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APPLIED ROUTH APPROXIMATION
by Walter C. Merrill

Lewis Research Center

SUMMARY

Models of physical processes are often too complex to be handled directly. Approxi-
mations of these models that are of reduced complexity but that maintain the essential
model characteristics are often used for analysis rather than the original model. One
way to generate these approximations is the Routh approximation technique. In this re-
port, this technique is programmed and applied in the frequency domain to a 16th-order,
state-variable model of the F100 engine and to a 43rd-order, transfer-function model
of a launch vehicle boost-pump pressure regulator. The accuracies of reduced-order
approximants obtained for both models are compared with the original model. The re-
sults indicate that the Routh method is an excellent technique for linear system reduction
in the frequency domain. Therefore, the frequency-domain formulation was extended to
the time domain in order to handle the state-variable model directly. The time-domain
formulation is derived herein and a new characterization that specifies all possible Routh
similarity transformations is given. This characterization is computed by using
eigenvector-eigenvalue techniques and is therefore quite accurate. The application of the
time-domain Routh technique to the state-variable engine model is described, and
reduced-order approximation results are given, Additionally, an optimization procedure
that can improve the approximation accuracy by taking advantage of the transformation
characterization is applied to the engine example. Also, the limitations of applying the
Routh technique to the fixed-dimension, multiple-input - multiple-output reduction prob-

lems are discussed.
INTRODUCTION
In control system design the system to be controlled is often represented by a com-
plex mathematical model. Practically, this complex model may be difficult to use for

design purposes. Additionally, the resultant control design may be too complex to im-
plement. To eliminate these problems, model reduction methods are often used before



designing the control system in order to reduce the complexity of the original model
while maintaining its important characteristics. Alternatively, model reduction methods
could be applied to the reduction of complex control designs., In either case the model
reduction process would be the same,

One philosophy adopted in reduction methods in dominant-mode approximation
(ref. 1). In this report, a dominant-mode-approximation technique, the Routh approxi-
mation technique (refs. 2 and 3), is applied in both the frequency and time domains to
simplify a state-variable turbofan engine model, and in the frequency domain to simplify
a transfer-function model of a launch vehicle boost-pump pressure regulator. Hutton
and Rabins (ref. 4) have shown the frequency-domain formulation of the Routh approxi-
mation technique to be an excellent reduction method for many mechanical systems.
This formulation is applicable to turbofan engine and boost-pump regulator models as
well and is therefore a strong motivation for the work of this report.

The objectives considered included the application of the Routh approximation meth-
od in the frequency domain to the F100 turbofan engine. This application demonstrated
that adequate, reduced-complexity models can be determined by the Routh technique.
Next, the applicability of the frequency-domain approach to high-order systems was
studied by using the boost-pump pressure regulator model. Finally, the frequency-
domain Routh formulation was extended to the time domain, This extension allows the
usual engine time-domain formulation to be handled directly. The time-domain Routh
approximation formulation also allows additional flexibility in the choice of the approxi-
mate system. By using the additional flexibility of the time-domain formulation, opti-
mized approximations can be readily generated. The time-domain formulation was ap-
plied to the engine model, and some results are given. Optimization results and the ap-
plication of the Routh method to deriving fixed-dimension realizatious of the F100 engine

are also discussed.

ROUTH APPROXIMATION

Many physical processes can be represented as multiple-input - multiple-output
(MIMO) dynamic systems by using linear, constant-coefficient, differential equations to
model small variations at various operating-point conditions. A transfer-function repre-
sentation of these equations can be used as input information in a classical or
multivariable-frequency-response control system design. The complexity of these
transfer functions can cloud the design process with unnecessary detail or difficult com-
putational problems. Additionally, control systems may be made more complex by un-
necessary model complexity. Thus, there is a strong motivation to reduce the complex-
ity of system and control models.



Frequency Domain

The Routh approximation method (refs. 2 and 3) is a dominant-mode reduction tech-
nique. In the frequency domain the method incorporates parameters obtained from a
Routh stability table analysis in the reduction process. These parameters, called alpha
and beta parameters, are obtained from the coefficients of the MIMO transfer function
Bls“'1 +...+B

> (1)
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where the a; are scalars and the B, are I X m matrices. (All symbols are defined
in appendix A.) Algorithmically, the n alpha parameters are computed from the de-
nominator of equation (1) as (ref. 4)
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The coefficients a@ can be arranged as entries in a Routh table (ref. 2). This tabular
construction suggests the name Routh approximation.

The beta parameters are computed from both the numerator and the denominator of
the given transfer function. Consider the single-input - single-output (SISO) transfer
function from input q to output p implicitly given in equation (1), qu(s). The beta
parameters for this SISO transfer function are

1_
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and

where
bl=0 for i+j>n

and br is the (qp)th element of the matrix Br’ where r =1to n. In this way, beta
parameters for the ? X m possible SISO transfer functions of equation (1) can be found.
Again, considering the SISO transfer function qu(s), the computation of the kth approx-
imant from the first k alpha and beta parameters is given recursively as

k _ h
ao—l
i-1 _ i
ag = = o3, '
i i I:k’ k- 1’ L | 1
by = B2, . 94 s (6)
i-1_ i i | 720, =k
2 =aiaj+a]._2
i i i+2
. = B.a; + b;
b] Bla]+ -1
and
%-j =2 _
j=0,2,4, ., =k (7)
“k-j-1 7%
_ .1
dk_].—bj .
d —b2 ]=0’2a4s--'35k (8)
k-j-1 = 7]
where

al=bl=0 for i+j>k

Note that, for different output-input pairs, different approximant orders k can be
chosen. The kth—order approximant for the (pq)th output-input pair is written as
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Properties. - The Routh approximation method exhibits several very useful proper-
ties. Each is important in the reduction problem and is described briefly here.

Stability: If the original transfer function is asymptotically stable, the Routh approxi-
mant, of any order, will be asymptotically stable.

Pole-zero locations: The poles and zeros of the approximants approach the poles
and zeros of the original function as the order of the approximation is increased.

Impulse response energy: If 4(t) is the impulse response of qu(s), and if the

impulse response energy is defined as

= / A2 (t) at (10)
0

then
g2
E = S (11)
2a,
i
i=1
Also, if Ak(t) is the impulse response of the kth—order approximant of qu(s), then
B
— k+1
B =B v o (12)
k+1
Since qu(s) is assumed to be asymptotically stable, a, >0 for i=1, . . .,n and
0<E{<Ey<Eg<...<E_ =E (13)

The ratio Ek/ E gives an indication of the approximation accuracy in terms of the per-
centage of total energy accounted for by the k th approximation,

Derivatives, - The kth Routh approximant satisfies the following derivative con-
dition:
al al .
. [W(S)] = — [“’k(s)] 1= 0’19 o e ey k-1 (14)
dst i

s=0 98 s=0

Initial and final values. - The initial and final values of the step response trajecto-




ries for the original system and its kth—order Routh approximant are the same. This is
true even though the approximant is a strictly proper transfer function for all p and q.

Time Domain

The Routh approximation method was extended to the time domain in order that Routh
approximants could be directly determined from a state-space model formulation. The
alternative would be to determine the p X q transfer functions for the MIMO system and
then reduce each function individually. For a typical engine model with p = 16 and
g = 5, this alternative would involve reducing 80 transfer functions at each operating
point, Computationally, this is undesirable. Hutton (ref. 3) outlines a method for di-
rectly determining the alpha and beta parameters from the state-space formulation.
However, computationally, this method failed for the 16th-order engine example of this
report. Thus, an alternative computational procedure was devised. It incorporates
eigenvalue-eigenvector solutions that are well known and for which excellent computation-
al solutions exist (ref. 5).

Given the state-space representation 21,

R =A% + Bu
- (15)
y=0Cx
where x € Rn, u Rm, and y € Rl, define a reciprocal system, 22, such that
X = AX + Bu
(16)
y =Cx
where
— A"l
B =-AB (17)
c=C

The system Zl is assumed to be stable and have distinct eigenvalues. For the jet en-
gine system studied herein, this is a realistic assumption. Note that the reciprocal
transformation of 22 is 21. This transformation will always exist since A is as-
sumed to be stable. The transformation is required to preserve the dominant or low-
frequency information of 21 during the reduction process (ref. 3). Now consider a



nonunique similarity transformation of 22, called the Routh transformation, such that

ATp = TRR (18)

where R is the Routh stability matrix. That is,

o1
R= A T (19)
1 -1 ]
10 -1
N
1 0 -1 0
T = . (20)
AN
0\
0o -1
L 1 0]

and

AR=diag[ai] i=1,...,n (21)

Also, consider the modal transformation of 2,, where
AT D, =T, D,A (22)
and
A =diag[)\i] i=1, .. .,n (23)
Here the A; are eigenvalues of A and the ith column of T is the corresponding
eigenvector. Note that Tm will be unique with respect to a scaling convention and a
specific order of the A;'s. The scaling convention is represented by D m> 20 arbitrary,

full rank, diagonal matrix with diagonal elements di that may be complex.
Since R is similar to A,



RT,D, =T, D, A (24)

Again T, isa modal matrix for R and A, and it is unique with respect to a scaling
convention represented by D,. From equations (18), (22), and (24) and the definition

~ -1
D=D_ D, (25)
all possible Routh transformations can be characterized as
_ -1
TR = TmDTZ (26)

Recall that a fixed ordering of eigenvalues is given. Permutations of this ordering can

be represented by a permutation matrix E p’ where

(27)

and Ep is the identity matrix with appropriate columns interchanged. Although this
permutation does not affect the input-output transfer relationship of the original system,
it will affect the input-output characteristics of the approximate system. Undoubtedly,
one of the n! possible state permutations will yield a better approximation in some
sense than another, but this problem is not considered herein.

From equation (18) a Routh canonical system 23 can be written as

xg = Rxp + Gu
(28)
y = HXR
where
X = TRXR (29)
The Routh approximation procedure starts by assuming that
(xg), =© (30)
where
(XR) 1
=l-—== (31)



n-k

and n : € Rk, and (XR 2€ R The system 22 that incorporates the assumption

of equation (30) becomes 2'2, or

-1
X, =T R, T X, +T G,u
1 R11 11 Rll 1 R11 1

(32)
-1
y=H,T, X
1 R11 1
where
X
x = _._],'._
)

and x4 € Rk and the subscripts indicate conformable partitioning of the appropriate
matrices. The desired approximation then is the reciprocal transformation of =},
called Z'l.

Examination of equation (32) shows that the reduced-order system matrix,

TR R11T£{1 , is simply a similarity transformation of the truncated Routh stability
11 11

matrix. Truncating an n'’-order Routh matrix R yields another Routh matrix of kP

order Rll' Since the original system is stable, the alpha parameters of R, a; i=1

or n), are positive. Therefore, R11 is also stable. The reduction process implied

in equation (32) exhibits the same pole property as the frequency-domain approach.
Hutton (ref. 3) has shown that if the system given by equation (16) is a single-input -

multiple-output system and TR is selected such that

-—l/a;
0
=] - (33)

[ o ]
the elements of the rows hi of H become the beta parameters for the output considered

hi = (Bli’ B2i’ e ey ﬁni) (34)



and the properties of the approximation described previously hold. It can be shown that

if D is selected as D = diag| Gi], where 0= T;nlB, equation (33) is satisfied.

COMPUTATIONAL ASPECTS OF ROUTH APPROXIMATION

Computational aspects of both the frequency- and time-domain formulations are
discussed in this section.

Frequency Domain

In the frequency domain the Routh approximation problem is solved by calculating
the alpha and beta parameters for a given transfer function. Straightforward program-
ming of equations (3), (5), and (6) as detailed in subroutines DROUTH and DTHCNYV in
appendix B gives these parameters (DROUTH) and the Routh approximants (DTHCNV).
Also, the impulse response energy property of equation (11) was programmed in sub-
routine DIMPLS. Implementing this Routh tabular procedure is straightforward, and
computationally the procedure is an efficient and accurate method of reducing SISO
transfer functions in the frequency domain.

Time Domain

Computationally, given the state-space formulation of equation (15), time-domain
Routh approximation fequires (1) the alpha eoefficients and (2) the Routh transformation
matrix. The alpha coefficients can be found readily from equation (3) if the system-
characteristic-equation coefficients can be found. A program that incorporates the
method of Danielevski (described in ref. 6) to find the characteristic equation of the sys-
tem matrix A was used in this report. The alpha coefficients were found by applying
subroutine DROUTH.

A method for computing the Routh transformation matrix of equation (18) has been
proposed by Datta (ref. 5). This method was programmed and applied to the 16th-order
jet engine model. Numerical results were unacceptable because of large computational
errors, and so another technique was sought. Since accurate and efficient eigenvalue-
eigenvector techniques are well known (for the case of distinct eigenvalues), the comput-
ation of the Routh transformation matrix was reformulated as the solution of two
eigenvalue-eigenvector proglems. These two problems are represented by equations
(22) and (24) and are solved by using the computational methods of reference 7. Since

10
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A and R are similar, they have the same eigenvalues. The Routh matrix R is also
known from equation (19) since the alpha parameters have been found.

The transformation matrices of equations (22) and (24) may have elements in the
complex field. Thus, from equations (2) to (6), TR can in general be complex. How-
ever, a real T is desired to yield a physically realizable approximation and to facili-
tate computer computations. The matrix TR can be constrained to be real by the prop-
er selection of the elements di of D. To determine these elements, consider the eigen-
vector solution of equation (24) by means of real-number computer operations. Given A
and its eigenvalues, the modal matrix of A can be written as

T =T V (35)
where V is the block diagonal and Tm m’ the modified modal matrix of A, is a ma-
trix of real numbers. If the eigenvalues of A were all real, Vin would equal 1. How-
ever, if A and A4 Wwerea complex conjugate pair, the ith block of Vm, (Vm) ,

would be defined as i

i 2|14 1-j
Likewise, for equation (24),
Teom=T2Vm (37)

Now from equations (26), (33), and (35) and the definition

|
Dy =V,DV_ (38)

TR can be written

- -1
TR = TmmDBTZ, m

Now if TR is real, DB’ a block diagonal matrix, must be real. This can be assured by
selecting the elements of D, d,, such that

(1) d; is real if A; is real

(2) di’di+1 are a complex conjugate pair if 2;, }; ; are a complex conjugate pair.

The reciprocal transformation of equation (17) does not represent a significant in-~
crease in computations since the modal transformation is the same for A and A and
the eigenvalues are simply reciprocals.

The matrix inversion of equation (26) can be eliminated by noting that

11



r=7rrf (40)
where
T = diag[(-1)}" 1] (41)
From equation (19) then
ARTR = RTART (42)
Now from equations (24), (26), and (40)
Tp= T, D T. TAg (43)

A program that solves for Tp, the Routh transformation in equation (43), was writ-
ten. This program, called DRTTRC, not only finds TR, but also the transformed ma-
trices of equation (28), G and H. The FORTRAN listing of DRTTRC is given in appen-
dix B. Additionally, a program that finds the reduced system of equation (32), called
DTYPEI, was written and is given in appendix B.

APPLICATION TO ENGINE MODEL

The frequency-domain formulation of the Routh approximation technique was applied
to the state-variable model of the F100 engine at the intermediate-power operating point
and to the transfer-function model of the boost-pump pressure regulator design. The
time-domain formulation was applied only to the engine model.

Frequency-Domain Applications

As an initial experiment the frequency-domain formulation was applied to two 16th-
order SISO transfer functions. These transfer functions represent dynamics of the tur-
bofan engine from the input W (fuel flow) to the outputs N c (compressor speed) and
Tt (turbine inlet temperature). The coefficients for these transfer functions were calcu-
lated and are given in table I. Table II shows the impulse response ratios for Routh ap-
proximations of increasing order for the two transfer functions. These ratios were cal-
culated from the alpha and beta coefficients as outlined in equation (12). From these
ratios an acceptable approximation order can be estimated.

The approximant order was selected by first choosing a minimum acceptable level

12



of accuracy, as defined by the impulse response energy ratio. The level chosen corres-
ponds to a ratio of 0.81. This level of accuracy was assumed to be adequate for the
purpose of this report. Next the order that most nearly corresponded to the selected
ratio was chosen as the order of the Routh approximant. For the energy ratios given

in table II, the Routh approximant orders, as found by these criteria, are

k., =3 (Yl =Nc)

The Routh approximants for N c and Ty were calculated by using the approximant
orders k1 and k2 and the algorithm given in equations (6) to (9). The results are
summarized in table IMI. Comparisons of pole locations and step responses for exact
and approximate transfer functions were made to evaluate the adequacy of the approxi-
mations. Table IV gives the pole locations, and figure 1 the step response comparisons.
The pole comparison shows a good correlation between actual and approximate system
poles. Likewise, the step responses of figure 1 indicate an excellent agreement between
actual and approximate model representations. Based on these results it was concluded
that the Routh approximation technique is a viable approach to reducing the complexity of
frequency-domain models of jet engine dynamics. Also, the accuracy level selected in
this initial example may be too stringent, based on the step response comparison.

For comparison, the Routh approximation technique was applied to all 80 (Z = 16,

m = 5) possible transfer functions of the given engine example. The impulse response
energy ciriterion for model order was used to determine the order for each of the ap-
proximants. These reduced orders are given in table V. Examination of this table gives
dynamically fast (x3, Xy, e.g.) and slow (Xl’ Xy, X105 e.g.) states as well as reduced
order. The large difference in reduced order for transfer functions with the same in-
put indicates that modeling of the fast states as constants with respect to the slow states
would be acceptable.

The frequency response technique was also applied to a high-order (4 3rd order)
model of the boost-pump pressure regulator, which represents the linearized line dy-
namics of a liquid-oxygen supply system in a rocket engine (ref. 8). The model input
represents a pressure error signal; the output represents an actuator piston-commanded
velocity. The transfer function (time scaled by a factor of 100) for this system is given
in table VI. This application tests the accuracy and the computational feasibility of the
programs DROUTH, DTHCNV, and DIMPLS for high-order problems. Again, straight-
forward application of the programs was all that was required to obtain Routh approxi-
mants to the boost-pump pressure regulation system. Additionally, it was determined
that a 43rd-order implementation of this pressure control would be impractical and that
a study of lower order implementations would be desirable. Thus, this application is

13
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of more than numerical significance.

For the 81-percent impulse response energy criterion, a 26th-order Routh approxi-
mant was selected. The poles of the original and approximant system are compared in
table VII; the zeros are compared in table VIII. Both show good comparability between
original and approximant values. For reference the 26th-order approximant is given in
table IX. Figure 2 compares the frequency responses for the original and approximant
systems. The comparison is exact for both magnitude and phase for frequencies less
than 20 hertz. The approximation is still good for higher frequencies, and the loss of
frequency information due to the approximation is clearly shown.

Time-Domain Application

The time-domain formulation of the Routh application technique was applied to the
16th-order, state-variable F100 engine model. This model represents the dynamic
response of the F100 engine for small perturbations about the intermediate-power oper-
ating point. The normalized system matrices are given in table X and the state, input,
and output vector definitions in table XI. Calculating the Routh transformation matrix
TR poses the only significant computational problem in applying the time-domain for-
mulation. Thus, as a test, the alpha parameters calculated from the characteristic
equation of A (Routh table approach) and from the similarity transformation TklATR
are compared in table XII. Clearly, calculating TR with DRTTRC is accomplished
with a high degree of accuracy. Therefore, the tools exist to accurately apply the time-
domain formulation to high-order systems.

Examining table V shows that a fifth-order approximation for each input would
represent an adequate tradeoff between accuracy and complexity. Reduced approximants
were calculated by using DRTTRC and DTY PEI for this order. Step response trajec-
tories comparing the original and approximate systems were generated. The Tt result
indicates the degradation of accuracy obtained with a lower order model. Typical step
responses for one input (fuel flow) and two outputs (compressor speed and turbine inlet
temperature) are given in figure 3.

With this time-domain formulation, fifth-order models were calculated for each
input that exactly match those that would have been determined with a frequency-domain
analysis. However, the approximants were determined directly from the state-variable
model without first calculating the frequency transfer function for each input-output pair,
All the properties of the frequency-domain approach hold for the time-domain approach
when considering the state-variable formulation one input at a time.

14



Fixed-Dimension Approximant

For a five-input system approximated by fifth-order models, a total reduced system
realization may .require a state vector dimension of 25. In fact, the realization dimen-
sion will probably vary for different numbers of inputs and orders of approximation.
Often, however, the allowable dimension of the total reduced approximation is fixed by
some engineering or economic constraint. Constructing a fixed-dimension realization
of the total system from the Routh approximation can be a very difficult computational
problem, especially if the input and output dimensions are large. Thus, the technique
as outlined does not directly handle the fixed-dimension problem. However, if the same
TR matrix is used in the time-domain reduc%lilon process for each input, the total ap-
proximation can be realized by a system of k™ order, where k is the number of alpha
parameters retained, and the fixed-dimension approximation problem is solved. Select-
ing the TR matrix that will give the best kth—order approximation is therefore an in-
teresting problem,

In this regard the somewhat arbitrary selection of D can be used to good advantage.
Many different transformations can be found very quickly once the original two eigenvec-
tor problems have been solved. Indeed, the selection process can be automated by opti-
mizing some function of error between the original and total approximant systems over
the n-parameter space of D. Such an optimization scheme was tried on the example
given in this report. Two different error functions were used for comparison. The first
was a weighted sum of the differences in system and approximant step response energies.
The second was a weighted sum of squares of the differences in system and approximant
steady-state values. Significant minimization of each error function was easily achieved
in relatively small amounts of computer time by using a conjugate direction optimization
scheme. Thus, the general optimization procedure would appear to be a good way to
improve the accuracy of approximants for certain systems while maintaining a fixed or-
der of realization. However, the time-domain Routh approximation procedure, when
constrained to yield a fixed-dimension realization in the multiple-input case, does not
exhibit the final-value property of the single-input case. For the engine example posed,
the significant improvement in the approximation gained by function optimization was
overshadowed by these final-value errors for the multiple-input case.

Based on this observation the time-domain formulation was modified to ensure that
the final-value property would be met by a fixed-dimension, multiple-input Routh ap-
proximant. In the original formulation the difficulty with final values in the multiple-
input, fixed-dimension problem can be traced to the original assumption of the reduction
process (eq. (30)). If the initial assumption were changed to

(XR)z -0 (44)

15



the approximation would force the final-value property. Unfortunately, the assumption
of equation (44) when applied to the original system may yield an unstable approximant
for a given stable system. This was the case for the engine example and, thus, the
modification of the Routh procedure was rejected.

CONCL USIONS

Models of physical processes are often too complex to handle directly. Approxima-
tions of these models that are of reduced complexity but that maintain essential model
characteristics are often used for analysis rather than the original model. One way to
generate these approximations is the Routh approximation technique. The frequency-
domain formulation of the Routh technique was applied to transfer-function models of an
F100 engine and a launch vehicle boost-pump pressure regulator. Also, the Routh ap-
proximation process was reformulated in the time domain. A new characterization of
the nonunique Routh similarity transformation was derived that describes all possible
Routh transformations. This characterization casts the computation of the Routh trans-
formation into two eigenvector-eigenvalue problems that are easily solved. The applica-
tion of the time-domain formulation to a 16th-order state-variable description of a tur-
bofan engine was described, and the results were given. These results indicate that the
time-domain Routh approximation technique can be valuable in reducing engine model
complexity when dealing with the model on a single-input basis. An optimization proce-
dure was discussed that can significantly improve the approximation in a computationally
efficient manner by taking advantage of the new time-domain characterization.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, May 11, 1977,
505-05.
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APPENDIX A
SYMBOLS

reciprocal system matrix

original system matrix

coefficient of characteristic equation
reciprocal control matrix

original control matrix

matrix of numerator coefficients
element of B,

reciprocal output matrix

original output matrix

coefficient of characteristic equation for reduced system
diagonal parameter matrix
coefficient of numerator polynomial for reduced system
ith—order differentiation operator
impulse response energy
permutation matrix

Routh control matrix

Routh output matrix

impulse response

number of rows

reduced-system order

Routh approximant order

number of outputs

number of inputs

compressor speed

original-system order
Routh-system matrix

Laplace transform variable

17



T similarity transformation matrix

Tt turbine inlet temperature
t time, sec

u control vector

v block diagonal modification matrix
W(s) matrix transfer function
W engine fuel flow

X reciprocal state vector

R original state vector

y output vector

a alpha parameter

B beta parameters

T gamma matrix

A diagonal parameter matrix
z state-space system
Subscripts:

k kth—order approximant

m modal

mm modified modal

p output number

a input number

R Routh transformation

z Routh transformed system

18
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APPENDIX B

SUBROUTINES USED IN ROUTH APPROXIMA TION

SUTROUTINE ROUTH

PUFPOSE
TO CALCULATE THE ALPHA-BETA EXPANSION
COFFFICIENTS OF A LINFAR, TIME-INVARTANT
TRANSFFR FUNCTION(SISO)

ME THOD
ROUTH TARLE

SUPROUTINE DOROULTH( 71,7 24ALPHALBETA,RTALRTEB,N,NMAX)

IMPLICYY DOUBLF PRFCISION CA-H,0-2)

DIMENSION Z1€1)3,22€1), ALPHALL) ,BFTACI),RTAINMAX,1) ,RTEINMAX,])
KK=O

DC 5 1=1,N

00 S J=1.N

RTIALY 4J)¥=Ce

RTIttTI,Jd)=0.

COMTINUE

INITIALITE THE ALPHA AND BETA ARRAYS

IF(MODIN,2).EQ.0) NWNIZNZ2
TFEMONING2)aEQe1) NIZTIN-1D3/22
DG 10 J=1,N1

DO 10 I=1,2

NNIN-KK

RTALT 4 JITZIUINNY
RTECI,JI=Z22(NNY

KKZKK+ 1

CGRTINUE

NZZNI+1

RTIACYI,N2) =1,

PYHI2,N2) ).

IFINNLEQe1)Y RTAE2 ,N2)=C
TFEINNFQe2) RYALY ,N2Y1=71(1)
IF(NN.FQ.1)Y GO TO 20
RIFE1,N2)Z22(1)
RTEL2,N2) 0.

CONTINUE

CALCULATE THE ALPHA AND BETA ARRAYS

DO 30 T=ZI,4N

DG 30 J=-1,N1

ALFHALTYIZRTALT 413 /7PTA(TI+1,1)
BEJAIII-RTIBII,1iI/RTA(]+1,1)
RTPII+23JI-RTACY,J+1)-ALPHA(IDIRRTA(]I 1 ,J+1}
RTBUI+2,J)-RTBUI,J*1)-BETACII®RTALTI+],J¢1)
COAMTINUE

RE TURN

END

19
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SUBROUTINE IMPULS

PURPOSE
TO COMPUTE THE ENERGY RSSOCIATED WITH FACH
ROUTH APPRCXIMANT ASSUMING THE SYSTEM IS
DRIVEN WITH AN IMPULSE

SUFROUTINE DIMPLSUALPHALRETA 4RMS (N}
IMFLICIT DQUEBLT PRECISION (A-H,0-27)
DIMENSTON ALPH2AL1) ,BETAC1I)I,RMSL])
SUr=C.0

NC 10 Tz1,N
SUFZBETAULYI 122 /{2.2ALPHALT )} +SUM
IF(SUMET.Te3) ROTURN
RMSUTI)I=DSCRTESLM)

COMNTINUE

RE TURN

ENT

SUEBROUTINE MRTIRC

PURPOSE
TO FORM THEL STATE SPACE ROUTH APPROXIMATE
OF THE OFRDFR NHAT FROM THE ORIGINAL RECIPROCAL
SYSTEM AND THE ROUTH TRANSFORPMATION MATRIYX

SUFROUTINE DRTIRCOBLF A yX1,5 4CeT T2 3TN BHT yCHT WA ,WB ,WC,

1T N MMM NHET)

IMEFLICIT LOUBLF PRECISION (A-H,0-7)

DIVENSTON ELFAINY yFING M) CIMM N EHTINHAT MY ,CHT (MM NHAT)
T o WEONGR) JHBINGNY g UCEMM NI TINGNI g TZINGN) g TRINGNY JDINT XT(R])

FORM THL RQUTH TRAKNSFCFEMATION MATRIX TR

IJ:0

PG 1 yz1,N

IFt1J.EC. 1) GO TO ¢
JF(XICJI}NELCLT) GO TO 5

0O 11 1z1,W

WEBIIJ¥ZTZ2(T o J)
WAL, YT T ,J)200d)

GG T0 1}

DO 12 T=1,%

WEII 4 JY¥ZT2(] 44d41)

Wi lTIgd+12ZTZ207 4d)

WALT T U2t I+T ] ,04232D0g*])
WEA T g 1) o-TUTI4JI2DtY+1)+T(IU+1)%P0U)
TJy=-1l

CC TC 1

140

COATINUE

CALL DTMULT(WA (WB TR, N NN
TJKrz==1

DG 2 JT1,N

TJK=-T JK

ALFDZT1 UKSALFA (L)
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71

DO 2 1=1,N
TRITgJIZTRUIT g JISALFD

FOFM CHAY

CALL DMULT(C,TR,WC MM MyN)
DO 3 I=1,MM

NG 3 J-14NHAT
CHILTI 4 JIZWCET )

FIND THE INVERSE OF THE TR MATRIY

140

CALL DMTIMPY(WA ,WB 41,00 NyNygN}
DG 7 JZIeN

1F¢IJ.FQ. 1Y GO TO 72
IFixX1tJ).EQ.CWD1} GO TO 7

0O 71 YZ1,N

WEBAT g JIWALtTI 4 U1}

WhE (1yde1)zWALT 4J)

1421

GC 10 7

1J=0

CONTINUE

CALL DTMUL TU(WB ;TZ WA 4N 4N 4N}
TJdKz-}

DO 8 JU=14N

TUK=Z~1 JK

ALFDZALFA{JY*] JK

DO 8 1=1,N

WALTZJI=WACT gJ)SALFD

CALL DMULTHINAZTZ WP N, NyN)
IDCT=6

CALL DULNVIF(WE yNgN WA LTDGT JWC,IEFR)
CALL DMULTH(TZ ,WA,WE,N,Ny,N])}

FOFRM BHAT

CALL DMULTIWE yPyWA JNyN NI
DO & I-14NHAT

0Dg 4 J=1,M
BHMIJIZWALT Q)

RELTURN

ENC

SUERQUTYINE RTHCNY

PURPOSE
TO0 COMPUTE THE COEFFICIENTYS OF THE ROUTH
CONVERGERT APPROXIMANTS

SUEROUTINE DTHCNVECALPHALPETA JNMMTX DNMTX N ,NMAX )
IMFLICIT pOUBLF PRECISION (A-H,0-7)

DOLBLE PRECISION NMMTX

DIMENSTION ALPHACL) BETACTI) NMMTXENMAX 1) ,ONMTIXINMAX,1 )

21
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DU IC TIZ1,NMAX
DO 10 Jz1 ,NMAX
KMATXET 402G
DAFTX (] 4020,
CCRTINUE

ThE DONOMINATCE CORVERGENTS ARF Th DAMTX
THE NUMERATOR CONVIRGENTS ARE TN NMMTX

TG 20 Tzl 4N

DAMIXET T 1260

COrYTINUE

CRMIXE2,2YCALPHALLY

ONPIXE2423CALPEHALD)

ONFIXOZ,7 ICALFFACT IxALFHAE(T)
NMFETXOZ,1 )00 T201)

MMRTXA 232 )TPETALY)

AMMIXE 242 Y TALPRACZ2ISTNETAC(T)

DG 30 T34

DC ZT J=2 M

CHMTX A JgT JZONMIXOU -1 ] —1XFELPHACTIDNMT XY, T-2)
MMMTXC g T Y THMMINE -1, T -1 AL PHALTII#NMMTIXGU,TI-T)
TFUJECaT) HMMIXCILIISAMMTIY LU, T)4ET TACT)
CORTINUE

TG 4T T2 4N

06 40 J=1,%

PRMIX(TY -1, 1OMMTXLI,0)
RMMTX(T=1 4, JIZNMMTX (T ,4,J)

COATINUE

OCRMIX{MN-1)Z0.

NMMTXIN ,N=-1)ZC .,

PRECUTT .

D0 5C TZ1,4N

PRIDZPRODHALPH2(IY

CONTINUE

DNMIX(NGNIZPROD
NEMIXIMNITBETACLYAPRODC/ZALFHACT )

RL TURN

{28 R

SUEROUTINFE DTYPET

PUEPOST
TQO FIND THE KTYH OFDER TYPE T DOMINANT MODE
APPROXIMATICN OF AN NTH ORDEP SYSTEM

THY ORIGINZL SYSTEM
ZDOT = THERFINVITIHZ + TRGRU
Y = HIINVITI=%?

SULKOUTINE DTYFEIEA,B3,CoToTINV,RI1,CyHyDKK] ¢DKKZ oDNNT yNygM, L oK)

IMPLICIT DOUBLE PRFCISION(A-H,0-21

DIFENSTON AGK ¥)oBIK oM I ,CtL oKD g TINGND RIT (N KD yGIN M) JHIL 1)
WDWKT (K gK) JOMKZ (K JK D gDNNIINGNY 4 TINVIN yN}

1FEM.GToK) WRITE(6,100C)



1% e e

s Ba el

(ol e

NN

1T75C FORMATEIHOL,12X 4 *THE CONTPOL DIMENSION IS GREATER THAN THE®

1

21X, *FEQUCED ORDER D IMENSION IN DTYPEIY)
IDCT-e

FIND THE INVERSE OF THE K X K BLOCK OF T, T11

20 1 114K

0C 1 JT1eK

DEKKICI 4JIT(I )

CALL DMTMPY(DKK14DKK2 3 1.D0 4K 4H 4K}
CALL DUINVIF{DHKKZ K, KyA JIDGT,BL,IER)

FIMD THE CONTRCL METRIX P

CALL DMULTETINV,G,DNN1 N, M, N)
PO 2 I214K

DC 2 JZl.M

DKK2ET yJYSONNT (T4 J)

CALL DMULTEDKKI,DKK2 4B KoM aK )

FIMD THE OUTPUY MATRIYX C

CALL DMULTCT A ,ONNI N, K KD
CALL DMULT(H4ORNT ,Col yKoN)

FIND THE SIMILARITY TRPANSFORM T11%R11#INV(TI1)

CALL GMULTIF1] A3 DKKZ g KgK 4K}
CALL DPMULTIDKK 1,DKKZ 4 A JK4KoK)
RL TURN

D
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TABLE 1. - COEFFICIENTS FOR TWO 16th-ORDER ENGINE

TRANSFER FUNCTIONS WITH FUEL FLOW INPUT

TABLE II. - IMPULSE RESPONSE ENERGY RATIOS

FOR INCREASING APPROXIMANT ORDER

[Fuel flow input.]

Coefficient, Coefficient Compressor Turbine inlet
i of characteristic speed, N c temperature, Ty
equation, (p=1,q=1) p=2,q=1)
% Element of matrix of
numersalor coefficients Bi’
by
0 1.0000  mememmme mmememee-
1 1.0638x10° 0.1140 5. 72170
2 3, 7805%10% 4,2016x101  5.8161x10°
3 6.6915x10°  -4.2414x10°  1.8835%10°
4 7.0216x1010 | -2.2082x10% |  2.9200%108
5 4,77172x10%2 | -8.2163x107 |  2.6079x1010
6 2.2150x101% | 2.2542x1010 | 1. 4714x1012
7 7.1949x10%°% | 2.8702x10'% | 5. 5192x1013
8 1.6584x1017 | 1.5789x10'%|  1.4142¢101°
9 2.7151x10'8 | 5.0230x101% |  2.5027x1016
10 3.1255¢101° | 1.0028x1017| 3.0507x1017
11 2.4730x10%0 | 1.2850x10!8| 2. 5208x1018
12 1.2973x1021 | 1.0446x10?| 1.3685x1019
13 4,2578x102 | 5.1525%101%| 4. 6358x101°
14 7.9983x1021 | 1.4079x1020| 9. 0240x101°
15 7.4304x102} | 1.7841x10%° | 8. 7170%101°
16 2.4119x10%1 | 7.4230x101% | 2. 9263x101°

Routh - Compressor speed, N c Turbine inlet
approximant p=1,q=1) temperature, Tt
order, (p=2,q=1)
k
Impulse response energy ratio
1 0.41 0.007
2 .72 .03
3 .89 .07
4 .94 .14
5 .941 .23
6 .95 .36
7 .96 .51
8 .98 .67
9 .99 .81
10 .997 .91
11 .998 .97
12 .999 .99
13 .9992 .998
14 . 9998 . 999
15 . 9999 . 9999
16 1.0000 1. 0000
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TABLE III. - ROUTH APPROXIMANT COEFFICIENTS FOR TWO

TRANSFER FUNCTIONS

Coefficient,
i

Compressor speed,
N, p=1,q=1)

Turbine inlet temperature, T,
P=2,4q9=1)

Routh approximant coefficients 7

¢ di ¢ di
0 1,0000 | ~---m= 1.0000 | —mmmmmmeee-
1 2.6132 | 0. 43978 4.7092 3.6223
2 2.5702 | .61711 1.0446x10° | 9.3469x10!
3 .8343 | 25676 1.3858x10% | 1.3400x103
PR [ (N — 1.1722x10° | 1.1906x10%
I [ (. 6.3304x10% | 6.6700x10*
J RN [— 2.1019x10% | 2.2877x10°
S IR - 3.0634x108 | 4.4718x10°
8 | mmmmme | mmmeeee 3.6848x10% | 4.3220¢10°
Y I [P 1.1961x108 | 1. 4512x10°

TABLE IV. - COMPARISON OF POLE

LOCATIONS FOR EXACT (16th ORDER)

AND APPROXIMATE (3rd AND 9th ORDER)

TRANSFER FUNCTIONS

Poles of transfer functions

16th Order 3rd-Order 9th-Order
Routh Routh
approximant | approximant
-0.648 -0.635 -0.648
-1.91 -0.989+0, 580j -1.91
-2.62 -2.62
-6, 71£1.31j -6.50+1. 16j
-117. 8+4. 80j -7.6443. 29j
-18.2 -6.82+8, 73j
-21,6+1, 55j
-38.7
-47.1
-50.6
-59.2
-175
-577




TABLE V. - MINIMUM TRANSFER
FUNCTION ORDER FOR 81-PERCENT

IMPULSE RESPONSE ENERGY RATIO

Transfer Transfer function input
function S
output Ui | Y2 | Y3 | M| Y5
Xy 3 3 4 5 4
Xy 3 3 5 4 4
Xg 6 112 [ 13 | 12 | 13
Xy 11 j12 | 16 | 11 | 12
Xg 4 5 6 4 4
Xg 3 6 8 3
Xy 3 8 7 5 l
Xg 4 5 7 7
Xgq 8 8 7 8 8
X0 4 2 2 2 4
X1 9 9 7 9 9
X1 8 8 ki 8 8
X3 7 3 5 4 6
X4 7 8 7 7 6
X5 4 T 7 5 4
X6 6 {10 9111110
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TABLE VI. - BOOST-PUMP PRESSURE REGULATOR TRANSFER

FUNCTION FOR PRESSURE ERROR MEASUREMENT INPUT P(s)

TO ACTUATOR PISTON-COMMANDED VELOCITY OUTPUT Q(s)

Qs) _ -261.31 5%2 - 9821.8 s*! - 139360 %% 4 . . . + 0. 34557108
P(s) 43, 530,64 5% +1230.2 5% + 17914 8% + . . . 4 0. 33072108
Power of s Denominator Numerator
coefficient coefficient
42 0. 53064x10° 0.26131x10°
41 .12392x10% -.98218x10%
40 .17914x10° -.13936x10°
39 .17766x108 -.13898x10"
38 .14079x10" -.10524x108
37 .91649x10” -.68170x108
36 . 52194x108 -.37098x10°
35 . 25635x10° -.18063x1010
34 .11467x1010 -.78084x1010
33 . 455501010 -.30434x10'1
32 .16623x10'1 -.10919x1012
31 .55692x1011 -.35347x1012
30 .16873x1012 -.10737x1013
29 . 48960x1012 -.20612x1013
28 .12415x1013 - 76725%1013
27 .31769x1013 -.18374x104
26 .67590x1013 -. 405911014
25 .15437x101% -.85715%10"
24 .27519x1014 -.16043x1015
23 .56516x101 % -.30264x1015
22 . 84066x101% - 47440x1015
21 .15582x1013 -.80866x101°
20 .19203x1013 -.10439x1016
19 .32126x10!° -.16249x1018
18 .32473x101° -.16879x1016
17 , 48853x101° -. 242351016
16 . 39945%1015 -.19629x1016
15 . 535941013 -, 26269x1018
14 . 34801x101° -.15896x1016
13 . 41055x101° -.20056x1016
12 .20670x101% -.85553x101°
11 . 20970x1013 -.10314x1018
10 . 79450x1014 -.28689x101°
9 .67087x101% -.33582x101°
8 .18474x1014 -.55134x10!
7 .12418x101% -.63866x101%
6 . 23847x1013 -.54308x1013
5 .11997x1018 -.63912x1013
4 .15079x1012 -.22081x1012
3 .51938x101! -.28645x1012
2 .39472x1010 -.18961x1010
1 .66059x10° -.37172%1010
0 .33972x108 . 34557x108
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TABLE VII. - POLE COMPARISON BETWEEN APPROXIMANT AND ORIGINAL SYSTEMS

(a) Approximant system

Root Real part Imaginary
of root part of root

1 -0.57680x10°1 o0

2 -.17846x1072 14393

3 -.17846x1072  -.14393

4 -.20207x107%2 20631

5 -.20297x107%  _.20631

6 -.5181ax10"! 34438

7 -.51814x10"} - 34438

8 | -.57957x1072 52760

9 -.57957x10"2  -.52760

10 -.43869x10"! 69008

11 -.43869x10"1  -.69008

12 -.37413x10°1  -.10277x101
13 -.371413x10"1 © -.10277x10}
14 -.35326x10"1  .13448x10"
15 -.35326x10"!  -.13448x10
16 | -.23819x10°1 . 14622x10!
17 | -.23819x10"1 | -.14s22x10!
18 | -.37308x10"! | .17055x10}
19 | -.37308x10"1 | -.17055x10! |
20 | -.38127x1071 | .22899x10%
21 | -.38127x10°! | -.22899x10!
22 | -.a2813x10' | 0
23 | -.5587mxa0} | .43007x10!
24 | -.55877x10! | -. 4300710
25 | -.44588x101 | .60078x10}
26 | -.44588x10! | -.60078x10!

(b) Original system

Root Real part Imaginary Root Real part Imaginary
of root part of root of root part of root
1 -0.57680x10"1 0 23 -0.12750x10"1 -0, 17253x10!
2 -.17846x10"2 14393 24 -.14813x10"Y . 19714x10!
3 -.17846x1072 -.14393 25  -.14813x10”1 - 19714x10!
4 -.20207x10°% 20631 26 -.11560x10"1 | 22272x10!
5 -.20297x1072 - 20631 27 -.11560x10") - 22272x101
6  -.51814x10"1 34438 28 | -.87213x10°2 | 24548x101
7 -.51814x10"! - 34438 29 | -.87273x10"2 -, 24548x10l
8 -.57957x1072 52760 30 | -.64893x107% | . 26466x10!
9 -.57957x10°2  -.52760 31 | -.64893x10°2 | - 26466x101
10 . -.43860x10"1 | 69008 32 | -.48184x1072 | . 27998x10!
11 -.43860x10" % | -.69008 33 | -.48184x10°2| -.27998x101
12 -.37a13x10"1 | 1027710} 34 | -.36040x10°2 | . 20114x10'
13 | -.sraisxio”l | - 10210 35 | -.36040x10™% | -.20114x10!
14 | -.32000x107! | .13445x10! 36 | -.s0218x1072| . 29785x10!
15 | -.32009x10°1 | -.13445%10! 37 | -.30218x10"2| -.29785x101
16 | -.14112x1071 | | 14142x101 38 | -.44440v10! . 44417101
17 | -.1a119x10°1 | -, 14142x10! 39 | -.444d0x10) | -.44417x10!
18 | -.120m5x1071 | . 15131x10! 40 | -.91623x10! .90855x101
19 | -.12075x10"! | -.15131x10! a1 | -.91623x101 | -.90855x10!
20 | -.18582x107!| 1647110} 42 | -.4201000! | o
21 | -.18582x1071 | -.16471x10! 43 | -.20926x10%2 | o
22 | -.12750x1071 | .17253x10!
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TABLE VIII. - ZERO COMPARISON BETWEEN APPROXIMANT AND ORIGINAL SYSTEMS

(a) Approximant system

(b) Original system

Real part

Imaginary

Root Real part Imaginary Root Real part Imaginary
of root part of root of root part of root of root part of root

1 | 0.91929x10°% | o 1 | o.91920x10°% | 0 22 | 0.69556x10™% | 0. 19874x10!
2 | -.35351x1072 | 14517 2 | -.20437x1072 | 29626 23 | .69566x10"° | -.19874x101
3 | -.35351x1072 | -.14517 3 | -.20437x1072 | -.29626 24 | -.15648x1072 | .22398x101
4 | -.20437x10°2 | 20626 4 | .92709x10°2 | 35815 25 | -.15648x10"2 | - 22398x10!
5 | -.20437x10™% | -.29626 5 | .92700x1072 | -.35815 26 | -.26061x10"% | . 24639x101
6 | .92700x1072 | .35815 6 | -.12720x1072 | 52853 27 | -.26061x1072 | -, 24630x101
7 | .92709x10°2 | -.35815 7 | -.12720x10°2 | -. 52853 28 | -.20910x10"2 | .26526x10}
8 | -.72729%1072 | .52853 8 | .em278x1072 | 71196 29 | -.29910x10"2 | -, 26526x101
9 | -.72729%1072 | -.52853 9 | .e7278x1072 | - 71196 30 | -.30101x10"2 | .28034x10!

10 | .e7278x1072 | .71196 10 | .27081x107% | .10536x10% 31 | -.30101x10"2 | -.28034x10}

11 | .e7278x10°2 | -.71196 11 | .27081x1072 | - 10536x101 32 | -.20153x1072 | .29131x10}

12 | .26794x10"2 | .10536x10! 12 | -.66105x1072 | .13790%10% 33 | -.20153x10"2 | -.29131x10!

13 | 267941072 | -.10536x10 13 | -.66105x1072 | -.13790x10! 34 | -.28165%1072 | 2978010

14 | -.57825%1072 | .13715%10! 14 | -.14819x10°! | .14161x10! 35 | -.28165x10"2 | -, 29789101

15 | -.57825%x1072 | -.13715x101 15 | -.14819x1071 | -.14161x10! 36 | -.35351x1072 | 14517

16 | -.67315x1071 | .14750%10! 16 | -.51392x10"1 | .15083%10! 37 | -.35351x10"2 | -.14517

17 | -.67315x1071 | -.14759%10! 17 | -.51392%10"1 | -.15083x10! 38 | -.31477%10! | 0

18 | -.22702x10°1 | .17112%10! 18 | -.233t0x10°1 | .16573x101 39 | -.39426x10! | 0

19 | -.22702x10°1 | -.17112%101 19 | -.28310x10°1 | -, 16573x10! 40 | -.46850x101 | 4383810}

20 | .11499x107! | .23645x10! 20 | .25798x10°2 | .17352%10! 41 | -.46850x10! | -.43838x10!

21 | .11499x10°! | -.23645%10! 21 | .25798x10°2 | -, 17852x10! 42 | -.20027x10% | 0

22 | -.32228x10! | .37158

23 | -.32228x10! | -.37158

24 | -.30049x101 | -.40104x10!

25 | -.30949x10! . 40104x10"




TABLE IX. - 26th-ORDER

ROUTH APPROXIMANT

§ a, s26-1
i=1 !

Q_
p

Coefficient,
i

S26 + § ¢ S26—i

i=1

Routh approximant coefficients

d;

¢

O W -3 DU W N =

B R B B RO D DI = b e e e e e b
D BN = O © DD U W RO

-0.205702x10°

-.262997x10%
-.190677x10°
-.884145x10°
-.315100%10°
-.954589x108
-, 228406x10"
-.481475x10"
-.887488x10"
-.129769x108
-.199129%108
-.195556x108
-.263469%10
-.164054%10
-.202690%10
-. 73952910
-.870168x10
-. 170706 %10
-.197216%10
-.186761x10°
-.218839x10°
-.840811x10*
-.103948x10°
- .726830x10%
-.138053x10°

.128341x10!

0 o

-~ -1 -3 ~ o

0. 249887x102
. 320663x10
., 248369x10
.129942x10
. 485403x10
.151935x10
. 398134x10
. 814672x10
.168262x10
. 234334x10
.398045%10 "
.383160%10 "
.540632x10"
.359295x10 "
.416608x10"7
.189273x107
. 175577%107
. 539769x10°
. 386031x10°
. 789457x10°
.411942x10°
. 534361x10
.188562x10
. 144366x10
. 245338x10
.126168x10

Q1 9D O D on Ul o

[~ I N N

2

[y

31



-4,32800
-.344744
27,8479
53, 8484
2.05891
11.1442
8.97363
-.657472
-.347415x10" !
-.461982x10"
-4.09217
-.143460
-.57036971
-.908447
-.163698
-11.9372

0.218859
-5.64300
208, 042
-14.0784
-4. 84795
-.212853
-. 213997
7.50337
-.826121x10" 1
-.110436x10"!
-29.0787
-3.04565
-1.21806
-1,77558
. 507438
16, 8838

32

0.200384
3.72188
-165. 000
496. 865
. 507217
-.177448x10"!
-.478545x10°!
4.26387
.272257x107!
. 360582x10™2
3.31853
-10. 3264
-4,13034
-5.04877
-.587604x10"1
-1.02879

2For p = 16, C is the 16th-order identity matrix.

3,95571

. 80121

. 18466
~578, 300

. 76362

. 79849010~
. 465845x10

-

1
1

701969101

.844885x10”
. 112675x10”
. 417099
10. 2900
4,11573
1.29700
-.624872%x10°
8. 06630

2
2

2

-17.

.98299
. 40020

858

.6308

0500

.06863
.37978
.85571
.137080
.182567x107 1

7117

.607676

-.242984

w

39206

. 307427

10.

1496

-165.
-10.

-19.

15.

26.

-14,

TABLE X. - ENGINE

[n =16, 1=2,
(a) A
. 144833 0.769294x10" 1] 0. 144819
56028 .120495 -.299362
738 -10.7525 20.1663
2873 -8.77498 -36.0530
55273 -.161294 - . 755865
7900 -.182496 - . 582095%107!
.818499x10™ ! | 20, 4700 - . 768050x10" 1
0693 .303936 -19. 900
. 207504 .168996x10™ 1|  3.86258
. 277078x10” ! .225353x10"2| 515019
1649 1.91267 18. 4196
883145 .711020%107 Y| 7. 55501
. 353474 .287463x10" 1] 3.02213
.691218 .588312x10" 1| 3.72508
. 446147 19.6607 242382
7933 -1.11110 -. 656673
(b) B matrix
-0.469024x10™ ! | -0.124675
.895387x10" 1 | -.118071
5.92813 10.0878
33.9885 5. 82984
2, 48005 -6.59813
. 373669 . 263890
. 233500 262489
-, 538716 -.264328
. 156463 -.841755x1072
.208467x10™ 1 | - 112400x1072
19.9275 -1.63330
. 750732 -.352531x107!
. 299580 -.141273x107 !
.391725 .258106x10” 1
.253898x1071 | 332206x1071
1.24292 . 868843




MODEL DATA

q=f]
matrix
0.252614 0. 427346x10" !
2.24174 . 239841
-.636953x10" 1 .101911
-79.0958 -12.9188
.128376 -.358717
-.659112x10" 1 | - 6082261071
.629645x10°1 | -.793110x10" 1
.386312%10" 1 .341217%1071
-49.9900 . 751111%10™2
-5.99940 -.665700
. 244677 .222139
-12.7924 -1.41104
-5.11614 - 564075
-6.28623 -.688976
-.875007x107 2| -.249931x10"2
.913777 -, 291566x10" 1
{c) CT matrix
1.00000 | 0
0
0
0
0
0
0
)
0
0
0 1.00000
0 0
0
0
0
0

-1.
.940377
44,
170.
-2.
. 25347610
.365148x101
.167423x107 !
46,
.13815
47,
59.
23.
29,
. 712218x107 !
.14614

'

i

19810

6143
896

92106
-1

0276

6500
6425
8539
3366

—

[

-50
-18
-3

. 82058
. 855296%10°
. 114667
.53242

. 424440

. 59583410~
. 79327410
. 341306x10°
. 375602%10”
. 450678x10~
.219747
.0100

.0000

. 33640
.249937x10”
. 147456

1
1
1
2
3

2

—

.213133
,100398x10~
.101938

. 53157

. 420034
.621119%x10°
. 818338x10™
. 367042x10”
. 751138x10°
.101370%10”
.218M9
.112333%x10°
. 99600

. 359398

. 374785%107
.164604

1

1
1
1
2
2

1

2

-

. 106835
.104123x10°
.114658

43444

. 47850

. 595750%10°
.793363x10™ 1
. 341328x10°
. 37559010
. 450645x10°
.218157
.112245%x107!
. 449175%10”
-19.
.250001x10"
39,

7700

2746

1

1

1

3

2

-0

X

o o

. 997036%x10”
.353279x10"
. 24267

.61533

. 922059%10™
.380239%10"
. 894036x10”
. 19318710~

.111896

-.187131x10”

-20
10

. 718453%107
.213957x10°
.0000
.9155

2
1

1
2
1
1

1
2
1

0.132963x10" !
-. 1041313071
.101904
-4,53105
-. 422479
-.621158%107 1
-.818498x1071
.341318x10"}
. 751331x1072
.101380x10™2
. 219763
. 124796x10" 1
. 494061x10™2
.117686x107!
- 374824x1072
-50.1600
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TABLE XI. - INPUT, OUTPUT, AND STATE VECTOR DEFINITIONS

{Linear model: x = Ax + Bu; y = Cx, where x are state variables, y are output

variables, and u are input variables. Since C =1 (identity matrix), y =x]

State variables

Xy - Fan speed

X9 - Compressor speed

Xq - Compressor discharge pressure

Xy - Interturbine volume pressure

Xg - Augmentor pressure

Xg - Fan inside-diameter discharge temperature

Xg - Duct temperature

Xg - Compressor discharge temperature

Xg - Combustor exit temperature - fast component
X40 - Combustor exit temperature - slow component
X1 - Combustor exit total temperature
Xq9 - Fan turbine inlet temperature - fast component
X3~ Fan turbine inlet temperature - slow component
X4 - Fan turbine exit temperature
X5 " Duct exit temperature

X6~ Augmentor exit temperature

Control variables

u,; ~ Main combustor fuel flow

uy - Nozzle jet area

ug - Inlet guide vane position

uy - High variable stator position

ug - Compressor bleed




TABLE XII. - COMPARISON OF
COMPUTATIONAL ACCURACY
OF FREQUENCY- AND TIME-

DOMAIN FORMULATIONS

Alpha parameters
From Routh From
table transformation
TRATR
0.32460 0.32460
1.1230 1.1231
2.2886 2,2886
3.9662 3.9662
6.2954 6.2954
9.3914 9.3914
13.377 13,378
18. 425 18.425
24,806 24. 806
33.033 33.033
44,121 44 121
60,072 60.072
85.236 85.236
131.79 131,79
254,39 254,39
806. 00 806.00




9¢

Normalized compressor speed, N¢

Normalized turbine inlet temperature, Ty

L0 Routh -
approximant,

l | i |
0 5 L0 L5 20

Time, sec

Figure 1. - Step response comparisons for normalized compressor
speed and turbine inlet temperature outputs for fuel flow input -
frequency-domain approach.
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Figure 2. - Frequency response comparison,
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Figure 3. - Step response comparisons for normalized compressor
speed and turbine inlet temperature outputs for fuel flow input -
time-domain approach.
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