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APPLIED ROUTH APPROXIMATION 

by Walter C. M e r r i l l  

Lewis Research Center  

SUMMARY 

Models of physical processes are often too complex to be handled directly. Approxi- 
mations of these models that are of reduced complexity but that maintain the essential 
model characteristics are often used for analysis rather than the original model. One 
way to generate these approximations is the Routh approximation technique. 
port, this technique is programmed and applied in the frequency domain to a 16th-order, 
state-variable model of the FlOO engine and to a 43rd-order7 transfer-function model 
of a launch vehicle boost-pump pressure regulator. The accuracies of reduced-order 
approximants obtained for both models a r e  compared with the original model. The re- 
sults indicate that the Routh method is an excellent technique for linear system reduction 
in the frequency domain. 
the time domain in order  to handle the state-variable model directly. 
formulation is derived herein and a new characterization that specifies all possible Routh 
similarity transformations is given. This characterization is computed by using 
eigenvector- eigenvalue techniques and is therefore quite accurate. The application of the 
time-domain Routh technique to the state-variable engine model is described, and 
reduced-order approximation results are given. Additionally, an optimization procedure 
that can improve the approximation accuracy by taking advantage of the transformation 
characterization is applied to the engine example. Also, the limitations of applying the 
Routh technique to the fixed-dimension, multiple-input - multiple-output reduction prob- 
lems are discussed. 

In this re- 

Therefore, the frequency-domain formulation w a s  extended to 
The time-domain 

IN TROD UC TION 

In control system design the system to be controlled is often represented by a com- 
plex mathematical model. Practically, this complex model may be difficult to use for  
design purposes. Additionally, the resultant control design may be too complex to im- 
plement. To eliminate these problems, model reduction methods are often used before 
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designing the control system in order  to reduce the complexity of the original model 
while maintaining its important characteristics. Alternatively, model reduction methods 
could be applied to the reduction of complex control designs. In either case the model 
reduction process would be the same. 

One philosophy adopted in reduction methods in dominant-mode approximation 
(ref. 1). In this report, a dominant-mode-approximation technique, the Routh approxi- 
mation technique (refs. 2 and 3) ,  is applied in both the frequency and time domains to 
simplify a state-variable turbofan engine model, and in the frequency domain to simplify 
a transfer-function model of a launch vehicle boost-pump pressure regulator. Hutton 
and Rabins (ref. 4)  have shown the frequency-domain formulation of the Routh approxi- 
mation technique to  be an excellent reduction method f o r  many mechanical systems. 
This formulation is applicable to  turbofan engine and boost-pump regulator models as 
well and is therefore a strong motivation for  the work of this report. 

od in the frequency domain to the F l O O  turbofan engine. 
that adequate, reduced- complexity models can be determined by the Routh technique. 
Next, the applicability of the frequency-domain approach to high-order systems w a s  
studied by using the boost-pump pressure regulator model. Finally, the frequency- 
domain Routh formulation w a s  extended to the time domain. This extension allows the 
usual engine time-domain formulation to be handled directly. The time-domain Routh 
approximation formulation also allows additional flexibility in the choice of the approxi- 
mate system. 
mized approximations can be readily generated. The time-domain formulation w a s  ap- 
plied to the engine model, and some results a r e  given. Optimization results and the ap- 
plication of the Routh method to deriving fixed-dimension realizations of the F l O O  engine 
are also discussed. 

The objectives considered included the application of the Routh approximation meth- 
This application demonstrated 

By using the additional flexibility of the time-domain formulation, opti- 

ROUTH APPROXIMATION 

Many physical processes can be represented as multiple-input - multiple-output 
(MIMO) dynamic systems by using linear, constant- coefficient, differential equations to 
model small variations at various operating-point conditions. A transfer-function repre- 
sentation of these equations can be used as input information in a classical o r  
multivariable-frecuency-response control system design. The complexity of these 
transfer functions can cloud the design process with unnecessary detail o r  difficult com- 
putational problems. Additionally, control systems may be made more complex by un- 
necessary model complexity. Thus, there is a strong motivation to reduce the complex- 
ity of system and control models. 
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Frequency Domain 

The Routh approximation method (refs. 2 and 3) is a dominant-mode reduction tech- 
nique. In the frequency domain the method incorporates parameters obtained from a 
Routh stability table analysis in the reduction process. These parameters,  called alpha 
and beta parameters,  a r e  obtained from the coefficients of the MIMO transfer function 

Blsn-' + . . . + Bn 

n n- 1 
aos +als  + .  . . + an 

W(s )  = 

where the ai are sca la rs  and the Bi are I x m matrices. (All symbols are defined 
in appendix A. ) Algorithmically, the n alpha parameters a r e  computed from the de- 
nominator of equation (1) as (ref. 4) . 

and 

where 

i = 1 , 2 ,  . . ., n -  1 - 4- ai -- 
i 

"0 (3) 

a. i = O  for i + j > n  
J 

The coefficients a! can be arranged as entries in a Routh table (ref. 2). This tabular 
construction suggests the name Routh approximation. 

The beta parameters  a r e  computed from both the numerator and the denominator of 
the given t ransfer  function. Consider the single-input - single- output (SISO) transfer 
function from input q to output p implicitly given in equation (l), W (s). The beta 
parameters  for this SISO transfer function a r e  

J 

Pg 
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and 

i = 1 , 2 ,  . . ., n 
j = O , 2 , 4 ,  . . ., ~ n - i - 2  I b;, 

ai  
p. =-  
1 

i 
b:+2 - - bj+2 - pi aj+2 

(5)  

where 

i 
J 

b. = O  for  i + j > n  

and br is the (qp) element of the matrix B,, where r = 1 to n. In this way, beta 
parameters for  the 2 x IT? possible SISO transfer functions of equation (1) can be found. 
Again, considering the SISO transfer function W 

Pg 
imant from the first k alpha and beta parameters is given recursively as 

th 

(s), the computation of the kth approx- 

7 k a. = 1 

i = k ,  k -  1 , .  . . ,  1 

j =2,4,6, . . . ,  r k -  i ! ai-' = aiaO i 
0 

bi - p ai 
0 -  i o  

i- 1 i i+l a. = a.a. + aj-2 
J 1 J  

J 1 J  i+2 J i b. = &a. + bj-l 

and 

j = 0 , 2 , 4 ,  . . ., I k  

where 

i i  
J J  

a. = b .  = O  for i + j > k  

Note that, for  different output-input pairs, different approximant o rde r s  k can be 
chosen. The kth-order approximant for the (pq) th output-input pair is written as 
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Properties. ~~ - The -~ 

disk-' + d 2 ~ k - 2  + . . . +dk 
(9) 

cos k + CISk- '  + .  
+ Ck 

Routh approximation method exhibits several very useful proper- 
ties. Each is important in the reduction problem and is described briefly here. 

mant, of any order,  will be asymptotically stable. 

and zeros  of the original function as the order  of the approximation is increased. 

impulse response energy is defined as 

Stability: If the original t ransfer  function is asymptotically stable, the Routh approxi- 

Pole-zero locations: The poles and zeros  of the approximants approach the poles 

Impulse response energy: If h(t) is the impulse response of W ( s ) ,  and if the m 

E =$ h2(t) dt 

then 

i=l 

Also, if  hk(t) is the impulse response of the kth-order approximant of W (s), then m 
2 

'k +1 Ek+l = Ek +--- 
2ak+l 

Since W (s) is assumed to be asymptotically stable, ai > 0 for i=l, . . . , n and 
Pg 

O < E l < E Z < E 3 < .  . . < E n = E  (13) 

The ratio Ek/E gives an indication of the approximation accuracy in t e rms  of the per- 
centage of total energy accounted for  by the kth approximation. 

dition: 
Derivatives. - The kth Routh approximant satisfies the following derivative con- 

di 

dsi 
- rW4l 

s=o 

Initial and final values. - The initial and final values of the step response trajecto- 
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r ies  for  the original 
t rue  even though the 

system and its kth-order Routh approximant a r e  the same. This is 
approximant is a strictly proper transfer function for all p and q. 

Time Domain 

The Routh approximation method w a s  extended to the t ime domain in order  that Routh 
approximants could be directly determined from a state-space model formulation. The 
alternative would be to determine the p X q t ransfer  functions for  the MIMO system and 
then reduce each function individually. For a typical engine model with p = 16 and 
q = 5, this alternative would involve reducing 80 transfer functions at each operating 
point. Computationally, this is undesirable. Hutton (ref. 3) outlines a method for di- 
rectly determining the alpha and beta parameters  from the state-space formulation. 
However, computationally, this method failed for the 16th-order engine example of this 
report. Thus, an alternative computational procedure was devised. It incorporates 
eigenvalue- eigenvector solutions that a r e  well known and for which excellent computation- 
al solutions exist (ref. 5). 

Given the state- space representation C 1, 

where x € Rn, u € Rm, and y € R2,  define a reciprocal system, Z2, such that 

(16) 
y = cx 

where 

The system C1 is assumed to be stable and have distinct eigenvalues. Fo r  the jet en- 
gine system studied herein, this is a realistic assumption. Note that the reciprocal 
transformation of C2 is C1. This transformation wil l  always exist since A is as- 
sumed to be stable. The transformation is required to preserve the dominant o r  low- 
frequency information of C1 during the reduction process (ref. 3). Now consider a 
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nonunique similarity transformation of C2, called the Routh transformation, such that 

ATR = TRR (18) 

R = A ; r  (19) 

where R is the Routh stability matrix. That is, 

- 

0 -1 

1 0 

-1  

0 

1 

.1 

0 -1 \ 
O, 

and 

A, =diag[ai]  i = 1, . . . , n 

Also, consider the modal transformation of C2, where 

ATmDm = TmDmA 

and 

A = diag[xi] i = 1, . . . , n (23) 

th Here the xi a r e  eigenvalues of A and the i column of Tm is the corresponding 
eigenvector. Note that Tm will be unique with respect to a scaling convention and a 
specific order  of the Xi's. 
full rank, diagonal matrix with diagonal elements di that may be complex. 

The scaling convention is represented by Dm, an arbitrary,  

Since R is similar  to  A, 
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RT,DZ = T,DZA (24) 

Again T, is a modal matrix for  R and A, and it is unique with respect to a scaling 
convention represented by DZ. From equations (18), (22), and (24) and the definition 

(25) 
D =DmDz -1 

all possible Routh transformations can be characterized as 

(26 1 -1 T =TmDT, R 

Recall that a fixed ordering of eigenvalues is given. Permutations of this ordering can 
be represented by a permutation matrix E where 

P’ 

TR,P = E  P T R (27) 

and E is the identity matrix with appropriate columns interchanged. Although this 
permutation does not affect the input-output transfer relationship of the original system, 
it will affect the input-output characteristics of the approximate system. Undoubtedly, 
one of the n! possible state permutations wi l l  yield a better approximation in some 
sense than another, but this problem is not considered herein. 

P 

From equation (18) a Routh canonical system Z3 can be written as 

kR = RxR + Gu 

y =HxR 

where 

x = T  x R R  

The Routh approximation procedure starts by assuming that 

where 
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and 

of equation (30) becomes Ea, o r  

C Rk, and € Rn-k. The system Z2 that incorporates the assumption 

\ 

ft = TR R T - l  x1 + TRllGlu I 
11 l1 R1l 1 

where 

and x1 C Rk and the subscripts indicate conformable partitioning of the appropriate 
matrices. The desired approximation then is the reciprocal transformation of E;,  
called Ci. 

is simply a similarity transformation of the truncated Routh stability TRllRl 1 
th matrix. Truncating an nth-order Routh matrix R yields another Routh matrix of k 

order  Rll. Since the original system is stable, the alpha parameters  of R, ai (i = 1 
o r  n), a r e  positive. Therefore, Rll is also stable. The reduction process implied 
in equation (32) exhibits the same pole property as the frequency-domain approach. 

multiple-output system and TR is selected such that 

Examination of equation (32) shows that the reduced-order system matrix, 

Hutton (ref. 3) has shown that if the system given by equation (16) is a single-input - 

the elements of the rows hi of H become the beta parameters for the output considered 

hi = (PI,, P,i, - - - 7 SJ (34) 
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and the properties of the approximation described previously hold. It can be shown that 
if D is selected as D = diag[ Si], where 6' = T;B, equation (33) is satisfied. 

COMPUTATIONAL ASPECTS OF ROUTH APPROXIMATION 

Computational aspects  of both the frequency- and time-domain formulations are 
discussed in this section. 

Frequency Domain 

In the frequency domain the Routh approximation problem is solved by calculating 
the alpha and beta parameters  for  a given t ransfer  function. Straightforward program- 
ming of equations (3), (5), and (6) as detailed in subroutines DROUTH and DTHCNV in 
appendix B gives these parameters  (DROUTH) and the Routh approximants (DTHCNV). 
Also, the impulse response energy property of equation (11) w a s  programmed in sub- 
routine DIMPLS. Implementing this Routh tabular procedure is straightforward, and 
computationally the procedure is an efficient and accurate method of reducing SISO 
transfer functions in the frequency domain. 

Time Domain 

Comptationally, given the state- space formulation of equation (1 5), time-domain 
Routh approximation requires  (1) the alpha eoefficients and (2) the Routh transformation 
matrix. The alpha coefficients can be found readily from equation (3) if the system- 
characteristic- equation coefficients can be found. A program that incorporates the 
method of Danielevski (described in ref. 6 )  to find the characteristic equation of the sys- 
tem matrix A was  used in this report. The alpha coefficients were found by applying 
subroutine DROUTH. 

A method for  computing the Routh transformation matrix of equation (18) has been 
proposed by Datta (ref.  5). This method w a s  programmed and applied to the 16th-order 
jet  engine model. Numerical results were unacceptable because of large computational 
e r ro r s ,  and so another technique w a s  sought. Since accurate and efficient eigenvalue- 
eigenvector techniques a r e  well known (for the case of distinct eigenvalues), the comput- 
ation of the Routh transformation matrix w a s  reformulated as the solution of two 
eigenvalue-eigenvector proglems. These two problems a r e  represented by equations 
(22) and (24) and a r e  solved by using the computational methods of reference 7. Since 
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A and R are similar, they have the same eigenvalues. The Routh matrix R is also 
known from equation (19) since the alpha parameters have been found. 

complex field. Thus, from equations (2) to (6), TR can in general be complex. How- 
ever, a real TR is desired to yield a physically realizable approximation and to facili- 
tate computer computations. The matrix TR can be constrained to be rea l  by the prop- 
er  selection of the elements di of D. To determine these elements, consider the eigen- 
vector solution of equation (24) by means of real-number computer operations. Given A 
and its eigenvalues, the modal matrix of A can be written as 

The transformation matrices of equations (22) and (24) may have elements in the 

Tmm = T  m V m (35) 

where Vm is the block diagonal and Tmm, the modified modal matrix of A ,  is a ma- 
trix of real numbers. If the eigenvalues of A were all real, Vm would equal I. How- 

would be defined as 
ever, if Xi and Xi+l were a complex conjugate pair, the ith block of V,, 

Likewise, for  equation (24), 

T = TzV, 
z, m 

Now from equations (26), (33), and (35) and the definition 

D B  =VmDVm -1 

(37) 

TR can be written 

D T-l T~ = Tmm B z , m  

Now if TR is real, DB, a block diagonal matrix, must be real. This can be assured by 
selecting the elements of D, di, such that 

(1) di is real if  Xi is rea l  
(2) di,di+l are a complex conjugate pair  if xi, Xi+l a r e  a complex conjugate pair. 
The reciprocal transformation of equation (17) does not represent a significant in- 

crease in computations since the modal transformation is the same for A and A and 
the eigenvalues are simply reciprocals. 

A 

The matrix inversion of equation (26) can be eliminated by noting that 
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r=Tr T -  T 

where 

T” = diag[(-l)i-l] (41) 

From equation (19) then 

A ~ T R = R  T nRT 

Now from equations (24), (26), and (40) 

TR= T,DmT, T -  TAR 
(43) 

A program that solves fo r  TR, the Routh transformation in equation (43), was wr i t -  
ten. This program, called DRTTRC, not only finds TR, but also the transformed ma- 
t r ices  of equation (28), G and H. The FORTRAN listing of DRTTRC is given in appen- 
dix B. Additionally, a program that finds the reduced system of equation (32), called 
DTYPEI, w a s  written and is given in appendix B. 

APPLICATION TO ENGINE MODEL 

The frequency-domain formulation of the Routh approximation technique was applied 
to the state-variable model of the FlOO engine at the intermediate-power operating point 
and to the transfer-function model of the boost-pump pressure regulator design. The 
time-domain formulation w a s  applied only to the engine model. 

Frequency-Domain Applications 

As an initial experiment the frequency-domain formulation was applied to two 16th- 
order  SISO transfer functions. These transfer functions represent dynamics of the tur- 
bofan engine from the input wf (fuel flow) to the outputs Nc (compressor speed) and 
Tt (turbine inlet temperature). The coefficients fo r  these transfer functions were calcu- 
lated and are given in table I. Table I1 shows the impulse response ratios for  Routh ap- 
proximations of increasing order  fo r  the two transfer functions. These ratios were cal- 
culated from the alpha and beta coefficients as outlined in equation (12). From these 
ratios an acceptable approximation order  can be estimated. 

The approximant order  w a s  selected by first choosing a minimum acceptable level 
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of accuracy, as defined by the impulse response energy ratio. The level chosen corres-  
ponds to a ratio of 0.81. This level of accuracy was  assumed to be adequate for the 
purpose of this report. Next the order  that most nearly corresponded to the selected 
ratio was chosen as the order  of the Routh approximant. For €he energy ratios given 
in table II, the Routh approximant orders ,  as found by these criteria, are 

k2 = 9 

The Routh approximants for  Nc and Tt were calculated by using the approximant 
orders  kl and k2 and the algorithm given in equations (6) to (9). The results are 
summarized in table III. Comparisons of pole locations and step responses for exact 
and approximate transfer functions were made to evaluate the adequacy of the approxi- 
mations. Table IV gives the pole locations, and figure 1 the step response comparisons. 
The pole comparison shows a good correlation between actual and approximate system 
poles. Likewise, the step responses of figure 1 indicate an excellent agreement between 
actual and approximate model representations. Based on these results it w a s  concluded 
that the Routh approximation technique is a viable approach to reducing the complexity of 
frequency-domain models of jet engine dynamics. Also, the accuracy level selected in 
this initial example may be too stringent, based on the step response comparison. 

Fo r  comparison, the Routh approximation technique w a s  applied to all 80 ( 1  = 16, 
m = 5) possible transfer functions of the given engine example. The impulse response 
energy ciriterion for model order  w a s  used to determine the order  for each of the ap- 
proximants. 
dynamically fast (x3, x4, e . g . )  and slow (xl, x 2 7  xIo7 e . g . )  states as well as reduced 
order. The large difference in reduced order  for transfer functions with the same in- 
put indicates that modeling of the fast states as constants with respect to the slow states 
would be acceptable. 

The frequency response technique w a s  also applied to a high-order (43rd order)  
model of the boost-pump pressure regulator, which represents the linearized line dy- 
namics of a liquid-oxygen supply system in a rocket engine (ref. 8). The model input 
represents a pressure e r r o r  signal; the output represents an actuator piston- commanded 
velocity. The transfer function (time scaled by a factor of 100) for this system is given 
in table VI. This application tes ts  the accuracy and the computational feasibility of the 
programs DROUTH, DTHCNV, and DIMPLS for high-order problems. Again, straight- 
forward application of the programs w a s  all that was  required to obtain Routh approxi- 
mants to the boost-pump pressure regulation system. Additionally, it w a s  determined 
that a 43rd-order implementation of this pressure control would be impractical and that 
a study of lower order  implementations would be desirable. 

These reduced orders  a r e  given in table V. Examination of this table gives 

Thus, this application is 
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of more than numerical significance. 

mant w a s  selected. The poles of the original and approximant system a r e  compared in 
table VII; the zeros  a r e  compared in table VIII. Both show good comparability between 
original and approximant values. Fo r  reference the 26th-order approximant is given in 
table M. Figure 2 compares the frequency responses for the original and approximant 
systems. The comparison is exact for both magnitude and phase for frequencies l e s s  
than 20 hertz. The approximation is still good for  higher frequencies, and the loss  of 
frequency information due to the approximation is clearly shown. 

For the 81-percent impulse response energy criterion, a 26th-order Routh approxi- 

Time-Domain Application 

The time-domain formulation of the Routh application technique was  applied to the 
16th-order, state-variable F l O O  engine model. 
response of the F l O O  engine for small perturbations about the intermediate-power oper- 
ating point. The normalized system matr ices  a r e  given in table X and the state, input, 
and output vector definitions in table XI. Calculating the Routh transformation matrix 
TR poses the only significant computational problem in applying the time-domain for- 
mulation. Thus, as a test, the alpha parameters  calculated from the characteristic 
equation of 5 (Routh table approach) and from the similarity transformation TR ATR 
a r e  compared in table XII. Clearly, calculating TR with DRTTRC is accomplished 
with a high degree of accuracy. Therefore, the tools exist to accurately apply the time- 
domain formulation to high-order systems. 

represent an adequate tradeoff between accuracy and complexity. Reduced approximants 
were calculated by using DRTTRC and DTYPEI for this order. Step response trajec- 
tories comparing the original and approximate systems were generated. The Tt result 
indicates the degradation of accuracy obtained with a lower order  model. Typical step 
responses for one input (fuel flow) and two outputs (compressor speed and turbine inlet 
temperature) a r e  given in figure 3. 

With this time-domain formulation, fifth-order models were  calculated for each 
input that exactly match those that would have been determined with a frequency-domain 
analysis. However, the approximants were determined directly from the state-variable 
model without first calculating the frequency t ransfer  function for each input-output pair. 
All the properties of the frequency-domain approach hold for the time-domain approach 
when considering the state-variable formulation one input at a time. 

This model represents the dynamic 

1 

Examining table V shows that a fifth-order approximation for each input would 
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Fixed-Dimension Approximant 

F o r  a five-input system approximated by fifth-order models, a total reduced system 
realization may,require a state vector dimension of 25. In fact, the realization dimen- 
sion will probably vary for different numbers of inputs and orders  of approximation. 
Often, however, the allowable dimension of the total reduced approximation is fixed by 
some engineering o r  economic constraint. Constructing a fixed-dimension realization 
of the total system from the Routh approximation can be a very difficult computational 
problem, especially if the input and output dimensions a r e  large. Thus, the technique 
as outlined does not directly handle the fixed-dimension problem. However, if the same 
TR matrix is used in the time-domain reduction process fo r  each input, the total ap- 
proximation can be realized by a system of kth order ,  where k is the number of alpha 
parameters retained, and the fixed-dimension approximation problem is solved. Select- 
ing the TR matrix that will  give the best kth-order approximation is therefore an in- 
teresting problem. 

In this regard the somewhat a rb i t ra ry  selection of D can be used to good advantage. 
Many different transformations can be found very quickly once the original two eigenvec- 
to r  problems have been solved. Indeed, the selection process can be automated by opti- 
mizing some function of e r r o r  between the original and total approximant systems over 
the n-parameter space of D. Such an optimization scheme w a s  tried on the example 
given in this  report. Two different e r r o r  functions were used for comparison. The first 
w a s  a weighted sum of the differences in sys tem and approximant step response energies. 
The second w a s  a weighted sum of squares  of the differences in system and approximant 
steady- state values. Significant minimization of each e r r o r  function w a s  easily achieved 
in relatively small amounts of computer t ime by using a conjugate direction optimization 
scheme. Thus, the general optimization procedure would appear to be a good way to 
improve the accuracy of approximants for certain systems while maintaining a fixed or- 
der  of realization. However, the time-domain Routh approximation procedure, when 
constrained to yield a fixed-dimension realization in the multiple-input case, does not 
exhibit the final-value property of the single-input case. Fo r  the engine example posed, 
the significant improvement in the approximation gained by function optimization w a s  
overshadowed by these final-value e r r o r s  for  the multiple-input case. 

the final-value property would be met  by a fixed-dimension, multiple-input Routh ap- 
proximant. In the original formulation the difficulty with final values in the multiple- 
input, fixed-dimension problem can be traced to the original assumption of the reduction 
process (eq. (30)). If the initial assumption were changed to 

Based on this observation the time-domain formulation w a s  modified to ensure that . 

(441 
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the approximation would force the final-value property. Unfortunately, the assumption 
of equation (44) when applied to the original system may yield an unstable approximant 
for  a given stable system. This w a s  the case for  the engine example and, thus, the 
modification of the Routh procedure w a s  rejected. 

CONCLUSIONS 

Models of physical processes a r e  often too complex to handle directly. Approxima- 
tions of these models that a r e  of reduced complexity but that maintain essential model 
characteristics a r e  often used for  analysis rather than the original model. One way to 
generate these approximations is the Routh approximation technique. The frequency- 
domain formulation of the Routh technique w a s  applied to transfer-function models of an 
F l O O  engine and a launch vehicle boost-pump pressure  regulator. Also, the Routh ap- 
proximation process was  reformulated in the t ime domain. A new characterization of 
the nonunique Routh similarity transformation w a s  derived that describes all possible 
Routh transformations. This characterization casts the computation of the Routh trans- 
formation into two eigenvector- eigenvalue problems that a r e  easily solved. The applica- 
tion of the time-domain formulation to a 16th-order state-variable description of a tur- 
bofan engine w a s  described, and the results were given. These results indicate that the 
time-domain Routh approximation technique can be valuable in reducing engine model 
complexity when dealing with the model on a single-input basis. An optimization proce- 
dure was discussed that can significantly improve the approximation in a computationally 
efficient manner by taking advantage of the new time-domain characterization. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, May 11, 1977, 
505- 05. 
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APPENDIX A 

SYMBOLS 

A 

ii 
a 

B 

6 

Bi 
b 

C 

c 
C 

D 

d 

di/dsi 

E 

EP 
G 

H 

42 

hi 

K 

k 

r! 

m 

n 

R 

S 

reciprocal system matrix 

original system matrix 

coefficient of characteristic equation 

reciprocal control matrix 

original control matrix 

matrix of numerator coefficients 

element of Bi 

reciprocal output matrix 

original output matrix 

coefficient of characteristic equation for reduced system 

diagonal parameter matrix 

coefficient of numerator polynomial for reduced system 

it h- order  differ en tiat ion ope rator  

impulse response energy 

permutation matrix 

Routh control matrix 

Routh output matrix 

impulse response 

number of rows  

reduced-system order  

Routh approximant o rde r  

number of outputs 

number of inputs 

compressor speed 

original-system order  

Routh-system matrix 

Laplace transform variable 

17 



T 

Tt 
t 

U 

V 

W(S) 

Wf 
X 

9 

Y 

ci 

P 
r 
h 

c 

similarity transformation matrix 

turbine inlet temperature 

time, sec  

control vector 

block diagonal modification matrix 

matrix t ransfer  function 

engine fuel flow 

reciprocal state vector 

original state vector 

output vector 

alpha parameter 

beta parameters  

gamma matrix 

diagonal parameter matrix 

state-space system 

Subscripts: 

k k -order  approximant 

m modal 

mm modified modal 

P output number 

th 

input numb e r 

R Routh transformation 

Z Routh transformed system 

18 



APPENDIX B 

SUBROUTINES USED IN ROUTH APPROXIMATION 

C 
C 
C 
C 
C 
c 
C 
f 
c 
C 

C 
C 
r 

c 
C 
C 

S U I G O U T I Y L  ROUTH 

P u F P O S C  
TO CALCULATE THE A L P H A - B t T b  E X P A N S I O N  

TRANSFTR F t N C T I O N t S I S O )  
C O E F F T C 1 E N 1 S  OF A L I N F A R s  T I W E - I N V A R I A N T  

X N I T I A L 1 7 E  THE ALPHA AND B E T A  ARRAYS 

CALCULATE THE bLPH4 ANI? B E T A  A R R A Y S  

19 



... 

C 5 URROU T I N €  I VP L'LS 
c 
C PURPOSE 
C TO COMPUTE THE ENERGY A S S O C I I T E D  U I T H  CACH 
C ROUTH b P P R C X I f f 4 N T  A S S U R I N G  T H L  S Y S T E M  TS 
C D R T V F N  U I T H  A N  I M P U L S E  
C 

SUFROUTJNE D I M P L S t  dLPHA,@€TA .RHS .N l  
X H F L I C I T  DOUELr P R F C T S I O N  (A-H.0-2 1 
@ I P E N S I O N  A L P H L t I  ) . R F T A ( 1 ) , R M S f  1 I 
sur=o.o 
C O  IC J = I , N  
S U P 3 3 t  T A f  I 13*2 1t2 .  * A t  P P I  f I 1 )  +SUM 
I F f S U H . L T . r . 3 )  RI :T IJRN 
Rt4 5 I X I  =DSC G T  C S LR t 

1 C  C O h T f N U E  
R t  TURN 
E NP 

20 



DO 2 I = l . N  
T A  ( 1  J 1 =T  R I I. J I * A L F D  2 

C 
C FOFfl  CHAT 
C 

€ A  LL 
F O  3 r = l . M n  
3 0  3 JZ lwIUHAT 
C H  1 f I . J I = U C €  I . c) 

DHULT f C  . T R , U C  WHM . A.N 1 

? 
C 
C F I h D  THE I N V E R 5 f  O F  T H f  TR H A T R X Y  
C 

I J Z O  

C A L L  D H T M P Y f U A  ,YE,l.DO * N . ) U # N )  
DO 7 J Z 1 . N  
I f f I J . F P . 1 1  G O  T O  7 2  
I F ( X l ( J 1 . E Q . G . O )  GO TO 7 
00 7 1  1=1 *N 
L‘B 1 1 . J  1 = W A  t I * J41)  

7 1  Wh f . I ~ J + l t = W A f  I , J 1  
I J z l  
G C  TO 7 

7 2  I J - 0  
7 C O R T I N U f  

CA L L  
I Jn=-A 

I J K = - I  J K  
ALFD=ALFA t J ) * I  J K  

D TflUL 7 t Y B  S T Z  9 W A  . N .N * N  1 

D O  a J=I.N 

00 6 1 = 1 . N  
U A t I v J 1 =Y A t I J 1* AL FO 
CALL 

8 
DHULT t U A  9 TZ*UP.N 9 N.hl1 

I D C T = 6  
C A L L  
CALL 

DL NV 1 F  ( U R .N .N VU A . T D G T  .Y C 9 T E C ) 

OWUL T ( T Z . k A . Y E * N  9 N * N  J 
C 
C F O F M  R H A T  

C SUEROUTI  N E  R THCNV 
C 
C PU fiPOS E 
C T O  COHPUTL: THE C O L F F I C I E N T S  OF THH R O U T H  
C C O C V E R C E N T  A P P R O X I R A N T S  
c 

S U E R O U T I N E  D T H C N V ( $ L P H A . P E T A . N ~ f l T X ~ D ~ ~ T X . ~ ~ ~ ~ A X  1 
I I I F L I C T T  DOUBLF P R E C I S I O N  €A-H.O-Z)  
D O L B L E  P R E C I S T  ON N M H T X  
D I P E N S T O N  A L P H A f 1 1  . e E T A ( I I , N Y n T X ( h i n A X . l  ) . D N M T X ( N M A X * I  1 

2 1  



I 1  I l l 1  I l l  I I 1  I 
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r 
c 
c 

r 
c 
C 

r 
c 
C 

c 
C 
C 

l r 2 C  FGKt !AJf lHO, l2X  , * T H t  C O N T P O L  @ I W E W S l O N  IS G R E b T E H  THAN THE'  
1 ~ l X . * F F O U C E D  ORDfR O T H E N S I O N  I N  D T Y P F I ' I  

1 E C T - 6  

F l h D  THE I M V E R C E  OF T H E  K X H Q L O C K  OF T ,  T l l  

F l F D  THE C O N T R O L  M R T R I X  P 

23 
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TABLE I. - COEFFICIENTS FOR TWO 16th-ORDER ENGINE 

TRANSFER FUNCTIONS WITH FUEL FLOW INPUT 

(P = 1, q = 1 )  

i 
equation, 

Element of matrix of 
numer&!or coefficients Bi, 

bi 

temperature, Tt 
(P = 2, 9 = 1 )  

0 
1 
2 

3 
4 

5 

6 

7 
8 

9 

10  

11 
12 

13 

1 4  

1 5  

16  

______- - - -  1.0000 

1 . 0 6 3 8 ~ 1 0 ~  0.1140 

3. 78O5X1O6 4. 2916x1O1 

6 . 6 9 1 5 ~ 1 0 ~  - 4 . 2 4 1 4 ~ 1 0 ~  

7. 0216X1010 

4. 7772x10 l2  

2 . 2 1 5 0 ~ 1 0 ~ ~  

7 . 1 9 4 9 ~ 1 0 ~ ~  

1 . 6 5 8 4 ~ 1 0 ~ ~  

2 . 7 1 5 1 ~ 1 0 ~ ~  

3 . 1 2 5 5 ~ 1 0 ~ ’  

2 . 4 7 3 9 ~ 1 0 ~ ~  

1. 2973x1O2l  

-2 .  2O82X1O6 

- 8 . 2 1 6 3 ~ 1 0 ~  

2. 2542x1O1O 

2. 8702x1012 

1 . 5 7 8 9 ~ 1 0 ~ ~  

5 . 0 2 3 0 ~ 1 0 ~ ~  

1. 0028X1017 

1 . 2 8 5 0 ~ 1 0 ~ ~  

1 . 0 4 4 6 ~ 1 0 ~ ~  

5 . 1 5 2 5 ~ 1 0 ~ ’  

1. 4079X1020 
1. 7841X1020 

7 . 4 2 3 0 ~ 1 0 ~ ’  

5.7270 

5. 8161x1O3 

1 . 8 8 3 5 ~ 1 0 ~  
2 . 9 2 0 9 ~ 1 0 ~  

2. 6079X1010 

1. 4714x10 l2  

5 . 5 1 9 2 ~ 1 0 ~ ~  

1 . 4 1 4 2 ~ 1 0 ~ ~  

3 . 0 5 0 7 ~ 1 0 ~ ~  

2 . 5 2 0 8 ~ 1 0 ~ ~  

1 . 3 6 8 5 ~ 1 0 ~ ’  

4 . 6 3 5 8 ~ 1 0 ~ ’  

9 . 0 2 4 9 ~ 1 0 ~ ~  
8 . 7 1 7 0 ~ 1 0 ~ ~  

2 . 9 2 6 3 ~ 1 0 ~ ’  

2. 5027X1016 

TABLE 11. - IMPULSE RESPONSE ENERGY RATIOS 

FOR INCREASING APPROXIMANT ORDER 

[Fuel flow input.] 

Routh I Compressor speed, Nc I Turbine inlet 
approximant 

order, 
k 

1 
2 

3 
4 

5 

6 

7 
8 

9 

10  

11 
12 

13 

1 4  

1 5  

16  

Impulse response energy ratio 

0.41  

.72  

.89  

. 9 4  

. 9 4 1  

.95  

.96  

. 9 8  

. 9 9  

. 9 9 7  

.998 

.999 

.9992 

.9998 

,9999 

1.0000 

0.007 
. 0 3  

.07 

. 1 4  

. 2 3  

. 3 6  

. 5 1  

. 6 7  

. 8 1  

. 9 1  

. 9 7  

. 9 9  

. 9 9 8  

.999 

.9999 

1.0000 



TABLE lTI. - ROUTH APPROXIMANT COEFFICIENTS FOR TWO 

Compressor speed, 
Nc (P = 1, q = 1) 

Coefficient, 
i 

Turbine inlet temperature, Tt 
(P = 2, q = 1) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

TRANSFER FUNCTIONS 

‘i 

Rout h approximant coefficient s 

di C. 1 

1.0000 
4.7092 
1 . 0 4 4 6 ~ 1 0 ~  
1 . 3 8 5 8 ~ 1 0 ~  
1 . 1 7 2 2 ~ 1 0 ~  
6 . 3 3 0 4 ~ 1 0 ~  

3. 9634x1O6 
3 . 6 8 4 8 ~ 1 0 ~  
1. 1961x1O6 

2.1019x10~ 

di 
~ ~~ 

----------- 
3.6223 
9 . 3 4 6 9 ~ 1 0 ~  
1 . 3 4 0 0 ~ 1 0 ~  
1 . 1 9 0 6 ~ 1 0 ~  

4 6.6700X10 
2 . 2 8 7 7 ~ 1 0 ~  
4 . 4 7 1 6 ~ 1 0 ~  
4 . 3 2 2 9 ~ 1 0 ~  
1 . 4 5 1 2 ~ 1 0 ~  

TABLE IV. - COMPARISON O F  POLE 

LOCATIONS FOR EXACT (16th ORDER) 

AND APPROXIMATE (3rd AND 9th ORDER) 

TRANSFER FUNCTIONS 

Poles of transfer functions 

16th Order  

-0.648 
-1.91 
-2.62 

-6 .7k1 .31j  
-17.8i4.80j 

-21.64.55j  
-38.7 
-47.1 
-50.6 
-59.2 
-175 
- 577 

-18.2 

3 rd  - 0 rd e r 
Routh 

approximant 

-0.635 
-0.989iO. 580j 

9th-Order 
Routh 

approximant 

-0.648 
-1.91 
-2.62 

-6.50i1.16j 
-7.64*3.29j 
-6.82*8.73j 
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I 

u4 

12 
11 

7 

11 

TABLE V. - MINIMUM TRANSFER 

FUNCTION ORDER FOR 81-PERCENT 

IMPULSE RESPONSE ENERGY RATIO 

u5 

5 4  
4 4  

13 
12 

4 4  

: I  
8 8  
2 4  
9 9  
8 8  
4 6  
7 6  
5 4  

10 

- _ .  -. 

Transfer 
function 
output 

x1 
x2 
x3 
x4 
x5 

x7 

x9 
xlo 
x1 1 
x12 

x6 

x8 

x13 
x14 
x1 5 
x16 

-. .- - 

- 
u1 

~ 

3 
3 
6 

11 
4 
3 
3 
4 
8 
4 
9 
8 
7 
7 
4 
6 

_ _  

- 

U, 

- 

1: 
1: 

5 
6 
8 
5 
8 
2 
9 
8 
3 
8 
7 

10 
- 

__ 
u3 - 

4 
5 

13 
16 
6 
8 
7 
7 
7 
2 
7 
7 
5 
7 
7 
9 

__ 
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TABLE VI. - BOOST-PUMP PRESSURE REGULATOR TRANSFER 

FUNCTION FOR PRESSURE ERROR MEASUREMENT INPUT P(s)  

TO ACTUATOR PISTON-COMMANDED VELOCITY OUTPUT Q ( S )  

Q(s) = -261.31 s42 - 9821.8 s41 - 139360 s40 + . . . + 0 . 3 4 5 5 7 ~ 1 0 ~  

s43 + 530.64 s42 + 1239.2 s41 + 17914 s40 + . . . + 0 . 3 3 9 7 2 ~ 1 0 ~  

Power of s 

42 
41 
40 
39 
38 
37 
36 
35 
34 
33 
32 
3 1  
30 
29 
28 
27 
26 
25 
24 
23 
22 
2 1  
20 
19 
18 
17  
16 
15 
14 
13 
12 
11 
10 
9 
8 

7 
6 
5 
4 
3 
2 
1 
0 

Denominator 
coefficient 

0. 53O64X1O2 
.12392x104 
.17914x105 

.14079x1O7 

.91649x1O7 

.25635x109 

. 17766X106 

. 52194X108 

. 11467X1010 

. 45559X1O1O 

. 16623X1Ol1 

. 55692X1Ol1 

. 16873X1012 

. 4896OX10l2 

.12415x1Ol3 

. 3 1 7 6 9 ~ 1 0 ~ ~  

. 6 7 5 9 0 ~ 1 0 ~ ~  

. 1 5 4 3 7 x d 4  

. 2 7 5 1 9 ~ 1 0 ~ ~  

.56516x1Ol4 

. 8 4 0 6 6 ~ 1 0 ~ ~  

.15582x101 

. 1 9 2 0 3 ~ 1 0 ~ ~  

.32126x1Ol5 

.32473x1ol5 

.48853x1Ol5 

.39945x1Ol5 

.53594x1Ol5 

. 3 4 8 0 1 ~ 1 0 ~ ~  

. 4 1 0 5 5 ~ 1 0 ~ ~  

. 2 0 6 7 0 ~ 1 0 ~ ~  

. 2 0 9 7 0 ~ 1 0 ~ ~  

. 7 9 4 5 0 ~ 1 0 ~ ~  

. 6 7 0 8 7 ~ 1 0 ~ ~  

. 1 8 4 7 4 ~ 1 0 ~ ~  

.12418x1Ol4 

. 2 3 8 4 7 ~ 1 0 ~ ~  

. 1 1 9 9 7 ~ 1 0 ~ ~  

. 15079X1012 

. 51938X1011 

. 39472X1010 

. 33972X108 

.66o59x1o9 

Numerator  
coefficient 

0 . 2 6 1 3 1 ~ 1 0 ~  
-. 9 8 2 1 8 ~ 1 0 ~  

-. 1 3 8 9 8 ~ 1 0 ~  
-. 1 0 5 2 4 ~ 1 0 ~  

-. 3 7 0 9 8 ~ 1 0 ~  

-. 13936X106 

-. 68170X108 

-. 18063X1010 
-. 78084X1010 
-. 30434X1011 
-. 10919x1012 
-. 3 5 3 4 7 ~ 1 0 ~ ~  
-. 1 0 7 3 7 ~ 1 0 ~ ~  
-. 2 9 6 1 2 ~ 1 0 ~ ~  
-. 7 6 7 2 5 ~ 1 0 ~ ~  
-. 1 8 3 7 4 ~ 1 0 ~ ~  
-. 4 0 5 9 1 ~ 1 0 ~ ~  
-. 8 5 7 1 5 ~ 1 0 ~ ~  
-. 1 6 0 4 3 ~ 1 0 ~ ~  
-. 3 0 2 6 4 ~ 1 0 ~ ~  
-. 4 7 4 4 0 ~ 1 0 ~ ~  
-. 80866X1015 
-. 10439X1016 
-. 16249X1016 
-. 16879X1Ol6 
-. 24235X1Ol6 
-. 19629X1016 
-. 26269X1016 
-. 15896X1Ol6 
-. 20056X1016 

-. 10314X1016 
-. 8 5 5 5 3 ~ 1 0 ~ ~  

-. 2 8 6 8 9 ~ 1 0 ~ ~  
-. 3 3 5 8 2 ~ 1 0 ~ ~  
-. 5 5 1 3 4 x 1 0 ~ ~  
-. 6 3 8 6 6 ~ 1 0 ~ ~  
-. 54308x10l3 
-. 6 3 9 1 2 ~ 1 0 ~ ~  
-. 22981X1Ol2 
-. 28645X1012 
-. 18961X1010 
-. 37172X1010 
. 34557X108 
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TABLE VII. - POLE COMPARISON BETWEEN APPROXIMANT AND ORIGINAL SYSTEMS 

(a) Approximant system 

Root Real par t  Imaginary 
of root par t  of root 

1 -  
2 
3 
4 
5 
6 
I 

9 
10 
11 
12 
13 
14 
15 
16 

8 '  

24 

26 

.O. 57680X10-1 
-. 1 7 8 4 6 ~ 1 0 - ~  
-. 1 7 8 4 6 ~ 1 0 - ~  
-. 29297X10-2 

-. 51814x10-1 
-. 29291x10-2 

-. 51814x10-1 
-. 5 7 9 5 7 ~ 1 0 - ~  

0 
.14393 

-. 14393 
.29631 

-. 29631 
.34438 

-. 34438 
.52160 

-. 5 7 9 5 1 ~ 1 0 - ~  -. 52160 
-, 43869x10-1 .69008 
-. 43869x10-1 -. 69008 
-, 3 1 4 1 3 ~ 1 0 - ~  -. 1 0 2 1 1 ~ 1 0 ~  
-. 3 1 4 1 3 ~ 1 0 - ~  ' -. 10211X101 
-. 35326x10-1 
-, 35326x10-1 
-. 23819x10-1 
-. 23819x10-1 
-. 3 1 3 0 8 ~ 1 0 - ~  
- . 3 7 3 0 8 ~ 1 0 - ~  
-. 3 8 1 2 1 ~ 1 0 - ~  
-. 38127x10-1 
-. 42813X101 
-. 5 5 8 7 7 ~ 1 0 ~  
-. 5 5 8 7 7 ~ 1 0 ~  
-. 4 4 5 8 8 ~ 1 0 ~  
-. 4 4 5 8 8 ~ 1 0 ~  

.13448XlO' 
-. 13448X101 

.14622x101 
-. 1 4 6 2 2 ~ 1 0 ~  

.1l055x1O1 
-. 1 1 0 5 5 ~ 1 0 ~  

-. 2 2 8 9 9 ~ 1 0 ~  
0 

.43O07x1O1 
-. 43007X1O1 
. 60O18x1O1 

-. 600I8X1O1 

.22899x101 

(b) Original system 
-- 

Root Real par t  Imaginary Root Real part Imaginary 
par t  of root of root part of root of root 

1 
2 
3 
4 
5 
6 
I 
8 
9 

10 
11 
12 
13 

20 

- 0 . 5 7 6 8 0 ~ 1 0 - ~  
-. 1 1 8 4 6 ~ 1 0 - ~  
-. 17846X10-2 
-.2929w10-z 
-. 29297x10-2 
-. 51814X10-1 
-. 51814x10-1 
-. 5195Tx10-2 
-. 5'7957x10-2 
-. 43869x10-1 
-. 43869x10-* 
-. 31413X10-1 
-. 37413x10-1 
-. 32909X10-1 
-. 32909X10-1 
-. 1 4 1 1 2 ~ 1 0 - ~  
-. 1 4 1 1 2 ~ 1 0 - ~  
-. 1 2 0 1 5 ~ 1 0 - ~  
-. 1 2 0 1 5 ~ 1 0 - ~  
-. 1 8 5 8 2 ~ 1 0 - ~  
-. 18582x10-1 
-. 1 2 7 5 0 ~ 1 0 - ~  

0 23 
.14393 24 

-. 14393 25 
.29631 26 

-. 29631 27 
.34438 28 

-. 34438 29 

.52160 1 30 
-. 52160 

.69008 
-. 69008 
. 10211x101 

-. 10211x101 
, 1 3 4 4 5 ~ 1 0 ~  

-. 1 3 4 4 5 ~ 1 0 ~  
.14142x101 

-. 1 4 1 4 2 ~ 1 0 ~  
.15131x101 

-. 1 5 1 3 1 ~ 1 0 ~  
.16411x101 

-. 1 6 4 1 1 ~ 1 0 ~  
.11253x101 

31  
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 

- 

-0. 12750X10-1 

-. 14813x10-1 
-. 11560X10-1 
-. 11560X10-1 
-. 87213K10-2 

-. 1 4 8 1 3 ~ 1 0 - ~  

-. 8 7 2 1 3 ~ 1 0 - ~  
-. 64893x10-' 
-. 64893X10-' 
-. 48184X10-' 
-. 48184X10-' 
-. 36949x10-' 
-. 36949x10-' 
-. 3 0 2 1 8 ~ 1 0 - ~  
-. 3 0 2 1 8 ~ 1 0 - ~  
-. 4 4 4 4 9 ~ 1 0 ~  
-. 4 4 4 4 9 ~ 1 0 ~  
-. 9 1 6 2 3 ~ 1 0 ~  
-. 9 1 6 2 3 ~ 1 0 ~  
-. 4 2 9 1 0 ~ 1 0 ~  
-, 2O926X1O2 

-0. 17253X101 
. 19714XlO1 

-. 1 9 1 1 4 ~ 1 0 ~  
.22212x101 

-. 22272x101 
.24548x101 

-. 2 4 5 4 8 ~ 1 0 ~  
.26466x101 

-. 2 6 4 6 6 ~ 1 0 ~  

-. 2 7 9 9 8 ~ 1 0 ~  
.29114x101 

-. 2 9 1 1 4 ~ 1 0 ~  
.29785x101 

-. 2 9 1 8 5 ~ 1 0 ~  
.44417x101 

-. 4 4 4 1 1 ~ 1 0 ~  
.9O855x1O1 

-. 9 0 8 5 5 ~ 1 0 ~  
0 
0 

. 27998X101 



W 
0 

TABLE VIII. - ZERO COMPARISON BETWEEN APPROXIMANT AND ORIGINAL SYSTEMS 

- 
b o t  

- 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
1 4  
15 
16 
1 7  
18  
19 
20 
2 1  
22 
23 
24 
25 - 

(a) Approximant system 

Real par t  
of root 

~~ 

I .  91929X10-' 
-. 35351X10-2 
-. 35351X10-2 
-. 29437X10-2 
-. 29437X10-' 
. 92709X10-2 
. 9 2 7 0 9 ~ 1 0 - ~  
-. 7 2 7 2 9 ~ 1 0 - ~  
-. 7 2 7 2 9 ~ 1 0 - ~  

. 6 7 2 7 8 ~ 1 0 - ~  

. 6 7 2 7 8 ~ 1 0 - ~  
, 2 6 7 9 4 ~ 1 0 - ~  
. 2 6 7 9 4 ~ 1 0 - ~  

-. 5 7 8 2 5 ~ 1 0 - ~  
-. 5 7 8 2 5 ~ 1 0 - ~  
-. 6 7 3 1 5 ~ 1 0 - ~  
-. 6 7 3 1 5 ~ 1 0 - ~  
-. 2 2 7 0 2 ~ 1 0 - ~  
-. 22702x10-1 
. 11499x10-1 
. 11499x10-1 

-. 3 2 2 2 8 ~ 1 0 ~  
-. 32228X101 
-. 3 0 9 4 9 ~ 1 0 ~  
-. 3 0 9 4 9 ~ 1 0 ~  

Imaginary 
par t  of root 

0 

-. 14517 
,14517 

.29626 
-. 29626 

.35815 
-. 35815 

.52853 
-. 52853 

.71196 
-. 71196 

.1O536x1O1 
-. 1O536X1O1 

.13715x101 
-.13715x101 

.14759x101 
-. 1 4 7 5 9 ~ 1 0 ~  

.17112x101 
-, 1 7 1 1 2 ~ 1 0 ~  

.23645x101 
-. 23645X101 

.37158 
-. 37158 
-. 4 0 1 0 4 ~ 1 0 ~  
. 40104X1O1 

- 
Root 

- 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13  
14  
15 
16 
17  
18 
19 
20 
21 - 

Real par t  
of root 

0. 91929x10-2 
-. 29437X10-2 
-. 29437X10-2 
. 92709X10-2 
. 92709X10-2 

-. 72729X10-2 
-. 72729X10-2 
. 67278X10-2 
. 67278X10-2 
. 27081X10-2 
. 27081X10-2 

-. 66105X10-2 
-. 66105X10-2 
-. 14819X10-1 
-. 1 4 8 1 9 ~ 1 0 - ~  
-. 5 1 3 9 2 ~ 1 0 - ~  
-. 51392x10-1 
-. 2 3 3 1 0 ~ 1 0 - ~  
-. 2 3 3 1 0 ~ 1 0 - ~  

.25798XlO-' 

. 25798X10-2 

(b) Original system 

Imaginary 
par t  of root 

I 
,29626 
-. 29626 

,35815 

,52853 
-. 52853 

.71196 
-. 71196 
. 1O536X1O1 

- ,10536 XlO' 

. 13790X101 
-. 1379OX1O1 
. 14161X101 

-. 35815 

-.14161x101 
.15O83x1O1 1 

-. 15083x10 
. 16573X101 

1 -. 16573x10 
.17352X101 

-.17352X101 

- 
Root 

- 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31  
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 - 

Real par t  
of root 

0 . 6 9 5 5 6 ~ 1 0 - ~  
. 6 9 5 5 6 ~ 1 0 - ~  

-. 1 5 6 4 8 ~ 1 0 - ~  
-. 15648X10-2 
- .  26061X10-2 
-. 2 6 0 6 1 ~ 1 0 - ~  
-. 2 9 9 1 0 ~ 1 0 - ~  
-. 29910x10-2 
-. 30101X10-2 
-. 3 0 1 0 1 ~ 1 0 - ~  
-. 2 9 1 5 3 ~ 1 0 - ~  
-. 2 9 1 5 3 ~ 1 0 ~ ~  
-. 2 8 1 6 5 ~ 1 0 - ~  
-. 2 8 1 6 5 ~ 1 0 - ~  
-. 3 5 3 5 1 ~ 1 0 - ~  
-. 3 5 3 5 1 ~ 1 0 - ~  
-. 3 1 4 7 7 ~ 1 0 ~  
-. 3 9 4 2 6 ~ 1 0 ~  
-. 4 6 8 5 0 ~ 1 0 ~  
-. 4 6 8 5 0 ~ 1 0 ~  
-. 2 0 9 2 7 ~ 1 0 ~  

Imaginary 
part of root 

0. 19874X101 
-. 19874X101 
. 22398X101 

-. 22398X101 

-. 24639X101 
. 26526X101 

-. 26526X101 
, 2 8 0 3 4 ~ 1 0 ~  

-. 2 8 0 3 4 ~ 1 0 ~  
.29131x101 

- .  2 9 1 3 1 ~ 1 0 ~  
. 29789X1O1 

-, 29789X101 
.14517 

.24639x101 

-. 14517 
0 
0 
. 43838X101 

-. 43838x10' 
0 



TABLEM. - 26th-ORDER 

ROUTH APPROXIMANT 

Coefficient, 
i 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

Rout h appr oxi mant coefficients 

di 

-0 .205702~10~  
4 

-. 1 9 0 6 7 7 ~ 1 0 ~  
-. 8 8 4 1 4 5 ~ 1 0 ~  
-. 3151O0X1O6 
-. 9 5 4 5 8 9 ~ 1 0 ~  
-. 2 2 8 4 0 6 ~ 1 0 ~  
-. 4 8 1 4 7 5 ~ 1 0 ~  
-. 8 8 7 4 8 8 ~ 1 0 ~  
-. 129769x1O8 

-. 1 9 5 5 5 6 ~ 1 0 ~  
-. 2634139x10~ 
-. 164O54X1O8 
-. 202690x1O8 
-. 7 3 9 5 2 9 ~ 1 0 ~  
-. 8 7 0 1 6 8 ~ 1 0 ~  
-.170706x107 
-. 1 9 7 2 1 6 ~ 1 0 ~  
-. 186761x1O6 
-. 218839x1O6 
-. 8 4 0 8 1 1 ~ 1 0 ~  
-. 1 0 3 9 4 8 ~ 1 0 ~  
-. 72683OX1O2 
-. 1 3 8 0 5 3 ~ 1 0 ~  

.128341x101 

-.262997XlO 

-. 199129x108 

0 . 2 4 9 8 8 7 ~ 1 0 ~  
.32O663x1O3 
.248369x104 
.129942x105 
.485403x105 
. 151935x1O6 
.398134x106 
.814672x106 
. 168262x1O7 
.234334x107 
.398O45x1O7 
.38316ox1O7 
.54o632x1O7 
.359295x107 
.4166O8x1O7 
.189273x107 
.175577x107 
. 539769x1O6 
. 386O31x1O6 
.789457x105 
.411942x105 
.534361x104 
.18856%104 
.144366x103 
.245338x102 
.126168*101 
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TABLE X. - ENGINE 

[n = 16, 1 = 2, 

(a) A 

-4.32800 

27.8479 
53.8484 

11.1442 

- .344744 

2.05891 

8.97363 
-. 657472 
-. 347415xll 
-. 461982x11 

-. 143460 
-. 570369-' 
-. 908447 
-. 163698 

-4.09217 

-11.9372 

__ 
0.218859 

-5.64300 
208.042 
-14.0784 
-4.84795 
-. 212853 
-.213997 
7.50337 
-. 826121x10- 
-. 110436XlO- 

-29.0787 
- 3.0456 5 
-1.21806 
-1.77558 

.501438 
16.8839 -~ 

0.200384 
3.72188 

-165.000 
496.865 

.507217 
-. 171448x10~1 
-. 418545x10'1 
4.26387 

.272257XlO'! 

.360582XlO-' 
3.31853 

-10.3264 
-4.13034 
-5.04877 

-1.02879 
-. 587604X10-' 

3.95571 
-1.80121 
-1.18466 

-578.300 
3. 76362 
-. 798490x10-1 
-. 465845x10-1 

.701969XlO-j 

.844885%10-' 

. 112675x10-' 

.417099 
10.2900 
4.11573 
1.29700 
- . 6 2 4 8 7 2 ~ 1 0 - ~  
8.06630 

-2.98299 
-1.40020 

42.6308 
-10.0500 

115.858 

2.06863 
4.37978 

-2.85571 
-. 137080 
-. 182567x10- 

-17.7117 
-. 607676 
-. 242984 
3.39206 

.307427 
10.1496 

-0.144833 
1.56028 

,165.738 
-70.2873 

3.55273 

-. 818499x10-1 
-19.7900 

15.0693 
.207504 
. 277078x10-1 

26.1649 
.e83145 
,353474 
,691218 

-. 446147 
-14.7933 

0.769294xlO' 
,120495 

-10.7525 
-8.77498 

-.161294 
-. 182496 

-20.4700 
,303936 
,168996XlO. 
,225353xlO' 

.71102OXlO' 
,287463xlO' 
,588312xlO' 

1.91267 

19.6607 
-1.11110 

(b) B matrix 

5.92813 
33.9885 
2.48005 

.373669 
,233509 

-. 538716 
.156463 

19.9275 
.750732 
,299580 
.391725 

1.24292 

-0.144819 
-. 299362 

20.1663 
-36.0530 
-. 755865 
-. 582995x10-1 
-. 768059X10-1 

-19.9700 
3.86258 

,515019 
18.4196 

7. 55591 
3.02213 
3.72598 

.242382 
-.ti56673 

-0.124675 
- _  118071 

10.0878 
5.82984 

-6.59813 
,263890 
,262489 

-. 264328 
-. 841755%10-2 
-. 112409X10-2 

-. 352531X10-1 
-. 141273X10-1 
. 258106X10-1 
. 332296x10-1 
,868843 

-1.63330 

__ 
%or p = 16, C is the 16th-order identity matrix. 
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MODEL DATA 

q = 2 7  

n-atrix 

0 . 4 2 7 3 4 6 ~ 1 0 - ~  
.239841 
. lo1911 

-. 358717 
-.608226x10-1 
-. 793110x10-1 
. 341211x10-1 

-12.9188 

. 7 5 1 1 1 1 ~ 1 0 - ~  
-. 665700 

,222139 
-1.41104 
-. 564015 
-.I388916 
-.249931x10-2 
-. 291566x10-1 

0.252614 
2.24114 
-. 6 3 6 9 5 3 ~ 1 0 - ~  

-79.0958 
.128316 

-. 659112x10'1 
, 6 2 9 6 4 5 ~ 1 0 ' ~  
. 386312X10-1 

-49.9900 
-5.99940 

,244611 
-12.7924 
-5.11614 
-6.28623 
-. 375007x10-2 

.913177 

-1.19810 

44.6143 

-2.92106 

0.940377 

170.896 

-.253476X10'1 
-.365148X10-1 
. 167423X10-1 

46.0216 
6.13815 

-41.6500 
59.6425 
23.8539 
29.3366 

. 112218X10-1 
-5.14614 

- 0 . 9 9 1 0 3 6 ~ 1 0 - ~  
-. 3 5 3 2 1 9 ~ 1 0 ' ~  
2.24267 

-3.61533 
. 9 2 2 0 5 9 ~ 1 0 - ~  

-. 380239x10-2 
. 894036d0-1 

- .  1 9 3 1 8 1 ~ 1 0 - ~  
0 
0 
- .  111896 
-. 1 8 1 1 3 1 ~ 1 0 - ~  
-. 118453x10-2 
-. 213957x10-1 

20.0000 
10.9155 

( c )  cT matrix 

0. 132963x10-1 
-. 104131X10'1 

,101904 

-. 422419 
-. 621158K10-1 
-. 818498x10-1 

.341318X10-1 

. 751331X10-2 

. 101380x10-2 
,219763 
. 124196x10-1 
, 494061X10'2 
. 117686X10-1 

- .  374824X10-2 

-4.53105 

-50.1600 

1.82058 
-. 855296X10-' 

.114661 

-. 424440 
-. 595839x10-I 
-. 193214X10-1 

.341306XlO-: 

.315602XlO-' 

.450618x10-' 
,219141 

-4.53242 

50.0100 
18.0000 
-3.33640 
-. 249931XlO-' 
- .  147456 

0.213133 
-. 100398x10-1 

,101938 

-. 420034 
-. 621119x10-1 
-. 818338x10-1 
. 361042x10-1 
. 751138X10-2 
. 101310x10~2 
,219119 
. 112333X10-1 

-4.53151 

- 1.99600 
-. 359398 
-. 314785x10-2 
-. 164604 

-0.106835 

,114658 
-. 104123x10-1 

-4.43444 
1.47850 
-. 595150x10-1 
-. 193363x10-1 
. 341328x10-1 
. 375590X10-2 
. 4 5 0 6 4 5 ~ 1 0 - ~  
,218157 
. 112245x10-1 
. 449175X10-2 

-.250001x10-2 
-19.7700 

39.2746 
1 
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TABLE XI. - INPUT, OUTPUT, A N D  STATE VECTOR DEFINITIONS 

[Linear model: 2 = Ax + Bu; y = Cx, where x a r e  state variables, y are output 
variables, and u are input variables. Since C = 1 (identity matrix), y = x.] 

x1 - Fan speed 

x2 - Compressor speed 

x3 - Compressor discharge pressure 

x4 - Interturbine volume pressure 

x5 - Augmentor pressure  

x6 - Fan inside-diameter discharge temperature 

x7 - Duct temperature 

x8 - Compressor discharge temperature 

x9 - Combustor exit temperature - fast component 

xl0 - Combustor exit temperature - slow compment 

xI1 - Combustor exit total temperature 

x12 - Fan turbine inlet temperature - fast component 

x13 - Fan turbine inlet temperature - slow component 

x14 - Fan turbine exit temperature 

x15 - Duct exit temperature 

x16 - Augmentor exit temperature 
- 

.. 

Control variables 
_. ~ 

u1 - Main combustor fuel flow 

u2 - Nozzle jet a r ea  

u3 - Inlet guide vane position 

u4 - High variable stator position 

u5 - Compressor bleed 
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TABLE XII. - COMPARISON O F  

COMPUTATIONAL ACCURACY 

OF FREQUENCY- AND TIME- 

DOMAIN FORMULATIeNS 

Alpha parameters 

F rom Routh 
tab1 e 

0.32460 
1.1230 
2.2886 
3.9662 
6 . 2 9 5 4  
9 .3914 

13 .377 
1 8 . 4 2 5  
24. 806 
33.033 
44 .121 
60 .072 
85.236 

131.79  
254.39 
806.00  

From 
transformation 

T ~ A T ~  

0.32460 
1 . 1 2 3 1  
2 . 2 8 8 6  
3.9662 
6 . 2 9 5 4  
9 .3914 

1 3 . 3 7 8  
18 .425 
24.806 
3 3 . 0 3 3  
44 .121 
60.072 
85.236 

131.79  
254.39 
806.00  
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Figure 1. - Step response comparisons for normalized compressor 
speed and t u r b i n e  i n l e t  temperature outputs for fuel  flow i n p u t  - 
frequency-domain approach. 
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Figure 2. - Frequency response comparison. 
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F igure 3. - Step response comparisons fo r  normalized compressor 
speed and tu rb ine  i n l e t  temperature outputs  for  fuel flow i n p u t  - 
time-doma i n approach. 
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