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Abstract
 

The work summarized in this report, which was carried out as a part
 

of a NASA sponsored fissioning plasma research program, consisted of
 

design power plant studies for four types of reactor systems: uranium
 

plasma core breeder, uranium plasma core actinide transmuter, UF6 breeder
 

and UF6 actinide transmuter.
 

The plasma core systems can be coupled to MHD generators to obtain
 

high efficiency electrical power generation. A power plant employing a
 

ternary cycle of MHD generator, gas turbine, and steam cycle may have ef­

ficiencies of 60 to 70 percent for reactor exit temperatures of 3000 K to
 

4000 K, respectively. The material problems are severe so that this system
 

will require long research and development times and can, therefore, be
 

regarded as an advanced system.
 

On the other hand, the UF6 reactor would require only a modest
 

extension of present day technology for its development. A 1074 MWt UF6
 

breeder reactor was designed with a breeding ratio of 1.002 to guard against
 

diversion of fuel. Using molten salt technology and a superheated steam
 

cycle, an efficiency of 39.2% was obtained for the plant and the U233
 

inventory in the core and heat exchangers was limited to 105 kg.
 

It was found that the UF6 reactor can produce high fluxes- (1014
 

n/cm 2-sec) necessary for efficient burnup of actinides. However, the
 

buildup of fissile isotopes posed severe heat transfer problems. Therefore,
 

the flux in the actinide region must be decreased with time. Consequently,
 

only beginning-of-life conditions were considered for the power plant
 

design. A 577 MWt UF6 actinide transmutation reactor power plant was
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designed to operate with 39.3% efficiency and 102 kg of U2 33 in the core
 

and heat exchangers for beginning-of-life conditions. Additional work
 

if needed to solve the heat transfer problems.
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1. INTRODUCTION
 

The need to produce more electricity within certain social, economic,
 

and political constraints has forced the United States to reevaluate many
 

of its energy policies. In particular, the nuclear industry is beset
 

by problems of dwindling uranium resources, waste management, and nuclear
 

proliferation among others. The political and social pressures have been
 

great enough to delay commercialization of the liquid metal fast breeder
 

reactor for an indefinite period and has prompted a growing effort to
 

look at alternative systems.
 

One such alternative is the gas core reactor which has been supported
 

by the National Aeronautics and Space Administration for almost twenty
 

years. The original goal in research and development of the gas core
 

reactor was to produce a space propulsion reactor that would be capable
 

of fast, manned expeditions to neighboring planets.
(
Il)
 

Although budgetary and policy factors terminated the development
 

of nuclear powered propulsion engines, NASA has continued to sponsor
 

fissioning plasma research consisting of cavity reactor criticality
 

tests, fluid mechanics tests, investigation of uranium optical emission
 

3 )
 
spectra, radiant heat transfer studies, and related theoretical work.

(2 ,


Research has shown that UF6 fueled reactor can be quite versatile with
 

respect to power, pressure,operating temperature, and modes of power
 

extraction. (4 ) Possible power conversion systems include Brayton cycles,
 

Rankine cycles, MED generators, and thermionic diodes. Power extraction
 

may also be possible in the form of coherent light from interactions of
 

fission fragments with a laser gas mixture.
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NASA is also conducting a series of UF6 non-flowing and flowing
 

(5) 
critical experiments at the Los Alamos Scientific Laboratory. if
 

preceding steps are successful, a reactor experiment may be performed
 

in the early 1980's at the Nuclear Rocket Development Station for a
 

uranium plasma at 60000K and producing 5 MW of thermal power.
 

In addition, the International Security Affairs Office of the U.S.
 

Energy Research and Development Administration (now the Department of
 

Energy) has sponsored research on non-proliferating gas core reactor
 

power plants. (6 - 9 ) Initial studies show that fuel inventories may be a
 

factor of 10 less than those in current U.S. power reactors.
 

A study (10 ) was also conducted by the University of Florida on
 

heterogeneous gas core reactors (HGCR) for power generation. An approxi­

mately 50-50 mixture of UF6 and He was used as the gaseous fuel. Designs
 

for a 3000 MWt light-water moderated, and a 1000 MWt heavy-water moderated
 

HGCRs were presented.
 

The Georgia Institute of Technology has been engaged in various gas
 

core reactor power plant concepts under NASA sponsorship. One such con­

cept utilized a uranium plasma, breeder reactor employing a MHD generator
 

for the topping cycle. (fl-12)Power plant efficiencies of 70 percent are
 

attainable with this high temperature reactor.
 

More recent work done at Georgia Tech involves the application of
 

UF6 reactors for breeding and actinide transmutation 
purposes.(13,l4)
 

Several advantages of these systems were identified.
 

An advantage of UF6 reactor systems is the continuous on-line
 

reprocessing of fluid fuels. By bleeding off a small percentage of the
 

UF6 from the primary loop, fission product and actinide buildup can be
 

continuously removed by reprocessing. This results in a better fuel
 

economy for the reactor.
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The UF6 reactor is inherently safe because the conventional loss-of­

coolant accident cannot occur, the core contains a minimum amount of
 

radioactive fission products, and the temperature coefficient of reactivity
 

is negative which prevents accidental power excursions.
 

Reference 13 indicates that UF breeder reactors may have breeding
 

ratios of 1.25- 1.26 for core diameters varying from 1 to 5 m and that
 

fuel doubling times may be as small as a few years. Reference 14 shows
 

tiat the gas core actinide transmutation reactor may be capable of burning
 

up 10.3 metric tons of actinides in 40 years as compared to 2.93 and 0.423
 

for the liquid metal fast breeder reactor and the light water reactor,
 

respectively.
 

One significant advantage of the gas core reactors over conventional
 

reactors is that it has a smaller critical mass. This is important since
 

reducing system uranium inventory may reduce the risk of fuel diversion.
 

However, this will place an added design-constraint. For example, a breeder
 

reactor may be designed with a breeding ratio Just sufficient to fuel itself.
 

The rationale behind this design is that any diversion of fuel would cause
 

the reactor to shut down. The resulting loss of the use of a power reactor
 

may be a deterrent to fuel diversion.
 

This report reexamines both plasma core and UF6 breeder and actinide
 

transmutation reactors in the light of reducing fuel inventories. However,
 

full optimizations of these systems were beyond the scope of this study.
 

Chapter 2 summarizes the results for high temperature uranium plasma
 

breeder and actinide transmutation power plants employing MHD topping
 

cycles. A detailed study was made in Ref. 15. Chapter 3 analyzes the
 

UF6 breeder power plants while Chapter 4 analyzes UF6 actinide trans­

mutation power plants. Finally, conclusions and recommendations are
 

presented in Chapter 5.
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2. HIGH TEMPERATURE URANIUM PLASMA POWER PLANTS
 

The work summarized in this chapter, which is described in detail
 

in Ref. 1, consists of design power plant studies for applications of
 

the plasma core reactor as a breeder and as an actinide transmuter. In
 

addition to these applications, the system produced electrical power with
 

a high efficiency.
 

A reactor subsystem was designed for each of the two applications.
 

Tables 2.1 and 2.2 summarize the reactor design parameters for the breeder
 

and the actinide transmuter, respectively.
 

For the breeder reactor, neutronics calculations were carried out
 

for a U-233 plasma core with a molten salt breeding blanket. The
 

primary objectives of the overall nuclear design were to design a
 

reactor with a low critical mass (less than a few hundred kilograms
 

U-233) and also a breeding ratio of 1.01. The later objective was a
 

safety precaution to guard against diversion of fissionable material
 

during blanket reprocessing. Since only enough U-233 would be bred in
 

the blanket to replenish the amount depleted in the core, any diversion
 

of U-233 during reprocessing would result in an insufficient amount of
 

fissionable material to replenish the core and the reactor would shut
 

down. Both of the above objectives were met in the final design. It
 

is also possible to design for much higher breeding ratios in the range
 

1.1-1.2.
 

The Plasma Core Actinide Transmutation reactor was designed to trans­

mute the nuclear waste from conventional LWR's. Each LWR is loaded with
 



Plasma Core Breeder Reactor Reference Design
Table 2.1 


Dimensions of Reactor Regions
 

U2 3 3 Plasma - 165 cm O.D. 

Helium - 285 cm O.D. 

BeO Moderator - 325 cm O.D. 

Molten Salt - 355 cm O.D. 

BeO Reflector - 375 cm O.D. 

415 cm O.D.
Fe Pressure Shell ­

- 26.3 kg
Critical Mass 


- 1.0099
Breeding Ratio 


- 2000 MWt
Power 

-sec --Average Thermal Flux in Plasma - 3.42x101 5 n/cm2


- 200 atm
Reactor Pressure 


Average Temperatures
 

U2 3 3 Plasma - 25,000°K
 

3,000 K
Helium 


- 1,015 KMolten Salt 

- 542 kg/secMolten Salt Mass Flow Rate 


Molten Salt Composition - 71.7% LiF (99.995% Li
7), 16% BeF2 , 12.3% ThF4
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Table 2.2 Plasma Core Actinide Transmutation Reactor
 
Reference Design
 

Dimensions of Reactor Regions
 

U2 3 3 Plasma - 200 cm thickness
 

He - 120 cm thickness
 

Be Moderator - 17 cm thickness
 
*Act. Oxide + Zr + He - 0.85 cm thickness
 

Be Reflector - 80-90 cm thickness
 

Critical Mass 	 - 380 kg 

- 1.27 metric tonneMass of Actinides 

Power - 2000 MWt 

2
Average Thermal Flux in Plasma 	 - 2.06 x 1014 n/cm -sec 

Average Thermal Flux in Actinides 	- 1.23 x 1014 n/cm2-sec
 

Reactor Pressure 	 - 200 atm.
 

Temperatures 

U2 3 3 Plasma - 25000 0K 

He - 3000 0K 

Be Moderator - 1000 0K 

Act. Oxide + Zr + He - 800 0K 

Be Reflector - 400-6000K 

Actinide Composition: 74% Np23 7 ; 	7% AM2 4 1; 14% Am24 ; 4% Cm24 4 .
 



88 metric tonnes, of uranium (3.3% U 2 3 5) and operated until a burnup of
 

33,000 MWD/MTU is reached. The fuel is discharged from the reactor and
 

cooled for 160 days. Next, the spent fuel is reprocessed during which
 

100% of Np, Am, Cm, and higher actinides are separated from the other
 

components. The concentrations of these actinides are calculated by
 

ORIGEN (2 ) and tabulated. These actinides are then manufactured as oxides
 

into zirconium clad fuel rods and charged as fuel assemblies in the
 

reflector region of the plasma core actinide transmutation reactor.
 

Results of actinide burnup calculations for an equilibrium plasma core
 

transmuter servicing 27 PVTIR's show that after 12 cycles the actinide
 

inventory has stabilized to about 2.6 times its initial loading. There
 

are two mechanisms for the removal of actinides:
 

(1) 	They are fissioned directly in the plasma core actinide
 

transmuter
 

(2) They are removed as U or Pu.
 

The U and Pu can be used in other reactors. In the equilibrium cycle,
 

about 7% of the actinides are directly fissioned away, while about 31%
 

is removed by reprocessing.
 

Fluid mechanics, heat transfer, and mechanical design considerations
 

for both reactors are also described in Ref. 1.
 

Since it is desirable to have the Plasma Core Breeder Reactor (PCBR)
 

be a self-contained unit, generating its own new fuel, an on-line repro­

cessing system for the molten salt blanket is a necessity. Reference 1
 

describes protactinium removal and salt purification processes, calcula­

tions of expected flow rates, and equilibrium concentrations of various
 

isotopes present in the system.
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In order to achieve maximum effectiveness from the high temperature
 

coolants from either of the two plasma core reactors, it was decided that
 

a ternary power cycle would produce the highest efficiency power plant.
 

The ternary cycle consists of a combination of MHD, gas turbine, and
 

Rankine cycle energy conversion units. Two concepts were investigated ­

a system with a high temperature regenerator in the helium loop, shown
 

in Fig. 2.1, and a system without a regenerator, shown in Fig. 2.2.
 

The achieved objectives of the study were as follows:
 

(1) Model the 	nuclear MHD power plant cycle.
 

(2) Analyze the power output from the three energy donversion
 

units and evaluate plant overall efficiency.
 

(3) Make a parametric study of the effect of changing operating
 

variables on plant overall performance.
 

All studies used values for input data according to current commercial
 

technology (i.e. efficiencies for steam cycle components, gas turbine,
 

and compressors) or with current use in MHD research.
 

The modeling of the MHD cycle consisted of defining a pseudo-


Brayton cycle and treating the expansion within the NED generator in
 

a similar manner as in a gas turbine. In order to analyze the two
 

systems it was necessary to write two computer codes:
 

(1) NMHD-I - code to analyze the nuclear MHD power plant without
 

regeneration in the helium loop
 

(2) 	NMHD-2 - code to analyze the nuclear MHD power plant with
 

regeneration in the helium loop.
 

Table 2.3 lists input parameters for each system.
 

A study was made of the effect on overall efficiency of varying the
 

reactor coolant outlet temperature from 30000K to 40000K for the two
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Fig. 2.2 
Nuclear MHD Power Plant Without Regeneration
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Table 2.3 Input Data for 

Index NMHD-1 

1 Boiler Temperature --

2 Boiler Pressure 

3 Condenser Pressure ---

4 Steam Turbine Efficiency 

5 Pump Efficiency ----

6 Number of Feed Heaters 
7 Compressor Efficiency -
8 MHD Inlet Temp-----

9 MHD Inlet Press ---

10 MHD Pressure Ratio ----

10000F 


1600 psia 


1.0 psia 


81% 


80% 


0,1 or 2 


85% 


30000K 


200 bar 


5.0 


11 Gas Turbine Pressure Ratio 2.0 

12 Feed Heater 1 Pressure 

13 Feed Heater 2 Pressure ­

14 Bottom Temp Difference ­

15 MHD Inlet Mach No. --

16 Sep Outlet Mach No. ---

17 Gas Turbine Inlet Temp ­

18 NH] Efficiency 

19 Gas Turbine Efficiency -

20 Number of Compress Stages 

12. pae 


4. psia 


150K 


0.5 

0.1 


1500 K 


49% 

85% 


3.0 


NMHD-1 and NMbD-2 

IMhD-2 

Boiler Temperature 1000.0P
 

Boiler Pressure ------ 1600 psia
 

Condenser Pressure---- 1.0 psia
 

Steam Turbine Efficiency 81%
 

Number of Feed Heaters 0,1 or 2
 

Reactor Temp Difference 2000K
 

Compressor Efficiency - 85%
 
HRD Inlet Temp-------- 3000°K
 

MHD Inlet Press . 200 bar o 
MHD Pressure Ratio ....- 3.0 

Gas Turbine Press. ratio 3.0 
Feed Heater 1 press. --

Feed Heater 2 press. --

Bottom Tep Diff. ---

MHD Inlet Mach No. ----

Sep Outlet Mach No. ---

Gas Turbine Inlet Temp 


M Efficiency--------
Cas Turbine Efficiency 


12. psia
 

4.0 psia d=
 
150K 

0.5
 

0.1
 

1500 K
 

49% 

85% 

Number of Compress Stages 3.0
 

0 
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systems. Tables 2.4 and 2.5 list typical results, showing an overall
 

plant efficiency as high as 70%.
 

For Nuclear 1HD Power Plant with regeneration (Fig. 2.1), the
 

major contribution of the electric power is produced in the top of the
 

power cycle by the MID subsystem (33.97%- 45.49% from 100% heat produced
 

by the reactor). The power production has been shifted toward the top
 

of the ternary cycle with a large increase in overall efficiency. This
 

system produces overall efficiencies that are 60- 80% higher than actual
 

power plants in use and 25- 45% higher than expected coal-fired MHD power
 

plants.
 

For Nuclear MHD Power Plants without regeneration (Fig. 2.2), the
 

major contribution of electric power is due to the steam turbine sub­

system (36.03%-36.36% from 100% heat produced by the reactor). Due
 

to a significant fraction of the electric power being produced by the
 

steam cycle at lower efficiencies (40%),it is desirable to shift the
 

power production toward the top of the cycle to improve the overall
 

efficiency. This can be achieved by reducing the mass flow rate of
 

helium within the inner loop and increasing the pressure ratio of the
 

MHD generator. This system produced overall efficiencies that are 40- 50%
 

higher than actual power plants in use, and 10- 15% higher than expected
 

coal-fired MHD power plants. Due to the relatively low temperatures
 

within the helium loop, this type of power plant could be considered as a
 

first step in a national program of implementation of MHD power plants
 

with a nuclear source.
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Table 2.4 Plant Overall Efficiencies with High Temperature Regenerator 

?IID Inlet 
Temperature 

a 
3000 K 

4973.45 100.0% 

0 
3250 K. 

5138.94 100.00% 

0 
3500 K 

5299.94 100.00% 

0 
3750 K 

5458.27 100.0% 

40000K 

5693.55 100.0% 

W ]ID 1689.52 33.97% 1914.65 37.26% 2139.78 40.37% 2139.78 43.44% 2590.04 45.49% 

NGT 319.12 6.42% 319.12 6.21% 319.12 6.02% 319.12 5.85% 319.12 5.60% 

W 1112.20 22.36% 1312.20 21.64% 1112.20 20,99% 1112.20 20.38% 1112.20 19.53% 

nPIANT 62.75% 65.11%. 67.38% 69.56Z 70.62% 

QR 

WMrnD 

Wri 

WST 

-

-

-

PEACTOR HEAT RATE 

KiD NET ELECTRIC POWER: 

GAS TUR3DIE ELECTRIC POWER: 

STEAM TURBINE ELECTRIC POWER: 

WMH D 

WGT 

WST 

-

-

WMU OUTPUT - WCOMPRESSOR 

WGT OUTPUT - 2 x WCOMESSOR 

WST OUTPUT - WPUM 

. W H WOT 
WST~ 0 ,W (PI+N. Q- E 1 0 1 0 +t~t - -10 +R -10 + 
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3. UF6 BREEDER REACTOR POWER PLANT
 

A. Neutronics
 

Neutronics calculations were carried out for a uranium hexafluoride
 

breeder reactor (UF6BR). The primary objectives of the overall nuclear
 

design were to design a reactor with a low critical mass (less than a
 

few hundred kilograms U-233) and a breeding ratio of 1.0. The latter
 

objective was a precaution to guard against diversion of fissionable
 

material at any stage in the fuel cycle. Since only enough U-233 would
 

be bred in thE blanket to replenish the amount depleted in the core,
 

any diversion of U-233 from the fuel cycle would result in an insuffi­

cient amount of fissionable material to replenish the core and the
 

reactor would shut down. Both of the objectives were met in the final
 

design.
 

The MACH-I Code (1 ) was used as the primary computational tool in
 

the nuclear analysis. MACH-I is a one-dimensional, diffusion theory
 

code. The 26-group ABBN cross section set of Bondarenko, et al (2 ) was
 

used.
 

A cylindrical geometry was chosen which is shown in Fig. 3.1. The
 

core consists of a He- UF6 mixture flowing through a beryllium matrix.
 

Addition of helium improves the heat transfer characteristics of the
 

He- UF6 mixture and is important in maintaining a small inventory of
 

U-233 in the heat exchanger(s). The beryllium matrix provides the
 

moderation needed by the neutrons. The partial pressures of He and UF6
 

are 99 atm. and 0.69 atm., respectively. The core diameter is 200 cm
 

and its height is 600 cm. Surrounding the core radially is a 60 cm
 

thick breeding blanket. The breeding salt composition is 71.7 mole % LiF,
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16 mole % BeF 2 , and 12.3 mole % ThF 4. The Li is enriched to essen­

tially 100% Li7 . This composition is based on work done on the molten
 

salt breeder reactor (MSBR) by the Oak Ridge National Laboratory.
(3)
 

Beryllium was used as a reflector both axially (20 cm) and radially
 

(50 cm). The entire reactor is encased in a 20 cm thick stainless steel
 

pressure shell.
 

Since the ABBN cross section set does not have cross sections for
 

helium and fluorine, these were generated from cross section data from
 

BNL-325. (4,5) The group-averaged cross sections were calculated as
 

follows:
 

c(Z) (E) dE 
<xi =a 

A 
3.
i (E) d E(31 (3.1) 

fE i 

2 ­where O(E) = 0.77E e 0.776E 2.5 MeV < E < 10 MeV 

1- E < 2.5 MeV 
E 

The elastic and inelastic downscattering cross sections were calculated
 

by:
 

<f>i EfE a(E)4OE) P(B - tdEdE (3.2) 

fE i (E) d E 

for elastic scattering, P(E -* E') = IaE <E<E 
(1l-a)E 

= 0 otherwise (3.3) 

2 
a JA-1 

where 
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for inelastic scattering, F(E E) = . e (3.4) 

with T = 3.2 /A 

A = Atomic no. of nuclide
 

The transport cross section was calculated by
 

(3.5)
Katr) = (e) (1 - le) + <Gin> + <Ge> + <Gf > 

where <atr = group averaged transport cross section 

<ae> = group averaged elastic scattering cross section 

= average cosine of scattering angle 

2
 
1A
 

<Gin> = group averaged inelastic scattering cross section
 

<Gc> = group averaged capture cross section
 

<of > = group averaged fission cross section
 

For helium, there are no resonances and all cross sections are smooth
 

functions of energy. Fluorine-19 has a few elastic scattering
 

resonances. It was estimated that for the fluorine in UF6 and the
 

breeding blanket, the effect of these resonances is small compared to
 

the moderation in the beryllium and lithium. Hence, these resonances
 

were neglected.
 

In the core and the breeding blanket, self shielding factors were
 

used to take care of dilution effects. For the uranium in the core
 

infinite dilution factors were used because of the low density of the UF6
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gas. For the thorium-232 in the blanket, a self shielding cross
 

section of 61 barns was determined, and appropriate self shielding
 

factors were accounted for.
 

Since the ABBN cross section set does not treat thermal cross sec­

tions accurately, the effective neutron temperature model was used. The 

thermal flux was assumed tobe Maxwellian, 4(E) a E eB/kl1, where Tn = 

effective neutron temperature. Following the treatment of Wescott (6 ) the
 

average thermal cross section is given by
 

qY I g(T) 
 (3.6)
 

where (Eo, T ) is, by convention, (0.025 eV, 293.16 OK) and gx(T) is
 

-I
the non factor for reaction x.
v 

A neutron temperature of 7830K was assumed for the calculations.
 

For this neutron temperature,.groups 25-and 26 were combined as the
 

thermal group.
 

For the cylindrical geometry chosen, a complete calculation would
 

require a two-dimensional calculation. Since IACH-I is a one-dimensional
 

code, the infinite slab and-infinite cylinder geometries were used to
 

model the axial and radial neutronics of the reactor. The two geometries
 

were coupled together by group dependent bucklings in the axial and
 

radial directions. Iteration between the axial and radial calculations
 

were carried out until a consistent set of axial and radial bucklings
 

was obtained.
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To insure adequate leakage of neutrons to the breeding blanket, a
 

height to diameter ratio of 600= 3.0 was chosen. This was essential

200
 

to the breeding of the reactor.
 

In all the MACH-I calculations, a search was made for the Be con­

centration in the core. The critical mass of the core could be reduced
 

substantially by increasing the Be to U2 3 3 ratio, i.e. by making the
 

neutron spectrum more and more thermal. However, for breeding of
 

thorium-232, which has numerous resonances in the epithermal range, too
 

thermal a neutron spectrum would be detrimental. The concentration of
 

Be in the core chosen was a compromise between the requirements of criti­

cality and breeding.
 

When thorium-232 absorbs a neutron, thorium-233 is formed, and a
 

7.5 MeV gamma is emitted. Thorium-233 undergoes $- decay to Pa2 3 3
 

emitting a - particle of 1.23 MeV. Pa2 3 3 undergoes further a- decay to
 

form U2 33 emitting a S- particle of 0.25-MeV. The reaction is given by:
 

Th2 3 3 (n,y) Th
2 33  ) Pa2 3 3  U2 3 3
 

22 min. 27.4 days
 

For a breeding ratio of 1.0, this added up to 8.98 MeV per fission
 

in core. Furthermore, from a MACH-l calculation, it was found that 0.08%.
 

of the total fissions occurs in the blanket, i.e., 0.157 MeV is available
 

per fission. Assuming a recoverable energy of 196 MeV per fission, the
 

percent of heat generated in the blanket is about 5%.
 

Characteristics of the reference UF6BR design are discussed in
 

Section D.
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B. Heat Transfer and Thermal Hydraulics
 

It is necessary to size the heat exchangers in order to determine
 

the total U2 3 3 inventory in the system. The primary heat exchanger
 

analysis is the same for both the actinide transmutation reactor and the
 

breeder reactor.
 

The heat exchangers used in this study are simple tube-in-shell
 

counterflow heat exchangers. In the primary heat exchanger (Fig. 3,2)
 

the UF6-helium mixture passes through a number of modified Hastelloy-N
 

tubes where heat is transferred to a flowing salt mixture composed of
 

92% NaB F4 and 8% NaF (mole percent). This salt mixture was chosen
 

to eliminate the possibility of criticality occurring in the primary
 

heat exchangers and for its chemical inertness to UF6, Modified
 

Hastelloy-N was used for the tubing because of its corrosion resistance
 

in a fluoride environment. Properties of UF6 , helium, NaB F4-NaF salt,
 

and modified Hastelloy-N are given in Appendix A.
 

The primary loop shown in Fig. 3.3 consists of the reactor core,
 

primary heat exchanger, and compressor. The objectives of the analysis
 

was to determine the heat exchanger size so as to determine the amount
 

of fissile uranium in the heat exchanger and to determine the compressor
 

power.
 

The analysis proceeds as follows. Given the core power, Q ore' and
 

the inlet and exit temperatures of the core, T3 and T1, respectively,
 

the flow rate in the loop is determined from
 

Qer
 
= 

(3.7)
 
C 1 4(T
- T3)
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where CP is the specific heat of the helium-UF6 gas mixture.
 

If the primary heat exchanger exit temperature, T2 , is given, then
 

the power transferred from the UF6-helium loop to the Na B F4-Na F salt
 

loop is given by
 

(T T
QPHX = 1 Cp - 2) (3.8) 

The size of the heat exchanger can now be estimated. The equivalent
 

diameter is determined by assuming the tubes are arranged in a triangular
 

lattice structure (Fig. 3.4) and is given by
 

4 Af 21 c2 - udo2 

d - --_ 0 (3.9) 
eq P ird 

w 0
 

where Af is the channel flow area, Pw is the wetted perimeter, c is the
 

pitch, and d is the tube outside diameter. The channel flow area is
 

r- 7rd 2 
A = Y 2 0 (3.10)f 4 c 8 

The Reynolds and Prandtl numbers for the UF6-helium mixture in the
 

heat exbhanger tubes are
 

p u d.
 
Re = (3.11)
 

Cl 
Pr = P (3.12)K
 

where p, p, and K are the density, viscosity, and thermal conductivity
 

of the mixture. The average velocity in the tube, u, and tube inside
 

diameter, di, must be specified. Similarly, the Reynolds and Prandtl
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numbers for the NaF-NaBF4 salt are
 

p' ud 
Re' = e1 (3.13)11 

Pr' - -=--- K' (3.14) 

where primes are used to distinguish the salt from the gas mixture.
 

The convective heat transfer coefficients for the mixture and salt
 

are estimated from the Dittus-Boelter equation
(7 )
 

8h. = 0.023 -- (pr) 0.4 Re) 0 - (3.15) 

h = 0.023 - (Pr') 0 A (Re') 0 8B (3.16)
0 d eq
 

The overall heat transfer coefficient for flows on each side of a
 

tube is given by
(8 )
 

d 1 d d (3.17)
 

hTo dK T +i did + d. 

where KT is the thermal conductivity of the tube material.
 

The total cross sectional area of tubing required is
 

A M (3.18)
t pu
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or, the number of tubes required is
 

4d 2 
- (3.19)n t 


It is then possible to compute the heat exchanger exit temperature
 

on the salt side from
 

T5 = T4 + - (3.20) 
ep Afn t
c p' u'VA nt 

The log mean temperature difference for counterflow is given by 
(8 ) 

(TI - T5) -(T2 - T4)
 
AT - (3.21)mni T1 -T5
 

T 2 - T 4
 

from which the heat transfer surface area is determined from
 

= QPHX (3.22) 

and the length of the tubes is then
 

L S (3.23) 
t n 7 d 

The volume of helium-UF6 mixture in the tubes is
 

2
 
7Td. 


= 41 (3.24)
Vt n t Lt 


Additional UF 6 and helium reside in the inlet and exit plenums of
 

the heat exchanger. The additional volume is calculated from
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iT d. 2 

V n L (3.25) 
p t p 4c 

where L is the additional length of the heat exchanger due to the
P 

plenums and was taken to be 0.3048 m (I ft.). Each tube flow area opens
 

up to two corresponding triangular areas so that
 

2
d.


(3.26)
a2/3 c 2 

Therefore, the mass of UP6 and helium in the heat exchanger is
 

m = p(V + V) (3.27)t 


_p UF6 
233 


of which 233 is the mass of U2 3 3 . The salt volume in the
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heat exchanger is
 

V = Af (3.28)nt L t 

and the salt mass is
 

M, = p, V, (3.29) 

The pressure drop has two components. The first is the pressure
 

drop due to the change in flow areas between the plenums and tubes. This
 

drop is given by
(9 )
 

AP - u2 (K +K) (3.30)p 2 c e 
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where K and K are contraction and expansion coefficients which are
c e 

functions of a and the Reynold'-s number. Reference 9 gives values for
 

K and K

C e 

The second component is the friction loss in the tubing for the
 

friction factor, f . For implementation in a computer code, the Colebrook
W
 

.
equation is used(9 )


1 s/di 2.51 

2_ +og Re f+ (3.31) 
w w 

-
where e is a roughness parameter and is 1.524 x 10- 6m (5 x 10 6 ft.) 

for drawn tubing. fW is solved iteratively and is used to compute the 

tube pressure drop 

p2 L
 

APt = f 2 L (3.32)

t w 2 d.I 

The compressor power for circulating the UF6-helium mixture is
 

y-1
r, 
Qcomp Tic LI. jI (.3 

where nc is the compressor efficiency and y is the mixture specific heat ratio.
 

Each heat exchanger and superheater were modeled in the same manner.
 

However, pumps are used in the remaining loops. The pump power is cal­

culated from
 

Q =h AP- (3.34)
 

PUMP 73p
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where AP is the pressure drop across the pump, and njP is the pump effi­

cency.
 

The boiler is treated differently because water changes into
 

steam over the length of the boiler tubes. Therefore, the boiler is split
 

into two regions for the purposes of analysis. The first region is the
 

subcooled liquid region where the Dittus-Boelter equation is used to
 

calculate the convective heat-transfer coefficient. The second region
 

consists of saturated liquid changing to saturated steam. In this region, the
 

Dittus-Boelter equation cannot be used so a heat-transfer coefficient
 

of 5.68 x 104 - r0 Btu a sumed.

K -j was assed. 

C. 	Thermodynamic Cycle Analysis
 

Using the analysis from the previous section, a comruter code was
 

written to analyze the breeder power plant cycle. A separate code supplied
 

by Professor R. W. Carlson of the Georgia Institute of Technology was used
 

to obtain the efficiency of the steam cycle.
 

Several constraints are imposed on temperatures and velocities in the
 

system by the following considerations:
 

(1) 	Uranium inventory in the primary heat exchanger
 

cannot be excessive,
 

(2) 	Compressor and pump powers must be kept low for
 

good power plant efficiencies,
 

(3) 	The breeding salt must be kept above 7720K and
 

the coolant salt must be kept above 6580K to avoid
 

solidification.
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Figure 3.5 shows the power plant schematic. The steam cycle consists
 

of high pressure and low pressure turbines, a condenser operating at
 

I psia, five feedwater heaters operating at 7, 41, 141, 371, and 820 psia,
 

a boiler operating at 1600 psia and a superheater in which steam is
 

heated to 6700 K.
 

The work used in circulating the various fluids (excluding water)
 

through the heat exchangers is 13.1 MW which is multiplied by 1.5 to
 

account for pressure losses in the piping. An overall plant efficiency
 

of 39.3% is obtained for a steam cycle efficiency of 40.4%.
 

D. 	Summary
 

The design parameters for the breeder reactor are summarized in
 

Table 3.1 while the power plant parameters are summarized in Table 3.2
 

Temperatures and velocities in the loop are shown in Fig. 3.5.
 

The critical parameters of interest are the power-plant efficiency,
 

reactor thermal power, and the U233 inventory. They are 39.3%, 1074 MWt,
 

and 104.8 kg, respectively. In computing the uranium inventory, the
 

uranium in the piping and reprocessing system was not included.
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Table 3.1. UF6BR Reactor. Design Data Summary
 

Core Composition
 

U2 33F6 
partial pressure = 0.69 atm. 

He partial pressure = 99 atm.
 

Volume percent of UF6 + He = 70%
 

Volume percent of Be = 30%
 

Dimensions 

Geometry = Cylindrical 

Core Diameter = 2.0 m 

Core Height = 6.0 m 

Thickness of Breeding Blanket 0.6 m 

Thickness of Axial Be Reflector 0.5 m 

Thickness of Radial Be Reflector 0.2 m 

Thickness of Steel Pressure Shell 0.2 m 

Reactor Diameter = 4.0 m
 

Reactor Height = 7.4 m
 
3
 

= 18.85 mCore Volume 


Neutronics 

Breeding Ratio = 1.0022 

Be to U2 3 3 Atom Density Ratio = 8111 

Average Core Thermal Flux = 1.34 x 1015 n/cm2-sec 

Average Core Fission Density = 1.68 x 1018 fissions/m3 - sec 
3


Average Core Power Density = 5.4 x 107 W/mI


Peak to Average Ratio of Radial Fission Densities = 1.78
 

Peak to Average Ratio of Axial Fission Densities = 1.24
 

Percent Fission in Blanket = 0.08%
 

Average Thermal Flux in Blanket = 5.3 x 1013 n/cm 2-sec
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Table 3.1. UF6BR Reactor Design Data Summary
 
(continued)
 

Masses 

U233 Mass in Core = 32.8 kg 

UF6 Mass in Core = 48.8 kg 

Be Mass in Core = 10,300 kg 

Th2 3 2 Mass in Blanket = 44,465 kg 

Reactor Heat Transfer and Thermal Hydraulics 

Total Reactor Power = 1074 MWt 

Core Power = 1020 Mgt 

Blanket Power - 54 MWt 

Core Region: 

Inlet Temperature = 7000K 

Exit Temperature = 867 0K 

Average UF6 + He Velocity = 82 m/sec 

Mass Flow Rate of UF6 + He 1.8 x 103 -
g 

sec
 
_Blanket Region: 


Inlet Temperature = 7830K 

Exit Temperature = 8110K 

Average Salt Velocity = 8.5 x 10- 2 m/sec 

Mass Flow Rate of Salt = 1.42 x 103 kg
sec
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Table 3.2. UF6BR Power Plant Design Data Summary
 

Number of Loops = 2 

Power Plant Efficiency = 39.3% 

Uranium Mass: 

Core = 32.8 kg 

Primary Heat Exchangers = 72.0 kg 

Total = 104.8 kg (Excluding U233 in piping and reprocessing system) 

Electric Power Output 426 NWe
 

UF6 - He Loop Parameters:
 

Primary Heat Exchanger:
 

Number of Tubes = 63595
 

Inner Tube Diameter = 7.745 x 10- 3 m
 

Outer Tube Diameter = 9.525 x 10- 3 m
 

Pitch to Diameter Ratio = 1.3
 

Length of Tubes = 3.81 m
 

Mass Flow Rate = 1.8 x 103 kg/sec
 

Compressor Power 8,6 MW
 

Na F - Na BF4 Primary Loop Parameters
 

Boiler:
 

Number of Tubes = 3585
 
- 2
Inner Tube Diameter = 1.4148 x 10 m
 

- 2
Outer Tube Diameter = 1.5875 x 10 m
 

Pitch to Diameter Ratio = 1.6
 

Length of Tubes = 7.95 m
 

Mass Flow Rate = 1.30 x 104 kg/sec
 

Pump Power = 3.7 MW
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Table 3.2. UF 6BR Power Plant Design Data Summary
 

(continued)
 

LiF-Be F2 -ThF 4 Loop Parameters
 

Secondary Heat Exchanger:
 

Number of Tubes = 886
 

Inner Tube Diameter = 7.745 x 10- 3 m
 

Outer Tube Diameter = 9.525 x 10- 3 m
 

Pitch to Diameter Ratio = 1.3
 

Length of Tubes = 4.09 m
 

= 1.42 x 103 kgMass Flow Rate 

sec
 

Pump Power = 0.37 MW
 

NaF-NaBF4 Secondary Loop Parameters
 

Superheater:
 

Number of Tubes = 628 

Inner Tube Diameter = 1.4148 x 10-2 m
 

- 2
Outer Tube Diameter = 1.5875 x 10 m
 

Pitch to Diameter Ratio = 1.3
 

Length of Tubes = 11.6 m
 

Mass Flow Rate = 844.5 kg/sec 

Pump Power = 0.46 MW 

Steam Cycle Parameters 

Condenser Pressure I psia 

Boiler Pressure = 1600 psia 

Feedwater Heater Pressures:
 

No. 1 = 7 psia
 

No. 2 = 41 psia
 

No. 3 = 141 psia
 

No. 4 = 371 psia
 

No. 5 = 820 psia
 

Maximum Steam Temperature = 670 0K
 

Steam Cycle Efficiency = 40.4%
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4. UF6 ACTINIDE TRANSMUTATION REACTOR POWER PLANT
 

One consequence of the large scale use of fission reactors for
 

production of energy is the accumulation of radioactive wastes. The
 

spent fuel discharged from a LWR consists of structural materials,
 

unfissioned uranium, converted plutonium, other actinides, and fission
 

products. The ratio of these components by weight is as follows:
 

structural : uranium : plutonium : fission products : other actinides 

= 256 : 1023 : 9 : 36 : 1 

Although the other actinides are the smallest component, they are
 

very important because of their long half lives. After 103 years most
 

of the other materials will have decayed to stable isotopes; these
 

actinides will still be radioactive and may present significant health
 

hazards in the future.
 

Steinberg, (1 ,2 ) proposed use of neutron induced transmutation for
 

the disposal of long-lived fission wastes. Under such a scheme, these
 

fission wastes are separated from gross wastes during fuel reprocessing,
 

and converted into forms suitable for insertion into a neutron field,
 

e.g., a fission reactor. In this neutron environment, these nuclides
 

will be converted, or fissioned into short-lived isotopes. The resulting
 

wastes will then be stored for a short period until a harmless activity
 

level is reached. This method allows the possibility of reducing long­

lived fission waste inventory at a faster rate than natural decay, and
 

hence of reducing the long-term risk of exposure to radioactivity.
 

The first step in the actinide transmutation scheme is the chemical
 

extraction of actinides from the bulk wastes. The Oak Ridge National
 

Laboratory is currently performing a fairly extensive study in this area.(3
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Since no chemical extraction process is 100% efficient, there will
 

always be a small quantity of actinides left unextracted in the bulk
 

wastes. What, then, should the extraction efficiency be so that the
 

risk associated with the unextracted actinides be considered acceptable?
 

Radioactive material has been present in the earth's crust and surface
 

at all times in the form of uranium and thorium minerals and ores.
 

Claiborne (4 ) compared the long-term hazard of actinides for different
 

extraction efficiencies with the calculated hazard of pitchblende (- 70% U),­

the most radioactive mineral, and with the calculated hazard of high grade
 

uranium ore ( 0.2% U). He showed that it is possible to reduce the 

hazard (after 1000 years) associated with high-level wastes to values 

comparable to those from high grade uranium ore provided that 99.99% of 

Pu, 99.9% of U, Am, Cm, and 1291 and 95% of the Np are recovered from
 

LWR fuels.
 

After the actinides are extracted-from the bulk wastes, they are
 

placed into a reactor for irradiation.
 

Claiborne (5 ) performed detailed calculations on actinide trans­

mutation in LWR's. Assuming separation efficiencies of 99.5% and 99.9%
 

for U, Pu, and the other actinides, the actinides (no U and Pu) are
 

recycled back into a PWR for many cycles. A thermal flux of 3x,013
 

2
n/cm -sec was used. With this strategy the actinides are removed'by
 

two paths. One, they are converted to plutonium and uranium, and are
 

then extracted during chemical reprocessing. Most of the plutonium
 

extracted is Pu2 3 8 , formed by the reaction Np2 3 7 (n,y) Np238----- Pu23 8 .
 

Pu2 3 9
 A small quantity of Pu2 39 is also formed. This mix of Pu238 ­

can be used as reactor fuel just like Th2 3 2 - U233. The other path is 

for the actinides to be fissioned directly inside the PWR. The total
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actinide inventory approaches an equilibrium value that is several 

times that produced in the first cycle (1.6 times for Np, 1.2 times 

for Am, 9.0 times for Cm). Np reaches equilibrium after - 4 to 5 

recycles, Am after - 2 to 3 recycles, and Cm after 50 to 60 recycles. 

Claiborne also concluded that the introduction of actinide wastes 

perturbs the reactor very slightly. Similar results have been obtained 

at Battelle Northwest Laboratories.(6)
 

Beaman et al. (7) performed actinide transmutations calculations for
 

an LMFBR. His scheme consisted of an LMFBR recycling the actinide wastes
 

produced by itself and 3 BWR's. The actinides are removed in 2 ways:
 

(1) by conversion to Pu, and (2) by fission. Equilibrium concentrations
 

of recycled actinides in a LMTFBR are qualitatively similar to the LWR
 

case. In Np237 equilibrium is reached after about 14 recycles; for Cm
 

about 30 recycles. An equilibrium concentration of the actinide mixture
 

is achieved after approximately 26 recycles. The equilibrium inventory
 

is 3.1 times the quantity charged in the first cycle. Introduction of
 

the actinide wastes into an UAFBR have a very slight effect on other
 

reactor characteristics. Similar studies were done by Oliva, et al.
(8 )
 

These schemes for recycling actinide wastes in LWRs and IMFBRs are
 

not satisfactory in two respects. First, since only a small number of
 

reactors are serviced by a LWR or a LFBR, many transmuters (LWRs and/or
 

LMFBRs) will be required. Second, even then it will require very long
 

irradiation times (> 20 recycles) to reach equilibrium. This gives
 

rise to the idea of designing of a special burner reactor capable of
 

servicing a large number of LWRs and operating at high fluxes to shorten
 

the irradiation time.
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One candidate for this special burner reactor is the gas core
 

reactor. Because of the low fissile fuel inventory a high flux can be
 

maintained. Continuous reprocessing of the fuel means better fuel
 

economy and the possibility of continuous irradiation.
 

Clement and Rust (9 ) performed actinide burnup calculations in a plasma
 

core actinide transmutation reactor. The calculations assumed 100% extrac­

tion efficiency for U, Pu and other actinides and the reactor was designed
 

to dispose of actinide wastes from 27 LWRs. Due to constraints imposed by
 

the high temperature uranium plasma, the neutron flux in the actinide region
 

was only 7x1012 n/cm2-sec. Approximate equilibrium actinide inventory is
 

reached after 13 recycles, and the equilibrium actinide inventory is about
 

2.6 times the initial actinide loading.
 

This study continues the previous investigation; however, a uranium
 

hexafluoride fueled reactor was investigated for its potential as a gas
 

core actinide transmuter (UF6ATR).
 

A. Neutronics
 

A flow chart of the computation strategy is shown in Fig. 4.1. The
 

ABBN (10 ) cross section set is used for imput into the MACH-I(11) code.
 

, Cm2 44 
Cross sections for Np2 3 7 , Am2 4 1, Am2 43 are generated from ENDF/III
 

by the code MC2.(12) Cross sections for the He and fluorine are generated
 

from the cross section data from BNL-325. (13,14) The detailed formalism
 

is described in Chapter 3. The depletion and decay of the actinide isotopes
 

are calculated by the code ORIGEN. (15)
 

The cylindrical reactor configuration is shown in Fig. 4.2. Since
 

MACH-I is a one-dimensional code, the infinite slab and cylinder geometries
 

were used to model the axial and radial neutronics of the reactor. The
 

two calculations were coupled together by group dependent bucklings in
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the axial and radial directions. Several iterations were required before
 

a consistent set of axial and radial bucklings was obtained.
 

The core consists of a He-UF6 mixture flowing through a beryllium
 

matrix. Addition of helium greatly improves the heat transfer character­

istics of the gas, since UF6 is a very poor heat transfer agent. The
 

neutron spectrum is thermalized by a beryllium matrix in the core. Sur­

rounding the core is an actinide blanket region consisting of He cooled,
 

zirconium clad actinide fuel rods. The actinides are assumed to be
 

present as oxides. Only the principal actinides, Np2 37 , Am2 4 1, Am2 43 , and
 

Cm24 4 
are included. The actinide blanket is surrounded by a beryllium
 

reflector and a steel pressure shell. Characteristics of the reactor are
 

summarized in Section 4D.
 

B. Heat Transfer and Thermal Hydraulics
 

The analysis for the heat exchangers is the same as that described in
 

Section 3.B. The heat transfer for the actinide transmuter reactor is
 

unique in that the core power decreases from 504 MWt at beginning of life
 

to 180 MWt at the end of life of the first core. This is due to buildup
 

of fissile plutonium in the actinide blanket. Therefore, the flux in the
 

actinide region and the core has to be decreased to maintain the same
 

volumetric heat generation rate in the actinide rods. The consequence
 

is that a time dependent study is needed. However, in this study, heat
 

transfer calculations were only made for beginning-of-life conditions.
 

C. Thermodynamic Cycle Analysis
 

Figure 4.3 shows the schematic for the actinide power plant at begin­

ning-of-life conditions. The overall plant efficiency is 39.2%.
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D. Summary
 

Characteristics of the beginning-of-life UF6ATR are shown in Table 4.1
 

By virtue of the low density of the U2 3 3 fuel, an average flux of 4x10'
4
 

n/cm2 sec can be reached in the core, and an average flux of 1.3xl014
 

n/cm 2 sec can be reached in the actinide region. This high actinide region
 

flux will bring about a very rapid transmutation of the actinides. However,
 

as the quantity Pu2 3 9 and other fissile isotopes increases, the flux in
 

the actinide region must be lowered to stay within the-safety limits of
 

the actinide rods. Thus the flux in the actinide region must be gradually
 

lowered, as the inventory of fissile isotopes gradually builds up so as
 

to maintain an acceptable volumetric heat generation rate (4") in the
 

actinide region.
 

The transmutation strategy used for the present study is shown in
 

Fig. 4.4. Each LNR is loaded with 88 metric tonnes of uranium (3.3% U23 5)
 

and operated at a constant and average specific power of 30 MW/MTU. At
 

the end of 1100 days, a burnup of 33,000 MWD/MTU is reached. The fuel is
 

discharged from the reactor and cooled for 160 days. Next, the spent
 

fuel is reprocessed during which 100% of Np, Am, Am, and higher actinides
 

are separated from the bulk wastes. The concentrations of these actinides
 

are calculated by ORIGEN. These actinides are then manufactured into fuel
 

rods and charged into the UF6ATR. These actinides are irradiated for
 

1100 days in the UF6ATRuntil an average burnup of 100,000 MWD/kTA is
 

attained. The actinide rods are discharged from the UF6ATR and undergo
 

reprocessing during which fission products and converted U and Pu are
 

extracted. These actinides are mixed with a batch of freshly produced
 

actinides from the LWRs and manufactured into oxide rods and charged back
 

into the 'UF6 ATR. In the present calculation the UF6 ATR services 14 PWRs, 
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Table 4.1 UF 6ATR Reactor Design Data Summary
 

(Beginning-of-Life)
 

Core Composition 

U2 3 3 F 6 partial pressure = 0.985 atm. 

He partial pressure = 99 atm. 

Volume percent of UF 6 + He = 83.3% 

Volume percent of Be = 16.7% 

Actinide Composition 

Actinide Dioxide = 28 volume % 

Zirconium Clad 7 volume % 

Helium Coolant 65 volume % 

Actinides 

Np23 7  = 74 atomic % 

Am241 = 7 atomic % 

Am243 = 14 atomic % 

cm244 = 5 atomic % 

Dimensions 

Geometry = Cylindrical 

Core Diameter = 2.74 m 

Core Height = 3.0 m 

Thickness of Actinide Blanket = 1.32 × 10-2 m 

Thickness of Axial Be Reflector = 0.5 m 

Thickness of Radial Be Reflector = 0,43 b 

Thickness of Pressure Shell = 0.2 m 

Reactor Diameter = 4.0 m
 

Reactor Height 4.4. m
 

Core Volume = 17.7 m 3
 

3
 
Volume of Actinide Region = 0.343 m


Fuel Pins in Actinide Region
 

Fuel Pin Radius = 2.175 x 10-' m
 

- 4
Gap Thickness = 1.5 x 10 m
 

- 4
Clad Thickness = 3.5 x 10 m
 

- 3
Wire Wrap Diameter = 1.42 x 10 m
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Table 4.1 UF6ATR Reactor Design Data Summary
 
(continued)
 

Neutronics
 

Type of Reactor = Thermal
 

Be to U2 3 3 Atom Density Ratio = 2660
 

Average Core Thermal Flux = 4.07 x 1014 n/cm2-sec 

Average Core Fission Density = 8,90 x 1017 fissions/m 3 sec
 

Peak to Average Ratio of Radial Fission Densities 1.82
 

Peak to Average Ratio of Axial Fission Densities = 1.42 

Percent Fissions in Actinide Blanket = 12.6% 

Average Thermal Flux in Actinide Region = 1.26 x 1014 n/cm2-sec 

Masses
 

U2 33 
Mass in Core = 52.5 kg
 

UF 6 Mass in Core = 78.2 kg
 

Actinide Mass = 800 kg (- output from 14 LWRs)
 

Reactor Heat Transfer and Thermal Hydraulics
 

Total Reactor Power = 577 MWt_
 

Core Power = 504 MWt
 

Actinide Region Power = 73 MWt
 

Core Region
 

Inlet Temperature = 7000K
 

Exit Temperature = 867°K
 

Average UF6 + He Velocity = 18 m/see
 

Mass Flow Rate = 1008 kg/sec
 

Average Core Power Density = 28.5 MW/m3
 

Actinide Region
 

He Coolant Pressure = 110 atm.
 

Inlet Temperature = 6400K
 

Exit Temperature = 9000K
 

Average He Velocity = 104 m/sec
 

Mass Flow Rate = 54 kg/sec
 

Average Power Density of Region = 210 MW/m3
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Table 4.1 UF 6ATR Reactor Design Data Summary
 
(continued)
 

Average q" of Actinide Rod = 760 MW/m3
 

Average q" of Actinide Rod = 0.83 MW/m2
 

w
 
Average qf of Actinide Rod = 11.3 kW/m
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i.e., 800 kg of actinides per cycle. To maintain an acceptable volumetric
 

heat generation rate (nf") in the actinide region, the flux must be varied
 

as a function of time. To approximate this occurrence, a flux of 5.6x101 3
 

n/cm2-sec was used for the first 100 days and a flux of 1.6x101 3 n/cm2-sec
 

for the rest of the 1100 day period. Approximate equilibrium is reached
 

after 15 recycles. The equilibrium actinide inventory is about 2.3 times
 

its initial loading. In the equilibrium cycle, about 10.8% of the
 

actinides are fissioned and about 32.1% is removed by reprocessing. These
 

results are shown in Table 4.2.
 

The UF6ATR is capable of maintaining a flux of 1014 n/cm
2-sec in the
 

actinide region; however, heat transfer limitations in the actinide region
 

force the UF6ATR to operate at a much lower flux. Assuming that the heat
 

transfer problem in the actinide region can be solved, an ORIGEN calculation
 

was performed for a UF6ATR with a constant flux of 1.25x10
1 4 n/cm2-sec in
 

the actinide region. The actinides wer-eirradiated for 165 days. The
 

results were compared with those of a typical low flux UF6ATR case with
 

1100 days of irradiation in Table 4.3. As shown, the 2 cases are comparable,
 

indicating that with a high flux of 1.25x101 4 n/cm 2-sec it may be possible
 

to cut the irradiation time by a factor of 6-7.
 

Table 4.4 summarizes the power plant parameters for beginning-of-life
 

conditions. The power plant operates at 577 Mt with an efficiency of
 

39.2% and with 102.2 kg of U2 3 3 in the core and heat exchanger.
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Table 4.2 	Actinide Burnup in Uranium Hexafluoride Actinide Transmutation Reactor 1100 Days of
 
Irradiation, 365 Days of Cooling, 730 Days of Reprocessing (100% Removal of U and Pu,
 
F. P. and Daughters, and Fuel Fabrication, 14 PWRs Serviced (0.800 Metric Tonne of
 
Actinides Charged per Cycle) THERM = 0.54227, RES = 0.375, FAST = 1.50, I(0-100 days) = 

1.6 x 1013. 

Batch __ Cycle No. 
No. 1 2 3 4 5 6 7 8 9 10 i 12 13 14 15 

1. 0.800 0.426 0.233 0.128 0.073 0.045 0.030 0.022 0.017 0.015 0.013 0.012 0.011 0.011 0.010 

2 0.800 0.426 0.233 0.128 0.073 0.045 0.030 0.022 0.017 0.015 0.013 0.012 0.011 0.011 

3 0.800 0.426 0.233 0.128 0.073 0.045 0.030 0.022 0.017 0.015 0.013 0.012 0.011 

4 0.800 0.426 0.233 0.128 0.073 0.045 0.030 0.022 0.017 0.015 0.013 0.012 

5 0.800 0.426 0.233 0.128 0.073 0.045 0.030 0.022 0.017 0.015 0.013 

Ln 6 0.800 0,426 0.233 0.128 0.073 0.045 0.030 0.022 0.017 0.015 

7 0.800 0.426 0.233 0.128 0.073 0.045 0.030 0.022 0.017 

8 0.8001 0.426 0.233 0.128 0.073 0.045 0.030 0.022 

0.800 0.426 0.233 0.128 0.073 0.045 0.030 

10 0.800 0.428 0.233 U.128 0.073 0.045 P 

11 0.800 0.426 0.233 0.128 0.073 A 

12 0.800 0.426 0.233 0.128 

13 0,800 0.426 0.233 

14 0.800 0.426 
tt~h 
/t 

15 0.8o0 

TOTAL 0.8 1.23 1.46 1.59 1.66 1.69 1.71 1.73 1.74 1.76 1.71 1.78 1.79 1.80 1.81 C 



Table 4.3 	 Comparison of Low Flux UF6ATR and High Flux UF6ATR
 
for the First Cycle.
 

Avg. flux 5.60 x 1013 _ 1.60 x 1013 1.25 x 1014
 

Irradiation time 1100 days 165 days
 

Burnup 59,900 MWD/MTA 47,800 MWD/MTA
 

% Actinides fissioned 6.0% 5.2%
 

% Actinides removed 32.3% 27.9%
 
by reprocessing
 

REPRODUCIBILITy OF TER 
ORIGINAL PAGE IS P00W 
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Table 4.4 UF6ATR Power Plant Design Data Summary
 
(Beginning-of-Life)
 

Number of Loops = 1 

Power Plant Efficiency = 39.2% 

Uranium Mass:
 

Core = 52.5 kg
 

Primary Heat Exchanger = 49.7 kg
 

Total = 102.2 kg (Excluding U233 in piping and
 
reprocessing system)
 

Electric Power Output = 226 MWe 

UF6 - He Loop Parameters:
 

Primary Heat Exchanger:
 

Number of Tubes = 61496 

Inner Tube Diameter = 7.74 x 10- 3 m 

Outer Tube Diameter = 9.525 x 10- 3 m 

Pitch to Diameter Ratio = 1.3 

Length of Tubes = 3.81 m
 

Mass Flow Rate = 1015 kg/sec
 

Compressor Power = 4.73 M'
 

NaF - NaBF4 Loop Parameters: 

Boiler: 

Number of Tubes = 3535 

-Inner Tube Diameter = 1.4148 x 10 2 m 

Outer Tube Diameter = 1.5875 x 10- 2 m 

Pitch to Diameter Ratio = 1.6
 

Length of Tubes = 9.19 M
 

Mass Flow Rate = 6308 kg/sec
 

Pump Power = 0.66 MW 

He Coolant Loop Parameters 

Superheater: 

Number of Tubes = 994 

-Inner Tube Diameter = 1.4148 x 10 2 m 

Outer Tube Diameter = 1.5875 x 10-2 m 

Pitch to Diameter Ratio = 1.3 

Length of Tubes = 9.95 m 

Mass Flow Rate = 54 kg/sec
 

Compressor Power = 2.42 MW
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Xable 4.4 UF6ATR Power Plant Design Data Summary
 
(continued)
 

Steam Cycle Parameters
 

Condenser Pressure = 1 psia
 

Boiler Pressure = 1600 psia
 

Feedwater Heater Pressures:
 

No. 1 = 7 psia
 

No. 2 = 41 psia
 

No. 3 = 141 psia
 

No. 4 = 371 psia
 

No. 5 = 820 psia
 

Maximum Steam Temperature = 6700K
 

Steam Cycle Efficiency = 40.4% 
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5. CONCLUSIONS AND RECOMMENDATIONS
 

This report shows that gas core reactors can be very versatile in
 

terms of power, temperature, and application. Four types of systems
 

were studied: plasma core breeder, plasma core actinide transmuter,
 

UF6 breeder, and UF6 actinide transmuter.
 

In addition to breeding and transmuting actinides, the plasma core
 

reactor can serve as a high temperature source for MHD power conversion.
 

For a reactor exit temperature of 40000K, a power plant employing a
 

ternary cycle consisting of a MHD generator, gas turbine, and steam cycle
 

with a high temperature regenerator may have an efficiency as high as
 

70%. However, great advances in materials technology are necessary for
 

the development of this system. If the reactor exit temperature is
 

decreased to 30000 K, the power plant efficiency is decreased to 63%,
 

but materials requirements would be considerably lessened. For exit
 

temperatures considerably below 3000'K, advanced solid core reactors
 

such as high temperature gas cooled reactors and liquid metal fast
 

breeder reactors utilizing plasma or liquid metal MHD may become competi­

tive with the gas core reactor-MHD system.
 

The on-going UF6 reactor experiments at Los Alamos and the DOE
 

coal-fired MEilD program will provide valuable information on the feasibility
 

of a plasma core reactor-MHD system. However, research and development
 

of this system is a long term proposition so that studies are needed now
 

to define the problems and to formulate a modest research program.
 

On the other hand, the UF6 reactor would require only a modest
 

extension of present day technology for its development. In particular,
 

the UF6 breeder reactor is an attractive near term application. The
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on-line reprocessing systems for the core and blanket are major features
 

of this system since they improve the fuel economy. Although no calcu­

lations were made on the reprocessing systems, they are qualitatively
 

discussed in Appendix B. It is important to note that much of the molten
 

salt technology is available from the molten salt breeder program, helium
 

purification techniques are available from the high temperature gas-cooled
 

reactor program, and UF6 handling techniques are available from the
 

gaseous diffusion program. It appears that no radically new technology
 

is required for the development of this reactor.
 

Both this report and that of Ref. 1 show attractive features of the
 

UF6 breeder reactor. A comparison of the two systems is given in Table
 

5.1. The Los Alamos core design is unique in that seven cylindrical cells
 

are arranged in a scalloped fashion while the Georgia Tech design uses a
 

beryllium matrix. The former design allows a wider design range based
 

on breeding ratio.
 

The Los Alamos reactor is designed for 200 MWt while the Georgia
 

Tech reactor is designed for 1074 MWt. These powers are low but acceptable
 

for use in developing countries where the power grid system is not well
 

developed. Higher powers may be obtained by increasing the reactor
 

pressure, but this introduces materials problems.
 

It is seen that the uranium inventories are small (less than 100 Kg
 

for the Los Alamos system). Only the uranium inventory in the core and
 

heat exchangers were estimated in the Georgia Tech design; but, if the
 

uranium in the piping, circulators, and reprocessing system were added,
 

the inventory would still be small compared to present day reactor power
 

plants.
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Table 5.1 	Comparison of Los Alamos(l)
 

and Georgia Tech UF6 Breeder
 
Power Plants
 

Los Alamos(l) 


Core Configuration Seven Cylindrical 


Cells Scallop Design
 

Reactor Power, MWt 200 


UF6 Partial Pressure, atm. 0.6 


He Partial Pressure, atm. 99 


Reactor Exit Temperature, 'K 1225 


Type of Cycle Brayton - Steam 


Power Plant Efficiency, % 36.6 


U2 33 
in Core, kg 45.0 


U2 33 
in Heat Exchangers, kg 	 4.0 


Total U2 3 3 in Core and Heat 49.0 

Exchangers, kg
 

Total U2 3 3 in Entire System, 91.0
 

kg
 

Georgia Tech
 

Beryllium Matrix
 

1074
 

0.69
 

99
 

867
 

Superheated Steam
 

39.3
 

32.8
 

72.0
 

104.8
 

62
 



The efficiency was slightly higher for the Georgia Tech UF6 breeder
 

power plant due to the superheated steam cycle which has an efficiency
 

of 40.4% compared to the 34% steam cycle employed in the Los Alamos
 

design.
 

The main advantage of the Georgia Tech reactor versus the Los Alamos
 

reactor is that the reactor exit temperature is much less for the Georgia
 

Tech reactor. This is important because more UF6 dissociates at higher
 

temperatures creating fluorine which may cause corrosion problems.
 

Operating at lower temperatures will also alleviate materials problems
 

and increase the lifetime of the power plant. In addition, the Los
 

Alamos design used a Brayton cycle which needs additional development
 

workwhereas the superheated steam cycle is already used in most power
 

plants.
 

Therefore, UF6 breeder reactor power plants can be developed using
 

present day or near term technology with-power plant efficiencies
 

comparable or slightly greater than present day nuclear power plants and
 

with a lower uranium inventory.
 

For the purpose of transmutation of actinides, gas core reactors 

can be designed to act as special burner reactors; servicing large numbers 

of LWRs and capable of maintaining a high flux. The plasma core actinide 

transmuter was designed to service 27 LWRs. Due to the many constraints 

imposed on the high temperature uranium plasma core, a low flux of 

7 x 1012 n/cm2-sec was used for the actinide region. As a result of the 

low flux, long irradiation times (- 13 recycles) are required to attain 

equilibrium. These irradiation times were comparable to those obtained 

by Claiborne (2 ) and Beaman. (3 ) The uranium hexafluoride gas core 
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reactor can sustain higher fluxes (1014 n/cm 2-sec) in the actinide
 

region. However, since the actinide region consisted of conventional
 

solid actinide fuel rods, the buildup of fissile isotopes in this high
 

flux actinide region posed severe heat transfer problems. As a result,
 

the actinide region neutron flux must be decreased with increasing time
 

to maintain a constant volumetric heat generation rate.
 

The heat transfer problems in the actinide region arise principally
 

from the buildup of fissile plutonium isotopes. If the actinides can be
 

used in a molten salt blanket, the converted plutonium isotopes can be
 

continually removed and the heat transfer problems greatly alleviated.
 

One consequence of loading a large quantity of actinide nuclides
 

into a transmuter is that the core and the actinide region become
 

closely coupled. Hence, the criticality of the reactor is greatly
 

affected by the composition change in the actinides. A detailed neutronic
 

study of such a reactor will require a-detailed set of cross sections for
 

the actinides.
 

Again, the U2 3 3 inventory in the core and heat exchanger is seen to
 

be low (102 kg for the case under study). The power plant efficiency at
 

the beginning of life was 39.2%, assuming that the heat transfer problems
 

mentioned previously can be solved in such a way that the model in Section
 

4.C is feasible.
 

The UF6 reactor need not be designed for breeding and actinide
 

transmutation applications. The relaxation of some of the constraints
 

enables the reactor to operate at high powers under different conditions.
 

Examples of UF6 power reactors is given in Table 5.2 which summarizes
 

work done by the University of Florida. (4) The main criticism of these
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Table 5.2 	University of Florida's
 

UF6 Reactor Designs
(4 )
 

Characteristics 	 HGCRI HGCR2
 

Total Power 3000 MW(th) 1000 MW(th)
 

Moderator/coolant Material H20 D20
 

Core Barrel Material Be or BeO Be or BeG
 

Moderator/coolant Channel Tube Material Nb-alloy Be or BeO
 

Reflector Material 	 H20 D20
 

Core Diameter 340 cm 340 cm
 

Core Height 360 cm 360 cm
 

3 3
Core Volume 32.69 m 32.69 m
 

Tube Thickness 0.1 cm 0.5 cm
 

Core Barrel Thickness 20 cm 20 cm
 

Reflector Thickness 40 cm 80 cm
 

Unit Cell Radius 3.2 em 7.5 cm
 

Number of Coolant Channels 	 2800 514
 

Fuel Volume Fraction in the Core 0.88 0.64
 

Average UP6 Pressure 20 atm 20 arm
 

U2 35 Enrichment (Average) 12 wt% 3 wt%
 

He Pressure 21 atm 21 atm
 

Coolant Pressure 1100 psi 1100 psi
 

Power Density 92 kW/litre 31 kW/litre
 

Uranium Mass in the Core 1665 kg 1665 kg
 

U2 35 Mass in the Core 200 kg 50 kg
 

Average Gas Temperature -1000 K -1000 K
 

Average Coolant Temperature -540 K -540 K
 

Estimated HGCR Overall Efficiency 	 -40% -40%
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designs is that the UF 6 to He partial pressure ratio is too high so that
 

excessive amounts of uranium will be present in the heat exchangers.
 

In conclusion, it can be seen that the gas core reactor can operate
 

under a wide range of conditions. No optimization was performed in this
 

study, but it was shown that the UF6 reactor can be used as a breeder
 

with low uranium inventory and high power plant efficiency. The superior
 

actinide transmutation features of the UF6 reactor was also demonstrated,
 

but further work is needed to solve the heat transfer problems. Plasma
 

core reactors will require more extensive research, but the high power
 

plant efficiencies that may be obtained when the reactor is coupled to
 

a MD generator is a strong motivating factor for further investigation
 

of this system.
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Appendix A. Material Properties
 

UF6 - helium gas mixture properties were calculated in the manner
 

suggested by Ref. 1. The UF6 thermophysical properties listed in Table
 

A.l were obtained from Ref. 2 which used data from Ref. 3. Helium
 

properties shown in Table A.2 were obtained from Refs. 4 and 5. The
 

properties of pure UF6 and helium were used to obtain mixture properties
 

following the procedures given in Ref. 6.
 

The mixture density is calculated from
 

Pmix = PUF6 + PHe (A.1)
 

while the specific heat at constant pressure of the mixture is obtained
 

from
 

cUF 6 CHe
 

mi x p (A.2)
p p UF6i= 
He
 

cmix 

P Pmix
 

The specific heat at constant volume for UF6 and for helium are
 

UF6 = CUF6 (A.3)cUF _p 
v YUF6 

CHe 
CHe = p (A.4) 
v YHe 

which are used to determine the ratio of specific heats for the mixture,
 

CU F
 + CHe
 
p UF6 p He
 

6 


+ cHe (A.5)
Ymix cUF6 

v UF6 v PHe
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Table A.l
 

UF6 Thermophysical 
Properties (2)
 

Density, 

p = 4.2675 x 10 
- 2 T_2_T ' 

kgm 3 

Specific Heat, 

C = 391.22 + 0.09574T 
3.8685x106 

3.868',kg106 
J 

Thermal Conductivity, 

k = [0.0257T - 0.9093] x 10­ , mW 

Viscosity, 

p = [0.469 + 0.0044T] x 10­ 5 , pascal- sec 

Ratio of Specific Heats, 

y = 1.06 

Pressure is in pascals 

Temperatures are in degrees Kelvin 
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Table A.2
 

Helium Thermophysical Properties
 

Density,
 

- 4 
 P
p = 4.8146 x 10 T' 

Specific Heat,
 

C 5192.6 k
p kg OK
 

Thermal Conductivity,
 
- 5 w

k = [6457 + 28.285T]x 10 1 m 

200 OK S T S 1000 OK
 

Viscosity, 

= 8.358 x 10-6 + 3.659 x 10- 8 T, pascals-sec 

200 0K < T < 1000 OK 

Ratio of Specific Heat,
 

y = 1.6667
 

Pressure is in pascals
 
Temperatures are in degrees Kelvin
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Given the mixture mass flow rate, fmmix, and the ratio of UF6 partial
 

pressure to total pressure, r, the mass flow rates of UF6 and helium
 

are found from
 

m. 
mix (A.6) 

-F6 + 
1+ 

He 1-r 

1UF 6 
r 

He mix - UF6 (A.7)"
 

where e and NF6 are the molecular weights of helium and UF 6 , respec­

tively.
 

The mole flow rates are defined by
 

kuF6 = - (A.8) 

*He = e (A.9) 
He Mie 

The mixture viscosity and conductivity are then given by
 

mi . i (A.10) 
mix ±~* .j i 

k. k.
 
(A.11)


mix ± tj ]i 

where the summation is taken over the helium and UF6 species and kij is
 

given by
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[1 
 (A.12)
 

mix
Values of C and k as functions of helium mole
 

p mix' mix
 

fraction are given in Tables A.3 to A.5 for various temperatures. These
 

properties are also shown graphically in Figs. A.l to A.3.
 

The molten salt used in the breeding blanket is composed of LiF
 

(71.7 mole %), BeF 2 (16 mole %), and ThF4 (12.3%). Its properties
 

listed in Table A.6 were obtained from Ref. 7. 

The properties of NaF (8 mole %)-Na BF 4 (92 mole %) salt is given 

in Table A.7 and were obtained from Ref, 8. 

Hastelloy-N is a nickel alloy which is compatible with fluorides.
 

Modified Hastelloy-N is very similar in composition and other related
 

physical properties to standard Hastelloy-N, but the addition of 2%
 

titanium increases the ability of Hastelloy-N to resist helium embrittle­

ment due to neutron irradiation. A thorough discussion of this material
 

is given in Ref. 9 as only the physical properties are summarized in
 

Table A.8 which was obtained from Ref. 10.
 

Further discussion of the corrosion problem is made in Ref. 11. As
 

pointed out in that report, nickel or one of its alloys, is the
 

best candidate for containing UF 6 . However, nickel has a high capture
 

cross section which prevents it from being used in large amounts in the
 

reactor core. But it may be possible to use small amounts of nickel in
 

the core by utilizing it as a clad. For example, nickel may be electro­

plated onto a beryllium substrate. Further work is needed to determine
 

the optimum material and geometry of structural material in the core.
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Table A.3. Specific Heats at Constant Pressure
 
for UF6-Helium Mixtures For Various
 
Mole Fractions of He
 

He
 
x 

xTOT T = 600 0K 


0 437.92 


0.1 443.87 


0.2 451.29 


0.3 460.80 


0.4 473.41 


0.5 490.96 


0.6 517.04 


0.7 559.87 


0.8 643.22 


0.9 876.20 


0.91 924.77 


0.92 983.96 


0.93 1057.7 


0.94 1152.1 


0.95 1277.2 


0.96 1451.0 


0.97 1708.8 


0.98 2130.6 


0.99 2946.6 


0.995 3727.4 


0.998 4475.4 


1.0 5192.6 


Cp (kgKg 

T = 700K T = 8000 K 

450.35 461.76 

456.29 467.68 

463.69 475.06 

473.17 484.52 

485.75 497.07 

503.25 514.54 

529.27 540.49 

571.99 583.10 

655.12 666.03 

887.49 897.84 

935.93 946.16 

994.97 1005.1 

1068.5 1078.4 

1162.7 1172.3 

1287.5 1296.8 

1460.8 1469.8 

1717.9 1726.2 

2138.7 2146.0 

2952.5 2957.8 

3731.3 3734.8 

4477.3 4479.0 

5192.6 5192.6 
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Table A.4. Viscosities for UF 6-Helium
 

Mixtures at Various Mole
 

Fractions of He
 

p (pascal-sec)
 

He
 
x 

xTOT 	 T = 600 0K T = 700 0K T = 8000K
 

5 	 5 x 10-. 5 
0 3.1090 x 10- 3.5490 x 10 - 3.9890 

5- 5 	 5 
0.1 	 3.1444 x 10 3.5889 x 10 - 4.0335 x10 ­

5- 5
0.2 	 3.1860x 10 3.6359x 10 - 5 4.0857x 10 ­

- 5 5 4.1478x 100.3 	 3.2356x 10 3.6917x 10 - - 5 

- 5 5 
0.4 	 3.2955 x 10- 5 3.7590 x 10 4.2224 x 10 ­

5 	 - 5 - 5 
0.5 	 3.3689 x 10- 3.8412 x 10 4.3135 x 10

5 
0.6 	 3.4601x10- 5 3.9430x 10 - 5 4.4258x 10 ­

- 5 5 4.5636 x10 - 5 
0.7 	 3.5735 x 10 4.0687 x 10 ­

- 5 5 10- 5 
0.8 	 3.7071x 10 4.2143 x 10- 4.7213 x 


- 5 	 5 - 5 
0.9 	 3.8007 x 10 4.3071x 10 - 4.8132 x 10 

- 5 - 5 5 
0.91 	 3.7971 x 10 4.3008 x 10 4.8043 x10 ­

5 
0.92 	 3.7877 x10- 5 4.2878x 10 - 5 4.7876x 10 ­

- 5- 5
- 5 
 4.7608 x10
0.93 	 3.7708x 10 4.2660 x10
 

- 5 	 5 
0.94 	 3.7439 x 10 4.2325 x 10 - 4.7207 x 10 - 5 

5 - 5 
0.95 	 3.7036 x 10 - 5 4.1834 x 10 - 4.6630 x 10

- 5 - 5 4.5814 x 10 - 5 
0.96 	 3.6452 x 10 4.1134 x 10 

0.97 	 3.5619 x 10- 5 4.0147 x 10- 5 4.4673 x 10- 5 

5 	 - 5 
0.98 	 3.4435 x10- 5 3.8757x 10 - 4.3078x 10

- 5 - 5
 
3.2748 x 10- 5 3.6791x 10 4.0833 x 10
0.99 


- 5 - 5 	 5 
1.00 	 3.0312 x 10 3.3971x 10 3.7630 x 10­
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Table A.5. 	 Thermal Conductivities For
 
UF6-Helium Mixtures at
 
Various Mole Fractions of He
 

kf 
m O
 

He
 
x 

xTOT 	 T = 600 0K T = 700 0K T = 8000K 

2 	 - 2 1.9651 x 10 - 2 

0 	 1.4511 x 10 - 1.7081 x 10

2 	 - 2 2.5239 x 10-
2
 

2.2076 x 10
0.1 	 1.8913 x 10­

2 	 - 2 3.1918 x 10 - 2 

0.2 	 2.4178 x 10 - 2.8049 x 10
-2 -2 

4.0038 x 10 
0.3 	 3.5316 x 10- 2 

3.0591 x 10 

2 	 2 5.0125 x 10 - 2 

0.4 	 3.8569 x 10 - 4.4349 x 10­

2- 2 
0.5 	 4.8765 x 10 - 2 5.5880 x 10 6.2989 x 10­

2 	 7.9954 x 10-2 
0.6 	 6.2251 x10- 7.1107 x 10 - 2 

- 2 	 12 	 1.0335 x 10 ­
0.7 	 8.0919 x 10 - 9.2139 x 10 

-

-	 -1 1.3763x 10 11.2304x 101.0843 x 10 10.8 


- 1- I 1.9245 x10
0.9 	 1.5286x 10-1 1.7267x 10 

-
10-1 	 1.7931 x10-1 1.9977x 10 1

1.5883x0.91 

1-1
-1 1.8637 x 10 2.0753 x 10 ­

1.6518 x 100.92 

-

-1 - 1 	 1 
0.93 	 x 10 1.9388 x 10 2.1579 x 101.7195 

--
-1 2.0188 x 10 .2.2958 x 10 1 
0.94 	 1.7917 x 10 

-1
-	 -1 2.3394 x 101 2.1042 x 101.8688 x 10 
-

0.95 


- I 	 1 2.4393 x 10 12.1954 x 10­
0.96 	 1.9512 x 10

-
2.2928 x10-1  2.5458x 10 1 

0.97 	 2.0395 x10-

- 1 	 10-1
 -1 	 2.6594 x2.3968 x 102.1340 x 100.98 


-	 I 2.7804x 10 - I 
2.2351x10 2.5078x 10­

0.99 


2.9085x 10-1
 
1.00 	 2.3428 x10-1 2.6257x10- 1 
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Fig. A.1. 	 Specific Heats at Constant Pressure
 
for UF6-Heliunm Mixtures at Various
 
Mole Fractions of He
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Fig. A.2. Viscoscities of UF6-Helium Mixtures
 
at Various Mole Fractions of He
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Fig. A.3. 	Thermal Conductivities for UF6-Helium
 
Mixtures at Various Mole Fractions of
 
He
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Table A.6. Thermophysical Properties of
 

LiT (71.7 mole %),
 
BeF2 (16 mole %), and (7)
 
ThF4 (12.3 mole %) Molten Salt
 

Molecular Weight = 64
 

Melting Point = 772 0K
 

J
 
Specific Heat at Constant Pressure = 1356.6 kgK 

Density = 3935.4 - 0.6682T m , T is in 'K 

Viscosity 1.0901 x 10- 4 exp (4090/T) pasoals-sec , T is in °K 

Thermal Conductivity = 1.19 R at 978 0K 

1.23 - at 908 0K
 

1.19 W- at 839 OK
 

Vapor Pressure at 894 'K is less than 13.33 pascals (1 mm Hg)
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Table A.7. 	Thermophysical Properties of
 

NaF (8 mole %), NaBF4 (92 mole %)
 
(8 )
 

Salt
 

Melting Point = 658 'K 

Physical Properties at 727 'K 

Density = 1938.4 kg 

J 

Specific Heat at Constant Pressure = 1507.3 kg K 

Viscosity = 0.0025 pascals-sec
 

= 0.5 -

Thermal Conductivity 


m IF 

Vapor Pressure at 880 'K = 2.667 x 103 pascals (200 mm Hg)
 

Highest permissible operating temperature.
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Table A.8. Properties of Hastelloy N
 

Yield Strength 


Tensile Strength 


Elongation 


Brinell Hardness 


Density 


Specific Gravity 


Melting Point 


Specific Heat 


Coefficient of Thermal Expansion 


Thermal Conductivity 


Electrical Resistivity 


Young's Modulus of Elasticity 


3.103 x 108 pascals
 

7.929 x 108 pascals
 

51%
 

96
 

8489.3 -4 

8.79
 

1672 0K
 

418.7k­kg 0K
 

3.44 m/m/K
 

10.25 m WO
 

- 6
1.388 x 10 ohm-m
 

2.186 x 1011 pascals
 

Nominal Composition 

Chromium 7% Molybdenum 16.5% 

Iron 8% Nickel 65.5% 

Titanium 3% 

SI
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Appendix B Reprocessing Systems
 

No quantitative analysis was made of the reprocessing systems for
 

the UF6 breeder and actinide transmutation reactors. However, since the
 

reprocessing systems are important to the operation of the power plants,
 

a qualitative discussion is included in this study which is based on
 

proposed systems given in Refs. 1-3. Although these studies were prelimi­

nary in nature, they did not encounter major obstacles.
 

There are three major reprocessing systems to be considered. The
 

first is the cleanup of fission products in the UF6-helium mixture. For
 

the breeder power plant, the bred material must be separated from the
 

breeding salt. Finally, actinides must be separated from other waste
 

products to be used in the actinide transmutation reactor. These systems
 

will be described in the following sections.
 

B.1 	Fission Product Cleanup -

Fission products must be removed from the UF 6-helium mixture contin­

uously to avoid buildup of reactor poisons and condensation of volatiles. 

Fortunately, the technology for UF6 separation and purification is 

available from the Molten Salt Breeder Reactor Program at Oak Ridge 

National Laboratory and helium purification technology is available from 

the High Temperature Gas Cooled Reactor developed by General Atomics. 

It is expected that some UF6 will dissociate in the core and that 

the fluorine formed will combine with metallic fission products to form 

fluorides. According to Ref. 1, the fluorides and gases in Table B.1 will
 

be formed. The fluorides are divided into volatile, mobile, intermediate
 

and refractory fluorides according to their boiling points. The mole
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I 

Table B.l
 

Gaseous and Fluoride Fission Products (1)
 

Gases Volatile Fluorides Mobile Fluorides Intermediate Fluorides 


Kr Se F6 (236°K) Sb F5 (4230K) cs F (1524 K) 


Xe Mo F6 (308°K) Nb F5 (509
0K) Rb F (1663°K) 


Te F6 (309 K) Ru F5 (523°K) 


Br Zr F5 (873 
0K) 


Su F4 (978°K) 


numbers in parantheses are the boiling points of the various fluorides
 

Refractory Fluorides
 

RaF 2 (2410'K)
 

Y F3 (2500°K)
 

Ce F3 (2573
0K)
 

Nd F3 (2573
0K)
 

Pr F4 (2600°K)
 

La F3 (2600
0K)
 

Sr F2 (2762 K)
 



fractions of the fission product gases, volatile fluorides, and mobile
 

fluorides are on the order of 10- 5 less than the mole fraction of helium
 

while the mole fractions of the intermediate and refractory fluorides
 

- 3
are 10 less than the other fluorides.
 

Due to their low boiling points, the volatile and some of the mobile
 

fluorides will remain in the UF6-helium circulating gas loop until they
 

are removed for reprocessing. The other fluorides will be deposited in
 

the heat exchangers and piping. The problem is further complicated by
 

radioactive decay of various species, resulting in a change of their
 

chemical nature and the relocation of their deposition sites.
 

Reference 1 suggests that replaceable getter pads made of nickel
 

wire be placed in the reactor outlet piping to capture the intermediate
 

and refractory fluorides.
 

Lowry (1 ) of the Los Alamos Scientific Laboratory proposed the
 

fission product cleanup system shown in Fig. B.l. A small amount of UF6­

helium gas mixture is bled from the circulating loop and is reduced in
 

pressure to 1.5 atmospheres. The mixture then passes into a high
 

temperature bed of NaF pellets at 500'K where most of the volatile
 

fluorides are absorbed and is cooled to 300'K before entering a low
 

temperature bed of NaF pellets. The low temperature bed absorbs the UF6
 

and remaining metal fluorides while the helium containing xenon, krypton,
 

bromine, iodine and other gases pass through the filter to the helium
 

purification system.
 

Two low temperature beds are utilized. When one bed becomes loaded
 

with UF6, the flow into this bed is valved out and the fresh bed is
 

placed in service. The bed loaded with UF6 is then heated to 700'K which drives
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Fig. B.l Fission Product Removal System (I ) 



off UF6 as a gas along with small amounts of TeF 6 . A helium purge gas
 

is used to help remove the UF6 . Finally, the UF6 passes through a bed
 

of MgF 2 to remove the TeF 6 before being filtered, pressurized, and
 

cooled to produce a purified liquid which is recycled to the reactor.
 

The NaF and MgF 2 beds containing fission products are either stored or
 

sent to a waste treatment plant.
 

Helium at 3000K flows into one of two parallel systems consisting
 

of high and low temperature charcoal absorbers. The high temperature
 

absorber contains activated charcoal impregnated with potassium. The
 

charcoal removes the condensable metallic fission products while the
 

potassium removes iodine by chemisorption.
 

The helium is then cooled to 900K in a helium regenerator and passes
 

through the low temperature absorber which removes krypton, xenon, nitro­

gen, and some hydrogen lnd tritium. Helium is cooled in the absorber to
 

80'K by liquid nitrogen. The purified helium then enters the cold side
 

of the regenerator where it is heated to 290 0K and is filtered to remove
 

dust before being compressed and sent to the hydrogen removal section.
 

Helium leaving the compressor enters another regenerator before
 

passing through one of two parallel hydrogen getters consisting of
 

titanium sponges to remove hydrogen and tritium. Helium enters the getters
 

at 630'K and is heated by the electrically heated sponges to 650 0K. The
 

helium then reenters the regenerator and is cooled to 350'K, filtered
 

and recompressed.
 

The uranium inventory in the reprocessing system is not a function
 

of reactor power but of regeneration frequency and volume of the NaF bed.
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Distillation (1 ) is an alternative method for fission product removal
 

especially if a large part of the primary stream must be cleaned up. The
 

bled stream enters a distillation column where most of the fluorides are
 

removed as a concentrate at the bottom of the column. An aqueous wash
 

removds the fluorides from the concentrate and residual UF6 is returned
 

to the column for further purification. The UF6 and volatile fluorides
 

are condensed and fed to a second column which produces pure UF6 at the
 

bottom of the column.
 

Another method for UF6 purification is a combination of a cold trap
 

process and fluoride volatility process proposed by Rust and Clement.(2)
 

Clearly, there are several possible methods for UF6 purification.
 

The method that will be selected should be based on consideration of
 

economics, minimum uranium inventory, effectiveness in keeping the system
 

as clean as possible, and compatibility with power plant operation.
 

B.2 Breeding Salt Reprocessing System
 

The description of the molten salt breeding blanket reprocessing
 

system is summarized from Ref. 3. Additional information was taken from
 

Ref. 1.
 

Since it is desirable to have the Gas Core Breeder Reactor (GCBR)
 

be a self-contained unit, generating its own new fuel, an on-line repro­

cessing system for the molten salt blanket is a necessity. This section
 

describes protactinium removal and salt purification processes, and cal­

culational procedures for expected flow rates and equilibrium concentra­

tions of various isotopes present in the system.
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The salt used in the blanket is an eutectic mixture composed of LiF,
 

BeF 2, and ThF 4 in the ratios of 72:16:12 mole percent. This particular
 

combination was developed at the Oak Ridge National Laboratory in con­

junction with the Molten Salt Breeder Reactor program. -

When thorium atoms contained in the salt are irradiated with neutrons,
 

some of the atoms absorb a neutron and transmute to protactinium as
 

shown in Fig. B.2. The protactinium eventually decays to uranium
 

which can then be fed to the core as new fuel. However, as seen
 

in Figure B.2, Pa2 3 3 has a substantial cross section (22 barns) and since
 

its half life is 27 days, Pa acts as a poison, siphoning off neutrons
 

which could otherwise irradiate Th atoms. In addition, the daughter of
 

Pa233 (U233) would be lost. For these reasons, it is desirable to remove
 

Pa from the molten salt loop and allow it to decay outside the core.
 

However, since it is impossible to have a zero protactinium concen­

tration in the molten salt blanket, there will be some uranium present
 

in the core. Some 6f these atoms will fission and, consequently, there
 

will be some uranium fission products in the molten salt loop. Some of
 

these fission products have large cross sections as shown in Table B.2.
 

Note that Xe and other gaseous fission product poisons are not listed be­

cause it is assumed that the blanket can be vented and these gaseous
 

products easily removed. As will be shown later, the necessity of keep­

ing the concentration of fission products at a low level determines the
 

amount of time which the salt can stay in the irradiated blanket region.
 

In order to achieve the above neutronics goals, a fluorination-reduc­

tive extraction system was developed at Oak Ridge National Lab. A des­

cription 6f this process is as follows:
(5 )
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- 22.1 min r 24.1d 

Fig. B.2 The chain of isotopes created by neutron irradiation
 
of Th232. 
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Table B.2
 

Rare Earth Fission Product Absorption Cross Section
 

Nd-143 330 barns 

La-139 8.9 barns 

Eu-153 320 barns 
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The fluorination-reductive extraction system for isolating
 

protactinium is shown in its simplest form in Figure B.3.
 

The salt stream from the reactor first passes through a
 

fluorinator, where most of the uranium is removed by fluor­

ination. Approximately 90% of the salt leaving the fluor­

inator is fed to an extraction column, where it is counter­

currently contacted with a bismuth stream containing lithium
 

and thorium. The uranium is preferentially removed from
 

the salt in the lower extractor, and the protactinium is re­

moved by the upper contactor. A tank through which the bismuth
 

flows is provided for retaining most of the protactinium in
 

the system.
 

The bismuth stream leaving the lower contactor contains
 

some protactinium as well as the uranium that was not removed
 

in the fluorinator and the uranium that was produced by the
 

decay of protactinium. This stream is contacted with a H2-HF
 

mixture in the presence of approximately 10% of the salt
 

leaving the flourinator in order to transfer the uranium
 

and the protactinium to the salt. The salt stream, contain­

ing UF4 and PaF4 , is then returned to a point upstream of
 

the fluorinator, where most of the uranium is removed. The
 

protactinium passes through the fluorinator and is subse­

quently extracted into the bismuth. Reductant (Li and Th)
 

is added to the Bi stream leaving the oxidizer, and the re­

sulting stream is returned to the upper contractor. The
 

salt stream leaving the upper contactor is essentially free
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Fig. B.3 UF6 Breeder Reactor Salt Reprocessing System
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of uranium and protactinium and would be processed for
 

removal of any fission product gases and additional thorium
 

added to compensate for that which had been consumed.
 

Figure B.4 describes the UF6 to U metal conversion process. Unfor­

tunately this is a batch process instead of a continuous flow system
 

as is present in the remainder of the reprocessing set-up. However,
 

there should be no problem providing temporary storage tanks for UF6.
 

The UF 6 initially enters a reaction chamber where it is mixed with
 

hydrogen. A reaction is triggered and UF4 powder and HF gas is produced.
 

The UF4 is then loaded into a steel "bomb" which has been coated with
 

fused dolomitic lime--lime is one of the few oxides that does not react
 

with.molten uranium. The "bomb" is then heated to 5650 C where an exo­

thermic reaction takes, place and uranium metal solidifies on the bottom
 

of the "bomb". The MgF2 is removed and U metal of high purity can then
 

(7 )
 
to the plasma core reactor.
be taken from the bottom of the "bomb" and sent 


Given certain constraints on the reprocessing system it is possi­

ble to calculate7 the flow rates which would exist in both the molten
 

salt and bismuth loops. It is also possible to calculate protactinium
 

concentrations throughout the reprocessing system and therefore deter­

mine uranium concentrations throughout the system. The constraints
 

which are placed on the reprocessing system are as follows:
 

1) The protactinium concentration in the molten salt blanket is
 

allowed to reach 95% of the equilibrium value obtained if the salt re­

mained in the active region of the reactor for an infinite amount of
 

time, provided that the concentration of prqtactinium does not cause
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parasitic absorption of neutrons by fission products greater than 1% of
 

the absorptions which are due to thorium captures.
 

2) The volume of the blanket and the flux in the blanket is
 

determined by breeding ratio constraints as explained elsewhere in this
 

report.
 

3) The uranium removal efficiency of the fluorinator and oxidizer
 

is 98%. (7)
 

4) The operating temperature of the system is 6400C (neces-,
 

sary because the salt is a eutectic mixture).
 

5) The Li concentration in the Bi loop is 1%. The Th con­

centration in the Bi loop is held at less than 50% of the solubil­

ity of Th in Bi. 
(8)
 

6) The Pa distribution coefficient for the contactors, defined as
 

(mole fraction of Pa in Bi at equilibrium)/(mole fraction of Pa in salt
 

at equilibrium), can be taken to be 100. (8)
 

The following physics data is required:
 

Neutron Flux
 

Volume of Blanket
 

Molar Volume of Salt
 

Molar Volume of Bi
 

Pa Absorption Cross Section
 

Th Absorption Cross Section
 

U Absorption Cross Section
 

U Fission Cross Section
 

Pa Decay Constant
 

Concentration of Th in Salt
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To satisfy assumption 1, it is necessary to examine if the Pa con­

centration in the salt from the output of the blanket will be governed
 

by the rate of fission product captures. To determine the number of
 

fission product captures the Pa and U concentrations are first calculated
 

as follows:
 

dPa+ Pa = 4 Th (B.1) 

dt a 

where 4 is the flux, Th is the thorium concentration, and A the Fa decay 

constant.
 

Solving Eq. B.1 gives
 

Oa Th, Th - Xt [0 T Th _Pa (.2) 

Pa= A a1(B20 

The equation for the uranium concentration as a function of time is
 

Su U + Pa (B.3)dt a
 

where U is the U-233 concentration.
 

Solving this equation we have
 

=UeaU t + aaTh f -aUqt 

U a 

a 
_% ah Th e-t -o - a u t 

a Th A au - (B.4) 

If a material is assumed to spend time T in the blanket, then the
 

number of fissions which occurs during this time is
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No. of fissions = a U(t)dt (B.5) 

0 

Evaluating this integral we have
 

T - eNo. of fissions =ofo 


aOT
 

e (B.6) 
_ao_ +A " -- _ 

( -caaU'X) a 

and the fission product concentration at the end of a cycle of length T
 

is given by
 

[F.P.] T c U(t) e dtj e <<y (No. of fissions) 
o (B.7)
 

where y is the probability per fission of getting a particular fission
 

product. Since the fluorinater removes 98% of the uranium in the molten
 

salt on each pass through the system, the entering concentration to the
 

blanket region can be taken as effectively zero.
 

Solving Eq. B.7 for a variety of times T, the results can be given
 

5Eu
 
as- where EEu is the absorption cross section of one of the most
 

ZTh
 

.
troublesome rare earth fission products, Eu
1 5 3 It should be stated
 

that the estimate of the Eu
1 53 concentration is high due to the approxi­

mation in Eq. B.7. If the concentration is sufficiently small, no fission
 

product removal system is necessary; otherwise, a removal system similar
 

to those discussed in Section B.1 is needed.
 

98
 



To determine the flow rates and concentrations in the system, use
 

must be made of the following mass balance equations. (9 ) Referring to
 

the hypothetical exchange column shown in Fig. B.5
 

L X) 10 


0
 

Figure B.5: Exchange Column Flows
 

then a material balance yields the following equation:
 

0x V2 V 1(B8
LxLx + (B.8) 

or
 

L (x0 - x) =V (y - Y 2) (B.9) 

where L and V are flow rates in moles/sec and x and y are concentrations
 

of the transferring material expressed in mole fractions. Now at equili­

brium
 

Yl = K x (B.10)
 

where K is a constant known as the distribution coefficient. Substitu­

ting for x in Equation B.9 and solving for y1 we have
 

xl + Lx 

yl = 2 V 0O 

+ (B.11) 

So if the two inlet concentrations and the flow rates are known, then the
 

outlet concentrations can be calculated.
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The value of the flow rates in the Bi and blanket loops must be
 

solved for iteratively.. A flow chart of the solution process is shown
 

in Fig. B.6. A value for the Bi flow rate is assumed and for given Pa
 

core concentration, neutron flux, and core volume, the flow rate in the
 

blanket, residence time in the core, and input concentration of Pa to
 

the core can be solved for iteratively.
 

Reference 8 gives the distribution coefficient of Pa as a function
 

of time of contact and relative volumes of salt and Bi. Picking a speci­

fic distribution coefficient determines the time of contact and the
 

relative volume of the two components. A new value for the Bi flow rate
 

can then be calculated by using the value of the blanket flow rate
 

calculated above. The entire iterative procedure is then repeated with
 

the new Bi flow rate.
 

Once the flow rates have been calculated, the output Pa concentra­

tion in the Bi loop from the contactor can then be found from Eq. B.l1
 

and the input concentration from Eq. B.9.
 

It should be noted at this point that if a contactor is composed of
 

several stages with K being the distribution coefficient in each stage,
 

then the procedure described above can be applied to the whole system
 

with the number of stages, N, given by the expression 
9
 

N [A Yl - 0KXo I' (B.12) 
log A
 

where A is the absorption factor and is defined by A = L/(KV).
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Set Pa2 , Flux
 

i 
Assume Pal, Pa3 , Bi flow rate
 

--Calculate Time = fn(Pa 2 , Pal, Flux)
 

Calculate Core flow rate = fn(Time)
 

---Calculate Pal ='fn(Pa 2, Core flow, Bi flow, Pa3 ) 

I (when converge) 

Calculate Bi flow rate = fn(all variables) 

I (when converge) 
Calculate Pa4 = fn(Pal) 

Calculate Pa3 = fn(Pa 4) 

I (when converge) 
Stop 

Pal = Core input Pa concentration
 

Pa2 = Core output Pa concentration
 

Pa3 = Bi loop contactor input Pa concentration
 

Pa4 = Bi loop contactor output Pa concentration
 

Fig. B.6 	Flowchart for Calculation of Reprocessing
 
System Flow Rates and Pa Concentration
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Calculations performed for the Plasma Core Breeder Reactor salt
 

reprocessing system (3 ) indicate the proposed system is feasible. The
 

technology is presently available and the chemical processes involved in
 

uranium separation have been proven by experiments in connection with
 

the Molten Salt Breeder program.
 

Reference 1 points out that extraction of U2 33 from the salt
 

requires a concentration of 100 parts per million or more. (10) At start­

up, no U2 3 3 
exists in the blanket so that the reactor must run from an
 

auxiliary bottle until enough has formed. This would add to the uranium
 

inventory.
 

B.3 Actinide Reprocessing System
 

Because of the hazardous radionuclides present in high-level wastes
 

from present day reactors, schemes are needed which provide waste management
 

programs of one million years or longer.
 

One alternative to this would be to remove the long-lived actinides
 

which require long term surveillance. If this could be achieved, the re­

maining fission products and wastes would require a waste management program
 

on the order of 1000 years. The actinides would then be transmuted in a
 

fission or other type reactor to reduce the long half-lives to short ones,
 

and thus reduce the radioactive hazard. The main problem to be overcome is
 

separation of actinides from the rest of the waste products.
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With the assumption that this separation can be done, an investigation
 

was made to determine the necessary separation factors. The study indicated
 

that separations beyond certain limits may not yield enough to substantiate
 

such separation factors. The separations of 99.99% for plutonium, 99.9% for
 

uranium, americium and curium, and 99% for neptunium will reduce the hazard
 

potential to about five percent of that for natural uranium. After 99.9%
 

removal of iodine, it will then be the long-lived remaining fission products
 

which control the waste hazard. Higher removal factors for the actinides
 

do not appear to be warranted unless long-lived fission products are also
 

removed, especially Tc-99.
 

As means of recovering actinides from the spent waste, several schemes
 

are available. Several schemes can be ruled out mainly due to expense and
 

complexity. For example, a centrifuge is too "dirty" because of associated
 

(12)
alpha emitters from the actinides. This would require tight contamination
 

control, and hence much shielding. Other processes require a gaseous
 

form, but there are no gaseous forms of americium or curium.
 

Present feasibility studies indicate that separations based on solvent
 

extraction, ion exchange, and scavenging precipitation have greatest pos­

sibilities. Solvent extraction by itself has not been shown to achieve
 

desired results; however, multi-step solvent extraction processes have a
 
(13)
 

greater probability of success. If particular waste stream recycles are
 

solved, processes based on cation exchange may be a viable method for
 

partitioning the actinides. Another method with potential in waste parti­

tioning may be precipitation.
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Figure B.7 illustrates the reprocessing scheme for fission products
 

and actinides generated from Light Water Reactors. Spent fuel from LWRs
 

containing fission products and actinides listed in Table B.3 is sent
 

to storage for about 150 days. The wastes'from storage, which is listed in
 

Table B.4, is then sent to a reprocessing plant. This plant discharges
 

Kr-85 and tritium to the air. Ninety-nine percent of the uranium is re­

moved from the waste and sent for enrichment and 98 percent of the plutonium
 

is separated for further fuel fabrication.
 

The rest of the high-level waste goes to a high-level liquid waste
 

storage for about 215 days. These high-level wastes are listed in Table
 

B.5. After further storage these wastes (listed in Table B.6) go to a
 

fission product/actinide fractionation plant.
 

Fractionation Schemes
 

Studies to date indicate that the-best methods for removing actinides
 

from wastes will be obtained by improving present state-of-the-art
 

methods. (14) One of the present schemes is shown in the Fig. B.8.
 

In this scheme, neptunium, uranium, and plutonium, are recovered in the
 

primary PUREX plant. Various exhaustive extractions or further PUREX
 

processes are used to accomplish complete removal of the neptunium,
 

plutonium, and uranium. Through the PUREX plant process, a recovery rate
 

of 95-99% for neptunium and improvements in uranium and plutonium recovery
 

to 99.5% or better are expected.
(15)
 

The interim waste storage is for the purpose of reducing the radiation
 

hazard from the remaining high level wastes during subsequent processing.
 

The radiation hazard will be high unless the fission product yttrium and
 

rare earths, which are associated with americium and curium, are allowed to
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LIGHT STORAGE ATMOSPHERREPROCESSINGEAMRE 

WATER TABLE B,3 URANIUM 99% 

REACTOR (SPENT FUEL) (150 DAYS) PLANT (FUEL ENRICHMENT) 
I--PLUTONIUM 98%(FUEL FABRICATION) 
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LEVEL WASTES) 
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GAS CORE ACTINIDE REPROCESSING WASTE
 
RANMATON PLANT ----- " STORAGE
 

RSTORAGE
 

(UNBURNED ACTINIDES)
 

Fig. B.7. Actinide Reprocessing Scheme
 



Table B.3
 

FISSION PRODUCT AND ACTINIDE CONCENTRATIONS LEAVING A LWR
 

DECAY TIMES OF FUEL DURING COOLING PERIOD
PWR FUEL CYCLE ­
= 30.OOMW, BURNUP= 33000.MWD, FLUX= 2.92E+i3N/CM**2-SEC
POWER


NUCLIDE INGESTION HAZARD, M**3 OF WATER fIT RCG
 
BASIS = PER METRIC TONNE OF U 	LOADED IN REAC
 

Fission Products
Actinides 


DISCHARGE
DISCHARGE 

H 3 2.36E+ 0 5
 PB212 7.50E+CI 


" K '85 " .13E+64
B1212 3.75E+0co
RA223 1.27E-+U RB 66 2.47-+G7
 
RA22- 7.50E+02 SR 89 2.39E+11
 

2.59+i1
TH223 ?. 3E+02 	 SR 9G 

Y 9u 4.03E+69
 

TH231 3.96E+63 y 91 3.13E+10

TH23u 8.88+So 


TH23+ ZR 9.57E+G93,b+0 
PA231 - 2.71E+Ci NB 93M 3.01E+0PA233 3.24E+C3 	 ZR 95 2.29E+10
 

2.80E+O4
 
PA234 c.52E+01 NB 9 1.36,3E+1O
 
U232 ?.32E+02 MO 99 J81E+10
 
U233 -.52L+90 To 99 7.14E+64
 

DA234M i.60c+u1 	 .NB 9YM 


RU103 1.52E+10
U23 2.55i+C4 

U235 5.70E+02 RHI03M l.22E+u8 
U236 9.61E+03 RU0 6 5 .45 -+10 
U237 6*65E+L9 RH0o. 7.40E+05 
U238 7.85c+G3 Pglu7 1.jbE+G2 

- A .liuM 1.23P+L8
 
NP239 i.Ssc5+II 

aP237 1.I1E+G5 


AGI 3 L.S9E1+05
 
PU236 1.7E+-' 	 AG1iI 9.90E+O8
 

Co1i3U i.05+
PU236 5.,45E+C8 

PU239 6.36E+d7 INi;41M 7.75+CL4
 
PU24J 9.55=+07 
 COli1S 1 .S4E+07 
PUE41 5.25E+.8 SN1I2M 1.6.+l 
PU242 2.76E+G5 SNI23 8.9.E+03 

S312- c.G3E+07
 
AM242M 2.29E+06 SN;.25 6.76E+G8
 
AM242 6.3451+L8 


AH24I 2.a5i'+C7 


S8125 8.701+07
 
AM243 4.5 4E+c6 TEZ25M 3.11E+Z7
 
C.242 1.7E+C9 	 TEiZ7M 3.07:+38
 

" .eaE+L8
CM243 7.42E+05 	 TE127 

CM244 3.95+uB8 	 TE129H Z.36E+'09
 
C.245 8.54-+C4 TE129 4.-2!E+58
 
CM246 1.71E+G4 1129 6.S8E+G5
 
CMZ48 1 .9d5+0 0 113: c.iYE+12
 
BK249 d. 6z +Cu XE131M 6,391+03
 
CF25u 3.7oS+0C 
 TE132 5,S2E+1C 
CF 52 2.525+00 1132 1.5 3 r+11 
SUBTOT a..SE+I1 XE134 i.61E+G6 

CS534 2.74E+10 
TOTALS 2.16E+1± CSiJ5 2.36E+C3 

05136 4.1S+C9 
CSiZ7 5.39+39 

- A37M 1.lE+C5 
BA142 7.275+!0
 
LAl4u 7.SOE+10
 
CEi 1 i.54L+10
 
PR43 c.41E+1O
 
CE14 1.1,2+11
 
PR44 I.122+G6
 
ND147 9.StE4US
 
PM147 5.12E+08
PMi+.M 3.9E+04
pA4 	 4+REPRODUCIBH, OF THE j
S aM1. 	 +ORIGINAL- PAqE. peyOR 

G0153 1"75a 05
 
E11154 .3495+126
 

EU153 3,74E+C7

ZU156 c.26E +C5
 
T316' 
 3.21+07
 
SUTOT, 4.1i1E+12
 

6.40E+i2
TOTALS
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Table B.4 

FISSION PRODUCT AND ACTINIDE CONCENTRATIONS AFTER 150 DAYS STORAGE
 

PWR FUEL CYCLE - DECAY TIMES OF FUEL DURING COOLING PERIOD
 
POWER= 30.OOMW, BURNUP= 33000.MWD, FLUX= 2.92E+I3N/CM**2-SEC
 

NUCLIDE INGESTION HAZARD, M**3 OF WATER AT RCG
 
BASIS = PER METRIC TONNE OF U LOADED IN REAC
 

Actihides 


150. 0

P8212 I.IGE+02

-81212 5.49E+00 

RA223 I.70E-+00 

RA22 1.1jc+03

TH2S 3.:8E+02 

TH23u :.-C2+01 

-TH23i 8.55=+01 

TH234 '.57E+34 

PA231 2..7zE,+01

PA233 3.4uE03 

PA234M 1,57E+0+ 

PA234 E.14E+UC 

U232 z.48E+z29Mf 


--	 U233 1 .54E+0 

U234 2.52E4-04 

U235 5.76E+02 

0236 


-U237 2- 5E+04 

U238 7.oE0+03 


U 9.61E+03 

NP237 i.132+05 
NP239 1.92=+05 

PU235 :.5E++4 

PU23S 5.6A4E+08 

PU239 6. ,62+07

PU240 q.55+37 


--PU4i '.152+08 

PU2.2 2.762+05 

AN241i 3.35;+07 

AM242M 2.29=+06 


-AM242 9.15q+04
AM243 4.34+G6 
011242 '.38+08 
CH243 7..6;+05
0244 3.44E+08 
CM245 3.54P+04 
CM246 1.ZIEe% 
CM:48 1.q8REGj
BK249 6.41-10 
CF250 3.o3E+Q0 
CF252 2.26E+0i 
SUSTOT 2.52=+G9 

TOTALS 2.52E+09 


R 
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Fission Products
 

150. 0
 
H 3 2.31E+05


-K- 85- 1.i6E+04
 
RB 86 9.49r+04
 
SR 89 3.24=+10
 
SR 90 2.562+11
 
Y 9u - 3.34E+09 
Y 9i 5.3E+09 

Z'z 93 2.36E+03 
Na 93 m .5ZE+Od
ZR 95 4.62E+39
 

. NB 95M 3.8E+03 
NB 95 5.2qE+04 

99 2.55E-O6
TC 99 7.17E+04
 
RU103 1.iuE+O9
 
RHI03H 8.83E+06
 
RU1O6 4.i0g+iJ 

- RHiOb 4.10E+05 
P0167 1.iGE+O2 
AGIiuM 3,1Lz+7 
AG 141 3172+02 
AG11 9.47E+32 
C0h3MI 1,CE3+31 
IN±I4M 9,61E+03
COli5 i 1.6-=+06 

I-SNligM 1.2A+01 
SN123 3.862+03 
S812- 3.59q+05 
SN1Z5 I.C6E£+04 
S131 5 7.95E+27
 
TE125M JE+07
 
TEI27M .23E+08
 
TE127 3 04+07
 
TE129H" 3.1+08
 
TE129 . 17 +05
 
1129 6 23 EO
 
I1131 7.28+06
 

-- XE131M . E++ 
TE132 7.57E-04
 
1132 1.957-03
 

X 3J)3 5.35E 03
 
CS14 2.38E+1C
 
CSZ5 2.36E+03
 
CS13 3.-1E+05
 
CS137 5.4E+G9
 

-BA137m 9.99c+04
 
BA14J 2.ZbE+07
 
LAi4O ?.LdE07 
C£41 6.:7E+38 

- Pr43 z.JbE+7 
CE144 7E+1O
 
PR144 7.712+05 
N0147P1114 - 8.3qv 05'.3L2+08
 

3.?-/:+0­PN147d.M 7 
143 	 +o 

£1115 41 39I.*V E+
 
EU1S2 1.337+05

GO15J 1.16g+05
EU154 I
EU155 3.-32+07
EUi56
 
T8160 7.58+Gr6
 
SUBTOT
 

IOTALS 4.58E+11 



Table B.5
 

FISSION PRODUCT AND ACTINIDE CONCENTRATIONS EXITING FROM THE REPROCESSING PLANT
 

DECAY TIMES OF FUEL AFTER 1ST PROCESSING
PWR FUEL CYCLE 

33000.MWD, FLUX= 2.92E+13N/CM**-SEC
POWER= 30.OOMW, BURNUP= 


NUCLIDE INGESTION HAZARD, M**3 OF WATER AT RCG
 

BASIS = PER METRIC TONNE OF 


Actinides 


DISCHARGE 

PB212 1.155+02 

R12 t2 5.49E+c0 


RA22a i.7JE+03
Ra2s* 3.18£+C2

T Z2 8 .18i+C2 
TH230 1.u2E+Li 

TH234 !.57+4 

PA23S 2.74E+bl 

PA2 3 3.46t+C3 

U212 2.46E+QO
U274 c.52£+0 2 

U235 5.7JL+O0 

U236 9.6!+G1 

0237 2.E5E+G2 

U2cIS 7.85E+61 


NP237 1.13c.+u 

NP239 i.82E+C5 

PU2SS 2.12E+G2

PU238 1.13E+C7 

PUo9 I. 29r+06 

PU2-) 1.91+G6 

PU2-± 1.C3E+C7 

PU4 5.522+C3 

AM2. 3.85E+67 

Ail 2t+2 2,29i+U6 

AM242 9.i5E+G4 

AM2 4' .54;++U 
CH2'.2 3.86L+b8 
"0M2-t3 7.36E+U5 
CI24S 3.44L+18 

CM2q5 I.571+L4 

cx2 8 1.71E+aQ
CM28 1.4oL.+JO
"-BKi4 - b . L4 -+&D 
CF29 0.96L-01 
CF25L 3.69%+20 

CF252 ?.2.6+O0 

SUBTOT 1.30-C9 


TOTALS .. 30E+09 
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U LOADED IN REAC
 

Fission Products
 

t 3 

KR 85 

R8 86 


SR 89 
SR 90 


90

Y 9 

ZR 9S 

NB 93M 


ZR 95 

NB 959 

NB 95 

TC 99 

RUIIO 

RHI.3M
RUJ106 

RHI6 

PO!07 

AGIIG
AG1d 

CD13 

INfiM 


1CD15.m 


)ISCHARGE

2.31E+G5
 
1.10+C4
 
9.49z+04
 

3.24E+6G
 
2.56E+1i
 
3.e4'E+G9
 
5.3TE+G9
 
2.36E+

.,5E+-E
 

4.uZi+u9 
5.89E+C3
 
5.20E+69
 
7.j7E+fq
 
1.i+C9
 
8.3i+t6
&.1!;+ O
 
L.16C+5
 
L C+L2 
8.'-E+C7
3.17?+t2 
i6c.i3l+(1
 

.59L+C3 
:.64E+06
 

SNitl 1.66E+0±
 
SN123 3.i0t+53
 
S812 3.59L+O6
 
SBi25 7.95E+07
 
TE125m 3.20E+C7
 
TEI2SX .23+CZ
 
TE127 ':.04+L7
 

TE12YM .135E+C8
 
T129 27.17+6
 
l129 6.23F+C5
 

- 131 7.2fL+-V60	S1 34 2 0 £ 1
 
S135 .2..oE+03
 

CS136 3.E+ 5
 
0S137 5.-L+C9
 
BAI37M.9K'+04
 
BA140 2.ibE+67
 
LA14O 2.48+L 7
 
CE141 16.L7+UR
PRI43 !. 36L+7 
0E144 7.1;e+ 1 

PR144 7.71.+G5
N0147 8.:9-+c5
 
PM247 49ua+c8
 
pm-43,4 J.rjf + C 3
 

EU1S2 .3i+C5
1
GDi5.- 3."i'
 
EUI5 3. +7G 
Ti3I8G 7.S364-i6
 

SUnTT 4.8£+i1
 

TOTALS 4.'58E+11
 



Table B.6
 

FISSION PRODUCT AND ACTINIDE CONCENTRATIONS AFTER 215 DAYS
 
STORAGE IN HIGH LEVEL LIQUID WASTE STORAGE FACILITY
 

PWR FUEL CYCLE DECAY TIMES OF FUEL AFTER 1ST PROCESSING
 
=
POWER 30.OOMW, BURNUP= 33000.MWD, FLUX= 2.92E+13N/CM**2-SEC
 

NUCLIDE INGESTION HAZARD, M**3 OF WATER AT RCG
 
BASIS = PER METRIC TONNE OF U LOADED IN REAC
 

Actinides Fission Products
 

CHARGE 215. 0 215. D I 
P6212 0. 9.11EI01 H 3 2.23Es05 
BI212 0. 4.55E+Oa KR 65 j.06E-04
RA223 3. 2.33E+00 -R3 6 - 3.28E+0i 
RA224 . 9.1]E+02 SR 89 1.84E*09
 
TH226 0. 2.59E+02 SR 9J 2.52E+11
 

SR7yE9J9 
THI3q I. 1.89E+02 y91 4.26E-U6 
PA231 0. 2.74EbI ZR 94 2.36E40 
PA23S 3. 3.46E-03 NB 93m 5.78E+02 
U232 0. 3.56E+Od ZR 9Y 4.67E-0t 
U2,54 5.45E+&4 2.56E+02 14a -Sm 5.94E+02 
U235- 2.36E+33 5.7uE+IO N3 95 5.96E+U38 
U2*33 0. 9.6iEf-01 TC 9 7.17E+04 

TH230 3. 1.02E+O 1 90 


U237 . 4.81E+02 RUiO3 2.56E+07 
U238 .05E+03 7.85Ei01 HIu3s> 2.05E*05 

NP237 J. i.1SE05 RU16 2.73E+0 
NP239 3. 1.82E+05 RH1O6 2.73E05
 

PFU236 J. 1.84E+02 PDlu7 1.10E+02
 
PU26 J. 2.19E+07 AGdM 4.51E-07
 
PU239 0. 1.29E-06 AGI1i 1.76E*02 
PUZ4d 0. 1.94E+06 AGii 9.79E 00 
PU241 0. 1.UOE+07 IDJ11Si .99'+00 
PU24,? d. 5.52E+03 IN114M 4.92E+02 
AM2qI 1. 3.90E+07 Sri 5M 5.96E00 
AM24Z4 0. 2.28E+06 SN123 1.17E-U3 
AM242 J3. 9.I2E+04 3124 2.99E+05 
AM2-,5 0. 4.54E+b6 $3125 6.84E+07 

CMC14224-3 0.0. 7.26Ei-05 TE12-5N3'.56E+08 2-6,5c+07
 
24 E27i 3.13E*07
 

G:1244 U. 3.36E+08 IE121 7.74E06 
GM245 a. 8.54E5+, T i29: 1.69E06 
C'4&46 3. o71E+04 1E129 2.11E+04 
M246 0. 1.98E-00 112- 6.24+505
 
6K249 . 4.ui +GO 1131 6.64E-02
 
LF243 0. 1.495+00 CS13q 1.95E+10
 
CF25J U. 3.58E-00 0139 2.06E03 
CF252 J. 1.94E+U0 0S136 
SUtfOT 6.50+04 7.74+06 6S13 5.27E+09
 

BAIS3: 9.85E+04
TOTAtS 6.50E+04 7.14E+38 cAl46 1.89E+02

LAI4u 2.18Eb2
 

CE141 6.31E+06
 
PR143 2.56E+02 
CE144 4.56E+10 
PRjq. 4.56E+65 
N 1.24E+00NOl-f 
pMI14T 4.19E+08 
PM 14j! - 9.4'uE 01 

PMi'-6 7 . 1+00
REPRODUCIBILITY OF THE SM 1-),i 3.115+06 

EUI52 1 .48L 55ORIGINAL PAGEIS POOR-
G2913 6.2E+4 

•-5 3 .35E+C8 

TEiJ 9.LCEI-V5T5 2.5E+u7 
SUlyur 3.56E+11
 

3.56E+11
TOTALS
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Fig. B.8 Present Processing Sequence for the Removal of Actinides
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decay to less hazardous levels. (1 5 By considering the most important decay
 

times, storage times of ten years would significantly reduce the hazards.
 

Current NRC regulations require that wastes be solidified within five years.
 

However, because of difficulties in working with a solid waste, it will be
 

assumed that the americium and curium are removed from the liquid wastes
 

after a five year period.
 

One disadvantage of interim waste storage is that the amount of pluton­

ium in the waste grows by curium decay. Therefore, plutonium removal from
 

the stored waste is necessary after several years of interim storage. The
 

process showing most potential for recovering the plutonium is an all ion­
(16)
 

exchange process.
 

After removal of plutonium, the americium and curium are isolated from
 

the rest of the waste. The problems associated with americium and curium
 

removal 
are centered around finding a suitable chemical separation process
 

for commercial high level wastes. 
Recovery of americium and curium has
 

been done at the Oak Ridge National Laboratory and Savannah River Laboratory
 

on a multigram basis using a Tramex process.(15) This process has problems
 

with corrosive solutions that require processing equipment constructed of
 

special and expensive materials. Because of these reasons, the process is
 

not recommended. However, there is some possibility that the Tramex proces­

sing equipment can be constructed so as to allow safe working of both
 

corrosive solutions in the process and toxic radionuclides at little addit­

ional cost.
 

Other processes that have been developed and claim to give high americium
 

and curium separation are Cation Exchange Chromatography (CEC) and Trivalent
 

Actinide-Lanthanide Separation'by Phosphorous Reagent Extraction from Aqueous
 

ill
 



Complexes (TALSPEAK).(15) Cation Exchange Chromatography was developed at
 

the Savannah River Laboratory and successfully used to separate about twenty­

five percent of the necessary amounts of americium, curium, and rare earths
 

in one metric ton of Light Water Reactor fuel. (1 5 ) A schematic flowsheet
 

of CEC is shown in Fig. B.9. The TALSPEAK process, shown in Fig. B.10, has
 

been developed only to the point of tracer-level laboratory studies at
 

Karlsruhe for americium and curium removal. (15)
 

As means of separating Am and Cm from other wastes, the Tramex, CEC, and
 

TALSPEAK processes require considerable developmental work and data gathering
 

to determine their applicability to the commercial (high volume) extraction
 

of actinides from high-level wastes.
 

Proposed Schemes
 

Present proposals for actinide partitioning are based on a sequence of
 

separation processes using solvent extraction, ion exchange, and preci­

pitation. These techniques have not yet been developed.(1 4 ) A multistep
 

solvent extraction process combined with other processes, such as cation
 

exchange, may wnrk well in the removal of uranium, neptunium, and plutonium,
 

as well as separations of americium and curium from other wastes.
 

Tributylphosphate (TBP) may be used as the solvent in the solvent
 
(14,17)
 

extraction method. As demonstrated in the PUREX process, TBP achieved
 

highly efficient recovery of uranium, plutonium, and 
neptunium. (11)
 

As a means of separating americium and curium from the rest of fission
 

products and wastes, two steps of cation exchange is quite promising. The
 
(14) 

potential here appears to be 99.9 percent or better. In the first step
 

the lanthanides and actinides are absorbed on a cation exchange resin
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column and eluted with nitric acid. In the following step the lanthanides
 

and actinides are separated by cation exchange chromatography. Problems
 

to be solved with this process are in converting the spent ion exchange resin
 

to acceptable levels for waste generated in the chromatographic separation.
 

Precipitation methods combined with ion exchange and/or solvent
 

extraction may be another possible method for partitioning actinides. Even
 

though solid waste handling is unavoidable, ways are now under study for
 

obtaining crude concentrations of plutonium, americium, curium, and fission
 

products. These actinides would then be separated from the lanthanides in
 

further ion exchange or solvent extraction steps. Oak Ridge National
 

Laboratory is studying the use of oxalate (16) precipitation together with
 

ion exchange to isolate the lanthanides and actinides.(1 4 ,1 9 ) A removal
 

factor of 0.95 is achieved by precipitation whJ'e the remaining is removed
 

in the cation exchange column.(1 5 ) Tracer-level studies indicate removal
 

(15)

of 0.999 for americium and curium. -Almost complete removal has been
 

demonstrated for americium and curium by use of multiple oxalate precipitation
 
(14) 

stages.. Further work in this area is st*ll needed to determine the
 

effect of the handling problems.
 

Technical feasibility, resultant benefits, and costs of partitioning
 

actinides from high-level wastes are yet to be established. It must be
 

decided if the net benefits will justify the use of partitioning. It must
 

also be kept in mind that the separation schemes do not solve the long­

term actinide problem. In order to justify this, the actinides must somehow
 

be transmuted to shorter-lived radionuclides or disposed of from our environ­

ment. These and many more problems still need research and investigation
 

before a feasible actinide-separation-transmutation process can be sub­

stantiated.
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From research done to date, it is concluded that much research and
 

development is still needed in the area of actinide partitioning. Work
 

being performed at the Oak Ridge National Laboratory may show encouraging
 

results by the end of 1978. Present state-of-the-art methods will not
 

yield the results needed to establish a practical, economically feasible
 

operating partitioning plant. It is believed that research in the area of
 

combined methods of solvent extraction and ion exchange will yield the
 

necessary separations factors.
 

116
 



References for Appendix B
 

1. 	 Lowry, L. L., "Gas Core Reactor Power Plants Designed for Low
 
Proliferation Potentials," LA-6900-MS (September 1977).
 

2. 	 Clement, J. D. and Rust, J. H., "Analysis of the Gas Core
 
Actinide Transmutation Reactor (GCATR)," Annual Report, Georgia
 
Institute of Technology, NASA Grant NSG-1288 (February 1977).
 

3. 	 Clement, J. D. and Rust, J. H., "Analysis of the Gas Core Actinide
 
Transmutation Reactor (GCATR)," Semi-Annual Report, Georgia
 
Institute of Technology, NASA Grant NSG-1288, Supplement No. 1
 
(September 1, 1977).
 

4. 	 Henry, A. F., Nuclear Reactor Analysis, M.I.T. Press, 763 (1975).
 

5. 	 McNeese, L. E., "Engineering Development Studies for Molten-Salt
 
Breeder Reactor Processing No. 5," ORNL-TM-3140, 15-16 (October 1971).
 

6. 	 Benedict, M. and Pigford, T. H., Nuclear Chemical Engineering,
 
McGraw-Hill, 156-158 (1957).
 

7. 	 McNeese, L. E., Op. Cit., 18.
 

8. 	 "Molten Salt Reactor Program Semiannual Progress Report for Period
 
Ending August 31, 1968," ORNL-4344, 292-298 (1969).
 

9. 	 Foust, A. S., Principal of Unit Operations, Wiley, 45, 77 (1964).
 

10. 	 Rosenthal, M. W., Houbenreich, P. N., and Briggs, R. B., "The
 
Development Status of the Molten Salt Breeder Reactors," ORNL-4812
 
(August 1972).
 

11. 	 Claiborne, H. C., "Effect of Actinide Removal on the Long Term
 
Hazard of High-Level Waste," ORNL-TM-4724 (January 1975).
 

12. 	 Schneider, A., Georgia Institute of Technology, Personal consultation
 
(April 1976).
 

13. 	 Bocola, W., Frittelli, L., Gera, F., Grossi, G., Moccia, A., and
 
Tondinelli, L., "Considerations on Nuclear Transmutation for the
 
Elimination of Actinides,"-IAEA-SM-207/86.
 

14. 	 Blomeke, J. 0., "Technical Alternatives Documents," ORNL, Prepublica­
tion Paper (1976).
 

15. 	 Bond, W. D., and Leuze, R. E., "Feasibility Studies of the Partition
 
of Commercial High-Level Wastes Generated in Spent Nuclear Fuel
 
Processing: Annual Progress Report for FY-1974," ORNL-5012 (January
 
1975).
 

117
 



16. 	 Bond, W. D., Claiborne, H. C., and Leuze, R. E., "Methods for
 
Removal of Actinides from High-Level Wastes," Nuclear Technology,
 
24, 367 (1974).
 

17. 	 LaRiviere, J. R., et al., "The Hanford Isotopes Production Plant
 
Engineering Study," HW-77770, Hanford Atomic Products Operation
 
(July 1963).
 

18. 	 Rupp, A. F., "A Radioisotope-Oriented View of Nuclear Waste Manage­
ment," ORNL-4776 (May 1972).
 

19. 	 Ferguson, D. W., et al., "Chemical Technology Division Annual Progress
 
Report for Period Ending March 31, 1975," ORNL-5050, 6-11, 30-31
 
(October 1975).
 

118
 


