General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

FINAL REPORT NASA GRANT: NSG-1414 THE DYNAMICS AND CONTROL OF LARGE FLEXIBLE SPACE STRUCTURES PART B: DEVELOPMENT OF CONTINUUM MODEL AND COMPUTER SIMULATION

(NASA-CR-156976) THE DYNAMICS AND CONTROL OF LARGE FLEXIBLE SPACE STRUCTURES. PART B: DEVELOPMENT OF CONTINUUM MODEL AND COMPUTER SIMULATION Final Report (Howard Univ.) 116 p HC A06/MF A01 CSCL 22B G3/18 16651 20121222

N78-23140

Unclas

HOWARD UNIVERSITY

SCHOOL OF ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

WASHINGTON, D.C. 20059

FINAL REPORT

NASA GRANT: NSG-1414

THE DYNAMICS AND CONTROL OF

LARGE FLEXIBLE SPACE STRUCTURES

PART B: DEVELOPMENT OF CONTINUUM MODEL AND COMPUTER SIMULATION

Ъy

Peter M. Bainum Professor of Aerospace Engineering Principal Investigator

and

V.K. Kumar Graduate Research Assistant

Paul K. James Graduate Research Assistant

May 1978

AESTRACT

The equations of motion of an arbitrary flexible body in orbit are derived. The model includes the effects of gravity with all its higher harmonics. As a specific example, the motion of a long, slender, uniform beam in circular orbit is modelled. The example considers both the inplane and three dimensional motion of the beam in orbit. In the case of planar motion with only flexural vibrations, the pitch motion is not influenced by the elastic motion of the beam. For large values of the square of the ratio of the structural modal frequency to the orbital angular rate the elastic motion is decoupled from the pitch motion. However, for small values of this ratio and small amplitude pitch motion, the elastic motion is giverned by a Hill's 3-term equation. Numerical simulation of this equation indicates the possibilities of instability for very low values of the square of the ratio of the modal frequency to the orbit angular rate. Also numerical simulations of the first order non-linear equations of motion for a long flexible beam in orbit have been performed. The effect of varying the initial conditions and the number of modes has been demonstrated.

TABLE OF CONTENTS

•

ABSTRACT	ii
LIST OF SYMBOLS	iv
LIST OF FIGURES	viii
LIST OF TABLES	viii
1. INTRODUCTION	1
2. CO-ORDINATE FRAMES	4
3. GRAVITATION	6
4. EQUATIONS OF MOTION	8
4.1 Equations of Rotational Motion	10
4.2 Generic Mode Equations	14
5. APPLICATIONS	17
5.1 Planar Motion of a Long, Slender, Uniform Beam in Circular Orbit	17
5.2 Three Dimensional Motion of a Long, Slender, Uniform Beam in Circular Orbit	24
6. NUMERICAL RESULTS	29
6.1 The Flexbeam Computer Program	31
6.2 Numerical Results of Flexbeam Program	35
7. CONCLUSIONS	39
REFERENCES	40
APPENDIX - I	I - 1
APPENDIX - II	II - 1
APPENDIX - III	III - 1
APPENDIX - IV	IV - 1
APPENDIX - V	V - I

LIST OF SYMBOLS

A _n	Modal amplitude function
$B^{*}, B^{(0)}, B^{(s)}$	Matrices defined in Appendix II
To	Resultant of external disturbances torques acting on the body
(c _x , c _y , c _z)	Components of \overline{c} in τ_3 frame
$\overline{\mathbf{D}}^{(n)}, \mathbf{D}_{(n)}^{\dagger}$	Terms accounting for the center of mass shift due to elastic motion (Eqns. (30) and (48)
Е	External force on the elemental mass dm
E _n	Modal components of external disturbances
Ŧ	Gravity force expressed in $\tau_2^{(0)}$ frame
Fo	Gravity force at point 0, expressed in the intrinsic frame at that point
(F _ρ , F _η , F _ω)	Gravity force components in τ_1 frame
G _R	Gravitational torque due to rigid body motion
G ⁽ⁿ⁾	Gravity torque due to elastic motion in the n th mode
H ⁽ⁿ⁾ as	See Eqn. (III - 1) in Appendix - III
$I_{\alpha}^{(n)}$	See Eqn. (III - 1) in Appendix - III
(J _x , J _y , J _z)	Principal moments of inertia of the body in the undeformed state
ĸs	See Eqn. (5)
K _{s0}	Zeroth harmonic amplitude of gravity potential
L	Structural operator which transforms the elastic displacement to elastic force

8° 9 1.0 의 관광

- A. C.

$L_{\alpha\beta}^{(mn)}$	See Eqn. (III - 1) in Appendix - III
M, M ⁽⁰⁾ , M ^(s)	Matrices defined in Eqn. (6)
M _n	Generalized mass in the n^{th} mode, see Eqn. (12)
M ⁽⁰⁾ M ^(s) ij, Mij	Elements of $M^{(0)}$ and $M^{(s)}$ respectively
01	Origin of τ_0 frame (center of the earth)
0	Origin of the body axes
P _s ^(m) (η)	m th Legendre associated function of order s
P	An arbitrary point in the body
ए (n)	Terms accounting for the inertia torques due to elastic motion (Eqn. (28)).
$(Q_{\mathbf{x}}^{(\mathbf{n})}, Q_{\mathbf{y}}^{(\mathbf{n})}, Q_{\mathbf{z}}^{(\mathbf{n})})$	Components of $\overline{Q}^{(n)}$
ষ	See Eqn. (27)
T ₁ , T ₂ , T ₃	Transformation matrices given in Eqns. (1), (2) and (3).
Т	Orbital period
v	Gravitational potential per unit mass (see Eqn. (57)
0'XYZ	Inertial axes system (τ_0 frame)
o x _o y _o z _o	Orbit fixed reference frame (τ_2 frame)
Охуз	Principal axes of the body (τ_3 frame)
z ⁽ⁿ⁾	Mode shape of a free-free beam in its n th mode (see Eqn. (IV - 4)
a	Inertial acceleration of dm
a	Equatorial radius of the earth
ācm	Acceleration of the center of mass

c	An arbitrary constant in Eqn. (67)
e	External disturbance force per unit mass
Ŧ	Gravity force per unit mass at an arbitrary point in the body, expressed in the body frame
₹o	Gravity force at point 0 expressed in the body frame
g _n	Gravitational force acting on n th mode
E _{mn}	See Eqn. (46) and Eqn. (III - 1)
Oi _l i ₂ i ₃	Local intrinsic frame (τ_1 frame)
L	Length of the beam
m	Mass of the body
ą	Elastic displacement vector
F	Instantaneous position vector of the elemental mass dm measured from 0
r o	Position vector of dm measured from 0 in the undeformed state
t	Time
z _n	Non-dimensionalized modal amplitude (= A_n/l)
β _n	See Eqn. (IV - 3)
γ	Phase angle
6 mr	Kronecker delta symbol
ζ	See Eqn. (IV - 3)
η	Co-latitude
φ, θ, γ	Euler angles

μ	Mass density
ν	Gravitational constant (=9.79m/sec ² for earth)
(ξ_x, ξ_y, ξ_z)	Co-ordinates of an elemental mass dm in $\tau_3^{}$ frame in the undeformed state
ρ	Distance of dm from the inertial origin O'
τ	Dimensionless time; $\tau = \frac{1}{2} (\sqrt{3}\omega t + \gamma)$
¯ _♥ (n)	Mode shape of n th mode (components $\phi_{x}^{(n)}, \phi_{y}^{(n)}, \phi_{z}^{(n)}$
[¢] sm	See Eqn. (5)
ω	Longitude
ωc	orbital angular velocity
ω _n	n th mode natural frequency
Ω(η, ω)	See Eqn. (5)
Ω _n	See Eqn. (IV - 3)
s()	sin()
c()	cos ()
(<u>'</u>)	$\frac{d}{d\eta}$ ()
(^)	d/dω ()
(÷)	$\frac{d}{dt}$ ()

LIST OF FIGURES

•

Figure No.		Page
l	Co-ordinate Frames	41
2	Deformed and Undeformed Configurations of a Flexible Body	42
3	Beam Satellite	43
4	Mathieu Stability Diagram	44
5 - 10	Modal Amplitude Responses	45 - 50
11 - 14	Phase Plane Plots	51 - 54
15	Flow Diagram of Flexbeam Program	55
16	Sample Data Input Cards	56
17 - 29	Mode Amplitude and Deflection Responses	57 - 74
30	Time Response of the Pitch Motion	75
A - 1	Inertial and Intrinsic Frames	I - 1
A - 2,3	Euler Angle Rotations	I - 2
D - 1	Free-free Beam	IV - 1

LIST OF TABLES

Table - 1	Data Assumed for Numerical Simulation	30
Table - 2	Mode Shapes and Frequencies of a Free-free Beam	IV - 3
Table - 3	Useful Definite Integrals	IV - 4

1. INTRODUCTION

This report presents the development of the equations of motion of an arbitrary flexible body in orbit and its specialization to a long, slender, uniform beam in circular orbit. In the literature,^{1,2,3} many models of a beam satellite in orbit are presented. The model considered by Pringle³ consists of a massive central rigid body to which a massless elastic beam is rigidly attached. The other end of the beam carries a tip mass. For beam satellites with lengths of the order of 100 meters or more and mass distributed throughout the length this cannot be used. Ashley's model^{1,2} of a beam satellite is based on a continuum approach. He arrives at a set of partial differential equations for the beam model through energy methods. However, partial differential equations are not as convenient for numerical simulation. Ashley arrives at the conclusion that it is impossible to excite flexural vibrations of a beam directly through gravity gradient. The same conclusion is arrived at in section 5.1.1 of this report.

The development of the beam model presented in this report follows as a specialization of the equations of motion of an arbitrary flexible body in orbit. Also, the model presented here can be quite easily adopted for numerical simulation and also for inclusion of various control laws.

The development of equations of motion for an arbitrary flexible body presented in this report essentially follows that of Santini.⁴ However, the distinguishing features of the present development from that of Santini are (a) extensive use of the techniques of vector calculus (b) introduction of the orbit fixed reference frame as an intermediate frame between the local intrinsic frame at the origin of the body axes system and the body axes frame. Hence, the Euler angle rotations used in the present report are different from those of Santini.⁴

The equations of motion presented in this report are obtained by the Galerkin integration^{5,6} of the equations of motion of a generic point in the body. The motion of the generic point is assumed to be described by the superposition of rigid body motion plus a combination of the structural modes.

Section 2 of this report describes the various co-ordinate reference frames employed in the development of the equations, and the transformation relations between these reference frames. The detailed derivations of the transformation relations are presented in Appendix - I.

Section 3 presents an expression for the gravitational force on a generic element in the body. The expression also includes the higher harmonics of the earth's gravitational field. The details of this development are presented in Appendix - II.

In Section 4, the development of the equations of motion of an arbitrary flexible body in orbit is presented. The expansions of the vector expressions in equations (28), (31), (32), (43), (44), (45), and (46) are presented in Appendix - III. Specializations of the equations of motion in section 4 to a long, slender, uniform beam are presented in section 5. Sections 5.1 and 5.2 discuss the planar, and the three dimensional motion of the beam in orbit, respectively. In Appendix - IV, the expressions for the natural mode shapes, frequencies and the modal mass for a free-free uniform beam are presented.

In Section 6, the numerical solutions to the response of the planar motion of a beam in circular orbit, undergoing only flexural vibrations, are presented. The responses indicate the possibilities of instability at very low values of $(\omega_n/\omega_c)^2$.

The final section of the report, Section 7, outlines the conclusions based on the numerical results in Section 6.

2. CO-ORDINATE FRAMES

The following co-ordinate frames are used in the development of the equations of motion. (See Fig. 1):

 τ_0 : 0'XYZ Inertial reference frame.

0'Z along the earth's spin axis.

0'X along the line of the ascending node.

0'Y perpendicular to 0'X and 0'Z.

 τ_{1P} : Pi₁i₂i₃ Local intrinsic frame at a generic point, P.

Pi₁ along the radius vector from 0' to P. Pi₂ perpendicular to Pi₁ in the plane of ZO'P. Pi₃ perpendicular to Pi₁ and Pi₂.

- τ_{10} : $0i_1i_2i_3$ local intrinsic frame at 0.
- τ_2 : $0X_0Y_0Z_0$ Orbit fixed reference frame.

 $0X_0$ along the local vertical

 $0Y_0$ along the orbit normal and in the negative direction of the orbit angular momentum vector.

 OZ_0 perpendicular to OX_0 and OY_0 .

 τ_3 : 0XYZ Principal axes of the body.

The above reference frames are related to each other as follows:

$$\begin{bmatrix} X_{10} \\ Y_{10} \\ Z_{10} \end{bmatrix} = T_1 \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}; \begin{bmatrix} X_0 \\ Y_0 \\ Z_0 \end{bmatrix} = T_2 \begin{bmatrix} X_{10} \\ Y_{10} \\ Z_{10} \end{bmatrix}; \begin{bmatrix} X \\ Y \\ Z \\ Z \end{bmatrix} = T_3 \begin{bmatrix} X_0 \\ Y_0 \\ Z_0 \end{bmatrix}$$

where,
where,
$$\begin{bmatrix} x_{10} \\ Y \\ Z \end{bmatrix} = T_3 \begin{bmatrix} X_0 \\ Y_0 \\ Z_0 \end{bmatrix}$$

 $T_1 = cnc\omega cns\omega -sn$ -(1)

$$T_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{X} & s_{X} \\ 0 & -s_{X} & c_{X} \end{bmatrix}$$
(2)
$$T_{3} = \begin{bmatrix} c\phi c\theta & (s\phi c\psi + c\phi s\theta s\psi) & (s\phi s\psi - c\phi s\theta c\psi) \\ -s\phi c\theta & (c\phi c\psi - s\phi s\theta s\psi) & (c\phi s\psi + s\phi s\theta c\psi) \\ s\theta & -c\theta s\psi & c\theta c\psi \end{bmatrix}$$
(3)

and s,c represent sine and cosine functions respectively. The detailed development of these transformations are presented in Appendix - I.

The body angular velocity components $(\omega_x, \omega_y, \omega_z)$ and the Euler angular rates ($\dot{\phi}, \dot{\theta}, \dot{\psi}$) are related as follows:

$$\omega_{x} = \dot{\theta} s \phi + \dot{\psi} c \phi c \theta - \omega_{c} \quad (s \phi c \psi + c \phi s \theta s \psi)$$

$$\omega_{y} = \dot{\theta} c \phi - \dot{\psi} s \phi c \theta - \omega_{c} \quad (c \phi c \psi - s \phi s \theta s \psi)$$

$$\omega_{z} = \dot{\psi} s \theta + \dot{\phi} + \omega_{c} c \theta s \psi \qquad (4)$$

3. GRAVITATION

In this section an expression for the gravitational force per unit mass, expressed in the body fixed frame (τ_3) is presented. In deriving this expression, it is assumed that $|\bar{r}|/\rho << 1$, where \bar{r} is the position vector of an arbitrary point in the body with respect to 0 and ρ is the distance of the same point from 0'.

We can write the gravitational⁴ potential in the most general form as:

$$V(\rho, n, \omega) = \frac{va^2}{\rho} + va\sum_{s=1}^{\infty} K_s\left(\frac{a}{\rho}\right) \frac{s+1}{\Omega_s}(n, \omega) \quad (5)$$

where,

••`

$$K_s = K_{so} \cos \phi_{so}$$

$$\Omega(\eta,\omega) = \sum_{\substack{m=0 \\ m=0}}^{s} [P_{s}^{(m)}(\eta) \cos(m\omega + \phi_{sm})]/K_{s}$$

 $P_s^{(m)}(n)$ is the mth associated Legendre function of order s.

 K_{so} and ϕ_{sm} are constants to be given experimentally through geodetic satellite techniques.

The gravitational force per unit mass at the origin of the body axes, \bar{u} , in the $\tau_1(0)$ frame is $\overline{F}_0 = \nabla V|_0$.

For a point at a distance \overline{r} from 0, neglecting small quantities of the order of $\frac{|\overline{r}|}{\rho}$, the gravity force in the τ_3 frame is given by

$$\vec{t} = \vec{t}_0 + N \vec{r}$$
 (10)

where $\overline{F}_{0} = \text{Gravitational force at 0 expressed in the principal body} \\
 \text{axes frame } (\tau_{3}) \\
 \text{M} = \left[M^{(0)} + \sum_{s=1}^{\infty} K_{s} \left(\frac{a}{\rho} \right)^{s} M^{(s)} \right] \\
 \text{M}^{(0)} = \frac{\sqrt{a^{2}}}{\rho^{3}} \begin{bmatrix} 3c^{2}\phi c^{2}\theta - 1 & -3s\phi c\phi c^{2}\theta & 3c\phi c\theta s\theta \\
 -3s\phi c\phi c^{2}\theta & 3s^{2}\phi c^{2}\theta - 1 & -3s\phi c\theta s\theta \\
 -3s\phi c\theta s\theta & -3s\phi c\theta s\theta & 3s^{2}\theta - 1 \end{bmatrix} \\
 \text{M}^{(s)} = \frac{\sqrt{a^{2}}}{\rho^{3}} T_{3} T_{2} B^{(s)} T_{2}^{T} T_{3}^{T} \tag{6}$

The matrix $B^{(s)}$ is given by eqn. (II-12) in Appendix - II. It can be observed that $M^{(0)}$ and $M^{(s)}$ are symmetric matrices.

The expression for the gravitational force in the form given in eqn.(6 is used in the development of the equations of motion presented in the next section.

4. EQUATIONS OF MOTION

In this section the equations of rotational motion and elastic motion of an arbitrary flexible body in orbit are presented. The body is assumed to be subjected to small amplitude elastic displacements, \overline{q} , which are transformed to elastic forces by the linear operator L.

Consider an elemental mass, dm, whose instantaneous position vector from the center of mass of the body is \overline{r} (Fig. 2).

The equation of motion of dm can be written as:

$$\vec{a} dm = L(\vec{q}) + \vec{f} dm + \vec{E}$$
 (7)

where

a = Inertial acceleration of dm

 $L(\overline{q}) = Elastic forces acting on dm$

f = Gravitational force per unit mass

E = External forces acting on dm

q = Elastic displacement

The above vector equaton can be written in the body fixed reference frame (τ_2) as,

$$[\overline{a}_{cm} + \overline{r} + 2 \overline{\omega} \times \overline{r} + \overline{\omega} \times \overline{r} + \overline{\omega} \times (\overline{\omega} \times \overline{r})] dm$$

= L(\overline{Q}) + \overline{F} dm + \overline{E} (8)

It is important to note that r and r are the velocity and acceleration of dm respectively as seen from the body fixed reference frame, τ_3 . All the vectors in the above equation must be expressed in the body frame τ_3 . We can write the instantaneous position vector \overline{r} of dm as

$$\vec{r} = \vec{r}_0 + \vec{q} \tag{9}$$

where

 $\overline{r_0}$ is the position vector of dm with respect to 0 in the undeformed state, \overline{q} is the elastic displacement of dm.

Hence

$$\dot{\vec{r}} = \vec{q}$$
 and $\dot{\vec{r}} = \ddot{\vec{q}}$ (10)

For small amplitude elastic displacements, we can write the elastic displacement, q, as a superposition of the various modal contributions according to

$$\overline{q} = \sum_{n=1}^{\infty} A_n(t) \overline{\phi}^{(n)} (\overline{r_0})$$
(11)

where

$$\overline{\Phi}^{(n)}(\overline{r}_{0}) = \Phi_{x}^{(n)}\hat{i} + \Phi_{y}^{(n)}\hat{j} + \Phi_{z}^{(n)}\hat{k}$$

 $A_{n}(t) = Modal amplitude$

 $\overline{\phi}^{(n)}(\overline{r}_0)$ is the mode shape associated with the natural frequency ω_n and satisfies the following orthogonality condition,

$$\int \overline{\phi}^{(m)} \cdot \overline{\phi}^{(n)} dm = \delta_{mn} M_{n}$$
(12)
vol

Also

$$L(\overline{\phi}^{(n)}) = -\omega_n^2 \overline{\phi}^{(n)} dm$$
(13)

Further, if the body is unconstrained, the elastic modes must be orthogonal to the rigid body modes ie,

$$\int_{\text{vol}} \overline{\Phi}^{(n)} \, dm = 0 \tag{14}$$

$$\int_{\text{vol}} \overline{r}_0 \times \overline{\phi}^{(n)} dm = 0 \tag{15}$$

If the body is constrained against translation and rotation at the undeformed center of mass, the corresponding modes are called "fixed modes." For fixed modes the orthogonality conditions (14) and (15) do not hold. It should be noted that, for the case of fixed modes, the origin of the body frame, 0, no longer coincides with the center of mass in the deformed state. Hence, only for free modes, $\int_{\text{Vol}} \overline{r} \, dm = 0$. However for fixed modes $\int_{\text{Vol}} \overline{r} \, dm = \int_{\text{Vol}} \overline{q} \, dm \neq 0$.

4.1 Equations of rotational motion

The equations of rotational motion of the body are obtained by the following operation

i.e.

$$\int \vec{r} \times [\vec{a}_{cm} + \vec{r} + 2\vec{\omega} \times \vec{r} + \vec{\omega} \times \vec{r} + \vec{\omega} \times (\vec{\omega} \times \vec{r})] dm$$

vol

$$= \int \vec{\mathbf{r}} \times [L(\vec{q}) + \vec{f} + \vec{e}] dm$$
(16)
vol dm

where \overline{e} is the external force per unit mass.

The various terms in Eqn (16) can now be evaluated using the techniques of vector calculus. Assuming $|\overline{q}| << 1$, only the first order terms in $|\overline{r}|$ \overline{q} are retained in the following expansions.

$$\int \vec{r} \times \vec{\vec{r}} dm = \int (\vec{r}_0 + \vec{q}) \times \vec{q} dm \equiv \int \vec{r}_0 \times \vec{q} dm \qquad (18)$$
vol

$$\int \vec{\mathbf{r}} \times 2 (\vec{\omega} \times \vec{\mathbf{r}}) d\mathbf{m} = 2 \int (\vec{\mathbf{r}}_0 + \vec{\mathbf{q}}) \times (\vec{\omega} \times \vec{\mathbf{q}}) d\mathbf{m}$$

$$= 2 \int \vec{\mathbf{r}}_0 \times (\vec{\omega} \times \vec{\mathbf{q}}) d\mathbf{m}$$

$$\int \vec{\mathbf{r}} \times (\vec{\omega} \times \vec{\mathbf{r}}) d\mathbf{m} = \int (\mathbf{r}_0 + \vec{\mathbf{q}}) \times [\vec{\omega} \times (\vec{\mathbf{r}}_0 + \vec{\mathbf{q}})] d\mathbf{m}$$

$$= \int \vec{\mathbf{r}}_0 \times (\vec{\omega} \times \vec{\mathbf{r}}_0) d\mathbf{m} + \int \mathbf{r}_0 \times (\vec{\omega} \times \vec{\mathbf{q}}) d\mathbf{m}$$

$$+ \int \mathbf{q} \times (\vec{\omega} \times \vec{\mathbf{r}}_0) d\mathbf{m} + \int \mathbf{r}_0 \times (\vec{\omega} \times \vec{\mathbf{q}}) d\mathbf{m}$$

$$\int \vec{\mathbf{r}} \times (\vec{\omega} \times (\vec{\omega} \times \vec{\mathbf{r}})) d\mathbf{m} = \int [(\vec{\mathbf{r}} \cdot \vec{\omega} \times \vec{\mathbf{r}}) \vec{\omega} - (\vec{\mathbf{r}} \cdot \vec{\omega}) (\vec{\omega} \times \vec{\mathbf{r}})] d\mathbf{m}$$

$$= - \int ((\vec{\mathbf{r}} \cdot \vec{\mathbf{q}}) \cdot \vec{\omega}) (\vec{\omega} \times \vec{\mathbf{r}}) d\mathbf{m}$$

$$= - \int ((\vec{\mathbf{r}}_0 + \vec{\mathbf{q}}) \cdot \vec{\omega}) (\omega \times (\vec{\mathbf{r}}_0 + \vec{\mathbf{q}})) d\mathbf{m}$$

$$= - \int ((\vec{\mathbf{r}}_0 - \vec{\omega}) (\vec{\omega} \times \vec{\mathbf{r}}_0) d\mathbf{m}$$

 $- \int_{\mathbf{v}} [(\vec{\mathbf{r}}_0 \cdot \vec{\omega}) \ (\vec{\omega} \times \vec{q}) + (\vec{q} \cdot \vec{\omega}) \ (\vec{\omega} \times \vec{\mathbf{r}}_0) dm \ (21)$

 $\int \vec{r} \times L(\vec{q}) dm = \int \vec{r}_0 \times L(\vec{q}) dm$ vol v

$$= -\sum_{n=1}^{\infty} \omega_n^2 A_n \int \overline{r_0} \times \overline{v}^{(n)} dm \text{ (using eqn. (13))}$$

= 0 (for free modes. See Eqn. (15)). (22)

$$\int \vec{r} \times \vec{f} \, dm = \int \vec{r} \times (\vec{F}_0 + M \vec{r}) dm$$
vol
$$= \int \vec{q} \, dm \times \vec{F}_0 + \int (\vec{r}_0 + \vec{q}) \times M (\vec{r}_0 + \vec{q}) dm$$

$$= \int \vec{q} \, dm \times \vec{f}_0 + \int \vec{r}_0 \times M \vec{r}_0 \, dm$$

$$+ \int [\vec{r}_0 \times M \vec{q} + \vec{q} \times M \vec{r}_0] dm \qquad (23)$$

$$\int \vec{r} \times \vec{e} \, dm = \vec{C}$$
vol
It can be easily shown that,
$$\int \vec{r}_0 \times (\vec{w} \times \vec{r}_0) \, dm = J_x \, \vec{w}_x \, \hat{i} + J_y \, \vec{w}_y \, \hat{j} + J_z \, \vec{w}_z \, \hat{k} \qquad (24)$$

$$f (\vec{r}_0 \cdot \vec{w}) (\vec{w} \times \vec{r}_0) \, dm = (J_y - J_z) \, \omega_y \, \omega_z \, \hat{i} + (J_z - J_x) \, \omega_z \, \omega_x \, \hat{j} + (J_x - J_y) \, \omega_x \, \omega_y \, \hat{k} \qquad (25)$$

where, J_x , J_y , J_z are the principal moments of inertia of the body in the undeformed state.

After substitution of the values for the integrals in Eqn. (16) and rearrangement of terms, one can obtain the following form for the equations of rotational motion.

$$\overline{R} + \widetilde{\Sigma} \quad \overline{Q}^{(n)} + \overline{C} + \widetilde{\Sigma} \quad \overline{D}^{(n)} = \overline{G}_{R} + \widetilde{\Sigma} \quad \overline{G}^{(n)}$$
(26)
$$n=1 \qquad n=1 \qquad n=1 \qquad n=1 \qquad (26)$$

where,

and

$$\overline{R} = \{J_{\mathbf{x}} \stackrel{\circ}{\mathbf{\omega}}_{\mathbf{x}} + (J_{\mathbf{z}} - J_{\mathbf{y}}) \stackrel{\circ}{\mathbf{\omega}}_{\mathbf{y}} \stackrel{\circ}{\mathbf{\omega}}_{\mathbf{z}}\} \hat{\mathbf{i}} \\
+ \{J_{\mathbf{y}} \stackrel{\circ}{\mathbf{\omega}}_{\mathbf{y}} + (J_{\mathbf{x}} - J_{\mathbf{z}}) \stackrel{\circ}{\mathbf{\omega}}_{\mathbf{z}} \stackrel{\circ}{\mathbf{\omega}}_{\mathbf{x}}\} \hat{\mathbf{j}} \\
+ \{J_{\mathbf{z}} \stackrel{\circ}{\mathbf{\omega}}_{\mathbf{z}} + (J_{\mathbf{y}} - J_{\mathbf{x}}) \stackrel{\circ}{\mathbf{\omega}}_{\mathbf{x}} \stackrel{\circ}{\mathbf{\omega}}_{\mathbf{y}}\} \hat{\mathbf{k}}$$
(27)

and takes to as a

$$\Sigma \overline{Q}^{(n)} = \int_{\text{vol}} [r_0 \times \overline{q} + 2\overline{r}_0 \times (\omega \times \overline{q}) + \overline{r}_0 \times (\overline{\omega} \times \overline{q}) + \overline{q} \times (\overline{\omega} \times \overline{q}) - (\overline{r}_0 \cdot \overline{\omega}) (\overline{\omega} \times \overline{q}) - (\overline{q} \cdot \overline{\omega}) (\overline{\omega} \times \overline{r}_0)] dm \qquad (28)$$

$$\sum_{n=1}^{\infty} \overline{D}^{(n)} = \int \overline{q} dm \times (\overline{a}_{cm} - \overline{f}_0) + \sum_{n=1}^{\infty} \omega_n^2 A_n \int \overline{r}_0 \times \overline{\Phi}^{(n)} dm \quad (30)$$

$$\overline{G}_{R} = \int \overline{r}_{0} \times M \overline{r}_{0} dm$$
(31)

$$\sum_{n=1}^{\infty} \overline{G^{(n)}} = \int [\overline{r_0} \times M \overline{q} + \overline{q} \times M \overline{r_0}] dm \qquad (32)$$

The expansions of the above vector expressions are presented in Appendix - III.

The significance of the various terms in Eqn. (26) will now be briefly discussed. The terms, $\overline{Q}^{(n)}$, reflect the inertia torque associated with the elastic deformations. The term, \overline{G}_R , corresponds to the gravitational torque on a rigid body. The terms, $\overline{G}^{(n)}$, correspond to the gravitational torque due to the elastic deformations. The terms, $\overline{D}^{(n)}$, account for the difference in position between the actual center of mass and the center of mass of the undeformed body. For the case of free modes, $\overline{D}^{(n)} = 0$.

4.2. Generic mode equations

The generic mode equation is obtained by the following operation:

$$\int \overline{\Phi}^{(n)} \cdot (Eqn. (8))$$

vol

ie

$$\int \overline{\Phi}^{(n)} \cdot [\overline{a}_{cm} + \ddot{\overline{r}} + 2 \,\overline{\omega} \times \ddot{\overline{r}} + \dot{\overline{\omega}} \times \overline{r} + \overline{\omega} \times (\overline{\omega} \times \overline{r})] dm$$

$$= \int \overline{\Phi}^{(n)} \cdot [\frac{L(\overline{q})}{dm} + \overline{f} + \overline{e}] dm \qquad (33)$$

With the use of equations (6), (9), (10), (11), (12) and (13), the various terms appearing in Eqn. (33) can now be expanded as follows:

$$\int \overline{\Phi}^{(n)} \cdot \overline{a}_{cm} dm = \int \overline{\Phi} dm \cdot \overline{a}_{cm}$$
(34)

$$\int \overline{\Phi}^{(n)} \cdot \frac{n}{r} dm = \int \overline{\Phi}^{(n)} \cdot \frac{n}{q} dm$$

$$= \sum_{m} A_{m} \int \overline{\Phi}^{(n)} \cdot \overline{\Phi}^{(m)} dm$$

$$= A_n M_n$$
(35)

والمراجع المراجع المتعر المتعطية ومع

$$\int \overline{\Phi}^{(n)} \cdot (2 \,\overline{\omega} \times \overline{r}) \, dm = 2 \int (\overline{\Phi}^{(n)} \cdot \overline{\omega} \times \overline{q}) \, dm \qquad (36)$$
vol

$$\int (\overline{\phi}^{(n)} \cdot \overline{\omega} \times \overline{r}) dm = \int (\overline{\phi}^{(n)} \cdot \overline{\omega} \times \overline{r}_0) dm + \int (\overline{\phi}^{(n)} \cdot \overline{\omega} \times \overline{q}) dm \quad (37)$$
vol

$$\int \overline{\Phi}^{(n)} \cdot \overline{\omega} \times (\overline{\omega} \times \overline{r}) dm = \int \overline{\Phi}^{(n)} \cdot \overline{\omega} \times (\overline{\omega} \times \overline{r}_0) dm$$
vol
$$+ \int \overline{\Phi}^{(n)} \cdot \overline{\omega} \times (\overline{\omega} \times \overline{a}) dm \qquad (38)$$

$$\int \overline{\phi}^{(n)} \cdot L(\overline{q}) = -\sum_{m=1}^{\infty} \omega_m^2 A_m \int \overline{\phi}^{(n)} \cdot \overline{\phi}^{(m)} dm$$

$$= -\omega_n^2 A_n M_n \qquad (39)$$

$$\int \overline{\phi}^{(n)} \cdot \overline{f} dm = \int \overline{\phi}^{(n)} dm \cdot \overline{f}_0 + \int \phi^{(n)} \cdot M \overline{r} dm$$

$$= \int \overline{\phi}^{(n)} dm \cdot \overline{f}_0 + \int \overline{\phi}^{(n)} \cdot M \overline{r}_0 dm$$

$$+ \int \overline{\phi}^{(n)} \cdot M \overline{q} dm \qquad (40)$$

$$\int \overline{\phi}^{(n)} \cdot \overline{e} dm = E_n \qquad (41)$$

After substitution of the values for the various integrals in Eqn. (33) and rearrangement of the terms, the generic mode equation is obtained in the following form.

$$\ddot{A}_{n} + \omega_{n}^{2} A_{n} + \frac{\Im_{n}}{M_{n}} + \frac{1}{M_{n}} \sum_{m=1}^{\infty} \Theta_{mn} = \frac{1}{M_{n}} \left[g_{n} + \sum_{m=1}^{\infty} g_{mn} + E_{n} + D_{n}^{\prime} \right]$$
(42)

where

5

$$\sum_{m=1}^{\tilde{\nu}} \mathfrak{S}_{mn} = \int_{\nu} \left[2 \,\overline{\Phi}^{(n)} \cdot \overline{\omega} \times \overline{q} + \overline{\Phi}^{(n)} \cdot \overline{\omega} \times \overline{q} + \overline{\Phi}^{(n)} \cdot \overline{\omega} \times (\overline{\omega} \times \overline{q}) \right] dm$$
(44)

$$g_{n} = \int \overline{\phi}^{(n)} \cdot M \overline{r}_{0} dm$$
(45)

$$\sum_{m=1}^{\infty} g_{mn} = \int \overline{\phi}^{(n)} \cdot M \, \overline{q} \, dm$$
(46)

$$E_{n} = \int_{V} \overline{\phi}^{(n)} \cdot \tilde{e} dm$$
(47)

$$D_{n}' = \int \overline{\Phi}^{(n)} dm \cdot (\overline{a_{cm}} - \overline{f_{0}})$$
(48)

$$M_{n} = \int \overline{\Phi}^{(n)} \cdot \overline{\Phi}^{(m)} dm \qquad (49)$$

The expanded forms of the above expressions are presented in Appendix III.

The significance of the various terms in Eqn. (42) will now be briefly discussed. The term \P_n corresponds to the forcing term due to rigid body motion. \P_{mn} is the forcing term due to the elastic motion in the mth mode. The term, g_n , represents the gravitational force acting on the nth mode due to the rigid body motion. The terms g_{mn} correspond to the gravitational force acting on the nth mode, due to the elastic motion in the mth mode. E_n is the component of the external force acting on the nth mode. D_n^t is the term corresponding to the displacement of the center of mass from the point 0.

In the next section, an application of the equations of motion developed in this section is presented.

NAME AND ADDRESS OF A DESCRIPTION OF A D

a sa sa sana ana ang

5. APPLICATIONS

In this section, we consider the application of the equations of motion presented in the previous section, to the specific example of a beam in circular orbit shown in Fig. 3.

In section, 5.1 it is assumed that the motion of the beam is restricted to the orbit plane. In section 5.2, the general case of the three dimensional beam is considered.

5.1. Planar motion of a long, slender, uniform beam in circular orbit

Since the beam motion is restricted to the orbit plane, the yaw and the roll angles vanish, i.e.

$$\psi(t) = \phi(t) = 0$$
 (50)

Also, the elastic deformation out of the orbit plane is assumed to be zero, ie, $\phi_y^{(n)} = 0$.

For unconstrained structures,

$$\overline{D}^{(n)} = 0; D'_{n} = 0 \text{ and } H^{(n)}_{\alpha\beta} = H^{(n)}_{\beta\alpha}$$
(51)

where

$$H_{\alpha\beta}^{(n)} \equiv \int_{\text{vol}} \xi_{\alpha} \phi_{\beta}^{(n)} dm \quad (\alpha, \beta = x, y, z)$$

share the second se

and (ξ_x, ξ_y, ξ_z) are coordinates of dm in the undeformed state measured

in the body frame.

والمرتجع والمراجع والمرتبة والمرتبة المراشع ومعاد وسيا المعاد والمراجعا المادي

In the absence of out-of-plane deformations, i.e. $\phi_y^{(n)} = 0$, we can deduce that,

$$H_{yy}^{(n)} = H_{xy}^{(n)} = H_{yx}^{(n)} = H_{zy}^{(n)} = H_{yz}^{(n)} = 0$$
 (52)

Noting that, for a beam (see Fig. 3) with uniform cross section.

$$M \xi_{\pm} d\xi_{y} d\xi_{\pm} = M \xi_{y} d\xi_{y} d\xi_{\pm} = 0$$
 (53)

we can further deduce that,

$$H_{mx}^{(n)} = \int u\xi_{m} \phi_{x}^{(n)}(\xi_{x}) d\xi_{x} d\xi_{y} d\xi_{m} = 0 = H_{x2}^{(n)}$$
(54)

$$H_{zz}^{(n)} = \int u\xi_{z} \, \phi_{z}^{(n)} \, (\xi_{x}) d\xi_{x} \, d\xi_{y} \, d\xi_{z} = 0$$
(55)

where, µ is the density of the beam material.

Since, by definition.

$$L_{\alpha\beta}^{(mn)} \equiv \int \mathfrak{s}_{\alpha}^{(m)} \mathfrak{s}_{\beta}^{(n)} d\mathfrak{m} \quad (\alpha, \beta = x, y, z)$$

in the absence of out-of-plane elastic deformation, i.e., $\delta_y^{(n)} = 0$, it can be easily shown that

$$L_{XY}^{(mn)} = L_{XX}^{(mn)} = L_{XY}^{(mn)} = L_{XY}^{(mn)} = L_{YY}^{(mn)} = 0$$
(56)

With the use of the above results and the results presented in Appendix - III, the pitch and the generic mode equations for the present case are obtained as:

$$J_{y} \stackrel{*}{\underset{n=1}{\overset{}}} + \stackrel{*}{\underset{y}{\overset{}}} = \stackrel{(n)}{\underset{y}{\overset{}}} + \stackrel{*}{\underset{y}{\overset{}}} = \stackrel{(n)}{\underset{n=1}{\overset{}}} + \stackrel{(n)}{\underset{n=1}{\overset{}}} \quad (\text{pitch equation}) \quad (5^{-})$$

and the second second

where.

$$\begin{split} \dot{w}_{y} &= \ddot{\theta} \\ \dot{v}_{y} &= \ddot{\theta} \\ \dot{v}_{y}^{(n)} &= 2 \left[A_{n} (\theta - \omega_{c}) + A_{n} \left[\dot{\theta} \right] H_{XX}^{(n)} \right] \\ \dot{v}_{y}^{(n)} &= -2 \left[A_{n} (\theta - \omega_{c}) + A_{n} \left[\dot{\theta} \right] H_{XX}^{(n)} \\ \dot{v}_{z}^{(n)} &= -J_{z} M_{31} \left[\dot{v}_{z}^{(n)} + J_{z} M_{31} \left(\text{for } J_{x} \ll J_{z} \right) \right] \\ \dot{v}_{z}^{(n)} &= -2 M_{31} H_{XX}^{(n)} \\ \dot{v}_{z}^{(n)} &= -2 M_{31} \left[s\theta c\theta + \sum_{s=1}^{\infty} K_{s} \left(\frac{a}{s} \right)^{s} M_{31}^{(s)} \right] \end{split}$$

The generic mode equations:

$$\frac{1}{M_{n}} + \omega_{n}^{2} A_{n} + \frac{\varphi_{n}}{M_{n}} + \frac{1}{M_{n}} \sum_{m=1}^{\infty} \varphi_{mn} = \frac{1}{M_{n}} (g_{n} + \sum_{m=1}^{\infty} g_{mn} + E_{n})$$
(58)

where,

We will now consider several specific cases of the long slender beam assumed to be subjected to rotations and deformations only within the orbital plane.

5.1.1. The case of no longitudinal vibrations: i.e., $\phi_{\mathbf{x}}^{(n)} = 0$.

For this case it can be seen that,

$$H_{XX}^{(n)} = L_{XZ}^{(mn)} = L_{ZX}^{(mn)} = L_{XX}^{(mn)} = 0$$
 (59)

By choosing $\phi_z^{(n)}$ to represent the eigen-modes of bending vibrations of a free-free beam, we obtain,

$$L_{zz}^{(mn)} = \delta_{mn} M_{n}$$
(60)

where, δ_{mn} is the kronecker delta and M_n is the generalized mass of the beam in its nth mode. An expression for the value of M_n for free-free beams is presented in Appendix - IV.

. เราสีน เสราะรัสวินาร อาสตร

Substituting the above results in equations (57) and (58), one obtains the pitch equation and generic mode equation in the following form.

$$\ddot{\Theta} + M_{31} + \frac{C_y}{J_y} = 0$$
 (61)

Generic mode equation:

$${}^{*}A_{n} + [\omega_{n}^{2} - M_{33} - (\dot{\theta} - \omega_{c})^{2}]A_{n} = \frac{E_{n}}{M_{n}}$$
 (62)

where,

$$M_{31} = \frac{va^{2}}{\rho^{3}} \left[s\theta c\theta + \sum_{s=1}^{\infty} K_{s} \left(\frac{a}{\rho} \right)^{s} M_{31}^{(s)} \right]$$
$$M_{33} = \frac{va^{2}}{\rho^{3}} \left[3 s^{2} \theta - 1 + \sum_{s=1}^{\infty} K_{s} \left(\frac{a}{\rho} \right)^{s} M_{33}^{(s)} \right]$$

Assumptions of a spherically symmetric gravitational field and circular orbit result in the following simplification of M_{21} and M_{22} ,

$$\frac{va^2}{\rho^3} = \omega_c^2$$

$$M_{31} = \frac{3}{2} \omega_c^2 \sin 2\theta$$

$$M_{33} = \omega_c^2 (\sin^2 \theta - 1)$$

$$m_{33} = \omega_c^2 (\sin^2 \theta - 1)$$

Hence, equations (61) and (62) simplify to,

$$\frac{3}{9} + \frac{3}{2} \omega_c^2 \sin 2\theta + \frac{C_v}{2} = 0$$
 (63)

$$\ddot{A}_{n} + [\omega_{n}^{2} - \omega_{c}^{2} (3 \sin^{2} \theta - 1) - (\dot{\theta} - \omega_{c})^{2}] A_{n} = \frac{E_{n}}{M_{n}}$$
(64)

Equation (63) is just the rigid body pitching equation. Thus from Eqn. (63), one can conclude that there is no influence of the elastic motion on the rigid body motion, under the assumptions of the present case. The same conclusions were arrived at by Ashley¹ for the case of a thin beam undergoing flexural deformations in the orbit plane. If the rigid body pitch oscillations are small ie. $\theta \ll 1$, equations (63) and (64) further simplify to (assuming no external disturbances),

$$\ddot{\theta} + 3 \omega_c^2 \theta = 0$$
 (65)

$$\ddot{A}_{n} + [\omega_{n}^{2} - \dot{\theta}^{2} + 2\omega_{c}\dot{\theta}] A_{n} = 0$$
 (66)

Without loss of generality, one can assume the solution of equation (65) as,

$$\theta = c \sin\left(\sqrt{3} \omega_c t + \gamma\right) \tag{67}$$

where, c is the amplitude of the pitch motion.

na i de follante ha na a la la casa na dan i de a an d'abitanti d'hada ha fa casta na ada an an 🚛 💭 ba

2

Substitution of Eqn. (67) into Eqn. (66) yields,

$$\ddot{A}_{n} + [\omega_{n}^{2} - 3\omega_{c}^{2}c^{2}\cos^{2}(\sqrt{3}\omega_{c}t + \gamma)] + 2\sqrt{3}\omega_{c}^{2}c\cos(\sqrt{3}\omega_{c}t + \gamma)]A_{n} = 0$$
(68)

With the introduction of dimensionless variables, $\tau = \frac{1}{2} (\sqrt{3} \omega_c t + \gamma)$ and $z_n = A_n/L$ where L is the length of the beam, one can write,

$$\dot{A}_{n} = \frac{\sqrt{3}}{2} \omega_{c} \ell \frac{dz_{n}}{d\tau} \text{ and } \dot{A}_{n} = \frac{3}{4} \omega_{c}^{2} \ell \frac{d^{2}z_{n}}{d\tau^{2}}$$
(69)

After substituting Eqn. (69) into Eqn. (68), one obtains the generic mode equation in the following non-dimensional form,

$$\frac{d^2 z_n}{d\tau^2} + \frac{4}{3} \left[\left(\frac{\omega_n^2}{\omega_c^2} - 3 c^2 \cos^2 2\tau + 2 \sqrt{3} c \cos 2\tau \right] z_n = 0$$
(70)

Using the trigonometric identity, $\cos^2 2\tau = \frac{1}{2}(\cos 4\tau + 1)$, Eqn. (70) can be re-written as,

$$\frac{d^2 z_n}{d\tau^2} + \frac{4}{3} \left[\left(\frac{\omega_n^2}{\omega_\tau^2} - \frac{3e^2}{2} \right) + 2\sqrt{3} e \cos 2\tau - \frac{3}{2} e^2 \cos 4\tau \right] z_n = 0 \quad (71)$$

Equation (71) is in the form of "Hill's 3 - term equation" or "Whittaker's equation."⁷ For small pitch amplitudes ie., c << 1, the above equation can be further approximated by the Mathieu equation

$$\frac{dz_n}{d\tau^2} + (\delta + \varepsilon \cos 2\tau) z_n = 0$$
 (72)

where,

$$\delta = \frac{4}{3} \left(\frac{\omega_n^2}{\omega_c^2} - \frac{3}{2} \frac{c^2}{c^2} \right)$$

$$\varepsilon = \frac{8\sqrt{3}}{3}^{C} = 4.62 c$$

Figure 3 shows the Mathieu stability diagram⁸ with ε and δ as parameters. It can be seen from the Mathieu chart that for the values of δ around unity i.e., $\frac{\omega_n^2}{\omega_c^2} = \delta'(1)$ the system may enter the region of instability. However for large values of $(\omega_n/\omega_c)^2$ the co-efficient of z_n in Eqn. (72) is dominated by $(\omega_n/\omega_c)^2$. Hence, in the high frequency range, the elastic modes are essentially governed by the following simple equation:

$$\frac{d^2 z_n}{d\tau^2} + \frac{4}{3} \left(\frac{\omega_n}{\omega_c}\right)^2 z_n = 0 \quad \left(\frac{\omega_n}{\omega_c} >> 1\right)$$

Thus, it can be concluded that for beams with $(\omega_n/\omega_c)^2 >> 1$ (n = 1, 2, ... ∞), the elastic motion and the rigid body pitching motion are completely decoupled from each other. However, if $(\omega_n/\omega_c)^2 = \theta^2(1)$, (highly flexible beams) one has to consider Eqn.(71) to study the elastic motion, and thus the elastic motion is coupled with the rigid body pitching motion. In Section 6, numerical solutions of Eqn. (71) are presented, for some typical values of ω_n/ω_c .

5.1.2. The case of no flexural vibrations: $(\phi_z^{(n)} = 0)$

In this Section, we specialize equations (57) and (58) by restricting the beam to have no bending or flexural vibrations, but allow for the possibility of longitudinal vibrations. With the above assumption and the assumption of circular orbit in a spherically symmetric gravitational field, the following simplifications result,

$$L_{ZZ}^{(mr_1)} = L_{ZX}^{(mr_1)} = L_{XZ}^{(mr_1)} = 0$$
 (73)

$$M_{31} = \omega_c^2 s\theta c\theta \tag{74}$$

$$M_{11} = \omega_c^2 (3 c^2 \theta - 1)$$
 (75)

Substitution of the above results in equations (57) and (58) leads to, (assuming $C_v = 0$),

$$J_{y} \overset{\tilde{\theta}}{\theta} + 2\sum_{n=1}^{\infty} [\dot{A}_{n} (\dot{\theta} - \omega_{c}) + A_{n} \overset{\tilde{\theta}}{\theta}] H_{xx}^{(n)} + [J_{y} + \sum_{n=1}^{\infty} H_{xx}^{(n)}] \frac{\omega_{c}^{2}}{2} \sin 2\theta = 0$$

$$\ddot{A}_{n} + \omega_{n}^{2} A_{n} - [(\dot{\theta} - \omega_{c})^{2} + \omega_{c}^{2} (3 c^{2}\theta - 1)] (\frac{H_{xx}^{(n)}}{M_{n}} + A_{n}) = \frac{E_{n}}{M_{n}}$$
(77)

Equations (76) and (77) are consistent with Ashley's equations (A-8) and (A-9) in Ref. 2, which were derived from an energy approach.

Ashley has further shown in Ref. 1, that if the beam is spinning at a high enough spin rate, ie. $\omega_{\rm C}/\Omega \ll 1$, where Ω here represents the spin angular velocity, the response of Eqn. (77) for only the first mode, consists of steady stretching on which can be superimposed an oscillation with the physical frequency of $(\omega_{10}^2 + 2.93\Omega^2)^{\frac{1}{2}}$ where, ω_{10} is the fundamental frequency of the beam in the longitudinal vibrations assuming no spin.

--23--

atten and here we consume the descent

Ashley¹ has also investigated another special case of equation (77) by assuming $\theta(t) = \text{constant}$. Physically this implies that the beam is forced to maintain a constant orientation with respect to the local vertical. In this case, it can be easily seen that Eqn. (77) reduces to that of an harmonic oscillator with the physical frequency of $[\omega_n^2 - \omega_c^2 + \omega_c^2 (1 - 3c^2\theta)]^{\frac{1}{2}}$. The third term in this frequency expression is due to the gravity-gradient effect. Thus, the gravity gradient contribution to the frequency changes sign when $c^2\theta = \frac{1}{3}$. For beams with $\omega_n = 0^2(\omega_c)$, the possibility of buckling instability at $\theta = 0$ is also evident from the frequency expression.

5.2. Three dimensional motion of a long, slender, uniform beam in circular orbit: (assuming yaw to be zero, ie. $\psi = 0$).

This section presents the equations of three dimensional motion of a beam in circular orbit. Some of the following results which were obtained in Section 5.1 also hold for the present case, ie.

$$\vec{D}^{(n)} = 0; D'_{n} = 0 \text{ and } H^{(n)}_{\alpha\beta} = H^{(n)}_{\beta\alpha}$$
(51)
$$H^{(n)}_{xz} = H^{(n)}_{zx} = H^{(n)}_{xy} = H^{(n)}_{yx} = H^{(n)}_{yy} = H^{(n)}_{zz} = H^{(n)}_{yz} = H^{(n)}_{zy} = 0$$
(78)

Also, $J_y = J_z$ and $J_y - J_x = J_x$ for long, slender beams. Hence, the pitch equation is,

$$J_{y} \overset{\bullet}{w}_{y} - J_{y} \overset{\omega}{z} \overset{\omega}{x} + \overset{\tilde{\Sigma}}{\Sigma} Q_{y}^{(n)} + C_{y} \overset{\tilde{=}}{=} G_{R} + \overset{\tilde{\Sigma}}{\Sigma} G_{y}^{(n)}$$
(79)

-24-

والمراجعة والمساقمية متماسي

where,

$$\omega_{x} = (\dot{\theta} - \omega_{c}) s\phi ; \omega_{y} = (\dot{\theta} - \omega_{c}) c\phi ; \omega_{z} = \dot{\phi}$$

$$Q_{y}^{(n)} = 2 [\dot{A}_{n} \omega_{y} + A_{n} (\dot{\omega}_{y} - 2 \omega_{z} \omega_{x})]H_{xx}^{(n)}$$

$$G_{Ry} = -J_{z} M_{31}$$

$$G_{y}^{(n)} = -2M_{31} A_{n} H_{xx}^{(n)}$$

The roll equation is,

$$J_{z} \overset{\bullet}{\omega_{z}} + J_{z} \overset{\omega}{\omega_{x}} \overset{\omega}{y} + \overset{\infty}{\Sigma} Q_{z}^{(n)} + C_{z} = G_{Rz} + \overset{\Sigma}{n=1} G_{z}^{(n)}$$
(80)

where,

$$Q_{z}^{(n)} = 2 [A_{n} \omega_{z} + A_{n} (\omega_{z} + \omega_{y} \omega_{z})]H_{xx}^{(n)}$$

$$G_{Rz}^{(n)} = J_{z} M_{12}$$

$$G_{z} = 2 M_{12} A_{n} H_{xx}^{(n)}$$

$$M_{12} = -3 \frac{va^{2}}{\rho^{3}} s\phi c\phi c^{2}\theta + \frac{va^{2}}{\rho^{3}} \sum_{s=1}^{\infty} K_{s} (\frac{a}{\rho})^{s} M_{12}^{(s)}$$

The generic mode equation is,

We want the sub-state of the state of the state of the ball of the ball of the state of the stat

AE

an a shekara shekara

 . .

$$\ddot{A}_{n} + \omega_{n}^{2} A_{n} + \frac{g_{n}}{M_{n}} + \frac{1}{M_{n}} \sum_{m=1}^{\infty} g_{mn} = \frac{1}{M_{n}} (g_{n} + \sum_{m=1}^{\infty} g_{mn} + E_{n}) (81)$$

where,

$$\begin{split} \mathbf{\phi}_{n} &= -(\omega_{y}^{2} + \omega_{z}^{2}) H_{xx}^{(n)} \\ \mathbf{\phi}_{nn} &= 2 A_{n}^{*} (\omega_{y} - \omega_{z}) (L_{zx}^{(n,n)} - L_{xz}^{(mn)}) \\ &+ A_{m}^{*} [(\omega_{y}^{*} - \omega_{z}^{*}) (L_{zx}^{(mn)} - L_{xz}^{(mn)}) + \omega_{x}(\omega_{y} + \omega_{z}) (L_{zx}^{(mn)} + L_{xz}^{(mn)}) \\ &+ (2 \omega_{y}^{*} \omega_{z}^{*} - 2 \omega_{x}^{*2} - \omega_{y}^{*2} - \omega_{z}^{*2}) L_{zz}^{(mn)} - (\omega_{y}^{*2} + \omega_{z}^{*2}) L_{xx}^{(mn)}] \\ &= M_{11}^{*} H_{xx}^{(n)} \\ g_{nn} &= A_{n}^{*} [L_{xx}^{(mn)} M_{11}^{*} + (M_{22}^{*} + M_{33}^{*} + 2M_{23}^{*}) L_{zz}^{(mn)} \\ &+ (L_{zx}^{(mn)} + L_{xz}^{(mn)}) (M_{12}^{*} + M_{13}^{*})] \end{split}$$

بحجا حثاج الحسار والالتحاص

5.2.1 The case of no longitudinal vibrations: $(\phi_x^{(n)} = 0)$.

In this case, the following further simplifications result, i.e.

$$H_{XX}^{(n)} = L_{ZX}^{(nn)} = L_{XZ}^{(nn)} = L_{XX}^{(nn)} = 0$$
 (82)

Furthermore, if we choose the eigen modes of bending vibrations of a free-free beam to be $\phi_z^{(n)}$, then,

$$L_{zz}^{(mn)} = \delta_{mn} M_{n}.$$
 (83)

Assumption of a spherically symmetric gravity field results in,

$$M_{12} = -3 \omega_{c}^{2} s\phi c\phi c^{2}\theta; M_{22} = (3 s^{2}\phi c^{2}\theta - 1)\omega_{c}^{2}$$

$$M_{23} = -3 \omega_{c}^{2} s\phi c\theta s\theta ; M_{33} = (3 s^{2}\theta - 1)\omega_{c}^{2}$$

$$M_{31} = 3 \omega_{c}^{2} c\phi c\theta s\theta$$
(84)

With the above results substituted in equations (79), (80) and (81), one obtains the following equations of:

Pitch:

$$\dot{\omega}_{y} - \omega_{z} \omega_{x} + M_{31} + C_{y}/J_{y} = 0$$
 (85)

Roll:

Generic mode:

$$\ddot{A}_{n} + (\omega_{n}^{2} + 2 \omega_{y} \omega_{z} - 2 \omega_{x}^{2} - \omega_{y}^{2} - \omega_{z}^{2} - M_{22}$$

 $- M_{33} - 2 M_{23}) A_{n} = \frac{E_{n}}{M_{n}}$
(87)

where,

$$\omega_{x} = (\ddot{\theta} - \omega_{c}) s\phi$$
$$\omega_{y} = (\ddot{\theta} - \omega_{c}) c\phi$$
$$\omega_{z} = \dot{\phi}$$
The assumption of small amplitude pitch and roll, i.e. $\theta << 1$ and $\phi << 1$, yields the following set of linearized equations for pitch and roll, after neglecting the terms containing the products and powers of ϕ , $\dot{\phi}$, θ and $\dot{\theta}$.

Pitch:

$$\ddot{\theta} + 3\omega_{e}^{2}\theta + \frac{Cy}{J_{y}} = 0$$
(88)

Roll:

$$\frac{1}{\phi} + 3 \omega_{c}^{2} \phi + \frac{C_{z}}{J_{z}} = 0$$
 (89)

The generic mode equation is,

$$\ddot{A}_{n} + [\omega_{n}^{2} + 2\phi(\dot{\theta} - \omega_{c}) - (\dot{\theta} - \omega_{c})^{2} - \dot{\phi}^{2} + 2\omega_{c}^{2}]A_{n} = \frac{E_{n}}{M_{n}}$$
(90)

5.2.2 The case of no flexural vibrations $(\phi_y^{(n)} = \phi_y^{(n)} = 0)$:

In this case, the assumption of no flexural vibration results in,

$$L_{zz}^{(mn)} = L_{zx}^{(mn)} = L_{xz}^{(mn)} = 0$$
 (91)

Also, the assumption of $\phi_{\chi}^{(n)}$ to be the eigen-modes of longitudinal vibration of the beam leads to the result,

$$L_{xx}^{(mn)} = \delta_{mn} M_{n} (m = 1, 2, ... \infty)$$
 (92)

As in Section 5.2.1, the assumption of a spherically symmetric gravity field, yeilds

$$M_{11} = (3 c^{2} \phi c^{2} \theta - 1) \omega_{c}^{2} ; M_{12} = -3 \omega_{c}^{2} s \phi c \phi c^{2} \theta$$

$$M_{22} = (3 s^{2} \phi c^{2} \phi - 1) \omega_{c}^{2} : M_{23} = -3 \omega_{c}^{2} s \phi c \theta s \theta$$

$$M_{23} = 3 \omega_{c}^{2} c \phi c \theta s \theta ; M_{33} = (3 s^{2} \theta - 1) \omega_{c}^{2}$$
(93)

For this case, the pitch and roll equations remain the same as equations (79) and (80). The generic mode Eqn., (81), simplifies to the following form:

$$A_{n}^{*} + \omega_{n}^{2} A_{n}^{*} + \frac{g_{n}}{M_{n}}^{*} + \frac{1}{M_{n}} \sum_{n=1}^{\infty} g_{mn}^{*} = \frac{1}{M_{n}} (g_{n}^{*} + \sum_{m=1}^{\infty} g_{mn}^{*} + E_{n}^{*})$$
(94)

where,

$$\boldsymbol{\varphi}_{n} = -(\omega_{y}^{2} + \omega_{z}^{2})H_{XX}^{(n)}$$
$$\boldsymbol{\varphi}_{mn} = -A_{m} [\omega_{y}^{2} + \omega_{z}^{2}]M_{n} \delta_{mn}$$
$$\boldsymbol{g}_{n} = M_{11} H_{XX}^{(n)}$$
$$\boldsymbol{g}_{mn} = A_{m} M_{11} M_{n} \delta_{mn}.$$

6. NUMERICAL RESULTS

In this section, the numerical solutions of equation (71), for a few typical values of $(\omega_n/\omega_c)^2$ shown in Table -1, are presented. Cases 1-5 correspond to very flexible beams. Eqn. (71) was integrated, using a Runge-Kutta fourth order method with variable step size, on a Nova 840 digital computer. As an initial guess a step size of approximately 1/500th of the orbital period was chosen for all the computer runs. A pitch amplitude of 0.2 radians was assumed, which is the upper limit for θ for which the approximation sin $\theta \stackrel{<}{=} \theta$ is still valid.

•

The responses shown in Figs. 5 and 6 for the value of $(\omega_n/\omega_c)^2 = 1.0$ indicate the instability of the system at very low natural frequencies. Point 1 corresponding to this case on the Mathieu stability diagram in Fig. 4 also indicates this instability. The other points on the Mathieu stability diagram correspond to other cases shown in Table 1 and are referred to by the appropriate case number. For the other values of $(\omega_n/\omega_c)^2$ considered, the beam response is sinusoidal to a very close approximation, see Figs. 7, 8, 9 and 10. Fhase plane plots of cases 1, 2, 3, 4 are shown in Figs. 11, 12, 13, and 14 respectively.

It is to be noted however, that when the pitch amplitude exceeds 0.2 radians, one has to use equations (63) and (64) for simulation. The development of a general computer program which treats the combined pitch and generic modal equations will be discussed in Section 6.1.

-29-

			Assumed data		Conments
No.	(س _ا /س _c) ²	C ₄₄	z _n (0)	$dz_n(0)/d\tau$	~g
1.	1.0	0.2	0.5×10^{-4}	0.0	Range of τ : 0 to 11
2.	1.0	0.05	0.5×10^{-44}	0.0	Range of t: 0 to 11
3.	2.0	0.2	0.5×10^{-4}	0.0	Range of τ : 0 to 11
4.	5.0	0.2	0.5×10^{-4}	0.0	Range of τ : 0 to 5.5
5.	10.0	0.2	0.5×10^{-4}	0.0	Range of τ : 0 to 5.5
6.#	3200	0.2	0.5×10^{-4}	0.0	Range of τ : 0 to 1.1

* This case corresponds to a beam with a fundamental natural frequency of 1/100 cps and moving in a circular orbit of 250 n. miles altitude.

** c - Pitch amplitude in radians.

Table 1: Data assumed for numerical simulation

6.1 The Flexbeam Computer Program

A. Development of Computer Program

The first order non-linear equations of motion for the longflexible beam in orbit as developed in section 5, Eqs. (57) and (58), were coded for numerical simulation using the Nova 840 digital computer system. The program, Flexbeam, consists of nine subprograms whose names and functions are:

- FBSET (a) set up initial state, (b) an input quantity, Precision, dependent upon the desired precision (range 1.0 to 10^{-5}); the size of this input parameter is inversely proportional to the desired accuracy (and also the number of iterations required per computational time step).
- FBHST set $H_{ij}^{(n)}$ where $n = 1, 2, ..., M, M_{max} = 20$ modes

FBLST - set $L_{ij}^{(r,n)}$ where r = 1, 2, ..., M, and n = 1, 2, ..., M.

- FEDIF set differential equations which include primary and secondary functions
- RNSCL (a) set full scale values of the initial conditions: ϕ_0 , $\dot{\phi}_0$, An₀, and An₀, (b) set the number of ordinary differential equations to be evaluated, (c) set the bounds on the maximum number of iterations (11) that the Runge-Kutta subroutine is allowed per time step in order to fulfill the desired precision specified in FBSET. If more than this number of iterations would be required the Runge-Kutta subroutine is automatically terminated.

-31-

In this case, the precision parameter or full-scale values would have to be adjusted.

- RKGS Uses the Runge-Kutta method to obtain an approximate solution of the system of first order differential equations, given initial conditions.
- FBPIF calculation of primary intermediate functions, i.e.
 M₁₁, M₁₃, R₂, sin¢ and cos¢, etc.
- FBSIF calculation of secondary intermediate functions, i.e. Φ_n , g_n , Φ_m and g_m
- FBOUT sets the scale magnitudes of the output variables ϕ , $\dot{\phi}$, A_n , and \dot{A}_n , equal to the maximum expected amplitudes for use in the plot routine.

The flow diagram, Fig. 15, depicts the various subprograms and how input information, as well as the resulting output of each subprogram, is passed through the Flexbeam main program.

B. Flexbeam Usage

an a dinana katana katana katana di katana katan

Flexbeam is a computer simulation of the dynamics of a flexible beam in a circular orbit about the earth. The programming language used in the main program is Fortran Five. This language allows the results to be obtained faster than the same results obtained, using Fortran Four. (The Flexbeam out-put program is coded in Fortran Four.) Flexbeam, contains three principal components: Flexbeam Main Program, (refer to Fig. 15), Flexbeam Input Data and Flexbeam Output Program.

-32-

Inside the main program the subroutine FBINP is associated with Flexbeam Input Data. The purpose of this subroutine is to specify the order and format with which the input data is read into the computer. Block data, also inside the main program, sets the constant parameters, i.e. gravitational constant, NU, orbit frequency, WD, external forces, QCP, C2, and terms involving the higher harmonics of the earth's gravitational field, J2 and J3, to their full-scale values; also constant parameters associated with each mode are set, i.e. the modal frequency, DW. The number of modes (M) and the number of differential equations being considered, NORD, are also specified here.

Flexbeam Input Data is the component program that allows the main program to be executed. The first input of the first data card denotes the total time interval over which the numerical integration is to be performed, e.g. 0.0 to 300.0 sec. The second input on this card is the computational time step, 0.5 sec. The third input is the precision, 1.0. The second data card contains the initial conditions: ϕ_0 , $\dot{\phi}_0$ and their scale values. The remaining data cards contain An_0 , \dot{An}_0 , their scale values and the modal frequency, in that order for each mode being considered. Sample data cards are shown in Fig. 16 and input data, for a specific case, is shown on page 12 of the program listing (Appendix V - 12).

The Flexbeam Output Program prints and/or plots any and/or all of the following: pitch angle (and pitch rate), modal amplitudes (and rates), and deflections taken at particular points along the undeformed beam, all as functions of time. (The designated points at which the deflections are to be calculated are specified according to the position of the particular point from the left end of the beam, non-dimensionalized by the total beam length.) The desired outputs can be implemented by placing the "amplitude vs. time" deck of cards, (page V - 17 of the program listing), "print out-put" deck of cards, (page V - 16) of the program listing), or the "call to deflection plot (DFPLO)" subroutine, (page V -13 of the program listing), into the main part of this program which is also on page V - 13.

6.2 Numerical results of Flexbeam Program

The results obtained from the computer simulation of the dynamics of a flexible beam in orbit using the Flexbeam Program will be considered. The beam is assumed to be a long slender hollow tube made of wrought aluminum (2014T6). The length of the beam is taken as 100 meters, its outside diameter and thickness are: 0.05 meters and 0.005 meters, respectively. The structural rigidity (EI) of the beam is 7.707 x 10^3 nt - m² and the mass per unit length is 9.906 x 10^4 kg/m. It is further assumed that the c.m. of the system follows a 250 n.mi (463.31 km) altitude circular orbit.

The initial conditions which remained constant throughout all simulation runs are: $\phi(0) = 0.2 \text{ rad.}, \dot{\phi}(0) = 0.0 \text{ rad./sec.}, A_n(0) = 0.5 \text{ meters (maximum value) and } \dot{A}_n(0) = 0.0 \text{ meters/sec.}$ Other parameters, i.e. the time interval of the numerical simulation and the generic modal frequencies, were varied. Variations in these parameters and their effect upon the deflection of the beam throughout its entire length will be discussed.

The first two cases of the simulation were constructed to test the program. The first, depicted in Fig. 17, is a simulation of pitch motion with a superposition of the first and second generic modes, (refer to Table 2). Each mode is assumed to have an initial amplitude coefficient of 0.5 meters. The deflection is calculated using Eq. (11), where $\overline{\Phi}^{(n)}(\overline{r_0})$ has only one component, $\phi_z^{(n)}\hat{k}$.

-35-

The deflected beam was examined at three locations, the left and right nodal points of the first mode and the central nodal point of the second mode, (Table 2). In Figs. 17a and c, we observe the predominant effect of the frequency response of the second mode, whereas in Fig. 17b, that of the first mode. Discrepancies between the responses shown in Fig. 17 and purely simple harmonic motion at a particular modal frequency, are attributed to: (1) small numerical errors in calculating the exact location of the nodal points and (2) nonlinearities associated with pitch-rate coupling in the generic modal equations. In the second case, Fig. 18, the frequency of the first mode is set equal to the orbital frequency. The frequencies of modes two and three are calculated based on criterion consistent with free-free beams, (Table 2). Figs. 18a and b. depict the responses of the first generic mode and then all three generic modes, respectively. In each figure, we note the growth of the amplitude of the first mode due to orbital resonance as simulated. Fig. 19 is associated with Fig. 18b. This figure illustrates the deflection of the entire beam for a one hundred second time interval. This interval was chosen to show the dominating effect of the first mode during this part of the response. It should be noted that the case shown in Fig. 18 for the response of the first generic mode, duplicates the earlier result described in Fig. 5, after accounting for the nondimensionalization of A₁ and noting that the initial conditions in ϕ and $\dot{\phi}$ shown in Fig. 18a, will result in a pitch amplitude of 0.2 radians.

The third and remaining cases of the simulation shown in Figs. 20 - 29, all depict the following plots; modal amplitude and deflection vs. non-dimensional beam length as functions of time. The modal amplitude responses are used to study the interaction of the modes superimposed upon one another; first with initial values of the mode amplitudes equally weighted, i.e. An(0) = 0.5 meters (Fig. 20), then unequally weighted, i.e. Figs. 22, 25a, and 27. Figs. 22 and 25a can be compared since the initial conditions are similar. It can be observed that with the frequencies chosen for the first generic mode, $\omega_1 = 0.0628$ in Fig. 22 and $\omega_1 = 0.628$ in Fig. 25a. which represents 1/100 and 1/10 cycles per second, respectively, the responses shown, illustrate the effect of the greater rigidity in the latter case. The deflection plots are used to study the deflection of the entire beam during specific time intervals. As a particular example, we consider Figs. 20 and 21 jointly, to study the effect of the superimposition of the different modes at different intervals. We note that at the beginning of the simulation the signs of all three modal amplitudes $(A_1 - A_2)$ are positive. Figures 21a and b. show the deflection of the beam throughout the length of the entire beam during the first 21 seconds. From Table 2, it is observed that the deflections at the left end of the beam due to the first three (or more) generic modes, will be additive providing the modal amplitude factors have the same sign. This phenomena is apparent in Fig. 21a, where the initial larger deflection at the left end of the beam should be noted.

The first and second modal amplitudes have negative values between 42.5 and 48 secs. whereas the third modal amplitude has a positive value, (Fig. 20). It should also be noted that the first modal amplitude reaches a maximum negative value at 45 secs. During this time period, the dominating influence of the first mode in the deflection response (Fig. 21c), is apparent. The contributions of the second and third mode tend to compensate each other.

The remaining amplitude and deflection responses showing the effect of different initial conditions and the numbers of modes in the model can be examined in a similar manner and will be useful in the forthcoming simulation of the free-free beam under the action of various control devices.

Figure 30 shows a typical response of the pitch motion of the beam for a simulation which involved only one generic mode. Since the pitch motion is not coupled to first order with the generic modal motion [Eqns. (88) and (90)], this type of response is representative of all pitch motions simulated for small pitch amplitudes.

For all numerical cases reported here, an average of 10-12 minutes computational time was requir d to simulate the dynamics over an 80 minute interval of real time using the NOVA 840 computer system.

7. CONCLUSIONS

This report presents the development of the equations of motion of an arbitrary flexible body in orbit. In the case of planar motion of a long, slender beam in a circular orbit, undergoing small pitch oscillations and flexural vibrations, the pitch motion completely decouples from the elastic motion and the elastic motion is governed by a Hill's 3 - term equation. For large values of $(\omega_n/\omega_c)^2$ the elastic motion completely decouples from the pitch motion and the elastic motion closely approximates that of an harmonic oscillator. However, the numerical results indicate the possibilities of instabilities at very low values of $(\omega_n/\omega_c)^2$. A general computer program which treats both the pitching motion and the first-order flexural vibrations of a thin beam in orbit is developed; this program can be modified to simulate the effects of both external environmental torques and control torques that may be provided by actuators located at various positions along the beam.

المحارف بمشيرا فالأستخذر والانتقاط والمنع

REFERENCES

- Ashley, H., "Observations on the Dynamic Behavior of Large Flexible Bodies in Orbit," AIAA J., Vol. 5, No. 3, pp.460-469, March 1967.
- Ashley, H., "Observations on the Dynamic Behavior of Large Flexible Bodies in Orbit," Massachusets Institute of Technology, Fluid Dynamics Research Lab., Rept. 66-2 (April 1966).
- Pringle, Ralph Jr., "On the Capture, Stability and Passive Damping of Artificial Satellites," NASA Contractor Rept., NASA CR-139, 1964 pp.115-127.
- Santini, Paolo, "Stability of Flexible Spacecrafts," Acta Astronautica, Vol. 3, pp. 685-713, 1976.
- Bisplinghoff, R.L., Ashley, H., <u>Principles of Aeroelasticity</u>, Dover Publication Inc., New York, 1962.
- Hurty, R.C., Rubinstein, M.F., <u>Dynamics of Structures</u>, Prentice Hall Inc., 1964.
- Arscott, F.M., <u>Periodic Differential Equations</u>, The MarMillan Co., New York, 1964.
- Likins, P., Attitude Stability of Space Vehicles, course notes given at UCLA, Los Angeles, Jan 1968.
- Meirovitch, L., <u>Analytical Methods in Vibrations</u>, The MacMillan Co., New York, 1967.
- Rogers, G.L., <u>Dynamics of Framed Structures</u>, John Wiley & Son, Inc., 1959.

a a

Americantenera

Fig. 1: Co-ordinate Frames

ditta vila 1. Sec

0 - Center of mass

- $\overline{\mathbf{r}}_{0}$ Position vector of P before deformation
- r Position vector of P after deformation
- q Elastic displacement

Fig. 2: Deformed and Undeformed Configurations of the Body.

Fig. 3: Beam Satellite

-43-

Fig. 5 : Modal Amplitude Response - Very Flexible Beam

45

-47-

-48-

Fig. 10: Modal Amplitude Response - Effect of Increased Beam Stiffness.

-50-

Fig. 11: Phase Plane Plot (case 1)

-51-

Fig. 12: Phase Plane Plot (case 2)

-53-

C.

-54-

Fig. 15: Flow Diagram of Flexbeam Program Howard University NOVA - 840 Digital Computer

-ភូភូ -

0.0			1	3	00).	Û					. 5	5		_		Γ	1		0				T																			_				T					X	ľ
Gandan STATIYANT HUNDER	E-WOAT ST		•	terval							rval Lomp. FO time step			Ę	TRAN STATEMENT								iDi	CÁT VI	FIC	ATIC	in i																										
•5				0.	0						÷.	2		_			ŀ		0	05	0			L	_																	_		_								X	
STATEMENT NUMBER	1.1.1.1	P.	7	•		Ŷ) 0			•	\$, li	e	F	0	ħ	T	R	A	б	1	7	\$	Т	Å	٦	F'E	21	∕I/E	Ē	Ν	Т					•										100	HT.	FIC	ATIC	#	
.5			Ī	İ	0.	Û				Ì		5					T	1	3						. (96	21	33	Ī	85	Ī			****			2												-			X	~.
C-LOUTAT STATEWENT	10121-012	Ā	,	+	7	 				->				Λ	F	Q	R	7	R	Ā	<u>,</u>	1		\$	1 	Ā	. 1	Ē	E N	7		N	Т					_										100	41 T II	fic/	110	N	
100000 12345	Ō	90 90 71		0 11	0 0 0	2	01 01 51		9	0			01		0	00		<i>و</i> ر ا	1	00		<u>ເ</u> ຄື ກ	>) 0 0 8 8	t		<u>4</u> e 1 0 1 0	5 1 0 (201 0 10	L. 00	þ	0 (51 5	00	8	10	0 (5) (0	01) () 1 ()	0	00	0	0 (1) 6	0	0	0 0 n z	0	00	1 B 5 76	00	0	2	
14111	1	11	1	1	11	1	11	11	Ĩ	1	1	1	11	1	1	11	1	11	1	11	1	1	11		11	1	1	1		11		11	11	11	1	1	1	11	1	1	11	1	11	1	1	11	I	1 1	1	11	1	1	
212 2 2 2 2	2	22	22	2:	22	2	23	22	2	2	2:	22	22	? ?	2	22	ť	22	2	22	2	2	22	ł	22	2	А́	22	2	22	l	22	22	27	22	23	22	27	22	23	22	2	2 2	2	22	22	2	2 2	: 2 	22	: Z: 	2	
23333 	3 4	33 44	4	3	ء د 4 4	.4	3 . 4 /	• •	4	4	2 II 4	, , , ,	44)) [4	4	ə ə 4 4	ľ	6 3 4 4	4		4	4	a a 4 4	ן ן	£ 3 4 4	4	41	14 14	. a . 4 .	a a 4 4		4/	44	44	14	• •	, . 14	44) a 4	4	, , 4 4	4	5 3 4 (i 4	4	, a 4 4	4	44	4	44	14	4	
'5 _ 5 5 5	5	55	5	5	5 5	5	5 (55	5	5	5.	, 5	5 :	55	5	55	6	55	5	5 :	i 5	5	55	ļ	55	5	5 !	55	5	5 g		5 (55	5 !	5 S	5 9	55	5 9	i 5	5 !	5 5	5	5 :	i 5	5	5 5	5	5 5	i 5	5 \$	i 5	5	
66666	8	66	6	6	6 6	6	6 (66	6	6	6	6 G	6 (<u>i</u> 6	6	66	\$	66	6	6 6	6	6	66	-	6 G	م	6 (66	6	6 6	-	6 8	56	6 () S	6 (i 6	6 (i 6	6 (56	6	6 E	6	6 !	56	8	6 6	6	8 E	; G [;]	6	
7)7 7 7 7 1	7	77	7	1	11	1	11	11	1	1	1	17	11	11	7	77	ł	11	1	14	17	1	11	ľ	11	1	11	11	1	11	ł	11	11	11	11	11	11	11	1	11	17	1	11	1	1	17	þ	71	1	11	17	-	
18888 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8	88	8	8 : 0	8 <u>-</u> 0 a	8	8 (a (8 8 9 9	8	8	:_: : a :	58 58	84 94	18 18	8 e	8 8 a e	ľ	_ 8 a a	8 : 9 :	8 8 6 c	6 8 1 0	8 : a	68 4 a		_ 0 a a	0	8. a (_8 1 0	8.	_ C 4 a	l	8 a c	88 90	8 I 9 C	58 19	81 81	38	8 (9 1	6 8 1 0		8 8 9 8	8	88 a C	8	6 a :	4 8 4 8	8	8 E a c	18	88	; 8 1 4		
12345	5	33 71 11 12 1	5 0 5 0 180	3 11 1 157	c 13	- J 15-]	a 1 15-1	4-17 4-17	а Ц	n i	्यः भ्यार	1 21	24.2	, 1 5 8	3 11:1	9 3 8 21	6		ц.	a c Hit		n -1	3 3 11:33	f	8 3 194	4	414 414	3 - 3 3 - 46	9 414	9 3 193	f	5115	251	9 1 54 5	5-10 5-10	57 5 \$7 5	1:21 1:21	् स	i∓ 1:02	93 44	0 0 H (1	- 55 I	0 C	1 31 1 61	а (ф.)	3 3 1 11	in.	7 1 14 1	1.11	93 117) 2 1907		

Fig. 16. Sample Data Input Cards

ORIGINAL PAGE IS DE POOR QUALITY

(meters) Deflection at the Left Nodal Point of First Mode, $\left| \zeta_{r} + 1 \right|_{r=0.090}$ = 0.224 ×۲

Fig. 17a: Beam Deflection Time Response

OF POOR QUALITY

(meters) Deflection at the Middle Nodal Point of Second Mode, $\delta(\zeta, t)|_{\zeta = 0.5}$

Time (seconds)

Fig. 17b: Beam Deflection Time Response

Deflection at Right Nodal Point of First Mode, (meters) $\delta(\xi, t)|_{r=0.778}$ = 0.776

-59-

Fig. 18a: Time Response of First Generic Mode (Orbital Frequency Equals Mode Frequency)

!

-60-

Fig. 18b: Time Response of Three Modes Equally Weighted in $A_n(0)$

-61-

Mode Amplitude (meters)

max = 1.6m

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

Deflection (meters)

Time (seconds)

Fig. 19: Deflection vs. Non-dimensional Beam Length for 6400 < T < 6500 (secs)

Fig. 20: Time Response of Three Modes Equally Weighted in ${\rm A}_{\rm n}({\rm O})$

-63-

Fig. 21a: Deflection vs. Non-dimensional Beam Length for $0 \le T \le 10$ (secs)

-64-

ORIGINAL PAGE IS OF POOR QUALITY

Deflection (meters)

Fig. 21b: Deflection vs. Non-dimensional Beam Length for $11 \leq T \leq 21$ (secs)

-66-

Mode Amplitude (meters)

-67-

ORIGINAL PAGE IS OF POOR QUALITY

 $\omega_1 = 0.0628 \text{ r/s}$ $\omega_2 = 0.1733 \text{ r/s}$ $\omega_3 = 0.3374 \text{ r/s}$

I.C.: $A_1 = 0.5m$, $A_2 = 0.3m$ $A_3 = 0.2m$

ORIGINAL PAGE IS OF POOR QUALITY

Fig. 23: Deflection vs. Non-dimensional Beam

Deflection (meters)

Time (seconds)

Fig. 24: Deflection vs. Non-dimensional Beam Length for $47.5 \le T \le 57.5$ (secs) -69Mode Amplitude (meters)

Fig. 25: Time Response of Three Modes Unequally Weighted in $A_n(0)$

ORIGINAL PAGE IS OF POOR QUALITY

 $\omega_1 = 0.6283 \text{ r/s}$ $\omega_2 = 1.7332 \text{ r/s}$ $\omega_3 = 3.3741 \text{ r/s}$ I.C.: $A_1 = 0.5\omega$ $A_2 = 0.3\omega$ $A_3 = 0.2\omega$

Tao.o sec. 1 11 F=+:0: sec. --11--2.0 T= 2,0 sec. 0.0 -2.0 T= 1.0 sec. 2.0 T= 4.0 sec. Tak. T= 5.0 Jec. T= 6.0 sec. -T=7.0 sec. T= 5.0 sec. -----=1: T= 9.0 sec. 1 === 1 T= 10.0 Sec. 1= 1 21 -112 1. Non-dimensional Beam Length 0 1.0

 $\omega_1 = 0.628 \text{ r/s}$ = 1.7332 r/s wa $\omega_3 = 3.3741 \text{ r/s}$ I.C.: $A_{1} = 0.5m$ $A_{2} = 0.3m$ $A_3 = 0.2m$

Fig. 26: Deflection vs. Non-dimensional Beam Length for $0 \le T \le 10$ (secs)

Time (seconds)

Deflection (meters)

2.0

0.0

Mode Amplitude (meters)

ORIGINIAL PAGE IS OR POOR QUALITY

$$\begin{split} & \omega_1 = 0.0628 \text{ r/s} \\ & \omega_2 = 0.1733 \text{ r/s} \\ & \omega_3 = 0.3374 \text{ r/s} \\ & \omega_4 = 0.5579 \text{ r/s} \\ & \omega_5 = 0.8337 \text{ r/s} \\ & \text{I.C.:} \quad A_1 = 0.5m \\ & A_2 = 0.4m \\ & A_3 = 0.3m \\ & A_4 = 0.2m \\ & A_5 = 0.1m \end{split}$$

-72-

Deflection (meters) Time (seconds)

ORIGINAL PAGE IS OF POOR QUALITY

Fig. 29: Deflection vs. Non-dimensional Beam Length for $47.5 \le T \le 57.5$ (sec)

Fig. 30: Time Response of the Pitch Motion

-75-

Transformation Relations:

1. Transformation from τ_0 to τ_1

From Fig. (A-1) it is evident that,

2. Transformation from the intrinsic frame (τ_1) to the orbit fixed

3. Transformation from orbit frame (τ_2) to the body frame (τ_3) :

$$X_0 Y_0 Z_0 \underbrace{\psi}_{yaw}$$
 x'y'z' $\underbrace{\theta}_{pitch}$ x'y"z" $\underbrace{\phi}_{roll}$ xyz

From Fig. (A-3),

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} c\phi & s\phi & 0 \\ -s\phi & c\phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c\theta & 0 & -s\theta \\ 0 & 1 & 0 \\ s\theta & 0 & c\theta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & c\psi & s\psi \\ 0 & -s\psi & c\psi \end{bmatrix} \begin{bmatrix} x_0 \\ Y_0 \\ Z_0 \end{bmatrix}$$

i.e.
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} c\phi c\theta & s\phi c\psi + c\phi s\theta s\psi & s\phi s\psi - c\phi s\theta c\psi \\ -s\phi c\theta & c\phi c\psi - s\phi s\theta s\psi & c\phi s\psi + s\phi s\theta c\psi \\ s\theta & -c\theta s\psi & c\theta c\psi \end{bmatrix} \begin{bmatrix} x_0 \\ Y_0 \\ Z_0 \end{bmatrix}$$

 $T_3(\phi, \theta, \psi)$

(I-3)

ORIGINAL PAGE IS OF POOR QUALITY

Appendix - II

The transformation matrix connecting τ_1 (P) and τ_3 , where P is a general point in the body, is developed as below,

(i) Transform a vector in τ_1 (P) to a vector in τ_0 using the transformation T_1^{-1} (P).

(ii) Transform the vector in τ_0 to a vector in $\tau_1(0)$ by the transformation $T_1(0)$

we can write,

$$T_{1}^{-1} (P) = T_{1}^{-1} (O) + \Delta T_{1}^{-1}$$
$$= T_{1}^{-1} (O) + \frac{\partial T_{1}}{\partial \eta} \Delta \eta + \frac{\partial T_{1}}{\partial \omega} \Delta \omega + H.O.T.$$

Hence,

$$T_{1}(0) T_{1}^{-1}(P) = I + \Delta$$
 (II - 1)

where,

$$\underline{\Delta} = T_1$$
 (0) $\left[\frac{\partial T_1}{\partial \eta} \Delta \eta + \frac{\partial T_1}{\partial \omega} \Delta \omega\right]$

and from Eqn. (I - 1)

$$\underline{\Delta} = \Delta \eta \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \Delta \omega \begin{bmatrix} 0 & 0 & -s\eta \\ 0 & 0 & -c\eta \\ s\eta & c\eta & 0 \end{bmatrix}$$
(II - 2)

Thus, the transformation (I+ $\underline{\Delta}$) transforms a vector in τ_1 (P) to a vector in τ_1 (O), i.e.

$$\begin{bmatrix} i_{1} \\ i_{2} \\ i_{3} \end{bmatrix}_{\tau_{1}} (0) \begin{bmatrix} i_{1} \\ i_{2} \\ i_{3} \end{bmatrix}_{\tau_{1}} (P)$$
(II - 3)

ORIGINAL PAC

The gravity force per unit mass at 0, expressed in the intrinsic frame at that point, τ_1 (0) is given by,

$$\overline{F}_{0}(p, n, \omega) = \nabla V|_{0} = \begin{bmatrix} \frac{\partial V}{\partial p} \\ \frac{1}{p} \frac{\partial V}{\partial n} \\ \frac{1}{psn} \frac{\partial V}{\partial \omega} \end{bmatrix}_{0}$$

(II - 4)

8)

Where, V is the gravitational potential given by Eqn (5).

The gravity force at P referred to the intrinsic frame at P can be written as:

$$\overline{F}_{p} = \overline{F}_{0} (\rho, \eta, \omega) + \frac{\partial \overline{F}}{\partial (\rho, \eta, \omega)} \begin{bmatrix} \Delta \rho \\ \Delta \eta \\ \Delta \omega \end{bmatrix} + H.0.T$$
(II - 5)

Hence, the gravity force at P can be referred to the intrinsic frame at 0, τ_1 (0), through the use of transformation Eqn. (II-3), by:

$$\overline{F} = (I' \underline{\Delta}) \overline{F}_{p}$$

i.e.,

$$\overline{F} = (I + \underline{\Delta}) \quad [\overline{F}_0 + \frac{\partial \overline{F}}{\partial(\rho, n, \omega)} \quad \begin{bmatrix} \Delta \rho \\ \Delta n \\ \Delta \omega \end{bmatrix} \quad (II - 6)$$

To a first order approximation in $\Delta \rho$, $\Delta \eta$, $\Delta \omega$,

$$\overline{F} = \overline{F}_{0} + \Delta \overline{F}_{0} + \frac{\partial F}{\partial(\rho, \eta, \omega)} \begin{bmatrix} \Delta \rho \\ \Delta \eta \\ \Delta \omega \end{bmatrix}$$
(II - 7)

From Eqns. (II - 2) & (II - 3), it is easy to show that,

$$\underline{\Delta} \overline{F}_{0} = \begin{bmatrix} 0 & -F_{\eta} & -F_{\omega} s \eta \\ 0 & F_{\rho} & -F_{\omega} c \eta \\ 0 & 0 & F_{\rho} s \eta + F_{\eta} c \eta \end{bmatrix} \begin{bmatrix} \Delta \rho \\ \Delta \eta \\ \Delta \omega \end{bmatrix}$$
(II -

where,

$$F_{\rho} = \frac{\partial V}{\partial \rho} = -\frac{va^2}{\rho^2} + va \sum_{s=1}^{\infty} K_s \left(\frac{a}{\rho}\right)^{s+1} \Omega_s$$

$$F_{\eta} = \frac{1}{\rho} \frac{\partial V}{\partial \eta} = \frac{va}{\rho} \sum_{s=1}^{\infty} K_s \left(\frac{a}{\rho}\right)^{s+1} \Omega'_s$$

$$F_{\omega} = \frac{1}{\rho s \eta} \frac{\partial V}{\partial \omega} = \frac{va}{\rho s \eta} \sum_{s=1}^{\infty} K_s \left(\frac{a}{\rho}\right)^{s+1} \hat{\Omega}_s$$

(II - 9)

By some matrix manipulations, it can be shown that,

$$\underline{\Delta} F_{0} + \frac{\partial F}{\partial(\rho, \eta, \omega)} \begin{bmatrix} \Delta \rho \\ \Delta \eta \\ \Delta \omega \end{bmatrix} = B^{*} \begin{bmatrix} \Delta \rho \\ \rho \Delta \eta \\ \rho s \eta \Delta \omega \end{bmatrix}$$
(II -10)

where,

$$B^{*} = \begin{bmatrix} \frac{\partial F_{\rho}}{\partial \rho} & \frac{1}{\rho} \left(\frac{\partial F_{\rho}}{\partial \eta} - F_{\eta} \right) & \frac{1}{\rho s \eta} \left(\frac{\partial F_{\rho}}{\partial \omega} - F_{\omega} s \eta \right) \\ \frac{\partial F_{\eta}}{\partial \rho} & \frac{1}{\rho} \left(\frac{\partial F_{\eta}}{\partial \eta} + F_{\rho} \right) & \frac{1}{\rho s \eta} \left(\frac{\partial F_{\eta}}{\partial \omega} - F_{\omega} c \eta \right) \\ \frac{\partial F_{\omega}}{\partial \rho} & \frac{1}{\rho} \left(\frac{\partial F_{\omega}}{\partial \eta} \right) & \frac{1}{\rho s \eta} \left(\frac{\partial F}{\partial \omega} + F_{\rho} s \eta + F_{\eta} c \eta \right) \\ (II - II) \end{bmatrix}$$

Evaluating the partial derivatives in B*, using Eqn. (II-9), we arrive at the following ex ression.

$$B^{*} = \frac{va^{2}}{\rho^{3}} [B^{*}] + \sum_{s=1}^{\infty} K_{s} (\frac{a}{\rho})^{s} B^{(s)}] \qquad (II - 12)$$

where,

B

$$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ \end{bmatrix}$$

$$d = \begin{bmatrix} (s+1) (s+2)\Omega_{s} & -(s+2)\Omega'_{s} & -s(s+2)\frac{\Omega_{s}}{s\eta} \\ -(s+2)\Omega'_{s} & [\Omega''_{s} - (s+1) \Omega_{s}] & (\frac{\hat{\Omega}_{s}}{s\eta})' \\ -(s+2)\frac{\hat{\Omega}}{s\eta} & (\frac{\hat{\Omega}_{s}}{s\eta})' & [\Omega'_{s} \cot \eta - \Omega_{s}(s+1+\frac{m^{2}}{s^{2}\eta})] \end{bmatrix}$$

$$(II - 13)$$

Also, to a first order approximation,

$$\begin{bmatrix} \Delta \rho \\ \rho \Delta n \\ \rho s \eta \Delta \omega \end{bmatrix} = (T_3 T_2)^{-1} \overline{r}$$
(II - 14)

where \bar{r} is the postion vector expressed in the body axes frame, τ_3 .

After substitution of Eqns. (II - 10) and (II - 14) into Eqn. (II - 7), there results,

$$\overline{\mathbf{F}} \cong \overline{\mathbf{F}}_0 + \mathbf{B}^* (\mathbf{T}_3 \mathbf{T}_2)^{-1} \overline{\mathbf{r}}$$
 (II - 15)

Reprojecting on the body fixed frame, we get

$$\overline{f} = \overline{f}_0 + M \overline{r}$$
 (II - 16)

(II - 17)

(II - 18)

where,

an

$$\overline{f}_{0} = T_{3} T_{2} \overline{F}_{0}$$

$$M = T_{3} T_{2} B^{*} (T_{3} T_{2})^{-1}$$
If we write, $M = M^{(0)} + \Sigma K_{s} (\frac{a}{0})^{S} M^{(s)}$

then,

$$M^{(0)} = T_3 T_2 B^{(0)} (T_3 T_2)^{-1} \frac{\sqrt{3}}{\rho^3}$$
$$M^{(s)} = T_3 T_2 B^{(s)} (T_3 T_2)^{-1} \frac{\sqrt{3}}{\rho^3}$$

TI-4

The matrix M⁽⁰⁾ is given in Eqn. (6).

Appendix - III

This appendix presents the expanded forms of the vector expressions in equations (28), (31), (32), (43), (44), (45), and (46).

Let us introduce the following notations,

Σ

$$= \vec{q} \times (\vec{\omega} \times \vec{r}_0) - (\vec{r}_0 \cdot \vec{\omega}) (\vec{\omega} \times \vec{q}) - (\vec{q} \cdot \vec{\omega}) (\vec{\omega} \times \vec{r}_0)] dm$$

$$\vec{Q}^{(n)} = \sum_{n=1}^{\infty} \int [\vec{A}_n(\vec{r}_0 \times \vec{\phi}^{(n)}) + 2 \dot{A}_n (\vec{r}_0 \times (\vec{\omega} \times \vec{\phi}^{(n)}))]$$

+
$$A_n \{\overline{r}_0 \times (\overline{\omega} \times \overline{\phi}^{(n)}) + (\overline{\phi}^{(n)} \times (\overline{\omega} \times \overline{r}_0))$$

- $(\overline{r}_0 \cdot \overline{\omega}) (\overline{\omega} \times \overline{\phi}^{(n)}) - (\overline{\phi}^{(n)} \cdot \overline{\omega}) (\overline{\omega} \times \overline{r}_0)\}]dm$ (III - 3)

ORIGINAL PAGE IS OF POOR QUALITY

Using the methods of vector algebra, the above expression can be expanded in the component form to obtain

$$\begin{aligned} D_{x}^{(n)} &= \ddot{A}_{n}(H_{yz}^{(n)} - H_{zy}^{(n)}) + 2 \dot{A}_{n} \left[(H_{yy}^{(n)} + H_{zz}^{(n)}) \omega_{x} - H_{yx}^{(n)} \omega_{y} - H_{zx}^{(n)} \omega_{z} \right] \\ &+ A_{n} \left[2(H_{yy}^{(n)} + H_{zz}^{(n)}) \dot{\omega}_{x} - (H_{xy}^{(n)} + H_{yx}^{(n)}) \dot{\omega}_{y} - (H_{zx}^{(n)} + H_{xz}^{(n)}) \dot{\omega}_{z} \right] \\ &- 2 \omega_{y} \omega_{z} \left(H_{zz}^{(n)} - H_{yy}^{(n)} \right) - \omega_{x} \omega_{y} \left(H_{xz}^{(n)} + H_{zx}^{(n)} \right) \\ &+ \omega_{x} \omega_{z} \left(H_{xy}^{(n)} + H_{yx}^{(n)} \right) + (\omega_{z}^{2} - \omega_{y}^{2}) \left(H_{yz}^{(n)} + H_{zy}^{(n)} \right) \right] \end{aligned}$$
(III - 4)

 $Q_y^{(n)}$ and $Q_z^{(n)}$ are obtained by the cyclic permutation of x, y, z in the expression for $Q_x^{(n)}$.

Now consider equation (31), which is given by,

$$\overline{G}_{R} = \int_{VOl} \overline{r}_{0} \times M \overline{r}_{0} dm$$

On expanding in the component form,

 $\overline{G}_{R} = (J_{z} - J_{y}) M_{23} \hat{i} + (J_{x} - J_{z}) M_{31} \hat{j} + (J_{y} - J_{x}) M_{12} \hat{k}$ (III - 5)

where, Mij is an element of M matrix

 J_X , J_y , J_z are the principal moments of inertia of the body in the undeformed state.

Considering Eqn. (32) for $\overline{G}^{(n)}$, we have,

 $\sum_{n=1}^{\infty} G^{(n)} = \int (\overline{r_0} \times M\overline{q} + \overline{q} \times M\overline{r_0}) dm$

$$= \sum_{n=1}^{\infty} A_n \int (\overline{r_0} \times M \overline{\phi}^{(n)} + \overline{\phi}^{(n)} \times M \overline{r_0}) dm \qquad (III - 6)$$

Hence, the components of (III - 6) are,

$$G_{x}^{(n)} = A_{n}[(M_{33} - M_{22}) (H_{yz}^{(n)} + H_{zy}^{(n)}) - M_{21} (H_{xz}^{(n)} + H_{zx}^{(n)}) + M_{31}(H_{xy}^{(n)} + H_{yx}^{(n)}) + 2 M_{23} (H_{yy}^{(n)} - H_{zz}^{(n)})]$$

 $G_y^{(n)}$ and $G_z^{(n)}$ components are obtained by the cyclic permutation of x, y, z in (III - 7).

Now consider the following scalar quantities.

$$\begin{split} \dot{\phi}_{n} &= \int_{VOl} \left[\overline{\Phi}^{(n)} \cdot \overline{\omega} \times \overline{r}_{0} + \overline{\Phi}^{(n)} \cdot \overline{\omega} \times (\overline{\omega} \times \overline{r}_{0}) \right] dm \\ &= \dot{\omega}_{x} \left(H_{yz}^{(n)} - H_{zy}^{(n)} \right) + \dot{\omega}_{y} \left(H_{zx}^{(n)} - H_{xz}^{(n)} \right) + \dot{\omega}_{z} \left(H_{xy}^{(n)} - H_{yx}^{(n)} \right) \\ &+ \omega_{x} \omega_{y} \left(H_{xy}^{(n)} + H_{yx}^{(n)} \right) + \omega_{y} \omega_{z} \left(H_{yz}^{(n)} + H_{zy}^{(n)} \right) + \omega_{z} \omega_{x} \left(H_{zx}^{(n)} + H_{xz}^{(n)} \right) \\ &- \omega_{x}^{2} \left(H_{yy}^{(n)} + H_{zz}^{(n)} \right) - \omega_{y}^{2} \left(H_{zz}^{(n)} + H_{xx}^{(n)} \right) - \omega_{z}^{2} \left(H_{xx}^{(n)} + H_{yy}^{(n)} \right) \quad (\text{III} - 8) \end{split}$$

Eqn. (44):

 $\sum_{m=1}^{\infty} \phi_{mn} = \int_{vol} [2 \Phi^{(n)} \cdot \overline{\omega} \times \overline{q} + \Phi^{(n)} \cdot \overline{\omega} \times \overline{q} + \Phi^{(n)} \cdot \overline{\omega} \times (\overline{\omega} \times \overline{q})] dm$

$$= \sum_{\substack{m=1 \text{ vol}}}^{\infty} \int \left[2 \operatorname{A}_{m} \left(\overline{\phi}^{(n)} \cdot \overline{\omega} \times \overline{\phi}^{(m)}\right)\right]$$

$$+ A_{m}(\overline{\phi}^{(n)} \cdot \overline{\omega} \times \overline{\phi}^{(m)} + \overline{\phi}^{(n)} \cdot \overline{\omega} \times (\overline{\omega} \times \overline{\phi}^{(m)})]dm$$

Hence,

$$\Phi_{mn} = 2 A_{m} \left[\omega_{x} (L_{yz}^{(mn)} - L_{zy}^{(mn)}) + \omega_{y} (L_{zx}^{(mn)} - L_{xz}^{(mn)}) + \omega_{z} (L_{xy}^{(mn)} - L_{yx}^{(mn)}) \right] + A_{m} \left[\omega_{x} (L_{yz}^{(mn)} - L_{zy}^{(mn)}) + \omega_{y} (L_{zx}^{(mn)} - L_{xz}^{(mn)}) + \omega_{z} (L_{xy}^{(mn)} - L_{yx}^{(mn)}) \right] + \omega_{x} \omega_{y} (L_{xy}^{(mn)} + L_{yx}^{(mn)}) + \omega_{y} \omega_{z} (L_{yz}^{(mn)} + L_{zy}^{(mn)}) + \omega_{z} \omega_{x} (L_{zx}^{(mn)} + L_{xz}^{(mn)}) - \omega_{x}^{2} (L_{yy}^{(mn)} + L_{zz}^{(mn)}) - \omega_{y}^{2} (L_{zz}^{(mn)} + L_{xx}^{(mn)}) - \omega_{z}^{2} (L_{xx}^{(mn)} + L_{yy}^{(mn)}) (III - 9)$$

Eqn. (45):
$$g_n = \int \overline{\Phi}^{(n)} \cdot M \overline{r_0} dm = \sum_{\substack{\alpha \ \beta}} \sum_{\substack{\alpha \ \beta}} H^{(n)}_{\alpha\beta} M_{\alpha\beta}$$
 (III - 10)
Eqn. (46): $\sum_{\substack{n=1 \\ m=1}}^{\infty} g_{mn} = \int \overline{\Phi}^{(n)} \cdot M \overline{q} dm = \sum_{\substack{m=1 \\ m=1}}^{\infty} A_m \int \overline{\Phi}^{(n)} \cdot M \overline{\Phi}^{(m)} dm$

Hence,

$$g_{mn} = A_{m} \sum_{\alpha \beta} \sum_{\alpha \beta} L_{\alpha \beta}^{(mn)} M_{\alpha \beta}$$
 (III - 11)

where, $\alpha \beta = x$, y, z or l, 2, 3. For example, when α is x in $H_{\alpha\beta}^{(n)}$, the corresponding value of α in $M_{\alpha\beta}$ is l. In a similar way when α is y in $H_{\alpha\beta}^{(n)}$, α is 2 in $M_{\alpha\beta}$ and when α is z in $H_{\alpha\beta}^{(n)}$, α is 3 in $M_{\alpha\beta}$. Same reasoning holds for β also.

Appendix IV

Natural frequencies, mode shapes and modal mass for free-free uniform beams:

The natural frequencies of a free-free beam can be obtained by solving the following frequency equation.⁹

(IV - 1)

 $\cos \beta l \cosh \beta l = 1$

where,

l - length of the beam

$$\beta^4 = \frac{\omega^2 n}{ET}$$

m' - mass per unit length of the beam

EI - bending modulus

 ω - natural frequency

The mode shapes corresponding to the frequencies obtained by Eqn. (IV - 1) are given by,

$$Z'^{(n)}(x') = D_{n} \left[\left(\frac{\cos\beta_{n}\ell - \cosh\beta_{n}\ell}{\sinh\beta_{n}\ell - \sin\beta_{n}\ell} \right) \quad (\sin\beta_{n}x' + \sinh\beta_{n}x') \\ + (\cos\beta_{n}x' + \cosh\beta_{n}x') \right] \quad (IV - 2)$$

$$Z'^{(n)}(x') = D_{n} \left[\left(\frac{\cos\beta_{n}\ell - \cosh\beta_{n}\ell}{\cosh\beta_{n}k'} \right) + \left(\cos\beta_{n}x' + \cosh\beta_{n}x' \right) \right] \quad (IV - 2)$$

Fig. (D-1): Free-free beam

where, β_n (n = 1,2, - - -) are roots of Eqn. (IV - 1). It should be noted that x' is measured from one end of the beam, as shown in the Fig (D-1). Hence, x' = x + $\frac{l}{2}$

Define,
$$\frac{x}{l} = \zeta$$
 (IV - 3)
 $\beta_n l = \Omega_n$

Hence, the non-dimensionalized form of the mode shape in Eq. (IV -2)

is,

$$Z^{(n)}(\zeta) = \left[\left(\frac{\cos\Omega_n - \cosh\Omega_n}{\sinh\Omega_n - \sin\Omega_n} \right) (\sin\Omega_n \zeta + \sinh\Omega_n \zeta) + (\cos\Omega_n \zeta + \cosh\Omega_n \zeta) \right]$$
(IV - 4)

The following Table - 1 gives the first five natural modes and the approximate values of the corresponding natural frequencies of a free-free beam.¹⁰

The modal mass (generalized mass) in the nth mode is given by,

$$M_{n} = \int_{v} \Phi_{z}^{(n)^{2}} (x) \mu dv \qquad (IV - 5)$$

Since the beam is assumed to be uniform, μ = constant,

Hence,

$$M_{n} = m^{1} \int_{x=-\frac{1}{2}}^{+\frac{1}{2}} \phi_{z}^{(n)^{2}} (x) dx \qquad (IV - 6)$$

Using the change of variable $\zeta = \frac{x}{\ell} + \frac{1}{2}$, we get

$$M_{n} = m' \ell \int_{0}^{1} [Z^{(n)}(\zeta)]^{2} d\zeta \qquad (IV - 7)$$

Substituting (IV - 4) in (IV - 7),

$$M_{n} = D_{n}^{2} m' \ell \int_{0}^{1} [K_{n}(\sin \Omega_{n} \zeta + \sinh \Omega_{n} \zeta) + (\cos \Omega_{n} \zeta + \cosh \Omega_{n} \zeta)]^{2} d\zeta \qquad (IV - 8)$$

Table - 2: Mode shapes and frequencies of free-free beams

Note: The frequency value of zero corresponds to the rigid body modes.

where $K_n = (\cos \Omega_n - \cosh \Omega_n)/(\sinh \Omega_n - \sin \Omega_n)$

The various definite integrals appearing in Eqn. (II - 8) are evaluated in Table - 3.

$$\begin{aligned} \text{Table - 3: Useful definite integrals} \\ \int_{0}^{1} \sin^{2} \Omega_{n} \zeta \ d\zeta &= \frac{1}{2} - \frac{\sin 2\Omega_{n}}{4\Omega_{n}} \\ \int_{0}^{1} \sin \Omega_{n} \zeta \cos \Omega_{n} \zeta \ d\zeta &= \frac{\sin^{2}\Omega_{n}}{2\Omega_{n}} \\ \int_{0}^{1} \sin \Omega_{n} \zeta \sinh \Omega_{n} \zeta \ d\zeta &= \frac{\cosh \Omega_{n} \sin \Omega_{n} - \sinh \Omega_{n} \cos \Omega_{n}}{2\Omega_{n}} \\ \int_{0}^{1} \sin \Omega_{n} \zeta \cosh \Omega_{n} \zeta \ d\zeta &= \frac{\sinh \Omega_{n} \sin \Omega_{n} - \cosh \Omega_{n} \cos \Omega_{n}}{2\Omega_{n}} + \frac{1}{2\Omega n} \\ \int_{0}^{1} \cos^{2}\Omega_{n} \zeta \ d\zeta &= \frac{1}{2} + \frac{\sin 2\Omega_{n}}{4} \\ \int_{0}^{1} \cos \Omega_{n} \zeta \sinh \Omega_{n} \zeta \ d\zeta &= \frac{\cosh \Omega_{n} \cos \Omega_{n} + \sinh \Omega_{n} \sin \Omega_{n} - 1}{2\Omega_{n}} \\ \int_{0}^{1} \cos \Omega_{n} \zeta \cosh \Omega_{n} \zeta \ d\zeta &= \frac{\sinh \Omega_{n} \cos \Omega_{n} + \sinh \Omega_{n} \sin \Omega_{n} - 1}{2\Omega_{n}} \\ \int_{0}^{1} \sin \Omega_{n} \zeta \ d\zeta &= \frac{\sinh \Omega_{n} \cos \Omega_{n} + \cosh \Omega_{n} \sin \Omega_{n}}{2\Omega_{n}} \\ \int_{0}^{1} \sinh^{2}\Omega_{n} \zeta \ d\zeta &= \frac{\sinh 2\Omega_{n}}{4\Omega_{n}} - \frac{1}{2} \end{aligned}$$

IV-4

N

$$\int_{0}^{1} \sinh \Omega_{n} \zeta \cosh \Omega_{n} \zeta d\zeta = \sinh^{2} \Omega_{n} / 2 \Omega_{n}$$
$$\int_{0}^{1} \cosh^{2} \Omega_{n} \zeta d\zeta = \frac{\sinh 2 \Omega_{n}}{4 \Omega_{n}} + \frac{1}{2}$$

Substituting the values of various definite integrals in Eqn. (IV - 8), after simplification we get

$$M_{n} = \frac{D_{n}^{2} m^{2} k}{\Omega_{n}} [(K_{n}^{2} + 1) (\frac{\sinh 2\Omega_{n}}{4} + \cosh \Omega_{n} \sin \Omega_{n}) - (K_{n}^{2} - 1) (\frac{\sin 2\Omega_{n}}{4} + \sinh \Omega_{n} \cos \Omega_{n}) + K_{n} (\sin \Omega_{n} + \sinh \Omega_{n})^{2} + \Omega_{n}]$$
(IV - 9)

Ķ

***************************************	***************************************
HOWARD UNIVERSITY SCHOOL OF ENGINEERING	NOVA 840 COMPLITER
************	***************************************
PTRANZEZE THE TOL REAL THE LSIL	
COMPILER DOUBLE PRECISION	
FLFX BEAM MAIN PROGRAM	3 - L S - F D - NIL
COMMON /BEAM/ PARM(5),Y(42),DY(42),	SPCOPEDP*0
2 H11(20), H33(20), H13(20),	
<u>3 L11(20,20),L33(20,20),L13(20,20),L31(20,20</u>)),
x 5 P(20),PP(20,20),G(20),GG(20,20),	
6 DW(20), HS(20), HD(20), 7, NU, A, RO, J2, J3,	
$\frac{7}{2} = \frac{9}{2} (20), \frac{9}{2} (20), \frac{1}{2} (20), \frac{1}$,C2,M,NORD
DIMENSION AUX(12, 42)	LOIEF .
DELETE "FLEXBEAM"	
OPEN 3, "FLEXBEAM"	
CALL FRIND(DDCSN)	· ·
CALL FESET(PRCSN)	
LINES = 0	
$\frac{1}{10} = \frac{1}{10} $	+ 0,5
DO 7 I = 1, NORD	
PATIO = (SIZMAX(I)/SIZNOM(I)) * 100.0	
報告:	
WRITE(5,9) IHLF	
CALL EXIT	
9 FORMAT('OFINAL VALUE OF THLF:', T3)	
91 FORMAT ('0Y(', I2, ') PEAK: ', F6.1)	
RINT 1	
	a a ser a manage star a ser a la casana se a bala seria a sara seria dan ang ang ang ang ang ang ang ang ang a
\sim . The second secon	PICINAT DACE TO:
	POOR-OHALFY
	· · · · · · · · · · · · · · · · · · ·
and a second second second second second second second second inspects because because hereings because inspect	

		· · · ·		÷				4		
PE ⊧n	ET TP	E TMP.LS AN/R/E/P	S TMP TM	P.LS/L FCT	RH/R			1	• 1 •	
	z . 	COMPILE SUBROUT	R DOUBLE INF FCT	PRECISION (T, AY, ADY	1		1	an an an British and Spirith a department of the second /del>		
		REAL LI'	1,L13,L3 /8EAM/	1,L33,M11, PARM(5),Y(M13,M31,M 42),DY(42)	33,MS,J2,),	J3-L5-LD	, NU		
	ج 5 ا	H11(2)	0),H33(2 0,20),L3	0),H13(20) 3(20,20),L	, 13(20,20)	L31(20,2	n},		a a da da sera a sera a sera a sera da	
2	<u>4</u> 5	M11,M P(20)	33, M13, M	31, MS, ALPH 0), G(20), G	A, G(20,20),					
	6	05120),HS(20)	,HD(20),Z,	NU, A, RO, J)	5'12' 5'12').C2.M.N	0RD		
491 597	E =>		FBD1F	DIFF FRN'S		• <u> </u>	To and to de terminada o		tik ana amangalaman din kinak	<u></u>
		CÁLLÍFBI	PIF		•			. 26		
1	1	CALL FB. DY(1)=A	STE					·		
		DY(2)=Y	(1) 1.M	<u></u>			2 , _ , _ , _ , _ , _ , _ , _ , _ , _			
			+ <u>1*5)Y0</u> + <u>1</u> *5)Y0	1) = FBA2R(1) 2) = Y(2 + 1 + 1)) 1		-	· · · · · · · · · · · · · · · · · · ·		_
Jose Jose Jose Jose Jose Jose Jose Jose	2		UE	27	•					•
								·		
		END							,	
5	ĺ								· •	
	· . 		an is in the second second		ning ang a manin wa apat o Mode Sawa (1996). An Mana	10 10000 4075, 0015 -		•		
										•
		ay in a an ann ann an ann ann an ann ann a	• • • • • • • • •			, 6 1, 6 2,1,1 5 , 1				
				-		nas nasisa kuta da da kuta kuta ana				
n				•						
1						a ad a ta a a a a a a a a a a a a a a a				
Í										
- 1211 - 1212	· · · ·								·	
	10-18 (10- 2)	 • • • • • • •		ад С. 11. с. отабата, альдат и та В	•···•	· • • • •	· •• • •• ·	·		
									<u>.</u>	
観		, ₩ **.≌ /	in the second	, aparay anayona waxanadha %. Adala dh						
		м. ₄ . в « а .	• • • • •		· · · · · · · · · · · · · · · · · · ·	ι - ψιλ π ι, κ παγλ	s an aire anna a ar at an			
E#										
			na oo ka		,	tt n				

MPI	TeT						•		
RIN	IT I	· · · ·				1 1. 			
ART (ORT	T 1 PANZAZEZE COMPILEE	P THP TH P DOUBLE	P.LSZL FES	ET, RR/R		ая ¹ 4 у	• • • •	• •	
	SURPOUT)	INE FRSE	T(PRECSN)	M17 M71.M	בז פא לל	771010	NIL 1	•	
	COMMON	REAM/	PARM(5),Y(42),0Y(42););	43760760	1.00		
i.	2 H11(2)	1150)173	3(20,20),L	, 13(20,20)	,L31(20,2	0),	ւ ունել հացիկերեց եներեն։	Maria	· •
	4 M11,M3 5 P(20)	33,M13,M PP(20,2	31,MS,ALPH 0),G(20),G	4, G(20,20),					
	6 DW(20)	HS(20)	+HD(20),Z,	NU, A, RO, J	2, J3,	1.C2.M.N			<u>н</u> , т. шк
					n an season and season and		· · · ·	a is den endangen an ander d	•• · -• ·
	, te i	(PRECSN	=PRECISION	, GELATIV	E TO 1.0)				
-	CALL FR	IST	na gyányi ve szerez a film a kirákodom.	t a a ra ta nas ra a anasra	na yanya ang ing ang ina a <u>bila ang a</u> ng ang ang ang ang ang ang ang ang ang a	n n mann suith bair air i	nga a milay arrayo - Artada - Alaya ang ang ang ang ang ang ang ang ang an		
	CALL FBL	ST SE-6							
	CALL PKS	SCL (NORD	, DY, DY, PRE	CSN,PARM)			nan a tanàn ing mananana kaominina dia kaominina	1888	
	REIURN								
R .	END								
1.	, ւայլը, . ճերջը ըն 1000-նն ։	անցացու լու ուս հանց ւ	angan ma ⁿ u c	nga ti ka managa ing di dinangka na sa sa kata i			مه به بسراند است. ۲۰۰۰ مارد از ۱	4	
		. ·		•		-	•		
	an na sinsi yan in <mark>na manan</mark> iya		in the second	n and an and a subscription of the second	a an ann an an Ann a		1 - 5 - 721 - 261 - 5 - 14 - 24 - 200 0 - 6 200		
	······································		. •						
			шњ. дер. ут		· · · · · · ·				
	· •	• •	Na k na an			····			
	•								
	· ·	, j v –				·	satitista an	<u>.</u>	
<u>n</u> i			ւ ւս լ անձր նու սատանացու		· · • • • • • • • • • •	.	4.1 (1) (1 4 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	s saa ay s s S	•- ·· ·
					•				
n	BR - Fange a ja 'annen gan magan ga		անապատրությունը, ներ հայ հայ պետ հայ պետ չու չը մեն։	a, in unu uuage te instation te uge tito u	antan kanan ka Kanan kanan kana	n Territor and a statement for the statement of the state	 In the second secon second second sec	интер — фести Маллин -	88 million (p. 1. 7 million)
11 	ini ya kata na br>Na kata na kata			r v		kaka, shi sa		nay aaroon ay a a a a a a a a a a a a a a a a a a	
肩									
Nº.	· · · ·					•		····	· • · · · · •.
Î						00100-	T		
en efi	. ·		•			OF POOR	L PAGE IS R QUALITY		44 - A
							-		
hárð.									
	Sector a constant		te standt and state	.	. .		1		-

NT 1 THIRAN/R/F/P THP THP LS/L FAHST RB/A COMPILER DOUBLE PRECISION SHRROUTINE FBHST PFAL L11,113,131,037,037,011,013,031,033,005,02,03,05,00,00 COMMON /REAM/ PARM(51,Y(42), DY(42), 5 H11(20),H33(20),H13(20), L11(20,20),L33(20,20),L13(20,20),L31(20,20), 3 M11, M33, M13, M31, MS, ALPHA, ġ. b(50)'bb(50'50)'d(50)'ce(50'50)' 5 DW(20), HS(20), HD(20), Z, NU, A, RD, J2, J3, 6 00(50),0CP,WD,E(20),82,US(20,20),LD(20,20),C2,M,NORD 7 FRHST--SET 'HTJ' DQ 10 I=1,M H11(I)=0.0 H13(I)=0.0 H33(I)=0.0 HS(I)=0,0 HD(I)=0.010 CONTINUE RETURN END 21-1-2 ORIGINAL PAGE IS OF FOOR QUALITY -

	HBĬ₩.	Τ1								
IF	ORT	RANZE COME SURE	VEZP T PILER D POUTINE	MP TMP,L	S/L FRLST ECISION	r _* pr/r	· · · · ·			
		REAL COMN 2 H1	. L11,L NON /BE	13,L31,L AM/ PAR H33(20),	33,M11,M M(5),M(4) H13(20),	13,M31,M3 9),DY(42)	3+MS+J2+J F	3.LS,LD,NI	ł	
		3 L1 4 M1 5 P(1(20,2 1,M33, 20),PP	0),L33(2 M13,M31, (20,20),	0,20),L17 MS,ALPHA, G(20),GG	(50°50)' (50°50)'	L31(20,20) #.,	· <u>-</u>	
		6 DH 7 QC	1(20),0 (20),1	IS(20),HD ICP,WD,E(50)'85'F8 (50)'2'Nf	1, A, RQ, J2 1, A, RQ, J2	1°Ω3' FD(50*50) *Ω3'	C2+M=NOR)	
C C		FRLS	STSET	'LIJ'	· · ·			en an		• • •
		00 a 200 a	0 J=1, 0 J=1,	M M	en ander state for the state of	an a		an b subayanka shina iyo ka mataira a	untille ruppler (.e. 16)e. Scher Jahr (kaler-Stragg ga	adema the formation of the
	i cu		50 I=1, 50 J=1,	м М						
- 10	30	L130	I,J)=0 10 I=1,	. 0 M	g Augusti in nya karagé kangganakanya karagi na	ante legatorian d en 9 - , -	laine alle n sing allengtangtangtangtangtangtang	nanga dapi da part da seriente da di da da di di	an a	nan beğin yanganın berne meren ve
	40	<u>00</u> L31(D0 5	() J=1, (],J)=0 () T=1.	Μ • Ω - Μ	ana an	aganistic ina i ina i ani				1999 ber 478 ber 1995 ber 19 einen 19 ber 1995 eine
i and in the second	60	DN 6	0 J=1, I,J)=0	M • 0	ng matala conserts matrixes in the set	ng unhar i nga si si ka analara gi sa si	ատարահատարումը չեր շրջանել չեր և տարուներո	an ar an	nam f. 1994 - In 1997 - generalin splace management of the	an di ya kapanini sinaya yaya sa
	50	L330	[],])=1 1]]=1,	• 0 M	ر مربع محمد معرف معرف معرف المعرف ا			na na sa	- Lehters herebyschusters das 2 gaptie 11	
		LD(1 LS(1	J= , ,J)=L3 ,J)=L1	M 1(I,J)→L 1(T,J)+L	13(1,J) 33(1,J)					•
C	61	CONT	INUE				<pre></pre>		ingen Weikelen – genneringen tin gerun sindern tinne s	arange gant sindle and signer .
C		END		an ang sagaran sa sa sa	անաստանությունը՝ եւ տասարեստի են՝ է եվ սատե	gal hay all you - and a financial state of the second state of the	าสมุนี้ (หมุน: ม.ม.ศพา) ม (ค.) (∕ ส	ι - Μογί - Έγλεμους - μου το δούς - Δι. 1916 το		t år vrstjannijtenst venr,n
Charlen I.			مې مېرمو مو د د						a na tainggine nggala nga ang taingganan sa sa	
									•	tinan tinangan kanangan kala
		. *	n na ser n na ser n na ser na ser na ser na ser na ser	.	. <u></u>	See . S	и на чин на н а на		n an	
		1		• • • • • • • • • • • • • • • • • • •				· · · · · · · · · · · · · · · · · · ·		

LIST NT 1 TPAN/R/E/P TMP TMP_LS/L FRPIF.RP/R COMPILER DOUBLE PRECISION SUBROUTINE FRPIF RFAL L11,L13,L31,L33,M11,M13,M31,M33,M8,J2,J3,L8,L0,MU COMMON /REAM/ PARM(5),Y(42),DY(42), 2 H11(20),H33(20),H13(20), 3 L11(20,20),L33(20,20),L13(20,20),L31(20,20), 4 M11,M33,M13,M31,MS,ALPHA, 5 P(20),PP(20,20),G(20),GG(20,20), 6 DW(20),HS(20),HD(20),7,NU,A,R0,J2,J3, 7 OC(20),OCP,MD,F(20),R2,LS(20,20),LD(20,20),C2,M,WORD	
FHPIFPRIMART INTERMEDIATE FUNCTIONS SPH=SIN(Y(2)) M11=3*CPH+*2=1 M13=-3*SPH M31=-3*SPH*CPH M33=3*SPH**2=1 MS=M13+M31 R2=Y(1)+WD RETURN	
END	· · ·

```
MPLIST
BRINT H
FOPTPAN/R/E/P TMP TMP.LS/L FRSTF.RR/R
      COMPILER DOUBLE PRECISION
      SUBPOUTINE FASTE
      INTEGER R
     PEAL L11, L13, L31, L33, M11, M13, M31, M33, MS, J2, J3, LS, LD, NU
      COMMON /BEAM/ PARM(51,Y(42),DY(42),
        H11(20),H33(20),H13(20),
     5
     3
        L11(20,20),L33(20,20),L(3(20,20),L3((20,20)),
     4
        M11, M33, M13, M31, MS, ALPHA,
     5
        b(50)'ab(50'50)'d(50)'de(50'50)'
     6
        DW(20),HS(20),HO(20),7,NU,A,R0,J2,J3,
        UC(50) 'UCb' MD'E(50) '85' F8(50'50) 'FD(50'50)' C5' W'NOBD
r
     7.
0
              FBSIF--SECONDARY INTERMEDIATE FUNCTIONS
Ç
     Y2=Y(2)
      TY2=2.0+Y2
     CTY2=COS(TY2)
      57Y2=SI4(TY2)
      SUM1 = 0.0
     SUM2 = 0.0
     DO_{3} R = 1, M
          SUM1 = SUM1 + 3.0*(H13(R)*CTY2 - 0.5*PD(R)*STY2)*Y(2*R+2)
                       ₩ HS(R)+R2+Y(2*R+1)
          SMMS = SMMS + HS(B) + A(S+B+S)
     CONTINUE
     ALPHA = Z*(-1.5*J3*STY2 + 2.0*SUM1 - C2 - QCP) / (J2 + 2.0*SUM2)
     DO 70 R=1,M
     P(R)=~R2**2*HS(R)
     G(R)=Z*(H11(R)*M11+H33(R)*M33+2*H13(R)*M8)
     DO 80 N=1,M
     PP(R,N)=(2*Y(2*N+1)*R2+Y(2*N+2)*ALPHA)*LD(R,N)
     5-7(5*N+5)*85**5*F8(8*N)
     GG(R,N)=7*Y(2*N+2)*(L11(R,N)*M11+L13(R,N)*M13+L31(R,N)*M31
    2+L33(R,N)*M33)
  AG CONTINUE
  70 CONTINUE
     RETURN
 END
```

THPLIST FINT 1 FORTRAN/P/E/P TMP TMP.LS/L FRA2R.RB/R COMPILER DOUBLE PRECISION FUNCTION FRA2R(R) INTEGER R DEAL LINE 147 174 177 M41 M17 M77 MP. T	
COMMON /BEAM/ PAPM(5),Y(42),DY(42), 2 H11(20),H33(20),H13(20), 3 L11(20,20),L33(20,20),L13(20,20),L31(20, 4 M11,M33,M13,M31,M8,ALPHA, 5 P(20),PP(20,20),G(20),GG(20,20), 6 DW(20),HS(20),HD(20),Z,NU,A,R0,J2,J3, 7 DC(20,,QCP,WD,E(20),R2,LS(20,20),LD(20,7)	20), 20, 0),C2,M,NORD
FBARREVALUATE 2-ND DER OF A(R) SUM=0.0 DD 90 N=1,M SUM=SUM-PP(R,N)+GG(R,N) 90 CONTINUE FBARRDW(R)**2*Y(2*R+2)-P(R)+SUM+G(R)+E(F RETURN	י)+QC(R)
END	
	······································
	ORIGINAL PAGE IS OF POOR QUALITY

• • • •

. £. .
```
MPLIST
 PINT 1
ILFE N DP0:FLEXPEAMS.LB/0
  DUTP.R6 FRSET.R3 FRHST.RR FRLST.RB FRPTF.P8 FRSJF.R8 F6A2R.R6
 ELETE
  OUTP.PR FASET, PR FRHST.RR FRLST, RB FRPIF.RB FRSIF.PR FBAPR.PR
IGTOD
ELETE THP.LS
FORTRAN/E/E/P TMP TMP.LS/L DUTP.RB/B.
      COMPILER DOUBLE PRECISION
      SUBROUTINE DUTP(T, AY, ADY, IHLF, N, APARM)
      PFAL L11, L13, L31, L33, M11, M13, M31, M33, MS, J2, J3, LS, LD, NU
      COMMON /BFAM/ PARM(5), Y(42), DY(42),
        H11(20),H33(20),H(3(20),
     2
        L11(20,20),L33(20,20),L13(20,20),L31(20,20),
    3
     Æ
        M11, M33, M13, M31, MS, ALPHA,
     5
        P(20), PP(20,20), G(20), GG(20,20),
        DW(20), HS(20), HD(20), Z, NU, A, PO, J2, J3,
        AC(20), ACP, WO, E(20), R2, LS(20, 20), LD(20, 20), C2, M, NOPD
     COMMON /LOG/ SIZNOM(42), SIZMAX(42), LINES, LSTEP
     LOGICAL PKNXT
               FROUT -- TAKE OUTPUT VALUES
C
      DO 2 I = 1, NORD
          YMAG = ABS(Y(I))
          IF(YMAG _GT. SIZMAX(I)) SIZMAX(I) = YMAG
    2 CONTINUE
     IF ( NOT, RKNXT(IHLF)) GO TO 8
          WRITE BINARY(3) T, IHLF, (Y(I), I=1, NORD)
          IT = ((T + PARM(1))/PARM(2)) * 100.0 + 0.5
          JF (MOD(LINES, LSTEP) .EQ, 0 )TYPE TT, THLF
          UINES = LINES + 1
8 CONTINUE
     RETURN
     FND
                                 URIGINAL PAGE IS
                                  OF POUR GUALITY
 翻
```

```
LEOPTHAN/R/F/P TMP TO3, RR/B TMP, LS/L
         COMPTLER ODURLE PRECISION
          SUBBOUTIVE FRINE (PRCSN)
      REAL L11, L13, L31, L33, M11, M13, M31, M33, M8, J2, J3, L8, L0, NU
      COMMON /REAM/ PARM(5),Y(42),DY(42),
     2
        HI1(50) H23(50) H13(50)
        L11(20,20),L33(20,20),L13(20,20),L31(20,20),
     3
        M11, M33, M13, M31, MS, ALPHA,
     4
        b(50)'bb(50'50)'e(50)'ee(50'50)'
     5
        Dw(20), HS(20), HD(20), Z, NU, A, RD, J2, J3,
     6
        OC(20), OCP, WD, E(20), R2, LS(20, 20), LD(20, 20), C2, M, NORD
     7
      COMMON /LOG/ SIZNOM(42), SIZMAX(42), LINES, LATEP
                   FLEXBEAM -- INPUT
      NMP1 = 2+M + 1
      WWB5 = 5*W + 5
      READ (2, RI) (PARM(I), I = 1, 3), PRCSM
      WRITE (5, 91) (PARM(T), I = 1, 3), PRCSN
      READ (2, 82) Y(2), Y(1), DY(2), DY(1).
      WRITE (5, 92) Y(2), Y(1), DY(2), DY(1)
      D0 2 L = 1, M
          I1 = 2*L + 2
          12 = 2*L + 1
           READ (2, 82) Y(11), Y(12), DY(11), DY(T2), DW(L)
          WPITE (5,93) L, Y(I1), Y(I2), DY(T1), DY(I2), DW(L)
    2 CONTINUE
      DO 4 I = 1, NORD
         SIZNOM(I) = DY(I)
          SIZMAX(I) = 0.0
    4 CONTINUE
      PETURN
   R1 FORMAT (4F10_0)
   R2 FOPMAT (7F10.0, F9.0, 1X)
91 FOPMAT ('07 FROM', F7.1, ' TO', F7.1, ' RY', F7.1, 8X,
    2 PRECISION = , F9.6)
  2 FORMAT (10X, 'INIT VAL INIT DER SCALF VAL
2 6X, 'DMEGA' / THETA ', 2F11.6, F13.6, F12.6)
                                                              SCALE DER ,
  93 FORMAT (* MODE', IP, 2F11.6, F13.6, F12.6, F13.6)
      END
ITMPLIST.
 HENT 1
```

BRTRANJA/EZP TWP TO2. BAZE TWP.LS/L COMPILER DOUBLE PRECISION PLOCK DATA REAL LIT, LIJ; L31, L33, WIT, MI3, M31, M33, M8, J2, J3, L8, LD, NU COMMON /REAM/ PARM(5),Y(42),DY(42), H11(50), H33(50), H13(50), 5 L11(20,20),L33(20,20),L13(20,20),L31(20,20), 3 M11, M33, M13, M31, MS, ALPHA, 4 5 b(50) bb(50,50) (6(50) (60(50,50)) DM(50) H2(50) H2(50) L0(50) '1' NO'7' U'15' 12' 6 1 0C(20), 0CP, WD, E(20), R2, LS(20, 20), LD(20, 20), C2, M, NORD COMMON /RKNX0/ IHOLD, NEXT DATA M/5/, MORD/12/ DATA NU/9,7977,A/6378588,7,R0/6841388,7,J2/825500.7 DATA J3/825500./.QCP/0.0/.WD/.001115/,C2/0.0/ DATA Y/42+0.0/ DATA DY/42*0.0/ DATA DW/20+0.0/ DATA QC/0,0,19+0.0/ DATA E/0.0,19*0.0/ DATA PARM/5+0.0/ DATA IHOLD/0/, NEXT/1/ c END WPIIST FRINT 1 _ Π \prod 물건은 부산은 잘 만들었던 것은 것 것이 같아요. 것 같아요. I -ORIGINAL PAGE IS OF POOR QUALITY II. Î 1.

	HOWARD UN	IVERSITY	SCHOOL OF	ENGINEERING	NOVA 84	LO COMPUTER	
*****	FLEXREA	**************************************	********** A	****	******	*******	******
DPO:FL	EXBEAM 300.0 0.0	-5 -2	1.0			·	um * a. an <u>, ann an /u>
15 4 3	0.0 0.0 0.0	.5 .4 .3	.03 .003 .003	.06283185 .173317080 .33740705	7	<u>.</u>	
2 1 G DD	0.0	.? .1	.003	.5579468 .8337786			
DELETE XFER F	DPO:FLEXB LEXREAM DP	EAM 0:FLEXBEAM					
							
					· · · · · · · · · · · · · · · · · · ·		•
		•					
N			ORIG	INAL PAGE IS			
						•	
I		n a star An Angelander An Angelander					
1							
Π		Net and a second					*****
Π		•	antara Alianta Aliantari Aliantari Aliantari Aliantari		•	· · · · · · · · · · · · · · · · · · ·	
Π	·		•	•	•		<u> </u>
						τ.	
							· ·
					, 40 - 10 - 100 -	***	·····
	and the second	· · · · · · · · · · · · · · · · · · ·	•	17			

******** HOWARD UNIVERSITY -- SCHOOL OF ENGINEERING -- NOVA 840 COMPUTED وردار المتعادية والمتعادية ************* FLEXBEAM OUTPUT PROGRAM / FORTRAN PARAMETER NORD = 12, POINTS = 601, MODES = 5 DOUBLE PRECISION TT, Y(NORD) DIMENSION T(POINTS) DIMENSION PHI(POINTS) DIMENSTON A (POINTS, MODES) CALL INOUT (2, 5) CALL FOPEN (3, "FLEXBEAM") DO 2 I = 1, POINTS PEAD BINARY (3) TT, IHLF, Y Constant of the second T(I) = SNGL(IT)PHI(I) = SNGL(Y(2))DO 1 J = 1, MODES A(I, J) = SNGL(Y(2*J+2))1 CONTINUE CONTINUE CALL DEPLO(PDINTS, MODES, A) CALL EXIT A DAMA DISCOULSE STATE END K Î · · · · · Ħ • 4.

```
FUPTRAN
                 PARAMETER MAXM = 5. NX = 101
                 PARAMETER IT1 = 95, TT2 = 116, DT = 2
                 PARAMETER RMAX = 3.0
                 SHARQUIINE DEPLO(NPTS, MODES, A)
                             DIMENSION A(MPTS, MODES), SHAPE(MX , MAXM), DEE(NX)
                             DOUBLE PRECISION OMEGA
                             COMMON IDEPLDI OMEGA(MAXM)
                             DATA OMEGA 24,730040800, 7.853204600, 10.9956078400,
              5
                                                                   14.137165500, 17.278759600/
                 CALL DEPLS (DMEGA, MODES, NX, SHAPE)
               CALL PSIZE (5.0, 11.0)
                 CALL PERID (1, 11)
                CALL PLOGD (0.0, 11.0)
                CALL PSIZE (5.0, 1.0)
              DO \ 8 \ IT = TT1, \ TT2, \ DT
                            CALL PLOGO (0.0, - 1.0)
                     DO 5 IX = 1, NX
        0≑0
                                     DO 4 I^{M} = 1, MODES
                                                 0 = 0 + A(TT, IM) + SHAPE(TY, IM)
          4 CONTINUE
                                     DEF(IX) = 0
                            CONTINUE
                            CALL PLOX (-DMAX, DEF, DMAX, NX)
           BCONTINUE
                RETURN
Ē
CI
             END
                    nan in analasi da kun su su sua kanananan kun analasi kutu kun suka aka kun
                                 n an an the second s
A second secon
                                                                                                                                                                       an an ann an ann an ann an Ann ann a' Ann ann a' Ann ann a' Ann ann a' Ann an Ann an Ann an Ann an Ann an Ann a
Ann an Ann an Ann an Ann an Ann an Ann an Ann an Ann an Ann an Ann an Ann an Ann an Ann an Ann an Ann an Ann an
                                                                                        (1) In the Billing of the memory of the USE of the Second Management of the Second se
                                              V - 14
```

11 FORTPAN. SUBROUTINE DEPLS(OMEGA, MODES, NX, SHAPE) DOUBLE PRECISION OMEGA (MODES) DIMENSION SHAPE (NY, MODES) DOUBLE PRECISION D7, W, EN, SHW, CHW, COEF DOUBLE PRECISION ZETA, W7, EWZ, SHWZ, CHW7, DSHAPE DZ = 1.0D0/DFLDAT(NX - 1)DO B IM = 1, MODES W = OMEGA(IM)EW = DEXP(W)SHW = (EV - 1.0D0/EW)/2.0D0 CHM = (EM + 1.000/EM)/5.000CHEF = (DCDS(W) - CHW)/(SHW - DSIN(W)) DO 4 IX = 1, NX ZETA = DFLOAT(IX - 1)*DZ HZ = N+ZETA EWZ = DEXP(WZ)SHWZ = (EWZ - 1_0D0/EWZ)/2.000 CHWZ = (EWZ + 1.000/EWZ)/2.000DSHAPE = COEF * (DSIN(WZ) + SHWZ) + (DCOS(WZ) + CHWZ)SHAPE(IX, IM) = SNGL(OSHAPE)CONTINUE 8 CONTINUE RETURM - END /7 LOAD PLOT/L DP0:FLEXBEAM FLEXBEAM IXFER XEG Contractory of ORIGINAL PAGE IS OF POOR QUALITY · · · ;. V - 15

00.4 L = 1,41IPHT = 10 + L = 9IATA = LTA18 = L + 960 4 CONTINUE DO 6 L = 42, 101 IPHI = 10*L - 9 6 CONTINUE WRITE (5,91) T(IPHI), PHICIPHI), T(1414), A(TA14,1), A(1414,2) I "T(TA1B), A(IA1B,1), A(IA1 WRITE (5,91) T(IPHT), PHI(IPHI) 91 EORMAT (1X, F8.1, F14.9, 2(F13.1,2F14.9)) T(TAIR), ACIAIB, 1), ACIAIR, 2). . • Sector Sector 讕 ORIGINAL, PAGE IS OF POOR QUALITY 影響 V - 16

```
PLOT AMPLITUDE VS. TIME
 CALL PSIZE (6.0. 5.0)
 CALL PROX
 CALL PAXES
 CALL PLOX (-0.5, A(1,1), 0.5, POINTS)
 CALL PLOX (-0.5, A(1.2), 0.5, POINTS)
 CALL PLOX (-0.5, A(1,3), 0.5, POINTS)
 CALL PLOX (-0.5, A(1.4), 0.5, POINTS)
CALL PLOX (-0.5, A(1,5), 0.5, POINTS)
 .
                 .
.
```

· · · · ·