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One advantage that the physical models have compared to the budgyet models

is the ability to handle redistribution in the soil column in a precise
manner, hence, to account for loss of water from drainage or gain from capil-
lary rise. A disadvantage is the added difficulty of programming and coding
the numerical solution technigues.

This literature review and limited evaluation indicate that the physical
models have the potential to provide a more accurate and precise simulation
of the profile changes of the soil moisture. Thus, it is recommended that
further information regarding these models incorporating evapotranspiration
be obtained and analyzed. In particular, documentation of the computer
programs and a listing of the programs should be obtained, if available.
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1. INTRODUCTION

In two previous investigations [Hildreth (refs. 1, 2)], a number of soil
moisture models that have been used in agricultural activities, such as
irrigation scheduling, crop yield modeling, and precipitation runoff, were
documented. These models are budget-type models in the sense that they keep
track of the gains and losses of water in the soil layers through emp rical
relationships that incorporate only limited physical or physiological
principles. Hence, these models may not have the best structure in which to
incorporate remotely sensed data.

Presented in this report are the results of a literature search to determine
what is the state-of-the-art in soil moisture transport modeling and to
locate other existing soil moisture budgeting models, particularly those
based on physical and physiological laws and principles.
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2. TECHNICAL DISCUSSION — SOIL MOISTURE MODELS

The main objectives of soil moisture modeling for agricultural purposes are
to keep track of the moisture distribution in the soil and of the transpira-
tion by plants in order to determine the best estimate of crop yield. The
soil moisture.or water at any one point is affected by a number of factors
which, acting in unison, tend to change the moisture content.

It is, perhaps, more illustrative to look first at the factors affecting a
soil column that extends from the ground through the water table down to
bedrock. One classification of this subsurface water system is shown in
figure 1. For any location or time, the thickness of these zones may be
quite different. In this study, the zone of aeration and, in particular, the
soil water or root zone were the primary interests.

The factors which can account for the change in the amount of root zone mois-
ture in a specific column during any given time interval are related by the
following equation.

SMt - SMt_] =pSM=P-RO+L+E-T+C-Q (1)
where
SMt = so0il moisture amount at one time
SMy_y = soil moisture amount at an earlier time
ASM = the change in soil moisture for the column layer
P = precipitation
RO = surface runoff
L = net subsurface lateral movement
E = evaporation or condensation
T = transpiration
C = capillary rise from lower levels
Q = percolation from one Tevel to a lower level
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The amount of water available for the column at the soil-atmosphere interface
is the precipitation (P) minus the runoff (R0O). This amount may be augmented
by subsurface lateral gain or loss (L) or from condensation from the atmosphere
(E) or from the capillary rise (C) from below. The loss of moisture from the
root zone layer can be from evaporation (-E), from transpiration (T), or from
lower boundary drainage (Q).

Moisture changes in lower layers below the surface layer are represented by
aSM=L+C+Q (2)

where now C and Q are the net changes in the layer caused by capillary rise
and drainage, respectively.

The relative importance of each of the terms in the above equations depends
on the soil, topography, depth of ground water table, agricultural practice,
crop, and climate. In agricultural situations where nearly level fields are
dominant, runoff and subsurface lateral change can generally be neglected.
However, runoff can be important in heavy thunderstorm cases or in rainy
periods of long duration.

There are two basic approaches presently in use to evaluate the above equa-
tions: (1) the accounting or budget approach and (2) the physical (dynamical)
approach.

The budget approach employs empirical relations tc estimate the terms on the
right-hand side of equations (1) and (2) for each time period to determine
the soil moisture change and the new soil moisture amount. The physical
approach employs theoretical laws and principles, supplemented by empirical
relations, to represent the physical processes.

The budget models have been discussed in some detail by Hildreth (ref. 2), a

part of which is presented in modified and updated form in appendix A. The
physical approach is given in the follnwing sections.

2-3




2.1 THE PHYSICAL APPROACH

The equations that are generally used to model moisture movement through the
soil are both theoretical and experimental. The first experimental equation
represents Darcy's law stating that the saturated flow of water through a
column of soil is directly proportional to the head difference and inversely
proportional to the length of the column. Later it was determined that this
law can be applied to unsaturated flow with low seepage velocities.

Thus, tor three-dimensional flow in a homogeneous isotropic media, Darcy's
law is represented by

V= -klo)(ve) (3)
where
v = the seepage velocity
) = total potential (cm)
f = moisture amount (cm3/cm3)
K(e) = hydraulic conductivity (cm/sec) which is a function of the moisture

amount

The thenretical equation needed is the equation of continuity which expresses
the law that mass is continuous and is neither created or destroyed. Thus,
the equation of continuity can be written

: apV,)  a(ev,) a(pV,)
a(p8) eV = - [~£‘ X 4 4+ 4 ] (4)

at X ay  Z

where o is the density of the water. If density changes can be neglected,
this becomes

36

Y t‘

(8a)
~—

=7 .V (

The other experimental equation used relates the hydraulic conductivity K to

the moisture content o.

K= K(o) (6)




Combining Darcy's law and equation of continuity gives

32 = v [K(8)vs] (7)

If it is assumed that the absorption potential, chemical potential, osmotic-
pressure potential, and thermal potential may be reglected, then the total
potential can be written:

6 =v+1 (8)
where
¥ = moisture potential
Z = gravitational potential vg on an energy/unit weight basis

Equation (7) now becomes

3 = v - [K(e)v(v + 2)] = v « [K{e)v¥] + 35%%1 (9)

For homogeneous soil, let D(e) = K(e)(dy/de), where D is the soil moisture
diffusivity. Then

%=v-[mﬂ%]+%%% (10)

Equation (10) is sometimes known as the nonlinear Fokker-Planck equation.

If the last term in equation (10) is equal to zero (i.e., horizontal flow),
then

2= v+ [p(o)ve] (1)

The above equation is known as the diffusion equation. For vertical flow

only. equation (10) reduces to

R A LU RE 2 (12)



These equations for moisture change are highly nonlinear, and exact solutions
can be obtained only under highly restrictive conditions [e.g., Philip (ref. 4)
and Parlange (ref. 5)]. In general, these equations are solved by numerical
methods. Techniques and examples have been prcsented by Remson et al.

(ref. 6). This is an excellent book by which to obtain a background on the
necessary considerations for using the available numerical methods. A number
of examples from the literature are referenced for each technique described.
Thes - references use some version of the Fokker-Planck equation, along with
the appropriate boundary conditions, to form a numerical computer model for a
solution of some soil moisture flow problem. Remson et al. (ref. 6) list
about 30 papers that have numerical solutions.

The earliest and by far the most frequently referenced problem considered
aspects of infiltration of water into the soil. Some of these models refer-
enced by Remson et al. as well as several later models have been compared and
evaluated by Haverkamp et al. (ref. 7). In this paper, six models, based on
the soil moisture equation, each employing different ways of discretization

of the equation were tested. The models were compared in term: of execution
time, accuracy, and progranming considerations. A11 models provided excellent
agreement with measured soil water content and with the quasi-analytical solu-
tions of Philip (ref. 4). The two explicit models, the o-tased CSMP model

and the h-based (i.e., soil moisture pressure) explicit model, required some

5 to 10 times more computer time than the implicit models but were easier to
program. The authors stated that the results of the test indicate that
numerical solutions of the soil moisture models can yield very accurate
results at moderate costs in terms of computer time.

Numerical models dealing with other aspects of soil moisture movements in
addition to infiltration, such as evaporation, drainage, and consequent
redistribution, are more limited. A test of a typical soil water model
capable of representing the changes occurring at several levels from infiltra-
tion, evaporation, and redistribution has been presented by Beese et al.

(rf. 8). Their model is solved numerically in an explicit way using the

IBM S/360 CSMP computer program. The test used data from a 218-day experiment
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on a fallow loess soil to compare calculated infiltration and redistribution
of soil moisture to measured values under natural field conditions. The test
showed that the calculated values for all depths deviated less than 15-percent
from the measured ones. The authors concluded that the numerical computer
models of the moisture flow equation can be useful in calculating values to
supplement field measurements.

Another similar numerical model programmed in CSMP language has been described
in considerable detail by Hillel et al. (ref. 9). It was used later by

Hillel and Var Bavel (ref. 10) to simulate moisture characteristics as
affected by evaporation and drainage in a fallow soil.

2.2 CROP-SOIL-WATER MODELS

Numerical models representing moisture dynamics affected by transpiring plants
are more limited than redistribution models under fallow conditions. For this
problem, the basic soil moisture equation needs to be modified. This is done
by the addition of a sink term which represents the water uptake by the roots.

Two main approaches have been taken to represent transpiring plants: (1) the
microapproach, which considers the radial flow to a single root or group of
roots, and (2) the macroapproach, which considers the integrated effect of

the entire root system. In the macroapproach, the water uptake is represented
by a volumetric sink term which is added to the continuity equation [Feddes

et al. (ref. 11)]. The resulting equation for one-dimensional flow considering
Z positive downward is

36 _ 3 38 - _ 3K(e) _ \
3t - 3z D(8)y; 3z - S(8) (13)

In order to solve this equation, the sink term S(6) has to be defined.
Several different S(e) functions have been used. Feddes et al. (ref. 12), by
means of a literature survey, pointed out that most current functions for
S(e) are assumed to be directly proportional to the difference in pressure
head between the soil and the root interior in the followirg manner.
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K h. = h
S(e) - (9)( g r) (]4)

where hS and hr represent the pressure heads of the soil end the root,
respectively, and where b can be considered an empirical root effectiveness
function. Part of the difference among investigations is how this b-function
is evaluated. Feddes et al. (ref. 12) showed that this function is propor-
tional to root mass. Although they indicated that both varied exponentially
with depth, they pointed out that the function will vary with soil type and
rooting system and requires careful and expensive experimentatior to uetermine
the nature of the function. For this reason, Feddes et al. (ref. 11) evaluated
an approach in which the water uptake by the roots was a function of the water
content of the soil. Calculations made by a numerical mode! with an implicit
finite difference formulation were compared to field data taken under red
cabbage in the Netherlands. Although the calculated profiles indicated less
moisture than the measured in the root zone towirds the end of the growing
season, the authors felt that the cumulative calculated evapotranspiration
agreed weil with the measured. An earlier mode! [Feddes et al. (ref. 12)]
based on an estimated root zone distribution gave similar results for cumula-
tive evapotranspiration except that the calculated prcfile had more water in
the root zone toward the end of the period than was measured.

Another model using a more complicated S(¢) term but a similar humerica]
formulation has been developed and tested by Nimah and Hanks (refc. 13, 14)
but does not appear to give as gord results as Feddes et al. (ref. 11).

Neuman et al. (ref. 15) have developed a two-dimensional model to simulate
water uptake by roots whicn is solved by an approach similar to the Galerkin
tfinite element (GFE) method. According to the authors, this method has sev-
eral advantages over the conventional finite difference techniqdes. It can
easily take care of nonuniform flow reqions having irreqular boundaries and
arbitrary degrees of local anisotropy. Tests of this model by Feddes et al.
(ref. 16) showed fair agreement with measurements.
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The use of two integral methods to solve the problem of water flow in a
soil-plant system has been presented by Neuman et al. (ref. 17) for several
examples. The two methods were: {1) the GFE method and (2) the integrated
finite difference (IFD) method. According to the authors, the basic differ-
ence between these two methods lies only in the manner in whi.y the governing
equations are discretized in space, not in the way the resulting differential
equations are integrated in time. The IFD method appears better for isotropic
soils, whereas the GFE metiod is botter for anisotropic soils. 1In general,
the GFE method is more dif icult to program than the IFD method.

~
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3. CONCLUSIONS AND RECOMMENDATIONS

This survey has indicated that there are basically only two different types
of soil moisture models: (1) the water budget models and (2) the physical
models. The water budget approach has\been used in crop yield modeling and
watershed hydrological modeling. The physical models which incorporate
nonlinear moisture flow equations have been under development for over

15 years. More than 40 papers have been located or referenced that deal with
some aspect of these equations.

Because these equations are nonlinear, they generally have to be solved by
numerical techniques using a computer. Only under highly restrictive condi-
tions can analytical solutions be obtained. However, these solutions can be
important as a means of checking the computer programs.

Tests of some of the computer-programmed models using analytical solutions
and field measurements have been made. These tests have indicated that the
computer programs for the numerical solutions of the models representing
infiltration can provide excellent simulations of actual conditions. A test
of a model that includes evaporation, drainage, and redistribution also
provided favorable simulation in that all points are within 15 percent of the
measured value.

Although a large number of computer simulation models exist for infiltration
and redistribution, there ar: only a few that include evaporation or
evapotranspiration. These evapotranspiration models generally simulate
transpiration by a root uptake function. These models appear to simulate
cumulative scasonal evaporation and transpiration fairly well but have problems
simulating conditions for shorter time scales. These models appear to have
problems in at least two areas: (1) rclating actual evaporation and water
uptake by roots to the atmospheric demand and (2) relating the change of root
distribution with time to the suvil characteristics and moisture amount. How-
ever, these problems are similar to those encountered in the water budget
approach.
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APPENDIX A

SOIL MOISTURE MODELING BY BUDGET TECHNIQUES

A number of the snil moisture models using budget techniques are
presented in table A-1. The most detailed model with respect to
the soil moisture profile is that of Stuff (ref. 18). The most
detailed of the moisture budget-evapotranspiratio.. models is that
of Kanemasu (refs. 19, 20), which uses a modified Ritchie

(ref. 21) evapotranspiration model. A typical budget model is
the versatile soil moisture bucdget (VSMB) model.

THE VERSATILE SOIL MOISTURE BUDGET

The VSMB model developed by Baier and Robertson (ref. 22) is a

fairly detailed soil moisture model and is the one used by
Feyerherm (ref. 23) in his wheat yield model and by others in
modified form. In this model, plant evapotranspiration is
determined by the following equation.
n | SMy( - 1) ;
X = _..L____ - - PET —
AET, 'kj SP ZjPETi exp [-w (PET; PET)]‘ (A-1)
j=1 ?
where
AETi = actual evapotranspiration for day i ending at the
morning observation of day i + 1
g
n
E = summation carried out from zone j = 1 to zone j = n
=1
kj = coefficient accounting for soil and plant character-
istics in the jth zone
SMj(i-l) = available soil moisture in the jth zone at the end of
day (i - 1); that is, at the morning observation of

day i
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SPj capacity for available water in the jth zone
PE'I‘i = potential evapotranspiration for day i

w = adjustment function or factor accounting for effects
of varying PET rates on the AET/PET ratio

PET = long-term average daily PET for month or season
Zj = adjustment factor for different types of soil dryness
curves

In equation (A-1), n is the number of zones or layers considered.
The layers can be of fixed thickness or of variable thickness.
Baier and Robertson (ref. 22) and Feyerherm (ref. 23) use zones
that contain a certain percentage of the total water. Their
standard zones have a variable thiﬂkneé% such that the zones con-
tain 5.C, 7.5, 12.5, and 2% percent of the total available
moisture of the plant in the soil profile. According to Baier
and Robertson (ref. 22), the adoption of such standard zones
makes it possible to use one set of crop coefficients for a

given crop in all soil types. Feyerherm (ref. 23) uses 10 inches
as a measure for the total amount of available water in the =oil

profile.

In order to use the AET equation for sequential calculations, a
technique is needed to keep track of (i.e., budget) the soil
moisture changes in the various layers. These changes can be
determined by the following set of soil moist '‘re change
eguations:

SM ¢,1) = SM(i - 1,1) + P(i) - RO(i) - AET(i,])K(3) - Qi,l)
Surface layer, j =1 (A=2)

SM(i,3) = sM(i - 1,3) + Q(i,j - 1) - Q(i,3) - RET(i,J)K,

Surface j > 1 (A=-3)




where
Q(i,1) = P(i) - RO(i) - [SP(1) - sM(i - 1,1)] ; j =1
Q(i,1) >0 (A-4)
Q(i,1) = 0 if Q(i,1l) < O

Q(i,j) = Q(i,3 - 1) - [SP(j) - sM(i - 1,7)] : 3 > 1 (A-5)

Q(lrj) = 0 if Q(llJ) <0

where

Q(i,j) = percolation to lower layers on day i
P(i) = precipitation (rain) on day i

RO(i) = rainfall runoff on day i

The above AET equation and soil mcisture change equations have
been programmecd for computer calculations. The soil moisture
budget (SMB) program is written in Forctran IV for the Univac
Exec II. This SMB program uses meteorological, soil meisture,
and plant rooting characteristics to calculate daily evapotrans-

piration and soil moisture amounts.

The initial data needed are the plant available water capacity
in each layer (SPj), the actual available water in eacn layer
(SMj), the plant root distribution factors (Kj), the soil dry-
ness adjustment factors (Zj), and the atmospheric demand adjust-

ment factor (w). In addition, a PET function is needed.

Meteorclogical data are needed on a daily basis. The amount of
daily data required depends mainly on the PET function used. As
a minimum, daily precipitation, maximum temperature, minimum
temperature, ard solar radiation outside the aimosphere are
needed. If wind, humidity, and global surface solar radiation
data are availavle, more complex PET equations can be used.

(See table A-1.)

3
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Consideration of the initial and daily data involved in the SMB
calculations suggests that there can be a great deal of uncer-
tainty in the results. In particular, it is difficult to deter-
mine the soil drying cheracteristics Zj and the atmospheric
demand factor w. In order to better interpret the results of
experiments using the SMB program, a sensitivity and accuracy
analysis of the AET equation has been performed (ref. 2). This
analysis indicated that the soil moisture capacity (SP), the
available soil moisture (SM) amount, the root distribution coef-
ficient (K), and the soil dryness adjustment coefficient (2)
each gave a l0-percent error in output for a l0-percent error

in input. PET and PET each gave approximately a 5-percent error
in output for a l0-percent error in input. The atmospheric
demand coefficient (w), on the other hand, gave only a
0.5-percent change in output for a 1l0-percent input error. In

a simulation experiment, realistic values for Sp, K, Z, and w
provided a calculated value of the total water loss by evapo-
transpiration that was within 2 percent ¢ the m2asured water
loss. Further experiments with the same data sc. have indicated
that the variation in calculated water loss is not a sensitive
to uncertainties in the individual parameter variables as the
sensitivity analysis indicated.
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