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Numerical Solution of the Navier-Stokes Equations
for Blunt Nosed Bodies in Supersonic Flows

By
4. U. A. Warsi, Krishma Devarayalu and J. F. Thompson
Department of Aerophysics and Aerospace Engineering
Mississippil State University
Missisgippl State, MS 39762
Abstract
A time dependent, two-dimensional Navier-Stokes code employing the
method of body-fitted coordinate technique has been developed for super-
. sonic flows past blunt bodies of arbitrary shapes. The bow shock ahead
of the body is obtained as part of the solution, viz., by "shock capturing."
A first attempt at mesh refinement in the shock region has been made by
using the forecing function in the coordinate generating equations as a linear
function of the density gradients. This technique displaces a few lines
from the neighboring region into the shock region. Numerical calculations

for Mach numbers.2 and 4.6 and Reynolds numbers from 320 to 10" have been

performed for a circular cylinder with and without a2 fairing. In this

report results of Mach number 4.6 and Reynolds number 10% for an isothermal

wall temperature of 556°K have been presented in detail.
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1. Introduction

Numerical solution of the full compressible Navier-Stokes equations for
a blunt body placed in a uniform supersonic stream is of much theoretical
and practical interest. The problems of viscous compressible flow have been
tractable only in the last decade because of the continuing advances in
the computer facilities as well as in the numerical methods. A detailed
summary of various numerical methods which have been used in the caleulation
of viscous compressible flow problems has recently been given by Peyret
and Viviand [1]. A recent review on blunt body problems by Rusanov [2]
is also of interest.

it has been established by experiments that in fromt of a blunt body
placed in a supersonic flow, there appears a detached bow shock wave which
separates the flow disturbed by the body from the undisturbed flow. Behind
the shock wave there is a subsonic region bounded by it, the body, and the
sonic lines emanating near the body. The region behind the sonic lines is
again supersonic with the exception of interior shocks and near-body wake.
The existence of the subsonic region, with the no-slip coandition to be
satisfied at the body surface, requires the consideration of full viscous
equation;. The subsonic region also establishes a direct relationship
between the shapes of the nose part of the body and that of shock wave
ahead of it.

The present investigation is concerned with the numerical solutions
of the complete Navier-Stokes esquations for two-dimensional blunt arbitrary
shaped bodies placed in moderately high freestream Mach number flows. One
of the novel features of the present research is the use of body-fitted
numerically generated éoordinate systems as developed by Thompson, et. al.

{3} and Thames [4]. The coordinate system used in this paper (Ref. to



Figs. 1, 2, and 3) establislies beyond doubt the versatility of the method
and thezcapability of adjustments of the coordinates in regions of interest,
such as in the vicinity of a shock or a body surface. Further, the overall
problem of analytical development has been rendered more general by using
the method of tensor analysis. Thus the extension of the method to three
dimensions is now purely formal.

The body-fitted coordinate generation method allows the coordinate
lines to be coincident with all the boundaries of a general multiply-
conmected region including the boundaries formed by solid walls and the
external boundaries. fhus with this procedure the numerical solution of
the Navier-Stokes equations may be obtained on a fixed rectangular field
in the transformed plane without any specification of the mesh sizes,
cf. [5]. ~Further, no interpolation of the flow variables is required
regardless of the shape of the physical boundaries or the spacing of the
cufvilinear coordinate lines in the physical plane.

As noted earlier, the flow in the subsonic region is governed by the
shapes of the nose part of the body and that of the shock wave ahead of it.
By using the body-fitted coordinate system, the problem of exact specification
of the boundary conditions on the nose part of the body is completely
resolved. In Sections 2 and 4, both the theory ané numerical generation
of coordinates are discussed.

The computational domain is now limited upstream by a boundary located
at a certain distance ahead of the expected appearance of the bow shock in
the steady state. The outer boundary is taken to be a hyperbola placed
" at a distance about 5.0 of the expected stand-off distance calculated by
Van Dyke [6] and Billig [7]. The downstream boundary is a circular arec

of radius equal to 5 times the nose radius of the body. An implicit finite-



difference approximation for the non-steady Navier-Stokes equations written
in curvilinear coordinates is used to advance the solution from an arbitrary
specified solution at time t = 0. Since the position or shape of the shock
has not been prescribed a” priori, the shock transition region is obtained

as part of the solution, i.e., by "shock capturing,” as the flow develops.
Section 3 describes all the pertinent equations used in the flow calculations
while Section 4.2 describes the solutiog algorithm.

As is usuval with any finite-difference solution of the compressible
Navier-Stokes equations, thetproblem,of nonlinear oscillations, particularly
when a shock exists, 1s a dominant one, These oscillations or wiggles must
be damped by using dissipative finite-difference schemes. McCormack [81,
Boris and Book [9], Vliegenthart [10] and others have developed various
techniqués to damp out the nonlinear oscillations. In the present research
we have used both the FéT routine of Ref. [9] and the Shuman filtering of
Ref. [10]. It bas been found that Shuman filtering works quite well for
all the cases considered in this paper, though it has the tendency of
lessening the high gradients in the shock region. -This aspect of the problem
is discussed in Section 4.2.3.

A téchnique'to concentrate the coordinate lines in the wvicinity of
the shock has been developed. When a quasi steady-state solution has been
obtained, the density gradients already known across the shock are then used
to re-generate the coordinates and the Navier-Stokes solution is performed
on the new coordinates. Though this scheme works quite well, however,
because of the limited storage capacity, not many lines could be displaced
in the transition region. This aspect is discussed in Section 4.2.5. of this

paper,



A series of results on a circular cylinder and a circular cylinder
with aft-body have been obtained for several Reynolds and Mach numbers.
The wall pressure ratio on a circular cylinder as reported by Tannehill and
Holst [11] has been compared with the present solution and the two match
fairly well.

All numerical results are discussed in Section 5 of

this paper. In all cases considered the Knudsen number, vyn/2 Mm/Re’ isg

sufficiently small to satisfy the continuum hypothesis.



2, Numerical Generation of Curvilinear Coordinates

The accuracy of numerical solutions of the partial differential eguations
of mathematical physics depends very strongly on our ability to impose the
requisite boundary conditions as accurately as possible. For problems of
fluid flows past finite bodies, since the boundary values are prescribed
on a closed curve forming the body contour (in three dimensions on a closed
surface), and also at another closed curve enclosing the given body forming
the outer or external boundary, it is natural to envisage a coordinate
system in which one coordinate passes exactly through the body contour,
and the other passes through the external boundary contour. The idea of
numerical coordinate generation is to- fill the region with intersecting
coordinate lines enclosed by the body and the external boundary contours in
the physical (x,y) or (x,y,z) space.

The preceding ideas in one form or another have been used by Winslow
[12]1, Barfield [13], Chu [l4], Amsden and Hirt [15], and Godumov and
Prokopov {16]. However, the whole concept has been used in a much organized
manner to provide a number of solutions in fluid mechanics by Thompson, et.
al., [31, [&1, [5], [17], [18], {191, [20].

Let £= £(x,y) and n = n(x,y) be two continuously differentiable
functions of the Cartesian coordinates (3,y). Further, let n = n0 = constant
be the body contour, while n = n, = constant be the external boundary con-
tour. The region n, £ N 2n,must now be filled by intersecting coordinate
curves £ = constant and n = constant. Becuase of the closed region under
consideration it is matural to specify the determining differential equations
for £ and n as elliptic equations to be solved under the proper boundary

conditions for £ and n at the body and at the external boundary. Since the

wn



simplest elliptic équation is the Laplace equation, we then pose the problem
of solving the Laplace equations for £ and n with x and y as indepeundent
variables under the Dirichlet boundary conditions. Let Pl be the curve
defining the body contour n = n, and Pz be the curve defining the outer

boundary n = n, in the xy-plane as shown in Fig. 1. The elliptic boundary

value problem is then

o0

v2g =0 (2.1)
V2 =0 ‘ (2.2)
on T,: £ ?,fo(x,y), n=n, (2.3)
on I,: g= £ (x,57), n=n (2.4)

The solutions of Egs. (2.1) and (2.2) under the boundary conditions
(2.3) and (2.4) can conveniently be obtained in those cases when no‘and n,
can be specified by simple analytic methods (such as a circl?, ellipse,
etc.). To obtain coordinates for arbitrary shaped boddes, it is conveniept
to transform the Egs. (2.1) and (2.2) such that x and y are the dependent
while £ and n are the independent variables, This transformation can easily
be performed for either two or three-dimensional coordinates by the method
of tensor analysis and is detailed_ip Appendik B. Referring to Egs. (B-13)

and (B~14), we find that Egs. (2.1) and (2.2) are equivdlent to
859 Xep = 2g12 XEn + 811 Xﬂﬂ =0 (2.5)
€22 Yep = 2_812 Yen T 811 Y = O (2.6)

where the variable subscripts denote partial differentiations and the g_j
. i

is the metric tensor defined in Appendices A and B. The boundary conditions

are now
* * = . - A ,
On IT: x ’Fl(E,no), y #2(E,no) (2.7)
%, = . -
On I: x -Gng’"w)ﬁ ¥y = 6,(Emn,) . (2.8)



where as shown in Fig., 2, Pf and P; are the images of the body énd the external
boundary c¢ontours in the En-plane,

The geometrical meaning of the transformed equations {(2.5) and (2.6) is
that the body and the external body contours in the xy-plane have been mapped
on to the En—-plane which is rgcééngular. In other words, we can say,
that the contours in the xy-plane have been opened dp to form the straight
lines n = n, = constant, and n = n_ = constant in the gn-plane. 'This can
be achieved by imagining a cut connecting the body and the external boundary
ins the xy-plane as shown in Fig. 1., such that 2ll functions and their
derivatives are continuous in crossing 'the cut. Since a cut line is a part
of the field, no.bounda?y conditions can be impo;ed on Fg and PZ of Fig, 2.

The appéarance'of n, and n_ in Egqs. (2.7) and (2.8) is now purely
symbolic, denoting the names of the body and of the external boundary

respectively. Given the body and the external boundary coﬁtours, we can
always estaglish the values of x and y eith;r graphically or analytically
for any desired distribution ;f E-values. Tﬁé n;félues caﬁ be éhosen
arbitrarily to form recfangular meshes in_the En"Plang.

Equations (2.5) and (2.6) are the bésic equation; for the generation
of coordinates. To havg a control over the spacing of the £ and n lines,
we envisage another general transﬁdrmation, say frgm £E,n to & and n’.

Retaining the £,n notation, the‘equations take the form

859 Xeg ~ 2g12 X + g Xon = ng + an {2.9):

- 2 + =Py, + Q 2.10
822 Ve 7 %813 Ypn * 81y Yy T PV Y Qv (2.10)
For details on the above derivations refer to [ 5-]:. The same form of
equations are obtaimed if one starts considering the Poisson equations in
place of Eqs. (2.1) and (2.2) and inverts the transformation from x,y to

E,n as independent variables.



The function P andla are to some extent arbitrary an& can be chosen
in various ways to have a desired distribution of coordinates in a given
region. In the present research we have made P and Q to depend on the
density gradients to contract the coordinates in the region of the shock.

The chosen forms of P,Q are [17]

-

_ n
ek Apsen (Bt exp (-n;|&-g, D
m)
tegi By sen (6~8,) exp (-E;R,) (2.11)
_ n
Q=g §=l Ak sgn (n—nk) exp (—Dk]n—nk|)
. m . .
+ g E=1 B, san (n—ng) exp (_EERﬁ) (2.12)
where
8= By Byy ~ (802 = J2 (2.13)
1/2

R, = [(E-£)% + (n-n))?] (2.14)

The first terms on the right hand sides of both (2.11) and (2.12) are used
in the line attraction, while the second terms in both equations are used
for the point-attraction. Various terms which appear in these equatiomns
have been defined in the "List of Symbols".

In the present research, we have used only the point attraction term
of Eq. (2.12) to concentrate the coordinate lines near the shock. The
computer program calculates the density difference for all n-lines in the

region of the shock. The amplitude factor B, thus changes according to the

£
position (£,n) and is defined as

B2 = (consFant) (pz—pl)/pl (2.15)



where the subscripts 1 and 2 denote the respective values in the front and
behind of that shock which has been computed without ccordinate contraction.
The constant appearing in (2.15) 1s selected only once by trial and error
ar;.d retains fhe same value for all £ and n positioms.

The method of numerical coordinate generation offers much freedom in
the orientation of both the & and n coordinates in the physical xy-plane.
For example, the n = const. lines can be chosen to go round the body.as‘
shown in Fig. 1, or they may not be chosen to form a complete circuit as
shown in Fig. 3. However, a choice has to be made in advance of computing
the coordinates, because the resulting orientations of the bodj segnment,
the cut lines, or the re-entrant segments, and the outer bound;ry segmen&s
in the EZn-plane depend-Qn this choice. In the present research w; have
chosen the coordinate orientation as shown in-fig. 3, in which'the front
outer boundary is a hyperbolic arc and the rear outer boundary %s a circular
arc. Figure 4 shows the corresponding segments ériéntation in the én—plane.
This type of segments orientatiéﬁ requires much caré in the computerlprograming
for both the coordinate generation and for the numé?icél ;oluéion of the
Navier—Stokes equations. In Section 4 we have discussed the finite-difference

approximations of all the equations.



3. Formulation of the Problem

For solving the blunt boéy problem in a general curvilinear coordinate
system, we consider the nondimensionalized Navier-Stokes system of equations
in the invariant tensor form. The conservation equations are

Mass Conservation:

22 + div(ey) = 0 (3.1)
Momentum Conservation:
2 (oy) + div T = 0 (3.2)
Energy Conservation:
g—li——!- divyp =0 (3.3)
where T = pyy + pl - €0

-

= (Y+p)v ~ ES-Y - gk grad T

Y = pe + %-Dly|2

K= ) div v

t vectors and tensors are denoted by using ~ under and above a symbol
respectively.

10



~

d = pdef v = ulgrad vy + (grad v) ']
g = 1/Re
= — 2
e E(Pr(y l)Mg

(3.4)

The nondimensionalized equations (3.1) - (3.4) have been obtained
by referring all lengths to the diameter ZRi; velocity vector, density,
viscosity, temperature, enthalpy and pressure to the freestream values

% % % % * ® F,
Vs Pp s My » T, hm , and P V_ regspectively. Assuming the gas to

be calorically and thermally perfect, the equatibn of state in the non-

dimensional variables is

P =" (3.5)

where Y is the adiabatic expomnent. Similarly, the nondimensional tempera-

ture is given by
T= (-0 &= 2 [y (3.6)

The relation between temperature and viscosity is provided by the Sutherland

formula, which in non-dimensional form is

(1+51)T3/2
y = — {3.7)
T+ S,
* -
h N R R
where Sl = ;3- s Sl = 110°K .

11



Since Y is a function of T, hence the system of equations (3.1) - (3.7)
form a closed system of equations provided A = A{u) is also prescribed.

In the present formulation we have used the Stokes' condition
3 +2p =0 (3.8)

as the required relation.
The boundary conditions for the system of equations (3.1) - (3.3)

are

at the body surface: ly| =0, T=T , or (%% v specified

- W

v TWDW

v o y(y-DM2
p. T

Py = g (3.9)
™

at freestream infinity: |v| =1, p=1, T=1

)

I
-
18

8

1

I T
2 " ¥ (y-1)M2

In (3.9) the subscript w denotes tﬁe wall condition. The density P is
not known in advance but must be obtained by the equations themselves.
Since the governing equations are of parabolic-elliptic type, we
therefore need to specify the outflow boundary conditions. In place of
specifying the derivative conditions, we have used the complete solution

of the Euler equations to specify the downstream boundary condition with

12



the stipulation that at the outer downstream boundary the effect of viscosity

is negligible,

3.1 Transformation of the Equations;

The governing equations (3.1) - (3.3) ‘are now transformed to a general
coocrdinate system El(i = 1,2) by the usual methoﬁ of tensor analysisj'Using

the summation convention on repeated indices, and introducing new dependent

variables

c=vVg p, P=Vg p, D = /g ad, £=/g ¥ (3.10)
the equations are
39 . 3 (evly = 0 (3.11)
ot " A

Eag (ov™) + =& (cvivJ) + F']ic oy = - O (petd)
BEJ ] BEJ
~pr g e e g)
jk i
.12
5p™J i ik . ik
+=—+ I (Vg Kg'" + DY) (3.12)
pz] jk
S+ @+ v = e 2 (5 vh +ay 2 g g a—qi.') (3.13)
ag 3E 3L o
g

where ®ij is the transformation metric tensor, and

NE S u(glkg vg

m Yt vfm)vm (3.14)

tRefer to Appendix'A.
13



In Eqs. (3.10) - (3.14), the superscript indices denote the contravariant

components, while a comma denotes the convariant differentiation, i.e.,

. i
.= gl K (3.15)

where P;k is the Christoffel symbol.
Equations (3.11) - (3.13) are applicable both to two and three space

dimensions. In two dimensions, writing for brevity

£1=€: 52=T],V1=UsV2=V

A

ou, B = ov, H o(w)?, M = (v)%, N = ouv, (3.16)

Q = (E+P)u, R = (E+P)v

the equations become of the form

30 A 3B _
.B_E..|. 5 + 5y = 0 (3.17)

IN+TlM=098 (3.18)

RN STk 1
+ + +-F11H + 2T12 29

OB , oN . oM 2 2 2 M= .19
3t + Y: + I + T, H + 21‘12N + I‘22M b (3.19)
OFE , 3Q , 3R _ ) 20
st Tae Toq— ¥ (3.20)

The expanded form of various terms appearing in Equations (3.17) - (3.20)
are given in Appendix A,
The boundary conditions for Equations (3.17) - (3.20) are

= v = = 9T {£4
at the body surface: u=v =20, T T, OF (an)W specified

TW UW
E < ———
y(y-1)M2
PW = (Y"l)Ew s,
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at freestream infinity: u > Yn/l’_g- s V —yg//_g_

o+ Vg

T~»>1

P > Vg/yM2

B> G+ ——) , (3.22)
Y (y-1)M2

where a £ or n subscript implies partial differentiation.

The local Mach number Mg is given by

M, = M_|v|/VT ' (3.23)
where
[v|? = g1 (W2 + 28, ,uv + g,, (V)2 (3.24)
and
T = y(y-1)M2 (—g- —% [v]|2) (3.25)

The relations between the local Cartesian and the local contravariant
components of the velocity vector v are

U= ux, + vx

g

V= uyg + vy, - (3.26)

The vorticity w is given by the formula

W e (et - =) (3.27)

where v, are the covariant components of v, which are related with the

contravariant components as

Vi < By v = 841 Ut Byp Vo (3:28)
The pressure coefficient is defined as
% *

P -7
C =—=2(p - _12 (3.29)
P 1 % Ybiuo

ol p VKZ

2 Tew "
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4. Finite Difference Approximation and the Solution Algorithm

In this section we present the finite‘differeﬂce approximations and the
numerical methods used both for the solution of the elliptic system, Egs.
(2.9) - (2.10), and for the complete Navier-Stokes system, Egs. (3.17) -
(3.20).

Before we proceed 6n the pertinent method of solution, it is important
to mention that iﬁ the method of body-figted coordinates it is superfluous
to specify the step sizes AE and An. if IMAX and JMAX represent integers
for the maximum numbers of & and n points respectively in a field, then
this input and the desired contractign cqptrolled by the a?plitude and decay
factors of Egqs. (2.11) - (2.12) decide the v;riable mesh sizes to be obtained
by solving the generatiné system 62L9) ; (2.10). ‘This'aspéét has been
thoroughly discussed in [ 5]. Th;s the main utiiity of numeric;lly_generatéd
body-fitted coordinates actually lies in the availability‘éf meshes or nets
in the &£n-plane on which the Navier-Stokes ‘equations are to be solved
without specifying the step size;. Further, the variatiops both along the
E-and n—-coordinates, are labeled by the -consecutive integers in the range

1 21= IMAX and 1 £ J < JMAX.

4.1 Numetrical Generation of Coordinates:

The solutions of Egs. (2.9) - (2.10) have been obtained by the Gauss-
Siedel method with .successive over relaxation (S0R) under the prescribed
‘boundary values for x and y on the body and the external boundary contours,
along with the prescribed values of IMAX and JMAX. The .spatial derivatives

are approximated by the central differences

Cdr,o = Cra,s ™ A1, 222 €4.1)

(A 2X +

gg)I,J = Qg5 I,J AI—l,J) (4.2)
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where A is a surrogate variable and I,J denote positions along £ and n

coordinates respectively. Similar expressions are obtained for An, inn and

A .
&n
The solutions of Egqs. (2.9) - (2.10) yield x and y for the whole flow

field as functions of £ and n. This data is then used to generate the

derivatives Xg’ xn, Yg’ yn, the metrical coefficients gij’ the determinant

g, and the Christoffel symbols P;k'

It was mentioned in Section 2 that the orientation of the coordinates

of the form shown in Fig. 3 requires due care in obtaining derivatives on

the cut line. Referring to the schematic shown in Fig. 5 with the x-axis

oriented along the cut line, let I and IL denote the integral values of

uc C

I on the upper and lower parts of the cut respectively. Thus

Lo+ Ige= MAK+ 1. (4.3)
Equation (4.3) establishes the following correspondence between ILC and IUC:
Tie o e
1 Corresponds to IMAX
2 - " " THAX-1
T " " IMAX-I+1
n 1" .
Iy ) (4.4)

where IBl and IB2 represent the same point of the body reached by the lower
and upper parts of the cut respectively. Obviously

I, = (IMAX +1) - I

B1

17



From (4.4), we conclude that

x(IUC,J) = x(I; . J) (4.5)
and
x(IUC+1,J) = x(ILC—l,J) {(4.6)
The first derivatives on the lower and upper parts of the cut are
1
(XE)LC = E [X(ILC+1’1) - X(ILC"lsl)]
(x).. == [x(L, .,2) - x(I,,2)]
n LC 2 LC? uc?
- L - -
_1 ~
where 2 g ILC e IB1 - 1.
-1 -
(x)ye = 7 [x(Tyetl,1) - x(Iy-LD1
) = = [x(T ,2) - x(Z. .,2)]
*oe T 2 Yue Xiee
=1 - -
-1 - :
(yn)UC =3 [y(IUC, ) = y(I 2] . (4.8)
where
IBZ +1 £ IUC < TMAX - 1,
Using (4.6) in (4.8), we find that
(xg)UC = - (xg)Lc
(Xn)UC = - (xn)LC =0
@ ue = = T (4.9)
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i
From the definition of T,

jk given in Eq. (B-6) we find that on the cut line

1 _ 12 -2 =
Iig =T33 =T5,=0 (4.10)

4.2 Navier-Stokes Algorithm:
The Navier-Stokes equations (3.17) - (3.20) can be put in the numerical
vector form as

dw 9F  oC

et tES 0 (4.11)
where
g
A
W= {(4.12)
B
E
A

(4.13)

1 1 1 -
I'11H+2P12N+1"22M 8

2 2 2 -
Pll H + 2I‘12 N+ l"22 M-14¢ (4.15)

N .

G =¢{ . (4.14)
M
R

- ¥
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We now discretize Eq. (4.11) by a fully implicit difference approximation.
The time derivative is approximated by a first-order backward difference
at ntl, where n is the time step of size At, while the spatial derivatives
are approximated by central differences. The system of equations are solved
by point-50R, which are

nti _ w;1+l(p)

YI,J = ¥rg (4.16)

+ By g

where w is the relaxation parameter afd the superscript (p) denotes values

at the previous iteration. The function R is

_.n nt+l(p) ‘gg n+l n+l
R0 =¥, 57 ¥1,; 2 1,5~ 115
n+1 n+1 n+l
*Cr, o T 6,5t - G0) Hp g (4.17)

where the values of y in F, G and H are those which are the most recent

values available from the previous iteration. Fully expanded forms of

(4.17) are given in [21].

4.2.1 n-Derivatives on the Cut:

To find the n-derivatives on the cut, we refer to Fig. 6. The point l—
of the physical plane goes on to the point x of the transformed plane, while
point 2 remains at its position. Thus in principle, the function value at
the fictitious point shown under the lower cut must be replaced by the
function value at the point 2 on the uppér cut. Now two cases arise
depending on whether the function is a scalar (like pressure, temperature,

etc.,) or a vector.
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For a scalar £, the first n-~derivatives are

3f _1 _
LC
of 1 ’
an IUC’l 2 uc LC
Thus
(%fi . - - _gi : , (4.18)
" lue,1 " tue,1
Similarly, the second n-derivatives are
GEEED
an ILG’l = f(ILC,Z) - 2f(ILC,l) + f(IUC,Z) (4.19)
(a?-f )
an IUC’l = f(IUC,Z) *-Zf(IUC,l) + f(ILC,Z) {(4.20)
But f is a scalar, so that
'f(ILC,l) = f(IUC,l)

hence both (4.19) and (4.20) represent the same value.

To find the n-derivatives of a directional quantity u on the cut, we
need the value of u at the fictitious point. Since in the physical plane u
in the lower part of thé cut is directed opposite to that on the upper part

of the cut, hence

[

du _ 1 s
= (&
an IUC,]. (4.21)

The same holds for v, x X and y_.
L] E’ n’. yg yn
Based on the preceding analysis it is easy to show that either for a

scalar function f or a vector function v the derivatives across the'cut are

continuous.
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4.2.2 Calculation of Wall Density:

The wall density is calculated by evaluating each term of the continuity
equation (3.17) at the body surface. Denoting by J=1 the body surface, we

have

(ag)n+l _ ngon*l
ot an

1,1 1,1

Using a three-point forward difference approximation for the right hand

side, we obtain

ntl _ n At
Or,1 = 97,1 " 3 B

ntl n+l

1,2~ BI,3) (4.22)

ntl _
where BI,l =0 .

Though Eq. (4.22) is fully implicit, nevertheless its use at the
trailing edge point always produces unrealistic density wvalues. To
circumvent this difficulty, we used Eq. (4.22) at all points of the body
except at the trailing edge point where we have used an explicit scheme

based on the leap-frog method

QQE = _ ﬁg'n
L an’y 4
n+l _ 0n—l
1,1 I 1 n n
_ 1 oD
AL 2 By 5 = Br o

where '0' is a fictitious point. Using a second order extrapolation in
space and time, we get

Bn - 2Bn71 n-2

1,0 I,1 71,2
Thus the wall demsity is obtained by the expreséion

ol _ L e (B B;_‘;) (4.23)

n
%t,1 7 91 1,2 7 By,
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4.2.3 Nonlinear Instability

In the calculation of compressible filows, several types of nonlinear
instabilities are encountered. Among these, the most dominant is due to
the difference approximation to the convective derivative. It is a matter
of experience that the convective instability can be avoided by introducing
some dissipation in the difference approximation of the differential equation
being solived. In this context, McCormack [8] has used a fourth-order
damping term for his explicit schemes. Boris and Brook [9] have developed.
a flux-corrected transport (¥FCT) technique which is quite efficient for use
in the continuity equation. Vliegenthart [10] and Hartenm and Zwas [22]
have used the "Shuman filtering" to supress the convective instabilities.

In the preseﬁt research ﬁe have tried both the FCT of Ref. [9] and
the Shuﬁan filtering of Ref. {10]. Theugh the Shuman filter adds more
d15$1pat10n than desired, particularly near the shock, 1t always‘produced

w1ggles-free solutions for all regions of the flow fleld The appllcatlon
i

of Shuman filter amounts to replacing the vector w I,3° defined by
n _ -0 .
w 1,1° Vg w I,J° in (4.17) by.
1 -n - -n —Iv ) .
s Vo, t¥oa st v ol V¥ g tAv g g1 (4.24)

4.2.4 Downstream Boundary Con&itions;

For the solution of the parabolic~elliptic system of equations (3.i7) -
(3.20), beside ehe boundary conditioes at the bedy surface and -at ehe upstream
free boundary (Egs. (3.22)), it is also necessary to specify a é?oper set of
conditions at the downstream bounhar&. To obtaln these condltlons we have
placed the downstream boundary at a sufficient distance where the v;scous
dissipation is neéligibly small and have solved the cbmplete Euler's equations

for the whole boundary. The computer program has been structured in such

a way that is solves both the Navier-Stokes and Euler's equations simultaneously.
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4.2.5 Coordinate Contraction Near a Shock:

The capability of attracting the coordinate lines to other pre-
designated coordinate lines or grid points exists at present and through
the application of this technique to blunt body flows with strong_shocks
gn effort was made to concentrate in, and define, the region of the shock.
The magnitude of concentration is controlled by the factors Bl and Ez
defined in Eq. (2.12). These coordinate control factors were expressed
as functions of the local density gradients across the shock as shown in
Eq. (2.15). The equations for the generation of the coordinate system
(Egs. (2.9), (2.10)), using coordinate control, were solved, as well as
the Navier-Stokes equations, when a quasi steady-state has been reached.
This process was repeated after a pre-assigned numb;r of time .steps,
usually 40. Thus the coordinate system was refined in the region of the
shock and m;ved with it. This measure reduced the,neéd of having a very
refined mesh in the entire computational domain by é?oviding refinement
only in the reg?on through Wﬁich the shock happened to be passing at any
given time. However, it must be not;d that this refinement near thé shock
was achieved at the expense of the accuracy near the wall where coordinate

contraction is always needed to resolve the boundary layer.
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5. Technique of Numerical Solution

The first step in the numerical solution of the~transforged N-S equations
is the determination of the computational domaiﬁ so that the appropriate
boundary conditions may be prescribed around it. In the presént case of
supersonic flow, the flow field remains unperturbed upstream of the bow shock
wave, and the computational domain is limited upstrean by a boundary located
at a short distance ahead of the bow shock. The "stand-off" distance of this
detached shock, for é given freestream Mach number, is estimated using
empirical equations [ 7 ]J. On the upstream boundary the uniform flow con-
ditions were used as boundary conditions. Particular care had to be taken
to ensure that the bow shock did not cut across any segment of th%s upstream
boundary. On the downstreamfboundary the boundary ;o;ditions v;ried With'
time and were determined by solving the Fuler's equgtions‘(cf. Sectioé 4)..

The computational domain.and the profile of the body in it havigg been
determined, the next step was the numerical generation of the coordinate
systeﬁ which has already beéﬁ described. The cartesian coordinates of each
of the mesh points in the entire CSmputational domain having Been detérmined
and stored, the coefficients that occur in the Navier—Stokes equations
due to transforming them into general’curvilinear coordinates could now be
calculated and stored in a file. ' !

The actual solution'of the N-5 equations now starts ﬁith an assgmed
initial guess of the sclution for the entire c&mputational domain. These
initial con&itions need not necessarily be physic;lly réélistic and when
Fhef are not, the transient solution has no physical méaning. In the
present case the initial conditiéns chosen f;r thé ghole flow fiel& were
the uniform flow conditions that were prescribed om the upstreém bounda}y.

3

It was however found that this could not be done if the freestream Mach

g+
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number was very high, or if the isothermal temperature condition prescribed
on the body was far different from the freestream value. The finite-
difference scheme chosen was the S.0.R. which is an implicit scheme. The
value of the optimum acceleration parameter for all the equations, i.e.,
continuity, momentum and enefgy, was determined, by trial, to be 0.9. In
approximating the convective derivatgves of these equations, the average of
the product (A.0.P.) finite-difference scheme rather than the product of

the average (P.0.A.), proved fruitful, eventhough it is generally considered
that a non-linear instability can result -in regions of flow réversal when
the average of the product scheme is used.

The problem of the.tréatment of boundary conditions .at an impermeable
wall in viscous compressible flows reduces to that 5% the calculation of
the pressure or of'the.density. In this research the wall density was=
calculated from the continuity equation written at the wail. Peyre£ and
Viviand [1 ] report that such. a technigue is of dellcate use and may“lead
to strong oscillations or even to dlverge;ce if no artificial v1scosity
term is added to® the continuity .equation; and tpat; in particular, in the

case of separated flows negative values of the density may be obtained..

L

This, in fact, was what happened at the trailing-edge poiﬁt ﬁsing the
continuity equation. This problem was overcome by using an explicit dis—
cretization based on the leap-frog scheme, only at the trailing edge (cf.
Eq. 4.23). |

In general it was found that at a given time-step iterativ;‘convergence
to the toierance of lO‘? occurred in about 7 iteratiogs.‘ While carryiné
out these itegations the downstream boun&aﬁy conditions varied with every

iteratiow. Progress in time was made by 1ncrea51ng the time 1nterva1 At

by .01 at thé end of each time step. The problem of w1gg1es was overcome
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by applying the Shuman filter at the end of every 5 time steps. Provision
was made in the computer program to sgore the solution obtained at the end
of any desired time step in a file; -and the ability to read back from this
storage file and to restart the program where it last left off was also
incorporated. The computer program also locates and calculates the maximum
change that occurs in a typical flow variable, such as density, along every
£ = constant line that passes through the region of the shock. Thus at the
end of any desired time step the location of the shock and the change in
the density across it is automatically recorded. This information is used
again if necessary in the generation of a new coordinate system wherein the
coordinate attraction‘technique is used to refine the mesh i% the immediaée
vieinity of the éhock. |

On an average it took 0.525 minutes of compu;er time (on a UNIVAC 1106)
to achieve iterative convergence at eacﬂ time step.- The stand-off distance
of the bow-shock became quite cénstaht aftér about 350 £ime stepsqeaéh
increment in time-step being equal to ..01. ‘All Ehe programs:were,however,

run up to 400 time steps and the total computer time requirement to achieve

this "steady-state" solution was about 2 hours and 30 minutes.,

5.1. Discussion of Results:

The numerica; solution of the complete Navier-Stokes Equatioms for a
supersonic flow was cobtained for the flow about a two—dimensioéal circular
cylinder. The uniform flow éonditions used in the computations were M = 4.6,
Re,, = 10,000, T% = 167°K,-P¥ = 14.93 8/i2 and P_ = 0.72. For. these free-
stream conditions the coefficient of viscosity .works out to be. :

p¥* = 1.13154 x 10~5 kg/m-sec and the density p¥ = 3.11593 x 107* kg/m3.

The ratio of the specific heats was assumed to be y = 1.40. All calculations
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presented in this report have been peffermed for the isothermal wall
temperature T: of 556°K. The diameter of'the circilar cylinder was -
ZR: = 0.3048m. The Knudsen nember for;e perfect gas’ is defineﬂ by the
expression vyu/2 nglRem), which for the above free-stream conditions is
6.821529 x 10~%,

The graphical resultslpresented correspon& to the stea@y state solutions
at a characteristic time of 3,20, with the exception of the Mach contour
plots which are presented at two periods of time so as to give an insight
into the formation and progress of the bow shock wave as the solution of
the N-8 Equations advances in time towards a steady state.

Figure 3 shows the physlcal fleld which constltuted the .computational
demaln and Figure 4 represents the transformed E—n field used in the numerical
computations. A fairly compect field with 39 lines in the -E—direction and
35 lines in the n-direction was used. ZEven so the computer prograﬁ required
62K of core capacity on a UNIVAC 1100 series computer.

Figures 7a~b are the Mach contour plots‘at the characterlstlc times of
0.8, and 3. 2, and depict the progress1on of the bow shock wave from the body
to its steady state stand-off dlstence. The Mach contour 1nterval is 0.1.

The sonic lines between the bow shock and tﬁe,body, in-which region the flow
is:wholly subsonic, are indicated in Fiéereva. It cae be seen from this
figure that aft of the body too, a subsoﬁic‘reéion exists which exteeds up

to a distance of about 2 times the_diameter’of‘tﬁe cylieder from its center.
Behind this subsonic region, the flow again is supereonic. In the field

shown in Figure 3, the computational domain downstream of the body was limited
by a semi;circle of redius 2.5 and the boendary conditionsron this exit plane,

as mentioned in Sect. 4.2.4, were established by solving the Euler's Equations

on it. Since the downstream boundary is located beyond the subsonic region
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and wholly in a supersonic field of flow the use of the Euler's Equations
is thus seen to be perfeétly valid and accurate. In Figure 3 it can be
noticed that the upstieam boundary of the field srarts‘and ends vertically
abové and below the cylinder respectively. This was dictated by the need
of having to prescribe the free-stream conditions at least up to those
points.

As the n-l1ine spacing was already sparse to begin with, the scope for
mesn refinement in the region of the shock was. very much restricted. In
Figure 8 ghe concentration of the n-lines in the region of the shock is
exhibited.

Figures 9 through 12 depict the va%iation of density, pressure, temper-
ature and velocity from the front stagnation point to tﬁe upstream boundary
along the symmetry line (I = 20) in the steaéy state. Figure Y%9a is the
density distribution Withoﬁt mesh refinement, Whiie 9b is the density
variation with mesh refipement in the shock region.. While the trend of
density, pressure, temperature and velocity distributions seems satisfactory,
the sh;ck stand-off distance 1s more than what Lhe iéeal theories of Refs.
[6] and [7] predict; This effect-is first due to thé solution of the Navier-
Stokes equations aﬁd second due to the introduction of numerical dissipative
terms. Moreover, since the present method is designated for capturing the
shock, the shock stand-off. distance is-not forced in ad;rance as is the case
with the shock fitting metgod. |

Figure 13 shows the variation 0% the coefficient of p£essure (CP) along
the upper half of the cylinder from the féont s£agnation point to thé
trailing edge.

figures l4a-b show the distribution of wall densities from d° to 90°.

normalized with the stagnation value without and with mesh refinement
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respectively. Finally in Figure 15 the results plotted in Figure l4a are
compared with the experimental results quoted in Ref. 11. It is seen that
the numerical results of the Navier~Stokes equations, for the free-stream
conditions considered, yields results which are quite in agreement with
those obtained by experiments.

Figures 16 and 17 show the computational domain and the semsity ratios

for a cylinder with aft body for M = 4.6 and Re = 10%,
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6.0. CONCLUSIONS

A computer code for the numerical solution of the Navier-Stokes
equations for viscous compressible flows with detached bow shocks ahead of
two—-dimensional arbitrary shaped bodies has been developed. The outer up-
stream and downstream boundaries can also be chosen arbitrarily subject
to some obvious physical requirements. The numerical generation of
coordinates is performed separately and then the transformed Navier-Stokes
equations are solved on these coordinates.

The results reported in this paper pertain to circular cylinders with
and without an aft body as body shapes. The outer boundary is formed of
a hyperbolic arc on the upstream side and of a civcular are on the down-—
stream siée._ An implicit finite difference scheme with point;SOR is used
to solve the Navier—Stokes equations. The computationai domain is comprised
of 39 x 35 mésh points. Iterative convergence with a tolerance of 10-% at
each time step of At = .01 is obtained in about 6 iterations. The total
computer time to achieve a steady state solution on Fhe UNIVAC 1100 series
computer, including the time requiréd in the generation of curvilinear
coordinates, is about 3 hours.

The method developed for the concentration of coordinates in the shock
region seems to work in the sense that one or tﬁo n-lines are-added to
this region. However, because of the coordinate shifts, a cruder mesh
spacing results in the nen-shock region, which occasionally gives rise to
oscillations. A better and finerhcoordinate spacing before the application

of the mesh refinement is expected to yield better results.

31



[1]
[2]
[3]
14]
{51

(6]

[7]

(8]

[9]
[10]
[11]
{12]

[13]

‘Vol. 6, 1970, p. 417.

References

Peyret, R., and Viviand, H., "Computation of Viscous Compressible
Flows Based on the Navier-Stokes Equations,' AGARD-AG-212, 1975.

Rusanov, V. V., "A Blunt Body in a Supersonic Stream,” Annual Review
of Fluid Hechanlcs, Vel. 8, 1976, p. 377.

Thompson, J. F., Thames, F. C., and Mastin, C. W., "Automatic
Numerical Generation of Body-Fitted Curvilinear Coordinate System for
Field Containing any Number of Arbitrary Two-Dimensional Bodies,"
Journal of Computational Physics, Vol. 15, 1974, p. 299.

Thames, F., C., "Numerical Solution of the Incompressible Navier-Stokes
Equations about Arbitrary Two-Dimensional Bodies,” Ph.D. Dissertationm,
Mississippi State University, -1975.

Warsi, Z. U. A., and Thompson, J. F., "Machine Solutions of Partial
Differential Equations in the Numerically Generated Coordinate
Systems," Mississippi State University, Aerophysics and Aerospace
Engineering, Rep. No. MSSU-RIRS-ASE-77-1, August 1976,

Van Dyke, M. D. and Gordon, H. D., "Supersonic Flow Past a Family of
Blunt Axisymmetric Bobies;" NASA Tech. Rep. R-1, 1959.

Billig, F. S., "Shock-Wave Shapes Around Spherical-and Cylinderical-
Nosed Bodies," J. Spacecraft, Vol. 4, No. 6, 1967, p. 82Z.

MacCormack,-R. W., "Numerical Solution &f the Interaction of a Shock
Wave with a Laminar Boundary Layer," Lecture Notes in Physics,”
Springer-Verlag, Berlin, New York, Vol. 8, 1972, p. 151.

Boris, J. P., and Book, D. L., "Flux-Correctéd Transport. 1. SHASTA,
A Fluid Transport Algorithm that Works," Journal of Computatiomal
Physics, Vol. 11, 1973, p. 38..-

Vliegenthart, A. C., "The Shuman Filtering éperationrand the Numerical

Computation of Shock Waves," Journal of Engineering Sciemce, Vol. 4,

1970, p. 341.

Tannehill, J. C., Holst, T. L., and Rakich, J. V., "Numerical Computation
of Two-Dimensional Viscous Blunt Body Flows with an Impinging Shock,"
ATAA J., Vol. 14, Wo. 2, 1976, p. 204. :

Winslow, A. J., '"Numerical Sclution-of the Quasi-Linear Poisson
Equation in a Non-Uniform Triangular Mesh," Journal of Computational
Physics, Vol. 2, 1966, p. 149.

Barfield, W. D., "An Optimal Mesh Generator for Lagrangian Hydrodynamic
Calculations in Two Space Dimensions," Journal of Computational Physics,

32


http:Journal.of

{14]

[15]

[16]

[17]

[18]

[19]

£20]

[21]

[22]

{23]

[24]

[25]

-Chu, W. H., "Development of a General Finite Difference Approximation

for a General Domain, Part I: Machlne Transformatlon, Journal of
Computational Physics, Vol. 8, 1971, p. 392.

- Amsden, A. A. and Hirt, C. W., "A Simple Scheme for Generating Genetal
-Curvilinear Grids," Journal of Computational Physics, Vol. 11, 1973,

p. 348,

Godunov, S. K. and Prokopov, G. P., "The Use of Moving Meshes in Gas
Dynamics Computation,” USSR Computational Mathematics and Mathematical
Physics, Vol. 12, 1972, p. 182.

Thames, F. C., Thompson, J. F., and Mastin, C. W., "Numerical Solution
of the Navier-Stokes Equations for Arbitrary Two-Dimensional Airfoils,"
Proceedings of NASA Conference on Aerodynamic Analyses Requiring
Advanced Computers, Langley Research Center, NASA SP-347, 1975.

Thompson, J.-F., Thames, F. C., Mastin, C. W., and Shanks, S. P.,
"Numerical Solutions of the Unsteady Navier-Stokes Equations for Arbitrary
Bodies Using Boundary-Fitted Curvilinear Coordinates," Proceedings of
Arizona/AFOSE. Symposium on Unsteady Aerodynamics, Univ. of Arizona,
Tucsonh, Arizona, 1975. .

Thompson, J. F., Thames, F. C., and Shanks, S. P., "Use of Numerlcally
Generated Body-Fitted Coordinate Systems for Solution of the Navier-
Stokes Equations,” Proceedings of AIAA 2nd Computational Fluid Dynamics
Conference, Hartford, Connecticut, 1975.

Thompson, J. F., Thames, F. C., and Mastin, C. W., "Boundary-Fitted
Curvilinear Coordinate Systems for Solution of Partial Differential
Equations on Fields Containing any Number of Arbitrary Two-Dimensional
‘Bodies," NASA Contractor's Report, NASA,.CR-2729, July 1977.

Devarayalu, K., "Numerical Solution of- the-Navier-Stokes Equations for
Supersonic Flows with Strong Shocks," Ph.D. Dissertation, August 1978.

Harten, A., and Zwas, G., "Switched Numerical Shuman Eilters for
Shock Calculations,' Journal of Engineering Mathematics, Vol. 6,
No. 2, 1972, p. 207. : :

Spain, B., ’Tensor Calculus,"” Oliver and Boyd, New York Interscience
Publlshers, Inc., 1953, p. 29.

i -0
Warsi, Z. U. A., "A Course of Lectures on the Theoretical Aspects of
Laminar Viscous Incompressibleé Flows," published by tlie Department of
Aerophysics and Aerospace Engineering, Mississippi State University,
October 1975.

Roache, P. J., "Computational Fluid Dynamics," Héfmosa.Publishers,
1972, p. 165. ’

33



Appendix A-

This Appendix summarizes the basic rules of tensor calculus [23],
[24] used in transforming Egs. (3.1) - (3.3), and the expanded form of the
pertinent terms which appear in Egs. (3.17) - (3.20). 1In all the formulae
given below, repeated indices imply summation.

Let x; be the Cartesian coordinates and Ei the general curvilinear

coordinates. Then the metric coefficients are

8., = ax—k a—xk (A-1)
1] agl BEJ
i _ 98 agd (A-2)
g ox Bxk
ik _ i _
8 By = 9 (A-3)
g-= det ggij) {(A-4)
(K, 3 Rm s X,,)
J=1/g= 17727 37 (A~5)
a(el,e2,e%)
The element of length ds is given by
(ds)? = sij dxi dxj
- i..] _
= gij dg— dg (A~6)

Based on the above definitions, we collect other formulae from tensor
calculus,
Christoffel symbols:

985 . %o agjk)

( :
3K 389 ag™

(A-7)
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which is symmetric in j,k. Contracting the i and j indices, we have

1 85
k =—
T 28 5t (A-8)
Covariant Derivative:
i Bvi i r
v =—+T v (A-9)
.k BEk kr
Divergence of A Vector:
div v = 1 _B_I ('fg vl} (a~10)
/g 5

L2 g+t (A-11)
TR
Laplacian of A Scalar ¢:
V2¢ = —.i—. '--—a_ (\/E gik ——‘E—a k) (A-12)
/g 9E 3¢
The transformation of Eqs. (3.1) - (3.3) is now direct. Using
contravariant compoments, Eq. (3.1) becomes
1 8 vl =0 (A-13)
t i
13
Equation (3.2) becomes
2 vty + 2 (g 4l TS a0 (A-14)
t Ja k s
g d&
where 1 = 1,2 for two dimensions.
Equation (3.3) becomes
g_:i:’ ¢ L8 (Vg b) = 0O (A-15)
Vg . og"

The expanded form of these equations are Eqs. (3.11) - (3.13).



-The terms appearing in Egqs. (3.17) - (3.20) are

=1 P 3, . B 2
=% B s T B Ty + T3
- 1 2 £ K
g1y (Tjp T T30 +J~ (8y7 3¢ = 812 an)
g
ap!! . 5pl2 1 pll 1 pl2 1 22
+g ( 3 + 3 + T3, DL+ 277, D2+ To,D );
1 kg 9B, P 1 2
¢ = (312 5t~ 811 3 T g 81y (Tip ¥ T3o)
9K
- g, (T + 1201+ = (3 - 815 BE
12 V11 /s 811 an 12 3¢
apt2  ap22 o' g1 2 12 4 12 p22
+e ( 3T + - e + P11 pil + zrl D!* + 15, D )}
b =e 2 (Vg vh) + = (Vg vD)
& on.
'S T _ EX
T %% Vo (827 3¢ ~ 812 3n’?
g .
o M 9T aT
e o= (e 5y 810 30!
Defining

the terms DI D12 ., | , |, V1, v3 ete., are

11 - - 1
3] 2ufG,, u G un + (G22 rll 12 12)u

22 Y5 T "12

1
+ (6yy Ty = Gpy T30V
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(A-16)

(a-17)

(A-18)

(A-19)

" (A-20)



12 _ Y
D D[(Gll ur| + G22 vg) G12 (u‘S + vn)

2 1 2
+ {G 22 I‘11 + Gll I‘12 G12 (I'l + I‘ )}u

+{G., T2, +¢, . Tl + 1'2 5 1v] (A-21)

1
22 12 11 22 12 (rl

22 o - 2
D 2ul6yy v, = Gy v + (6 T, - G, Tiu
2 _ _
+ @y T3y = Gy TTp)V] (A-22)
K ="[u£ + Vo + (ri + r2 Qi+ (r + r2 )v] (4-23)
1 ]
v Ku + u(Gll G22 u + G12 G22 v + u)v’l

By Gpp 8 F (Gpp) IV - uley; Gy v y @) 2v-vivi,
- ul(6 )% + 6y G,, vIv? %) (A-24)
v = kv - ulGyy Gy v+ (6p)vivYy

= 1{(6y )% + Gy, 6yy V - u}vfl

+ u{(Gll)zu + 6y Gy, -vivi S

+ “{Gll Gip U+ Gy Gy v F v}v‘f2 (A-25)
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Appendix'B

Equation for Numerical Coordinate Generation

As in Appendix'A, we shall denote the Cartesian ccordinates as X (the
index i serving as a label only, having no tensorial significance) and the
curvilinear ccordinates either as xi, or ;f or Ei.

It was mentioned in Section 2 that we need formulae in which the Cartesian
coordinates ¥, are treated as dependent variables, while the curvilinear
coordinates Ei are treated as independent variables. To achieve this goal,
we shall use some formulae from general tensor calculus. In all the expressions
given below, the repeated indices imply summation.

Formula for ;he Second Derivative:
Let xi and Ei be two general coordinate systems., The formula for the

second derivative [23] is

9x"  _gp 3 _ v 3x %
il R Ol (8-1)

where r;k and'??k are the Christoffel symbols in the x~ and x= coordinate
systems respectively. (Refer to Eq. (A-7) for definition). Since we are

considering the transformation between a Cartesian and a curvilinear system,

. i =i, .
hence either x~ or x~ is a Cartesian system.

If x° is a Cartesian system, then rij = 0. Writing x5 = X and X = El,
we have
Bzxr ) b er
—t P I (8-2)
852 agm . fm BEP

which is the formula for the second derivative of any Cartesian coordinate

with respect to the curvilinear coordinates.
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—i .o~
Next, if x~ is a Cartesian system, then ™ =0, Writing x* = x

im i
and xl = El, we have
azgr _ r 351 BEJ 3
5% oax_ " Tij ax. 8x (B-3)
L m 2 m

which is the formula for the second derivative of any curvilinear cdordinate

with respect to the Cartesian coordinates.

The use of Eqs. (B-2) and (B-3) along with the equations

i ox

9 i 2

ai =&’ P (-4
L -1

Ix n
r 9% _ &0 (B-5)

agP X, P
yields a series of useful equations.

} n
Inner multipiication of Eq. (B-2) with-%i— and use of Eq. (B-5) yields
52

. Tr X
T o= EE__,,T_ELT (B-6)
ij Bxs agl agj
Using Eq. (B-4) in (B-7), we have
t 9x 32x
rf, =gt 2 5 : (B-7)
1]

set ot agd

Introducing Eq. (B-4) in Eq. (B-3), we have

azgr _ r ip iq Bxg me
T, 0% T3 8 & T p g (B-8)
2 m 9E" of
Another form of (B-8) can be obtained by using (B-7), which is
2

azgr _ rt ip Jq d X, Bxs Bxg ox
= ox_ & & 8 T .3 ot P o (8-9)

2 m FARE T T - 1

It must be noted that the right hand sides of Egs. (B-7) - (B-9) have

differentiations with respect to gl, as desired.
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Laplacian:
Setting £ = m in Eq. (B-9), using Eqs. (A~1) and (A~3), and summing

over the index m, we get

£ i3 9x 3%x
vzgr - gr gl.] ._._.s___i. (8-10)
st agt ag?
In two dimensions, writing
1 = 2 = = = —
Er. =&, & My Xy .= Xy Xy =Y } {B-11)
and using
11_ 12 - _ 22 _ -
8= 8y,/85 8 81978 & g11/8 (8-12)
(which are a consequence of Eq. (A-3)), we have
2, _ - '
VE = [(gy, Yep = 285 Yen T 813 Yon'%n
- (gyy X, = 28y, X, + g, x )y 1/g°° (B-13)
22 TgE 12 “&n 11 "nm’'n
2, = -
Vi = [(8yy ®gp — 28y, Ko 1811 X))V
( 2 ¥ yx 1/ (B-14)
T 8yp Yep T By Ygn T By Ypn/¥gl/E
where
= _ 2 -
8 = 811 8y — (819) (B~15)
Similarly, using (B-3) and (B-4), we easily obtain
¥ r r T
= -— -+ -
Exy R N (xg ¥, tx, Yg) o2 % Yg]/g (B~16)

where £! = £ and £2 = 1.

The Laplacian of a scalar function f(El) is obtained as div (grad ),

V2§ =.§i._§5 (V2 gik.iﬂ%) (B-17)
g o9t 13
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which in two dimensions has the form‘

2¢ o _
VIR = [y, £ ~ 28y, £y + 8y £

1 - 1 1
+ (2815 Ty = 8yp Tyy = By T2p)E;

* Qeyy T -y Ty -y 13051/ (B~18)
Unit Tangent and Normal Vectors:
In the generation of coordinates we have taken clockwise traverse
along the body contour as positive. Denoting the unit tangent and normal
vectors as t and n respectively, and k the constant unit vector normal to the
plane of the curve, the vectors (t, n, k) are assumed to form a right-handed
system. The unit tangent and normal vectors for-the £ = const. and

n = const. curves are

(t)

(ix

£ + jyn) : (8-19)

const. J_ n

(t) =

n = const. (éxg + jys) (B-20)

1
(n) == (iy_ - jx) (B-21)
£ const. JE ) ‘n j

i

[\

It

(n) n =

const. (- iyg + jxg) - (B-22)

)
= ’*‘
}-—I

where‘% and j are unit vectors along x and y respectively. The resolved

parts of the velocity vector along the curves £ = const. and n = const. are

(Y'E)E - S (ug12 + vg22) (B~23)
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IR -
(Y‘E)n = const. Jo (ugll + Vglz) (B-24)

g1 _
(Y'E)E = const.  [E—u (8-25)
V 822
) 2 const. T\ /B— v (B-26)
811

where u and v are the contravariant components of the velocity wvector v,

which are related to the Cartesian components through Eq. (3.26).
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Figure 3. The Computational Domain.
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