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ABSTRACT

The equaticns of motion of an arbitrary flexible body in orbit

are derived. The model includes the effects of gravity with all its
higher harmonics. As a specific example, the motion of a long, slender,
 uniform beam in eircuwlar orbit is modelled. The example considers
both the inplane and three dinensionai motion of the beam in orbit.
In the case of planar motion with only flexural vibrations, the pitch
motion is not influenced by the elastic motion of the beam. For large
values of the square of the ratio of the structural modal frequency to
the orbital angular rate the elastic motion is decoupled from the pitch

tion. However, for small values of this ratio and small amplitude
pitch motion, the elastic motion is giverned by a Hill's 3-term equation.
Numarical similation of this equation indicates the possibilities of
instability for very low values of the square of the ratio of the modal
frequency to the orbit angular rate. Also numerical similatiors of the
first order non-linear equations of motion for a long flexible beam
in orbit have been parformed. The effect of varying the initial con-

ditions and the number of modes has been demonstrated.
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1. INTRODUCTION

This report presents the development of the equations of motion
of an arbitrary flexible body in orbit and its specialization to a
long, slender, uniform beam in circular orbit. In the literat\me,l’z’a
many models of a beam satellite in orbit are presented. The model
considered by Pr'ingle3 consists of a massive central rigid body to
which a massless elastic beam is rigidly attached. The other end of
the beam carries a tip mass. Tor beam satellites w:.th lengths of the
order of 100 meters or more and mass distributed throughout the length

1,2 of 2 beam satellite 1s based on

this cannot be used. Ashley's model
a contimmm approach. He arrives at a set of partial differential equa-
tions for the beam model through energy methods. However, partial dif-
ferential equations are not as convenient for numerical simulation.
Ashley arrives at the conclusion that it is impossible to excite flexural
vidbrations of a beam directly through gravity gradient. The same con-
clusion is arrived at in section 5.1.1 of this report.
The development of the beam model prvesented in this report follows
as a specialization of the egquations of motion of an arbitrary flexible
body in orbit. Also, the model presented here can be quite easily adopted
for numerical similation and also for inclusion of various control laws.
The development of equations of motion for an arbitrary flexible

body presented in this report essentially follows that of San't:r'.ni.l+



However, the distinguishing features of the present development from
that of Santini are (a) extensive use of the techniques of vector
calculus (b) introduction of the orbit fixed reference frame as an
intermediate frame between the lecal intrinsic frame at the origin

of the body axes system and the body axes frame. Hence, the Euler
angle rotations used in the present report are different from those of
Santini.”

The equations of motion presented in this report are obtained by
the Galerkin integra‘tions’e of the equations of motion of a generic
point in the body. The motion of the generic point is assumed to be
described by the superposition of rigid body motion plus a combination
of the structural modes.

Section 2 of this report descriles the various co-ordinate reference
frames employed in the development of the equations, and the transformation
velations between these reference frames. The detalled derivations of
the transformation relations are presented in Appendix ~ I.

Section 3 presents an expression for the gravitational force on
a generic element in the body. The expression also includes the higher
harmonics of the earth's gravitational field. The details of this
development are presented in Appendix - II.

In Section 4, the development of the equations of motion of an
arbitrary flexible body in orbit is presented. The expansions of the
vector expressions in equations (28), (31), (32), (43), (44), (45), and
(46) are presented in Appendix - III.



Specializations of the equations of motion in section % to a long,
slender, uniform beam are presented in section 5. Sections 5.1 and
5.2 discuss the planar, and the three dimensionzl motion of the beam
in orbit, respectively. In Appendix -~ IV, the expressions for the
natural mode shapes, frequencies and the modal mass for a Ifree-free
uniform beam are presented.,

In Section 6, the numerical solutions to the response of the planar
motion of a beam in circular orbit, undergoing only flexural vibrations,
are presented. The responses indicate the possibilities of instabiiitv
at very low values of (u:n/wc)?.

The final section of the report, Section 7, outlines the conclusions

based on the mmerical results in Section 6.



2. CO-ORDINATE FRAMES

The following co-ordinzte frames are used in the development of

the equations of motion. (See Fig. 1):

Inertial reference frame.

0'Z zlong the earth's spin axis.

0'¥ along the line of the ascending node.
0'Y perpendicular to 0'X and 0'Z.

Iocal intrinsic frame at a generic point, P.
Pi1 along the radius vector from 0' to P.
Pi2 perpendicular to Pil in the plane of Z0'P.
Pi3 perpandicular to Pil and Pi2.

local intrinsic frame at 0.

Orbit fixed reference frame.

OXO along the local vertical

0Y, along the orbit normal and in the negative direction
of “the orbit angular momentum vector.

0Z, perpendicular to 0%, and DYO'

Principal axes of the body.

The above refersnce frames are related to each cther as follows:

Ty 0'XYZ
Tip ¢ Plylpig
T0 F O3pt9is
12 DXOYDZO
13 OXYZ
X0
Y10 § =
210
S
T1o
where,
T. =

’- X XO XlO ¥ . X@
sl % =1, 0 Y. T, Yo
yA Z Z Z Z
Tg T, Tyg Ty T,
ancw s7SW en
cnow cnsw -sN - (D
| ‘

ot 9



1 0 D
T,=| 0 ex sy (2)
L 0 -sx ¢
[ cocd  (stey + cpsesy) (spsy - cdsbey)
'1‘3 = l-s¢cf (copop - s¢sOsy) (cdsy + sdsdop) (3)
s8 ~cBsy choy

and s,c represent sine and cosine functions respectively. The detailed
development of these transformations are presented in Appendix - I.

The body angular velocity components (wx, wy, mz) and the Euler
angular rates (¢, 6, ¥ ) are related as follows:

E
]

» éscp + Jeded - R (socy + cosbsy)

éc¢ - ti:s¢c9 - Wy

L >4
n

(cocy - sosesy)

£
H]

2 Yso + ¢ + wccestb (4)



3. GRAVITATION

In this section an expression for the gravitational force pex
unit mass, expressed in the bodv fixed fmame (1'3) is presented.
In deriving this expression, it is assumed that |¥|/p<< 1, where r
is the position vector of an arbitrarv point in the body with respect
to 0 and p is the distance of the same point from 0'.

We can write the gr\avitationalu potential in the most general

form as:
2 ™ g+l
V (py Ny w) = 3—2—— +va I KS (—2—-) Qs {(n4w) (5)
=1

8
where,

Kg = Kgg €08 ¢

s (m) .
2 (M) = mio [PS (n) cos (mw + ¢sm)]/}\5
.
P S(m) (n) is the ! associated legendre function of
order s.

Kso and q’sm are constants to be given experimentally through
geadetic satellite techniques.
The gravitational forve per unit mass at the origin of the badyv

axes, G, in the TJ(O) frame is FO = lQT\’IO.

For a point at a distance r from 0, neglecting small quantities of

the order of 1%[-, the gravity force in the T3 frame is given by

f= fo+MF (10)



where

0
axes frame (13)

o

s
we (MO 4 3 x(-""-) 1S
1 S

s = p
2,2 2 —
3cTdcTE=1 ~3stcpe 8 3cdcesh
2
ya ;
M(O)= pa' _3s¢e¢cga 352¢c7'6-1 -3s¢c8st
2
3odcbst ~-3spcfst 38" 6-~1
| 3¢ ?
(s) va’ (s) T T
s) _ s

F_ = Gravitational force at 0 expressed in the principal body

(6)

The matrix B(s) is given by eqn. (II-12) in Appendix - II. It can

be observed that M(U) and M

The expression for the gravitational force in the form given in ean.(f

(s)

are symmetric matrices.

is used in the development of the equations of motion presented in the

next section.



4. EQUATIONS OF MOTION

In this section the equations of rotational motion and elastic
motion of an arbitrary flexible body in orbit are presented. The
body is assumed to be subjected to small amplitude elastic displace-
ments, q, which are transformed to elastic forces by the linear
operator L.

Consider an elemental mass, dm, whose instantanecus position
vector from the center of mass of the body is r (Fig. 2).

The equation of motion of dm can be written as:

adm=L(@Q +Tdm+E (7}

Inertial acceleration of dm

f
"

=
"~
Na)l
[
]

Elastic forces acting on dm

|
n

Gravitational force per unit mass
E = External forces acting on dm
q = Elastic displacement
The above vector equaton can be written in the body fixed reference
frame (t,) as,

= . e

mtrPt2uxrtuxrrux (@xD)] dn

= L@ +Fan+E (8)
It is important to note that r and T are the velocity and acceleration
of dn respectively as seen from the body fixed reference frame, 5. All

the vectors in the above egquation must be expressed in the body frame

'fa.



We can write the instantaneous position vector T of dm as
r=rytq (9)
where
Fg is the position vector of dm with respect to O in the
undeformed state; g is the elastic displacement of dm.
Hence - LJ " -
r=gqandp =g (1)
For small amplitude elastic displacements, we can write the elastic
displacement, q, as a superposition of the various medal contributicns
according to

- _ o _(n) —
q= E An('t) ¢ (rg) (11)
n=1
where
-«n) =, _ ., 7 (n) (n)
[ (ro)-tbx :|.+¢y 3+¢z k

An(t) = Modal amplitude

Tb'(n) (FO) is the mode shape associated with the natural frequency

w, and satisfies the following orthogonality condition,

—(m) —{n) (12)
i) % * 3 “dn=6_ M
vol m n
Also
{(n)
L@E™) 2w ?F dn (13)

Further, if the body is unconstrained, the elastic modes must be

orthogonal to the rigid body modes ie,

dm = 0 (14)



f Fyx ¥V =0 (15)

vol

If the body is constrained against translation and rotation at the
undeformed center of mass, the corresponding modes are called "fixed
modes." For fixed modes the orthogonality conditions (14) and (15) do
not hold. It should be noted that, for the case of fixed modes, the origin
of the body frame, 0, no longer coincides with the center of mass in
the deformed state. Hence, only for free modes, -\{01; dm = 0. However
for fixed modes [ r dm =vgla dm # O.

4.1 Equations of rotational motion
The equations of rotational motion of the body are obtained by the

following operation

/Tt x Eqn. (8)
vol

Jrx[a _+r+2uxr+tuxr+ux (wxr)] dn
vol cm

= [ rx[Lg) + T + e]dn (18)
vol dm

where e is the external force per unit mass.
The various terms in Egn (16) can now be evaluated using the techniques

of vector calculus. Assuming |q| << 1, only the first order terms in
7|
q are retained in the following expansions.

/] Px&a _dn= f qdmxa (17)
vol cm vol cn

=10=




S rxrdm
vol

vol

ne

ST (wx

1]
<

+

Srx wx (w
vol

Jrx L (Qdm
vol

11

-

=/ c?ossa)xé‘ansfi‘ox%i‘m (18)
v v

f?x?(fo'xr—')chn=2!(30+5)x(ax§')dm
v

2 /T x Wx P dn (19)
v

dam = f (r0+<'i) x [wx {F0+€;')]d:n
v

Fg x (W x Fo)dm + [y x {(w x qQ)dm

v

S qx (ZExFO)dm (20)

v

xo)dmn= S[(FruxPw- (@ (0x ldm
v

J (@@ (wxrdm

v

[ {EHD THw x (Tl
v

¥

\{(Fo *w) Wx 1y )dm

-7 (T c W (Wx @ + (@ @x7ryddn (1)
v

i ¢

/o, x L (Qdm
v @

y 2 = . =n) .
I ow” A J ry X 3 dm (using eqn. (13))
n=1 T

0 (for free modes. See Egn. (19)). (22)



fo?‘dm=f§Tx<'fo+MF>dm
vol v

0|
g

= ‘{" X fo + \J; (ro +q) x M (ro +q)dm

+

"t

fqdmxfo fr"'oxMr'odm
v v

+f[erME+ExMFU]dm (23)
v

frxedn=C
vol

It can be easily shown that,

‘J;rﬁx(wxrg)dm=wax1+Jy y3+szzk

(24)
and [ (FO « w) {wx Fa) dm = (Jy-Jz) wy ©, i+ 7, -J) w, W, 3

+ (JX - Jy) w,, u.\y k (25)

Jy, J, are the principal moments of inertia of the body in

the undeformed state.

where, Jx’

After substitution of the values for the integrals in Egn. (16) and

rearrangement of terms, one can cbtain the following form for the equations

of rotational motion.

(] o o
Res @ +C+z BW =g +z g (26)
n= n=1 nsl
where, R
R = {Jx W, (Jz Jy) wy “’z} i

+{Jy wy + (Jx - Jz) w,, wx} 3

+ {Jz w, * (Jy - Jx) Wy, wy} X (2N



):G‘n)= fl [rox%+2§~'gx(mxa + 0% (wxq)
vo

+'€Ix(ﬁx5‘0)- (FG W) WX Q)

- @+ W @xT] dn (28)

€=/ rxedn (29)
vol

® _tn) - - > 2 = . )
I DV =f gamx(E_-TD+I o ', x am  (30)
n=1 vol m 0 ey P %v 0
BGr= f T,xMr, dn (31)
=L ToxNTg
p 8™z [F xMT+TxMFY dn (32)
n=l vol

The expansions of the above vector expressions are presented in
Appendix - III,

The significance of the various terms in Eqn. (26) will now be briefly
discussed. The terms, Q'(n), reflect the inertia torque associated with
the elastic deformations. The term, Gp, corresponds to the gravitational
torque on a rigid bodv. The terms, 'é{n). correspond to the gravitational

torque due to the elastic deformations. The terms, ﬁ(n)

» account for
the difference in position between the actual center of mass and the

center of mass of the undeformed body. TFor the case of free modes,
5™ = o,



4.2, Generic mode equations

The generic mode equation is obtained by the following

operation:
;o {Ean. (8]
vol
ie

PP 4 F+20xF tuxFrax @x D
=7 M, [—53—1‘(—'7 +T+8) dn (33)
vol

With the use of equations (6), (9), (10), (11}, (12) and (13),

the various terms appearing in Egn. (33) can now be expanded as follows:

;¥ e fTame s (34)
vol cn v cm
;3N Fam= s T Fan
vol v“

=z%f“6(“) ™ g

m

=AM (35)
;Y kD2 G gk Dan (36)
vol v

/ (#“’-w\am=fc$‘“’-axfoum+rc#“’-axadm (
vol Y/ v
! E(n)~5x(5xﬂdrn=f3(n) Hx(GxFO)dm
vol v
s 13 T G D am (38)



f 3(1’1). L (E) = - wm2 A}n J'E(n). T.:(m) dm
3 vol m=]1 v
_ 2
= - W Mn (39)

vol v
=3 g4 £+ 7. M By dn
v v
+ 75 MG dn (40)
v
vol n

After substitution of the values for the various integrals in Eqn. (33)
and rearrangement of the terms, the generic mode equation is obtained in

the following form.

N 2 $n 1 7 1 -
+ - S R < » S R +E +D']1  (42)
nAh Mn I%m:lmnz‘g_\hm__.lgrm n n
where
Qn= I [ﬁn’-ax z‘«o+6‘“’-ax (w x FO)] dm (43)
v
L O = S T e 5 L Gk g F Gy G Dl an
m=1 v (uy)
g = /%Wy 7, dn (45)
v
- =(n) -
m=lgmn v
E = /% Tam 47
v
p' = 7™ 4y . (@ - T (48)
v
Mn=f5(n)'3{m)dm {49)

T TP T S SN W




The expanded forms of the above expressions are presented in
Appendix III.

The significance of the various terms in Egn. (#2) will now be
briefly discussed. The ter'chn corresponds to the forcing term due
o rigid body motion. ?mn is the forecing term due to the elastic
motion in the mﬁh mode. The term, g,» represents the gravitational
force acting on the nth mode due to the rigid body motion. The terms
8m correspond to the gravitational force acting on the nth mode, due
to the elastic motion in the mth mxie. E n is the camponent of the ex-
ternal force acting on the nth mde. D}; is the term corresponding to
the displacement of the center of mass from the point 0.

In the next section, an application of the equations of motion

developed in this section is presented.

i



5. APPLICATIONS

In this section, we consider the application of the equations
of motion presented in the previous section, to the specific example
of a beam in circular orbit shown in Fig. 3.

In section, 5.1 it is assumed that the motion of the beam is
restricted to the orbit plane. In section 5.2, the general case

of the three dimergional beam is considered.
§.1. Planar motion of a long, slender, uniform beam in civcular orbit

Since the beam motion is restricted to the orbit plane, the

vaw and the roll angles vanigh, i.e.
Yy (t) = ¢ (t) = 0O (507

Also, the elastic deformation out of the orbitr plane is assumed

to be zZero, ie, d»f,n) = 0.

For unconstrained structures,

=n) _ A o . {n) _ ,.(n)
D = 0y Dn = 0 and Ho;S z Hch (51)
where
ny _ e L0 A = e e -
Hﬂs - Vél i-_.a ¢‘S d]'ﬂ (Q, L= h!} _.-J)

and (f., £, £ ) are coordinates of dm in the undeformed state measured

in the body frame.

. . 8!
In the absence of out-of-plane deformations, i.e. g\.\(, ) = 0, we

can deduse that,

00 kD D D D o
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The generic mode equatiors:

+¢n 1 2 1 0
A“ M Hn_mgld? 'ﬁ; (g * m§1 &m * By (58)

where,
{n)

S H)cx
@ = [2 i\m 8 - w) + A 6] @I _ [ m,
. 2 ,.(m) (mn)
—A (B—wc) (Lm +Lzz )
(n)

&, = My Hy
B = A iy L+ My T+ 1) 4 g L)
We will now consider several specific cases of the long slénder beam

assumed to be subjected to rotations and deformations only within the
orbital plane.

5.1.1. The case of no longitudinal vibrations: i.e., ¢}({n) = 0.
For this case it can be seen that,

Rz zm T Txx
By choosing ¢;n) to represent the eigen-modes of bending vibrations

of a free-free beam, we obtain,

(m) _ .
Lzz - (l‘mn n

(80)
where, Gmn is the kronecker delta and M, is the generalized mass of the
beam in its n'™® mode. An expression for the value of Mn for free-free

beams is presented in Appendix - IV.
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Substituting the above results in equations (57) and (58), one

obtains the pitch equation and generic mode equation in the following

form.
8+ M, ¢+ Ez =0 (61)
31 4
y
Generic mode equation:
- 2 . 2., . I
Ay + [w = Moy = (B - w)]A = i (62)
where,
2 &
va - . a,s ,,(s}
M. = [s6 cB8 + ¢ K_ (DM
317 3 o Ks G My
va? 2

M.,. = [3s

R a8 ,.(8)

s=1

©
(%)

Assumptiors of a spherically symmetric gravitational field and

circular orbit result in the following simplification of MBl and M.,
2

va“ _ 2
03 Ye

.3 2 .
M31"2wc sin 26

Mgy = (sin 6 - 1)
Hence, equations (61) and (62) simplify to,
2

g . )
6+§wc sin 28 + ov =0 (63)
A+ { 22 (3 si 28-1)-(8 - w )2] = Eﬂ (B4)
An “n “e n - - c &, !%

Equation (63) is just the rigid bedv pitching equation. Thus from
Egn. (63), one can conclude that there is no influence of the elastic motion
on the rigid body motion, under the assumptions of the present case. The

1

same conclusions were arrived at by Ashley” for the case of a thin beam

undergeing flexural deformations in the orbit plane.

-20-



If the rigid body pitch oscillations are small ie, 8 << 1,
equations (63) and (64) further simplify to (assuming no external

disturbances) ,

6+3mc28=0 (65)
A+ fun? - 82+ 2 b1 A =0 (66)

Without loss of generality, one can assume the solution of equation
(65) as,
8 =csin (Fut+Y) (67)
where, ¢ is the amplitude of the pitch motion.

Substitution of Eqn (87) inte Eqn. (66) yields,

. 2 2 2 2
An+[mn - 3w, ¢ cos (./—wtﬂ')

+ 2/3 wcg e cos(v3 mct +y)] An =0 (68)
With the introduction of dimensionless variables, T = -1’— (V3 wct +Y)

and z, = %/ L where % is the length of the beam, one can write,

.3 dzp 1,2 d2z
A="3u, t 5 and A“ (69)
After substituting Egn. (63) into Eqn. (68), one obtains the
generic mode equation in the following non~dimensional form,
2

dzn 2

"‘"""3"‘"'%[(%*30200‘? 2+ 2vicceos 21l =0 (70)

dr- : Yo n

. . s s . 2
Using the trigonometric identity, cos 271 = %—- (cos b1 + 1), Egqn. (70)

can be re-written as,

dzn

28

+—[(“’n‘ - 3" )

[>] n e " 3 2
P _—— « ¥ cos J hall =1 s = {
dt o 5 + 3 ¢ T - 5¢7 cos ut) 2, 20 (71)

O T



Equation (71) is in the form of "Hill's 3 - term equation" or
"Whittaker's equation."7 For small pitch amplitudes ie., ¢ << 1, the
above equation can be further approximated by the Mathieu equation

2
d-zn
—-—+(5+ecos2'r)zn=0 (72)

Figure 3 shows the Mathieu stability diagr'am8 with € and § as

parameters, It can be seen from the Mathieu chart that for the values
2
of 6 around unity i.e., _w£_2 = (1) the system may enter the region of
e
instability., However for large values of (mn/u.mc)2 the co-efficient of
zn in Eqn. (72) is dominated by (“h/“’c)?' Hence, in the high frequency
range, the elastic modes are essentially governed by the following simple

equation:
2
d ez -
:"+§ @y 2 0 ¢no» D
dt > e We

Thus, it can be concluded that for beams with (mn/wc)z» 1
(n=1, 2, ... =), the elastic motion and the rigid body pitching motion
are completely decoupled from each other. However, if (w,/ wc)2 = 87(1),
(highly flexible beams) one has to consider Eqn,(71) to study the elastic
motion, and thus the elastic motion is coupled with the rigid bedy pitching

motion.



In Section 6, numerical solutions of Eqn. (71) are presented, for

some typical values of mn/mc.
£.1.2. The case of no flexural vibrations: (¢§n) = 0)

In this Section, we specialize equations (57) and (58) by restricting
the beam to have no bending or flexural vibratiors, but allow for the
possibility of longitudinal vibrations. With the above assumption and
the assumption of circular orbit in a spherically symmetric gravitational

field, the following simplifications result,

pam) o plm) pm) (73)

MSl = (.Uc2 s8 b (74)
_ 2 2

My = W (3 ¢"8 ~-1) (75)

Substitution of the above results in equations (57) and (58) leads

to, (assuming Cy = 0),

B+ T 1 b a1 wm) 0 g i o
Jy8+ 2L [A B-w)+A 6] HY 4 [0+ I HE 1% sin 20 = 0
(n)
- 2 . 2 2 2 e _ I
An + wn An - [(8 - wc) + (Dc (3 ¢ 9-1)](—M; + A_n) = Mn_ (77)

Equations (76) and (77) are consistent with Ashley's equations (A-8)
and (A-9) in Ref. 2, which were derived from an energy approach.

Ashley has further shown in Ref. 1, that if the beam is spimning at
a high enough spin rate, ie. wo./Q << 1, where Q here represents the
spin angular velocity, the response of Eqn. (77) for only the first mode,
consists of steady stretching on which can be superimposed an oscillation
with the physical frequency of (wlg + 2.9392)& where, wy, is the funda-
mental frequency of the beam in the longitudinal vibrations assuming
no spin.

w?3u



Ashleyl

has also investigated another special case of equation (77)
by assuming 8(t) = constant. Physically this implies that the beam

is forced to maintain a constant orientation with respect to the

local vertical. In this case, it can be easily seen that Egn. (77)
reduces to that of an harmonic oscillator with the physical frequency

2 2

of [mn2 - u” t e - 3c26)]15. The third term in this frequency

expression is due to the gravitygradient effect. Thus, the grevity -
gradient contribution to the frequency changes sign when cze = %’-
For beams with W, = o’ (wc), the possibility of buckling instability

at 8 = 0 is also evident from the frequency expression.

5.2. Three dimensional motion of a long, slender, uniform beam in
circular orbit: (assuming yaw to be zero, ie. ¢ =

This section presents the equations of three dimensional motion
of a beam in circular orbit. Some of the following results which were
obtained in Section 5.1 also hold for the present case, ie.

}—5(11)

= O = (n) _ (n)
= 03 D'n = 0 and HaB = HBm (51)
(n} _ ,n) _ (n) _ ,(n (n) (n) (n) (n) -
sz'Hzx'ny'P&rx HYY zz . zy"o (78)
Also, Jy = Jz and Jy - Jx = Jx for long,slender beams.
Hence, the pitch equation is,
. T Al s T ol
- + + s +
Jy Wy Jy w, W nfl Qy Cy GRy El Gy (79)




where,

w, =(é-wc) s 3 wy= (é—wc"') ct ;wz=$
nY. , (a S (n)
%-Z[A wy+An(w 2w w)]H
GRy J M 3l
(n) (n)
y s - 2M31 An Hxx
The roll equation is,
(n)
sz+way+nE:1Q GRZ+ZG (80)
where,
M =2 A 0 +A @, + a, v, )]
(n) = .
Rz =92 M N
G, =2M,A H(“)
z 12
2 -
" va va (s)
MJ.Z'-SFB socde 8+-—p-3- leS (p) M12

The generic mode equation is,

o 2 c? 1 © 1 e -
+tpfA +3Dv T @ = (g + I + E ) (81)
Mot A R L Tt A Bt T
where,
®, = - (wy2 + w 2) H(n)
. ) (mn)
Qm-Zi%_n(wy-m)(l - L)
¢ e (mm) (mn) (mn) (m)
Py Ty = o) @R - LI 4w (o) +w)) (LI Lg )
s 2 2, . (m) 2 (mn)
+(2wymz 2mx-wy—z;L -(wy+w)L ]
(n}
€nh © I“lllH:-m
&m™ A (LT Myy + iy + My + 2)) L

et e A ket ko d & e e et s saaten + wh 8% malfars s HL T sanda e aa

(mry) (mm)
* (sz ¥ sz ) ml’i.’ ¥ M13)]

ehA bt

T T T -



(n}

5.2.1 The case of no longitudinal vibrations: (¢}_ 0).

In this case, the following further simplifications result, i.e.

An) _ L (m) _ . m) _ ,(m) _ - :
Hxx'sz -sz 'L‘xx =0 (82)
Aurthermore, if we choose the eigen modes of bending vibrations of
a free-free beam to be ¢;‘n), then,
(m) _
Lzz = 6mn Mn. (83)

Assumption of a spherically symmetric gravity field results in,

- 2 2., _ 2 2 2
Mlz--awe sé cd cB,Mzz-(Bs¢c8—l)wc
» 9 2 (8u)
M23--3wc s¢ c6 s6 ;M33=(SSB-1)wC
MBl =3 uuﬁ2 cp cf sb

With the above results substituted in equations (79), (80) and (8l1),

one obtains the following eguations of:

Pitch:

wy -, W + M3l + Cy/Jy =0 (85)
Roll: . -

w, + Wy wy - M12 + Cz/Jz =0 (856)
Generic m:dei' ) 0 ) )

:i‘\‘_“+(m!_l +2wywz—2wx -wy - W, -M22
i
- M33 -2 M23) An = Mn (87)

where,

W, = (6 - wc) s¢

\a}y = (é - wc) o1}

wz=¢

-26-
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The assumption of small amplitude pitch and roll, i.e. 8 << 1 and
¢ << 1, yields the following set of linearized eguations for pitch and
roll, after neglecting the terms containing the products and powers of
¢, ¢, 6 and 8,

Pitch: . ?
6+ 3w B+§1 =0 (88)
y
Roll:
b +30lo+ 2 =0 (89)
o] Jz
The generic mode equation is,
4;5:+[m2+2d.>(é-w)—(é—w)2-$2+2w2]A'En_ (30)
n n o] c e 'n” L
5.2.2 The case of no flexural vibrations (¢(n) = ¢_(_n) = 0):

y Y
In this case, the assumption of no flexural vibraticn resJults in,

(m) _ ,{m) _ ;(m) _
Lzz = sz = sz = 0 (81)

Also, the assumption of ¢fcn) to be the eigen-modes of longitudinal
vibration of the beam leads to the result,

(mn) _ ; " - :
Lxx = 6mn Mn (ms=1,2, ... ™) (92)

As in Section 5.2.1, the assumption of a spherically symmetric gravity

field, yeilds

M

Mas

2, 2 2 2 2
(3c¢ce-l)wc ;Ml2"3“’c s¢ cp 8

1]

(3 5% o2 - Du? : Myg = - 3 wcz 6 cB S0

M 2

- 2 2
3 w,” cp b so sMgq = (3 876 - Dw, (93)
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For this case, the pitch and roll equations renain the same as
equations (79) and (80). The generic mode Eqn., (Bl), simplifies to the
following form:

N @ ., 1 3 1 ® .
A+w A + + : @ z—=(g + + E )
™M M. - mn Mn gn mglgmn n

n n n=l
(94)
where,
@n = (my + w )Hxx
_ 2 2
Sm "Am[wy v M 4
- (n)
g, =M Ry

-Alil n mn.

g




6, NUMERICAL RESULTS

In this section, the numerical solutions of equation (71), fora
few typical values of (mr,‘/t.uc)2 shown in Table -1, are presented. Cases
1-5 correspond to very flexible beams. Egn. (71) was integrated,
using a Runge-Kutta fourth order method with variable step size, on a
Nova 840 digital computer. As an initial guess a step size of approxi-
mately 1/500th of the orbital period was chosen for all the computer runs.
A pitch amplitude of 0.2 radians was assumed, which is the upper limit
for © for which the approximation sin € 76 is still valid.

The responses shown in Figs. 5 and 6 for the value of (mn/wc)2 = 1.0
indicate the instability of the system at very low natural frequencies.
Point 1 corresponding to 'chLS case on the Mathieu stability diagram
in Fig. 4 also indicates this instability. The other points on the
Mathieu stability diagram correspond to other cases shown in Table 1
and are referred to by the appropriate case number. For the other
values of (w n/wc)2 considered, the beam response is sinusoidal to a
very close approximation, see Figs. 7, 8, 9 and 10. Fhase plane plots
of cases 1, 2, 3, 4 are shown in Figs. 11, 12, 13, and 14 respectively.

It is to be noted however, that when the pitch amplitude exceeds
0.2 radians, one has to use equations (63) and (64) for simulation.

The development of a general computer program which treats the combined
pitch and generic modal equations will be discussed in Section 6.1.
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Assumed data Comments
o (/1 )? otth z (0) dz_(0)/dt .
n ‘e ; n
1. 1.0 0.2 0.5 x 10~ 0.0 Range of T: 0 to 11
2. 1.0 0.05 0.5 x 107" 0.0 ge of T: 0 to 11
3. 2.0 0.2 0.5 x 107" 0.0 Range of T: 0 to 11
. 5.0 0.2 0.5 x 107" 0.0 Range of T: 0 to 5.5
5. 10.0 0.2 0.5 x 107" 0.0 Range of T: 0 to 5.5
6.% | 3200 0.2 0.5 x 107" 0.0 Range of T: 0 to 1.1

* This case corresponds to a beam with a fundamental matural frequency of 1/100

moving in a circular orbit of 250 n. miles altitude.

%% ¢ - Pitch amplitude ir radians.

Table 1:

Data assumed for numerical similation

cps and




§.)1 The Flexbeam Camputer Program

A, Development of Computer Progrem

The first crder non-linear equations of motion for the long-

flexibile beam in crbit as developed in section 5, Egqs. (57) and (58),

were coded for numerical simulation using the Nova &40 digital computer

system. The program, Flexbeam, consists of nine subprograms whose

names and functions are:

FBSET

FBHST

FROIF

RKSCL

(a) set up initigl state, (b) ar input quantity, Precision,

dependent upon the desired precision (range 1.0 to 10'5); the
size of this input parameter is inversely proportional to the
desired accuracy (and also the number of iteraticons required

per computational time step).

(n)
set H.U7 wher =1, 2, .. M, = 2 des
et i3 nere n y < '“‘Nmax 0 mode
set L(ir:‘i‘mw‘nez%r =1, 2y evey Myandn=1, 2, ...y M

set differential equations which include primarv and secondary
functions

(a) set full scale values of the initial conditions: eb, &G’
.‘»\no, and .-;no, (1) set the number of ordinary differential
equations to be evaluated, (¢) set the bounds on the maximun
nurber of iterations (11) that the Runge-Kutta subroutine is
allowed per time step in arger to fulfill the desired precision
specified in FBSET. If more than this nunber of iterativns
would be required the Runge-Kutta subroutine is automatically

terminated.

IIAMTELL o A sl i o 22 S0




In this case, the precision parameter or full-scale values
would have to be adiusted,

RKGS -~ Uses *the Runge-Kutta method to obtain an approximate solution
of the system of first order differential equations, given
initial conditions.

FBPIT ~ calculation of primary intermediate functions, i.e.

Mll’ Mls’ RZ’ sin¢ and cosd, ete.

TBSIF

calculation of secondary intermediate functions, i.e.

¢r, By ¢’m and &

FBOUT - sets the scale magnitudes of the output variables ¢, ¢, A , and
An’ equal to the maximm expected amplitudes for use in the plot
routine.

The flow diagram, Fig. 15, depicts the various subprograms and how

input information, as well as the resulting output of each subprogram,

is passed through the Flexbeam main program.

B. Flexbeam Usage

Flexbeam is a computer similation of the dynamics of a flexible
beam in a circular orbit about the earth. The programming language
used in the main program is Fortran Five. This language allows the
results to be obtained faster than the same results obtained, using
Fortran Four. (The Flexbean out-put program is coded in Fortran Four.)
Flexbeam, contains three principal components: Flexbeam Main Program,
(refer to Fig. 15), Flexbeam Input Data and Flexbeam Cutput Program.

R L) ¥ - 3 2—
e T SERCINI S B TP



Inside the main progrem the subroutine FBINP is associated
with Flexbeam Input Data. The purpose of this subroutine is to
specify the order and format with which the input data is read into
the computer. Block data, also inside the main program, sets the
constant parameters, i.e. gravitational comstant, NU, orbit frequency,
WD, external foreces, QCP, C2, and terms involving the higher harmonies
of the earth's gravitational field, J2 and J3, to their full-scale
values; also constant parameters associated with each mode are set,

i.e. the modal frequency, DW. The number of modes (M) and the number
of differential equations being considered, NORD, are also specified here.

Flexbeam Input Data is the component program that allows the main
program to be executed. The first input of the first data card denotes
the total time interval over which the numerical integration is to
be performed, e.g. 0.0 to 300.0 sec. The second input on this card
is the computational time step, 0.5 sec. The third input is the
precision, 1.0. The second data card contains the initial conditions:
cbo, 5)9 and their scale values. The remaining data cards contain Ane, Anm,
their scale values and the modal frequency, in that order for each mode
being considered. Sample data cards are shwn in Fig. 16 and input data,
for a specific case, is shown on page 12 of the program listing (Appendix
V- 12).

The f‘lexbeam Output Program prints and/or plots any and/or all of
the following: pitch angle (and pitch rate), modal amplitudes (and
rates), and deflections taken at particular points along the undeformed
beam, all as functions of tn.me

[T U R T T O VS S 1. ¥ S



(The designated points at which the deflections are to be calculated

are specified accqrding‘ 0 the position of the particular point from

the left end of the beam, non~dimensionaliged by the total beam length.)
The desired outputs can be implemented by placing the "amplitude vs. time"
deck of cards, (page V - 17 of the program listing), "print out-put"

deck of cards, (page V - 16) of the program listing), or the "call

to deflection plot (DFFLO)" subroutine, (page V -13 of the program
listing), into the main part of this program which is also on page

V-13.
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6.2 Numerical results of Flexbeam Program

The results obtained from the computer simlation of the dynamics
of a flexible beam in orbit using the Flexbeam Program will be considered.
The beam is assumed to be a long slender hollow tube made of wrought
alumimmm (2014T6). The length of the beam is taken as 100 meters,
its outside diameter and thickness are: 0.05 meters and 0.005 meters,
respectively. The structural rigidity (EI) of the beam is 7.707 x 10°
nt = m2 and the mass per unit length is 9.906 x lﬂu' kg/m. It is further
assumed that the e.m. of the system follows a 250 n.mi (463.31 km) alti-
tude circular orbit.

The initial conditions which remained constant throughout all
simulation runs are: ¢(0) = 0.2 rad., $(0) = 0.0 rad./sec., A (0) =
0.5 meters (maximum value) and An(ﬂ) = 0.0 meters/sec. Other parameters,
i.e. the time interval of the numerical simulation and the generic
modal frequencies, were varied. Variations in these parameters and
their effect upon the deflection of the beam throughout its entire length
will be discussed.

The first two cases of the simulation were constructed to test the
program. The first, depicted in Fig. 17, is a simulation of pitch motion
with a superposition of the first and second generic modes, (refer to
Table 2). Each mode is assumed to have an initial amplitude coeffi-
cient of 0.5 meters. The deflection is calculated using Eq. (11), where
) ( (n);

FO) has only one component, ¢, K.

'35’
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The deflected beam was examined at three locations, the left and

right nodal points of the first mode and the central nodal peint of

the second mode, (Table 2). In Figs. 17a «nd ¢, we observe the pre-
dominant effect of the frequency response of the second mode, whereas

in Fig. 17b, that of the first mode. Discrepancies between the responses
shown in Fig. 17 and purely simple harmonic motion at a particular modal
frequency, are attributed to: (1) small numerical errors in calculating
the exact location of the nodal points and (2) nonlinearities associated
with pitch-rate coupling in the generic modal equations. In the second
case, Fig. 18, the freguency of the first mode is set equal to the
orbital frequency. The frequencies of modes two and three are calculated
based on criterion consistent with free-free beams, (Table 2). Figs. 18a
and b. depict the responses of the first generic mode and then all three
generic modes, respectively. In each figure, we note the growth of the
amplitude of the first mode due to orbital resonance as simulated.

Fig. 19 is associated with Fig. 18b. This figure illustrates the de-
flection of the entire beam for a one hundred second time interval.

This interval was chosen to show the dominating effect of the first mode
during this part of the response., It should be noted that the case shown
in Fig. 18 for the response of the first generin mode, duplicates the
eariier result described in Fig. 5, after accounting for the nondimen-
sionalization of A and noting that the initial conditions in ¢ and ¢

shawn in Fig. 18a, will result in a pitch amplitude of 0.2 radians.
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The third ard remaining cases of the simulation shown in Figs.
20 = 29, all depict the following plots; modal amplitude and deflection
vs. non-dimensional beam length as functions of time. The modal ampli-
tude responses are used to study the interaction of the modes super-

imposed upon one another; first with initial values of the mode ampli-

tudes equally weighted, i.e. An(0) = 0.5 meters (Fig. 20), then unequally

weighted, i.e. Figs. 22, 25a, and 27, Figs. 22 and 25a can be compared
since the initial conditions are similar. It can be observed that with
the frequencies chosen for the first generic mode, w = 0.0828 in Fig. 22
and w; = 0.628 in Fig. 25a. which represents /100 and 1/10 cycles per
second, respectively, the responses shown, illustrate the effect of the
greater rigidity in the latter case. The deflection plots are used to
study the deflection of the entire beam during specific time intervals.
As a particular example, we consider Figs. 20 and 21 jointly, to study
the effect of the superimposition of the different modes at different
intervals. We note that at the beginning of the simulation the signs

of all three modal amplitudes (Al - Aa) are positive. Figures 2la,and b,
show the deflection of the beam throughout the length of the entire

beam during the first 21 seconds. From Table 2, it is observed that

the deflections at the left end of the beam due to the first three

(or more) generic modes, will be additive providing the modal ampli-
tude factors have the same sign. This phenomena is apparent in Fig. 21la,
where the irutial larger deflection at the left end of the beam should
be noted.
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The first and second modal amplitudes have negative values between 42.5
and 48 secs. whereas the third modal a_nq:litﬁde has a positive value,
(Fig. 20). Tt should also be noted that the first modal amplitude
reaches a maximum negative value at 45 seds. During this time period,
the dominating influence of the first mdé in the deflection response
(Fig. 21c), is apparent. The contributions of the second and third mode
tend to compensate each other.

The remaining amplitude and deflection responses showing the
effect of different initial conditions and the numbers of modes in the
model can be examined in a similar manner and will be useful in the
forthcoming similation of the free-free beam under the action of
various control devices.

Figure 30 shows a typical response of the pitch motion of
the beam for a simulation which involved only one generic mode. Since
the pitch motion is not coupled to first order with the gemeric modal
motion [Egqns. (88) and (90)], this type of response is representative
of all pitch motions simulated for small pitch amplitudes.

For all numerical cases reported here, an average of 10-12 minutes
computational time was vequir 4 to simulate the dynamics over an 80

minute interval of real time using the NOVA 840 computer system.



7. CONCLUSIONS

This report presents the development of the equations of motion
of an arbitrary flexible body in orbit., In the case of planar motion
of a long, slender beam in a ¢ircular crbit, undergoing small pitch
oscillations and flexural vibrutions, the pitch motion completely
decouples from the elastic motion and the elastic motion is governed by
a Hill's 3 - term equation. Tor large values of (w/ mc)2 the elastic
motion completely decouples from the pitch motion and the elastic motion
closely approximates that of an harmonic oscillator. However, the
numerical results indicate the possibilitie. of instabilities at very
low values of (mna’mc)z. A general computer program which treats both
the pitching motion and the first-order flexural vibrations of a thin beam
in orbit is developed; this program can be modified to simulate the effects
of both external environmental torques and control torques that may be

provided by actuators located at various positions along the beam.
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Undaformed Body
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Beam Cross-section

Fig. 3: Beam Satellite
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Mathieu Stability Diagram
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Fig. 11:

Phase Plane Plot (case 1)




i S

o T

o

3
joe]
[
b
3
=3
o

Fig. 12: Phase Plane Plot (case 2)




2
z x 10°

FOPR R TRPRIS P R

T e s
1

-53=

SRS TR SO SR

Phase Plane Plot (case 3)

Fig, 13:



R A e SRR T e,
iAo TR

-hg-

5
dzn/d'r x 10

Fig. 14: Phage Plane Plot ( :

case 4)



: ‘ ‘ : »{ TBDIF s RKGS ‘A“(t)‘r FBOUT
| | , )]

4
¢ | RKSCL FBLST S S 1
t I | ‘
) _ FBSIF |

1.C. Full values imf of Body Dim. of
Precision, T, At :

comp, no. of
o.d.e.'s FBINP

Fig. 15: Flow Diagram of Flexbeam Program
Howard Univers:ity NOVA - 840 Dlg:.tal Computer




7.0 300.10 5 1.0 1)
wilinvldl sqtervel | comp. FORTRAN STATEMENT F—
Mol i . {e(] Preecrsion
2 0.0 .2 - 00050 R
!1::'-&':::1‘. g;Po * @) Sc.alr, F'OF TﬁA@ :TAT‘EM!ENT toENTIFICATION
5 0.0 1.8 O3 . BEREZLIES x)™
‘¢'ln-'u"=m'§_ _ ! : ! X
. ” L 4 e A EM NT (OEHTIFICATION
ﬁ‘ ﬁ-..l_o@, _{5tle ﬂnLoi .‘:mc Nn(0) Texde req.
L 0 0,00000§000050000§0,0000000p0,6000C00pUOOURO00A0000D0000GO00[GOCE0007
b T A4S A g mauwnannawawumasmaa?unuumunm SISV AVMOUNRNHES AN RGN0
1:1111 SRR AR R R R R AR AR R R R AR R AR S RS AR R A R R RN ERRR AR RRRAREE!
22122 22222222203222222222222272222223222522222322222222222222222222220122222122
1d3313 33,333933,333332339,3,233333},9333,3333323333333233333333333333533333333
I:HHHH SAAAAAAALTHAAAGAAEAAAARAGANAAAARARAN AR LAAsARARNRIRAARALANS
B, 55555555 5555555555 545555555p555555555p55555555, F5555555555655555555555/55555855
‘s:ssss_ssss 666666666 fE56666665p666660666p66,66666656606666666666666666666(56666665
R AR AR R R R A R A AR R R R R R A R AR R S R R R R A R R R R AR AR R R AR R R AR R R R A AR AR RARE RRRRRE I
,inaaa‘auu 98_888008p 880033880 0058880605 808 30 _byuoasentnenesnnssnassnsiionsssss
919994[9{989$9599599930999929999590899852599D59999999999999099399539959909393/999988489
a3 esiefra s 1;;1:“1"&“1”1!1‘ uunuusnaarﬂnnaasn:a HEQUSENNOPURNANSRISSANEUAGHUAARNINNBRB RIS

Fig. 16.

Sample Data Input Cards

§1 39Vd 'TVNIDINO

RIrtvnd €o0od 40



(sa=aew)

250

125.0

“SDO 3511 JO IUTO4 TEPON 39T Sz 1B UOTLISTIaq

T T PR T W T P S UPRENU PP LSS PSS TN

187.5

Time (seconds)

Beam Deflection Time Response

Fig., 17a



(sx=19u)

250

125

m-o = U—AP ﬁUV @
SpOo| PUODRS JO IUTOJ TEPON STPPTW SUYF 1P UOTIOSTISQ

Time (seconds)

Beam Deflection Time Response

Fig. 17b




- emf ey o - fmes -mer s L R e s s e (O —p—-

Time (seconds)

Fig. 17c: Beam Deflection Time Response

125

(Sasasw) “SPO[ ISATI JO JUTOJ TEPON IUSTY 32 UOTIORTI(Q

-59~




_09—

Al) meters

Mode Amplitude (

0.00
I.C.:  ¢(0) = 0.0 rad
- 5 ? |
$(0) = -3.86 x 10°"
0.005 (rad/sec)
| Et=
0.0 t 15000 sec.
0.223T
-0.009 _

Fig. 18a:

Toz 5632.286 seconds

1

= 0.001115 rad/scc.

Time Response of First Generic Mode

(Orbital Frequency Lquals Mode Frequency)

ALTTVAD Y004 J0
SI UDVd TVNIDIYO



max = 1.6m

r/s
r/s

003076 ' 1/s

0

,0,006013

spraTTduy Spoy

-f]l=

AL Pagp
“mn
=
i
G
o
2
S
0

o

113]

g%

N Q
g
2
[72]
&

Time

Fig. 18b




ORIGINAL PAGE IS

OF -
POOR QUALITY, i e D R e W S gy o gy
: ; --“: e B Vo T = '_';. ; e g Y e
A S I kit it o G S Sl il o |
i b | i o K ‘ b
0 Tz ewi0
—
5 L Tze420 10
-
§ 0.0*-~h\\_‘h__7 — e —eeee—10.0
&
&

Time (seconds)

0.0 1.0
Non-dimensional Beam Length

Fig. 19: Deflection vs. Non-dimensional Beam
Length for 6400 < T < 6500 (secs)

0.001115 r/s

0.003076 r/s

0.006013 r.s
|
|




0.0628 r/s

i

- Wy = 0.1733 /s

175 g 1= 0.3374 r/s

T T

e B

(Ssaeisw) epnaTTduly SPoy

=63

300

Time (seconds)

Time Response of Three Modes Equally Weighted

" in A (0)

Fig. 20



Deflection (meters)

Time (seconds)

3.0
0.0

ORIGINAL PAGL, 13
OF POOR QUALITY

A0 see——t— —— T e
seme Srem - o , - ::'?"- :' - :'__.__ l .-:'.'.';.. ...-..-: Y l;ﬁ
b . o - A

¢ ot ST g / s e 1

! S b s bef opdzded b

wm’ 3.0
T e =181

T=2.0secL,

0.0628 r/s

_F
1"

0.1733 r/s

=
"

0 . 33147 l"i’S

£
"

b E sk
T2 (0.0 sesi -

\—:’/

Non-dimensional Beam Length

Fig. 2la: Deflection vs. Non-dimensional Beam
Length for 0 < T < 10 (secs)

L=Bli=




18
ORIGINAL PAGE |
OF POOR Q'UALITY Teltee FAiRETE RS T ot B

> T=12 sec,
§ /’_\ T
T \—-—’
j% a
3. 3.0
= T=13 sec.
C
B~
L
t; D. Av_ 0.0
é ;
o -3.0
8 3. T= 14 see. oE —
e e e e e

0.0628 r’s

F

0.1733 »/s

0.3374 r/s

€
"

Time (seconds)

0 1.0
Non-cdimensional Beam Length

Fig, 21b¢ Deflection vs. Non-dimensional Beam
Length for 11 < T < 21 (secs)

B 5=

i s e edeaain M

i e

s aide it ciek bl bl g



Deflection (meters)

Time (seconds)

T=43.5 sec.

S [ 0
T=44.5 sec.

Non-dimensional Beam Length

Fig. 2lc: Deflection vs. Non-dimensional Beam
Length for 42.5 < T < 52.5 (secs)

~3.0
T=465 sec.
=
ISt > = - T = 1 wl
%
i

"

"

e

0.0628 r/s

0.1733 r/s

0.3374 »/s




&
am 0] __2
S

o) ™ oF = =

™~ M B~ BN

AGE 8 Mm mm nw o o

OEQMZF WG% E e oy g

O.W WQON,D, MI_ :2 :3 A_l A3
3 3 2%

SRERT TR

(saeasw) spratTduy Spoy

Time Response of Three Modes Unequally Weighted
n

In A (0)

Fig.. 22¢




Deflection (meters)

Time (seconds)

ORIGINAL PAGE IS
OF POOR QUALITY

2.0 msoe T 7 2.0

Quu
__/ s
0.0

0.0 e

VQ«, _
/

SR

T Soisec— oo

= 0.0628 r/s

E

= 0.1733 r/s

wy =
Wy = 0.3374 »/s
T %S A1 = 0.5m
A2 = 0.3m
A B : A3=0.2rn
e Qosee. T b
Bmbacl — -
T" T F -2 > - i
0 . z 1.0
Non-dimensional Beam Length
Fig, 23: Deflection vs. Non-dimensional o

oo g i e e d



5
=
8
8
3]
PR T S
&
)
B
9]
Q
(4]
-
Q
ﬁ
= 0.0628 r/s
= 0.1733 r/s
= 0.3374 r/s
521 A1 = 0.5m
AZ’ = 0.3m
A, =0.2m
o

Non-dimensional Beam Length

Fig, 2y, Deflection vs. Non-dimensional Beam
: Length for 47.5 < T < 57.5 (secs)

-69~




ORIGINAL PAGE I3 @

OF POOR QUALITY F
5
-
1
g

= 1.7332 vi/s

—

A o1 2 N -

Time (seconds)

A _(0)
n

Time Response of Three Modes Unequally Weighted in

25

Fig.




2.0

=20 jee.

0.0

Deflection (meters)

0.0

Tz 1.0 sec.
—

Bt

Pty e e pe—

:::PI:.;:;EB'-?'G‘C._,‘:- __.,___L-,’.:..__,__.‘q;—.‘.:-_f:-:r.::z:_—_
- —— - — .._r—éw__l‘...r..-_._---—._T —_ j —

— e gt

Time (seconds)

= 0.628 r/s

g
SR R -

-2y Tavo,

T3 |..‘. .fn.t‘. 2 A o] St f.‘:;.;:": 3

Fig. 26

0 Non-dimensional Beam Length

for 0

2T <10 (secs)

1.0

Deflection vs. Non-dimensional Beam

= 1.7332

w, = 3.3741
o

LG

A

-

A2

Aq

1]

r/s
r/s

0.5m

C.3m

0.2m




0.0628 r/s

0.1733 r/s

L\)2 =
i

0.3474 v/s

0.8337 v/s

LUS--

Time (seconds)

A (0)
n

Time Response of Five Modes Unequally Weighted in

Fig. 27:




ORIGINAL PAGL

OF POOR QUALITY

(7)) n ) £ = £ £ =]
s Bl VA [y B [ Y - = |
£ & & Wa P
o TG o S s TP s S e
(4] = [
™M &~ " 1" 1" i" "
~ ) o 5 i s
-+ ™ o« 1 E 1
gl g el Aoy
[ SR e W oo
1" 1" " .
e o o | ©
- - Ll
() o e_o
-—be
57 I 1 L
il
| ' HE i
Sl i}
it
il
HH|
L
J J .._“
; H y
o el
3 P wifil
ok 1 U] Y
| o ks ”..l, i J
A '
[T
o o o
- . -
(307 o n.ﬂu

(Saeq=un) HoTloeTIeq

(SPuooas) L],

1.0

Non-dimensional Beam Length

Deflection vs. Non-dim:nsional Beam

.
-

Fig. 28




ORIGINAL PAGE IS
OF POOR QU

L N R
BT e 2

,:..I.’__fg'_ T

f.

z

b

£

e

S

o

il

Q

U

g

=)

~

L2} e r—— e e ——p———
2 T e sea——r=r] ===
8 —==

Q

2

&

s et
e —

B e e o

"
o
o
53]
)
(8 o]
2]
~
n

Non-dimensional Beam Length
Fig. 29: Deflection vs. Non-dimensional Beam 5
Length for 47.5 < T < 57.5 (sec) :




g
-
| 3 ‘ 1
Y, 3 80 0. 18T 0.536T 0,040 T 0.592T 070 8000 .gec
o
' &
6]
=
a,
-0.2 24 ~. A
Torbit = 5632.28 sec w = 0.0051 rad/sec T, Cie ?(0) = 0.2 rad
$(0) = 0.0 rad/sec

Fig. 30t Time Response of the Pitch Motion




Appendix I

Transformation Relations:

l. Transformation from T to Ty
= i
S i

)

Fig. (A-1): Inertial and intrinsic frames
From Fig. (A-1) it is evident that,

_'ﬁ -  — P’W
11 sSnNcuw SnNsow cn X

i2 = l2ancw cnsw s n Y (I-1)
1 -s W cw 0 Z
3 i o

g




na

Transformation from the intrinsic frame (Tl) to the orbit fixed

frame (12):
i (2\0)
ey e ot g st
XD i 0 0 11
YO =F 0 cy sy i, (I-2)
; )/ LZO ; i 0 =83 eX i - .
1o by Fig. (A-2)

3. Transformation from orbit frame (To) to the body frame ('1'3):
xt X5 FRCTLE

YO vy (y ;P
Fig (A-3): Euler angle rotations

Xy Y0 Zq. 12 x' y' 2! g . Y 8 s
yaw pitch rocll

From Fig. (A-3),

x| [' o6 sb 0 o & a1 ¥ 7 7 X,
y = ;=80 cp O 0 o 0 0 cy sp Y0
z_l l_ 0 0k gl ch 0 -sy cu Z{J
bis chch sécy + cisdsy s¢syP - cosbay XU

i.e. v|=|-sbcd cpcy -~ sosOsy cosy + sosbey Y0
o sb = cOsy cOcy ZO

s S
T
T3 (d, B, 1) (I-3)

12
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Appendix - IT

The transformation metrix connecting T, (P) and Tys where P
is a general point in the body, is developed as below,

(1) Transform a vector in Ty (P) to a vector in g using the
transformation Tl'l (P).

(ii) Transform the vector in To to a vector in 'rl(O) by the trans-
formation iy (0)

we can write,

. =1
T BhE TTL0) 4 AT
= + —= —
T @)+t M+ b M+ HOLT,
Hence,
L0 T ) B (=D
where, aTy 3Ty
42T O [z tn+ gt M)

and from Egn. (I - 1)
Q' =1 0 0 0 =-sn 'l
A = An [-1 0 0 +m[-o 0 =en
l_o 0 0 l_sn en oJ (IT - 2)
Thus, the transformation ( I+A ) transforms a vector in T (P) tec a

vector in T (0), i.e.

4 il
i, sHI + 4 ) i, (IT - 3)
i i
3 3
T (0) ™y (P)
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The gravity force per unit mass at 0, expressed in the

intrinsic frame at that point, 5 (0) is given bv,

cisgn

ap
9

<

fo (py N, w) =vv|0= (II - 4)
L

1
o
| PST

s Bl

40
Where, V is the gravitational potential given by Ean (5).
The gravity force at P referred to the intrinsic frame at P can

be written as:

= of
B S N Y B YT £ + H.0.T
D 0 2 i d P,N,Ww Aw (II 13 5)

Hence, the gravity force at P can be referred to the intrinsic frame

at 0, T, (0), through the use of transformation Eqn. (II-3), by:

F= 4 F
(1 F
£ @i : 5 o gl
Fe(l+A) |5 » An ]
" 0 " 3(p,n,w) Aw {1128

- -

To a first order approximation in Ap, An, Aw,

al -Ap
=~ = ot
F=F.+AF +. An
0" =70 " "30p,n,w) A (I -7

From Egns. \II - 2) & (II - 3), it is easy to show that,

= ™
0 -Fn -Fwsn Ap
AF = ol An
8%, 0 Fp chn %
0 0 Fpsn*’Fncn (IT - 8)
L -




where, oV va2 a, stl
o — e et ke K — Q
Fp 5 5 va SZ = (p) =
S+l
1 oV va a :
o s — Q
Fn p @n P s=1Ks (p)
S ey
Sk Miatme: e iyas STt
w  psn  dw psn say: S8 2P S

(IT - 9)

By some matrix manipulations, it can be shown that,

3F ap [ o
AT. + e An | = B*® pAn
=0 3(pn,w Aw psnAw (I -10)

where,
— ! " S
Foiba Boaa i sas By
ap _I-p n n | psn | dw w
S— — — — _[_ Prom——, anm—— —— — —
BA . aFn 5 1 BFn $E Vi 1 BFn - Poar
L o apiinny o] | ——— L w
0 ) an [ psn |\ dw
—}; — ——r ——— — ———— i}
1
3F orf .
wp 1 ‘*’ e b8 » - -
-2 | 7 ( 5 ) g ( 5w~ * FoSn * Foen (II - 11)

Evaluating the partial derivatives in B*, using Eqn. (II-9), we arrive

at the following ex ression.

Bt = "—g“ B L. K, 3F° a(s); (IT - 12)
P s=1 P
where,
B0
B(O) 2 -1 5




s
and (s+1) (s+2)$‘:s —(s+2)s.’é -s(s+2)-s—n-
s . " . QS !
B(s) 5 -(s 2)525 [S'zs. ~ (s+l1) QS] ( 3].
A LEE
—(s+2)9- El_s_ [Q! cot n-R_(s+1+ m2 Y]
v sn sn s S a2n
(IT = 13)
Also, to a first order approximation,
Ap
oln = (T3T2)‘1 T (II - 1)
pquw

where r is the postion vector expressed in the body axes frame, Ty
After substitution of Egqns. (II - 10) and (IT - 14) into Eqn. (II - 7),

there results,

FEF +B* (T, T,) ' T (I % 18)
Reprojecting on the body fixed frame, we get
T=F,+M> (II - 16)
where,
e R
Mis- T T, B (7, T, (3B
If we write, M = M(?) + £ x_ (%)s uts)
then, 2
T ) el v o s = (II - 18)
<l o ‘;—3-2

The matrix M0 is given in Eqn. (6).




Appendix - III

This appaendix presents the expanded forms of the vector expressions
in equations (28), (31), (32), (u43), (u4), (45), and (u6).

let us introduce the following notations,

in) - (n)
HaB =L Ea ¢B e

vol
(m) _ (m)  (n) (i
LaB -vcfl 0 ch dm (III - 1)

(n) 1 (n)
I g =L b dm
o Bty 8

By the assumption q= ¥ A (£ E{n) (;0), we have
n=1
7= I A®TVE)
=1
and T= I AW @) (III - 2)
=1

Consider Egn. (28),

I Q™ Fyxat2Tyx@x +Fx @xD
n=1 vol

+ax(3xfo)-(50'a) (wxq) - (q@* w (c-u-xFO)]dm
Q™3 TAGxE™) 28 @ @xT)

n=1 vol

+ An {FO x (W x )y +(5(n) x (W x ;0)

- @ @x ) - @™ B @xFpNam @I - )
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Using the methods of vector algebra, the above expression can be

expanded in the component form to obtain

(n)
Q H}(,n) (n)) + 9 Ah [(F(n) s H(n))m (n)my (n) ]
+ A [0 + KD b, - G + + B Ny = ™ + 1O,

(n) (n) (n) (n)
—2myz(H Hyy)-wwy( +Hzx)

(n)

*ow, (H(n) * ny
(n) n are obtained by the cyelic permutation of X, ¥, 32

Y
(n)

in the expr.ss:.on for Qx

) + (mf = 2 (HS(;) - H;‘;))] (IIT <)

Now considerequation (31), which is given by,

BowipapgMp dn
o e 0

On expanding in the component form,
Z;R = J, - Jy) Moq B Jz) May j o+ (.J'y - Jx) Mo k (III - 5)

where, Mij is an element of M matrix

Jys Jy, J, are the principal moments of inertia of the body in the unde-
formed state.
Considering Eqn. (32) for E( , we have,
@
k)

T 8 -J'(r qu+qur0)dm
n=1 vol

GrpnR LR, M ™ + Ty M T am (IIT - 6)
=@ n
n=1l vol

III-2




Hence, the components of (III - 6) are,

(n) _ = (n) (n) (n) (n)
G = A Iy - M0) (Hyz y sz ) ooy (RSB HC0)

(n) (n) (n) (n)
M+ B+ 2 M5 (" - H D)

(n)

™) ang @
A

y
of % vy 2 In (IIT - 7).

components are cbtained by the cyclic permutation

Now consider the following scalar quantities.

Eqn. (43):
o= [5'(n) . Ex?o § 3 ol (EXFO)]dm
vol
= iy 2 - B2 e G - 1) <o @ - g
(n) (n) (n) (n) : (n) (n)
+wxwy( +ny)+wywz(l-g/zfﬁzy)+wzwx(ﬁzx +sz)
2 i) (n) 2 atn) (n) ) (n)
adhy (Hyy +sz)_wy (sz Y Hoed - (B +I'g/y) (III - 8)
Eqn. (44):
o= L ¥ axges™ oxg ™ Tx @GxDIm
m=1 vol
=L LA RY axi™
m=1 vol "
+Am(¢7(n) . 5 x'cﬁ(m) + 5(:\) cwx (0x E(m))]cim
Hence,
R (m) (m) (m) (m) (m) (m)
¢m'2Am[wx(Lyz -Lzy )+wy(sz -sz )+wz(ny --Lyx )]
2 (mn) (m) s (mm) (m) s (m) (m)
A [, (Lyz =gy ¥t wy s ~ i v (ny ol )
- (mn) (mn) (m) (mn) (m), ,(m
+ Wy (ny + Lyx ) + Wy, (Lyz + Lzy ) + Wy (sz + L )
2 ,,(m) (mm) 2 ,.(m) (m) 2 ,,({m) (m
@, (I“yy Lzz)_y(“zz +Lxx)'wz (Lxx +Lyv)]

(III - 9)




Eqn. (45): gnzv;rl gl » M1, dn= géﬁas Mg (III - 10)
Eqn. (46): T g =i S Madm=§ A S 3 L m T ™

m=1 vol m=1 vol
Hence,

B A I AL 1 (III - 11)

where, o B = %, ¥, z or 1, 2, 3. For example, when a is x in H;IBI),
the corresponding value of o in MaB is 1. In a similar way when o is
(n) (n)

y:mHaB,amZmMaBandwhenalszmH

aB’alssmMaB' Same

reasoning holds for B8 also.




Anpendix IV

Natural frequencies, mode shapes and modal mass for free-free uniform
beams:

The natural frequencies of a free-firee beam can be obtained by

solving the following frequency equa'tion.g

cos BL cecsh BR =1 (IV - 1)
where,
£ - length of the beam
el
m' - mass per unit length of the beam
EI - bending modulus

w - natural frequency
The mode shapes corresponding to the frequencies obtained by Egn.
(IV - 1) are given by,

cosB_L - cosh B %
z2:Mx1y = p ( n n (sin B x' + sinh §x")
DI\ sinhB 2 - sin 8.2 4
n n

5 + (cos Snx' + cosh an‘)} (IV - 2)
|L . —
L . ; i
f—— x' |—-—- x

Fig. (D-1): Free-free beam

MIV-I MM‘ i it B _—
e i é - : o ; ; e s ,




where, Bn (n=1,2, ~ -~ ) are roots of Egn. (IV ='1).
It should be noted that x' is measured from one end of the bearm,

as shown in the Fig (D-1). Hence, %' = x + 2’/2

1
Define, T =t &
an = Qn

Hence, the non-dimensionalized form of the mode shape in Eq. (IV -2)

is,
cosﬂn - coshf.’.n

(sin £ +sinh ¢ )
sirh@ - sinf s R

30 oo

» (cosSZn £+ coshan )} IV = 1)

The following Table - 1 gives the first five natural modes and the
approximate values of the corresponding natural frequencies of a free-free
beam.lo

The modal mass (generalized mass) in the nth mode is given by,

2
M= £ o™ ) pav IV« 5)
n pER
Since the beam is assumed to be uniform, u = constant,
Hence, + 9./2 (n‘iz
Mn ;b f (x) dx (IV - 8)
el
Using the change of varisble = ;i+ % s We get
3
M o=m't S 2™ (0% av =)
0

Substituting (IV - 4) in (IV - 7),

M =D2
n

3
: : z
G m'L é’ [Kn(smﬂnc + s:mhﬂni;)

+ (cosﬂn«: + coshﬂn?;)]zd:: (IV - 8)

IV-2

S——




Table - 2: Mode shapes and frequencies of free-free beams

Mode shape . Fraquency
[ Lk
~ v

L .729,

¢
I
F

1
nF

\9.094 0.355 0.6 0.908/

\I\ IV . /l’ wa
N W —
\0.07314 o 1 B 1235927
Y| Judt lia fr T ")
~ g < 7 3 I
\ 0.06 .227 .u09 .581 .77 .8
N = i e Wg
e e e e

3

Note: The frequency value of zero corresponds
modes.

IV-3

3.56 [EI
T 1
m'R

1"

9.82/EI
m'e”

19.2/E1

-
m'f

= 31.8 1
m'e”

u7.5ff-.1
m'”

to the rigid body




where Kn = (cos Skn. o cqsh Rn)f(smhﬂn - sin szn) )
~ The verious definite integrals appearing in Egn. (IT - 8) are

evaluated :z.n : Tébla -3.

Table - 3: Useful definite integrals

1 L .
[sifopdp = 5- S0 %h
0 n hQ
1 . 2
S 8in @ T cos Q 4t = Siny
0 'ZS?n.

1 . .
J'sinﬂqr;sirms}nt;d?;= cosh O, sin &, - sirh &, cos f,

0
20,
1 . .
S sin 9.r cosh Q¢ dr = Suh S sin &y - cosh Gn cos fn + L
0 o n 20n
Qﬂn
* 2 1 in 2
foos®0 r ar = =+ 52 26y
0 i 2 u
l - -
S cos @z sinh T dz = cosh @, cos fip + sinh &, sin Q-1
1]
28,
1 . L4 -
f cos R cosh Rc dg = sirvh @ cos @y + cosh &, sin &
0 By
291‘1
1 .
s sinhzﬂng gr = Simh 208 %
0 i~ :




;
o e D
é‘ sinh ﬂni; cosh san«, dg = sinh Qn/‘z.Qn

1 .
S cosh®p g oap = SR 2y 1
0 n 2

b9

Substituting the valies of various definite integrals in Eqn. (IV - 8),
after simplification we get
2 .
- Dn m'L 2 Slnh Zgn .
Mn = = [(Kn + 1) (_T__ + cosh @ sin Q

7]

- (Kng—l) (.5_3;1_:_2_91_1. + 8ith @ cos 9 )

+ K (sin @ + sish )7 + ] (v - 9)
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l -erzv;m'n -'UNIU'ER_-SI'TY' ;.;--_g'cunqr_ (s 'E—Mrg-ﬂ.t&‘-?pzmc; e MOVA ROD COWPIITRR *
*
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{PTPANXRXE/D Tup Tﬁi RR/B TMP S/
COMPILER DOUARLE PRECISINN
E FLEY BEAM MATN PROGRAM . :
REAL L11,L13,L31,L33, M1, Y13, M31,M33,88,02,03,L8,L0,NU
T OMMON T/REAMY T PARM(SY, Y(42),DY(82), ;
i 2 H11(20),H33(207,H13¢20), ' ;
& 3 L11(20,201.L.33%3020,20),L13(20,20),L31¢20,20), ;
]H TMLL S MIZLMIT LML, MG, ALPHA, -
P(20),PP(20,20),G(20), GG(20,203,
_ﬁ 6 Dl‘l(EO],H"»(EQ} HD(?G],?;M[],& ROeJ2,J%3, .
QC(20),0CP, #D,E(20Y,R2,L5(20,20),LD(2n,20),C2,¥,NORD ,
caMmmm /L0G/ STIZNOM{42Y, SIZMAX(42), LIMES, LSTEP §
DIMENSION AUX{12., 42) .

%ﬂ OPEN 5,"SYSOUT",ATT="ARH
DELETE "FLEXBEAMY — |
OPEN 3, "FLEXBEAMY ; i
. GPEN P ,uTMDM ATTzH® - o
CALL FRINP(PRCSN3
CALL FBSET([PRCSN)
B LINES = 0 . .
ﬁ LSTEP = 0.,20%( (PARM(2Y - PARM({))/PARM{Z) 3 + 0,5 ;
CalLlL RKGS(PAPY,Y,DY,NORD,IHLF,AUX) : : +
DO 7 T = 1, NORD
“E RATIO = (SIZMAX(I)/STIZNOM(TI))I*100,0
2 WRITE ¢5. 917 1. PATID ‘
7 _CONTIMUE e . i
WRITE(S,9y IHLF ;
CALL EXIT

E 9 FORMAT('OFIMAL VALUE OF THLF:*,T3)
_ 31 FORMAY (roY(’, T2, 7)) PEAK:"; Fb,1) e e R
END - !

Q%Llsr

TN e _ .
3| .

E- | N | o " ORIGINAL PAGE 18"
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a B E " - et pnd N - 3 o it e L T I A

ETE TMP,LS
riT»kM/q/Efp THME TMP.LS/L FCT.RR/R
COMPILER DOUSLE PRECTSINN R .
CSUBROUTINE  FOT (T.AY,8bY) o
i REAL Li1,L1%.L31,L3%M{1, 1%, M31, M3, M8,T2,J3,L5,.L0,NU
COMMON JBEAM/ PARM(RY, Yeuzy, nvruz),fﬂw e
2 OHLTCPO),HRTE50),H13C20),
. I 3 L11(20,20),L3%3(20,20),L13(20,209,L31{20,20),
M6 ML1,M33,M13,M31,M5,ALPHR, "
5 PL203Y,PP(20,20),6(20),66(20,20),
6 DW{Z0),H5(20),HD(20) 7, NU,A,RD,J2,.53,
B 7 occzoriace,unec200,82,05620,20) L0 c20,203 02, NORD
i FARIF=-~-DIFF EQN*S
CALL FRPIF
CalLL FRSTF
i DY CTI=ALPHA ) - L
OY(2)=Y (1)
DO 2 I=1,s
B DY(2EIH#1)=FRBECRCTY . -
DY(R=I+2)=Y(2+1+1)
2 COMTINUE
‘ﬁ_.-E.EJUF{EW,__- e . - —
_E___E_.@. s
B
I E‘ |
r
|
|
e —— s =2 e o mm———

»
© e m— m—— -— [ U —
e ——— - S —— ————— s m

o ———



a”PquT"
RINT § -
DRTQT i

ﬁ?RTPAN/h/E/D TWR TWPR L 5§21

E.‘

FREET.RA/R

CONMPILEP DOIURLE PRECISINN
SURROUTTIME FRSET(PRFCSMY

PEAL U311, L13, L1, L33, ML MI3, ME1,M33,M5,J2,J3,LS,LD,NU
COMMON /RFAM/  PARM({S),Y(U2),0Y(42),

© 2 HILr20),HIX(20),H13c201, e o
3 L18(20,209,L33€20,200,L13¢20,209,L31070,209,
I 4 MIY,M3T,M1Z,MT],MS, 8LPHA,
_ S5 P(20),PP(20,20),:G( "M ,66(20.,70), e
oA DW20),HS(20),HDCINY, 7, UL AR, T2, J3,
Iﬁ 7 BCC20),0CP, wD,FECR0),R2,L5(20,20),LD(20,20),C2,M, NORD
B " FBSET -SET UP IMTTAL STATE T
;5 (PRECSN=PRECTSTON, RELATIVE TO {,0)
- w{fALL“FéT-{"{-;T k4 g — s e o - Sk a1 e A ke v —_—
CALL FBLST
i_ =l 2UHRE-E I . _ I ~
T TCALL RKSCL (NORD, DY, 0y, PRECSN,PARM)
i RETURN
'al | END
_ES, . . e .. .
i

ORIGINAL: PAGE IS
OF POOR QUALITY




"WIST
MT { : - ' ' R
RTFAN/R/E 73 Tip Tup L8/ EAMST, RRiR'
COMPILER NONALFE P9¢CISIWN
SHRROUTINE FRAST .
FEAL LAl eL% Lw%r“!lr“iW MR M35 MR, 02, J3: LS LD LS
COMMON /REAM/  PARM(SY,Y(82),DY(42), ‘ ' |
MI1{POY) , HR3(20), Hi%f?ni, ‘ o
CLiifet.en), L?s(’ﬂuPﬂigLibfPﬂ 20) LKif?anOJp o e e e e e v e s
M{ 1,833, M5, M4 M5, ALPHA, ' :
PL20) e PPLPO,20),G(2M),GGR(20,20), -
DRI2N) ,HAL20),HDLANY 2, NU LA, RG,J2,d0%, i
--QC(PhupQCP 4N, EER00, R?, LQ(Pnpan\ an?n,?n);EE;M NDRD

|
1

at

N R

Do 0 Isl,m
HI L G o0 el o ot e s e e e T O cavmre e vt v o e}
HIiZ(IY=0.0
‘ H33(I3=0,0
HE(I)=0,0 —— e e e e et o e e na 52 se s e
HOCI)=0.0 :
10 CONTIMUE \
o RETURN e e e e e e e e e = e i e}
BN e e e e e ¢ e+ ot e e e

P

L b s e s emitmen 4 e v et

OF POOR QUALITY - ' ’

w24

- e = s a— g T LI L TR T S PN
. - - s
E .
]
L . . e e e - O O T T T T R bt
,
:

- - - b 4 s - it e v TP - v -
-
‘l
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zldPLIS.T'
WRPTNT i :
IFORTRAN/R/EJP TMP TMP, L5/l FALST,RR/R

A
w
:

‘JQ‘U‘!L‘:MM

FALST==SET *L1J’

COMPILER DOURLE PRECYSIOM

%URPDUTIM& FRLsT

REAL LIt ,LI13,L30, L33, M1 ,M13, MiilMKstusd? JT LS, LI Y

COMMON /REAM,  BPARM(IRY,Y(42),DYL82Y,
BI1(20),HIZ(20),H15(20),
L11C¢PQ,20),0L33¢20,203,L13(20,20),L%1(20,20),
MIT,M233,M13,M%31,48, 40LPHA,
P20),PPL20,2M) (2N ,GG(20,20),
DIL20Y HS(20Y,HD 20V, Z . NU, AR J2:,J3, .
RE(RQY,RCP,ND,EI20) ,R2,LS(20,203,L0(020,20),C2,%:NORD

DO A0 =i,

b0 20 J=1, M

R i . ————y L 7t A S m b b e 8 b By WA TRt b e dente B s ¥ B ek v { b Akt A e A WL P b v h g

80 11T 0y =00

i

ﬁz‘m L21(I,J)=

"giéﬁ
@H

D0

,&ﬁﬂf*mﬁﬁ

DO 30 T=1,m
DO 30 J=f,M

b Vy » rm——— B e M A W TR S g B 3 ) ot vt W A ) Aty LS o % Wk e b WA o e T ARt h S am e A7

30 L13(1,11=0,0

nOﬂOIi.‘v\
DO _4p J= 1 M

- A e . Bt e wmumeets s s e e A e m———— s -

DO 50 I=y, M
G0 60 J«lr
L33(I Jy=0,0
0 LI3C(T,I)=1.0
Lo DO G TI=1.M
DO AT J=y M
ERCT, Jy=L380I, 1)=Li3CTed)
S(I;J\nLilfT J)+L33(I:J)
CONTIMIE
RETURN

>
o s~ R - e s b n o e - ma Ak e g A AR B A Wl L 9 e my A Sdem ke Al V8 4 WAL et WA o A eriee hs As v mlems e m

ChrMmBe tv 6 e maa o A v b i o L M Al e ambud et camkm s e e femtl R W o e e W amsmAcr n L st R e b te ek wies ey W AN W rmie A wema

Ceae e = e BN . - . W e s ben e e Amcom e

END

. et a e = e B T R B e ] B . —_—a e . £t - AAA— . e

© AR AL A S | Wy A e e T Mo ar v ndmmb o o —— b v— e e [T La e emae AR




LT8T
WT
RIRAN/R/ZE /P TMP IMP _LSAL FRPIF,RR/R

COMPILER MOURLE PRECISION - )
“SUBROUTTNE -FAPIF | |
' URFAL Li1,L13,031,L3%, 051, MI3,M31, M35, 08, 02,03, L8, LD, N
CognMMQr JR&LMf RARM(RY, Y (U2, DYCNR),
2 BLU1(20) ,H33(P0) ,HLIB(20),
% Lti(eg0, 20, L3?C20p2033L13(20 20),L31.020,20), . N e
BONEL M3, ME3,MTL, NS, ALPRA,
R OP{20Y,PRC20,20):GC(20), GG(EO,?G);
6 DW{20),H5(20),HD(20),7,NU,8,RQ,J2,.0%, N .
7 RCEZ20)Y,.0QCF, un F(an), ke, LSC?Q,EO] LD(20,20),6P,M,NORD
FFPIF»wPRI“ARV IMTERMEQIATF FUNCTIONS e o
SPH-SINEY(E]]
e P S Y (R Y Y e e e e e et
M3 CPHE kMY ' '
MizzwR&SPH 7
_____ "31"'3*SPH*CPH i e e S S
M13= 'S*SDH**? :
MS=MIZ+M3 L {
L R2sY (1) +WD e . — - e |
_RETURN
~Ehip” e e e e e e s e ot e e et e v m e e o e e . uuﬂ_“._j
i} . . - . - —- —
|
!
]
A e 122 = 2t o e 1 28 e e < et et 31 s i+ o — =
S - -




gmpu 51
iR yNT : _
HENPTRAN/R/E/P TYP THR LS/ FRQTF RH/H
g COMPILFR DNUBLFE FQFCIQIHM
SUBRDUTINE FRSTF
INTEGFR R
- PEAL L11,L1%,L31 L33, M1 1, M13,MT1  M33, Mg, J?:J‘ L&, Lh RU
"4 i - COMMON /RFAM/ - PARM(SY,Y(dP),DY(47),

; 2 MT1(P0),HII(ANY,HITE2N0), L o ) o
w3 Litcen, 20),L33(20,701, L13620,20),L31¢20,20),
4 Mljr"'ﬁﬁrMier‘ﬁ]rug BLPHA, o
S P{20),BPL20,20),6(P0),B6(2N,20),
- & DR(20),HSC20),HD(20),7,NU,A,RO,J2,03, . . . :
E 7 RCER0),RCP, AN, E(20), Qa,LS(eo,Qn) LD(EO:?G:,EP X, NORD
c . o
;c T FRSIF=~~SECONDARY TNTFRMFHYATF rumcfrnws‘ e i
LC
l . ,,.A..YZ"Y CZ} S e Ay e s e s e i s v e % e em e ke e e s mam s & w et vt
ST T rYe=2,0%Y2 ' ' ' '
@ CTY2=COS(TYR) ,
| l B R LA L O O U
SUMY =0, 0 S : L . _ -

SUM2 = 0,0

i. B0.3 R = 1s M | ' '
SUMl = sgw 43 n*{H11(Q1*(~TYP - 0 5*Hn(R)*‘§TYPT*YEE*R+?l

e . ~ ‘ HS(R)*RP*YC?*R+1)

I SUM2 = SUM2

33"..
¢

i

’ HI(RI®Y (24R€2Y - ey e e e o e @ e
CHNTINUE
ALPHA- = Zx (=1 ,5%J7%STY2 + 2, Q*SUMi - Ca - REPY / {Jo + 2 D*SUM?J

_ho 70 R= TeM

B (RS EmRat oD RHE (RY B e e e - v ae e e mme e
_ C(P)~Z*(n1LrRJ*Mi1+H1zrn\*Mzsap*H1,(p)*as)
. DO &0 N=i,™ - —

. PP{R,N1I= (?vY(2+N+1)*RE+Y(2#M+?)*ALPHA)*LQER w)
2=Y (2*N+2) kR *x2*x LS (R . NY ‘
GG(R,N) Z*Y(Z*N+ij(L1i(R N)x“11+L13{R NY =R 3+LIL(R, N)*MET
C2HLTITLR, NYAMITY

80 CONTINUE

70 CONTINUE

- P . . - - . e . o, e e mbmea o e e
— - A e - — - - - lew - - - . - - ——
B ma e g e e S e e et e e S e B | Frpm i T e 4 s 3 b mAAMA et S s e’ 8§t R e 4, ARt ot W s L g




UERPLTST

!&INT I o

LENRTRANR/E/P TMP Inp LS/L FQAEP RR/R . SR

; COMPILER NOUBLE PRECTISINN
1 ﬂ FUNCTION FRA2R(R)

. & INTEGER R e
- REAL Lii,L13 L31.L33,“11rv13 Mzi,uzt M§,J2,J03,LS, LD, Rl

~’i COMGQN  /REAM/ PARMSY, Y (U2 DYCA2) ,

- ® 2 HUL(R20),H33(20),HI3(20), N
S L11f90r2031L3'5f:0r20)r|- 1320, 20);[.31 CEQrEOJl
j U M$1,M33,m13,M31,M8, LLPHA,

i‘l_ S PE20),PP(PN,20),6(20),66G(20,20), e
3 & DW(20),HSC(20),HD(20),2Z,NU,A,RN,J2,J3, .

K 7 RC20,,00P, WD, E(20) ¢ PE,LQCPO 207,LDC20,20),C2,M,N0RD

| C ' e e o -
ic™ 7 FRARR==EVALUATE 2wND DER OF A(R)
Co o : t S
o sumseno * e
i BO Q0 w=1,M
P SUMZSUM=PP (R, N) 465 (R, N)
] _CONTINUE - . . S

FRAPR= ~{wcn)**g*Y(E*R+23nPCR}+SUW+b€P}4E(RJ+BC(R)

. RETURN
A N .
§C S
. . EMD
T T T e S
't
i
4@ _ -« - -
T
§§ . . ORIGINAL PAGE 1S
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ST e ST St D

wVPLIST
y ERPINT '
‘LPF N DPO:FLFXREAVYS, LRA/N ‘
i DUTP . RA FREET.RY FRHST . GR ran;, B FRPTF,.PR FRSJF,RR FRAPR _RA
ELETF .
QUTP PR FASET.RA FRYST.RR FRLST, RB FRPTF,RR FRSTF,.FR FBAPR PR
LGTAD
1 ELETE T#P.LS
RORTRAN/B/E/R TNMP TMP LS/ (MITP,RR/R.
: COMPTLER OOURLE PRECISTON
! SURROUTINE QUTP(T,AY ADY, THLF,N, APARM)
PFAL LI11.L13,L31, LSB:”ii,“13 M3 MR ME,J2,03,L8, LD, MU

S e - St e e me me s A s e s

‘ COMMON /RFAM/ PARMISY,Y(42),DY(42), T
;  ' 2 HI1(20),H33(203,113(2n),
?gg»;1,141cpn 200, L33(20,20),L13(20,20),L38(20,20),
N MIL,M33,613, M3, M8, ALPRA, |
5 PL20),PP(20,20),6(R0),6RC20,30),
_Emwﬁg;pothon HS (200 HD (200,72, 80, A,PD, 02,03,
R U RE(20), BCP, WO, E 200, R2, L5 (30,203, LD (20,807,551, NOPD
COMMON JL0G/ SIZNDMCAR), ST7MAX(42), LTNES, LSTEP
_LOGICAL  PKNYT - -
FBOUT -~TAKE QUTPUT VALUES
g’-“_"”fjﬁ 5 s vy NoRE
| YMAG = ABSCY(I)Y
E. . IFCYMAG ,GT, SIZ“AY(I)) STZMAXCI)_x YMAG .
% 2. CONTINUE ' ' ' A o

IF (.MNOT. RKNXT(IHLF)) &0 TQ 8
L_WRITE BINARY(Z) T, THLF,(Y(I),I=1,MORD)
IT7= (T = PﬁR“EtIBfP&QMC23J*1OG 0+ 0.5
CTF. (wOD(LINES,LSTEP) LEGQ, 0 JYYPE TT,THLF
LINES = L;MES + 1

g 8 CONTINUE o S T e

RETURM

}":TlAEND
EE Egg%ﬁii:gU LT




IENETREAN/R/IE /P THP TR RA/B TMP LS/L
g  COMPILER AQURLE PRECISIEY

SURRTUTTIVE FRTNE (PRCSN)
REAL L1, L3, L3, L33, 811 M3, MEL e MT3,ME,J2,d%, L8, LD, MU
COMMAON /REAMZ  PARM(EY,Y(82),NY43Y, '

2 HI{(20Y,HII(26),RE5{20), ——
' TOLITLen,203,L33020,20),L13(20,20), L3I1(20,20),
4§ MU MIT MUT LMY, ALPHA,
I s P(:n),PP(?qfeﬂu, (20),6G6(20,20), e e
o 6 DWI20)  HE(20Y, HO(20) 7#NU LA, RU:J?1J31
7 0P(203 BCP.WD,E(20),R2,LE3(20,20),L0(20,20),02,M,N0ORD
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