $3.81 \mathrm{~cm}(1.50 \mathrm{in}$.) for Haynes 1 cj and kené 41.

The mass penalty to the Haynes 188 design is less than $.005 \mathrm{~kg} / \mathrm{m}^{2}(.001 \mathrm{lbm} /$ $\left.\mathrm{ft}^{2}\right)$, or, about $0.1^{\text {c. }}$. The mass penalty to the Rene 41 design is $0.166 \mathrm{~kg} / \mathrm{m} 2(0.03$ $\mathrm{lbm} / \mathrm{ft}^{2}$), or, about $4.0^{\text {r. }}$. The René 41 section was reanalyzed to determine the optimum section with a pitch of $3.81 \mathrm{~cm}(1.50 \mathrm{in}$.) and a bead width of $1.99 \mathrm{~cm}(.782 \mathrm{in}$). The analysis indicated the optimum beta to be . 61 , which was used to determine a section with these two constraints. (See appendix A, figure A-2). The resulting kené 41 section is shown in figure $4-12$ (c). The production section is shown in figure $t-10$ (b). This section includes thickness increases for oxidation and emittance allowance and slight geometry changes to accommodate lower-cap sculpturing.

4.3.7 Corrugation Sculpturing

To minimize corrugation mass, the lower horizontal flat of the corrugation was sculptured to match the bending moment. Since the corrugation already included chem-milling, the addition of a profiled chem-mill line did not significantly increase fabrication costs. The profile was selected such that the area and buckling allowable stress remained the same. (The analysis by which the profile was selected is given in appendix B. The profile geometry is given in appendix B, table B-1.)

The values for d^{\prime} (appendix B) are minimums required, and these values generate a curved profile. The mass which could have been saved by sculpruring the curved profile was $.168 \mathrm{~kg}^{\prime} \mathrm{m}^{2}\left(.0344 \mathrm{lbm} / \mathrm{ft}^{2}\right)$ for the Haynes 188 panel and .092 $\mathrm{kg} / \mathrm{m}^{2}\left(.0188 \mathrm{lbm} / \mathrm{ft}^{2}\right)$ for the René 41 . However, a straight-line profile was used to facilitate fabrication and thereby lower the costs of chem-milling. The actual masses saved using a straight profile are $.145 \mathrm{~kg} / \mathrm{m}^{2}\left(.0299 \mathrm{lbm} \mathrm{ft}^{2}\right)$ for the Haynes 188 and $.080 \mathrm{~kg} \mathrm{~m}^{2}\left(.0163 \mathrm{lbm} / \mathrm{ft}^{2}\right)$ for the René 41 panel.

4.3.8 Circular Corrugation Study

A circular corrugation-stiffened panel was examined as part of the panel optimization effort. The circular corrugations were considered because they possess many of the beneficial characteristics of a trapezoidal corrugation, particularly flexibility transverse to the corrugations, which relieves transverse in-plane thermal stresses. The circular corrugations also offer a high resistance to local buckling. The results of the study, in which a constant-thickness corrugation was assumed, are shown in figure $4-14$. The minimum-mass design at $5.57 \mathrm{~kg} \mathrm{~m}^{2}\left(1.14 \mathrm{lbm} \mathrm{ft}^{2}\right)$ is $1.29 \mathrm{~kg} / \mathrm{m}^{2}\left(.265 \mathrm{lbm} / \mathrm{ft}^{2}\right)$ more than the chem-milled trapezoidal corruration.

By chem-milling portions of the circular corrugation, some reduction in weirht could probably have been achieved. However, chem-milling would have deyraded the buckling resistance of the unchem-milled portions of the are.

A constant-thickness trapezoidal corrugation was also investigated in an effort to provide a direct comparison between the circular and trapezoidal corruyations. Figure $4-15$ illustrates that the minimum weight of this design is $4.91 \mathrm{~kg} \mathrm{~m}^{2}(1.005$ $\mathrm{lbm} / \mathrm{ft}^{2}$), or about $12^{\mathrm{c}}{ }^{\circ}$ lighter than the circular corrugation.

$136801 . \mathrm{WV}$
Figure 4.14. - Circular corrugation panel optimization.

1308013 W

Figure 4-15. - Constant•thickness trapezoidal corrugation-panel optımization.

The traperoidal section is lighter berause the design loads are exclusively bending Whether the sections are chem-milled or not, the trapezoidal section provides more bendins material about the neutral axis than the circular section. The rircular corrugation, therefore, was eliminated frem fl. 'ther study.

4.3.9 Flutter Cherk for TPSTF Test Environment

Analysis has shown that the current haynes 186 i at shield panel design is flutter-free for the required shuttle orbiter design flisht environment. The following amalysis was performed to determine if the TPsTF testing environment is likely to impose a more severe flutter requirement on the panel.
lincuef-it shows the operating envelope of the Nath Lanyley Thermal Protertion fystem Test lacility (Therf); the dashed line indicates a typical space shuttle entry trajertory (ref. 4-1). Maximum dynamic pressure, q, for the portion of the trajedory within the operating envelope ocrur, at the left boundary, where the following conditions exist:
 2217.29w

Figure 4-16. - TPSTF operating tnvelr. - :
$\mathrm{H}_{\mathrm{T}} \quad 2.3 \mathrm{MJ} \mathrm{kg}(1000 \mathrm{Btu} \mathrm{lbm})$
$P_{T}-9.5 \mathrm{~atm}$
and, from reference $4-5$, for the TPSTF area ratio $A 1 * 25$:
$1=4.06$
$q \cdot P_{T}-0.035$
Thus,

$$
\begin{aligned}
& q \cdot\left(q \cdot P_{T}\right) P_{T} \quad 33.7 \mathrm{kPa}(764 \mathrm{ps} t) \\
& \boldsymbol{\beta}\left(\mathrm{M}^{2}-1\right)^{2}-3.93
\end{aligned}
$$

and
q $\beta=8.6 \mathrm{kPa}(179 \mathrm{psf})$
The outer skin over the width of one corrugation was treated as a simply supported flat panel. The thickness required to prevent flutter was calculated using reterence 4-6:

$$
\begin{aligned}
& \mathrm{GP}=\frac{\mathrm{a}}{\mathrm{~b}} \sqrt{\frac{D_{12}}{\mathrm{D}_{1}}}=\frac{a}{\mathrm{~b}}=20 \text { (geometry parameter) } \\
& \mathrm{FP}=\frac{0.0593}{\left(5+G \mathrm{P}^{2}\right) \sqrt{4 \cdot 2} \mathrm{GP} \mathrm{P}^{2}}-5.163 \times 10^{-6} \text { (flutter parameter) }
\end{aligned}
$$

$$
\because P \frac{D_{1} f(\lambda)}{c_{i} a^{3}}
$$

For

$$
\begin{aligned}
D_{1} & =\frac{E t^{3}}{12\left(1-\mu^{2}\right)} \text { and } f(M)=\beta \\
t & =\left[\frac{12\left(1-\mu^{2}\right)(F P) a^{3}}{E} \frac{q}{\beta}\right]^{1 / 3}
\end{aligned}
$$

where

$$
\begin{aligned}
& \text { a } 50.8 \mathrm{~cm}(20.0 \mathrm{in} .) \\
& \mu \cdot .29
\end{aligned}
$$

For conservatism, the modulus for the Haynes 188 panel was selected at 12.5 人 h (2260 0°), which is the maximum temperature he panel would experience at the right boundary in figure $4-16: E=93.7 \mathrm{GPa}\left(13.6 \times 10^{6 i} \mathrm{psi}\right)$. Thus, for the Haynes $1-4$ panel, t 0.01 cm (. 00347 in .).

A typical shuttle orbiter mission is divided into four phases: boost, orbil, entry, and postentry. Significant heating eftects which could cause temperature gradients and resultant thermal stresses can occur only during boost, entry, and postentry, when the panel surface experiences aerodynamic he at inputs. During orbit. only solar heat inputs, which are not sirnificant, are experienced. The only impact of the on-orbit , ondition is to determine the initial temperature at the start of entry. Similarly, the panel experiences significant aerodynamic loadings only duriny boost, entry, and postentry (Figures 2-4 and 2-1 show the boost and entry trajectories used for pinel design.)

4.3.10.2 Heat Inputs

Figures $4-17$ and $4-18$ show the aerodynamic heat inputs to the panel surface during boost and entry, respectively, resulting from these trajectories. The heating is defined on the basis of an effective boundary-layer temperature (recovery temperature) and a convective heat-transfer coefficient. The convection coefficient was obtained using a modified Vian Driest method for turbulent flow over a flat plate. the heat flux is calculated as

$$
q \quad H_{c^{\prime}} \mathrm{r}_{\mathrm{BL}}-\mathrm{T}_{W^{\prime}}
$$

where
q heat flux
Ho convection coefficient
${ }^{\prime} \mathrm{Bl}$. effective boundary-layer temperature
${ }^{\prime}{ }_{w}$ panel surface temperature

Figure 4.18 - Entry heating profile.

4.3.10.3 Temperature Analysis

A thermal model of the structure was made to determine temperature distributions in the surface-panel structure. This model consisted of four elements, as shown in the insert of figure t-19. Conduction, convection, and radiation between the elements was considered. The in-house transient temperature analysis program using finite-difference techniques was emploved to evaluate the differential equations which represent the thermal model. The output of the computer program is shown in the transient temperature response of the surface-panel elements to the boost and entry heating inputs in figures $4-19$ and $+\mathbf{- 2 0}$ for the liaynes 188 design shown in figure 4-10. A panel surface emissivity of 0.8 was assumed in these analyses. The entry maneuver was assumed to start with an initial temperature of $200 \mathrm{~K}\left(-100^{\circ} \mathrm{F}\right)$, which is the temperature resulting from an on-orbit cold-soak. Shuttle orbiter studies have identified this as the initial condition that produces the most severe thermal stresses during entry. Figures $4-19$ and $4-20$ contain all the temperature gradients of significance to the llaynes 183 panel daring an orbiter mission.

Figure 4-19. - Panel temperature response, boost heating.

1.3.10.4 TPSTF Test Conditions

The test article was also checked for the heating and pressure environment of the TPSTF. The TPSTF heating inputs assumed a three-step simulation of the initial portion of the entry trajectory. It was assumed that the minimum heating at startup of the TPSTF is the lower-left corner of the operating envelope for the Thery, which is shown in figure $4-16$. This condition gives a heating rate consistent with a radiation equilibrium temperature of $711 \mathrm{~K}\left(320^{\circ} \mathrm{F}\right)$ and a surface emissivity of 0.8 , and results in an initial heating rate of $11349 \mathrm{Wm}^{2}\left(1.0 \mathrm{Btu} / \mathrm{sec} \mathrm{ft}^{2}\right)$. The three-
step heat input variation assumed for the TPSTF test condition is shown in figure 4-21. The temperature response of the surface panel to the TPSTF heating was computed using the heating input and the same four-element thermal model employed previously. The results for the Haynes 188 panel are shown in figure 4-22.

4.3.10.5 Selection of Critical Col tons

The next step in the analysis was to determine at which times during the trajectories the maximum thermal stresses occur. Only thermal stresses resulting from gradients within the surface panel were considered. The thermal stress analysis performed used simple bending theory and assumed that the panel was free to expand in the direction parallel $t s$ the corrugations. The panel was also free to bow up between end supports without incurring any significant bending moments at the end supports. Thermal stresses, therefore, are produced only when the temperature gradiant through the depth of the panel cross section is nonlinear. The thermal stresses

2217-33W
Time from start of entry, sec

Figure 4-20. - Panel temperature response, entry heating, cold start.
produced will be in a direction paratien to the corrugations. Therefore, they are coincident with the bending stresses produced by surface pressure on the panel. It can be seen by examining figures 4-19 and 4-20 that significant gradients exist only during the following time intervals:

- Boost phase (condition A): 90 through 160 sec
- Entry phase (condition E): 60 through $\mathbf{1 7 0}$ sec
- Postentry phase (condition B): 1700 through 2100 sec

During the other times, the temperature gradients within the surface panel are considerably smaller and are, therefore, not of interest.

4.3.10.6 Determination of Element Stresses

The thermal-stress model consisted of a simple finite-element representation of the panel cross section, as shown in the insert in table 4-4. The appropriate coefficient of expansion, Young's modulus, areas, and temperatures were determined for each element, and were inputted to a transient-temperature structural analysis computer program which determined the stress level in each element. This analysis

$\therefore 173.1 \mathrm{~W}$
Figure 4-21. - TPSTF heatup simulation.

? 17 3 W
Figure 4-22. -- Panel temperature response, TPSTF heating.

hedrkuduciblility or The
 ORIGINAL PAGE IS POOR

Table 4.4. - Thermal stress summary, cold start on entry.

was performed for the times during the boost and entry trajectc. es that were previously identified as having significant temperature gradients. The results of this analysis are shown in figure $4-23$ for 90 through 160 sec for boost, figure $4-24$ for 60 through 170 sec for entry, and figure $4-25$ for 1800 through 2100 sec for postentry. Figures $4-23,4-24$, and $4-25$ show the stress in each element of the cross-section vs time.

Examination of these figure indicates a fluctuation of stress as the transient temperature gradients change wit." 'me. From each figure, times which produced the largest thermal stress and which would combine with the stresses due to aero-

Figure 4-23. Boost, condition A.
dynamic pressuı ϵ loadings (conditions A through E) were selected. These times are listed in table $4-4$. As can be seen, conditions C and D do not have thermal stresses because they are maximum-temperature conditions. At maximum temperature, the thermal gradients in the panel are very small because almost constant heating conditions exist, and the strong radiant heat interchange between the panel elements reduces temperature differences to small values.

The maximum gradient during the TPSTF heating occurred at 10 sec after the start of heating. This condition produced the largest thermal stress in the panel for the test condition. The thermal stresses are shown in table $t-t$.

4.3.1r.7 Combination of Aero \& Thermal Stresses

The stresses due to aerodynamic loadings were determined for the main bending clements of the surface panel, that is, the skin bead and the lower flange. Examination of table $4-4$ shows that significant thermal stresses occurred only during conditions A, B, F, and TPSTF. Conditions C and D were not considerec because the thermal stresses are essentially zero. The loads for condition A, B, \dot{A}, and TPSTF are tabulated in table $1-j$ for the time periods during which thermal stresses are significant.

t.3.10.8 Check of Skin Bead Stresses

The critical loading condition for the skin bead is compression. The method of anaysis is snown in the following example for condition B. Only the Haynes 158 panel was checked. It was telt that checking the René 41 panel was not necessary since the René $\$ 1$ panel section has lower b t's, greater modulus, and greatel creep allowables.

Figure 4-24 - Start of entry, condition E.

For $\mathrm{P}_{\mathrm{K}}-14.8 \mathrm{kPa}(310 \mathrm{psf})$ at 1850 sec
$16.2 \mathrm{kPa}(338 \mathrm{psf})$ at 1900 sec
$16.8 \mathrm{kPa}(350 \mathrm{psf})$ at 2000 sec

Figure 4.25. - Postentry, condition B.

The bending moment at midspan is:
$\mathrm{M}=16.6 \mathrm{~N} \cdot \mathrm{~m}(147.3 \mathrm{in} .-\mathrm{lb})$ at 1850 sec
$=18.1 \mathrm{~N} \cdot \mathrm{~m}(160.6 \mathrm{in} .-\mathrm{lb})$ at 1900 sec
$18.8 \mathrm{~N} \cdot \mathrm{~m}(166.3 \mathrm{in} .-\mathrm{lb})$ at $2000 \mathrm{sec} \quad$ (see Appendix A, page A-1)
and the bending stress is:

$$
\begin{aligned}
\mathrm{f}_{\mathrm{b}}=\frac{M \overline{\mathbf{x}}}{\mathrm{I}_{\mathrm{NA}}}= & 421 \mathrm{MPa}(61120 \mathrm{psi}) \text { at } 1850 \mathrm{sec} \\
& 459 \mathrm{MPa}(66620 \mathrm{psi}) \text { at } 1900 \mathrm{sec} \\
& 476 \mathrm{MPa}(60990 \mathrm{psi}) \text { at } 2000 \mathrm{sec}
\end{aligned}
$$

The stresse. due to aerodynamic and thermal loads are each plotted in figure $4-26$ (b) for 1850,1900 , and 2000 sec . The total of these stresses are also plotted. Using 2-1/2-deg increments for θ (except the last increment, which is 2.6 deg), the average total stress at 2000 sec for the skin is:

$$
\begin{aligned}
\overline{\mathrm{f}}-\{2.5 & {\left[\frac{26.5+26.0}{2}+\frac{26 .+25.4}{2} \cdot \frac{25.4: 24.4}{2} \cdot \frac{24.4+23.2}{2}\right.} \\
& \left.\cdot \frac{23.2 \cdot 21.9}{2} \cdot \frac{21.9 \cdot 20.5}{2} \cdot \frac{20.5+18.9}{2} \cdot \frac{18.9 \cdot 17.3}{2}\right] \\
& \left.2.6\left[\frac{17.3: 15.6}{2}\right]\right\} \frac{1}{22.6}
\end{aligned}
$$

$\overline{\mathrm{f}}$ at $2000 \mathrm{sec}=152.3 \mathrm{MPa}(22100 \mathrm{psi})$
Similarly,
$\overline{\mathrm{f}}$ at $1900 \mathrm{sec}-137.2 \mathrm{MPa}(19900 \mathrm{psi})$
$\overline{\mathrm{f}}$ at $1850 \mathrm{sec}-133 \mathrm{MPa}(19300 \mathrm{psi})$
4.3.10.8.2 Check of Buckling, Condition B
$\mathrm{F}_{\text {crel }} .22 \mathrm{E}\left[\frac{\mathrm{t}}{1.3(\mathrm{~b} \cdot \mathrm{z})}\right]$ (Appendix A, page A-1)
$F_{\text {allow. }}=\frac{F_{\text {crel }}}{1.4}$
where

$$
\begin{aligned}
& \mathrm{t}=.013 \mathrm{~cm}(.0051 \mathrm{in}) \\
& \mathrm{b}-1.98 \mathrm{~cm}(.782 \mathrm{in} .) \\
& z-.152 \mathrm{~cm}(.06 \mathrm{in} .)
\end{aligned}
$$

E	$=1.05$	235.8 GPa	at 2000 sec,
-	$\mathrm{T} \cong 255 \mathrm{~K}\left(0^{\circ} \mathrm{F}\right)$		
-.96	235.8 GPa	at 19.00 sec,	$\mathrm{T} \cong 333 \mathrm{~K}\left(140^{\circ} \mathrm{F}\right)$
-	.88	235.8 GPa	at $1 \times 50 \mathrm{sec}$,
	$\mathrm{T} \cong 422 \mathrm{~K}\left(3.0^{\circ} \mathrm{F}\right)$		

Therefore,

at 2000 sec, $F_{\text {allow }}$	181.2 MPa	IS	$\frac{181.2}{152.3}$	-		. 18
at $1900 \mathrm{sec}, \mathrm{F}_{\text {allow }}$.	165.7 MPa ,		$\frac{165.7}{137.2}$	-1		. 20
at $1850 \mathrm{sec}, \mathrm{F}_{\text {allow }}$.	151.9 MPa ,		$\frac{151.9}{133.0}$	${ }^{-1}$. 14

4.3.10.8.3 Check of Skin Bead, Condition A - Figure 4-26(a) shows similar results for the loadings of condition A, obtained by the same method of analysis used for condition B. 'ombined stresses are examined between 90 and 120 sec for this case, since it can be seen by examining figures 2-4, 4-19, and 4-23 that pi jor to 90 sec. the thermal stresses in the skin bead are small, and that $\mathbf{a}^{\text {c.er }} 120 \mathrm{sec}$ (when the maximum compressive thermal stress exists in the skin bead'), the thermal stresses, aerodynamic pressures, and temperatures are decreasing. The average tota' stresses, allowables, and margins for condition A are when in table 4-6.

Table 4.5. - Aerodynamic pressures at appropriate times compared with design values.

Cond	Time, sec	Design pressure for condition		Pressure at tume ${ }^{\text {a }}$	
		kPa	psf	kPa	pst
A	$\begin{array}{r} 90 \\ 100 \\ 110 \\ 120 \end{array}$	139	290	$\begin{array}{lr}260, & 90 \\ 190 & -40 \\ 140, & 25 \\ 110, & 20\end{array}$	$\begin{array}{rrrr}12 & 5 & 4 & 3 \\ 9 & 1 . & 19 \\ 677 . & 1 \\ 5 & 3 & 96\end{array}$
B	$\begin{aligned} & 1850 \\ & 1900 \\ & .2000 \end{aligned}$	168	350	$\begin{array}{ll} 310 . & 60 \\ 338 . & 95 \\ 350 . & 260 \end{array}$	$\begin{array}{lll}148, & 29 \\ 162.45 \\ 16.8 . & 124\end{array}$
$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$	Therinal stresses are negligible				
E	78	4.79	100	0	0
TPSTF	10	$2.53{ }^{\text {b }}$	$529^{\text {b }}$	8	- 6
${ }^{3}$ Figure 24 an. 21 ${ }^{1} 025 \mathrm{~atm}$ (fig. 4 16) ${ }^{c} 0078 \mathrm{~atm}$ (fị. 4 16)					

Figure 4-26. - Bead aerodynamic and thermal stresses.

```
i.3.1".`.t Check of TPSTF Condition
    Pr_ - 790 Pa (10.5 psi)
    ir }\quad0.0381\textrm{m (1.50 in.)
    \i - . 885 N m (7.8 in. - (b) (See Appendix A, page A-1)
```


Combining with the maximum thermal stress of $\mathbf{- 1 1 . 6 ~ M P : I}(-16860 \mathrm{psi}):$
$i_{\text {total }}-124 \mathrm{MPa}(18,020 \mathrm{psi})$

$\therefore \mathrm{SS} \quad=\frac{144}{124}-1-.16$ (ample)

1.3.10.9 Check of Lower Flange Stresses

The lower :lance is also critical in compression, when combined thermal and aerodynamic loadings are considered. Compressive stresses in the lower flange occur when reversed (negative) aerodynamic pressures are applied, which can only occur during conditions \dot{A} and B. Condition B has negligible thermal compressive stees-es in the 1 ir flange; therefore, only condition A was examined for combined loading -
1.:. 10.9.1 Check of Stresses, Condition A

$$
\begin{aligned}
& \text { at } 100 \mathrm{scc}, \mathrm{~J}_{\mathrm{R}}-1.52 \mathrm{kfa}(-10 \mathrm{psf}) \\
& \text { at } 11 \mathrm{usec}, \mathrm{l}_{\mathrm{R}}-1.20 \mathrm{kPa}(-25 \mathrm{psf})
\end{aligned}
$$

Table 4-6. - Total stresses, allowables, and margins for condition A.

Time, sec	Temperature		Avg stress in bead		Allowable stress		NS
	K	${ }^{\circ} \mathrm{F}$	MPa	psi	MPa	psi	
90	361	190	-131	-19000	162	-23 540	24
100	436	325	-114	-16500	149	-21660	. 31
110	514	465	-113	-1640J	-136	-19780	. 21
120	581	585	-105	-15 250	--124	-18028	. 18

M - $-2.15 \mathrm{~N} \cdot \mathrm{~m}(-19 \mathrm{in} .-\mathrm{lb})$ at 100 sec (see Appendix A, page $\mathrm{A}-1$)
$\mathrm{M}=-1.34 \mathrm{~N} \cdot \mathrm{~m}(-11.9 \mathrm{in} .-\mathrm{lb})$ at 110 sec
$f_{b}-\frac{M \bar{x}}{I_{N A}}=\frac{-2.1 \overline{5}(9.03)}{.100}-19.41 \mathrm{MPa}(2815 \mathrm{psi})$ at 100 sec
$-12.10 \mathrm{MPa}(1755 \mathrm{psi})$ at 110 sec
Adding maximum thermal compressive stresses:
at $100 \mathrm{sec}=-33.78 \mathrm{MPa}$ at $297 \mathrm{~K}\left(-4900 \mathrm{psi}\right.$ at $\left.75^{\circ} \mathrm{F}\right)$ (table 4 4)
at $110 \mathrm{sec}=-40.67 \mathrm{MPa}$ at $308 \mathrm{~K}\left(-5900 \mathrm{psi}\right.$ at $\left.95^{\circ} \mathrm{F}\right)$
$\mathrm{f}_{\text {total }}-33.78 \cdot 19.41-53.19 \mathrm{MPa}(7715 \mathrm{psi})$ at 100 sec
$-40.6{ }^{\circ}-12.10-52.77 \mathrm{MPa}(7655 \mathrm{psi})$ at 110 sec
$F_{\text {allow. }}-\frac{3.62 E\left(\frac{t}{d}\right)^{2}}{1.4} \quad$ (appendix A, page A-2, element 5)

$F_{\text {allow. }}=.185 \mathrm{GPa}(26835 \mathrm{psi})$
$\mathrm{MS}=\frac{185 \mathrm{MPa}}{53.19 \mathrm{MPa}}-1 \quad$ ample
4.3.10.9.2 Check of Stresses - Condition $\mathrm{F}_{\text {- }}$ - For condition E , the maximum compressive thermal stress in the lower flange was 35.1 MPa (5100 psi) at near-room temperature with no aerodynamic load, which gave an ample margin. Temperatures which would have reduced the allowable stress significantly in the lower flange were not reached until after 150 sec in condition F . By this time, the thermal stress in the lower flange had become tension.
4.3.10.9.3 Check of Stresses, TPSTF Condition - No reverse pressure condition was specified for the TPSTF. The the:mal stress in the lower flange is well within the allowable since the temperature was low at the time of maximum stress, which occurred at 10 sec .

t.t ENPANSION JOINT SPLICE JOINT DESIGNS

4.4.1 Panel Expansion Joint

Because the surface panel expands during heating, an expansion joint is req^{\prime} ired at the panel edge to permit relative motion of adjacent panels without allowing leakage of boundary layer air. Leakage of high-enthalpy air is undesirable for two reasons: it reduces the effectiveness of the insulation system in protecting the primary structure, and it can cause severe local overheating where the leakage occurs. Each $50.8-\mathrm{cm}$ (20.0 -in.) section of the Haynes 188 panel expands about $.84 \mathrm{~cm}(.33$ in.) at $1255 \mathrm{~K}\left(1800^{\circ} \mathrm{F}\right)$. The hené panel expands about $.71 \mathrm{~cm}(.23 \mathrm{in}$.) at 114 K $1600^{\circ} \mathrm{F}$). This amount of motion must be accommodated in the presence of some amount of overall panel bowing due to temperature gradients during heating transirnts.

After reviewing various concepts (subsection 4.2) the overlapping-shingle concent was selected for the expansion joint, using a $1.60-\mathrm{cm}(.63-\mathrm{in}$.) overlap. Be cause adjacent skins are mounted at the same height, a one-skin-thickness interference was developed at the faying surface to minimize leakage. Additional thermal protection was provided by packing the expansion cavity with microquarty insulation. (The expansion joint is shown in appendix E, drawing AD1001-100.) The design offers: maximum simplicity (few parts), unrestrained panel edges, and no forward-facing steps. Finally, each panel is individually removable.

4.4.2 Panel Center Joint

Both $51-\mathrm{cm}(20-\mathrm{in}$,) panels meet at the center support rib. A simple lap joint was used because no expansion owurs at this point. The forward panel cuerlaps the aft panel by . $65 \mathrm{~cm}(.25 \mathrm{in}$.), producing an aft-facing step. Attachment rivet $=$ clamp each panel firmly down, providing a simple and effective seal.

t. t. 3 Panel Edge Splice Joint

Since all lateral expansion is absorbed by the skin beads and corrugation, panel width is limited only by fabrication and assembly considerations. The splice joint consists of a simple lap of adjacent panels at the flat between beads. A lonsitudinal row of rivets is employed to connect adjacent panels.

4.5 SLCPPORT RIB LESIGN

The support rib must transfer aerodynamic pressure and panel inertial loads to ${ }^{\prime}$ vehicle primary structure, while causing a minimum heat short. Two types of supports are used: a flexible one at the expansion joint, and a fixed type where two adjacent panels butt, which is called a center support rib. (See figure $4-1$).

Several of the support rib concepts shown in figures $4-27$ throush $4-31$ were considered. To simply mass comparisons between these desirns, the following parameters were fixed: standoff height, $9.22 \mathrm{~cm}(3.63 \mathrm{in}$.$) ; web thickness, 0.25 \mathrm{~cm}$ (. 010 in .); and upper and lower clip thickness, .111 cm (.044 in.).

Figure 4-27. - Bassline rib concapt.

2217.41 W

Figure 4-28. - Modified baseline rib concept.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

1368.027

Figure 4.29. - Truss concept.

The baseline support rib design is shown in figure 4-27. The design is heavy with a mass of $.877 \mathrm{~kg} / \mathrm{m}^{2}\left(.17961 \mathrm{bm} / \mathrm{ft}^{2}\right)$. Additionally, undesirable heat shorts to the primary structure result from the large number of fasteners required. A modified concept, with half the number of fasteners to the primary structure, is shown in figure 4-28. The design employs lightening holes, and shows a mass reduction of $.093 \mathrm{~kg} / \mathrm{m}^{2}\left(.019 \mathrm{ibm} / \mathrm{ft}^{2}\right)$. Figure $4-29$ illustrates a truss concept, which was not pursued because the mass was not promising. Figure 4-30 illustrates a trussed-rib concept with a relatively low mass. Forming of the tight radii, however, would be difficult without cracking the flanges. Additionally, the thin sections are prone to buckle during flexing.

These potential difficulties led to the selection of the concept shown in figure 4-31. The configuration is something between a full web and a truss. The lower arches have adequate radii so that flange cracking is eliminated. The beads serve to eliminate thermal stresses and provide vertical stiffness. Heat shorting is reduced from that of the baseline desing since lower attachments occur at a $7.62-\mathrm{cm}(3.0-\mathrm{in}$. ; pitch instead of $3.81 \mathrm{~cm}(1.50 \mathrm{in}$.). To further minimize heat shorting, . $32-\mathrm{cm}$ (.125-in.) thick insulating washers, fabricated from a glass-reinforced silicone laminate, insulate the lower clip from the aluminum primary structure.

With a mass of $.657 \mathrm{~kg} / \mathrm{m}^{2}\left(.135 \mathrm{lbm} / \mathrm{ft}^{2}\right.$, this design provides a 25% weight reduction from the baseline design. Detail analyses of the Haynes 188 and Rene 41 support ribs are given in appendices C and D, respectively. Production drawings are given in appendices E and F.

4.6 DRAG SUPPORT DESIGN

Because the support-rib standoffs cannot react loads parallel to the skin corrugations (in the longitudinal or drag direction), a drag support is employed at $30.48-\mathrm{cm}$ (12-in.) intervals along the center support to react these loads. The drag support consists of two bent-up channels riveted to each side of the center support rib which stabilizes the channels. The channels pick up the surface-panel screws in their normal location. The drag load is transferred to the primary structure by four screws at the bottom of the channels. Insulating washers are used under the lower clip to minimize heat shorting. (The detall anaiyses of the supports is given in appendices C and D. Detail dimensions are given in appendices E and F.)

4.7 THERMAL INSULATION SYSTEM DESIGN \& ANALYSES

The insulation system provides the main barrier to radiative heat transfer from the hot surface panel to the vehicle primary structure. The primary objective of the insulation design program was to develop the lowest-mass system which would withstand the thermal, cold-soak, and vibration environments associated with the design entry trajectory.

Only commercially avallable nonexotic materials were considered. The insulation for the baseline system used for comparison in this study is a homogeneous blanket of $56-\mathrm{kg} / \mathrm{m}^{3}\left(3.5-1 \mathrm{bm} / \mathrm{ft}^{3}\right)$ Microquartz enclosed in a bag of resistance-welded Inconel foil. The purpose of the bag was to protect the blanket from excessive moisture absorption and damage during handling. However, since the foil bags must be vented, their use seems questionable. The bags are costly to fabricate and add $1.56 \mathrm{~kg} / \mathrm{m}^{3}\left(0.32 \mathrm{lbm} / \mathrm{ft}^{3}\right)$ to the total TPS mass. For these reasons, and those outlined in subsection 2.5, protective foll bags were not included in the insulation system design. Further modifications to the baseline system which were considered are:

- The use of lower-density high-temperature insulation: $17.6-\mathrm{kg} / \mathrm{m}^{3}$ ($1.1-1 \mathrm{lbm} / \mathrm{ft}^{3}$)
- A composite of low-density insulation (TG 15000) and Microquartz
- The use of metal foil radiation barriers in fibrous insulation

4.7.1 Insuiation System Comparisons

The initial comparison of the efficiencies of the insulation candidates was made by comparing the density-condutivity ($\rho \mathbf{k}$) product. For the transient heating of in insulated structure, it can be shown that the insulation weight required for a given heat input is proportional to the square root of the product of $\rho \mathbf{k}$ ior the insulation.

The materials chosen as candidates for comparison with $56-\mathrm{kg} / \mathrm{m}^{3}\left(3.51 \mathrm{bm} / \mathrm{ft}^{3}\right)$) Microquartz, manufactured by the Johns Manville Corp., are:

- Astroquartz - $17.6 \mathrm{~kg} / \mathrm{m}^{3}\left(1.1 \mathrm{lbm} / \mathrm{ft}^{3}\right)$ density, a high-purity silica fibrous felt, fiber diameter = 7 microns, maximum temperature of 1644 k $\left(2500^{\circ} \mathrm{F}\right)$, manufactured by j. P. Stevens and Co., New York, N. Y., thermal properties obtained from reference 4-7

- TG $1500016 \mathrm{~kg} / \mathrm{m}^{3}\left(1.01 \mathrm{bm} / \mathrm{ft}^{3}\right)$ density, a silicone-resin-bonded fibrous felt, fiber diameter $=1.0$ micron, maximum temperature of $644 \mathrm{~K}\left(700^{\circ} \mathrm{F}\right)$, manufactured by HITCO-Defense Products Division, Gardena, Cal., thermal properties obtained from reference 4-8. This material was chosen to be used in conjunction with a high-temperature insulation in a composite
- Radiation barriers - The use of thin metal foils inserted in $56-\mathrm{kg} / \mathrm{m}^{3}$ (3.5$1 \mathrm{bm} / \mathrm{ft}^{3}$) Hicroquartz and $17.6-\mathrm{kg}^{\prime} \mathrm{m}^{3}\left(1.1-1 \mathrm{bm} / \mathrm{ft}^{3}\right)$ Astroquartz was investigated. Aluminum, nickel, and platinum foils . 0006 cm (. 00025 in.) thick were considered. This gage was the thinnest commercially available and could be readily handled. The foil density was two foils per cm (five per inch), and the emissivity of the foils varied from .05 to .80 . The methods used to analyze the performance of the foils are presented in appendix G

Figure 4-32 shows the $\rho \mathrm{k}$ product of the candidate insulations without radiation foils at 1.0 atmosphere. From this comparison it can be seen that Microquartz is the most efficient at temperatures above $644 \mathrm{k}\left(700^{\circ} \mathrm{F}\right)$. At temperatures below 644 K (7000 F) TG 15000 is most efficient. This suggests that a composite composed of TG 15000 on the cool side and Microquartz on the hot side would result in a weight reduction when compared to a homogenous Microquartz or Astroquartz package.

Figure 4-33 shows the ${ }^{\rho} \mathrm{k}$ product for Microquartz and Astroquartz with metal foils inserted as radiati! 'arriers. The results reveal two significant facts: the emissivity of the foils mLit be kept low ($\approx .05$) to effect a significant reduction in $\rho \mathrm{k}$, and the foils are advantageous, in insulations of this density, only above $64 \pm \mathrm{k}$ ($700^{\circ} \mathrm{F}$).

The oxidizing environment to which the TPS insulation would be exposed results in the nickel foils having an emissivity of 0.5 or higher (ref 4-9). Examination of figures 4-32 and 4-33 indicates that emissivities of 0.5 or higher result in no reduction in ρk; therefore, the use of nickel foils is not advantageous. Aluminum foil can be eliminated since it has a maximum temperature capability of only $700 \mathrm{~K}\left(768^{\circ} \mathrm{F}\right)$. Platinum foils appear effective; however this material is considered too exotic and expensive. The conclusion drawn from this investigation is that for the applications considered herein, the use of metal-foil radiation barriers is not a cost-effective way to improve insulation performance.

Design heating trajectory 14040 (subsection 2.2) was used to estimate the amount of insulation required for the Haynes 188 panel with an equilibrium temperature of $1255 \mathrm{~K}\left(1800^{\circ} \mathrm{F}\right)$. The heat input and pressure vs time for this trajectory are presented in table t-7. The thermal criteria requirements specified a 322 K $\left(120^{\circ} \mathrm{F}\right)$ initial temperature at the start of entry and a $450 \mathrm{~K}\left(350^{\circ} \mathrm{F}\right)$ maximum temperature on a structural mass equivalent to a $0.5-\mathrm{cm}(0.2-\mathrm{in}$.) thick aluminum plate with an adiabatic backface. The heating rates shown in table $4-7$ were used as the boundary conditions of a thermal model which included the metallic surface panel, the insulation layer, and the structural heat-sink mass. These heating rates produce a maximum surface temperature of $1255 \mathrm{~K}\left(1800^{\circ} \mathrm{F}\right)$ for the Haynes 188 panel.

The properties of the insulation materials used are shown in flgures 4-34, 1-35, and 4-36 for Microquartz, Astroquartz, and TG 15000, respectively. The data were obtained from references $1-7,4-8$, and $4-10$.

Figı re 4-32.-Density-conductivity product vs temperature at 1.0 atm .

Table 4.7. - Haynes 188 and René 41 TPS design trajectory heating and pressure history.

Time, ec	Pressure		Haynes heating rate		Rene heating rate	
	Pa	Torr	$\mathrm{W} / \mathrm{m}^{2}$	Btu/sec ft^{2}	$\mathrm{~W} / \mathrm{m}^{2}$	Btu/sec ft^{2}
0	0.002	1.5×10^{-5}	0	0	0	0
200	.024	1.8×10^{-4}	11349	1.0	7944	.7
400	667	5	62419	5.5	45396	4.0
600	933	7	113489	10.0	78308	6.9
800	1466	11	111219	9.8	76038	6.7
1000	2533	19	106679	9.4	73698	6.5
1200	3333	25	74902	6.6	52205	4.6
1400	3466	26	29507	2.6	20428	1.8
1500	3600	27	57879	5.1	40856	3.6
1600	3866	29	27237	2.4	21563	1.9
1800	4266	32	3404	.3	2269	.2
2000	8666	65	0	0	0	0
2200	101324	760	0	0	0	0
2217.46 W						

To simplify comparison, the amount of insulation required for the candidate insulation systems was initially determined without including the effect of the heat leak through the panel support attachments. The results for the baseline Microquartz system and three other candidate insulation systems are shown in table 4-8, items 1 through 4.

4.7.2 Insulation System Selection

Comparison of items 1 through 4 in table 4-8 shows that the composite system of Microquartz and TG 15000 (item 4) is the lightest. The mass of the system is $.29 \mathrm{~kg} / \mathrm{m}^{2}\left(.06 \mathrm{lbm} \mathrm{ft}^{2}\right)$ less than the baseline system (item 1), and represents a 10% mass reduction. This system, therefore, was selected for use on the test specimens. This system and the baseline system were reanalyzed to correct for the heat-shorting effects resulting from the metal supports. These data are shown as items 5 and 6 , table 4-8. The difference in mass remained $.29 \mathrm{~kg}^{/} \mathrm{m}^{2}\left(.06 \mathrm{lbm}^{\prime} \mathrm{ft}^{2}\right)$. The effects of local hot spots at the panel support attachments and lateral conduction effects in the primary structure were not included in the analysis.

The insulation and support rib dimensions corresponding to item 6 are shown in figure 4-37 for the Haynes 188 panel. Note that the distance between the primary structure and the corrugation bottom is 5.7 cm (2.25 in .), which is .63 cm (. 25 in .) or 10% less than the required $6.4 \mathrm{~cm}(2.5 \mathrm{in}$.$) . The 10 \%$ compression of the insulation has an insignificant effect on the thermal properties and provides better retention of the insulation blanket. The compression also compensates for the slight shrinkage which occurs after repeated high-temperature exposure.

The heat input and pressure time for the design of the Rene 41 insulation system is given in table 4-7. The heating rate produces a maximum surface temperature of $1144 \mathrm{~K}\left(1600^{\circ} \mathrm{F}\right)$. The same insulation concept used on the Haynes 188 panel was used on the Renc 41 panel, resized to the lower surface temperature/heat load requirements. The dimensions of the Rene 41 system are shown in figure 4-38.

Figure 4.36. - Thermal condictivity vs temperature and pressure of $16-\mathrm{kg} / \mathrm{m}^{3}\left(1.0-\mathrm{lbm} / \mathrm{ft}^{3}\right.$) TG 15000 (ref. 4-8)

4.7.3 Effects of Pressure Environment on Insulation Performance

Since insulation performance is a function of pressure, the effects of operating an all-Microquartz system (item 5, tajle 4-8) at a pressure of one atmosphere was is omputed. Item 7 of table $4-4$ shows that 7.4 cm (2.92 in .), a $28.6_{4}^{\text {c/ increase in in- }}$ sulation, is requ ${ }^{\circ}$ ed to maintain a $450 \mathrm{~K}\left(350^{\circ} \mathrm{F}\right)$ primary structure temperature. Alternately, item 8 shows that if the $5.77-\mathrm{cm}(2.27-\mathrm{in}$.) thickness is maintained, the primary strurture would reach $486 \mathrm{~K}\left(415^{\circ} \mathrm{F}\right)$ at the increased pre: sure. Thus, the pressure for which an insulation system is designed : nd the pressure at which the system is tested can have a significant effect on the performance of the system.

Both test specimens were fabricated assuming a reduced-pressure environment.

4.8 CONCEPT MASSS BREAKDOWN

The unit mass breakdown of the original baseline design and the new laynes 188 design is given in table 4-9. The first column gives the estimated mass of the original sys.em. The second column gives the unit mass breakdown of the new design Lased on .ominal material thicknesses. The reductions in mass of the new design are $25^{\prime \prime}$ for the s.iface panel, $50_{\%}^{C}$ for the support structure, and 40 , for the insulation. This results in an overall 35.4 , reduction in mass from the baseline design. The most significant reductions appear for the skin, where the thickness dec reaseii from $.025 \mathrm{~cm}(.010 \mathrm{in}$.$) to .0145 \mathrm{~cm}(.0057 \mathrm{in}$.) ; the support structure, where mas reductions were achieved by reducing the number of lower ciips and attaching hardware;

Table 4-8. - Haynes 188 insulation system mass comparisons

Insulation system		Press. Envir	Max struct temf srature		Insulation thickness		Insulation mass		
		K	F	cm	in.	$\mathrm{kg} / \mathrm{m}^{2}$	$\mathrm{lbm} / \mathrm{ft}^{2}$		
	$3.5 \cdot 1 \mathrm{om} / \mathrm{ft}^{3}$ Microquartz w/o supports		14040 Traj	450	350	5.31	2.09	2.98	0.61
(2)	$1.1 \cdot \mathrm{bm} / \mathrm{tt}^{3}$ Astroquartz w/o supports	$\begin{aligned} & 14040 \\ & \text { Traj } \end{aligned}$	450	350	24.7	9.74	3.95	081	
	$\begin{aligned} & 3.5 \cdot 1 \mathrm{bm} / \mathrm{ft}{ }^{3} \text { Microquartz } \\ & +1.0 \mathrm{mn.} \mathrm{of} 1 \mathrm{l} \mathrm{lbm} \mathrm{ft}^{3} \text { Astro } \\ & \text { Quartz w/o supports } \end{aligned}$	$\begin{aligned} & 14040 \\ & \text { Tral } \end{aligned}$	450	350	7.04	277	298	0.61	
(4)	$3.5 . \mathrm{lbm}^{\mathbf{f}}{ }^{3}$ Microquartz +.56 in of $1.0 .1 \mathrm{bm} / \mathrm{ft}^{3} \mathrm{TG}$ 15000 : w o supports	$\begin{aligned} & 14040 \\ & T_{r a j} \end{aligned}$	450	350	5.84	220	2.68	0.55	
(5)	$3.5 . \mathrm{lbm} / \mathrm{ft}^{3}$ Microquartz, corrected for structural support heat leak	$\begin{aligned} & 14040 \\ & \text { Tra }_{i} \end{aligned}$	450	350	5.77	2.27	3.22	0.66	
(6)	$3.5 \cdot \mathrm{lbm} / \mathrm{tt}^{3}$ Microquartz +.60 in of $10 . \mathrm{lbm} / \mathrm{ft}^{3} \mathrm{TG}$ 15000, corrected tor stiuctural support heat leak	14040	450	350	¢ 35	2.50	2.93	060	
(7)	$3.5 \mathrm{lbm} / \mathrm{tt}^{3} \mathrm{~N}: 1 \mathrm{c}$ croquartz. corrected for structurai support heat leak	1.0 Atmos	450	350	7.41	2.92	415	0.85	
	5 $5.1 \mathrm{lbm} / \mathrm{ft}^{3}$ Microquariz. corrected tor structural support heat leak	1.0 Atmos	486	$\cdot 15$	5.77	2.27	322	0.66	
- Surface equilitrium temperature $=1255 \mathrm{~K}\left(1800{ }^{\circ} \mathrm{F}\right)$ - $35 \mathrm{tbm} / \mathrm{tt}^{3} \cdot 56 \mathrm{~kg} / \mathrm{m}^{3}$ - $11 \mathrm{lbm} / \mathrm{ft}^{3}-17.6 \mathrm{kq} \mathrm{m}{ }^{3}$ - $10 \mathrm{bm} / \mathrm{t}^{3} \quad 16 \mathrm{~kg} / \mathrm{m}^{3}$									

221781 W

Figure 4-37. - Haynes 188 panel insulation systam dimaensions.

Figure 4-38. - $1 / 6$: 41 panel insuletion system dimensions.

and in the insulation system, where reductions were obtained by eliminating foil bagging and support hardware, and the use of low-density TG 15000 insulation.

The actual unit mass of each component was also determined, and is given in the third column of table 4-10. Actual overall mass increased $8.1 ;$ from the estimated nominal tolerance system. The largest mass inc rease ($20 . \mathbf{7}^{\circ}$) occurred in the corrugation, and was the $r_{\text {r sult }}$ of thinning at the corrugation bend line. The thinning occurred during the postfurming "sizing" operation. Sizing of the corrugation was required to straighten ete corrugations after brake-forming. The technique used was to brake-form sligt. 'y undersize ana cubsequently stretch or "size" the corrugation in a torm block, machined to the required final dimensions. The sizing was achieved by using pressure plat s to size the part to its final dimensions. The plates caused an excessive amount of stretch to occur in the bend area, resulting in significant thinning, approximately $.0076 \mathrm{~cm}(.003 \mathrm{in}$.) at the bend line. The reduced thickness was used as the base thickness for the chem-milling operation so that the required minimum of $.0145 \mathrm{~cm}(.0057 \mathrm{in}$.) would be achieved at the bend line. The corruga-

Table 4-10. - haynes TPS mass breakdown (new design).

Component	Estimated mass (nominal tolerance)		Estimated mass (max tolerance)		Actual mass	
	$1 \mathrm{~mm} / \mathrm{tr}^{2}$	$\mathrm{n}+\mathrm{m}^{2}$	$1 \mathrm{bm} / \mathrm{t}^{2}$	$\mathrm{kg} / \mathrm{m}^{2}$	$\mathrm{lbm} / \mathrm{t}^{2}$	kg / m ?
Surface panel						
Skin	0.2866	1.3994	0.3014	1.4716	0.3090	1.5087
Corrugation	5888	2.8749	. 6497	31723	7110	34716
Doublers	0299	1460	. 0309	1509	b. 0360	b 1758
Altach rivets	0240	1172	a. 0240	a 1172	c. 0240	c 1172
Subtotal	9293	4.5375	1.0059	4.9120	1.080	5.2733
\square_{0} change		-	8.2		+16.2	
Supports						
Webs	0.0539	02632	0.0573	02798	0.0540	0.2637
Upper clips	1064	. 5195	1076	5254	0986	4814
Lower clips	0547	2671	. 0553	. 2700	. 0548	2676
Drag bracket	0158	(1771	0163	0796	$\bigcirc .0180$	b. 0879
Attach hartware	$\cdots 02$	1475	. 0302	1475	c 0302	c. 1475
Subtotal	2610	12744	${ }^{2667}+2.2{ }^{13023}$		2667	1.2481
${ }^{\text {a.c chatige }}$		-			-21	
insulation						
Microguant: TG 15000	$\begin{array}{r} 0.5541 \\ 0500 \end{array}$	$\begin{array}{r} 27055 \\ 2441 \end{array}$	$\begin{array}{r} \mathbf{a 0} 5541 \\ 3.0500 \end{array}$	$\begin{aligned} & \text { a2 } 7055 \\ & \text { a } 2441 \end{aligned}$	$\begin{gathered} \mathrm{c} 0.5541 \\ \mathrm{c} 0501 \end{gathered}$	$\begin{gathered} c 2.7055 \\ c>401 \end{gathered}$
Subtioui	6041	2.9496	. 6041	29496	6041	2.9496
\%o chamuc		-				
Total	1.7944	8.7615	1.8767	9.1639	19397	9.4710
\% chat	-			4.6	+8. 1	
"Not Adiadt •• 11						
" 044 cin) (0175 m) Mats used mstead of 038 cn ((015 m.$)$ " Itwinn not weroheal						

Hon wall thickness averaged $.022 \mathrm{~cm}(.0085 \mathrm{in}$) instead of $.0145 \mathrm{~cm}(.0057 \mathrm{in}$) . which accounts for the $3.47-\mathrm{kg} / \mathrm{m}^{2}\left(.711-\mathrm{lbm} / \mathrm{ft}^{2}\right)$ mass. This problem was eliminated during the Rene 41 forming operations by using a larger bend radius and redesigning the pressure plates used in the sizing operation. Mass increases in the skin doublers and drag bracket resulted from use of $.044-\mathrm{cm}(.0175-\mathrm{in}$.$) instead of .038-\mathrm{cm}$ (.015-in.) material, which was not available.

The unit mass breakdown of the Rene 41 TPS is given in table 4-11. As indicate the actual mass of the fabricated panel was only $2.8^{\circ} \%$ higher than estimated.

Table 4-11. - Rene 41 TPS mass breakdown t.

2217.96W

Section 5

TEST SPECIMEN FABRICATION

5.1 HAYNES 188 FASTENER DEVELOPMENT

Although conventional, threaded fasteners have been fabricated from Haynes 25 (L-605) alloy, experience has shown that oxide formation after repeated high-temperature exposure makes removal extremely difficult. (Seizure of Haynes 25 screws on a previous test panel is described in reference 5-1, page 13.) Although Haynes $i 88$ is less prone to oxidation than Haynes 25, Haynes 188 threaded fasteners are hedvier and more costly to use in blind applications, and should be restricted to areas requiring access to the primary structure. The desirability, therefore, of a low-mass blind rivet for the large areas of the TPS was recognized early in the program, and the development of a blind fastener fabricated from Haynes 188 was undertaken.

The Huck Mamufacturing Co., Carson, California, was selected to manufacture the fasteners. The design selected was developed from the existing mechanically locking spindle (MLS) type b!ind rivet. This type of rivet is used extensively on aerospace-type structures. The fastpner developed by Huck is shown in figure 5-1. As illustrated, the fastener employs a forged, brazier-type protruding head. A flushtype head can also be fabricated, if required. The flush-type head was not used on the test specimen so that double dimpling could be avoided. The fastener includes a lock collar for positive retention of the control pin. Both the lock collar and central pin were machined from . $317-\mathrm{cm}$ (.125-in.) diameter wire. The head and shank were forged from . $396-\mathrm{cm}$ (. $156-\mathrm{in}$.) diameter wire.

5.2 SURFACE-PANEL FABRICATION

5.2.1 Skin Fabrication

The skin was fabricated using conventional rubber-press techniques. The aluminum. iorm block, which includes the bead geometry, is shown in figure 5-2. The finished Haynes 188 skin, formed after chem-milling, is shown in figure 5-3. The René skin was formed on the same block.

5.2.2 Corrugation Fabrication

The corrugation was fabricated using a standard forming brake. The forming sequence is shown in figure 5-4. The corrugation, formed before chem-milling, was predrilled on the edges, using an accurate drill template. The holes were used to locate the upper die by use of an index pin, as shown in figure 5-4(a). Figures 5-4 (b) through (g) show the actual brake-forming sequence of the liene 41 corrugation. Figure $5-4(\mathrm{~h})$ shows the corrugation being removed from the sizing block, which was used to stretch or size the corrugation to its final dimensions.

[^2]

21135sw Figure 5-2 - Skin foming tool.

2217.560

Fiqure 5.3. - Formed Haynes 188 skin.

Fiqure 5-4. - Corrugation forming sequence.

of cleaning the panels, using a dry vapor hone. Following cleaning, the panels were inserted in an electrically heated oven preheated to $1339 \mathrm{~K}(19500 \mathrm{~F})$. The panels were exposed at this temperature for 4 hr . A surface emittance of . 79 was measured, usirg a Gier Dunkle Model DB- 100 portable reflectometer.

5.2.5 René 41 Panel Surface Emittance Treatment

To obtain a surface emittance of , 80 or more on René 41 , it is necessary to oxidize the material in air at $1340 \mathrm{~K}\left(1950^{\circ} \mathrm{F}\right)$ for a minimum of 30 min. Exposure at this temperature reanneals the material, requiring a new solution-treatment cycle. Solution-treatment of René 41 requires heating at $1395 \mathrm{~K}\left(2050^{\circ} \mathrm{F}\right.$) followea by a rapid quench. Because the Rene 41 panels were fully assembled, consideration was given to the possibility of warpage and distortion during the quench cycle. It was decided, therefore, to increase the surface emittance of the panel by use of Pyromark, a refractory coating providing high emittance (greater than . 80) at a service temperature of $1367 \mathrm{~K}\left(2000^{\circ} \mathrm{F}\right)$. The coating is a prodvet of Tempil, Inc., Hamilton Blvd., South Plainfield, N.J., and is supplied as a liquid.

The René 41 panels were sprayed with Pyromark and allowed to air-dry for 24 hr . The panels were then baked at $522 \mathrm{~K}\left(480^{\circ} \mathrm{F}\right)$ for 1 hr . The coating was then vitrified at $1172 \mathrm{~K}(16500 \mathrm{~F})$ for 4 hr and air-cooled. The vitrification cycle is identical to the material aging cycle, and both were accomplished simultaneously. Following vitrification, a surface emittance of .89 was measured.

It is porcible to increase René 41 surface emittance by oxidation rather than use of a coating. The oxidation exposure, however, should be done before solution-treatment and panel fabrication.

5.3 SUPPORT RIBS FABRICA TION

Two types of support ribs were used to support the surface panel: a flexible type at the expansion joint, and a fixed type where two adjacent panels butt, which is called the center support rib. Although both ribs are functionally different, a common design was developed for both rib webs to reduce costs. The rib-veb stamping die and form block are shown in figure 5-7. Also shown is the Haynes 188 rib-web detail after stamping but before forming. The René 41 rib web was fabricated in an identical manner.

S.3.1 Center Support (Fixed) Rib

The llaynes 188 penel center support rib is shown in figure $5-8$. The rib was assembled by locating and spotwelding the upper and lower clips. Two spotwelds were used on the upper clip, three on the lower. The drag supports were also attached by spotwelding. The René 41 support rib is identical to the Haynes 188 rib, except for height.

5.3.2 End Flexing Rib

The Haynes 188 end flexing rib is shown in figure $5-9$. Two rib webs were spotwelded to the lower U-shaped -lip. The upper clips were then located and spotwelded to the rib web. The lower U rlips have a pitch of $7.62 \mathrm{~cm}(3.0 \mathrm{in}$. $)$. However, at the left end, the pitch was reduced to $3.81 \mathrm{~cm}(1.50 \mathrm{in}$.) to fit within the $51-\mathrm{cm}(24-\mathrm{in}$.) test cavity. The Rene 41 llexing rib is identical to the one shown, except for height,

5.4 EDGE FAIRINGS

Edge iairings were designed and labricated to seal the test specimen within the test cavity and to provide a smooth acrodynamic llow during testing. The fairings are shown in figure $5-10$. The forward and aft fairings were rubber-press formed with a bead geometry identical to the skin panels. The beads "close-out" to provide a smooth aerodynamic flow. The side fairings have flat llanges spotwelded to the skin panels. All the edge fairings were formed with a curved (half-circle) lip, which was designed to support a braided rope-type seal made of a sillea material. The seal is added during installation of the test specimen in the TPSTF test cavity.

5.5 TEST SPECIMEN FINAL ASSEMBL.

The fully assembled Haynes 188 TPS test specimen is shown in figure $5-11$. The $61-\mathrm{x} 91-\mathrm{cm}(24-\times 36-\mathrm{in}$.) specimen is shown mounted on the aluminum support structure designed to simulate the thermal mass of a typical Hight vehicle (subsection 6.5). The first step in final assembly was to attach the support ribs, including insulating washers, to the support structure (appendis E, drawing AD1001-100). The insulation system was then installed between the ribs, as shown. The skin and lorvard and aft fairings, were then installed on the support ribs and fastened using the Haynes 188 fasteners. The eight holes shown in the support structure side chamels are for attaching the test specimen in the TPSTF test cavity. Dimensions related to the TPSTE test cavity are given on NASA drawings LE-526279, LE-526297, LE-526209, and LE-526464.)

The fully assembled René 41 TPS lest specimes is shown in figure 5-12. The specimen was assembled identically to the Haynes 1se specimen. Haynes 188 fasteners were used to attach the skin panele on the Nenc 11 TPS because of thel higher temperature capability.

5.6 REFERENCES

5-1 Sawyer, J. W.: Aerotherm.1 ind Sirwermal Performance of a Cohalt-Base Superalloy Thermal Protection, y wem al Mach s , 6. NASA IND-3.15, May 1977.

Section 6

TEST SDECDMEN INSTRI MENTATION \& SIPPORT STRLCTI RE

The test specimen instiomentation configuration is shown in liguse $6-1$. As indicated, 53 thermocouples (T/C) were installed in the locations indicated to monitor test specimon temperatures. The eight T/Cs, which monitored heat-sink tenperitrres, were tabricated using chromel/ahmel fberglass-insulated 30 -gage wire, and attached stith a high-tempe vature adhesive. All other T/Cs are the ceramo type, spotwelley to the test panel. Thermocouples attached to the heat sink are shown in figure $6-2$. T ansition from 30 -gage T/C wire to 21 -gage extension wire was made with two-prorzed connectors $15.2 \mathrm{~cm}(6.0 \mathrm{in})$ below the structure. The connectors are chom in tigure $\mathbf{t - 3}$. Correlation of T/C number amd location is given in appendix II.

The Haynes 188 and lené 11 test articles were instrumented denticalls.

0. 1 PANEL DETLECTION MEASUREMENTS

Shin-panel denections were measured at the center of the $51-\mathrm{cm}(20.0$-in.) test panel, as indicated in ligure 6-1. Measurements were nade by a cable-type lineardisplacement ranstucer capable of opcration in a $177 \mathrm{~K}\left(400^{\circ} \mathrm{F}\right)$ emiromment, with a resolution of . $003 \mathrm{~cm}(0,001 \mathrm{in}$.). The transtucer is, basically, a potentiometer driven be the displacement of the extending cable. The transtucer, shown in figure u-3, was motmted below the heat sink, where the temperature was less than 177 K (10001).

4. 2 INSUL. TION SYSTE T TEMP RATVRES

To eraliat temperature gratients through the instlation thekness, four T/Cs were pliced $1.27 \mathrm{~cm}(0.5 \mathrm{in}$.) apart on a support plate. Two such arrangements were emplosex, inficatert by the letter "Y" in figure $1-1$. One is located at the panel center, and one neat be flexing rib. The wo T/C assemblies are shown in ligure $6-2$.

4. 3 ESDANGION IOINT LEAKAGE

To evaluate expansion foint leak. - , three T Cs were placed in line under the skin, in the expansion joint aren. This is Ilustrated in section A-A of ligure i-1. II lewtuse vere to occur, it was expecied that the center T/C would record a higher temperature. This arrangement was employed at three locations in the expansion lotm ares. Tre expansion foim T / C s are shown in tigume fi-l.

To evaluate leakage mound the test spee men odges, low T/Cs were employed, whe 11 wich cike, as illustrated in ligures $8-1$ and $i-1$.

1
HAYVES ISU FHVE THERMOCOUQE LOCATIUNS
REVE AI PAVE THEXMOCUWE LOCATIUNS
Ther
$4=$
$t=-$
$t-+$
A

2

Figure 6 1,- Test specimen instrumentation configuration.

REPRODUCIBILITY OF THE
apleINal. PAGE IS POOR

Figure 63. - Support structure - bottom.

6.5 TEST SPECIMEN SUPPORT STRUCTURE

A structure (figures 6-2 and 6-3) was designed to support the test specimen in the TPSTF. It was to represent the thermal y ass of a vehicle substructure equivalent to a . $51-\mathrm{cm}(0.20$-in.) thick aluminum plate. (Detall stress analysis of the support structure is given in appendix I.) Although the maximum pressure in the TPSTF is approximately $2.5 \mathrm{kPa}(53 \mathrm{psf})$, the support ctructure was designed and checked for a $16.8-\mathrm{kPa}(950$-psh $)$ limit pressure load. The deflection of the critical beam, under the flexing rib was $.005 \mathrm{~cm}(.002 \mathrm{in}$.) with the $16.8-\mathrm{kPa}(350-\mathrm{psl})$ loading. (The support structure production drawing (AD1001-104) is given in appendix E.)

The support structures for the Haynee 188 and Rene 41 panels are identical.

Figure 64. - Surface panel instrumentation - lower surface.

Section :

CONC LUSIONS

A lightweight metallic TPS was designed, and two test articles we re fabricated, one from Haynes 188 and one from Rene 41. A baseline TPS concept, selected at the beginning of the program, consisted of a Haynes 25 corrugation-stiffened beaded skin surface panel, a specially designed support system, and an insulation system. By optimizing the structure for the design toads and by chem-milling to remove material not needed, the mass of the baseline surface panel was reduced $25^{\circ \prime}$, and the mass of the support structure was reduced 50%. The insulation system mass was reduced 40°. by using two types of insulation, each suited to its temperature range, and by eliminating a foil bag which encapsulated the baseline insulation system. These reductions resulted in an overall $35^{\prime \prime \prime}$, reduction in mass of the Haynes 188 pinel from the baseline llaynes 25 design. Similar reductions were achieved with the Rene 41 sistem.

The overall program led to the following conclusions:

- René 41 and Harnes $18 s$ heat shields appear to be viable approaches for a thermal protection sistem for vehicles sustaining temperatures up to $1255 \mathrm{~K}(1800 \mathrm{~F})$
- A René 41 TPS with a mass of $7.08 \mathrm{~kg}^{\prime} \mathrm{m}^{2}\left(1.45 \mathrm{lbm}_{\mathrm{ft}}{ }^{2}\right)$ and a Haynes 188 TPS with a mass of $5.7615 \mathrm{~kg}^{\prime} \mathrm{m}^{2}\left(.794 \mathrm{lbm}^{\mathrm{f}}{ }^{2}\right)$ can be fabricated using state-of-the-art production techniques.
- Two thermal protection sistems, optimized for different materials and operating temperatures, can be used as adjacent compatible svstems, with onlv a small decrease in mass efficiency resulting from the compromise.

In view of these results. it is concluded that the basic technology for flat metallic TPS is available.

APPERDIX A

Skin/Corrugation Optimization Procedure

The surface panel (skin/corrugation) optimization procedure is given in the following pages. The design equations and analysis procedure are presented. Also presented is the computer program (HAYNES) which was developed to simplify selection of the optimum Haynes 188 and René 41 configurations.

Design Equations

The bending moment (M) at mid-span is:
$M=\frac{P_{r} p L^{2}}{1448}$
$\therefore M=.3166 \& \mathcal{p}_{\mathrm{p}}$
E (modialus) is the appropriate value for temp. and material cambo.

Element (1)

(FIUTTER CONETRAINTS
See Fig. $4-7,4-8$)
(1) $t_{1} \geq .0061(b+.06)$ (HAYNES)

$$
t_{1} \geq .0078(b+.06)=.00192\left(\text { RENE }^{\prime}\right)
$$

BUTKING
(2) $.31668 \mathrm{p}(350) \frac{(h+1 b-\bar{x})}{I_{N A}} \leq \frac{.22 E\left(\frac{t_{1}}{R^{2}}\right)}{1.4}$
$R^{1}=1.3(b+.06)$ for a 10% aspect ratio bead
CREEP
(3) . $31668 \mathrm{p}(50) \frac{(\mathrm{h}+.1 \mathrm{~b}-\overline{\mathrm{x}})}{\mathrm{I}_{\mathrm{NA}}} \leq \frac{\mathrm{F}_{\text {creep }}}{1.15}=\frac{2770+1770(\mathrm{~h}+\mathrm{D})}{1.15}$

ELEMENT (2-3)
(BUCKLING)
(4)

$.31668 p(350) \frac{(n-\bar{x})}{I_{\text {NA }}} \leq \frac{3.62 E\left(\frac{t_{1}+t_{\hat{c}}}{p-b}\right)^{2}}{1.4}$

EL EMENT (4)

BUCKLING:
CORD A

ELEMENT (4) was assumed to be a long plate, simply supported on the long sides, with a bending gradient as shown.

The buckling coefficient was fit to:
(5)

$$
K_{c r}=e^{\left[.7355+1.1663\left(\frac{\mathrm{~h}}{\mathrm{x}}\right)\right]}
$$

for the ranges of $\frac{\bar{x}}{h}$ of interest in this study
(6)

$$
\therefore f_{a}=.31668 p(430)\left(\frac{\bar{x}}{I_{N A}}\right)=\frac{K_{c r} E\left(\frac{t_{2}}{h}\right)^{2}}{1.4}
$$

ELEMENT (5)

(BUCKLING, GOND A)

$$
\begin{equation*}
\text { A) } 31668 p(430)\left(\frac{\bar{x}}{I_{N A}}\right)<\frac{3.62 E\left(\frac{t_{i j}}{d}\right)^{2}}{1.4} \tag{7}
\end{equation*}
$$

(CREEP, GOND D)
(8)

$$
.31668 \mathrm{p}(50)\left(\frac{\bar{x}}{I_{\mathrm{NA}}}\right) \leqslant \frac{2770+1770(\mathrm{~h}+.1 \mathrm{~b})}{1.15}
$$

REIPRODUCIBIIITY OF THE ORIGILIAI. PAGLI IS PUOR

NALYSIS FROCEDURES

Known
Parameters

1. ASSUME $\beta=\frac{\bar{x}}{h+. I b}$
2. ASSUME
3. ASSIME b b
4. ASSIME $h \quad \therefore \bar{x}$ is known
r.
5. $\operatorname{IF} \overline{\mathrm{x}}<(h+.1 b) / 2 \quad \mathrm{~g} \circ$ to Step 14
6. Solve $\mathrm{Eq}(8)$ for (I_{NA})

REQUIRED
$\left(I_{N A}\right)_{R E Q}$
7. Solve Eq (6) for t_{2}
3. Solve Eq (1) for t_{1}
9. Solve $\frac{\Sigma A x}{\Sigma A}=\bar{x}$ for $\left(d t_{3}\right)$
i0. Substitute N Eq (7) and solve for d
d
11. Solve $d t_{3}$ for t_{3}
12. Solve section property equations for $\left(I_{N A}\right)$

13. IF $\left|\begin{array}{ll}\left(I_{N A}\right)_{A C T} \\ \left(I_{N A}\right)_{R E Q}\end{array}\right|>\quad$ TOLERANCE $\quad \begin{aligned} & \text { taken as } 0.001\end{aligned}$

Increment h and return to Step 4, otherwise go to step $1^{\text {: }}$

1!. Solve Eq (3) for ($\left.\mathrm{I}_{\mathrm{NA}}\right)_{\text {REQURED }}$ and go to Step 7.
15. Check equations (2) \& (4) to see if design is acceptrble. It not go *ostep 2.

Exaynes
Execution beg:as...

$$
\begin{gathered}
0.1 .5 .2 \cdot .0 .782,1.0 \\
1.500002 .00
\end{gathered}
$$

$0.0 \quad 1.500002 .000000 .0$ 2 2.1wi el 1 vilu .005
0.00500

IHAT IS IPRT?
Dool IHAT IS IPRT?
$1.500002 .000000 .0 \quad 0.792001 .000000 .50000$
\qquad .

 0.
.

ARFA IVA X BAR A/P $\ T / F T 2$
$0 . 〔 27620.0 c 241 \quad 0.355600 .18410 .37473$
$\square C R^{P}$
-0.00
8088
8cio
icio C YLO GBKL
$\begin{array}{ll}0.35 & 0.44 \\ 0.75 * * * * * * * * \\ 0.36 & 2.07 \\ \text { c. } 36 * * * * * * *\end{array}$
0

21
3.2 L
0.03
0.00
1.21
$* * * *$

H

$-$
\pm
H
0
0
0
0
∞

a
-

have zero margins under two conditions. Element
2-3, has a zero margin in buckling under condition B. The margin of safety reflents the reserve surength after the approriiate factor of safety has been applied. Tie results for the optimized Rene' 41 panel ar: given in Figure A-2.

LAYNES Computer Pregrem for Sxin/Conrugation Optimization

TEAL 15(7). ©
ว115:8S174 $F(7), j(7)$
ERT $=3: .2 * 1$ กre.**2

if (S?.LT. C.l i) Th ily

RITE(ज, 3) TII:
RITE(5, 14)

RE 1)(5, 15) IPRT
15 F)R(MT(14)
IRITE 5,1)

$l F(1 P R$
$0=20$
$3=32$
7) $10111=1.50 \mathrm{nc}$

$3=3!$
7? $300 \mathrm{JJ}=1.5 \mathrm{scC}$
$3=3+7:$
$1=(3, i T . p-n)$ i) To $1 \in 1$

$t=0$.
$D 1=.1$
5n $1=1+11$
$x^{\prime}: 1 ?=B E T A *(1+0.1 * ?)$
AQ = XB:i?
IF (35T1. LT. $\because .5$) $A T:=1+.1 *:-X^{7}, A$?


```
        A:2 = .31568*?*350** TS 5C
```


if (T2T. iT. T2) T2 $=-2 T$

$T 1$
$17 F=$

```
        IP(Tl#.仃沮) 1-E=1
        1% (T!2.iT.r1) T1 = T11
```



```
        ITY = N:3/(:--:* (1+.1*?`)
```



```
        1F(TT3.LT.N.) 3) T? 5C
        TEMD= S\RT(FG?EE?*1.4*!430./(3.62*F?T*1.15*5^.))
        n=S22T(nT3/T:!n)
        Tj = N*TE:MP
        I=1.{2745*;*T1+(?-i)*(TI+TI) + 2.* (*TT2 + 1*T3
```



```
        A.? = i.2 + T?*i**3/?.
        <1% = T2* 1**3/5.
        !3, ?=1:/:
```



```
        IE(:I!E?.LT. \l:IE?) i) Y) 5c
        1=1- \1
        7:=21/1C.
        1F(7i.LE.2./(1nCr.t+2)! 3) T% Trn
        B7 TO 5:
    ic S:ITI!tE
        N4=,/?
        I= 2:4*1+4.* -. 33
        |F=C
```



```
        I= (TI+T2 .LT. ع2T) 1F={
```



```
        IF( IF .E?: 1! i) Th frn
        IF: l?:T {!. 1 ) :1JE(5,2)
```



```
        3 =\:\T(2%.12:`.5,1%)
    If :1= .:(. 1) i) i> jmn
```



```
393 :OITOUE
    E?TEEP = F:??5?
    -TY IT= 5j0!n..
    FTY ITT = ?ICCC.
    EIOT = 1j.7*:CCC.**2
    FA:E = (1.*1COC.**2)**?
    C.13 = ?*.31r53*:3,\/:1 :RR
    C7:12 = P*. 31578*(1-:`!:)/:115R
    C7J1 = P*.315:9*(1+.1*?-:in:)/!115?
    'RITE(ij, j)
        EIE\IEIT iJ. 1
    F(1)=4;\cap.*01%1
    F(2)=F(1)
```

A-9 REPRODUCIBIITY OF THE A-9 ORIGLNAL PAGLIS IOOR

$F(3)=350 . * C J 11$
$F(4)=F(3)$
$F(5)=102 . * C 5111$
$F(5)=F(5)$
$\Gamma(7)=5$:.*2 211
3(1) =FTYRT/1.15
$3(2)=F A: E$
$\mathrm{i}(3)=$ FTYRT/1.15
$J(4)=.22 * E ? T * T 1 / 1.3 /(\Gamma+.(5) / 1.4$
G(5) $=$ FTY 1)T/1.15
$j(3)=3(4) * E 12 T / E T T$
$2(7)=F C T E E P / 1.15$
$\operatorname{IRET}=1$
(2) TO $5^{\circ} \mathrm{C}$

1CC CJITI:JE
ELE:FJT サD.. 2 a 3
$P(1)=43 C . * C \sim 12$
$F(2)=F(1)$
$F(3)=35$ ©.*「J) 12
$F(4)=F(3)$
$F(5)=1(0 . * 5012$
$F(5)=F(5)$
$E(7)=5^{\wedge} . *$ 712
$G(4)=3 . \dot{6} 2 * E T T *(T 1+T 2) /(?-3)) * * 2 / 1 .+$
$g(\bar{u})=j(2) * E i H O T / E R T$
INET = 23
27 TO 5CC
2CC CJ:JTI IJE
ELETE•TT JO. '
$F(1)=43 C .+5713$
$F(2)=F(1)$
$F(3)=350 . * 0.213$
$F(4)=F(3)$
$P(5)=100 . * 50: 3$
$F(i)=F(j)$
$F(7)=5$!.* $09: 13$
$\because 3 n=E \% ?(.7355+1.15 j 3 *!/ \because ? 1:)$
i(2) $=$: S? ? 2 ERT* (T2/1)**2/1.
$K C R=E: O P(.7355+1.1655 *!/!1-\because: \cap ?))$

$1: E T=4$
3) T1500

AnC ciJTINJE
ELETOIT $\because 0.5$
j(?) = 3.j2* $2 T *(T 3 /)) * * 2 / 2.4$
i(t) = FiNF
T(:) $=F i: \because$
$12: T=5$
3) T) 5 Cl


```
490 COITINUE
        30 TO 30C
        ico CIITI IUE
        DO 510 1 = 1.7
    510:1S(1) = G(I)/E(I)-1.
```



```
        1CBC:L O CRP'./)
            :IRITE(6,10)\RET,(IS(1),1=1,7)
            10 FOR'MAT(14.7FT.2)
                IF(IRET.E 2.23) T) TO 2C0
                30 TO (100,100,1n0.4C(,inC),1 RET
            899 CONTIIUE
                If (T1 .3T. T`|!!) 3) TO 3C1
            900 COHTIN:JE
            301 COITI.JUE
                GO TO 30
            393 CALL EXIT
            END
EDF:
```


APPENDIX B

CORRUGATION SCULPTURING PROFILE DETERMINATION

To minimize corrugation mass, the lower horizontal flat of the corrugaI:A was sculptured. The sculpturing profile was designed to match the bendfag moment and to maintain the area and buckling allowable stress. The design equations and analysis procedure are presented, including the profile I ir the Haynes 188 and the Rene' 41 panel.

> d \& t_{3} were obtained from optimization procedures

For manufacturing, the lower flange must be altered to this geometry (t_{2} from optimization)

IN. (TYP)
Therefore, select $d^{\prime} \& t_{4}$ such that the area and buckling allowable remain the same. AREA

$$
\begin{equation*}
d^{\prime}, r 2(.06)\left(t_{2}\right)=d \bullet t_{3} \tag{1}
\end{equation*}
$$

BU LING
Since lateral bending stiffness controls the buckling, select d^{\prime} and t_{4} to provide th. same, or less, deflection.

LOWER FLANGE (Cont'd)

$$
\begin{aligned}
\Delta_{1} & =\frac{M\left(\frac{d}{2}\right)^{2}}{2 E I} \\
I & =\frac{1}{12}\left(t_{3}\right)^{3}
\end{aligned}
$$

$$
\left.\left.\begin{array}{rl}
\Delta_{2} & =\Delta_{b a}+\theta_{b a}(.06)+\Delta_{c b} \\
\Delta_{b a} & =\frac{M\left(\frac{d^{\prime}}{2}\right)^{2}}{2 E I} \\
\theta_{b a} & =\frac{M\left(\frac{d^{\prime}}{2}\right)}{E I}
\end{array}\right\} \begin{array}{l}
I_{b a}=\frac{1}{12}\left(t_{4}\right)^{3} \\
\Delta_{c^{2}}
\end{array}\right)=\frac{M(.06)^{2}}{2 E I} \quad I_{c b}=\frac{1}{12}\left(t_{2}\right)^{3} .
$$

$$
\begin{equation*}
\alpha=\frac{d^{\prime}}{\frac{d}{d}}=\frac{d^{\prime}}{d^{\prime}+.12} \tag{2b}
\end{equation*}
$$

$$
\therefore\left\{\frac{1}{8} \frac{(a \bar{d})^{2}}{t_{4}^{3}}+\frac{(\bar{d}-\alpha \bar{d})}{4} \cdot \frac{(a \bar{d})}{t_{4}^{3}}+\frac{(d-\operatorname{d})^{2}}{8 t_{2}^{3}}\right\}\left(\frac{12 M}{E}\right)
$$

which must be less than: $\frac{12 M}{E}\left(\frac{d^{2}}{8 t_{3}^{3}}\right)$

$$
\begin{equation*}
\frac{2}{\mathrm{~d}}\left|\frac{a x-a^{2}}{t_{4}^{3}}+\frac{(1-a)^{2}}{t_{2}^{3}}\right| \leq \frac{a^{2}}{t_{3}^{3}} \tag{3}
\end{equation*}
$$

The left side of Eq . (3) is equivalent to a span of $\overline{\mathrm{d}}$ with an equivalent thickness of \bar{t}, so that :

$$
\begin{equation*}
\frac{2 \alpha-\alpha^{2}}{t_{4}^{3}}+\frac{(1-\alpha)^{2}}{t_{2}^{3}} \equiv \frac{1}{t^{3}} \tag{4}
\end{equation*}
$$

For Local Buckling:

$$
\begin{align*}
F_{c r e l} & =K_{c r} E\left(\frac{t_{3}}{d}\right)^{2}=K_{c r} E\left(\frac{\bar{t}}{\bar{d}}\right)^{2} \tag{5a}\\
\text { or } \quad \bar{d} & =\bar{t}\left(\frac{d}{t^{3}}\right) \tag{5b}
\end{align*}
$$

Procedure

1. Assume d^{1}
2. Solve (1) for t_{4}
3. Solve (2b) for a
4. Solve (4) for \bar{t}
5. Solve (5b) for $\overline{\mathrm{d}}$
6. Solve (2a) for d^{\prime}

LOWER FLABGE (Cont'd)
7. Compare d^{\prime} (Step 6) with d^{-1} (Step 1)
a. If $d_{6}^{\prime} \neq d_{1}^{\prime}$ use new d^{\prime} and return to step 1 .
b. If $d_{6}^{\prime} \approx d_{2}^{\prime}$ check (3) for validity

	Haynes 188	Rene ${ }^{\text {d }} 41$
d	. 698 IN.	. 439 IN .
t_{3}	. 0129 IN.	. 0122 IN.
t_{2}	. 0055 IN.	. 0071 IN.
a^{\prime}	. 566 IN.	. 321 IN.
$\overline{\mathbf{d}}$. 686 IN .	. 441 IN .
t_{4}	. 0147 IN.	. 0140 IN .
EQ (4) Left	230170*	105860 IN.
EQ (4) Rt.	226960*	106130 IN.

*Approx. 1\% too high - Acceptable
Since the bending moment for all conditions is a maximum at mid-span and varies to zero at the ends, the width of the chem-mill pad was varied to minimize weight.

From Appendix A Page A-7

$$
\begin{aligned}
A & =1.02646 b t_{1}+(p-b)\left(t_{1}+t_{2}\right)+2 h t_{2}+d t_{3} \\
A x & =1.02646 b t_{1}[h+b(.066493)]+(p-b)\left(t_{1}+t_{2}\right) h+t_{2} h^{2} \\
A_{x}^{2} & =1.02646 b t_{1}[h+b(.066493)]^{2}+(p-b)\left(t_{1}+t_{2}\right) h^{2}+\frac{1}{2} t_{1} h^{3} \\
I_{\infty} & =\frac{1}{6} t_{2} h^{3} \\
\bar{X} & =A x / A \\
I_{\mathrm{NA}} & =A_{x}^{2}+I_{\infty 0}-A \bar{X}^{2} \\
& \text { Let dt}{ }_{3}=A_{5}
\end{aligned}
$$

	Haynes 188	Rene 41
\mathbf{p}	1.50	1.50
b	.782	.782
t_{1}	.0051	.0073
h^{\prime}	.633	.435
t_{2}	.0055	.0071
t_{3}	.698	.439
A_{x}	.0189	.0122
A_{0}	.0098256	$.00237+A_{5}$

Lewer Flange (Cont'd)

It can be seen that as A_{5} decreases, \bar{X} increases so that the lower flange Is always more critical than the upper bead. Further, since as the width of the chen-mill gad is reduced, the local buckling allowable decreases. The creer allowable is always constant so that buckling under condition A is exttical.

$$
\begin{align*}
& \text { Set } I_{b}=\frac{M_{A L L} \bar{X}}{I_{M A}}=F_{A L L}=\frac{F_{C R E L}}{1.4}=\frac{K_{C R}}{1.4} E\left(\frac{\bar{t}}{\frac{d}{d}}\right)^{2} K_{C R}=3.62 \text { (GAC SM B5.11.11-1) } \tag{6}\\
& E=34.2 \times 10^{6} \mathrm{psi}-\text { Haynes } 188 \\
& =31.6 \times 10^{6} \mathrm{psi}-\text { Rene }^{\prime} 41
\end{align*}
$$

Procedure:

1. Assume \mathbf{d}^{\prime}
2. Calculate α from (2b)
3. Calculate \bar{t} from (4)
4. Calculate $\mathrm{F}_{\text {CREL }}$ from (5a)
5. Calculate $M_{A L L}$ from (6)
6. Calculate X from (7) below.
$\mathrm{M}_{\text {ALL }}$ is plotted against d^{\prime} in Fig. B-l
The applied bending moment is given by:

FIGURE B-1 ALLOWABLE BENDING MONENT vs CHEM-MILL PAD WIDTH

TABLE B-1

DISTANCE X FROM MID-SPAN		CHEM MILL PAD WIDTH do (1)			
		HAMVES 288		RENE 41	
in	cm	in	cm	in	cm
0	\bigcirc	. 566	1.44	. 321	. 815
2	5.08	. 560	1.42	. 315	. 800
4	10.16	. 525	1.33	. 283	. 719
6	15.24	. 460	1.17	. 217	. 551
7	17.78	-	-	. 163	. 414
8	20.32	. 320	. 813	. 060	. 152
8.33	21.16	-	-	. 00	0
9.55	24.26	0.00	0.0	-	-
WT SAVED(CURVED PROFILING)		$\begin{gathered} .168 \mathrm{~kg} / \mathrm{m}^{2} \\ \left(.0344 \mathrm{lb} / \mathrm{ft}^{2}\right) \end{gathered}$		$\begin{gathered} .092 \mathrm{~kg} / \mathrm{m}^{2} \\ \left(.0188 \mathrm{ib} / \mathrm{ft}^{2}\right) \end{gathered}$	
WT SAVED (STRAIGHT PROFILIMG)		$\begin{gathered} .145 \mathrm{~kg} / \mathrm{m}^{2} \\ \left(.0299 \mathrm{lb} / \mathrm{ft}^{2}\right) \end{gathered}$		$\begin{aligned} & .080 \mathrm{~kg} / \mathrm{m}^{2} \\ & \left(.0163 \mathrm{lb} / \mathrm{ft}^{2}\right) \end{aligned}$	

(1) The d^{\prime} shown are minimums required. Actual d^{\prime} will be slightly larger because straight line chem-milling will be used.

APPRTDIX C
 DETAIL STRPSS AMALYSIS - HAYRES 188 TPS

The detail stress analysis of the Haynes 188 thermal protection system is given in the following pages. Included is the analysis for the surface panel to support rib attachments, the computer program developed for the support rib optimization, and the drag bracket detail analysis. The effect of panel spanwise thermal expansion on the support rib is also presented.

SURFACE FABET/SUPPORT RIB ATTACHMENT AMALYSIS
MAXTMAM SHEEAR LOAD, V

$$
V=\frac{1}{2} p P_{R} \ell=\frac{1}{2}(1.5) P_{R}(20)=15 P_{R} \quad\left(P_{R}\right. \text { in psi) }
$$

Condition	$P_{R}\left(1 \mathrm{~b} / \mathrm{ft}^{2}\right)$	$\mathrm{V}(\mathrm{Ib})$
A	-430	-44.8 LIMIT
B	350	36.5 LIMIT
C	100	10.4 LIMIT
D	50	5.2 LIMIT

CORRUCATION SIDEWALL BUCKIING

Each wall carries $\frac{1}{2} v=22.4$ Ib max

$$
\begin{aligned}
f_{s} & =\frac{\frac{1}{2} v}{h t}=\frac{22.4}{.633(.0055)} \\
& =6435 \mathrm{psi}
\end{aligned}
$$

For a long plate S.S. all sides,

$$
\begin{aligned}
K_{c r} & =4.8 \\
F_{\text {crel }}=K_{c r} E\left(\frac{t}{h}\right)^{2}=4.8\left(34.2 \times 10^{6}\right)\left(\frac{.0055}{.633}\right)^{2} & =12390 \mathrm{psi} \\
M . S & =\frac{12390}{1.4(6435)}-1+.37
\end{aligned}
$$

THICKNESS OF

$$
\begin{aligned}
& \text { Doubler }=\frac{.015}{} \mathrm{in} . \\
& \text { Sidewall }=\frac{.0055}{.0205} \mathrm{in} .
\end{aligned}
$$

$$
\begin{array}{ll}
P_{c r}=\frac{\pi^{2} E 1}{M L^{2}} \quad \text { For a pin-ended column with shear along the } \\
\text { length, } M=.53 \text { (GALS.M. B3.44. } 1-1 \text {) }
\end{array}
$$

$$
\begin{aligned}
\mathrm{E} & =34.2 \times 10^{6} \\
\mathrm{P}_{\mathrm{cr}} & =1.4(25.9)=36.3^{\#}
\end{aligned}
$$

$$
\therefore I=\frac{P_{c r} M L^{2}}{\pi^{2} E}=\frac{36.3}{\pi^{2}} \frac{53)(.731)^{2}}{\left(34.2 \times 10^{6}\right)}=3.05 \times 10^{-8} \mathrm{IN}^{4}
$$

$$
I=\frac{b^{\prime}}{12} t_{\mathrm{TOTAL}}^{3} \text { For } t_{T O T A L}=.0205 \mathrm{IN}, b^{\prime}=.042 \mathrm{IN}
$$

$$
\text { M.S. }=\text { AMPLE }
$$

BEDING OF FIAT BSHUET PRADS

Face Sheet $t=.0051$

Condition A is critical, $V=-44.8 \mathrm{lb}$. limit.
Treat layup as beam of thickness of . 0256 in.

$M=22.4 \frac{.71 \mathrm{~L}-.38}{2}=3.786$ in lb. limit
Use 2 times the head dia. for the effective width.

$$
\begin{aligned}
\therefore f_{b}=\frac{6 M}{b t^{2}} & =\frac{6(3.786)}{2(.38)(.0256)^{2}}=45,610 \mathrm{psi} \\
F_{t y} & =F_{c y}=; \quad 0 \mathrm{psi}
\end{aligned}
$$

$$
\text { N. } \quad \frac{4 x x}{145610)^{-1}}=.04
$$

4

WXXIES RIA. (DNG AD2001-202)

DESIF COSTHOM

Condition	$P_{\mathbf{R}}(\mathbf{p g I})$	$\mathrm{V}(1 \mathrm{~b})$
A	-430	-44.8
B	350	36.5
C	100	10.4
D	50	5.2
\#		

* TESEML EXPARSICE:

$$
\begin{aligned}
\Delta & =\alpha \Delta T L=9.7 \times 10^{-6^{(1)}} \mathrm{IN} / \mathrm{II} /{ }^{\circ} \mathrm{F}(1800-70){ }^{O_{F}}(20-1.3) \mathrm{IN} \\
& =0.314 \mathrm{n}
\end{aligned}
$$

(1) Rer 3-3

LATERAL TEHEMAL EXPANSIO IN RIB

Between points A \& B.

$$
\Delta=\alpha \Delta T L=9.7 \times 10^{-6}(1800-70)(1.5)=.0252 \mathrm{IN}
$$

Using the method of Castigliano and neglecting secondary deflections:

$$
\begin{aligned}
& \Delta=\frac{1}{2 E I}[.35014 M+.01513 P\} \equiv .0252 \\
& \theta=\frac{1}{2 E I}[1.5 M+.01926 \mathrm{P}] \equiv 0 \\
& P=4.7414 \mathrm{EI}, M=-.01284 \mathrm{P}
\end{aligned}
$$

Maximum moment at top of bead, \bar{M}

$$
\bar{M}=P(.055)+M=.19990 E I
$$

$$
\begin{aligned}
f_{b}=\frac{6 \bar{M}}{b t^{2}} & =13.7 \times 10^{6} \mathrm{psi} \\
I & =\frac{b t^{3}}{12\left(1-u^{2}\right)^{3}} u=.29 \\
& =.09099 b t^{3} \\
\therefore f_{b} & =\frac{6(.19990)\left(13.7 \times 10^{6}\right)\left(09099 b t^{3}\right)}{b t^{2}} \\
& =1.495 \times 10^{6} t
\end{aligned}
$$

It was shown that for:
c a . .003h IM/XI, the yield stress was not encoeded, using a
F.8. of 1.15.

$$
\begin{aligned}
& F_{\text {ALL }}=\frac{88}{1.15} \frac{.0034\left(13.7 \times 10^{6}\right)}{1.15}=40,500 \mathrm{psi} \\
& \text { Por } f_{b}=F_{\text {AIS }} \quad t_{\text {ALE }}=.007 \mathrm{IF} .
\end{aligned}
$$

\therefore As loag as the wob is $\leq .027$ In., thermal strain is not eritical.
Cht Bxeking - Cond B (Bef Pg C-3)

$$
v=36.5^{\#} / \cos 11^{\circ}=37.2^{\frac{\#}{7}} \text { Limit. }
$$

Assume web is symmetric about 2-2 and mori one side for section properties. Treat as a pis-ended column with varying inertia. Ref. Timoshenko, "Theory of Elastic Stability". Half Sectica:

Section	b_{1}	b_{2}	b_{3}	b_{4}	b_{5}
1			.32	.32	
2	.80		.32	.32	
3	2.50	.55			
4	1.50	.48			
5	1.50	.41			
6	1.50	.34			
7	.97	.27			.15
8	.80	.20			.15
9	.62				.15
10			.48		

section propertiss

$$
\begin{aligned}
A & =t\left[b_{1}+.02645 b_{2}+\left(b_{5}-t\right)\right]+.044\left(b_{3}+b_{4}\right) \\
A X & =t\left[.06825 b_{2}^{2}+.5\left(b_{5}-t\right)\left(b_{5}\right)\right]-.000968\left(b_{3}+b_{4}\right) \\
A X^{2} & \left.=t\left[.004538 a_{2}^{3}=.25\left(b_{5}-t\right), o_{5}\right)^{2}\right]+.0000213\left(b_{3}+b_{4}\right) \\
I_{\infty} & =\left(b_{1}-b_{2}\right) \frac{t^{3}}{12}+.0009158 b_{2}^{3} t+\left(b_{5}-t\right)^{3} \frac{t}{12}+\frac{b_{3}+b_{4}}{12}(.044) \\
\bar{x} & =A X / A, I_{\mathbb{M A}}=A X^{2}+I_{\infty 0}-A \bar{x}^{2}
\end{aligned}
$$

Timoshenko's method involves assuming a deflected shape for the calumn and solving for the actual shape. The resultant shape is then ised for the new essumption and the process repeated. When the assumed and calculated shapes are within sume tolerance, say 0.1%, at ali sections, the critical buckling load can be calculated.

Because of the iterative nature of the problem and the considerable number of arithmetic operations involved, a computer program, "Ribs" was written. This program is presented on pages $\mathrm{C}-19$ and $\mathrm{C}-20$.

Several thicknesses were assumed, and the resc?.tant critical load curve is presented in Figure C-1.

The flexible rib has an equivaient applied load of 74.4 lb . limit (104.2 lb ultimate) for a 3 inch section of web during condition B. The required web thekness is less than 0.005 in (Ref. Fig. C-1). The minimum thickness was chosen as 0.008 in . due to handing and fabrication considerations.

$$
\text { M.S. }=\frac{250}{104.2}-1=\text { AMPLE }
$$

RIB THICKIRSS t (IN.)

FIGUPE C-1 CRTTICAL BKCKLING LOAD VS RIB THICKOESS

URB BUCKLING (Cont'd)
LOCAL BUCKLITAG -
(Over arches between beads.)

$$
\begin{aligned}
\frac{b}{a} & =\frac{1.2}{1.55}=.77, K_{c r}=2.24 \quad \text { GAC S.M. } \\
F_{c r} & =K_{C r} E\left(\frac{t}{b}\right)^{2} \\
& =2.24\left(34.2 \times 10^{6}\right)\left(\frac{.008}{1.2}\right)^{2} \\
& =3405 \mathrm{psi} \\
P_{c r} & =3405(1.55)(.008)=42.2 \mathrm{lb} .
\end{aligned}
$$

Consider equivalent length:

$$
\begin{aligned}
\therefore P_{c r}^{\prime} & =P_{\operatorname{cr}}\left(\frac{L}{L^{\prime}}\right)^{2}
\end{aligned}=42.2\left(\frac{1}{.53}\right)^{2}, ~=150.21 \mathrm{~b} .
$$

$$
\mathrm{M}_{0} S_{.}=\frac{150.2}{1.4(36.5)}-1=\text { AMPLE }
$$

BUCKIITG BETNEEN READS

$$
\frac{b_{1}}{b_{2}}=\frac{.55}{.80}=.77
$$

$$
\frac{a}{b_{2}}=\frac{2.1}{.80}=2.63
$$

$$
K_{c r}=4.65 \quad \text { (GAC SM B5.21.40-1) }
$$

$$
F_{c r}=X_{c r} E\left(\frac{t}{b_{2}}\right)^{2}
$$

SPANWISE THREMAL EXPANSTOX

$\Delta=.314 \mathrm{IN}$
$R=1.88 \mathrm{IN}$ clear between clips
RSIN $11^{\circ}-$ RSIN $\theta=\Delta$
$\theta=9.6^{\circ}=.168$ radians

Detail A.

$$
\theta=\frac{M L}{E I} \text { and } f_{b}=\frac{6 M}{6 t^{2}}
$$

$$
\therefore P_{b}=\frac{6 B I \theta}{L b t^{2}} \quad \text { and } I=\frac{b t^{3}}{12}
$$

$$
I_{b}=\frac{\text { 胃 }}{2 L} \quad \text { and } \quad=\frac{P_{b}}{E}
$$

$$
c=\frac{t \theta}{2 L}
$$

At $1800^{\circ} \mathrm{F}$, the allowable strain at yield i. $0.0034 \mathrm{in} / \mathrm{in}$. Using a factor of safety of 1.15, the length, L is

$$
L=\frac{t \theta}{2 \frac{6}{1.15}}=\frac{.008(.168)}{2 \frac{(.0034)}{1.15}}=.23 \mathrm{IN} .
$$

This dimension is required at both the top and bottom web/clip interfaces. The accompanding sketch shows the extent of the 0.23 inch dimension fram the edges of the clips. It can be seen that sufficient clearance exists, except at the bottom where it overlaps the beads "A". This latter situation is ceemed to be acceptable since the beads are very shallow in this area.

The bending near "B" is across the bendine so that the stiffness of the bead is not a factor. Since a considerable amount of bending material is still available (non-cross hatched area) this analysis is considered to be quite conservative

UPPER CLIP

$$
\begin{aligned}
M & =44.8\left(.34-\frac{.31}{2}\right) \\
& =8.29 \mathrm{IM} \mathrm{Lb} \\
f_{b} & =\frac{6 \mathrm{M}}{b t^{2}} \\
& =\frac{6(8.29)}{.54(.044)^{2}} \\
& =47580 \mathrm{psi} \\
f_{t y} & =55 \mathrm{ksi}
\end{aligned}
$$

LOWRR CLIP

$$
\text { M.S. }=\frac{55000}{1.15(47580)}-1=.00
$$

A $89.6 \mathrm{LB}(\operatorname{cord} A)$

COND A.

$$
\begin{aligned}
& M=89.6 \frac{.70-.38}{2}=14.34 \mathrm{IN}^{\#} \\
& f_{b}=\frac{6(14.34)}{.96(.044)^{2}}=46,290 \mathrm{psi} \\
& F_{t y}=55 \mathrm{ksi} \\
& \quad M_{0} S_{.}=\frac{55000}{1.15(46290)}-1=.03
\end{aligned}
$$

WEB BUCKITMG

Equivalent applied load $=2 \mathrm{~V}$

$$
\begin{aligned}
2 \mathrm{v}=2: 73) & =146 \mathrm{lb} . \text { Limit } \\
& =204.4 \mathrm{lb} \text { UTT. } \\
\text { For } t=.008, P_{c r} & =250 \mathrm{lb} \text { (Ref. Fig. } \mathrm{c}-1 \text {) }
\end{aligned}
$$

$$
M_{0} S_{0}=\frac{250}{204.4}-1=.22
$$

Bucking over arches, $P_{c r}=150.2 \mathrm{lb}$ (Ref. Pg. $\mathrm{c}-8$)

$$
M_{0} S_{.}=\frac{150.2}{1.4(73.0)}-1=.46
$$

Buckling between beads

UPPER CLIPS:

$$
\begin{aligned}
& \text { COND. A. critical, } \\
& v=89.6 \mathrm{lb} \text { 1imit }
\end{aligned}
$$

$$
\left.P_{c r}=101.8 \mathrm{lb} \text { (Ref. Fg. } \mathrm{c}-8\right)
$$

$$
\text { M.S. }=\frac{101.3}{1.4(73)}-1=. \infty
$$

$$
\begin{aligned}
L^{\prime} & =.88-.31=.57 \mathrm{IN} . \\
M & =\frac{P L^{\prime}}{8}=\frac{89.6(.57)}{8} \\
& =6.38 \mathrm{iN}^{\# \prime}
\end{aligned}
$$

$$
f_{b}=\frac{6 M}{b t^{2}}=\frac{c(6.38)}{.54(.044)^{2}}
$$

$$
=36,640 \mathrm{psi}
$$

UFP变 CLIPS：（Cont＇d）
$F_{\text {ty }}=55 \mathrm{ksi} \quad$ M．S．$=\frac{55000}{1.15(36640)}-1=.30$
（Coniv．B）
$M=44.8(.132)=5.91 \mathrm{IN}^{\#}$
$f_{b}=\frac{6 \mathrm{M}}{b t^{2}}=\frac{6(5.91)}{.54(.044)^{2}}=33940 \mathrm{psi}$
$F_{t y}=55000 \mathrm{psi}$

44.8 LB

$$
M_{0} S_{.}=\frac{55000}{1.15(33940)}-1=.40
$$

LOURER CLIPS

$$
\begin{gathered}
(\operatorname{CoND} . A) \\
L^{\prime}=.74-.31=.43 \\
M=\frac{P L^{\prime}}{8}=\frac{179.2(.43)}{8}
\end{gathered}
$$

$$
f_{b}=\frac{6 M}{b t^{2}}=\frac{6(9.63)}{.63(.044)^{2}}
$$

（COND．B）

$$
\begin{aligned}
& M=73(.132)=9.64 \mathrm{Is} \\
& f_{b}=\frac{6(9.64)}{.63(.044)^{2}}=47400
\end{aligned}
$$

$$
=9.63 \mathrm{Int}^{\#}
$$

$$
=47380 \mathrm{pp} 1
$$

$$
F_{t y}=55 \mathrm{ksi}
$$

M．s．$=\frac{55000}{1.15(47400)}-1=.00$

DRAG PRACKET:

The load P is reversible and is caused by mechanically induced vibration:

DESIGN "G" LEVEL:
Ref: MC 621-005, Rev. D, "Wing/Structure, Subsystems, Techrical Requirements for". Paragraph 3.2.5.2 Flight Fnvironment
K. Vibration

1. Random Vibration
ii. Orbiter Main Engine Burn

$$
\left.\begin{array}{rl}
f_{0} & =.15 \\
\omega & =2000 \mathrm{~Hz}
\end{array}\right\}
$$

Worst Case

$q=$ magnification factor, taken as 10
(typical for secondary structure)

$$
=27.4 \longrightarrow \text { Use } 30 \mathrm{~g}^{\prime} \mathrm{s}
$$

STRUCTURE WEIGHT:

Panel plus upper clips

$$
\begin{aligned}
\text { Wt } & =(.875+.0440+.0386) 1 \mathrm{~b} / \mathrm{ft}^{2} \\
& =.9576 \mathrm{1b} / \mathrm{ft}^{2}
\end{aligned}
$$

Drag brackets are spaced every 40 inches streamise and every 12 inches laterally

$$
\begin{gathered}
A=\frac{12(40)}{144}=31 / 3 \mathrm{ft}^{2} \\
P=g W_{t} A= \pm 30(.9576)(31 / 2)= \pm 95.8 \text { lb. limit. }
\end{gathered}
$$

BRACKET

WEB SHEAR:

$$
\begin{aligned}
q_{1} & =\frac{\frac{1}{2}(95.8)}{.75}=63.9^{\#} / \mathrm{IN} \\
q_{2} & =\frac{\frac{1}{2}(94.8)(2.75)}{1.46(2.75)}=32.8^{\#} / \mathrm{IN} \\
q_{3} & =\frac{32.8(2.75)(.75)}{1.46(2.75)}=16.9^{\#} / \mathrm{IN} \\
\mathbf{f}_{\max } & =\frac{63.9}{.015}=4260 \mathrm{psi}
\end{aligned}
$$

Shear buckling.

$$
\text { Assume } \quad \frac{a}{b}=\frac{1.46}{2.75}=\therefore 3
$$

$$
\begin{aligned}
& K_{c r}=5.9(\text { CAC SM. B5.11.12-1) } \\
& F_{c r e l}=K_{c r} E\left(\frac{t}{b}\right)^{2} \\
&=5.9\left(34.2 \times 10^{6}\right)\left(\frac{.015}{1.46}\right)^{2}=21300 \mathrm{psi} \\
& M . S .=\frac{21300}{1.4(4260)}-1=A M P L E
\end{aligned}
$$

OVRRALL BESTDIMG.

$$
I_{14} .2(.5)(.015)\left(\frac{2.78}{2}\right)^{2}+\frac{1}{12}(.015)(2.78)^{3}
$$

$=.0558$ m 4

$$
f_{b}=\frac{1 c}{I}=\frac{234.7\left(\frac{2.76}{2}\right)}{.0558}=5850 \mathrm{psi}
$$

flange bickinig:

$$
F_{\text {crel }}=K E\left(\frac{t}{2}\right)^{2} \quad K=.384 \mathrm{CAC} \text { SM B5.11.11-1 }
$$

$$
=.3 E_{i}\left(34.2 \times 10^{6}\right)\left(\frac{.015}{.5}\right)^{2}=
$$

$=11820 \mathrm{psi}$

$$
\mathrm{M}_{0} \mathrm{~S}_{-}=\frac{11820}{1.4(5850)}-1=.44
$$

LOWER CLIP.

$$
M=95.8(2.75)=263.5 \mathrm{IN}^{\#}
$$

$$
P_{2}=P_{1}\left(\frac{1.2}{.9 j}\right)
$$

$$
P_{3}=P_{7}\left(\frac{2.45}{.95}\right)
$$

$$
\begin{aligned}
P_{1}(.95)+P_{2}(1.3)+P_{3}(2.45) & =M \\
P_{1} & =29.1^{\#} \\
P_{2} & =39.9^{\#} \\
P_{3} & =75.1^{\#} \\
P & =144.1^{\#}
\end{aligned}
$$

ENTING THROUCH P_{3}
$M=75.1\left(.25-\frac{.31}{2}\right)=7.1314 \#$
EFFECTIVE WIDTH $=.63$ IN.

$$
f_{b}=\frac{6\left(\frac{M}{2}\right)}{b t^{2}}=\frac{6(7.13)}{.63(.044)^{2}}=35070 \mathrm{psi}
$$

$$
F_{t y}=55 \mathrm{ksi} \quad \text { M.S. }=\frac{55000}{1.15(35070)}-1=.36
$$

RexDING AT P
$M=144.1(.088)=12.68 I N^{\#}$
EFFPCTIVE WIDTH $=.85 \mathrm{IN}$.

$$
f_{b}=\frac{6 M}{b t^{2}}=\frac{6(12.66)}{.85(.044)^{2}}=46230 \mathrm{psi}
$$

3
E

$F=144.1^{\#}$
M.S. $=\frac{55000}{1.15(46230)}-1=.03$
$A=T$ $v=44.8^{\#}$
$M=44.8\left(.22-\frac{.31}{2}\right)=2.91$ IN ${ }^{\#}$
$f_{b}=\frac{6 M}{b t^{2}}=\frac{6(2.91)}{.63(.044)^{2}}$
$=14320 \mathrm{ps}-$
$F_{t y}=55 \mathrm{ksi}$

$-B-B$
M.S $=\frac{55000}{1.15(14320)}-1=$ AMPLE

F

$\left[\begin{array}{l}3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3\end{array}\right.$ 3

RUBS Computar Program for Support－fition Oprimazation


```
    PI = S.14150
    != う4.<*(1*U).)**2
    REAR(4,\mp@code{i) I!r.l.":}
    "RITF(C,-)
    :!RITE(C,.) :! ,I־\because
    :!!P = !!P
    7n 1u v = 1.#`
    pran(4,i) F(i),(r(1, 1), 1=j,j)
    IF (J.E..1) F(.1: = 1./2./Y:!P
```



```
    :!!ITE(C,i) r(1),(?(1,1).1=1,5)
iv ro:iTl.u'r.
15 RO:Tl:!!r
        :IRITEIu,i
        RTAR(S,i; T
        IF (T.IE. u.) En TO jy?
        IINITF(C,u)
```



```
        M0 2i j = i,i';
        A=T*(?(1,1)+.52v4J*?(J,2) + P(J,5) - T) +.044*(P(N,3) + P(J,4))
```



```
    # + (!(N,j)-T)*T*(\Gamma(U,j)/2,`)
    2 - .0it*(?(,j,j) + niJ,4))*.022
        1:2=1.J2G445+7(.),Z)*T*(.0(G:,9*B(J,2))**2
    1 + (0(J,j) - T)*T*(n(u,5)/2.)**2
    2 4..64**(!(J,j) + P(J,4))*(.022)**2
    \because|:!=(n(J,1)-n(J,2))/12**T**3
    1+.j5u14/1iJ%.*D(J,2)**3*T
    2 + T*(r(J,亏)-T)**jil之.
    3+(r.(J,3) + ?(J,4))/12.*(.044)**3
        |rR(!)=(i:2 + \therefore1:! - A!**2/A)*2.
```



```
        Y(1,J)= =1":(PI*F(,I))
        Y(N) = 1.":!*F(J)
¿u corit:"ur.
zi colTI:UT
    TOT2 = 3.
    TOTL = ! %
    MC #u .| = i,:d!
    TE:!'1(J) = Y(1,J)/|!EN(J)
    TOT1 = T.TT2 + Tr:!Ol(J)
    TOT2 = TnT2 + -r!nn\(1, *F(J)
    IRITE(心.,&) J,TFI:n1(J),TOTL,TOT2
ju CO:ITI:O!:
    J = 1
    V(1) = TOTI - TOT2
    'Y(1)=V(1)*:̈(1)
```

```
    00 40 J = 2,I!P
    V(J)=V(J-1) - TE!4P1(J-1)
    :1(J)=V(J)*(X(J)-X(J-1)) +M(J-1)
    40 COi:TI:NUE
    CO'I = 0.
    DO 50 J = 1,NP
    |F(H(J).r.T. CO:1) CO:! = M(J)
    50 COMITINUS
    DO CO J = 1,HP
    Y(2,J)= = |l(J)/CO:!
    60 COITINUE
        DO 70 J = 1,HP
        IF(A`S(Y(1,J)/Y(2,j) - 1.) .GT. 0.001) G0 T0 80
    70 CORITINUE
    60 TO 130
    80 CONTIVIUE
    DO 90 J = 1,NP
    Y(1,j)= Y(2,J)
90 COfITI!!UF
    GO TO 25
    100 COIITIHUE
        HRITE (6,3)
        9 FORMAT(2X,/10v,'J I!PE(J) TEP'P1 y M Y1 Y2 PCR.IT'./)
        DO 110 J = 1,NP
        XNP = NPP
        P=Y(1,J)/M(J)*F//(LF:!/XNP)
        WRITE(6,j) J, I HER(J),TEAP1(J),Y(J),H(J),Y(1,J),Y(2,J),P
    110 CO:ITI:IUF
        GO TO 15
        1 FORMAT(1UFS,3)
        2 FORMAT(18,GE14,6)
    3 FORIAAT(13,6E14,6,F10,2)
    4 FOR&AT ( 2X,///. 10X, 'HR1\T IS TillCKNESS?'.//)
    5 FORRIAT (2X.////)
    6 FORR!MT(15,9F10.5)
y99 CALL EXIT
    END
EOF:
```


APPRPDIX D
 Detail Stress Angyria - Rene' 41 TPS

The detail stress analysis of the Rene' 41 themal protection system is given in the fallowing pages. Included is the analysis for the surface panel to rib/standoff upper and lover attachnents, the mb/standoff desien analysis, the drag bracket analysis, and the effect of panel spamuise thermal expansion.

SUREACE PAFEL/RIB STAMDOFF ATMACPEENT AMALYSIS

Maximm Shear Load, V

$$
V=\frac{1}{2} p P_{R} Q=\frac{1}{2}(1.5) P_{R}(20)=15 P_{R}
$$

		$\left(P_{F}\right.$ in psi)
COADITIOR*	$P_{R}\left(\mathrm{LB} / \mathrm{FT}^{2}\right)$	V (LB.)
A	-430	-44.8 LIMIT
B	350	36.5 LIMIT
C	100	10.4 LIMIT
D	50	5.2 LIMIT

CORRUCATION SIDEWALL RUCKITNG

Each wall carries $\frac{1}{2} V=22.4$ 2b. max. (CORD. A)

$$
f_{s}=\frac{\frac{1}{2} v}{h t}=\frac{22.4}{.435(.0071)}=7250 \mathrm{psi}
$$

For a long plate S.S. all sides

$$
\mathrm{K}_{\mathrm{CR}}=4.8
$$

CORPUGATICA SIDEMALL BUCACIMG（Cont＇d）

$$
F_{\text {CRES }}=K_{c r} E\left(\frac{t}{h}\right)^{2}=4.8\left(31.6 \times 10^{6}\right)\left(\frac{.00 \mathrm{p}}{.435}\right)^{2}=40400 \mathrm{psi}
$$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{cr}}=1.4(25.9)=36.6^{\#} \text { required } \\
& \mathrm{P}_{\mathrm{cr}}=\frac{\mathrm{n}^{2} \mathrm{EI}}{\mathrm{ML}^{2}} \quad \begin{array}{l}
\text { For a pin-ended column with shear along the length, } \\
\\
M=.53 \quad \text { (GAC SM B3.44. 31-1) }
\end{array}
\end{aligned}
$$

$$
E=31.6 \times 10^{6} \mathrm{psi}
$$

$$
I=\frac{P_{C r} M L^{2}}{\pi^{2} E}=\frac{36.3(.53)(.502)^{2}}{\pi^{2}\left(31.6 \times 10^{6}\right)}=15.545 \times 10^{-9}
$$

$$
I=\frac{b^{1} t_{T O T}^{3}}{12} \quad \text { for } t_{T O T}=.0144
$$

$$
b^{0}=.062 \mathrm{IN}
$$

$$
\text { M.S. }=\text { AMPIE }
$$

BENDING OF FLAT BETWEEN BEMDS.

COND. A is critical, $V=-44.8 \mathrm{lb}$ limit
Treat layuf as a beam of thickness $=.0217$ III.

$$
\begin{aligned}
M & =22.4 \frac{.718-.31}{2} \\
& =4.57 \mathrm{IN} \text { LBS }
\end{aligned}
$$

Use (2) times head diameter for the effective width.

$$
\begin{aligned}
& \therefore f_{b}=\frac{6 M}{b t^{2}}=\frac{6(4.57)}{2(.31)(.0217)^{2}}=93900 \mathrm{psi} \\
& F_{t y}=127 \mathrm{KSI} \\
& \quad \text { M.S. }=\frac{127000}{1.15(93900)}-1=.17
\end{aligned}
$$

FIEXIBLE RIB		
DESIGN CONDITIONS（Ref．Pg．D－1）		
COND．	P_{R}（psf）	$v(16)$
A	－430	－44．8
B	350	36.5
c	100	10.4
D	50	5.2
＊		

＊theranal expansion：

$$
\begin{aligned}
\Delta=\alpha \Delta T L & =8.5 \times 10^{-6^{(1)}(1600-70)(20-.88)} \\
& =.249 \mathrm{NN}
\end{aligned}
$$

LATERAL THERAMAL EXPANSTOM IMERB
\therefore Between points A \& $B, \Delta=\alpha \Delta I L$

$$
\begin{aligned}
& =8.6 \times 10^{-6}(1600-70)(1.5) \\
& =.0197 \mathrm{IN}
\end{aligned}
$$

Using the same method as for the skin beads.

$\therefore p=1.20, b=.40$
USE . 40
FOR SMMETRY
$P=E I \Delta(2374.863)$
$M=E I \Delta$ (35.778)

At top of bead, $\bar{M}=\mathrm{Pe}-\mathrm{M}$

$$
\begin{aligned}
& =E I \Delta[2374.863(.04)-35.778] \\
& =E I \Delta(59.217)
\end{aligned}
$$

$$
\mathrm{E}=17.7 \times 10^{6} \mathrm{psi} \odot 1600^{\circ} \mathrm{F}
$$

$$
I=\frac{b t^{3}}{12\left(1-I^{2}\right)} \quad Y=.31
$$

$$
c=\frac{f_{b}}{E}=\frac{6 \bar{M}}{E b t^{2}}=\frac{6\left[17.7 \times 10^{6} \times \frac{b t^{3}}{12\left(1-.31^{2}\right)} \times .0197\right](59.217)}{\left(17.7 \times 10^{6}\right) \mathrm{bt}^{2}}
$$

$$
=.6453 t
$$

$$
t=.0065 \mathrm{IN}
$$

$=.0042 \mathrm{IN} / \mathrm{IN}$

The 0.2% offset strain（yield stress）at $1600^{\circ} \mathrm{F}$ is：$\left(\sigma_{y}=58000 \mathrm{psi}\right)$

$$
c=.002+\frac{58000}{17.7 \times 10^{6}}=.0053 \mathrm{IN} / \mathrm{IN}
$$

The margin against exceeding the yield stress at $1600^{\circ} \mathrm{F}$ is：

$$
\text { M.S. }=\frac{.0053}{1.15(.0342)}-1=.09
$$

WEB BUCKLING－COND．B（RCf．Pg．D－4）

$$
v=36.5^{\#} / \cos 14^{\circ}=37.6 \mathrm{lb} \text { limit (CoND. B) }
$$

GETERAL INSTABIIITY

Assume web is symmetric about $Z-Z$ and work one side for section properties．Treat as a pin－ended column with vary－ ing inertia．（Ref．Timoshenko，＂Theory cf Elastic Stability．＂）

$\left.\begin{array}{c}\text { LOC } \\ (P g D) \\ D\end{array}\right)$	b_{1}	$\mathrm{~b}_{2}$	$\mathrm{~b}_{3}$	LOC	b_{1}	$\mathrm{~b}_{2}$	$\mathrm{~b}_{3}$
1				11	.98	.31	.15
2				12	.88	.28	.15
3	.83			13	.82	.26	.15
4	1.22			14	.77	.24	.11
5	1.5	.46		15	.73	.20	.07
6	1.5	.44		16	.68		
7	1.5	.41		17	.50		
8	1.5	.38		18	.48		
9	1.5	.36		19			
10	1.17	.34	.09	20			

EECTION PROPERTIES

$$
\begin{aligned}
A & =t\left[b_{1}+.02645 b_{2}+\left(b_{3}-t\right)\right] \\
A_{x} & =t\left[.06825 b_{2}^{2}+.5\left(b_{3}-t\right)\left(b_{3}\right)\right] \\
A_{x}^{2} & =t\left[.004538 b_{2}^{3}+.25\left(b_{3}-t\right)\left(b_{3}\right)^{2}\right] \\
I_{00} & =\left(b_{1}-b_{2}\right) \frac{t^{3}}{12}+.0009158 b_{2}^{3}+\left(b_{3}-t\right)^{3}\left(\frac{t}{12}\right) \\
\bar{x} & =A_{x} / A ; I_{N A}=A_{x}^{2}+I_{00}-A_{x}^{2}
\end{aligned}
$$

Timoshenko's method involves assuming a deflected shape for the colum and solving for the actual shape. The resultant shape is then used for new assumption and the process is repeated. When the assumed and actual shapes are within some tolerance, say 0.1%, at all sections, the critical buckling load can be calculated.

Because of the iterative nature of the problem and the coneiderable number of arithmetic operations involved, the "RIBS" computer program (Ref. Appendix , pg C-19 \& C-20) was modified to solve for the Rene' allowable loads. Several thicknesses were assumed, and the resulting critical load curves are presented in Figure D-1.

The flexible rib has an equivalent applied load of 75.2 Ib limit (105.3 ib ultimate) for a 3 inch section of web during COND. B. The allowable load for $t=.0065 \mathrm{IN}$ is 222 Lb . (Fig. D-1)

$$
\text { M.S. }=\frac{222}{105.3}-1=1.10
$$

LOCAL BUCKLING

Over arches between beads.

$$
\begin{aligned}
& \begin{aligned}
\frac{b}{a}=\frac{.6}{1.55}=.39, K_{c}=1.15
\end{aligned} \begin{aligned}
\text { GAC. S.M. } \\
\text { B5.11.11-2 }
\end{aligned} \\
& \begin{aligned}
F_{c r e} & =K_{c r} E\left(\frac{t N}{b}\right)^{2} \\
& =1.15\left(31.6 \times 10^{6}\right)\left(\frac{.0065}{.6}\right)^{2} \\
& =4260 \mathrm{psi} \\
P_{c r} & =4260(1.55)(.0065)=43.0 \mathrm{lb}
\end{aligned}
\end{aligned}
$$

WEB BUCKLING (Continued)

Equivalent Length - Due to Shear:

$$
P_{c r}^{\prime} \quad P_{c r}\left(\frac{L}{L^{\prime}}\right)^{2}=153.01 \mathrm{lb}
$$

MSS. $=\frac{153.0}{1.4(37.6)}-1=$ AMPLE

BUCKCING BETKTHEN ARCHES.
(Small bead added, "B", to prevent Local Buckiing)

$$
A=(.35+.28932) t
$$

$$
A_{x}=(.28932 t)(.040985)
$$

$A_{x}^{2}=(.28932 t)(.040985)^{2}$
$I_{00} \cong 20010226 t$

$$
\begin{aligned}
I_{N A} & =I_{n O}+A_{x}^{2}-\left(A_{x}\right)^{2} / A \\
& =.36832 \times 10^{-3} t, t=.0065, \therefore I=2.394 \times 10^{-6} I N^{4}
\end{aligned}
$$

$$
P_{C K}=\frac{\tau^{2} E I}{L^{2}} \text { Neglecting any support along the long edges }
$$

$$
P_{C R}=\frac{\pi^{2}\left(31.6 \times 10^{6}\right)\left(2.394 \times 10^{-6}\right)}{(1.55)^{2}}=3111 \mathrm{~b}
$$

$$
\text { M.S. }=\frac{311 .}{1.4(37.6)}-1=. \text { MPLE }
$$

SEAMMISE THERMML EXPATISICKI

$$
\Delta=.249 \text { IN (Ref. Pg. D-4) }
$$

$\mathrm{R}=1.32$ IN between clips

$$
\operatorname{RSIN} 14^{\circ}-\operatorname{RSIN}(14-\theta)^{\circ}=.249 \text { IN }
$$

$$
\theta=10.9^{\circ}=.191 \mathrm{rad}
$$

$$
\theta=\frac{M L}{E I} \& f_{b}=\frac{6 M}{b t^{2}}
$$

$$
\therefore f_{b}=\frac{6 E I \theta}{L b t^{2}} \& I=\frac{b t^{3}}{12}
$$

$$
f_{b}=\frac{E t \theta}{2 L} \& \in=\frac{f_{b}}{E}
$$

$$
\therefore \varepsilon=\frac{t \theta}{2 I}
$$

THE ALLCOABLE SMRAIN TO PREVENT YIELDING.

$$
\left.\begin{array}{rl}
\text { At } 1600^{\circ} \mathrm{F} & =.002+\frac{58 \mathrm{C} 00}{17.7 \times 10^{6}}=.0053 \text { CRIT. } \\
\text { At } \quad 70^{\circ} \mathrm{F} & =.002+\frac{.207 C \mathcal{O}}{31.6 \times 10^{6}}=.00 \mathrm{~W} \\
\frac{.0053}{1.15} & =\frac{.0065(.191)}{2 \mathrm{~L}} \quad \mathrm{~L}
\end{array}\right)=.1 .5 \mathrm{IN} .
$$

This dimension (. 135 LN.) is required at both the top and bottom web/clip interfaces, so that at least this much wel is free to deflect and bend. A review of the assembly drawing shows that this criterion can be achieved FLEXIBLE RIB-UPPER CLIP

COND A Critical*

$M=44.8\left(.34-\frac{.31}{2}\right)$
$=8.29 \mathrm{IN} \mathrm{Ib}$.
$f_{b}=\frac{6(8.29)}{.54(.03)^{2}}$
$=202,300 \mathrm{psi}$

FLEXIELE RIB-UPPER CLIP (Contimed)

Pty $=12 \mathbf{i} \mathbf{i} \mathbf{k s i}$

$$
M_{0} S_{.}=\frac{127000}{1.15(102300)}-1=.08
$$

FLEXIBIE RIB - LOWER CLIP

COAD. A*

$$
\begin{aligned}
\mathrm{m} & =89.6 \frac{.70-.38}{2}=14.34 \mathrm{Im}^{*} \\
\mathrm{f}_{\mathrm{b}} & =\frac{6 \mathrm{~m}}{\mathrm{bt} t^{2}}=\frac{6(14.34)}{.96(: 030)^{2}} \\
& =99580 \mathrm{psi}
\end{aligned}
$$

$$
\text { Fty }=127 \mathrm{ksi}
$$

$$
\text { M.S. }=\frac{127000}{1.15(99580)}-1=.10
$$

COND. B*

$$
\begin{aligned}
& M=73(.09)=6.57 \mathrm{IN}^{\#} \\
& \begin{aligned}
f_{b}=\frac{6 M}{b t^{2}} & =\frac{6(\epsilon .57)}{.42(.03)^{2}} \\
& =104200 \mathrm{psi}
\end{aligned}
\end{aligned}
$$

Fty $=127 \mathrm{ksi}$

*Ref. Pg. D-4

$$
\text { M.S. }=\frac{127000}{1.15(104290)}-1=.05
$$

EXOD RIB

DESTCI CONDITIONS

CONDITIOn	$\mathcal{P}_{\mathrm{R}}(\mathrm{psf})$	$\mathrm{V}(1 \mathrm{~b})$.
A	-430	-89.6
B	350	73.0
C	100	20.8
D	50	10.4

*Ref. Pg. D-4, Values of V are double flexible rib values.
LATERAL THERMAL EXPANSION
See Flexible Rib Analysis, page D-5
WEB BUCKLING - General Instability
Equivalent Applied Load $=2 \mathrm{~V}$ for 3^{*} width

$$
\begin{aligned}
2 V=?(73.0) & =146 \mathrm{lb} .1 \text { imit } \\
& =204.4 \mathrm{lb} \text { ult. }
\end{aligned}
$$

$$
\text { For } t=.0065, P_{C R}=970 \text { lb. (Ref. Fig. } D-1 \text {) }
$$

$$
\text { M.S. }=\frac{970}{204.4}-1=A M P L E
$$

Buckling Ger Arches; $P_{C R}=153.0$ Ib (Ref. Pg. D-8)

$$
M_{.} S_{0}=\frac{153.0}{1.4(73.0)}-1=.49
$$

Buckling Between Arches; $P_{C R}=311$. Ib (Ref. Pg. D-8)

$$
\text { MoS. }=\frac{311}{1.4(73.0)}-1=\text { AMPLE }
$$

ETXCD RIB - UPPER CLIPS

$$
\begin{aligned}
& \text { conditior A Critical* } \\
& \mathrm{V}=89.6 \mathrm{lb} \mathrm{limit}{ }^{*} \\
& \vdots=.88-.31=.57 \mathrm{IN} . \\
& M=\frac{P i}{8}=\frac{89.6(.57)}{8} \\
& =6.38 \mathrm{IN}^{\text {\# }} \\
& f_{b}=\frac{6 M}{b t^{2}}=\frac{6(6.38)}{.54(.030)^{2}} \\
& =78810 \mathrm{psi}
\end{aligned}
$$

Pty $=127 \mathrm{ksi}$

$$
\begin{aligned}
& \text { CONDITION B, V = 73.0 } 1 \mathrm{~b} . * \\
& \begin{aligned}
& M=36.5(.09)=3.29 \mathrm{IN} 1 \mathrm{~b} \\
& f_{b}=\frac{6 M}{b t^{2}}=\frac{6(3.29)}{.54(.03)^{2}} \\
&=40,560 \mathrm{psi}
\end{aligned}
\end{aligned}
$$

Fty $=127 \mathrm{ksi}$

$$
\text { M.S. }+\frac{127000}{1.15(40560)}-1=\text { AMPLE }
$$

$$
\text { M.S. }=\frac{127000}{1.15(78810)}-1=.40
$$

[^3]FIXRE RTB - LOWER CLTP

$$
\begin{aligned}
& \text { COMOITION } A, V=2(89.6) * \\
& =179.2 \mathrm{lb} \text {. } \\
& L^{\prime}=.74-.32=.43 \\
& M=\frac{\mathrm{PL}^{\circ}}{8}=\frac{179.2(.43)}{5} \\
& =9.63 \mathrm{IN}^{\#} \\
& f_{b}=\frac{64}{b t^{2}}=\frac{6(9.63)}{.63(.030)^{2}} \\
& =101900 \mathrm{psi} \\
& \text { FTY }=127 \mathrm{ksi}
\end{aligned}
$$

$$
\text { M.S. }=\frac{127000}{1.15(101900)}-1=.08
$$

CONDITION $\mathrm{B}_{2} \mathrm{~V}=2(73.0)=146 \mathrm{lb} . *$

$$
\begin{aligned}
M & =73 . \alpha(09)=6.57 \mathrm{IN}^{\#} \\
f_{b} & =\frac{6 M}{b t^{2}}=\frac{6(6.57)}{.63(.03)^{2}}=69520 \mathrm{psi}
\end{aligned}
$$

$$
\text { Fty }=127 \mathrm{ksi}
$$

$$
M_{. S} .=\frac{127000}{1.15(69520)}-1=.58
$$

*Ref. Pg. D-:1

DRAG BRACKET
The loed P is reversible ani is caused by mechanically induced sibration:

(Ref. Appendix C pg. C-14)
Wificht of panel plus

$$
\begin{aligned}
i_{s} \text { per Clips } & =.792+.02618+.02291 \\
& =.841091 b / F^{2}
\end{aligned}
$$

Drag brackets are spaced every 40 inches streamise and every 12 inches laterally.

$$
\therefore P=g W_{T} A=30(.84109)\left(\frac{40 \times i 2}{144}\right)=84.1 \mathrm{lb}
$$

WEB SHEAR

$$
\begin{aligned}
& q_{1}=\frac{\frac{1}{2}(84.1)}{.75}=56.1 \text { \#/IN } \\
& q_{2}=\frac{\frac{1}{2}(84.1)(2.15)}{2.15(1.46)}=28.8 \# / \mathrm{IN} \\
& q_{3}=\frac{28.8(2.15)(.75)}{2.15(1.46)}=14.8 \mathrm{\#} / \mathrm{IN} \\
& f_{s}=\frac{q_{1}}{t}=\frac{56.1}{.012}=4680 \mathrm{psi}
\end{aligned}
$$

BUCKLING OF WEB

$$
\begin{aligned}
& \text { Assume } \frac{a}{b}=\frac{1.46}{2.75}=.53 \\
& K_{c r}=5.9 \quad \text { GAC S.M. B5.11.12-1 } \\
& F_{\text {crel }}=K_{c r} E\left(\frac{t}{b}\right)^{2}=5.9\left(31.6 \times 10^{6}\right)\left(\frac{.012}{1.46}\right)^{2} \\
&=12590 \mathrm{pB1}
\end{aligned}
$$

$$
\text { M.S. }=\frac{12590}{1.4 \frac{(4680)}{-1}=.92}
$$

DRAG PRACKET (Contimed)

OVERALL BEMDMG

$$
\begin{aligned}
& I_{z x}=\frac{.012}{12}(2.68)^{3}+2(.5 \times .012)\left(\frac{2.68}{2}\right)^{2} \\
& =.0408 \mathrm{IN}^{4} \\
& M=84.1(1.81)=152.2 \mathrm{IN} .{ }^{\#} \\
& f_{b}=\frac{M C}{I}=\frac{152.2\left(\frac{2.68}{2}\right)}{.0408}=5000 \mathrm{pei} \\
& \begin{aligned}
F_{\text {crel }} & =K_{c r} E\left(\frac{t}{b}\right)^{2} \\
& =.384\left(31.6 \times 10^{6}\right)\left(\frac{.012}{.5}\right)^{2}
\end{aligned} \\
& \begin{aligned}
F_{\text {crel }} & =K_{c r} E\left(\frac{t}{b}\right)^{2} \\
& =.384\left(31.6 \times 10^{6}\right)\left(\frac{.012}{.5}\right)^{2}
\end{aligned} \\
& =6990 \mathrm{psi} \\
& K_{c r}=.384 \begin{array}{l}
\text { GAC Structures Manual } \\
\text { B5.11.11-1 }
\end{array}
\end{aligned}
$$

LOWER CLIP

$M=84.1^{*}(2.15)=180.8 \mathrm{IN}^{\#}$

* Ref. Pg. D-14

$$
\begin{aligned}
& P_{2}=P_{1}\left(\frac{1.3}{.95}\right) \\
& P_{3}=P_{1}\left(\frac{2.45}{.95}\right) \\
& P_{1}(.95)+P_{2}(1.3)+P_{3}(2.45)=M \\
& P_{1}=20.0 . \% \\
& P_{2}=27.3 \# \quad P=98.8 \# \\
& P_{3}=51.5 \#
\end{aligned}
$$

DRAG BRACKET (Continued)

$$
\begin{aligned}
& \text { LONER CLIP (Continued) } \\
& \text { BENDING THROUGH } P_{3} \\
& M=51.5\left(.25-\frac{.31}{2}\right)=4.89 \mathrm{IN}^{4} \\
& \text { Iffective width }=.63 \\
& \mathrm{f}_{\mathrm{b}}=\frac{6 \mathrm{M}}{\mathrm{~b} t^{2}}=\frac{6(4.89)}{.63(.03)^{2}}=51750
\end{aligned}
$$

Fty $=127 \mathrm{ksi}$

$$
\text { M.S. }=\frac{127000}{1.15(51750)}-1=\text { AMPLE }
$$

BENDIHG AT P.

$$
\begin{aligned}
M & =98.8(.09)=8.89 \mathrm{IN}^{\#} \\
\mathrm{f}_{\mathrm{b}} & =\frac{6 M}{b t^{2}}=\frac{6(8.89)}{.63(.03)^{2}}=94070 \mathrm{psi}
\end{aligned}
$$

$$
\text { M.S. }=\frac{127000}{1.15(94070)}-1=.17
$$

\qquad
dRAG BRACKET (Continued)
IPPPR CLIP
(Condition A Criticat)

$$
\begin{aligned}
\mathrm{V} & =\frac{89.6}{2}=44.8(\text { ReP. Pg. D-11). } \\
M & =44.8\left(.22-\frac{.31}{2}\right)=2.91 \mathrm{IN} \\
f_{b} & =\frac{6 \mathrm{M}}{\mathrm{bt}^{2}}=\frac{6(2.91)}{.63(.03)^{2}} \\
& =30810 \mathrm{psi}
\end{aligned}
$$

Fty $=127 \mathrm{ksi}$.

APPEnDIX E
HAYNES 188 TPS PRODUCTIOn DRAWINGS

The Haymes 188 TPS test specimen production drawings are given, including:

AD1001-100 Test Specimen - Final Assembly AD1001-101 Skin - Details and Assembly AD1001-102 Support Ribs - Details and Assembly AD1001-103 Insulation System - Details and Assembly AD1001-104 Support Structure assembly AD1001-105 Insulation Sn^{-}: er. AD1001-106 Fairings and ada Seals - Details

2c-104-1

-symentre

AD1001-100. - Test specimen - final aszembly.

floor mew

REPRODUCIBILITY OF
ORIGINAL PAGE IS POOR THE
 eoldousi cinaz 3

fondour feme 4

FOLDOURTGATHI

moncornerescmes)

REPRODUCIBILTTY OF THE
ORIGINAL PAGE IS POOR

AD1001-102. - Support ribs - d

FOLDOUNBAmatid 4

eneme (4)

Prane
-

AD1001-102. - Support ribs - details and assembly

EOLDOUSIB

ADMOOR-103-1.
Aproph-10s.B mssinatran assy
ADOQ

notes:

3. Domar cewtu er asinoner acrive muers de couplestato assy

EODDOUT GOMME

NOTE 1 faberc - Gen -r

.192 .198004
$\cdots \cdots+125$
.680042

15004
ADROON-105-11-

-AD1001-105\%

citumemearsag

NOTES

 70 converen to ave-P-255is, TMix I

 AN AOVTIUNAL DOSN QueE COMOUTWNen AT AT TSORE

6 AN ar Lavetes 12 Minmalen Rof 125 anc Dup
d unse aisection oprovice

AD1001 105. - Insulation spacers.

Focrouns

AD1001-106. - Fairing and end seals - details.

APPENDIX F

REAR' 41 TBS PRODUCTION DRAWInGS

The Rene' 41 TPS test specimen production drawings are given, including:

AD1001-300 Test Specimen Final Assembly AD1001-301 Skin - Details and Assembly AD1001-302 Support Ribs - Details and Assembly AD1001-303 Insulation System Details and Assembly AD1001-304 Support Structure Assembly AD1001-306 Fairings and End Seal Details

vew 1000

FOLDOUT: Gum 4

AD100; 300. - Test specimen final assembly.

$\xrightarrow{4}$

foldout. fame

AD1001.301. - 8kin - details and assambly.

Fowour raini I

cerroutitarame 2

nores:
 2x ex antrisiog mean

 obnormono sisty

ADOOO-SOS-5MASMATON ASSY

AD1001-303. - Insulation system details and assambly.

foldout brame

1368-032W

EOLDOUT FRAME ${ }^{4}$
 A01001-306-13 _WD AAMENG SHOUN (S퓨NNㅏ,

AD1001-306. - Fairings and end seal detalls.

all three components. The gaseous component can be evaluated by methods presented in Ref. G-1 and G-2.

The gaseous conductivity is

$$
k_{g a s}=A_{p} C_{v} v_{a} L_{q}\left(\frac{d}{d+L_{q}}\right)
$$

Equa. (1)
where

$$
\begin{aligned}
& \text { A }=\text { constant depending on gas } \\
& p=\text { density of gas } \\
& C_{v}=\text { specific heat at constant volume } \\
& \mathbf{V}_{\mathbf{a}}=\text { one malecular velocity } \\
& L_{q}=\text { mean free path of gas molecule } \\
& d=\text { distance between fibers }
\end{aligned}
$$

$$
d=\frac{\pi R p_{s}}{2 \rho_{i}}
$$

Equa. (2)
where

$$
\mathrm{R}=\mathrm{fiber} \text { diameter }
$$

$$
\rho_{i}=\text { insulation density }
$$

$$
\rho_{s}=\text { fiber material density }
$$

These equations basically state that the gaseous conduction component is dependent on gas pressure and fiber size for low density insulation.

The radiation comporent is determined by methods presented in Ref. 4-7 and is given by the approximate equation

$$
\begin{equation*}
k_{r}=\frac{4 \sigma T_{M}^{3}}{N} \tag{3}
\end{equation*}
$$

where $\quad \begin{aligned} \sigma & =\text { Stephan Bolzman constant } \\ T_{M} & =\text { mean absolute temperature } \\ N & =\text { back scattering cross section }\end{aligned}$

Taius for N, the back scattering crose section, are given in Ref. $4-7$ and are shaw in Fig. G-1. Dramination of the equation for the radiation component zu¢f sts that N is the inverse of the overall effective emissivity ($\epsilon_{\text {EFF }}$) througi, the insulation from the hot face to the cold face. That is,

$$
\mathbf{k}_{r}=4 \epsilon_{E F F} \sigma T_{M}^{j}
$$

Eque. (4)

From the radiation transmission standpcint the insulation can be thought of as a series of surfaces anslogous to a multiple foil system. The $\boldsymbol{c}_{\text {EFF }}$ for a series of layers is

$$
\epsilon_{E F F}=\frac{\epsilon}{(2-6)(m-1)}
$$

Equa. (5)
where mander of layers per unit thickness
c = emissivity of layer
By assuming that the addition of metal radiation foils is analogous to merely adding more surface to those already existing in the insulation a new effective emissivity e' can be computed to determine the reduction in the radiation component when metal foils are added. From equa. (5).

$$
m=\frac{c}{(2-\epsilon)^{6} E F F}+1
$$

Equa. (6)

Assume r. = number of metal foils per urit thickness

$$
\begin{equation*}
\varepsilon_{E F F}^{\prime}=\frac{6}{(2-6)(n+m-1)} \tag{7}
\end{equation*}
$$

Combining equations (6) and (7) and assuming that it is computed on the basis of the emissivity of the metal foils.

$$
\varepsilon_{E F F}^{\prime}=\frac{1}{\frac{1}{e_{E F F}}+\frac{n(2-6)}{6}}=\frac{\cdots+i_{-6)}}{N+i^{\prime}}
$$

Therefore the rediation component with n metal foils per unit thickness can be expressed as

$$
k_{r}=4 \epsilon_{E F F}^{:} \sigma \mathrm{T}_{M}^{3}
$$

GEFERENCES

G-1 Strong, H.M.; Bundy, F.P.; and Bovenkerk, H.P.: Flat Panel Vacuum Thermal Insulation. Journal of Applied Physics, Vol. 31, No. 1, 39-50, January 1960.

G-2 Stephenson, M.E., Jr.; and Mark, M.: The Effect of Apparent Density and Gas-Cell Size on the Thermal Conductivity of Ceilular Materials. ASME 59-A-254.

Figure G.1. - Backseatering cross section vs temperature for fibrous insulation Iref. 4.7)

APPRMDIX H

THEPMOCOUPLE HUMBER AND IOCATIOM

A correlation of thermocouple number and location is given. Table
H-1 lists the number and location. Figure $\mathrm{H}-1$ gives the coding system employed.

Telte A-1. - Thermeuraple leortion

Thennceerpple 13 no.	Row-eed	Learaion (Fit, H-1)	Type
I	3.1	Ecape seal - fairing panet	Ceramo
2	3.2	Skin - fairing panal	Ceramo
3	3-2	Clip - fairing penat	Cerrmo
4	3.2	Standoff wab fairing panel	Ceramo
5	3-2	Heat sink - fairing panat	Fiberplass
6	2.3	Skin - faiving panal	Ceramo
7	33	Skin - friving penal	Cerame
8	43	Skin - fairime penel	Ceramo
9	$3-4$	Clip - teiring penel	Ceramo
10	$3-4$	Standoff wab - fairing panat	Ceremo
11	$3-4$	Heat sink - fairing panal	Fibergless
12	2.5	Skin - fairing paned	Caramo
13	3-5	Skin - feiring panal	Ceramo
14	4.6	Skin - feiring penel	Ceramo
18	4.6	Clip - fairing panal	Ceramo
16	4.5	Standoff wab - fairing panal	Ceramo
17	4.5	Heat sink - fairing panat	Fiberglass
18	26	Skin - test panat	Caramo
19	36	Skin - test panal	Ceramo
20	4.6	Skin - test penel	Caramo
21	2.7	Skin - test panel	Ceramo
22	2.7	Clip - test panal	Ceramo
23	2.7	Standoff mab - test penal	Ceramo
24	$2-7$	Heat sink - test panat	Fiberglass
25	3.7	Skin - test penel	Caramo
26	4.7	Skin - test panas	Caramo
27	3.8	Insulation at $\mathbf{2}^{\prime \prime \prime}$ - test pansi	Ceramo
28	$3-8$	Insulation at 11""- - test penel	Ceramo
29	48	Insulation at 1"- lust panal	Ceramo
30	$3-8$	Insulation at $\mathbf{Y}^{\prime \prime \prime}$ - test panel	Ceramo
31 32	$3-8$ $3-9$	Heat sink - test panal	Fiberglass
33	3-9	Corrugation bottom - test panel	Ceramo
34	1.10	Edge seal - test panel	Ceramo
35	2.10	Skin - test panel	Ceramo
26	3-10	Skin - test panal	Ceramo
37	3-10	Corrugation bottom - test pand-	Ceramo
38	3-10	Insulation at 2"1 - test panal	Ceramo
39	3.10	Insulation et $11_{2 \prime \prime}^{\prime \prime}$ - test pensl	Ceramo
40	- 10	Insulation at $1^{\prime \prime}$ - test panal	Ceramo
41	$3-10$	Insulation at $\mathbf{y}^{\prime \prime \prime}$ - test panel	Ceramo
42	3-10	Heat sink - test pansl	Fiberglass
43	4.10	Skin - test panel	Ceramo
44	4-10	Corrugation bottom - test panel	Ceramo
$4{ }^{-}$	4.10	Heat sink - test panal	Fiberglass
46	5-10	Edge seal - test panel	Cersmo
47	3.11	Skin - test panel	Ceramo
48	3-11	Corrugation bottom - test penel	Ceramo
49	3.12	Skin - test panel	Ceramo
50	-12	Clip - test penal	Ceramo
51	3.12	Standoff web - test panel	Cerrmo
52	3.12	Heat sink - test panal	fiberdass
5	3-13	Edge seal - test panel	Caramo

2217.69W

2217-70W

APPGEDIX I

SUPPOPA STRTELURAL - DETAIL STRESS RIALYSIS

The THS test articie support structure detail stress analysis is presented on the following pages. The support structure for the Haynes 288 and Rene' 41 test opecimens are identical.

SUPPORT STKUCTURE (DWG. ADICO1-104)

Beam (2) is critical
(PART ADIDO1-15L-27)

$$
\begin{aligned}
&\left(2004-T 6 \mathrm{MAT}^{\prime} \mathrm{L}\right) \\
& F_{t u}=04 \mathrm{ksi} \\
& F_{t y}=50 \mathrm{ksi} \\
& E_{T}=10.7 \times 10^{6} \mathrm{psi} \\
& E_{c}=10.9 \times 10^{6} \mathrm{psi}
\end{aligned}
$$

SIDE VIEN \quad Vm

IIEM	b	h	A	Y	$A Y$	$A Y^{2}$	I_{∞}
1	$2(.21875$.125	.054688	.0625	.003418	.000214	.000072
2	-	-	.099709	1.85444	.184904	.342894	.000660
3	$2(.125)$	1.4375	.359375	1.00	.359375	.359475	.061885
4	.6875	.125	.085938	1.9275	.166504	.392601	.000112
5	-	-	.099709	.14556	.014514	.002113	.000660
Σ			.699419		.728715	1.027197	.063388

$\bar{X}=\frac{\Sigma A Y}{\Sigma A}=1.04189 \mathrm{IN}$
$I_{N A}=\Sigma A_{X}^{2}+\Sigma^{\top}{ }_{00}-\Sigma A \cdot \bar{x}^{2}=.33134 I N^{4}$

SUPPORT STRITTUFE（Continued）
Boan（2）（Continued）
deflection at mid－span

$$
A=\frac{5 \mathrm{NL}^{3}}{384 \mathrm{EI}}=\frac{5(39.5)(23.625)^{3}}{304\left(10.7 \times 10^{6}\right)(.33134)}=.002 \mathrm{IN}
$$

Beam（3）sees no load
Beams（1）\＆4；are the same，with beam 4 being more highly loaded．

$$
\begin{aligned}
I_{N A} & =\frac{1}{12}\left[2 .(2)^{3}-1.875(1.74)^{3}\right] \\
& =.4959 \mathrm{IN}^{4}
\end{aligned}
$$

$$
w=\frac{F_{R}}{144}\left[\frac{20.0}{2}+1.75\right]
$$

$P_{R}=350 \mathrm{psf}$
$W=28.6 \mathrm{LBS} / \mathrm{IN}$

Maximum positive airload．The maximum pressure in the TPSTF is ．025

$$
\begin{aligned}
& \text { W \#/IN. } \\
& W=\frac{F_{R}}{1!i t}\left[\frac{12.5+20.0}{2}\right] \\
& \mathrm{P}_{\mathrm{R}}=350 \mathrm{psf} \text { (LIMIT)* } \\
& \mathrm{w}=30.5 \# / \mathrm{IN} \\
& M=\frac{\mathrm{mI}^{2}}{8}=\frac{39.5(23.625)^{2}}{8}=2755 \mathrm{IN}^{\# 1} \text { at mid-span } \\
& r_{b}=\frac{M_{\bar{x}}}{I_{\mathrm{NA}}}=\frac{2755(1.04489)}{.33234}=8660 \mathrm{pos} \\
& F_{t y}=50 \mathrm{ksi} \\
& \text { F.S. }=1.15 \\
& \text { M.S. }=\frac{50000}{1.15(8660)}-1=\text { AMPLE }
\end{aligned}
$$

SUPPORT STRUCTURE (Continued)

$$
\begin{aligned}
& M=\frac{W L^{2}}{8}=\frac{28.6(23.625)^{2}}{8}=1990 \mathrm{IN} \text { LBS (Mid-Span) } \\
& r_{b}=\frac{M \bar{x}}{I_{N A}}=\frac{1990(1.0 \dot{L}}{.4959}=4020 \mathrm{psi} \\
& \text { M.S. } \frac{50000}{1.15(4020)}-1=\text { AMPLE }
\end{aligned}
$$

SHEAR CLIPS (DUG ADIOO1-104-19)

Mex. shear occurs on beam (2)

$$
\begin{aligned}
V & =\frac{W L}{2}=\frac{39.5(23.60 .5)}{2}=466.6 \text { LBS per end } \\
V / 2 & =233.3 \text { LBS per clip. }
\end{aligned}
$$

Upper left fastener has highest load
Resultant $=457.2 \mathrm{Ib}$.
Fastener Shear Allowable:
4420 Ib. \min (Ref. 16)

$$
\text { M.S. }=\frac{78000}{1.4(457.2)}=-1=\mathrm{AMPLE}
$$

Bering:

$$
f_{b}=\frac{457.2}{.125(.190)}=19250 \mathrm{psi}
$$

$F_{b r u}=78 \mathrm{ksi}(\operatorname{Ref} 16)$

$$
\text { M.S. }=\frac{78000}{1.15(19250)}-1=\mathrm{AMPLE}
$$

[^0]: - Intermall, no allowance beyond the emittance allowance was required because of the low-pressure quiescent condition of the invernal air.

[^1]: 1368010 W

[^2]: "Thinning" at the bend line was experienced with the Haynes 188 corrugation. This was the result of too sharp a radius on the sizing plates, which were used to force and stretch the material into the sizing block. The reduced thickness at the

[^3]: * Ref. Pg. D-1:

