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FOR JET ENGINE EXHAUST NOISE

by James R. Stone

f'	 National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

	

1	 The effect of flight on jet engine exhaust noise has often been
presented

radiation angle
s f a relative velocity exponent, n, as a function

of Prediction methods (e. g„ Bushell (1975)) have
__â 	 p	 also been proposed on this basis. The value of n is given by the

OASPL reduction due to relative velocity divided by 10 times the

W	 logarithm of the ratio of relative jet velocity to absolute jet velocity.

	

}	 In such terms, classical subsonic jet noise theory (Ffowcs Williams
(1963)) would result in a value of n = 7 at 90 0 to the jet axis with n
decreasing, but remaining positive, as the inlet axis is approached
and increasing as the jet axis is approached. However, flight tests
have shown a wide mange of results, including negative values of n
in some cases. It is shown in this paper that the exponent n is posi-
tive for pure subsonic jet mixing noise and varies, in a systematic
manner, as a function of flight conditions and jet velocity. On the
basis of calculations from simple empirical models for jet mixing
noise, shock noise and internally-generated noise, it is shown that
when other sources are present, the resulting range of n is increased
over the range for jet mixing noise, and in some cases negative values
of n are obtained.
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INTRODUCTION
i

To assess the impact of jet noise on the environment of the airport
vicinity it is necessary to predict the effect of flight on jet engine ex-

	

,;	 haustnoise. For new or proposed aircraft particularly, such predic-

tions will be based at least in part on model and full-scale static and
simulated flight experiments. Because of costs, to rely solely on full-
scale flight tests would severely limit the number of configurations and
concepts that could be tested. Therefore, it is of great importance to
be able to predict in-flight noise from static or simulated-flight data.

In many recently reported studies on the effect of flight on jet en-
gine and model jet exhaust^noise, the results have been presented in

	p	 terms of a relative velocity exponent, n, defined as follows'.

(ij - 

Von = [OASPLF -OASPLS + 10 log (1-Mo cos 0)] 10 log
Vj

The flight geometry is illustrated, and some of the key parameters are
def hied, in figure 1. (All symbols are defined in appendix AJ Such
data are typically presented as plots of n versus 0, the angle from
the inlet axis. Also, prediction methods for jet noise flight effects
(e.g., Bushell (ref. 1)) have been proposed on the basis that n can be
defined as a unique function of 0. However, it should be pointed out
that n is-not a physical quantity, but an expression based on assumed
relationships. It will be pointed out that such relationships do not
accurately and uniquely represent the physical processes. Further-

more, it will be shown that the exponent n is sufficiently sensitive to
the measured OASPL's that the presence of evvn small amounts of non-
jet mixing noise can result in negative values of n. Such results could
easily be mistakenly interpreted as an increase in jet-mixing noise in
flight. It will be argued, therefore, that prediction methods should not
be formulated on the basis of n as a function of 0.

As on indication of this problem, classical subsonic jet noise the-
ory (Ffowcs Williams (ref. 2)) would predict a value of n = 7 at 0 900

i
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with n decreasing, but remaining positive, as 0 approaches 0 0 and
Increasing as 0 approaches 1800; however, n would not be a unique
function of 0. A composite plot of typical. experimental values of n
available from the literature as a function of 0 is shown in figure 2;
the proposed prediction curves of Bushell (ref. 1) and Hoch (as given
in ref. 3) are also shown. The flight data (refs. 1 and 3 to 7) show a
wide range of results, including negative values of n in some cases.
(Positive values of n indicate noise reduction in flight, while negative
n values indicate noise amplification in flight.) The prediction of
Bushell (ref. 1) also indicates an angular range of negative n values,
primarily in the forward quadrant, consistent with some of the engine
data (refs. 1 and 3). On the other hand the simulated-flight data exhibit
positive n values at all angles for shock-free jets (e.g., refs, 8 and 9,
which are typical of such data), with the exception of some of the data
of reference 4. These latter data (ref. 4) have a correction applied
for an assumed sound absorption by the free jet turbulent shear layer,
without which the n values would be higher and closer to the other
model data. The prediction curve proposed by Hoch (as given in ref. 3)
appears to represent a compromise between engine and model jet data.

It will be shown in this paper that the exponent n for pure jet
mixing noise varies systematically as a function of jet conditions and
flight velr ity and has a positive value. it will also be shown that when
the effects of shock noise and/or internally-generated noise are con-
sidered, the range of n values calculated is even greater, and in some

cases negative values of n are calculated. These calculations will be
based on the empirical methods of reference 10 for jet mixing noise,
shock noise a,-d internally-generated noise. Furthermore, it will be
shown that these results are at least qualitatively consistent with recent
fundamental experimental and analytical studies.

JET MIXING NOISE

Forward velocity exponents for jet• mixing noise herein are com-
nuted froin the relations of reference 10. 'I a le c alculated values of n
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are compared with those obtained from model jet simulated flight tests
(free jet, ref. S) in figure 3. Data for various V J a./c at constant jet
temperature are shown in figure 3(a), and data for various jet tempera-

`	 tares (and consequently various pj /pa) with constant jet velocity are
shown in figure 3(b). The values of n near 0 v 900 are in good agree-
ment with those calculated from the jet mixing noise prediction as are

'

	

	 the trends of n with jet velocity -and jet density. At large angles the
absolute agreement is not as good, but these discrepancies do not seem
large when compared with the wide range of n shown in figure 2. At
least part of the discrepancies may be due to the method used in trans-
forming the free jet data to flight (ref. 8), particularly the correction
for propagation through the free jet shear layer and the absence of any
correction for the distributed nature of the jet noise source. Similar
exponents result for calculations based on the Ffowcs Williams model

i (ref. 2), as described in appendix B.

TOTAL JET ENGINE E)UMUST NOISE

f

	

	 For sources other than jet-mixing noise, the values of n vary
considerably with jet velocity and , to some extent with flight Mach num-
ber, Mo . When additional sources are present, such as internally-
generated noise and/or shock noise, the values of n calculated would
be intermediate between those calculated for jet mixing noise, nJ, and
those calculated for the other sources, moving with the airplane, n,,.
For fixed jet conditions and MOP the value of n obtained potentially

r

	

	 will be influenced by the sources other than jet mixing noise. These
effecis are illustrated for a subsonic jet case in figure 4(a) for a
supersonic jet in figure 4(b). The total noise exponent, n, as calculated
by the methods of reference 10, is plotted against 0 for various levels
of nonjet noise relative to total noise under static conditions, OASPLS-
OASPLo S (difference in level, 4dB). Also indicated by the cross-
hatched bonds are typical ranges of nonjet-mixing noise for jet engines
(ref. 11). It can be seen that the numerical value of n is quite sensi-
tive to OASPL increments. It can further be seen that even for nonjet-

G
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mixing noises significantly less than total noise statically, the expo-
nent a differs significantly from that predicted for pure jet mixing
noise, nJ. It is clear th;,t even when the nonjet-mixing noise is less
than the jet-mixing noise statically (e. g., OASPL S -OASPLo S = 3),
the relative velocity exponent n becomes negative. These predicted
results are consistent with a recent experimental study (ref. 12) wherein
various known levels of internal noise were introduced into a model jet
operating in a free jet flight simulation facility. Thus, it can be seen
that the negative values of a obtained in some flight tests (e. g., refs.
1 and 3) can be related primarily to nonjet-mixing sources. It is of
particular interest to note that the sensitivity of n to nonjet-mixing
noises, for fixed OASPL S-DASPLo S, increases with increasing
Vj/c	 Thus alfliough the level of internal noise relative to total noise
may decrease with increasing jet velocity, the effect of internal noise
on n may not be diminished at al' with increased jet velocity. It is
conceivaL°le (from the arithmetic involved) that under some conditions
the effect of vnternal noise on n may increase with increasing velocity
even though the level of internal noise relative to total noise decreases.

COMPARISON WITH FLIGHT DATA

This section presents comparisons of predicted relative velocity
exponents With experimental data from aircraft flyover and aerotrain
tests (refs. 4, G and 7).

Turbofans

Experimental and predicted relativevelocity exponents for turbofan
engines are shown in figure 5. The contribution of turbomachinery noise
was subtracted from the experimental data. Figure 5(a) contains com-
parisons for refanned JT81) engines in a DC-9 airplane (ref. 7), while
figure 5(b) contains similar comparisons for conventional JT81) engines
in a B-727 airplane (ref. G). In general the agreement between experi-
mehtal and calculated exponents is acceptable. What appears to be a
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large error in exponent actually corresponds to about ±3.5 dB in OASPL.
(A 1.0 dB change in AOASPL produces a 0.9 to 1. 6 change in n for
these conditions) The experimental data trends are in general agreement
with calculation, although consistently high values of n are calculated
for the B-727 conditions (fig. 5(b)), which corresponds to as much as
w2 dB in the forward quadrant.

Turbojet

Experimental and predicted relative velocity exponents for a J85
turbojet engine installed on the Bertin aerotrain (ref. 4) are shown in
figure 6. Comparisons for simulated-flight Mach numbers of 0. 12 and
0.24 are shown in figures 6(a) and 6(b), respectively. At the highest jet
velocity, shock noise is calculated to have a significant effect which is
absent at the two lower jet velocities. (The observed excess static noise
above that predicted for jet-mixing and °internally-generated noises was
projected to flight assuming it to be a shock-associated noise, as in
ref. 10:) Except for radiation angles of 1400 or greater in rear quadrant,
the agreement is even better here than for the turbofan engines (fig. 5).
Further study is required to determine to what extent this large-angle
problem is due to shortcomings of the prediction methods and how much
error may be due to experimental inaccuracies.

CONCLUDING REMARKS

It has been shown in this paper that the relative velocity exponent
n varies predictably as a function of jet conditions and flight velocity
even for pure jet mixing noise. .It has been further shown that when the
effects of shock noise and internally-generated noise are considered, the
range of n values predicted is even greater. These findings have been
shown to agree reasonably well with experimental data aid, at least
qualitatively, with fundamental studies. Experimental plots of n ver-
sus angle exhibit considerable scatter, and the numerical value of n is
quite sensitive to the OASPL measurement. Based on these findings,

In
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the correlations wid predictions of flight effects on the basis of relative
velocity exponents as a fLIIICtlell of :utgle are considered inadequate and
misleading,

APPE NDIX A

SY'M13OLS

C a	ambient sonic velocity

n	 relative velocity exponont (eq. (1)), dimensionless

M	 Mach number, V/c dimensionless

OASPL	 overall sound liressure level, dB re 20 1el^]/in2

— -	 V	 velocity

p	 density

0	 angle referred to jet inlet axis

Subscripts:

a	 ambient

ti	 c	 convection

F	 flighti
I	 J	 jet mixvia

j	 hilly-expwided isentropic jet (primary stream)

t	 S	 static

• 0	 aircraft, or moving with aircraft

A
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APPENDIX 13

COMPARISON OF EMPIRICAL AND

TIIIORETICAL COMPUTATIONS

In order to estab,, -A tliat the results presented in this study are
not unique to the jet-iuW- ng noise prediction method (ref. 10), coni-
parisons are made in this section between empirical and theoretical
computations. Typical plots of n versus 0 for jet-miring noise are
shown in figure 7 for a range of conditions. The values are computed
from the empirical model of reference 10 and the theoretical model of
Pf'owes Williams (ref. 2) using turbulence parameters from bout refer-
ences 13 and 14.

.Effect of flight Mach Number

The effect of flight Mach number, Mo, is illustrated in figure 7(a)
for a typical subsonic case, Vj/ca = 1.0 and pj/pa r 0.30. Although
the absolute values Calculated by the various methods differ somewhat,
the trends with 0 and M  are very similar, and Ago has very little
effect on n for these subsonic conditions. None of these models indi-
cates negative n mlues for subsonic jets.

.Effect of Jet Velocity

The effect of jet velocity is shown in figure 7(b) for A go 0.2 and
pj/pa = 0.30. The absolute values of ii as well as the effect of ViAa
on n are predicted differently by the several models. Regardless of
which model is used, however, it can be seen that n is not a unique
function of 0. The decrease of n with increasing 0 in the "zone of
silence" near Cite jet axis for the theoretical models is due to a differ-
ence in accounting for supersonic convection effects. Although it is
beyond the scope of this study to determine the validity of this, decrease,
there is some experimental evidence (e.g., ref. 4) that such effects may

f _ i	 I	 cB . ,1 ,..f^	 1	 fs	 L.ww., NTH, c.. Tf .-vim
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occur for supersonic jets, even to the extent of produciatg negative n
values in the "zone of silence," as predicted froth references 2 and 13.
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