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Development work on a device for the Space Shuttle that will prevent the

transfer of viable microorganisms within water systems is described. The device

i
4	 serves as a check valve in that it prevents the transfer or cross-contamination
r

of microorganisms from a nonpotable system into a potable water system When these

systems are interconnected. In this regard, the function of the device is similar

to that of the "air gap" found in conventional one-gravity systems. The device

is essentially a bed of resin material impregnated with iodine 	 Basic design

data for a variety of flow and temperature conditions are presented, together

with results of challenging the beds with suspensions of seven microorganisms
i r

including aerobes, anaerobes, and spore formers.
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1.0 INTRODUCTION AND SUMMARY

1.1 Problem Definition. The Space Shuttle Orbiter has a number of systems

that require water including the galley, bathing and personal hygiene,

and evaporators/boilers. Because of design restraints,
k

these systems are supplied with water from a single source - - - the

potable water system. Design considerations favor the hard lining or

cross-connection of the water source to the various using systems. The
gt

microbial contamination of the water within the using system cannot be
^t

fE	 precluded. During stagnant and backflow conditions, microbial back

contamination of the potable water system is possible. The Microbial<E

Check Valve (MCV) is a device that prevents this back contamination

without introducing more than a modest pressure drop while allowing

back flow equal to normal forward flow. In addition, the testing re-

ported herein demonstrates that the MCV can replace the silver ion

generator as a biocide dispensing device.

{	 1.2 Microbial Check Valve (MCV) Unit. The MCV unit is a device that kills

r
microorganisms with essentially 100% efficiency as contaminated water

k flows through the unit. The MCV cylinder, which fits in a 5 diam x
4

12.7 cm (2 diam x 5 in) envelope, is packed with a quaternary ammonium

E anion-exchange resin previously combined with triiodide complexes. The

unit does not function as a filter as-the dead organisms exit from the

unit along with the product water. The iodine from the triiodide com-

plex is supplied on demand 	 and the iodine	 residual in the

'	 product stream is low. This results in extremely long useful life of

the unit and a product water lacking in iodine taste.

The favorable characteristics which caused the MCV to be con-

sidered for space flight are the following:

1. Small volume and weight.

i
1

i

i

l

i.

i
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2. Highly effective in killing bacteria, fungi and viruses. 	 1.1

3. Low pressure drop.

4. Equally effective with flow in either direction.

5. Low iodine residual in product water.

6. Low cost.

7. Unlimited shelf storage life.

8. Long operational life.

9. Insensitivity to spacecraft operating conditions, i.e.,

pressure and temperature.

10. Resin can be replaced easily.

11. Simple interface.

12. No moving parts.

13. Requires no in-flight expendables.

°	 14. Requires no electric power.

1.3 Previous Work. Under contract NAS9-11940 entitled "R & D in Space-

craft Water and Waste Management", an investigation of the basic MCV

water disinfection system developed by Drs. Walter Lambert and Louis

Fina at Kansas State University was conducted. This study was pre-

liminary in nature and supported the definition of the capabilities

of the technique and the application potential of the concept for

spacecraft potable water disinfection. Since this time, the developers

of the concept have obtained a U.S. patent for the development. (U.S.

Patent ,3,817,860 dated June 18, 1974.)

1.4 Current Work.	 The current effort was initiated in June 1976 to

conduct developmental research and to develop a preprototype system

for space flight. Based on very promising initial results the Shuttle

Program Office adopted the system for use in the Shuttle potable water

system. It replaced the silver ion generator which had previously been

i`
1

i

ii	 Y
{

lx
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baselined. The prime reason for the change was that qualification 	 i

testing of the silver-ion generator indicated erratic performance

and would have required additional expenditures for further develop-

ment.

	

k	
Major tasks in the current effort include:

a) preliminary design based on literature and Shuttle water

system reviews.

b) pressure drop measurements

c) microbial challenges

d) preprototype unit design and fabrication

e) verification testing	 +
!k

f) prototype unit development

	

R	 The experimental program was designed to determine operating para-

meters and limitations of the MCV concept based on Shuttle requirements
a

by testing to failure. The effort included challenging the device with

suspensions of the following microorganisms: Escherichia coli, Strep -

tococcus faecalis, Staphylococcus aureus, Bacillus subtilis, Pseudomonas 	 3

aeruginosa, Clostridium perfringens, and Aspergillus ni er. The ability

to kill these organisms at the following temperatures was verified: 275,

294 and 344 K (35, 70 and 160°F).
r

The effects of other Shuttle requirements such as soaking the

device with ethylene oxide, alcohol, autoclaving the device, and de-

termining the effect of the device on water chemistry were also deter-

mined.

Sufficient information was developed to enable sizing the device	 !

for Shuttle applications. In general, it is concluded that the device will 	 {.,

perform satisfactorily in its intended uses in the Shuttle potable water
i

system.

.,	 -3-
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2.0 MCV DESIGN REQUIREMENTS

i
2.1	 MCV Interface Control	 Requirements.	 The latest revision of the

H

interface control requirements for the MCV are listed below. 	 These

requirements are extracted from the Interface Control Document pre-

pared by Rockwell	 International Corporation in November 1977.

2.1.1 OPERATING PRESSURE.	 The MCV shall operate as required with

i any water pressure from 4.5 to 36 psig.

2.1.2 PRESSURE DROP. The pressure drop across the MCV shall 	 not,

after being subjected to water in accordance with Table 2-1

for 7 days at an average flow rate of 15.5 lbs/hr, exceed 0.5

psi at a flow rate of 22.8 lbs/hour.

2.1.3 WATER TEMPERATURE.	 The temperature of the fuel cell water at

the MCV interface will range from a minimum of 40°F to a max-

' imum of 200°F.

2.1.4 EXTERNAL LEAKAGE.	 External leakage shall	 not exceed 1 x 10-4

scc/sec He at 36 psig.

2.1.5 EFFLUENT.	 The MCV effluent shall conform to requirements of

Table 2-1.

2.1.6 INSTALLATION. The MCV will be installed in the ECLSS Equipment

Bay, as shown in V070-623200, and shall	 be compatible with the

environments therein as defined in MF0004-0148.

- 2.1.7 ENVELOPE.	 The envelope of the MCV shall not exceed the dimen-

sions shown in Figure 2-1.

f
2.1.8 PORTS.	 The inlet and outlet ports of the MCV shall 	 be located

as shown in Figure 2-1	 and shall	 be designed to be compatible

with quick disconnects as defined in MC276-00206.

2.1.9 MATERIALS.	 The MCV materials shall 	 be in accordance with

MC999-0096D.

-4-	 -.1
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2.1.10 WEIGHT. The weight of the MCV shall not exceed 1.5 lbs.

'i	 2.1.11 APPLICABLE DOCUMENTS.k

Rockwell International/Space Division

a

	

	 MC276-0020B	 Disconnect, Fluid
Amendment C-04
22 August 1977

MC999-0096D	 Materials and Processes Control
T	 Amendment E-07	 and Verification System for the

17 June 1977

	

	 Space Shuttle Program: Suppliers
and Subcontractors

MF0004-0148	 Environmental Requirements and
Amendment C-05	 Test Criteria for the Orbiter`

{
28 February 1977	 Vehicle

V070-623200	 System Installation-Water
Revision A	 Management, ECLSS Equipment
28 September 1977	 Bay

-5-
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TABLE 2-1

Simulated Fuel	 Cell Water Composition

Properties Limits (Maximum Allowance

a.	 pH 6.0 - 8 at 25 degrees C (77F)
b.	 Total	 Solids 20 ppm	 J.
c.- Taste and Odor None at Threshold (Odor No.	 of 3)
d.	 Turbidity 11	 Units
e.	 Color, True 15 Units
f.	 Total	 Organics 10 rpm	 j

Particulate Size Range No.	 of Particles per 500 ml	 Fluid

a.	 0-10 microns Unlimited
b.	 10-25 microns 1000
c.	 25-50 microns 200
d.	 50-100 microns 100
100-250 microns 10

Ionic Species Maximum Allowable Concentration

a.	 Aluminum For reference only
b.	 Cadmium 0.01	 ppm
c.	 Chloride 1.0 ppm
d.	 Chromium 0.05 ppm

(Hexavalent)
e.	 Copper 1.0 ppm
f.	 Iron 0.3 ppm
g.	 Lead 0.05 ppm

h.	 Magnesium For reference only
i.	 Manganese 0.05 ppm
j.	 Mercury 0.005 ppm

4 k.	 Nickel 0.05 ppm
1.	 Potassium For reference only

m.	 Selenium 0.05 ppm
n.	 Silica For reference only
o.	 Silver 0.05 ppm
p.	 Ammonia 0.5 ppm
q.	 Zinc 5.0 ppm

{
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2.2	 Other Information/Requirements. Other information and requirements

that effect the MCV design are listed below.

t	 Water Source:	 Fuel Cells. Nominal flow = 5.4 kg/hr(12,0 lb/hr)

Maximum flow = 10.0 kg/hr(22.0 lb/hr)

Dissolved hydrogen
,. 	

02.7 kPa abs (12 psia) maximum
34.5 kPa abs (5 psia) nominal

Crew Size:	 7 men

Mission Duration:	 30 Days

Water Flow Rate to Galley: 0.45 kg/min (1.0 lb/min) maximum

Water Useage

Drinking & Food
Preparation:	 2.59 kg/man-day (5.70 lb/man-day)

Personal Hygiene:	 1.16 kg/man-day (2.55 lb/man-day)

Total Water Useage 	 3.74 kg/man-day (8.25 lb/man-day)

EMU Recharge:	 5.4 kg (12 lb) per recharge, 2 recharges per

mission, flow rate 0.45 kg/min (1.0 lb/min)

Water Flow Rate
(Use Port):	 0.45 kg /min (1.0 lb/min)

Cold Water Temperature
(Galley):	 277-2.8 K (40±50F)

Hot Water Temperature: 344 K (1600 F) maximum

Pressure Drop:	 13.8 kPa at 0.45 kg/min (2.0 psi at 1.0 lb/min)

Operational Design Life: 	 30 Days

Shelf Life:	 maximize

Electrical Power	 120V/400 Hertz or 28V/DC

Shuttle Hardware Design Requirements

Temperature:	 nominal 291-300 K (65-800F)

range 275-311 K (35-1000F)

-8-
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Cabin Pressure: nominal	 101 . 1.4 kPa abs	 (14.7±0.2 psia)

range 94 to 102 kPa abs 	 (13.7 to 14.9 psia)

Water System Pressure: range 55 to 117 kPa gage (8 to 17 psig)

(cycles between limits during mission)

Ventilation: range 0.46 - 1.2 M/min (15 -40 ft/min)

Acceleration: range ±3.3 g in all attitudes

Random Vibration: -60 min in each of the 3 mutual perpendicular axes

20-80 Hz	 +9 dB/oct

80-250 Hz	 0.3 g2/Hz

250-320 Hz	 -9 dB/oct

320-2000 Hz	 0.15 g2/Hz

Shock: Terminal peak sawtooth pulse of 11 ms in each

mutually perpendicular axis.

+ X axis	 0.0 g

- X axis	 20 g

+ Y axis	 6.8 g

- Y axis	 6.8 g

+ Z axis	 6.8 g

- Z axis	 10.0 g

Salt fog & Humidity Soak: See MIL Std 810, Methods 507 and 508



i

3.0	 PRESSURE DROP TESTS

3.1 Preliminary Tests.	 Flow/Pressure	 Drop studies were conducted in

conformance with the conditions specified in the Program Plan. A 3.7

diam x 10 cm (1.5 diam x 4 in) bed was tested at 276, 297, 345 and

373 K (37,75,162 and 194 0F) and at room temperature after being auto-

claved at 393 K (2480F) for 15 minutes. In addition, two other bed

diameters and bed depths were tested at room temperature yielding data

for a total of 3 diameters and two depths. These data covered the flow

ranges of interest for the proposed Shuttle missions, and provided

enough information to size beds for any flow condition within these

ranges.

The data were gathered using the apparatus shown in Figure 3-1. A

volume of water was adjusted to a temperature near that of the test

condition and placed in the reservoir. After flow had stabilized, the

graduated cylinder was placed under the overflow and water was collected

for a fixed period of time. Duplicate points were determined at each

flow, and three to four flows were measured for each reported Flow/Pressure

Drop curve.

The following beds were tested:

Diameter, cm	 Depth, cm	 Dry Weight,rq ams

1.5	 5	 11.0

115	 10	 21.1

2.54	 5	 28.4

2.54	 10	 52.6

3.7	 5	 62.3

3.7	 10	 124.8

The Flow/Pressure Drop data are shown on Figures 3-2, 3-3 and 3-4.

Figures 3-2 and 3-3 show the effect of bed diameter at fixed depth at

room temperature. Figure 3-4 shows the effect of temperature. Viscosity

(text continued on page 15)

-10-
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(continued from page 10)

i

	

	 is apparently the controlling factor, since the pressure drop

decreases with increasing temperature at a given flow rate. In

•

	

	 general, these preliminary data fell within the range predicted

in the Program Plan.

In later tests with the preprototype unit, significantly

higher pressure drops were observed than in the preliminary tests,

because the resin bed in the preprototype unit is spring loaded
y

which results in denser packing of the bed as explained in para-

graph 3.2.

E y
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3.2 Preprototype Unit Tests. Subsequent to the microbial challenge tests

(reported in Sections 3 and 4), off-the-shelf hardware was selected

for the MCV preprototype unit, which resulted in a 4 . 4 diam x 10 cm

(1.75 diam x 4 in) bed. The design is shown in Figure 3-5 and pressure

drop data are plotted in Figure 3-6. Note that in Figure 3-6 the data

are numbered in sequential order. In initial tests (l through 5) the

AP's indicate that the bed was at less than maximum packing density,

but approached the maximum dens .ity line ( design line) as testing

proceeded ( See points 5,6,7 and 8). When the flow was reversed, the

initial test points ( 9,10 and 11) fell somewhat below the design line,

but in continued testing the data moved back to the design line ( 12,13,

14 and 15).

In this preprototype unit, the resin bed was spring loaded to

produce a force of 44 . 5 N (10 lb) on the resin and this resulted in

gradual compaction of the bed to maximum density conditions, which

produced a significantly higher pressure drop than was experienced

in the preliminary tests. After compaction to the maximum density,

the device had essentially the same pressure drop for flow in both

the forward and reverse directions.

For the purpose of estimating pressure drop in differently

sized beds, the following theoretical formula may be used:

AP = 1.07 Wd

where:	 AP = pressure drop, psi

-16-
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C

W = flow, lb/min

L = bed length, inch

u = water viscosity, centipoise

t	 d = bed diameter, inch

	3.3	 Prototype Unit. The current design of the flight prototype MCV is
t

shown in Figure 3-7. The unit has a bed size of 4.11 diam x 7.62 cm

0.65 diam x 3.0 in). The estimated pressure drop for this unit at

a flow of 1 lb/min is:

DP = 1.073.0	
1	

= 1.18 psi = 8.1 kPa
1.65

	

R	 (text continued on page 21)
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(continued from page 17)

4.0	 MICROBIAL CHALLENGES

4.1 Overview. 'Preliminary design data were generated for the triiodide

resin by first using small scale resin test beds in order to minimize

the quantities of water and time involved in obtaining data. The first

test set-up involved five small diameter (5mm) glass tubes, which were

loaded with various amounts of resin ranging from zero to 10 cm in

length. This set-up was used for running short-term tests of 24 hours

duration or less. The second test set-up involved only a single 10 cm

small diameter glass bed and a control bed, and was used for obtaining

longer term data of up to 55 hours. In this series of tests the 10 cm

bed was run to exhaustion.

After these small tests, a third large-scale stainless steel bed

was successfully challenged with a quantity of water equivalent to twice

the "worst case" Shuttle condition.

Microbial kill data were obtained for three different temperatures:	 i	 1

275, 294 and 344 k (35,70 and 160°F). Performance was also determin°^ 	 }	 j

for certain potential Shuttle operational requirements including:
exposing the resin to ethylene oxide

sterilization; soaking the resin in alcohol;and autoclaving the resin.	 I

In addition,	 the effect of the resin on water chemistry was determined. 	 r

4.2 Microbial Species. The microbial challenges were made with individual

suspensions of seven different representative microorganisms and a	 }

mixed suspension that contained all seven of the organisms. 	 The

organisms used represented types that had either previously been found in the
l

water and wastewater systems of manned space flights and manned chamber

tests or were considered to represent "worst case" possibilities.
They included:-Gram-positive rods, Gram-negative rods, obligate 	 j
anaerobes, spore formers and Fungi. The actual microbial suspensions 	 4t

1=

}f
1
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No. of Organisms
Per Milliliter

106

106

106

106

106

106

106

l o4

SUSPENSIONS	 ATCC

1. Escherichia coli

2. Streptococcus faecalis

3. Staphylococcus aureus

4. Bacillus subtilis

5. Pseudomonas aeruginosa

6. Clostridium perfringens

7. Aspergillus niger

8. Mixture of all the above
organisms in equal proportions.

used in the challenges are summarized in Table 4-1.

TABLE 4-1

MICROBIAL CHALLENGE SUSPENSIONS

A brief description of these organisms foX1,ows.
a

Escherichia coli - A widely distributed harmless intestinal parasitic

bacteria found normally in the intestine of warm blooded animals and

not adapted for life outside the intestine. Morphologically it is a

gram-negative, non-spore-forming, facultatively anaerobic rod.

Streptococcus faecalis - Inhabits the intestine of man and animals and

is quite tolerant of extremes in temperature and other unfavorable con-

ditions. Morphologically it is a gram-positive non-spore-forming cocci.

Staphylococcus aureus - A ubiquitous pathogen found normally on the skin

and mucous membranes of the animal body. It is responsible for suppur-

ative conditions and internal abscesses in man. Morphologically it is

a gram-positive non-spore-forming cocci.

Bacillus subtilis - A saprophytic soil bacteria commonly found in dust.

Not commonly pathogenic. Morphologically it is a gram-positive, spore-

forming-aerobe.

-22-



Pseudomonas aeruginosa - A bacteria found in soil and water or where-

ever organic material is decomposing. It is an occasional pathogen in

man, causing and abetting a variety of infections. Morphologically it

is a gram-negative, non-spore forming aerobic rod.

Clostridium perfringens - A normal inhabitant of the human intestine

that is always present, although in small numbers. A human pathogen,

it is responsible for gaseous gangrene and several other types of in-

fections. Morphologically it is a gram-positive, strictly anaerobic

spore-forming rod.

Aspergillus niger - A ubiquitous mold that is occasionally pathogenic

to man. Its morphology is variable, depending upon the nature of the

growth substrate.

4.3	 Microbiological Test Methods. The stock bacteria cultures used in the

4
	 microbial check valve challenges were American Type Culture Collection

cultures maintained in the appropriate media. A subculture was taken

from the stock cultures and used as inoculum for the working cultures.

Media was inoculated from the subculture, incubated for 18 to 24 hours

and the cells harvested via centrifugation. After being harvested, the
t

cells were washed in sterile buffered water and then in sterile, de-

ionized water by centrifugation. The washed cells were then diluted

in pasteurized deionized water to make up the challenge solution.

Bacteria concentrations were determined during the challenge by

standard plate count procedures according to the 14th Edition of Stan-

dard Methods for the Examination of Water and Wastewater, 907.

Three basic enumeration procedures were used as illustrated in

Figure 4-1.

For E. cold, S. aureus, B. subtilis, St. faeca`lis and

-23-
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At !—

P. aeruginosa, Method (A) was used to obtain the bacteria

count. For A. niger Method (B) was used and for C. perfringens

Method (C) was utilized.

For enumerating the organism mix, all 3 methods were used. The

total microorganism count was obtained by summing the total

aerobe and total anaerobe counts (the total fungi count was

not added because the fungi are included in the total aerobe

count).

In principle, plate count procedures involve serial dilutions of

the sample, inoculation into growth media, incubation and enumeration.

In theory each bacterium develops into a visible colony that can be

counted. This count is multiplied by the dilution factor to obtain

the bacterial concentration in the original sample.

4.4 Iodine Test Methods. The Iodine residual was monitored with the Leuco

Crystal Violet Method as described in the 14th Edition of Standard

Methods for the Examination of Water and Wastewater, 416 A. In prin-

ciple, the test involves the hydrolysis of iodine and the production

of hypoiodous acid by the addition of mercuric chloride to an aqueous

iodine solution. Leuco Crystal Violet reacts with the hypoiodous acid

for form crystal violet dye. The crystal violet is measured colorimet-

rically and the iodine concentration determined by comparison with

known iodine solutions.

4.5 Water Chemistry Test Methods. The methods used for the physical and

chemical analyses of water samples are summarized in Table 4-2. Detec-

tion limits are also listed..

.• y
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TABLE	 4-2

WATER CHEMISTRY ANALYTICAL METHODS

Parameter Units
Detection
Limit Methodl

pH pH units ±0.01 EPA p.239

Sp.	 Conductance umho-cm 1 1. EPA p.275

Total Solids mg/l 1. EPA p.272

Volatile Solids mg/l 1. EPA p.272

Total Organic Carbon mg/l 0.2 EPA p.236

Odor T.O.N. 1. EPA p.287

Turbidity NTU 0.05 EPA p.295

i Color, Apparent CU 1. EPA p.36

Cadmium mg/l 0.005 EPA p.101

Chromium mg/l 0.02 EPA p.105

Copper mg/l 0.01 EPA p.108

Iron mg/l 0.02 EPA p.110

Lead mg/l 0.001 EPA p.112

Manganese mg/l 0.01 EPA p.116

Mercury mg/l 0.001 EPA p.118

Nickel mg/l 0.02 EPA p.141

Selenium mg/l 0.002 SM 150 A

Silver mg/l 0.01 EPA p.146

Zinc mg/l 0.005 EPA p.155
^s

l EPA = Methods for the Chemical Analysis Water and Wastes, 1974

SM	 Standard Methods for the Examination of Water and Wastewater, 14th Ed.

C'

i^



4.6	 Distilled Water Suitability. The distilled water suitability test

(D.W.S.T.), Standard Methods for the Examination of Water and Waste-

water, 14th Ed., Section 905 B.2, was performed on the pasteurized,

deionized water used to prepare the challenge suspensions and on the

deionized water used in the dilution blanks. The results are summa-

rized in Table 4-3. Both Water sources fell within acceptable limits

of suitability for use in bacterial testing. The D.W.S.T. Ratio is

the sample count divided by the control count and should be equal to

1.0±0.2.

TABLE 4-3

DISTILLED WATER SUITABILITY TEST RESULTS

DILUTION
10-2 10_3 COUNT

D.W.S.T.*
SAMPLE RATIO 

TNC 40

CONTROL TNC 37 3.6x104

TNC 31

PASTEURIZED TNC 41

DEIONIZED TNC 30 3.6x104 1.00

WATER TNC 36

DEIONIZED TNC 35

WATER TNC 39 3.9x104 1.08

TNC 43

* The D.W.S.T Ratio is the sample count divided by the control
count and should be equal to 1.0±0.2.

h `.
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4.7	 Scaling factors.	 In the small	 scale tests, the resin bed cross

I

I

sectional	 area, perpendicular to the direction of flow, was approx-

t

imately ^^th of the full size prototype unit.	 Four different bed

lengths were investigated: 	 1,	 3,	 6 and 10 cm (.39,	 1.2,	 2.4 and
f	 .

3.9 in) in order to bracket the area of interest.

i The large scale tests were run on a single bed with a cross

sectional	 area of approximately 1/2 full	 size and 10 cm in length.

j
The pertinent dimensional	 information and other important scaling

°
y
I#factors for the test beds and the full	 size prototype unit are summa-

rized in Figure 4-2 and discussed in the following paragraphs.
C^

4.7.1	 Mission Man-Day Equivalents. 	 In order to facilitate a better
fir,

understanding of the significance of the microbiological data
h°

as it applies to Shuttle missions, the actual 	 throughput quan-

tities achieved in the scaled down tests have been converted j_	
W

1

to mission man-day equivalents. 	 A mission man-day for the full

^r

scale prototype unit is equivalent to a throughput of 3.74 kg

1

(8.25 lb) of water, which is the projected average useage of
^.

water aboard Shuttle for drinking, food preparation and personal °f

In scaling down the test beds, bed depthhygiene purposes.	 was
i'

defined as	 an independent variable, and the throughput
i

that represents the equivalent of 1 mission man-day was consid-
1	 -.

ered to be proportional to the cross sectional	 area of the bed. }

` Thus, for the scaled down beds, the throughput for 1 mission
I.

man-day equivalent is: ^.

Small-scale beds:±

kg	 0.20 cm'/mission man-day equivalent
throughput =	 3.74

mission man-day	 13.3 cm-/mission man-day a

_	 0.0562	 kg/mission man-day equivalent

note:	 0.20 cm' = cross sectional area of small	 beds
13.3 cm' = cross sectional area of prototype bed i

-28-
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E

i
Large-scale beds:

kg	 = 6.7C cm2 /mission man-day equivalent

I	

throughput = 3.74 mission man-day
	 13,3 cm /mission man-day

= 1.88 kg/mission man-day equivalent

`	 4.7.2	 Test Time. The test time to achieve 1 mission man-day

equivalent is the amount of test time it takes to pass a

quantity of water through the test bed that is equal to the

throughput that represents 1 mission man-day equivalent.

These values are calculated as follows:

4.7.2.1 Small-scale beds:

Test Time = 0.0562 kg/mission man-day equivalent
0.009 kg/min

= 6.24 min/mission man-day equivalent

4.7.2.2 Large-scale beds:

Test Time = 1.88 kg/mission man-day equivalent
0.454 kg/min

= 4.14 min/mission man-day equivalent

Test Time Conversion Factor. In order to convert test time to

mission man-day equivalents the following conversion factors

were used:

4.7.3.1 Small-scale beds:

Conversion factor = 60 min/hr : 6.24 min/mission man-
day equivalent

9.62 mission man-day equivalent/hr

4.7.3.2 Large-scale beds:

Conversion factor = 60 min/hr : 4.15 min/mission man-
day equivalent

= 4.5 mission man-day equivalent/hr

Residence Time. Residence time is the amount of time that the

liquid flowing through the bed remains in the bed. Assuming

continuity of flow, residence time is the bed void volume

divided by the volume flow. The MCV resin has a 15% void

volume, so residence time is calculated as follows:

4.7.3

4.7.4

i_'t

f <1



4.7.4.1 Small-scale Beds:

3

Residence Time = 0.2 cm'(15%) 2 
,009kc^ 

60 men 10

min
= 0.2 Q sec (Q = bed length in cm)

Bed Depth, Cm 1	 3 6 10

Residence Time, Sec 0.2	 0.6 1.2 2.0

4.7.4.2 Large-scale Beds:

3

Residence Time = 67 cm3(15%) 0.
1	kg	 minmen 10	 c r

min

= 1.33 sec

4.7.4.3 Prototype Unit:

3

Residence Time = 101.3 cm3(15%) 	
10.	 ^ 0 men 10	 c- r

min

= 2.0 sec

4.8	 Small Scale Multi-bed Tests. A schematic drawing of the small

scale multi-bed test set-up is presented in Figure 4-3. City

tap water was fed through a deionization bed (B) into a glass-

lined hot water heater (C). The water was pasteurized at 344 K

(1600 F) in the heater. The pasteurized, deionized water was

gravity fed through Tygon heat exchange coils immersed in a

controlled temperature water bath (D) into the influent sus-

pension tank (E). Washed bacterial cells (F) were added to the

influent suspension tank and mixed with a magnetic stir bar.

4.8.1	 Challenges at 344 K (160 
O
F). At 344 K (160 oF) each of

the 7 microbial species used in the challenges were kill-

ed immediately after their introduction to the system. It was

concluded that these species will not survive at 344 K (1600 F)

I.
t

9
E
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so no further testing was done at this temperature.

4.8.2	 Challenges at 275 K(35
0
F). The challenge results for 275 K

(350 F) are presented on an individual basis on the top half

of Figures 4-4 through 4-11 and are summarized in Table 4-4.

Although a concentration of 10 4 organisms per ml is the

maximum expected on the basis of previous flight experience,
i

most of the challenges were conducted with concentrations of

105 a.id 10 6 organisms per ml in order to present "worst case"

conditions in these "range finder" tests.

In the low temperature, 275 K(35
0
 F), tests the resin did

not perform as well as it did at ambient temperature, 294 K

(70°F). This is thought to be due to one or more of the

following reasons:

a) halogens are less effective biocidal agents at low

temperature.

b) the residual io-line equilibrium is lower at low

temperature.

c) more bacterial spores are present at lower temperature
because spore vegatation is inhibited and spores are
more resistant to iodine.

Immediate breakthrough occurred in 5 of the 8 challenges.

This sounds bad until it is realized that in the worst case,

involving the 6 and 10 cm (2.4 and 3.9 in) beds, the microbial
a	 minimum of

concentration was reduced by/10 3 organisms per ml. In the five

tests where breakthrough occurred, the concentration of Staphy-

lococcus aureus was reduced by 10 5 , Aspergillus niger was

reduced by 
104 

and the other three, Streptococcus faecalis,

Pseudomonas aeruginosa and Clostridium oerfringens were reduced

by 103 . In the challenges with the 7 organism mixture, reasonably

(text continued on page 43)
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4.8.3

1

4.8.4
)

!i	 {

(continued from page 33)

long li-ves were achieved for the 6 and 10 cm (2.4 and 3.9 in)

beds with an input of 10
5
 organisms per ml.

Challenges at 294 K(70
0
F). In these ambient temperature tests

the 6 and 10 cm (2.4 and 3.9 in) beds had reasonably long bed

lives in the worst cases- (see Table 4-4). Clostridium perfringens

was the most resistant organism. Only a 103 reduction was achieved

at breakthrough. Aspergillus niger, the next most resistant

species, had a 104reduction at breakthrough. The third most

resistant organism was Streptococcus faecalis_, which had a 105

reduction at breakthrough, as did all the other tests. In the

challenges with the 7 organism mixture, reasonably long bed

lives were achieved prior to breakthrough with an input of 106

organisms per ml. The individual challenges are presented in

the bottom half of Figures 4-4 through 4-11 and are summarized

in Table 4-4.

Challenge of Autoclaved Resin. 	 Performance of the resin after

autoclaving is shown in Figure 4-12. A 7 organism mixture was

used with an input of about 10 5organisms per ml. Breakthrough

occurred in all beds sooner than it did in untreated resin beds

(compare the curves in Figure 4-12 with those in the bottom of

Figure 4-11 and those in Figure 4-14). It is concluded that auto-

claving degrades resin performance by about 70%.

Challenge of Alcohol Soaked Resin. Performance of the resin

after soaking in alcohol is shown in Figure 4-13. A 7 organism

mixture was used with an input of 10 4 to 105 organisms per ml.

Both the 1 and 3 cm beds broke through at 140 mission man-day

equivalents. No breakthrough occurred in the 6 and 10 cm beds.

(text continued on page 46)
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(continued from page 43)

s
	 At first glance, when comparing this performance to Figure

#	 4-11 (bottom) it might appear that alcohol soaking improved

performance. However, it must be noted that the input con-

centration in Figure 4-11 (bottom) is 10 6 organism per ml,

and that accounts for the earlier breakthroughs. Figure 4-13

is better compared to Figure 4-14, which in spite of inputs

of 105 to 106 organisms per ml, no breakthrough occurred in

the 3, 6 and 10 cm (1.2, 2.4 and 3.9 in) beds. Iodine residuals

are also plotted in Figures 4-13 and 4-14 and are significantly

16wer for the alcohol soaked resins. This performance might

have been predicted.in that the alcohol recovered after wash-

ing the treated bed exhibited color indicating iodine washout.

It is concluded that an alcohol soak tends to decrease

the resin's capability for killing microorganisms.

	

4.8.6	 Challenge of Ethylene Oxide Sterilized Resin. Performance of the

resin after sterilization in ethylene oxide is shown in Figure 4-15.

A 7 organism mixture was used on a 10 cm bed with an input of

105 organisms per ml. Immediate breakthrough occurred. It

appears that ethylene oxide sterilization produces a severe

degradation in resin performance.

r

	

4.8.7	 Iodine Residual. Iodine residual as a function of bed depth,
i,

temperature, throughput and microbial load was investigated and

the results are plotted in Figures 4-16, 4-17 and 4-18. Bed

depth did not seem to have a linear effect on iodine residual

as might be expected. The 1 and 3 cm (.30 and 1.2 in) beds

produced nearly identical residuals as did the 6 and 10 cm

(2.4 and 3.9 in) beds. However, the residuals for the 6 and

10 cm beds were about 2z times greater than those associated

(text continued on page 52)
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(continued from page 46)

with the 1 and 3 cm beds.

Initially, temperature had a pronounced effect on the

iodine residuals, as is best illustrated in Figure 4-17. How-

ever, after a throughput of 200 mission man-day equivalents,

the effect of temperature was greatly diminished.

The relationship of iodine residual to microbial load

is presented for two organisms in Figure 4-18. In both tests

iodine residual was considerably higher in the effluent from

the challenged bed than from the unchallenged bed. These results

are	 interpreted to mean that microorganisms exert a demand

effect on the iodine in the resin.

The results were obtained with the Leuco Crystal Violet

method, which is sensitive to all oxidative forms of iodine.

Parallel tests with starch, which is only sensitive to I3

were negative, indicating that the resin does not deliver I3

to the organisms on demand. Presumably, then it is I 2 that

the bed delivers.

4.8.8	 Discussion of Small-Scale Tests. Some idea of the importance

of bed depth, which is theoretically proportional to residence

time, can be obtained by further analyzing the data in Table 4-4.

The number of mission man-day equivalents at breakthrough for the

6 cm (2.4 in) beds has been ratioed to that for the 10 cm (3.9 in)

beds and tabulated in Table 4-5. This ratio is also equal to the

ratio of throughputs at breakthrough. If residence time were the

sole independent variable, then these ratios would all be in

proportion to the bed sizes and equal to: 6 ccm	 0.6. How

ever, most of the ratios are greater than 0.6, which indicates

3
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Table 4-.5

COMPARISON OF 6 AND 10 CM BEDS

Ratio = 
Mission Man-Day Equivalents at Breakthrough for 6cm Bed
Mission Man-Day Equivalents at Breakthrough for 10cm Bed

TEST CULTURE 350F 700F

Escherichia coli 1.0
1

<.80	
I

Streptococcus faeca1 4 7 1.0 .71

Staphylococcus aureus 1.0 1.0
3

Bacillus	 subtilis .77 1.0	 k

Pseudomonas aeruginosa 0 <.33

Clostridium perfringens 0 .08

Aspergillus ni er 1.0 1.0	
}

7 Organism Mixture .83 .76	 f

7 Organism Mixture	 -	 1.0

Ratio = Iodine Residual from 6 cm Bed
Iodine Residual from 10 cm Bed

THROUGHPUT	 350F	 70 O F

20 Mission Man-Day
Equivalents	 .58	 1.0

200 Mission Man-Day
Equivalents	 .50	 .6

_

Y
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that for these cases the smaller bed is doing a more effective

job. In the case of Pseudomonas aeruginosa the additional resin

contained in the 10 cm (3.9 in) bed produces a disproportionately

higher effectiveness which suggests that residence time is crit-

ical and that the design residence time for the prototype unit

should be at least equal to the 10 cm (3.9 in) bed.

In the case of Clostridium perfringens, the performance of

the 6 and 10 cm (2.4 and 3.9 in) beds remained essentially flat

during the 240 mission man-day test, while the effluent plate

counts from the 10 cm (3:9 in) bed were about 1/2 the plate

count levels of the 6 cm (2.4 in) bed. This also suggests that

the design residence time should be at least equal to the 10 cm

(3.9 in) bed.

In the two tests with the 7 Organism Mixture, the 6 cm

(2.4 in) bed performed disproportionately better than its

size indicating that it's residence time was adequate. It is

interesting to note that the 7 Organism Mixture is less resis-

tant than several of the pure cultures.

The ratio of iodine residuals for the 6 and 10 cm (2.4

and 3.9 in) beds is summarized at the bottom of Table 4-5 for

both fresh resin (20 mission man-day equivalents) and used

resin (200 mission man-day equivalents). The interesting point

here is that the ratio of iodine residuals corresponds closely

to the ratio of resin material indicating that residence time

has a primary influence on iodine transfer under these conditions.

-54-
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;.} 4.8.9 Summary of Small-Scale Test Results. 	 The most significant
^f l

results obtained	 smallwerein the	 -scale tests	 the following:

I 0
`'1 a.	 A temperature of 344 K(160F) 	 killed all of the 7 different

imicroorganisms used in the challenges.

b.	 The MCV resin was less effective at low temperature 275 K

} (350F) than at ambient temperature 294 K(70 0F).	 That is,

the resin had significantly shorter life at breakthrough in

the low temperature tests.	 However, at both low and ambient

temperature the minimum reduction achieved at breakthrough

f
was 103 organism per ml.

^ .c	 Residence time should be at least 2 sec to insure an adequaten	 9

}# kill for pure cultures of Pseudomonas aeruginosa and Clostridium

1

perfringens.	 A residence time of 1.3 sec is adequate for pure

Icultures of the other 5 organisms and for the 7 organism mixture.

i
d.	 Autoclaving the resin reduces	 its performance by at least 70100,

e.	 Soaking the resin in alcohol 	 removes iodine and significantly
_ reduces its performance.

f.	 Sterilizing the resin with ethylene oxide severely reduces its
performance.

t:
g.	 Iodine residual	 increases with microbial	 load.

a h.	 Iodine residual	 increases with temperature.

i.	 Iodine residual decreases with throughput.

4.9	 Large-Scale Tests.	 A schematic drawing of the large-scale test set-up

is presented in Figure.4-19.	 City tap water (A)	 is fed through a water

. deionization bed (8)	 into a hot water heater (C) at 0.454 kg/min (1 	 lb/min).

This gives an approximate residence time in the 150 kg (40 gal) hot water

heater of 5 hours.	 Plate counts were taken to demonstrate counts of zero

per ml in the water after a five hour residence time. 	 From the hot water

heater the pasteurized, deionized water was circulated through a running
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cold water bath (I) and then through a controlled temperature water

bath (D) before being pumped to a mixing chamber (H). In the mixing

chamber the pasteurized, deionized water is mixed with a metered

amount of washed bacterial cells pumped from the influent suspension

tank (F) to give the target bacterial concentration. The influent

plate count was taken at a sampling port immediately upstream of the

resin bed. The effluent plate count was taken from the resin bed

effluent. A 7 Organism mixture was used for all the large-scale tests.

4.9.1 Challenge at 257 K 35o F .	 These results are presented in Figure

4-20. A minimum of 102 reduction was achieved continuously for

660 mission man-day equivalents. However, breakthrough occurred

at 10 mission man-day equivalents. The effluent plate counts

ranged from 9 to 300 per ml, which was attributed to the three

factors mentioned in paragraph 4.8.2.

4.9.2 Challenge at 294 K(70
0
F). Two tests were performed and the data

are presented in Figure 4-21. In both instances a 104 reduction

was achieved throughout the test periods of 375 and 827 mission

man-day equivalents and all plate counts were well below 3 per ml

4.9.3 Challenge at 344 K(160 0 F). These results are presented in Figure

4-22. Both the influent and effluent plate counts were below 3

per ml throughout the 375 mission man-day test. Obviously the

challenge organisms cannot survive this temperature.

4	 4.9.4 Challenge of Autoclaved Resin. The results of challenging an

autoclaved resin bed are shown in Figure 4-23. Only a 10 3 reduc-

tion was achieved, and the effluent plate counts ranged from 0 to

300 per ml. This suggests a conclusion that autoclaving decreases

the ability of the resin to kill microorganisms.

(text continued on page 62)
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(continued from page 57)

	

4.9.5	 Water Chemistry Effects. Influent and effluent water chemistry

parameters were determined during the 294 and 344 K (70 and 1600F)

microbial challenges in order to; (1) verify that the resins per-

form satisfactorily with typical fuel cell quality water and (2)

to verify that the resins will not adversely effect water quality.

Influent and effluent parameters for the 294 K (70 0F) challenge

(FS #2, see Figure 4-21, bottom) at 275 mission man-day equiv-

alents and for the 344 K (160 0 F) challenge (FS #3, see Figure

4-22) at 290 mission man-day equivalents are presented in Table

4-6.

In general, the challenge water contained fewer trace

contaminants than the maximum allowable concentrations in fuel

cell water, so the resins were not challenged with the "worst

case" situation. Based on total solids, the water was 30% for

the 294 K (70 0 F) test and 45% for the 344 K (160 0F) test as

contaminated as maximum fuel cell water.

Examination of Table 4-6 indicates that the resin

had a minuscule impact on the water quality parameters of inter-

est. The only notable effects were the removal of iron and the 	 i

lowering of pH to the 5.4 - 5.6 range.Y.

	4.9.6	 Discy_ssion of Large-Scale Tests. The large-scale tests were all aj.

conducted with a 7 Organism Mixture in a bed with approximately

the same residence time but 56 times larger than the 6 cm (2.4 in)

deep small-scale bed. In general, the large scale tests validated

the small-scale tests and proved that a scale-up factor of 50 may
I

be used with confidence.	 ^.

r
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TABLE 4-6
:I

LARGE -SCALE TEST - INFLUENT AND

EFFLUENT WATER CHEMISTRY

Run FS 72 at
275 Mission Man-Day

Equivalents

Run FS T3 at
290 Mission Man-Day

Equivalents

SOURCE INF EFF	 I INF EFF

UNITS

294 K 294 K 344 K 344 K
6.

(70 F) (700 F) (160	 F) (1600F)

H pH Units 6.0 5.6 7.0 5.4

SPECIFIC CONDUCTANCE u mho cm 1.2 2.1 4.0 4.0

TOTAL SOLIDS mg/l 6• 2. 9. 16.

TOTAL ORGANIC CARBON m9/l 0.97 0.89

ODOR TON 2. 2. <1. <1.

TURBIDITY NTU <0.1 <0.1 <0.1 <0.1

COLOR, APPARANT CU <1. <1. <1. 5

CADMIUM mg/l 0.001 0.001 0.001 0.002

CHROMIUM mg/l <0.07 <0.07 <0.04 <0.04

COPPER mg/l <0.02 <0.02 <0. <o.

IRON mg/l 0.05 0.03 0.1 <0.04

LEAD mg/l 0.007 0.008 <0.002 <0.002

MANGANESE mg/l <0.01 <0.01 <0.006 <0.006

MERCURY m9/l <0.001 <0.001 <0.001 <0.001

NICKEL mg/l' <0.07 <0.07 <0.06 <0.06

SILVER mg/l <0.02 <0.02 <0.02 <0.02

ZINC mg/l 0.007 0.007 0.008 0.01

SELENIUM mg/l 1	 0.001 0.002 <0.001 <0.001

VOLATILE SOLIDS mg/l 3. 7.
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4.9.7	 Summary of Large-Scale Test Results. The most significant

results obtained in the large-scale tests were the following:

a. The small-scale test results were confirmed.

b. A Scale-up factor of 50 is reasonable.

c. The MCV resin does not adversely effect water chemistry.

d. Typical fuel cell water does not adversely effect the

MCV resin.
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5.0	 APPLICATION OF RESULTS

There are a number of possible MCV applications summarized in Table 5-1.

For each application, the projected mission life is estimated assuming that

the MCV prototype unit is used for that application. Other pertinent infor-

mation is also tabulated including operating temperature, total throughput,

flow rate, residence time, required life and factors of safety. Each appli-

cation is discussed separately in the following paragraphs.

5.1	 Total Water Used. Processing of the total water used by the crew for

a 7 man-30 day Shuttle mission at ambient temperature conditions is the

baseline application for the MCV. This amounts to 8.25 lb/man-day x 7

men x 30 day = 1733 lb. This is also equal to 210 mission man-days at

8.25 lb/man-day. Testing was curtailed on the large-scale test unit,

without a breakthrough, after 826 mission man-day equivalents. The 	 '.
+

prototype unit then, would have a factor of safety on life of 210

c	 3.9+. In addition, in this application the prototype has a factor of

safety on residence time of 1.5, which would be expected to result in

even greater life and also enable the unit to achieve higher microbial

reductions.

5.2	 EMU Recharge. In this application the prototype MCV has a factor of

safety on life of 138+ and a factor of safet y on residence time of 3.0.

5.3	 EMU Recharge Projected. A projected design goal for EMU recharging is

12 lb/recharge x 120 recharges 	 1440 lb at a flow of 1 lb/min. In 	 ^((^
1i

this application the prototype. MCV has a factor of safety on life of 	 fi.
J

4.7+ and a factor of safety on residence time of 1.5. 	 fi

c	 5.4	 Galley Hot Water. Since no microbes survive at the operating temperature 	 {^

of 160 
O
F, the prototype MCV would have an infinite factor of safety in_;

this application.	 fix

1
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TABLE 5-1
{

CANDIDATE MCV APPLICATIONS

FACTOR
TESTED

OFOR FACTOR -
REQUIRED PROJECTED SAFETY OF

TOTAL LIFE LIFE ON SAFETY
OPERATING

THROUGH- FLOW RESIDENCE MISSION MISSION LIFE ON
MCV TEMP.

PJT' RATE TIME MAN-DAY MAN-DAY Projected Life RESIDENCE

APPLICATION UNIT °F lb lb/min sec E UQ IV. E UQ IV• Required Life TIME ^

Test Data Large ` Scale 35 1240 1 1.33 - 10

Test
^.

Test Data Large Scale 70 3420 1 1.33 - 826+
Test

Test Data Large 1 gfie 160 705 1 1.33 - -

rn	 Total Water Used Prototype 70 1733 1 2.0 210 82.6+ 3.9+ 1.5

EMU Recharge Prototype 70 50 2 4.0 6 826+ 138+ 3.0

F	 EMU Recharge,
Projected Prototype 70 1440 1 2.0 175 826+ 4.7+ 1.5

Galley Hot Water Prototype 160 690 - - - -

Galley Chilled
Water Prototype 35 540 1 2.0 65.5 10 .15 1.5

Personal Hygiene Prototype 70 536 1 2.0 65 826+ 12.7+ 1.5

Fuel	 Cell
Production Prototype 70 8640 .37 5.4 1047 826+ .79+ 4.1
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5.5	 Galley Chilled Water. In this low temperature application the

prototype MCV can not be expected to achieve more than a 10 2 re-

duction in microorganisms.

	

5.6	 Personal Hygiene. In this application the prototype MCV has a factor

of safety on life of 12.7 + and a factor of safety on residence time

of 1.5.

	

5.7	 Fuel Cell Production. The prototype MCV might be able to process all

of the fuel cell water, but the device has only been tested long enough

to prove that it can process 79% of the projected amount. In this

application the prototype MCV has a factor of safety on residence

time of 4.1, which would be expected to result in greater life and

also enable the achievement of higher microbial reductions.
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6.0 MCV DESIGN CRITERIA

Based on the test data developed in this effort,'a suggested list of MCV

design criteria are presented in Table 6-1. The MCV prototype unit is

listed for comparison.

TABLE 6-1

MCV DESIGN CRITERIA

BED PARAMETERS	
DESIGN	 MCV
CRITERIA	 PROTOTYPE UNIT

Depth	 >6 cm(2.4in)	 7.6 cm(3.Oin)

Depth to Diameter Ratio	 >1.5	 1.85

Residence Time	 >1.33 sec	 2.0 sec

Mission Man-Day	 <826	 210
Equivalents

It should be emphasized that the microbial challenge procedure used

in this program was extremely conservative because all test data were

obtained with a continuous flow challenge of organisms which produced a

total load on the device many times in excess of any anticipated operational

conditions. Basically, the MCV is intended to prevent the back contamination

of microorganisms should they be introduced at a point in the potable water

system. Such contamination would be expected to occur only at infrequent
r
	

intervals, if at all, and certainly never on a continuous flow basis

corresponding to the challenge conditions.
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