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DEVELbPMENT OF AN IMPROVED METHOD OF

CONSOLIDATING FATIGUE LIFE DATA

By B. N. Leis and S. G. Sampth
Battelle's Columbus Laboratories

SUMMARY

The purpose of this program was first to develop, evaluate and verify an

improved consolidation model that incorporated recent advances in life predic-

tion methodology and then examine the impact of this refinement on the degree of

data consolidation as compared to that achieved in previous studies. Because a

complete data set that included local' deformation and fatigue life data for crack

initiation and separation for both zero and nonzero mean stress cases was required

to evaluate the fundamental assumptions and validity of the model but did not exist

in the literature, a second purpose of the program was to develop these data.

Specifically, the work focused on the analysis and consolidation of data for

2024-T351 (24S-T3) aluminum smooth and notched specimens. The analysis was lim-

ited to data developed under constant amplitude cycling at stress levels less

than the gross yield stress of the notched coupon. Consolidations of data avail-

able in the literature as well as that developed in this program have been pre-

sented and discussed, and the impact of the use of a refined life prediction

method on the degree of consolidation examined. The results obtained show a sub-

stantially increased consolidation with this improved method.



INTRODUCTION

Fatigue design and analysis of structures involves the marriage of mate-

rials data, loads data, stress analyses and environmental considerations in

accordance with some design philosophy. Usually, structural components are

sized based on static strength, stability and serviceability requirements.

This preliminary design is then analyzed at specific areas where fatigue may

be a problem and the section properties changed accordingly, and the process

repeated until the design criteria are met. Design against fatigue failure

is, therefore, an iterative procedure in which a component size, shape and ma-

terial are evolved such that the component serves its function for a prescribed

service life at a given confidence level. In the analysis stage of the process

an analytical method which predicts the fatigue life of the component is re-

quired. By contrast, in the design stage of the process an analytical method

which consolidates available appropriate materials fatigue data is required.

Each of these design and analysis methods embodies the same information and

entails the same logic; the logic sequence, however, differs. Clearly, the

more accurate the life prediction methbdolgoy, the greater the consolidation

of life data. It is this aspect that is examined in this report.

Recently, NASA Langley Research Center sponsored a program, the objective

of which was to incorporate the then state-of-the-art life prediction method-

ology into a fatigue (and fatigue crack propagation) data consolidation

model(1»^»3). Although the notched specimen fatigue analysis used in this

model was based on fatigue damage assessment and accumulation at the notch root,

the consolidation model fell short of the degree of consolidation expected had

the failure process been adequately modeled^ '. Part of the reason for this

limited success may be traced to a failure to correctly compute local stresses

and strains (including the effects of plasticity and biaxiality). Part of the

reason may also be traced to the use of a "separation" failure criterion that

included (widely varying) crack propagation periods not accounted for by

the crack initiation analysis used.

More recently, life prediction methods which circumvent or directly account

for the difficulties encountered in the above noted data consolidation program

have evolved(^ " 8). The purpose of this program was first to develop, evaluate



and verify an improved consolidation model that incorporated this more recent

life prediction methodology and then examine the impact of this refinement on

the degree of data consolidation. Because a complete data set that included

local deformation and fatigue life to crack initiation and separation data for

both zero and nonzero mean stress cases was required to evaluate the funda-

mental assumptions and validity of the model but did not exist in the litera-

ture, a second purpose of the program was to develop these data. The program,

therefore, consisted of a combined analytical and experimental study, the results

and discussions of which follow in the ensuing sections of this report.

Specifically, the report focuses on the analysis and consolidation of data

for 2024-T351 (24S-T3) aluminum smooth and notched specimens. The analysis is

limited to data developed under constant amplitude cycling at stress levels

less than the gross yield stress of the notched coupon (the assumption being

that strength and serviceability criteria in design preclude gross yield). The

experimental details and results are first presented and discussed. There-

after, the analytical aspects and results are presented and discussed in light

of the corresponding experimental data. Consolidation of data available in the

literature as well as that developed in this program is then presented and

discussed and the impact of the use of a refined life prediction method on the

degree of consolidation is examined. Finally, the results of this program

are critically reviewed in terms of the program's objectives aria the needs of

the fatigue design community.

SYMBOLS

s, e stress (MPa), strain in a smooth specimen, respectively

S, e nominal stress (MPa), nominal strain in notched plates,

respectively

a, e stress (MPa), strain at a notch root, respectively

A designates the peak to peak value of the corresponding

quantity

Kf fatigue notch factor



K theoretical stress concentration factor

K,. theoretical fatigue notch factor

P Neuber parameter

T, Py far field tractions and local yield load for notched

plate (sheet) specimen, N

R algebraic ratio of minimum to maximum stress

E, E , E* elastic modulus, tangent modulus and effective modulus

defined by 3E/2 (1 4- v) where v is Poissons ratio, MPa

X
~ designates the tensorial nature of the corresponding

quantity, X say
«w

X designates the equivalent value of X say, based on the

second invariant of the corresponding tensor

DD damage per reversal
K

N, 2N, R cycles and reversals of loading

SL crack length, mm

x, y, z cartesian coordinates

9, r, z cylindrical coordinates

66, rr, zz as subscripts designate components in the 6, r and z

directions on the 6, r and z faces

i, 3, 3 as subscripts designate principal components;

1 > 2 > 3

t, e, p as superscripts designate total elastic and plastic

components

mx, mn as subscripts designate maximum and minimum values

i, p, f as subscripts designate initiation, propagation and

fracture values



EXPERIMENTAL ASPECTS

BACKGROUND

The fatigue literature abounds with experimental data over a broad range

of temperatures, specimen geometries and stress concentration factors, stress

levels (lives to failure), control conditions, and materials. Yet no single

data set needed to verify the assumptions and validate the life prediction

method simultaneously satisfied the following criteria: (1) measured both

crack initiation (crack length, i^, less than 0.1 mm, say) and life to separa-

tion, (2) measured notch root strain, (3) tested a notched specimen configura-

tion with a locally plane stress state, (4) developed both fully reversed and

nonzero mean stress data, (5) studied the behavior over a life range that en-

compassed both local elastic and local inelastic deformation response, and (6)

developed data in both smooth and notched samples. (A few authors have simul-
(4)taneously met as many as five of these criteria, most notably Crews and

Leis, et al' '.) Consequently, an experimental program designed to simul-

taneously meet these criteria was performed as a part of this program.

The present program simultaneously met these criteria by measuring the

maximum principal strain at the notch root using a specially designed notch

root extensometer in a thin notched plate in conjunction with an eddy current

device located in the notch to detect initiation. (This instrumentation is

detailed later in this section.) These measurements were made over a broad

range of lives under test conditions that encompassed both smooth and notched

samples tested under both fully reversed and nonzero mean stress constant amp-

litude histories, as detailed in Table 1.

MATERIALS AND SPECIMENS

The material used in this investigation was wrought aluminum alloy sheet,

supplied by the Langley Research Center in blanks nominally 30̂ 5 cm by

88.9 cm, 2.3 mm thick. A total of ten blanks numbered A121S1 to A130S1 were

shipped. According to Langley Research Center (NACA) records '̂ '> the material

provided was obtained from blanks designated as spares taken from sheets num-

bered 121 to 130. These sheets are a part of the 135 sheets obtained by
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Langley Research Center since the early 1950's. The blanks were painted on both

sides with a zinc chromate primer and bore the designation 24S-T. This designa-

tion was the forerunner of 2024-T3 (or T351, depending on the mill prestretch

history) (1^ NACA records indicate the long direction of the blanks is aligned

with the grain (rolling direction) of the material. Extensive fatigue resistance

data for this material have been developed for smooth specimens along with mono-

tonic tension data, as summarized in Reference 11. Equally extensive notched

specimen fatigue resistance data have been developed, as reported in Reference 12.

Other sparse but relevant fatigue life and cyclic deformation data for this

material have been developed as reported in References 1 and 4.

As indicated in the test matrix, Table 1, the experimental program made

use of both smooth and notched sheet specimens tested under strain and load •

control, respectively. All smooth specimens were sheared nominally 14.61 cm

long by 4.64 cm wide. They tapered symmetrically in planform through a 2.54 cm

radius into a uniform test section (gage length) 1.91 cm long by nominally

1.78 cm wide. The last 0.381 mm of the width of the test section was removed

by successive cuts of about 0.0254 mm in an effort to avoid inducing surface

residual stresses. Of the 23 smooth specimens utilized in the program, numbers

14 and 15 had gradually tapered gage lengths such that their minimum width was

1.75 cm. Specimens numbered 13 through 23 were shot peened in the transition

region beyond the test section into the grip tabs. All specimens were machined

from sheared blanks, clamped in a stack:between steel guides. They were like-

wise mechanically polished to a surface finish of about 38 p,cm. Fabricating

specimens this way reduced scatter caused by dimensional variations and avoided

inadvertent rounding of otherwise square corners during the polishing operation.

Notched specimens had a planform similar to that of the smooth specimens

with the exception that the test section contained a symmetrically placed right

circular hole. The sheared blank size was nominally 27.94 cm by 12.70 cm,

symmetrically tapering through a 2.54 cm radius into a test section 7.62 cm

square that contained a centrally placed circular hole, nominally 1.27 cm diameter.

These specimens were machined from sheafed blanks in a stack' in the manner of

the smooth specimen. The hole was drilled 0.76 mm undersize, machined to its

final size in steps of about 0.381 mm, and then honed to a finish of about

38 p,cm. The final average diameter of the hole was 1.275 cm with an unbiased

estimate of standard deviation of 0.0016 cm. The corresponding average value



of the theoretical stress concentration factor, Kt, has been determined, accord-

ing to Hpwland\13), as,2.5,8 (fiatyt̂ e net section). Both smooth and notched

specimens were oriented along the grain (rolling direction) of the blanks. A

total of six notched specimens and five smooth specimens were cut from each

blank, numbered A125 through A130.

Because (as indicated by the experimental program of Table 1) specimens

were to be loaded in compression as well as in tension, buckling guides were

needed to provide lateral support. The buckling guides consisted of a stiff

metallic plate element located symmetrically on both sides of the specimen,

positioned by guide pins and nylon bushings. These plate elements were snugly

clamped about the specimen such that the specimen could just move freely on the

graphite bearing plates located,between the specimen and the guide plate. The

guides provided full lateral support to both specimen types over the surface

between grips with the exception of access regions to install and support appro-

priate instrumentation. Modulus checks on the smooth specimens verified that

the guides as installed in this program did not influence the test results.

Figures l(a) and l(b) are photographs of the guides and specimens for the smooth

and notched configurations, respectively.

APPARATUS AND PROCEDURE

Smooth Specimens

Data reported herein were derived from axially loaded specimens tested in

two similar closed-loop servocontrolled electrohydraulic test systems. All

testing was performed in strain control.

Strain was controlled over a 0.190-cm gage length using a clip-on ex-

tensometer calibrated to ASTM Class Bx. Strain was programmed to follow a

sinusoidal waveform at frequencies ranging from 0.1 Hz to 30 Hz, depending on

the amplitude of the control strain. The ability of the extensometer to oper-

ate over this range of frequencies was independently verified as a function of

the strain amplitude prior to beginning the test program. To ensure that the

temperature of the reduced section remained ambient in tests with either large

strain amplitudes or higher frequencies, the frequency was chosen so that the



(a) Smooth specimen.

(b) Notched specimen.

Figure 1. — Smooth and notched specimens and
the antibuckling guides.



indicated temperature (monitored via a thermocouple looped about and in contact

with the shoulder) remained constant (within 3 K) during testing. Strain was

controlled to within 1 percent of the programmed signal. The extensometer cali-

bration was performed and verified several times during the test program.

Load was monitored in all tests using a commercially available load cell

mounted in series with the specimen. Calibration of the load cell was per-

formed prior to and verified once during the test program. The load cell was

observed accurate and linear within 0.1 percent of the operating range used.

All specimens were gripped in a self-aligning hydraulic fixture which is

designed to minimize specimen mounting stresses. Prior to commencing the test

program, the alignment was adjusted to minimize bending strains, the adopted

standard being bending strains less than 1 percent of the imposed axial strain

for axial strains on the order of 0.5 percent. Figure 2(a) is a photograph of

the overall test arrangement used, whereas Figure 2(b) is a close-up of the

gripping, the specimen, the buckling guides, and the extensometer.

Monotonic and cyclic deformation response were recorded continuously during

the first ten cycles and at logarithmic intervals thereafter on an X-Y recorder,

while both load and strain were continuously recorded on a time-based high-speed

strip chart recorder. Specimens were examined after separation to determine if

the failure was representative of the bulk of the metal or if it initiated at

some processing flaw or inclusion. No detailed metallography of the fractures

was performed. All data reported herein were derived from test records in

accordance with the ASTM Committee E09.08 draft of a tentative standard for

fatigue testing practice.

Notched Specimens

All testing was performed in similar closed-loop electrohydraulic testing

systems under axial load control via a load cell mounted in series with the

specimen (this cell's accuracy is comparable to that used for smooth specimen

testing). Load was programmed to follow a sinusoidal waveform at frequencies

ranging from 0.01 Hz to 20 Hz. Load was controlled to within 1 percent of the

program signal. Low frequencies were used early in the life in all tests over

the period of the life during which local strains were measured, and through-

out the life in specimens with notch root strains greater than the yield strain.

10



(a) Overall set-up.

Specimen

Extensometer

Anti-buckling
guide

(b) The specimen and extensometry

Figure 2. — The smooth specimen test arrangement.
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Higher frequencies were utilized in all other situations. All tests were

started in tension, most under automatic control. Stroke was monitored in all

tests. All specimens were gripped in a plate grip fixture adjusted for samples

nominally 2.3 mm thick such that the load transfer was symmetric about the

longitudinal and transverse center lines. The fixture transferred load through

both friction and shear. Eccentricity was held less than 0.025 mm through

periodic checks and adjustments. Figure 3(a) is a photograph of the overall

test arrangement utilized in this study, whereas a close-up view of the speci-

men installed in the grip fixture is shown in Figure 3(b). The setup shown in

part (b) of this figure was typical of that used for zero-tension (R = 0) test-

ing; that shown in Figure 3(c) details the setup used for fully reversed

(R = -1) loading.

As with the smooth specimens, records of the pertinent variables were

made on X-Y recorders and strip chart recorders over the duration of the test.

The relationship between applied load and notch root strain was recorded con-

tinuously over the first ten cycles on an X-Y recorder and thereafter at log-

arithmic intervals. These two variables were also recorded continuously on a

time (cycle) base recorder along with stroke and the calibrated output from the

eddy current device.

SPECIAL INSTRUMENTATION

Notch Root Extensometer

The history of notch root strain measurement is extensive. Early work

focused on photoelastic models, the results being used primarily to validate

values of K obtained from elasticity analysis and develop data regarding K

in situations where analytic solutions were not available. Subsequently, use

was made of optical/mechanical devices, again to evaluate K (see Reference 14).

Later with the advent of new transducers, electromagnetic, resistive, and electro

mechanical devices have been employed in turn by a variety of authors '

primarily in a study of notch root strain as a function of monotonically in-

creasing load. Other authors have utilized a variety of optical techniques

(developed for whole field displacement studies as compared to those above

12



(a) Overall setup.

Eddy-current
flaw detector

Notch root
extensometer

(b) The specimen setup for
zero tension cycling.

Figure 3. — The notched specimen test arrangement.

13



Eddy-current probe

(c) ine specimen setup for
fully reversed cycling.

Figure 3. - (Concluded).

used for discrete measurement). Again, these studies examined primarily the

case of monotonically increasing load.

Eventually, interest turned to fatigue problems and the attendant study of

notch root strain under cyclic loads. Of the above techniques, only the electro-

mechanical and resistive transducers are conveniently adapted to the continuous

measurement of cyclic notch root strains. Griffith was one of the first to

perform such measurements, making use of an electromagnetic gage at the notch

root. Subsequently, several authors have measured cyclic notch root strains,

principally using electrical resistance strain gages in notched plate specimens

and dimetrical extensometers in circutnferentially notched bars. Crews and

Hardrath^ ' utilized both strain gages and a birefringent coating in their

studies, the later technique being abandoned because of attendant difficulties.

Because this study has avoided local biaxiality such as is encountered in cir-

cumferentially notched specimens through the use of a "thin" notched plate,

strain gages appeared to be the logical choice to measure notch root strain.

But, recent experience indicates that strain gages drift and undergo a cali-

bration change under the action of cyclic inelastic straining . Since a

14



goal of this program was to accurately measure notch root strain, an alternate

transducer was chosen. The logical choice, based on the successful application

of extensometers to measure cyclic strains in smooth specimens, was a notch

root extensometer.

The design criteria for the notch root extensometer were: (1) to fit into

a 1.25 cm diameter hole, sharing that space with a device to sense crack initi-

ation, (2) have low knife edge forces to avoid crack initiation due to the in-

strumentation, (3) have a sensitivity adequate to measure accurately, with

high precision, strains on the order of 0.10 percent. BCL designed and fabri-

cated such a device, a photograph of which is shown in Figure 4(a). Note that

the back of this device is aluminum (for flexibility), the arms are titanium

(for stiffness) and the knife edges are a hardened steel. Calibration of the

extensometer was accomplished using the jig shown in Figure 4(b)(also designed

and fabricated at BCL). Observe in Figure 4(b) that both optical and mechanical

calibration have been provided for. Prior to calibrating the extensometer, the

mechanical micrometer (1 division equals 0.00005 in. (0.000127 cm)) and the

filar micrometer (1 division equals 0.00004 in. (0.000102 cm)) were calibrated

by an electromechanical device whose calibration is traceable to the National

Bureau of Standards. Their calibration against this standard, which has a

resolution on the order of 0.0000025 cm, indicated displacements on the order

of 0.000015 cm could be repeatably imposed within + 0.0000025 cm as measured

using the mechanical and filar micrometers which form a part of the exten-

someter calibration jig. Calibration of the notch root extensometer was per-

formed over the range of displacements anticipated in measuring notch root

strains. Thus for the 0.127 cm gage length, maximum displacements on the order

of 0.00254 cm (2 percent strain) were of interest. Consequently, the device

was calibrated to give (1) 2 percent strain = 0.00254 cm displacement = 10 volts,

and (2) 0.4 percent strain = 0.0005 cm displacement = 10 volts. For purposes

of calibration, the excitation voltage to and the amplification of the output

voltage from the full bridge on the flexible ligament of the extensometer

was provided by a commercially available signal conditioner. After condition-

ing, the bridge output was fed to both a digital voltmeter and an X-Y plotter.

Calibration indicated that the output of the extensometer was linear within

1 percent of the range when mechanical backlash in the calibration jig was
/ 1 Q \

accounted for. Available elasticity analysis for open hole sheet specimens

indicates the inaccuracy of this device due to its finite gage length is on

15



(a) The extensometer.

Filar Mechanical
micrometer micrometer

Extensometer

Fixture

(b) The calibration jig.

Figure 4. — The notch root extensometer and
calibration jig.
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the order of -2 percent, so long as the strain field is elastic. The extent

to which the magnitude of this error is influenced by inelastic action cannot

be assessed without appropriate analytical data such as that reported later

in the Analytical Aspects section. The extensometer was calibrated once be-

fore the experimental program began, twice during the program, and at the

completion of the testing. No significant changes were observed.

Photographs of the notch root extensometer mounted on the specimen have

been shown in Figures 3(b) and 3(c).

Crack Initiation Detection Device

While the history of crack initiation detection devices does not trace

as far back as that of notch root strain measurement, the recent growth in non-

destructive inspection (NDI) technology makes it as extensive. Let it suffice

to state here that of the many indirect measurement tools available within the

scope of NDI technology, those most useful in automated (for convenience and

repeatability) crack initiation detection are the ultrasonic, acoustic emission,

and eddy current techniques. Basically, these techniques compare current obser-

vations to some reference performence (calibration) standard in terms of some

form of energy, the calibrated difference being electrically amplified, con-

ditioned and output to some recording device. To meet the objectives of this

program, the technology chosen had to be capable of detecting small cracks

(i,̂  £ 0.1 mm) in aluminum alloy sheet specimens containing a central notch

1.27 cm in diameter, laterally supported by buckling guides. Clearly, a tech-

nique which is locally sensitive is most appropriate. Consideration must also

be given to accessibility of the specimen within the buckling guide sandwich

and the fact that the notch will also contain the extensometer discussed earlier.

In view of these requirements, BCL chose eddy current technology as a basis for

automated crack initiation detection. This required the design of a transducer

and the development of appropriate signal conditioning which possessed the

necessary long-term stability (36 - 72 hours) needed to detect initiation in

high-cycle (long-life) fatigue tests.

The transducer configuration and coil type were dictated by the experimental

setup shown in Figure 3(c). Clearly, crack initiation at the notch root can
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be best sensed by interrogating the confined region within an included angle of

about 20 degrees about the transverse net section. Consequently, BCL developed

a coil designed to interrogate this arc length to a depth of about 2.54 mm using

eddy currents circulating in the material at the nctch root. Upon crack initia-

ticn, this circulation would be perturbed and sensed as a change in th<?> inductive

reactance of the coil. The probe, a photograph of which is shown in Figure 5(a),

was designed to seat the coil symmetrically about the specimen's thickness at a

constant distance from the surface of the notch root. The probe was fixed to

the specimen using a spring fixture as shown in Figure 3(b).

The excitation signal and signal conditioning were provided by a special

unit developed by BCL. This unit (1) provided the excitation voltage for the

coil as a 500 KHz sinusoidal wave, (2) permitted zero suppression of the output

under reference zero conditions, (3) provided for calibration of the change of

inductive reactance of trie coil as a function of crack size, and (4) converted

and amplified the change cf the inductive reactance of the coil from the refer-

ence condition into a direct current voltage. Signal processing was developed

such that the drift in the reference zero over the duration of the longest tes':

(say 72 hours) was less than the minimum C'-ack size detected in a short term

test (threshold of about 0.003 cm). Actual drift observed in a bench test just

prio>. to beginning the test program was about 0.005 cm over a 60-hour period.

The drift was essentially uniform over that time period and had the sense of

increasing crack size.

Calibration of the eddy current device was accomplished using the calibra-

tion plaLe -shown in Figure 5(b). This place contained plane front flaws de-

veloped by electrical discharge machining having measured lengths of 0.254 cm,

0.127 cm, 0.025 cm, 0.013 cm, and 0.025 mm. The holes from which these flaws

were developed were drilled, reamed, and honed in jhe same manner as the notched

specimens. The}' were made from a sample of the material used to makp the test

specimens. The results of this calibration indicate that crack length, £, was

an exponential function of the corresponding voltage, V, when the probe interro-

gated the region directly below the flaw (i.e., I = 0.004 exp 2.31V, where £ has

units of cm). However, when the flaw was not centrally located in the field of

interrogation, the sensitivity of the device decreased and the calibration

changed substantially. Under optimum conditions of probe placement, the thresh-

old sensitivity of the device was a flaw of length 0.004 cm. Thus, assuming
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(a) The detection device.

(several locations
around hole)

(b) The calibration standard.

Figure 5. — The crack initiation detection device
and calibration standard.
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the crack front is parallel to the initiating surface, the minimum detectable

crack size was 0.004 cm. In addition to the use of the eddy current device,

crack initiation was manually detected through visual checks using a 10 power

microscope. Frequently, changes in specimen compliance were also utilized to

infer initiation.

EXPERIMENTAL RESULTS

Raw Data

In this experimental study of the cyclic deformation and fatigue resis-

tance of smooth specimens subjected to constant amplitude strain cycling, the

corresponding load response and the number of cycles to cause specimen separa-

tion have been measured. Table 2 presents the results of this study in terms

of the axial stress derived by dividing measured load by the net section area

at the line of failure (perpendicular to the load axis) upon the first reversal
(19)and at the stable cyclic state , and cycles to failure for each of the control

conditions. The most probably relative error (square root of the sum of the

squares of contributing errors) in the controlled strain at the smallest strain

level listed in Table 2 is + 3.16 percent while that for the largest strain level

is + 1.41 percent. The corresponding relative errors in measured stress are

+2.24 percent and + percent, respectively.

The experimental program concerned with notched specimens likewise focused

on both the cyclic deformation and fatigue resistance of the test specimen.

Locally, displacement over a small gage length at the notch root has been

directly measured as a function of applied load cycles along with the initia-

tion of a crack of a given size. With regard to the coordinate system defined

in Figure 6, the 69 component of displacement at 9 = 0, IT has been measured

over a chord length of 0.127 cm located symmetrically about the transverse net

section. Values of this variable attained at the completion of the first rever-

sal and after a stable cyclic state^19^ is achieved are reported in Table 3

along with the corresponding number of cycles to crack initiation. Strains

at this location are hereafter termed notch "root" strains. The most probable

relative error in measured notch root strains is on the order of + 3.16 percent
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TABLE 2. - CYCLIC DEFORMATION AND FATIGUE LIFE DATA FOR THE 24S-T3 SHEET(a)

Specimen
Number

Strain Range,
Percent

4eP

Modulus
GPa

E

(b) Stress. MPa
Tension Range/2 Compression

Life. Cycles
Fracture

"f
Inl t la t lon(h)

Hi

Monotonlc Tension

A127S1-S8
A129S1-S9
A125S1-S10

A126S1-S2
A125S1-S3
A128SI-S4
A126S1-S5
A127S1-S6
A127S1-S7
A129S1-S11
A129S1-S12
A125S1-S_
A129S1-S14(O
A120Sl-S15(f.8)
A128Sl-S16(£,g)

72.4
68.9
71.0

494.0
484.4
491.3

Fully Reversed

3.00(c)

2.00
1.51 1.17 0.34 70.3 -- 443.4
3.06 1.38 1.68 68.2 -- 493.3
1.02 1.00 0.02 71.0 -- 362.4
0.80 0.795 0.005 72.7 -- 288.7
0.76 0.76 — 73.0 — 274.6
0.76 0.76 -- 73.0 — 274.2
0.76 0.76 — 72.3 -- 274.9
0.76 0.76 — 71.7 — 272.8
0.58 0.58 — 70.3 -- 206.7
0.495 0.495 -- 69.6 -- 172.3

Mean Stress

285
750(d)
145

7.195<e>
22,130
19,881<e)
26,400(«)
29,196<e>
29,192(e>

170,800<e)
604,900(e)

695
127

6,871
21,850
19,625
25,600

29,004

A128Sl-S17<f>
A130S1-S18CO
A130S1-S19CO
A130S1-S20<O

A130Sl-S21(f)

A130S1-S22(O
A130Sl-S23(f)

_ _

0.50

1.50 to
0.57

1.25 to
1.74

1.33 to
2.00

..

—
—0.92 0.01

0.49

.-
0.67

..
68.2
..

69.6

67.5

..

68.2

289.4
377.6
234.3
406.5

379.6

248.0
403.1

0
32.4

-167.8
-250.1

59.3

0
-54.4

315,940(e>
30,090

113,910(e)
4,503(e)

14,173<e>

„

10,84l(e)

..
30,013

113,194
3,721

12,500

650,000(J)

10,794

(a) Supplied by NASA Langley Research Center.
(b) Modulus for cyclic tests Is for stable loop.
(c) Buckled.
(d) Crack initiation at extensometer knife-edge contact location.
(e) Broke at radius.
(f) Test section transition radius shot-peened.
(g) Test section tapered about center line.
(h) Life listed Is for a 5 percent tension load drop; approximately a 5 percent loss In- tension resisting area or a

crack 0.9 mm long.
(1) Strain limits listed are the maximum and minimum values used to develop the mean stress in these mean strain

controlled tests. Stress values reported correspond to stable response (there was little transient action so
that these values are comparable to those developed on the f irs t reversal),

(j) Test suspended, no failure.
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TABLE 3. - RAW DATA DEVELOPED FROM NOTCHED PLATE EXPERIMENTS

Specimen
Number

A130S1-N1
A129S1-N2

A128S1-H3
A128S1-N6
A129S1-N5
A125S1-N6
A125S1-N7
A125S1-N8

A125SI-N9

A125S1-N10
A125SI-N11
A127SI-N12
A126S1-N13
A126S1-N14
A127S1-N15

A127SI-N16

A127S1-S17

A127SI-N18
A127S1-N19

A126S1-M20

A127SI-N21
A129S1-N22
A126S1-N23
A126S1-N24
A128S1-N25
A128S1-N26
A126SI-N27
A128S1-N2S

Control
Fully

Reversed
fiS/2, MPa

Set-Up
--

206.0
168.1
239.1
240.5
275.6
137.8

103.4

172.3
137.8
103.4
86.1
68.9

—

—

—_.

—

_.
-.
-.
..

—._
75.8
-•

Condition
ZeroU)
Tension

smx- •**•

Specimen
Monotonic
Tension

—
—..

—
—
--
--

—
—
—
—241.2

275.6

310.1
206.7
172.3

137.8
103.4
120.6
172.3
137.8
120.6
--

117.1

Local Strain
First

Reversal Stable11'
is/2, 1 it/2, X

Varies
(e)

0.98 0.965
1.02
1.015

1.16<d) 0.98
l.50<d> 1.25
0.52 0.52

0.30 0.30
0.60

0.51 0.51
0.36 0.36
0.28 0.28
0.26 0.26
0.96(kJ 0.40
1.10(k) 0.51

1.70(k) 0.53
0.80<k) 0.35
0.56<k) 0.28

Sample Inadvertantly
0.507/k> 0.25
0.38<k> 0.19
0.47(k> 0.235

(e)
(e)
(e)

0.270O 0.27
(e)

(a) Nominally zero load, the minimum stress in these

(b) Prevlous history In zero tension loading at S^ =

Crack Initiation'1*
Eddy Current

Length.
KC

V 8 ; Cycles

..
2.45

—..
2.72
2.52
2.49
2.50

2.98

—2.53
2.55
2.44
2.46
2.76
2.52

2.51
2.54
2.54

.-
--

795
630
..

250
..

13,200

--

—12,900
--
--
--

20,000,
,7,050<m>

i3,667<°)

..
50,000

Overloaded; Beyond
_„

2.60
2.57
--
.-

—2.44

—
tests
110.2

..

—
—-..

—..

—

cm

..
--

0.006
0.003
..

0.007
--

0.003

--
--

0.003
..
--
--

0.10
0.002
0.02
0.002
0.03
..
--

Gross
..
..
-.
--
--
..
.-
--

was kept slightly
MPa for 7.2 x Iff

Visual
Length

Cycles

(110
\126

3

111

<7,300

—
—
795

-.

—336
282

-- .

,000(m)

,000
,347
.-
,000
..
,000
-.

cm

..
--

0.079
..
..

0.25
0.079

-.

0.76
0.079
..

0.079
..
..
..

<0.05

35

Section
141

<7,000

243

700

positive

--

,000
--
Yield

,200
,000
..
..
,000

—..
,290

(tension)

0.06
0.06

0.165
..
..
--

0.95
..
..

0.09

.

Coippl 1-
, ance l l '

Cycles

..

—
._
670
475
320
270

17,500
-~

3,600
17,000

--
384,000

—20,400

8,650

4,800

48,000

139,000

344,500
48,500

222,550
175,560

1,229,200
700,290

cycles; no evidence of cracking at

Cycles
to

Failure

..

—
1,090(1)

800
689
468
349

21,455

135,600
4,238

21,219
134,300
411,400

O>
21,484

9,062

5,000
39,300
56,323

150,918
( j )

382,720
71,650

255,500
221,360

1,257,900
764,450

10X during
Inspection with a microscope. Present test started after cycle counter had been set to zero; test at Sg^ ° 110.2 MPa Is
considered a runout.

<c> Excensometer removed at 5 percent strain.

(d) Gross section cyclic creep evident In stroke response; stabilizes after about 10 cycles for N6 and 20 cycles for N7.
Response manifest Itself at notch root as a strain range with decreasing mean and amplitude.

(e) Notch root not Instrumented.

(f) Value reported Is one half the observed range.

(g) Experimentally observed value, computed from the product of measured elastic strain and the modulus of elasticity
divided by the corresponding stress, for the first reversal of loading (tension loading portion).

(h) Shortest size observed for each of the three methods; when blank, the crack size Is unknown. Note the shortest size is
used to define initiation throughout this report. Eddy current size Is based on the calibration for ideal crack loca-
tion and orientation (see text); actual size may be larger.

(i) Crack Initiation occurred first under a knife edge at 600 cycles; Initiation under the eddy current probe followed at
795 cycles, crack growth was somewhat assymetric.

(j) Broke in grip, microscopic study Indicates the presence of an extensive network of branched cracks on all 4 surfaces at
the notch root. These cracks are evident at 20X leading from the root, the branching Is evident above 60X. In the
context of an Initiation criterion of 0.1 mm, these cracks would be said to have initiated (see text).

(k) Peak strain on first reversal.

(1) Based on observations of ram stroke history.

(m) Brace brackets results for both roots of the notch.
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yMIdplone

Figure 6. — Coordinate system for notched plate specimen.

over the range of notch root strains measured in this program. In general, the

extensometer performed well and possessed adequate sensitivity without being

so stiff as to require high force transfer at the interface between the knife

edges and the notch root. Consequently, crack initiation occurred between the

knife edges in all but one test, as noted in Table 3. In a few tests, the ex-

tensometer was observed to periodically make contact with the eddy current crack

initiation device causing a drift in both signals. This continued until the

devices were moved to provide clearance. In such situations, the output from the

extensometer on the first cycle has been omitted in Table 3. Overall, the ex-

tensometer met the objective of the program to accurately measure cyclic inelas-

tic notch root strains, free of zero drift.

Crack initiation is reported in Table 3 in some instances in terms of three

means of detection. These are eddy current detection, specimen compliance

change and visual detection. Of these, under ideal conditions (i.e., those that

match the calibration), the eddy current device is most sensitive and repeat-

able. Of the remaining two, the visual approach is preferred to the compliance

change for sensitivity and ease in measurement, but not for repeatability.
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While under ideal conditions the eddy current device senses a crack of a

given size with high repeatability, conditions in fatigue testing are less than

ideal. There are several reasons. First, the device oscillates somewhat in

response to all cyclic loadings which cause changes in the notch shape (attend-

ant changes in the air gap between the probe and root occur that cause continuous

changes in the reference state). Second, the fatigue crack seldom (if ever)

initiates directly under the coil so that calibration of its output by the use

of standard crack sizes (and shapes) is academic. Third, while the geometries of

fatigue cracks in given specimen geometry may be similar, the corner crack

shape and range of aspect ratios encountered in tests are difficult to simulate

in calibration standards. Consequently, the absolute bench calibration against

some reference standard is arbitrary in practical applications. The previously

quoted threshold crack size is thus not the crack size at initiation indicated

by the eddy current device. Indeed, because of any one of the above three

reasons, the calibration of the device cannot be fixed in a practical sense

without prohibitive cost. In cases where data are available for comparison

purposes, the crack sizes derived from the eddy current calibration are smaller

than the corresponding visual value by as much as a factor of 10. The device

therefore, can only be used as a relative indicator of initiation. The crack

size corresponding to this indication is less than 0.8 mm, a value somewhat

larger than that desired in the context of the program's objectives.

Nominally, both deformation and life have also been measured as a function

of the applied load cycling. Nominal deformation has been assessed in terms

of the ram stroke (proportional to the nominal axial displacement of the gage

section of the notched plate) while life has been directly measured in terms of

the number of cycles to separation of the specimen into two pieces. Ram stroke

has been used to assess the extent to which nominal cyclic creep has occurred

(see note (d), Table 3) and to infer (indirectly measure) crack initiation as

detailed in the previous paragraphs and in Table 3. Because stroke is an indir-

ect measure of these events, direct stroke measurements are not reported. In-

stead, only the related observation is noted.

Certain of the data listed in Tables 2 and 3 are graphically presented in

Figures 7(a) to 7(c) for the smooth specimens and Figures 8(a) to 8(d) for the

notched specimens. Figure 7(a) presents the monotonic and stable cyclic de-

formation response while part (b) presents the stress response as a function of
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(b) Stress response as a function of cycles.

Figure 7. — Cyclic deformation response and fatigue resistance
of 24S-T3 aluminum sheet material (fully reversed
strain control).
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Figure 8. — Cyclic deformation response and fatigue resistance
of notched 24S-T3 aluminum sheet specimens under
fully reversed load cycling.
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strain reversals. Part (c) presents the fatigue resistance of the material in

terms of strain amplitude and life to failure (separation). Figures 8(a) and

8(b), respectively, present the fatigue resistance of the notched specimen in

terms of the nominal response on coordinates of stress amplitude and life and

the local response on coordinates of notch root strain amplitude and life. Note

that life is characterized in terms of both cycles to crack initiation and

fracture for the notched specimens. Figure 8(c) characterizes the deformation

response of the notched specimen on coordinates of nominal stress amplitude and

notch root strain amplitude. Note the coordinates of this figure correspond

to those of Figure 7(a). Finally, Figure 8(d) depicts the observed relation-

ship between the crack propagation period (Nf-N±) and nominal stress expressed

as a function of the maximum stress and stress ratio

In each of Figures 7 and 8, data developed from this program are shown as

open circles for fully reversed data and open squares for tension mean stress

data. In several instances, data developed in this program are presented along
(25 21)

with corresponding available data from the literature ' ' for purposes of

comparison. These data are represented by triangular symbols.
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Derived Data

As evident in Table 2, smooth specimen tests at lower strain levels termi-

nated in failures outside the gage length at the transition radius into the grip

tabs. While such failures are usually avoidable through the use of specimen

geometries with continuous curvature in the test section, these specimen geo-

metries preclude gradient-free strain control as desired in this program. This

fact, coupled with past extensive experience which showed out-of-gage-length
(9)

failures even with such a geometry for the material used in this program,

suggested the use of a uniform test section geometry with subsequent correction

(if necessary) for the notch effect to derive unnotched (smooth) specimen fatigue

life data. Examination of the raw data (Table 2) shows that in all but one case,

out-of-gage-length failures occurred at test levels that gave rise to essen-

tially elastic nominal stress-strain response. Derivation of smooth specimen

fatigue resistance from the raw data, therefore, follows by adjusting the

nominal stress (and strain) to correspond to that acting at the toe of the

transition radii. (That is by multiplying the nominal value by the correspond-

ing value of the theoretical stress concentration factor.)

With reference to the smooth specimen geometry at the transition section,

one can determine K in terms of the characteristic nondimensional parameters -

the ratio of the step size to the transition radius, h/r, and the ratio of the

transition radius to the net width, r/d, whose values for the current geometry

are respectively, 0.59 and 1.43. Information on values of K at large values

of r/d is scarce. None could be found for the particular value of h/r of in-

terest. Values could, however, be found at values of h/r of 1.0 and 0.5 (which

bound the value of interest) at values of r/d up to 1.0, as shown in Figure 9.

Extrapolating these data to r/d > 1.5 suggests that K for the geometry of in-

terest is bounded by values of 1.16 and 1.145 (see Figure 9). For the present

case of h/r equal to 0.59, K will be taken as 1.15. Accordingly, the elastic

strain-life line of Figure 7(c) will shift up to follow the adjusted data as

shown in Figure 10(a). Note that after this adjustment, these data correspond

closely with that reported in the literature. As with Figure 7(c), smooth

specimen life has again been shown in terms of life-to-specimen separation.
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Figure 9. — Elastic stress concentration factor as a function of
smooth specimen shoulder-fillet geometry.

Measures of life-to-crack initiation for the smooth specimen derived in-

directly from specimen compliance are also plotted in Figure 10(a). The curve

denoted as "initiation" has been derived by back extrapolation of the asymmetric

compliance change associated with the area loss due to the propagation of an

initiated fatigue crack. Since asymmetric compliance changes that are less

than 5 percent could be consistently resolved, the crack size associated with

this definition is on the order of 1 mm. (Visual checks and correlation with

the crack size are not available because the crack was blocked from view by

the buckling guides.)

The strain-life data shown in Figure 10(a) characterize only the fatigue

resistance of the material under fully reversed strain control. To compare

these data with that of the material subjected to conditions other than fully

reversed requires the introduction of a damage parameter that embodies the influ-

ence of mean stress on fatigue resistance. For present purposes, the form
smx Ae/2 will be used. This form is a special case of a more general energy-

based damage parameter^' . It has the same general form as the Walker'23)

parameter and is identical to the form hypothesized by Smith, et al . Accord-

ing to this parameter, the damage-life relationship for the smooth specimen data
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Figure 10. — Fatigue resistance of 24S-T3 aluminum sheet
material - adjusted based on failure location.

developed in this program is as shown in Figure 10(b), for both definitions of

life (i.e., initiation and fracture).' . ; ' .;•'•

Data have also been derived that characterize the stress response at the

notch root. Here notch root stress has b'een defined as the stress correspond-

ing to that obtained assuming uniaxial notch root stress-strain response which

follows that depicted in Figures 7(a) and'(b). In cases where the external

loading is fully reversed, the maximum stress corresponds to the fully reversed

stable stress. In cases where the external loading is not fully reversed, the

stress reported corresponds to that obtained on the first reversal of loading.

In the latter case, it has been assumed that the maximum stress attained during

the life is equal to that developed during the first reversal. This assumption

is consistent with the observations of the.material's transient response which

showed little change in maximum stress, apparently due to the action of compet-

ing transient mechanisms - hardening to increase the maximum stress and relax-

ation to decrease the maximum stress. Note, too, that the plastic strain

range is small so that there is little driving force for such transient action.

Figure 10(c) presents data developed from notched specimen testing on coordin-

ates of life and the product of measured notch root strain and the derived

maximum stress.
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Data presented in Figure 10(c) for notched specimens correspond to those

for smooth specimens shown in part (b) of this same figure. Likewise, data

shown in part (a) of this figure for smooth specimens correspond with that

measured at notch roots, as shown previously in Figure 8(b). Direct compari-

sons of these corresponding smooth and notch root deformation-life relation-

ships are shown in Figure ll(a) on a strain basis and in Figure ll(b) on the

basis of the product of maximum stress and strain amplitude.

SUMMARY AND DISCUSSION OF EXPERIMENTAL ASPECTS

This section has detailed the experimental aspects of this combined experi-

mental/analytical investigation of an improved method of consolidating fatigue

life data. The objective of the experimental program was to develop a complete

internally consistent data set with direct measurements of all key parameters,

including crack initiation and strain response at notch roots. These data will

be discussed here in regard tp issues on which they bear directly. They will

subsequently be used to assess the validity of the various analytical models

developed in the ensuing section. •

Consider first a discussion of the cyclic deformation and fatigue life

behavior of smooth samples of the test material. With reference to Figures

7(a) and 7(b), note that the material exhibits a cycle dependent hardening

response that occurs at high rates very early in life under fully reversed con-

stant amplitude strain controlled cycling. Rapid transient hardening at

inelastic strain amplitude parallels that observed in previous studies of this

class of aluminum alloy' » > ' . Present studies of mean stress relaxation in

the presence of such transient hardening indicate that, while hardening re-

duces the propensity for mean stress relaxation (because of attendant decreases

in the component of plastic strain), there is little net change in the maximum

stress (elastic component of strain). With regard to the fatigue resistance of

this aluminum alloy, shown in Figure 10(a), comparison of the data developed in

this program shown as open circles with that reported in the literature^ ' shown

as open triangles indicates a close correspondence for strain-controlled fully

reversed data, over the entire life range. As expected, this same close corre-

spondence is evident when these same data are compared on the basis of the

damage parameter, Sjj^Aet/2, as shown in Figure 10(b). Note from each part
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Figure 11. — Comparison of smooth specimen and notch root fatigue
life to crack initiation resistance at corresponding lives.
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of Figure 10 that the life-to-crack initiation at lives to initiation beyond

104 cycles is greater than 95 percent of the separation life, while beyond 105

cycles, the corresponding fraction is on the order of 100 percent of the total

life. Recall that the maximum crack size is on the order of 1 mm for this

compliance-based definition of initiation.

Consider now results for the notched specimen. With reference of the

nominal stress-life behavior shown in Figure 8(a), note the characteristic sig-

moidal shape of this relationship. Particularly note that regardless of the

definition of failure, long life data for fully reversed load cycling lie at a

stress level corresponding to the smooth specimen value reduced by K . Note

also that at increasingly higher stress levels, the period of crack propagation

is in relative increasing proportion to the total (separation) life. This be-

havior is replotted on an absolute basis in Figure 8(d) which shows the propa-

gation period, N , increasing continuously as the net section stress decreases.

The absolute'period of propagation, of course, depends on the net section re-

maining after initiation, given that all other variables are held constant.

Provided net section areas and planforms do not differ significantly, this de-

pendence is only weak as evident in the close correspondence of the results for

the two comparable geometries shown in Figure 8(d). Data from this investiga-

tion shown as open circles and squares compare closely with that from

References 5 and 24, specimens for which were geometrically comparable to those

of the present study.

In a practical sense, there are bounds to the power law relationship be-

tween applied stress and increasing crack propagation period shown in Figure

8(d). The upper bound corresponds with stress levels that induce gross yield

in the notched specimen and the attendant cyclic creep. Clearly, the propaga-

tion of a fatigue crack and that due to a cyclic tensile instability are a re-

sult of different mechanisms and, therefore, would not be related. A lower

bound for this power law relationship related to either the failure to form

fatigue cracks or the failure to propagate fatigue cracks must also exist.

With regard to the first of these, smooth specimen data indicate propagating

cracks do not form at nominal stress levels below about 172 MPa. Consequently,

cracks would not be expected to form at notch roots at fully reversed nominal

stress levels below about 67 MPa (or in terms of the ordinate of Figure 8(d),
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at 94.4 MPa). With regard to the latter of these, analysis indicates a lower

bound of 48.6 MPa. This analysis utilized appropriate fracture mechanics

technology, an assumed flaw size of 0.127 mm (corresponding closely to the

program's desired crack initiation flaw size definition of 0.1 mm), and a

threshold stress intensity for the material of interest of 13.78 MPav'm . •

Metallurgical examination of the initiation events at notch roots in specimens

A126S1-N14 and A129S1-N22 shows evidence of initiation followed by branching, a

behavior which reduces the driving force for propagation in proportion to n2

(2.6)(where n is the number of branches of equivalent length)v . In view of this

observed branching, the appropriate lower bound is that for cracks which initi-

ate but fail to propagate - 48.6 MPa.

There is yet another interesting feature of the initiation-propagation be-

havior of the notched specimens. Fractographic examination of these specimens

showed regions of corner crack initiation that in every case reflected light

much better than the surrounding regions of propagation. Such an appearance

implies the rate of the process in this small corner crack region differs sub-

stantially from that in the adjoining material. Examination of the available

records of crack initiation and subsequent growth obtained using the eddy

current device (and in one case the extensometer) also bore evidence of this

fact, the results showing either a very high rate of initial growth or a pop-

in effect. In many cases, this initial corner flaw appeared symmetric about

the corner with a length on the order of 0.8 mm.

Consider next measured notch root strain as a function of the applied

nominal stress, results for which are shown in Figure 8(c) for both monotonic

and stable cyclic loading. Note that while there is some scatter, the monotonic

data indicate a local plastic strain component larger than that for the corre-

sponding stable cyclic data at larger strain levels. This difference is

probably due to the action of cyclic hardening in the metal in the notch root

plastic zone. With reference to the measured values of Kt listed in Table 3,

their computed mean value of 2.56 is represented in Figure 8(c) by a line with

slope of unity which passes through the point (68.9 MPa, 0.00256). Both mono-

tonic and stable cyclic relationships between nominal stress and notch root

strain can be adequately characterized by power law equations for each of the

elastic and plastic components of the total notch root strain. Thus, Ae =
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Aee + AeP, so that AeC = KtAS/E + (AS/£2)
 2, where KI and nx are fitting pa-

ramaters. Such an equation provides the transformation between nominal stress

and notch root strain needed later in the data consolidation. The value of K

used in this equation (a best fit to all monotonic data) is 2.56. It compares

very closely with the theoretical value of 2.58 and is greater than that ex-

pected in view of the -2 percent, error due to the finite gage length of the

extensometer.

Consider next the fatigue resistance of a generic element of material at

the notch root, results for which are plotted in Figure 8(b) on coordinates of

total strain and life to crack initiation. Note that these data follow the

same characteristic shape as the corresponding smooth specimen data. Likewise,

the trend of these data on damage-life coordinates follows that for the smooth

specimens. Direct comparison of smooth and notched specimen data indicates

similarity not only in the trend but also in the absolute fatigue resistances,

as evident in parts (a).and (b) of Figure 11. With regard to the fully re-

versed data, note that the correspondence is almost exact? the mean value of

the ratio of notch root strain to smooth specimen strain at the same life being

1.02 with a standard deviation of 0.073. This close correspondence, which has
/07 28 )

been observed in many other data sets ' , implies that equal deformation at

critical locations in smooth and notched specimens gives rise to equal life-to-

crack initiation. Results for the positive means stress tests plotted along

with the corresponding fully reversed results in Figure ll(b) likewise implies

equal damage gives equal life. However, the scatter is somewhat greater and the

mean value increased slightly when the damage parameter is used as a basis for

the comparison. Considering only fully reversed results, the mean is 1.08 as

compared to 1.02 while the standard deviation is 0.135 as compared to 0.073.

These differences are attributed to the spread in the data caused by the inclu-

sion of a stress term in the comparison. When the positive mean stress data

are included, the mean value is 1.10 with a standard deviation of 0.17, a re-

sult which suggests the mean stress damage parameter does not collapse these

data as well as might be expected (cf the fully reversed case).
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ANALYTICAL ASPECTS

BACKGROUND

As noted in the Introduction, the purpose of this study was to develop an

improved method of data consolidation based on recently developed fatigue life

prediction technology. This technology involves two basic steps: (1) the

transformation of nominal stress into notch root stresses and strains, and

(2) the assessment and accumulation of damage caused by these local stresses

and strains. This section outlines the analytical determination of the first

transformation and the marriage of the above two steps into a fatigue analysis

procedure, examines the basic assumptions and limitations of this procedure,

demonstrates the procedure, and finally discusses its adaptation for fatigue

life data consolidation.

MECHANICS ANALYSIS TO DEVELOP THE NOMINAL
STRESS-NOTCH ROOT STRAIN TRANSFORMATION

To accurately determine the stresses and strains at the notch root of the

open hole notched plate specimen requires the solution of the corresponding

boundary value problem. Several approaches are available whereby numerical
(29—32)solutions may be obtained. ' Of these, only the finite element me'thod,

(33)based on the incremental theory of plasticity , can accommodate effects such
(29)

as transient cycle dependent material deformation response and stress (and

strain) redistribution in the inelastic region surrounding the notch root.

Clearly, such effects significantly alter the stress-strain distribution at the
(34)

notch root as compared to the results of deformation solutions. Accord-

ingly, the finite-element method (FEM) has been adopted. The essential features

of this method are reviewed in the ensuing paragraphs.

Finite Element Formation

An explanation of the finite-element method, which is extensively used for
(35)

structural analysis, can readily be found in literature. It is based on

the assumption that the deformation behavior of each subspace within a set
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which represents a continuum can be approximated by a simple functional form.

The potential energy of a solid under certain ideal conditions is given by

ei
V = / / [s. de. + s de.] dv - / u.B.dv

Volume o 1 x ° x Volume X 1

- / u^F dA
Area i i

where the first integral is the work done due to internal stresses, s. and s ;
i o

the second due to body forces, B.; and the third that arising from surface trac-

tions F^o In this expression, e are the strain components of deformation, s.

the stress due to current deformations, s the initial stress in the structure,

and u. the displacement components. For a finite-element system, the volume

and surface integrals appear as summations of integration over each subspace

(element) of the body.

The constitutive relations between stresses and strains make the form of

the strain energy expression quadratic in the displacement derivatives. Thence,

variational calculus leads to a system of equatiojis for the unknown displace-

ments in terms of the stiffness, [k], of the structure and set of applied

forces, {F} .

[k] {u} = {F} ,

the system being dependent on the functional form chosen to represent the dis-

placement field. Since the finite-element method is based on the theory of

Hermitian matrix operators, the nonlinearity in the load-displacement character

of the structure associated with plastic behavior is generally modeled through

a series of piecewise linear segments.
/ o £ \

The computer program ADINA^ ' has been used to carry put the numerical

computations for determining the stress-strain state and the displacements.

The three-dimensional element contained in the program was used. This element

belongs to the "serendipity" family, generally known as an isoparametric type.

The interpolation function for the element formulation is a quadratic poly-

nomial as shown in Figure 12(a) (from Reference 37). The program admits the
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definition of a variable number of nodes (8 to 20) to describe an arbitrary

element. Various options are available within the program for the representa-

tion of elastic-plastic material behavior. All of them are based on the assump-

tion of small, infinitesimal strains. The material model chosen for this work
(33)assumes that the von Mises stress and the Prandtl-Ruess flow rule control

yield and plastic straining in the material. This flow rule postulates the

proportionality between the plastic strain increment, de.., and the correspond-

ing stress deviation, s!., as given by

de. . = s! . dX .
ij ij

The above equation leads to what is generally known as an incremental or flow

theory of plasticity. Inherent in the use of such a theory is the path depend-

ence that governs the final stress state in the body.

The response of the material subsequent to yield is subject also to the

hardening rule chosen. For the present work, the isotropic hardening option

was selected. Thus, it has been assumed that during plastic flow, the loading

surface dilates uniformly about the origin in stress space and that the incre-

ment (or decrement) of stress is always in the direction normal to the yield

surface at the point.

For each load increment, the stiffness matrix of the structure undergoes

changes due to the change in the material constitutive law for the elements

that are accumulating plastic strain. Hence, the system of equations needs to

be resolved every time there is a change in the plastic field within the struc-

ture. Consequently, the load beyond that which causes initial yielding in the

structure is broken into a finite number and applied successively to the struc-

tural model. This load step size has been chosen such that it is consistent

with a prescribed error tolerance in order to ensure convergence of result, as

detailed later.

In addition to the load incrementation and stiffness reformation involved

in the incremental theory, the ADINA program makes a further attempt at achiev-

ing accuracy of solution through correction of the error in residual forces.

The error is due to the dependence of the strain rate on the instantaneous

value of the stress, necessitating an estimate of the strain rate based on past
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Figure 12. — Model of the notched specimen for finite element analysis.

41



calculation and then computing the stress. Since the estimate for the strain

rate cannot, in general, be expected to conform to the computed stress, itera-

tion is required which suppresses the resulting error in the force equilibrium

conditions at each nodal point. However, if stress reversal takes place in

some element(s) for a certain load step, the switch controlling iteration to

enforce residual load correction in the program must be shut off to prevent

numerical instability due to oscillation between points on the load and unload

branches

ADINA has an active column storage scheme for the master stiffness matrix

and uses Gaussian elimination to decompose the matrix. The program also has

the option of selective regeneration of element stiffnesses, thus limiting the

computation during element stiffness generation to only those elements which

are specified as being in the vicinity of the anticipated plastic zone.

The Model

The notched specimen was modeled through a set of three-dimensional fi-

nite elements. Due to the longitudinal and two transverse planes of symmetry in

the specimen geometry and loading, only one-eighth of the specimen was modeled

as shown in Figure 12(b). The finite-element mesh used consisted of 394 nodes

and 48 elements. It was anticipated that plasticity would be confined to the

region spanned by 12 of these elements. Hence, only the latter were declared

as being capable of accumulating plastic strain, the maximum width of yielding

from the edge of the hole being set at 0.3175 cm, based on past experience

with such specimen geometries. Subsequent computations substantiated this

assumption for the level of loading imposed on the model. For the elements

that were capable of exhibiting plasticity, a [3x3x3] Gaussian integration

scheme was selected for use during the stiffness generation stage of the

calculations. The other 36 elements which were declared to behave elastically

were associated with a [2x2x2] scheme. The nodal spacing in the circumferen-

tial direction at the edge of the hole for the 90 degree arc length was 7.5

degrees. Appropriate symmetry conditions were applied to the nodal points on

the planes x = 0, y = 0, and z = 0. Uniform load (stress) was applied

perpendicular to the plane y = 7.62 cm, while the remaining two planes were
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stress free. The load application sequence was tension-compression-tension with

the amplitude in each case being held constant (to simulate constant amplitude

cycling)o Computations were performed for several load (stress) amplitude

levels ranging from 1.1 to 1.5 times the load that initiated yield in the finite

element model, as noted in Table 4.

The Young's modulus and elastic Poisson's ratio for the material were

chosen as 68.9 x 10 MPa and 0.3, respectively. The yield stress during the

first loading (tension) sequence was assumed to be 358 MPa and the tangent
«

modulus Et was 7.84 x 10 MPa. After the first load reversal, the yield value

was changed to 413 MPa (at the zero load position) in order to simulate the

cyclic hardening exhibited by the material,, The tangent modulus was also
Q

modified to be 1.39 x 10 MPa at this point. The error tolerance parameter for

performing residual load correction was set at 0.001, where the convergence

measure is the difference between the Euclidean norms of the system displace-

ment vector at successive cycles of iteration.

Results - Comparison with
Experimental Data - Discussion

The complete raw results of the application of the finite-element method

to the analysis of the stress-strain distribution at the notch root are too

extensive to tabulate or graphically present in this report. Furthermore, they

pertain to the response at integration points within the volume of the elements

of interest along the hole boundary rather than on. the notch-free surface.

Consequently, in general, only information obtained after raw data manipulation

will be presented. Specifically, data obtained from a two-dimensional analytic

extrapolation of the gradient of strain to the notch root will be presented and

directly compared with experimental data. Data examined in this context will

relate only to the strain associated with the maximum net section stress (load)

.applied to the notched specimen on any cycle. Additionally, the nominal stress-

local strain response predicted over three reversals of load will be compared

with that obtained experimentally during the first two reversals and during

stable local strain response.

Consider first the results obtained at the extremes of the imposed nominal

load histories, results for which are shown in Figure 13(a) for each of the
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TABLE 4. DETAILS OF LOAD CASES STUDIED

Load Sequence: Tension Load > Full Reversal (Compression)
Full Reversal (Tension)

Py * load initiating yield in finite element model;
Corresponds to a nominal (net section) stress of
150.3 MPa

Case

1

2

3

4

5

Load Amplitude

1.1 Py

1.2 Py
1.3 P

1.4 Py

1.5 Py

Tension

2

3

3

4

4

Number of Load Steps
^Compression 1

9

7

8

10

18

Tension

6

4

6

8

16

(a) In one case examined, this compression load was equal in
magnitude to the initial tension load; in the second case
examined, this load was taken as zero.

cases detailed in Table 4. Curves shown are for both the fully reversed and

zero-tension cases for the monotonic loading and stable cyclic cases. Results

for the initial loading correspond closely with that obtained experimentally

as evident in part (b) of this Figure. Likewise, that obtained for the stable

cyclic case exhibits an equally close correspondence with the experimental

data [data shown in Figure 8(c)]. Results for the monotonic and stable cyclic

states differ, the stable cyclic strain being somewhat less than the corres-

ponding monotonic value indicating a strain redistribution due to transient

inelastic action in the plastic zone around the notch root. Analytically, this

cycle dependent transient action was simulated over the period of three rever-

sals by declaring new material properties at zero load on the unloading

(second) reversal (i.e., monotonic properties are replaced by stable cyclic

properties). The attendant redistribution of stress and strain is finished

after the completion of the second and third reversals (i.e., after reloading

to maximum load). Note that for the zero-tension case, the analysis indicated

elastic unloading and reloading on the second and third reversals, respectively,

for peak stress less than 300 MPa.

Differences in the nominal stress-local strain transformation induced by

changes in material response are illustrated in Figure 14 which show predicted
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(b) Comparison of analytical and experimental results.

Figure 13. — Nominal stress-local strain response developed
by finite element analysis.
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Figure 14. — Comparison of observed and analytically determined
nominal stress-local strain response

under cyclic loading.
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response as a function of nominal stress during the first three reversals, for

the integration point nearest the notch root (0.0179 cm below the free surface

and 0.049 cm away from the transverse net section). Also shown on this figure

are experimental hysteresis data for the first three reversals along with that

for cycles 8, 16, 25, 75, 100, and 200, for a closely corresponding experimental

case. The experimental results shown are for the case where P/P = 1.6. This

case has been shown for comparison with the analytical case of P/P = 1.5 to

emphasize the experimentally observed difference in strain due to cyclic hard-

ening, this difference being proportional to the magnitude of local strain.

Note that the experimental results for the first few reversals show that the

nominal stress-local strain response cannot be exactly represented as an odd

mathematical function because the branches are not congruent. Thus, not sur-

prisingly, transient response and the attendant stress-strain redistribution

preclude exact simulation via the total (deformation) theory of plasticity, at

least during the period of significant transient response. However, as the

transient effect diminishes, the experimentally developed hysteresis branches

become increasingly congruent so that the cyclic nominal stress-strain local

response could, indeed, be modeled by an odd function used in conjunction with

appropriate memory rules in accordance with the deformation theory, as detailed

in Reference 38. In view of these observations and the significant transient

inelastic action involved in the analytical simulation of the nominal stress-

local strain response via the FEM, the predicted response over the first three

reversals should not be congruent if the finite-element method suitably models

othe physical reality. Examination of the predicted response clearly indicates

this lack of congruence, thereby providing support for the validity of the

analytical results presented in Figure 13(a). This, coupled with die close

correspondence between the predicted and observed response shown respectively

in Figures 13(b) and 8(c), suggests that the transformation from nominal stress

to local strain for subsequent use in fatigue damage computations has been

suitably established by the FEM, at least for the notched specimen geometry of

interest in this program.
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FATIGUE ANALYSIS

The Approach — Assumptions,
Limitations and Discussion

In using the smooth specimen fatigue data discussed in the previous sec-

tion to assess fatigue damage at a notch root, a simple two-step approach is

employed. As noted earlier, the first step is to accurately determine strains

and stresses at the notch root in terms of applied loads or nominal stresses.

This has been accomplished in the present program via the FEM, as just out-

lined. The second step is to assess fatigue damage using these strains and

stresses and smooth specimen fatigue data. Factors governing the fatigue pro-

cess (the rate of damage accumulation) are assumed to be matched in the smooth

specimen and at the notch root by using smooth specimen data with a value of

some appropriate damage parameter equal to that at the notch root. These steps

are repeated and damage summed for each load reversal (in sequence) until fail-

ure is indicated in accordance with some failure criterion. This two-step
(39)

approach has its roots in the early work of Smith . in 1962. Later,

Grover recognized the importance of careful "attention to local stresses
(41)

and strains" in life prediction. More recently, Crews and Hardrath and

Topper and his coworkersv ' have made life predictions of singly notched

coupons via this approach. (Note, the terminology "singly notched" is taken

here to mean laboratory test specimens which contain symmetrically placed geo-

metric stress raisers of a single value of stress concentration, e.g., central

hole, edge fillets, edge radii, etc«)

Underlying the current use of this approach which employs a deformation-

type plasticity analysis are two basic assumptions. Firstly, it is assumed

that deformation theory is valid for plastic strains. The second assumption

is that equal deformations at critical locations as measured by the energy-
(22)

based damage parameter lead to equal numbers of cycles to the completion

of crack initiation at all such locations. This correspondence is, of course,

limited by the scatter caused by the random nature of the fatigue process.

Conditions required for these assumptions to be valid are discussed later in

this section. However, it should be noted at the outset that the conditions

imposed herein for ensuring the validity of the second assumption restrict
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calculations to predicting a crack- initiation period short enough that simili-

tude in the cracking process is maintained between reference smooth specimens

and the notch roots for which predictions are to be made.

Previous applications of this two-step approach have often failed to

properly define failure and to match conditions at the failure locations in

smooth specimens and at notch roots. Because failure was almost always defined

by specimen separation and not crack initiation in previous applications, the

cracking processes were often dissimilar. Also, uniaxial smooth specimen data

were often used in applications where the notch root stress state was not uni-

axial. Under such conditions, the equal deformation - equal life assumption

was invalid. Additionally, in many previous applications of the approach, the

use of inaccurate and sometimes inappropriate "universal notch analyses" to

transform nominal stress into critical location strains and stresses led to

inaccurate calculations of notch root stresses and strains. Each of: separa-

tion used as a failure criterion; using smooth specimen data taken in tests of

smooth specimens with crack- initiation conditions not matching notch root

conditions; and using inappropriate stress analyses has significantly contri-

buted to the confusion encountered in previous efforts to relate smooth and
/•/- Q O/

notched specimen fatigue life data. ' ' However, when conditions for

similitude in the failure processes in smooth and notched specimens were

ensured, accurate life predictions have been made0 ' ' This section

examines conditions for similitude in the context of notched fatigue specimens.

Then, suitable analytical expressions of the transformation of nominal stress

to local stresses and strains are introduced and their use in fatigue analysis

outlined. Finally, the assumptions and limitations are enumerated and dis-

cussed.

Similitude in the Fatigue-Damage Processes
in Smooth and Notched Specimens

As noted in the previous section, life predictions for. notched specimens

will be based on fatigue data obtained from smooth specimens. In this proce-

dure, it is assumed that the notched specimen for which the fatigue life is

being predicted will form a fatigue crack at the same life as a smooth speci-

men if there is similitude in the crack initiation processes in the two samples.
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This assumption by itself is undoubtedly valid. Identical local conditions at

the crack initiation sites of notched and smooth samples throughout the crack-

initiation period would result in identical crack initiation lives. What is

more difficult to ascertain is the degree to which the assumption of similitude

and the corresponding equality of fatigue lives of smooth and notched samples

is sensitive to small differences in each of the variables affecting the

fatigue—damage process<,

It will be assumed for the present that when factors such as temperature

and chemical environment are held constant, the crack-initiation processes will

be identical in smooth and notched specimens so long as the strain fields

around the tips of the initiating cracks are virtually identical for a distance

equal to several times the current length of the crack. Consider the case of

a crack tip in a notched specimen. It is clear that as the radius of the notch

decreases, the region over which strains at the notch root approximate to a

given level of accuracy those in a smooth specimen also decreases. Therefore,

to match strains in notched and smooth specimens to a given level of accuracy,

the maximum allowable crack length will decrease with decreasing notch radius.

Given a quantitative correlation between the nondimensional ratio of notch root

radius to crack length and the accuracy with which strains at the crack in a

notched specimen reproduce those at a crack of equal length in a smooth speci-

men, the limit of this ratio to give any desired degree of accuracy could be

determined,, Clearly, there is a lower limit beyond which this rationale is

invalid, in that, as the root radius approaches a size on the order of the

metallurgical features of the material, the lower limit of range of applicabil-

ity of continuum mechanics is reached. A second similar consideration in this

context relates to the minimum volume of material at critical locations

necessary for the locations to be considered metallurgically homogeneous

(identical). While this latter consideration may be important for very small

notch root radii, recent work indicates the contribution of this aspect to a

possible size effect is negligible, at least for notch radii of engineering

interest .

Because solutions such as those noted above are not generally available

in an analytical form, it is necessary to determine a desirable ratio

indirectly from available fatigue data. For practical reasons, a small
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limiting crack length is arbitrarily chosen as constituting the end of crack

initiation. The minimum notch radius for which notched specimens having the

same local strains as smooth specimens then delineates the minimum radius for

which fatigue predictions can be made.

A number of factors influenced the somewhat arbitrary crack length of 0001

cm which has been used herein to define the end of crack initiation. Firstly,

it was thought to be conveniently measured in the laboratory but was still

small compared to the radius of most notch radii of practical interest. Fur-

thermore, notches sharp enough to have radii approaching this length have very

short crack-initiation periods and spend virtually all their life in crack

propagation. For such cases, other approaches such as Fracture Mechanics are

superior to the present approach,, A crack length of 0001 cm is also on the

order of the length attained by the nonpropagating cracks found in sharply

notched specimens at low stress levels but not in smooth specimens. .Conse-

quently, this .definition of crack initiation will admit these cracks, the
( 2 8 )

formation of which is correctly predicted by the present approach. ,

It should be noted that in considering similitude, it has been assumed

that smooth specimen data representative of the environment, stress state, and

mean stress at a notch root are available to allow a direct matching of

stresses and strains in notched and smooth specimens. Since this is not

usually the case, the fatigue data for the appropriate environment for a smooth

specimen of interest will be approximated using the energy-based damage
( 22)parameter , shown earlier in Figure 10(b) to suitably consolidate^mean

stress effects.

Assumptions and Limitations

In situations where similitude in the fatigue processes in smooth and

notched specimens exists, available fatigue data indicate that the equal

damage - equal life assumption is valid. An extensive statistical examination
( 28 )

of these data showed that the assumption was indeed realistic , provided

that damage is assessed using a damage parameter comparable to the energy-

based form. Likewise, the comparison of smooth and notched specimen crack

initiation fatigue resistances of the present study indicates the validity of

this assumption (cf, Figures ll(a) and ll(b)). Thus, as in References
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27 and 28, one can further conclude that "size effects" concepts' " ' are

superfluous in making life predictions of notched specimens using smooth speci-

men data. As a consequence, damage can be assessed directly in terms of local

stresses and strains determined by the first step in the two-step life predic-

tion procedure. In fatigue applications, transient response complicates the

determination of local strains from the nominal stress - local strain transfor-

mation, as noted in the previous section and as evident in the noncongruent

hysteresis paths shown in Figure 14. But when a stable cyclic state is ap-

proached early in life, the error in computing local strain through the

reversal-by-reversal application of the deformation theory of plasticity in
(38 )

fatigue analysis is small. Because a stable cyclic state is asymtotically

approached early in life, fatigue analysis would be most accurate if the

stable transforation is employed.

In addition to the requirement that the deformation response be cycle

invariant, there are other necessary conditions to ensure the validity of the

first transformation. These conditions are apparent from a consideration of

the general mathematical form of the transformation,

Ae* = f(AS) , (1)
*v *, *

where Ae represents the local total strain state and AS represents the extern-

al stress state. This unique relationship (one-to-one correspondence) between

nominal stress and local strain implies path (history) independence in addition

to cycle invariance. Furthermore, this unique relationship implies that all

elements of material throughout the body (notched component) deform in phase

with the external load, a situation which exists only if the external loads are

in direct proportion to each other (proportional loading). Thus, equations of

the form of Equation (1) are valid only when used to relate nominal stress to

local strain in a proportionally loaded component (local and global bifurcation

assumed precluded) fabricated from a material whose stress response is cycle

invariant (stable).

The above-noted 3 conditions (1) proportionally stressed critical loca-

tion, (2) proportionally loaded component, and (3) cycle invariant (stable)

material stress response are seldom satisfied simultaneously in practical
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applications. Fortunately, for the present case -- that of a thin, notched

plate -- all are satisfied once the asymtotic state of stability is approached,

The reversal-by-reversal application of the results of the finite-element

stress analysis in accordance with the deformation theory is thus considered

valid in the present application.

Convenient Analytical Character-
izations of the Transformation

There are two convenient forms of the nominal stress to local strain trans-

formation useful in determining local stress and strain for use in notch root

damage computation as a function of nominal stress.

One convenient form of this transformation makes use of the Neuber

parameter. * ' This parameter was previously developed to facilitate calibra-
(52)

tion of NeuberTs rule as applied in fatigue analysis for application to a

specific notched specimen geometry and material using the results of stress

analyses or measured local deformations, as detailed in References 49 to 51.

To evaluate this Neuber parameter, local stresses and strains determined from

these accurate stress analyses or measurements are used to compute a

"theoretical fatigue notch factor" defined by

t _ (A5 ' Ae*1 ' E*)1/2 mKf 1 IT TTT » u'
(AS ° Ae1" ' E*)1

n

where E* is the modulus given by E* = 3E/2(1 + V), At? and Ae are ranges of

equivalent notch root stress and total strain, and AS and Ae are ranges of

equivalent nominal stress and total strain. The Neuber parameter, defined by

the ratio of Kf to K , is thus a measure of the difference between values of

local strains and stresses found from accurate stress analyses and those found

by the use of Neuber's rule as a universal notch analysis. In applications

such as the present where the scope is limited to nominal elastic response, the

Neuber parameter has the form
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Kt Kt AS
E*)1/2

A second form of this transformation that also can be conveniently em-

ployed in fatigue analysis has its basis in the observation that the relation-

ship between nominal stress and inelastic notch root strain in singly notched
( 38 )specimens follows a power-law equation^ ' . Thus,

vt _ AeE* E*/AS'
K... — '

AS ASKj (5)

The parameters K2 and n2 are chosen so as to numerically best fit Equation (5)

to the relationship between nominal stress and notch root strain found from

stress analysis (or notch root strain measurements) for the notched component

geometry and material of interest. When the values of K2 and n2 are determined

from "stable" notch root behavior they are denoted K2 and n2.

Note that when the deformation response at the notch root is elastic and

the local stress state is uniaxial, Equations (2) and (4) reduce to

f ~ AS '

The value of Kf computed using either Equation (2) or (4) is the predicted

value of the observed fatigue concentration factor. Equations of the form of

(2) and (4) have been shown to provide accurate crack initiation life predic-

tions for a variety of notched specimen geometries made from many engineering

materials (e.g., References 6, 8, 27, and 45). Their successful application

has been shown to require similitude in the fatigue process at fatigue critical

locations of notched specimens and the smooth specimens used to determine

reference fatigue data. It has also been shown to require that notch root

deformations be both accurately determined from stress analyses (or measured

strains) and adequately represented in the smooth specimen simulation of notch
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stress-strain behavior. All such successful applications of this approach have

made use of a smooth specimen damage-life relationship such as that shown in

Figure 10(b) to transform the local strains (and corresponding stresses) into

fatigue damage. They have utilized a linear damage accumulation law and when

applied to constant amplitude loading such as in this research have defined

damage per reversal as the inverse of the life to crack initiation associated

with the computed value of the damage parameter (the ordinate on Figure 10(b)).

In the present constant amplitude case, there is no need to account for se-
(54)quence effects by the application of some nonlinear damage accumulation law

Neither is it necessary to apply sophisticated cycle counting rules to resolve

the notch root stress-strain response into cycles and connecting hysteresis

segments as in variable amplitude damage analysis (i.e., memory rules do not
( 38 ̂  :

have to be invoked ). Transformation of the local stress-strain response

into damage is thus a straightforward process.

Local stresses for use in this damage assessment are assumed to be related

to local strains through the uniaxial stress-strain equation of the material

( a valid assumption for the "thin" notched plates used in this study^ '). In

particular, the maximum local stress required in damage computations has been

assumed equal to that attained at the first strain reversal, an assumption

consistent with observed material mean stress response under strain control

(cf, earlier discussion of response in the section Derived Data).

Mathematical Model for Life Prediction-
Adaptation to Data Consolidation

The Life Prediction Model

Based on the foregoing discussion, the essential features of the mathema-

tical model for life prediction developed under this contract are similar to

those of the previous consolidation studies carried out by BCL under contract
(1-3 )

to NASA Langley Research Centerv . Clearly, both the past and present pro-

grams make use of a two-step (transformation) life prediction process; although

the transformations may not have been delineated in the previous work, they

were nevertheless the same. A second similarity is the manner of damage accu-

mulation in accordance with a linear damage rule. There are, however, major

differences in the means of damage assessment.
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With regard to damage assessment, the present study utilized an energy-
(22)

based damage parameter which, for uniaxial stress states, has the form of

the Smith-Watson-Topper parameter . In turn, this parameter is a special
(23)

form of the Walker parameter utilized in earlier studies, the difference

being in the value of the exponent. Examination of the results of References

1 through 3 indicate that the difference in data consolidation achieved by the

use of this marginally different form of damage parameter compared to the op-

timized parameter used previously is not significant. In addition to the use

of this slightly different damage parameter, plastic strain has also been em-

ployed as a damage parameter. This parameter has been shown to provide a very
(19)good basis for damage assessment at very large strains , but, as expected,

it fails to consolidate mean stress data at long lives. The damage parameter

assumed to govern in life prediction is that associated with the lowest indi-

cated rate of damage accumulation— at long lives, the mean stress parameter

controls, while at shorter lives, the plastic strain parameter controls.

In the context of determining the local strains and stresses from nominal

stress, significant differences exist between the present and previous programs.

There are two primary differences. First, the present program utilized accurate

stress analysis to establish this transformation whereas the previous studies

made use of inappropriate "universal notch analysis" that have been shown to be
( fi 7 ? 8 ̂

erroneous. ' ' Second, the present program does not resort to the use of a

somewhat arbitrary "size effect" whereas the previous studies have. There are

other related differences; in particular, the means of determining the maximum

stress at the notch root under mean stress conditions. But, computations indi-

cate that for the aluminum alloy of interest these differences are minor.

The important emperical relationships used in the life prediction

cedure are the first transformation (Equation (4)) -

Ae 2.58 AS ' '" x3'57

2 69.59 x

and the monotonic stress-strain response -

13.16

/ AS V ; (4(a))
\19.16 x 10~B/

69.59 x lor
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For the second transformation, the equation used for plastic strain-life damage

assessment is
-1.29

— = 2N = 0 19 (•=§—) . (i\
D i U>iy \ 2 / ' (7)

R

while that for the damage parameter is

Ae /2Nma

where KB and nig have values of 381, -1.91 and 1.8 x 10~4, 9.07 for values of

S/6.89 bounded respectively as follows: 22 < S/6.89 < 4.3 x 10~3 and 4.3 x

ICf1 < S/6.89 < 6 x 10~2 and, DR and 2Ni designate the damage per reversal and

the number of reversals to initiation, respectively. Both Equations (7) and

(8) had cutoffs beyond which the damager per reversal has been considered negli-

gible. In both cases, this cutoff has arbitrarily been selected as 2 x 107 re-

versals, a value chosen based on a consideration of the smooth specimen damage-

life behavior at long life. The factor 6.89 is a units correction.

The life prediction process based on these mathematical models is straight-

forward. First, the peak notch root strain is determined from the corresponding

peak nominal stress using Equation (4(a)). The corresponding maximum notch root

stress is next determined from Equation (6). The third step is to compute the

minimum notch root strain and thereafter compute the local strain range. Using

the maximum stress and this total strain range, the plastic strain amplitude is

next computed. The fourth step is to compute damage per reversal (life) using

each of Equations (7) and (8).

Adaptation for Fatigue Life Data Consolidation

Any fatigue-life prediction model can be conveniently adapted for use in

data consolidation, once a basis for consolidation is established. With regard

to the possible variables which could be used as a basis, there are two. First,

computed damage at a given life. to crack initiation could be used. Alternately,

predicted life at a given nominal stress level could be employed. Previous BCL
(1-3)studies conducted under contract to NASA Langley Research Center v ' have made
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use of the first of these. As such, the influence of the failure criterion on

the extent of consolidation could not be directly assessed. Note, too, that

this basis is somewhat insensitive compared to life-based measures at long

lives, an advantage in some respects (for example in culling run-out data).

Because of the impact of the choice of the failure criterion on the ac-
(28 )

curacy of life predictions and the desire of the present program to assess

this aspect and retain sensitivity at long lives, the ability of the improved

method of life prediction to affect data consolidation will be assessed here-

after in terms of the ratio of predicted to observed fatigue life. Values of

this ratio will be examined as a function of the observed life. Throughout,

predicted life will be that computed using smooth specimen data as outlined in

the preceding paragraphs. As such, smooth specimen data reported in Table 2

(K =1.0) are consolidated to the extent that the empirical damage rate equa-

tion used in the notch root damage assessment best fit those data. This con-

solidation is, therefore, achieved to the greatest extent possible - the ratio

of predicted to observed life being 1.01 with an estimated value of the popula-

tion standard deviation of 0.4106. (The distribution is skewed towards values

of the ratio less than one. If the extremes of the distribution are censored,

the distribution is essentially normal with a mean of 0.91 and an estimate of

the population standard deviation of 0.1756.) Subsequent examination of the

data consolidation of notched specimens is, therefore, superimposed on a very

effective smooth specimen data consolidation.
(1-3)It is noteworthy that in the previous studies , differences in the

mean fatigue resistances for cases where K = 1.0 and K > 1 are substantial.

Thus, these previous studies consolidated notched specimen data independent of

the smooth specimen results. Smooth specimen data assembled under these pre-

vious programs and that reported in the literature (data from References 5, 9,

and 11) are consolidated to varying degrees in the context of the smooth speci-

men mean life response for the data developed in this program. For the strain-

controlled data developed recently as reported in Reference 5, the mean value

of the ratio is 0.959 with a standard deviation of 0.564. These data and that

of the present program Table 2) are, therefore, in close correspondence. With

regard to the data reported in References 9 and 11 developed in the early 1950's

using load-controlled testing in subresonant systems, the mean value of the
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ratio is 1.793 with a standard deviation of 3.1. The mean value of the life

ratio indicates that these data had a slightly greater fatigue resistance

than that indicated by modern strain-controlled testing.

The level of consolidation of the above-noted data is not high as indi-

cated by the large value of the standard deviation. Such an increase in

scatter can be due to the differences in test technique (1) between the various

laboratories used to develop these data (cf, Reference 11, Figure 21) and (2)

between the era of the early 1950's and today. Unfortunately, the influence of

test technique on the mean value of and the scatter in the life ratio cannot

be established. But, fortunately, this does not create a serious problem in

later assessing the extent of notched specimen consolidation. This is so

because the mean resistances do not differ substantially (all data developed

via strain-controlled testing lie well within the ± la scatter band of the

load-controlled data reported in References 9 and 11). In this same context,

it is noteworthy that the mean resistance of these strain-controlled data

provides the best mean curve for the totality of the data developed in the

early 1950's (compare the present data with that of Figure 28 of Reference 11).

Thus, it is valid to assume that these strain-controlled data provide a

valid basis to assess the rate of damage accumulation at notch roots in the

corresponding notched specimens, data for which are reported in References

12 and 55. This assumption is invoked later in the section dealing with

notched specimen data consolidation.

CONSOLIDATION OF 24-SERIES ALUMINUM ALLOY

NOTCHED SPECIMEN FATIGUE LIFE DATA - DISCUSSION

The improved method of fatigue life prediction has been applied in the

context of data consolidation as detailed in the previous section to a variety

of data, the purpose being to assess the improvement in consolidation as

compared to that achieved in the previous studies. Several data sets have

been examined; the common feature being the generic material, the 24-series

aluminum alloy. Within this overall data set are several subsets which, for

the most part, represent data assembled under the previous program. These

data, reported in References 5, 12 and 55, are supplemented by the notched

specimen data developed in this program. Specific data subsets considered
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are: (1) new data from this program for open hole sheet specimens; (2) data

for open hole sheet specimens from Reference 5 pooled with (1); (3) data for

open hole sheet specimens from Reference 12; (4) data for open hole sheet speci-

mens from Reference 55; and (5) all data for open hole sheet specimens pooled

into a single data set. Data consolidation for each of these subsets is con-

sidered in turn in the ensuing paragraphs.

Consider first the consolidation achieved for the results presented in

Table 3. The mean value of the ratio of predicted to observed lives (hereafter

designated as "ratio" for this case when separation has been used as a failure

criterion was 0.472 with a standard deviation of 0.327. In every case, the

Smith-Watson-Topper parameter (hereafter designated as SWT) controlled life.

When the failure criterion was changed to one of initiation by subtracting the

propagation period (based on the response shown in Figure 8(d)) from the total

life to define the observed life, the mean value of the ratio became 0.567 with

a standard deviation of 0.337. This mean value of the ratio is somewhat less
!
than unity indicating that, on the average, the improved crack initiation life

prediction model is slightly conservative. In terms of the ability of the model

used in the previous studies to simultaneously consolidate smooth and notched

specimen data, the present model is apparently improved. This is evident by

comparing the respective mean life curves (Figures 7 and 8 of Reference 2)

which differ on the average by more than a factor of + 8 on life (i.e., the

mean value of the life ratio is greater than + 8). With regard to the degree of

consolidation achieved, comparison of the respective values of standard devia-

tion shows the dispersion of these notched data to be somewhat less than that

of the corresponding smooth data. Thus, these data are highly consolidated. It

should be emphasized that the present comparison of the current model to the

previous one is not direct. That is, the data sets considered differ in content

and size. Such comparisons will, however, continue until in the final compari-

son the data sets will match identically.

Consider next the consolidation of the above notched specimen data pooled

with similar data reported in Reference 5. This pooled data set represents 33

specimens. Consolidation of these data using the improved crack initiation

life prediction model is comparable to that achieved as detailed above. The

pooled mean value of the life ratio for these data when separation was used as

a failure criterion is 0.472, with a standard deviation of 0.334. When
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initiation is used as a failure criterion, the corresponding mean is 0.612,

with a standard deviation of 0.415. Clearly, the choice of the failure criter-

ion significantly influences (increases) the accuracy of the life prediction;

it also appears to slightly increase the data dispersion. In general, the

consolidation of these data is uniform over the range of lives reported, as

evident in Figure 15. As with the consolidation of data developed as a part of

this investigation, this pooled data set shows the life prediction model to be

slightly conservative. Likewise, this pooled data set shows the present life

prediction model to be apparently improved as compared to that of the pre-
(1-3)vious studies . Again, as with the data developed during this investigation,

the dispersion of the notched specimen data is slightly less than that for the

smooth specimens. Thus, the improved life prediction model affects a high de-

gree of data consolidation for both smooth and notched specimens.

Consider next the results of the open hole sheet specimens reported in

References 12 and 55. Clearly, if consolidation of these data is to be achieved,

the nominal stress to notch root strain transformation in the life prediction

model must be accurate for the notched sheet specimens used in those studies.
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Figure 15. - Data consolidation for 24S-T3 and 2024-T351 notched
sheet specimens — data from this
investigation and Reference 5.
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Fortunately, use can be made of the fact that for a particular type of speci-

men geometry fabricated from a given material, the transformation for a given

geometry is apparently generic to the class(2*>>. This is evident in Figure 16,

reproduced from Reference 24. This figure indicates that a single nominal

stress-stable notch root strain transformation characterizes the response

measured in open hole notched 24-series aluminum alloy sheet specimens for
(45)five specific geometries, ' including that of this investigation. This same

transformation can, therefore, be assumed accurate for the open hole specimens,

results for which have been reported in References 12 and 55.

It should be noted that data shown in Figure 16 have been obtained from

"thin" notched specimens for which the local stress state is essentially uni-

axial. Such a state also prevails at the notch root for the data reported in

Reference 12, while that of Reference 55 exhibits various degrees of local

biaxiality. The role of biaxiality in altering this transformation has been

accounted for in the transformation as detailed in Reference 45; as such only

the elastic component of the local strain has been adjusted. Unfortunately,

the role of biaxiality under the action of inelastic strains has not yet been

analytically determined. Accordingly, no adjustment of the plastic component

of the notch root strain has been made.
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Figure 16. — Normalized nominal stress-local strain response
for notched 24S-T3 and 2024-T351 aluminum

alloy sheet specimens.
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It is also important to note that the data sets in both References 12

and 55 contain several run-outs. Additionally, there are numerous data de-

veloped for lives much in excess of 2 x 107 reversals, the life beyond which

the damage accumulation rate becomes negligible and analysis predicts a run-

out. Neither case should be included in the assessment of the ability of the

improved crack initiation prediction model. This is especially true of actual

run-outs since cracks did not initiate. Consequently, actual run-out data have

been censored. Predicted run-out data have, however, initially been included.

In both of the ensuing assessments, only cases for which a crack initiation

criterion has been used will be examined in detail.

Results of the consolidation of the open hole notched sheet specimen data

of Reference 12 gave rise to a mean value of the ratio of 0.317 with a stand-

ard deviation of 0.227. These results were based on an initiation failure

criterion empirically derived from the results shown in Figure 8(d). Of these

the plastic strain damage parameter governed 5 predictions while the SWT

parameter governed 24. There were a total of five results censored on the basis

that the maximum net section stress exceeded the yield stress of the material.

Only one predicted run-out has been included in this consolidation, a total of

five results being censored on the basis that the test result was a run-out.

When a failure criterion of separation was used, the values of the mean and

standard deviation were 0.306 and 0.218, respectively. These correspond

closely with those of the initiation-based consolidation noted above.

With reference to the initiation-based data consolidation, the improved

crack initiation life prediction model again is slightly conservative (by

a factor of 3.15). This represents an apparent improvement in the accuracy

of this life prediction model as compared to that of the previous studies which

is nonconservative at short lives and conservative at long lives by more than

a factor of ± 8 in life. In this context, the net improvement in absolute

accuracy is better than a factor of 2. Similarly, this improved life

prediction model has better consolidated these notched specimen data, the

dispersion being more than a factor of 10 less than that for the corresponding

smooth specimen data, based on standard deviation. Much of these data

fall within the — 1(7 scatter band of the corresponding smooth specimen

data as evident in Figure 17(a). This is in strong contrast to the results of
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the previous study which showed distinct data bands for smooth and notched

specimens and levels of dispersion greater for the notched specimens as compared

to that of the smooth specimens (cf, Table 6 and Figures 7 and 8 of Reference 2).

Consider next the consolidation of the results of Reference 55. This

consolidation, based on a total of 457 test results, showed the mean value of

the life ratio to be 0.244 with a standard deviation of 0.356 based on a

crack initiation failure criterion. Of these test results, the plastic strain

damage parameter governed 12 predictions while the SWT parameter governed 445.

There were a total of 9 results censored on the basis of gross yield while

23 results were censored based on the run-out criterion. There were a total

of 26 predicted run-outs, all of which were based on the SWT criterion. When

a separation criterion was used, the respective values of the mean and standard

deviation were 0.213 and 0.278. Again these values correspond closely with

those based on an empirical initiation criterion.

With reference to the initiation-based data consolidation, the improved

life prediction model again is somewhat conservative (by a factor of 5). Never-

theless, this consistently conservative model constitutes a substantial im-

provement over that of the previous program which is nonconservative at short

lives by a factor of 10 and conservative at long lives by more than a factor

of 8. The net improvement is, therefore, substantial. Similarly, this model

gives rise to a much improved data consolidation. Again, the majority of the

data for the notched specimens lie within the + la scatter band of the corre-

sponding smooth specimen data as evident in Figure 17(b), a result which as

noted previously is in strong contrast to the consolidation achieved in the

previous study.

Finally, consider the consolidation of the entire data set, results for

which are shown in Figure 17(c) for the case of the initiation-based consolida-

tion of 517 valid (uncensored) test results. The computed mean value of the

life ratio is 0.272 with a standard deviation of 0.365. This consolidation

essentially mirrors each of those discussed previously. The mean value is

somewhat dominated by the data of Reference 55, although it is within a factor

of about 2 of the mean for any one data set. The standard deviation is like-

wise dominated by the largest data set, but it too is representative of all

data sets, the extremes being 0.277 and 0.415. This consistency among the
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results for the various data sets is significant; it indicates that the life

prediction model treats all results in a similar fashion and does not intro-

duce bias or cause banding in the results of the consolidation. This is in

contrast to the results of the previous program which tended to show banding

in the long life data (particularly that of Reference 55). Another factor of

importance is the tendency in the consolidation to fall off at longer lives

as evident particularly in Figures 17(b) and 17(c). This is due in part to

the failure of the two-segment SWT damage equation to adequately model the

rapidly changing damage-life relationship in the very long life regime.

It is also due in part to the arbitrary value of the cutoff life beyond

which damage per cycle is considered negligible. This is so because all pre-

dictions must lie below a line with slope of -0.5 which passes through the

coordinate point of unity and the cutoff life. Such a line plots the pre-

dicted run-outs and forms an upper bound to the value of the life ratio. Beyond

this cutoff life, crack initiation life predictions are by definition invalid

since the cutoff implies cracks never initiate. Accordingly predictions

beyond this line should be culled from the data set. This results in a net

improvement in the accuracy of the life prediction and serves to decrease

the overall scatter in the life ratio as evident in Figure 17(d). Further

discussion of this pooled data set would repeat previous comments regarding

the degree of consolidation in that these data follow the consistent pattern

evident in the four previous consolidations. Note that for this data set,

which matched identically that of Reference 2, there is a significant improve-

ment in consolidation.

COMMENTARY

For the most part, the individual aspects of this research program were

successfully married and culminated in a method of crack initiation life pre-

diction which substantially improved data consolidation, as compared to the

results of the previous program. Particularly, this improved model was more

accurate in an absolute sense and gave rise to a collapse of notched specimen

data greater than that of the corresponding smooth specimen data. Simultaneous

consolidation of both smooth and notched specimen data was achieved.
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Unfortunately, the program was not without shortcomings, particularly

in the inability of the eddy current device to detect cracks on the order of

0.1 mm. Experimental difficulties in this regard necessitated adopting an

initiation crack size somewhat larger, on the order of 0.9 mm. These ex-

perimental problems were fortunately overshadowed by the remarkable perfor-

mance of the notch root strain transducer. This device was a consistently

good performer, yielding reliable information that was invaluable in verifying

the results of the finite element analysis of the notch root stress-strain

distribution.

While, in general, the results of this program demonstrate the viability of

accurate crack-initiation life prediction methodology to simultaneously consoli-

date smooth and notched specimen fatigue-life data, they are not conclusive.

There are several reasons for this. First the present program has addressed

analysis of data for only the 24~series aluminum alloy. It, therefore, presents

a very limited basis for establishing conclusively the viability of accurate

life prediction analysis to achieve consolidation. Second, the use of data

for materials such as the 24-series aluminum alloy does not constitute a

severe test of the accuracy of life prediction models. As clearly evident in

Figures 18(a) and (b), steels pose a much more severe test, particularly those

which cyclically soften. Third, the present study has focused for the mcs t

part on results of "thin" notched specimens with essentially local uniaxial

stress states. Yet, the majority of notched data in the literature has been

developed using geometries with a local biaxial stress state. (Furthermore,

most practical geometries are locally multiaxial.) Since stress state effects
(45)on consolidation are significantv ' and in general not yet explored under

the action of cyclic plasticity, multiaxial effects remain, in general, a

conundrum. Finally, the fourth reason is that the present program has examined

only the constant amplitude case. Consolidation under variable amplitude

loading is an unknown — there being substantial additional complication of

both transformations in dealing with variable amplitude loading.

Future work related to improving the current consolidation tech-

nology should address each of the above four limitations. Without the results

from such studies, the viability of accurate life prediction models to consoli-

date fatigue life data cannot be conclusively established. In the context of

comparisons between this and the previous studies which showed the improvements
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being related Co an understanding of the fundamentals of the notch root deforma-

tion response and damage process, future studies should likewise follow a

fundamental scientific approach.

CONCLUSIONS

The most significant single conclusion of this program is that improvements

in life prediction technology give rise to measurable improvements in data con-

solidation. There are several other less significant conclusions which pertain

to the specific research activities of this program such as: the finite-element

method resulted in an accurate analysis of notch root strain response based on

comparisons with experimental data; experimental measurements support the hypoth-

esis that equal damage at critical locations gives rise to equal life to crack

initiation; smooth and notched specimen data can be simultaneously consolidated;

and accurate crack initiation life predictions of notched specimens can be made

using smooth specimen data using the improved life prediction model elaborated

herein.
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