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ABSTRACT
 

The objective of this research is to fully investigate the Ribbon-to-


Ribbon (RTR) approach to silicon ribbon growth. An existing RTR apparatus is
 

to be upgraded to its full capabilities and operated routinely to investigate
 

and optimize the effects of various growth parameters on growth results. A
 

new RTR apparatus is to be constructed to incorporate increased capabilities
 

and improvements over the first apparatus and to be capable of continuous
 

growth. Material analyses and solar cell fabrication process optimization
 

are to be performed with a goal of 12% cell efficiency.
 

During this quarter the laser lab was relocated and operation resumed.
 

New high power lasers have been implemented and this has led to major improve­

ments in growth velocity -- 4"/min. growth has been demonstrated. This high
 

growth capability has been accompanied, however, with the appearance of
 

dendritic growth. A major step in demonstration of the full feasibility
 

of the RTR process is reported in the demonstration of RTR growth from CVD
 

polyribbon rather than sliced polyribbon ingots.
 

Cell and material evaluations have continued. Average solar cell
 

efficiencies of >9% and a best cell efficiency of 11.7% are reported.
 

Processing has been shown to provide a substantial improvement in material
 

minority carrier diffusion length.
 

An economic analysis is reported which treats both the polyribbon fab­

rication and RTR processes. Indications are that the long term DOE goals
 

may be met.
 



SUMMARY
 

During this quarter, significant progress has been realized on various
 

aspects of the RTR program:
 

Relocation of the laser lab and installation of the new higher power
 

laser systems have been completed. RTR#1 has been modified and is now fully
 

operational although a water accident caused considerable damage and delay.
 

The new growth station, RTR#2, is nearing completion.
 

With increased capabilities of laser power, RTR ribbons have been grown
 

at the highest rate ever -- 2cm wide at 10cm/min. Accompanying this increase
 

In growth velocity capabi lity has been the emergence of a new growth phenomenon
 

In the form of dendritic growth. THis results in a non-planar surface. The onset
 

of dendritic growth is related to attainment of a critical velocity which is a
 

function of the thermal environment. With modifications to the thermal profile,
 

non-dendritic growth has been achieved at velocities up to 7.5cm/min. Numerous
 

growth runs have been completed with growth velocities ranging from 2.5 - 9cm/min.
 

Many of these samples are being processed into solar cells, others are being
 

used for material analysis.
 

Another major achievement this quarter has been the demonstration of RTR
 

growth with true polyribbon feedstock; i.e., doped polys'ilicon ribbon obtained
 

from a unique CVD process capable of ultimately supplying low cost, high purity,
 

polyribbon for the RTR process. Initial SPV evaluations of this regrown
 

material indicates equivalent performance to material regrown from single
 

crystal feedstock.
 

Solar cell evaluations have continued. Recent lots of cells have been
 

disappointing in performance. Two lots have been evaluated with a total of
 



41 and 20 ribbon cells. Average and best efficiencies for these lots were
 

7.5%, 9.4% and 7.7%, 9.5% respectively. However, for all of these cells, a
 

metallizatlon degradation effect has Eeen observed; measurement of VOC before
 

and after metallization for one lot ot cells showed an average loss of 40mV.
 

This isalso accompanied by a degradation of fill factor. Had these degradation
 

effects not been in effect, averag ctficiencies of greater than 9.5% would
 

have been realized. Experiments with alternative metallizations are now in
 

progress.
 

A processed ribbon with numerous solar cells has been studied in some
 

detail by correlating OCPV measurements of diffusion length on finished cells,
 

SPV measurements on the same cells after etch removal of the junction, and
 

Wright-delineated dislocation densities. These studies demonstrate the following;
 

1) large diffusion lengths (>lOOpm) are obtained on RTR solar cells; 2) the
 

substrates indeed exhibit these large diffusion lengths; 3) positive
 

correlation of diffusion lengths and dislocation density are found; 4) diffusion
 

lengths on grain boundaries show a variety of values.
 

The large diffusion lengths observed on processed substrates are incontrast
 

to the relatively low values measured on as-grown ribbons. Examination of
 

processing steps has shown that the lifetime improvement occurs during the
 

junction diffusion and AR coating steps.
 

Material and device analysis have been proceeding. EBIC mode SEM photos
 

are reported which show that -- as reported by others in ribbon and non­

perfect crystal technology -- not all visible structure iselectrically active.
 

Moreover, it is demonstrated that a one-to-one correlation of EBIC exhibited
 

activity with device performance cannot be made.
 

Beam size effects have been characterized for the SPV technique. When
 

the beam size iscomparable to the diffusion length, anomalous effects are
 



present which can lead to erroneous or uninterpretable results. Experimental
 

results illustrating these effects arc presented.
 

Economic analysis of the RTR process has been performed with the inclusion
 

of proposed processes for feedstock pclysilicon ribbon. Inaddition, the SAMICS
 

procedure has been applied to our proDosed systems and an established poly­

silicon factory to compare projections made by this technique with our pro­

jections and established data respeclively.
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1.0 LASER LAB
 

1.1 LAB STATUS
 

The RTR growth lab has now been ompletely relocated and all major
 

Items have been installed. This relV.ation effort has caused a great deal
 

of effort to be expended in setting L:' the new stations. Figures 1 - 5 are
 

photos of the new lab showing the var-ous lasers, beam tables, and experimental
 

tables.
 

RTR#1 was completely reconstructed on a new table. Figures 6 and 7 are
 

photos of RTR#1 with cover removed while figure 8 shows the protection/
 

environmental control cover in place. By use of beam directing mirrors, any,
 

or all, of the three laser systems may be brought to one experimental table.
 

One major new item has been added to RTR#1 which is visible in figures
 

6 and 7. This isthe polygon scanner system which allows scans of over 3"
 

Inwidth at rates of up to 5kHz. Figure 9 is a schematic illustration of
 

the operation of the scanner while Figure 10 is a photo of an actual scanner.
 

Further discussion of-the polygon scanner operation will occur in later
 

reports.
 

1.2 	 "FLOOD"
 

Just as RTR#1 was being completed and initial tests were beginning, and
 

just after the photos of the previous figures were taken, a water hose
 

fitting burst and the entire RTR#1 experimental table was totally flooded with
 

water. Considerable damage was incurred by expensive lenses and the polygon
 

scanner system. The water was removed quickly enough to prevent corrosion
 

damage to most mechanical parts, but numerous lens surfaces were ruined, and the
 

polygons were damaged. These components have now been repaired, but a consider­

able 	amount of lost time resulted.
 



NJI 

FIGURE 1: GTE 1.2kw LASER AND CONTROL STATION
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FIGURE 2: 
 GTE 1.2kW LASER. NOTE ACTIVE REGION DISCHARGE INCENTRAL
 
REGION OF LASER.
 



FIGURE 3: 
 Nd:YAG LASER SYSTEM AND POWER SUPPLIES
 



FIGURE 4: Nd:YAG LASER SYSTEMS (2) ON RAILS
 



FIGURE 5: ORIGINAL 375W CO LASER. 
NOTE BEAM TABLE WHICH DIRECTS
 
BEAM TO EXPERIMETAL TABLES.
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FIGURE 6: RTR#1 EXPERIMENTAL TABLE AND CONTROL/MONITOR ELECTRONICS
 

(IN BACKGROUND).
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FIGURE 7: RTR#1 NOTE BEAM PORTS (4) TO RIGHT OF TABLE. SHOWN ARE TWO
 
POLYGON SCANNERS, A RIBBON TRANSPORT, AND BEAM DIRECTING MIRRORS.
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FIGURE 8: COVER INSTALLED
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POLYGON SCANNING SYSTEM 

/ROTATING 
POLYGONSCANER RROWN 

MIRROR ZONEO 

FACETS 

- I. 

TIMAGING FOCUSING 
CYLINDRICAL CYLINDRICAL 
LENS LENS 

POLYRIBON 

1-2 cm FOCUSING 
DIAMETER CYLINDRICAL POSITIONING 
LASER BEAM LENS MIRROR 

FIGURE 9: POLYGON SCANNER OPERATION 



FIGURE 10: HIGH SCAN FREQUENCY POLYGON SCANNER
 



Inthe interim, while the various components were being resurfaced,
 

repaired, etc., RTR#1 was rebuilt using the oscillating mirror scan system
 

and/or a cylindrical beam shaping sysiem. This system is now operational.
 

2.0 BEAM SHAPING SYSTEMS
 

2.1 	 POLYGON SCANNER
 

During the period of relocation and rebuilding after the "flood", few
 

growth runs have been achieved and those have been primarily test runs. Just
 

prior to the "flood", a few test runs were made with the polygon system to
 

determine its performance. These tests were disappointing in that the power
 

distribution is non-uniform -- tending to be much higher at the extremities
 

of the scan. This is contrary to initial assumptions of operation since at
 

the extremities of the scan, the beam will start to divide with one portion
 

being at the end of a scan and the remaining portion at the beginning of the
 

next scan. Consequently one would have expected a power drop-off at the
 

extremities. What appears to be the problem is that abberations of the imaging
 

cylindrical lens cause smaller amounts of deflection near the edges of the
 

scan than in the middle with the result that more time is spent near the extremities
 

than in the middle. Further testing and analysis will be performed when the
 

polygon scanner is again operational.
 

2.2 CYLINDRICAL LENS BEAM SHAPING SYSTEM
 

Without the polygon scanner, a cylindrical lens beam shaping technique
 

has been investigated. This technique is shown in Figure 11. A beam which
 

is nominally a I - 2cm diameter cylindridal beam is first diverged in one
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dimension and then focussed inthe other dimension. This gives a wide, but
 

vertically thin, beam incident on the ribbon.
 

A drawback of this system isthat a uniform power distribution cannot
 

result since the initial beam has complex structure. The great
 

advantage of this system is simplicity and the fact that no moving parts are
 

required. Combinations of two or more cylindrical lens systems may offer the
 

possibility for obtaining a more uniform melt.
 

3.0 CRYSTAL GROWTH
 

3.1 APPEARANCE OF DENDRITIC STRUCTURE AND RELATION TO CRITICAL GROWTH
 

VELOCITY 

One of the most significant achievements during this period has been the
 

demonstration of ribbon growth at 10cm/min., the highest rate reported for
 

ribbon growth as far as isknown by the authors. It isalso of interest to
 

note (see below) that the attained velocity is in fact greater than the
 

theoretical "maximum" velocity predicted by some authors. Infact, this
 

predicted "maximum" velocity is in reality simply a critical velocity,
 

marking a transition in growth behavior. This growth was achieved with 2.5cm
 

wide feedstock while operating inthe ratio growth mode. The resulting ribbon
 

isabout .15mm thick and 2cm wide.
 

Of particular interest isthe occurrence of dendritic growth inthese
 

high growth velocity ribbons. Observation of the melt zone during growth
 

shows that above a certain critical velocity, the molten zone length increases
 

dramatically. This effect is first noticed inthe central portion of the
 

ribbon. Figure 12 illustrates typical behavior of the melt zone as the
 

velocity becomes larger than the critical velocity. It isafter the occurrence
 

of this lengthening of the melt zone that the dendritic structure
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FIGURE 12: 	 MELT ZONE SHAPES FOR GROWTH VELOCITIES
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appears on the ribbons. Figure 13 - 15 show photographs of the dendritic
 

structure. Figure 13 is a sample grown in the non-ratio mode with a grown
 

sample thickness of about .33mm. The onset of the non-planar, dendritic
 

structure occurred for this sample al around 3.Scm/min. Figure 14 shows a
 

sample grown in the ratio mode with e-grown thickness of about .15mm. Figure
 

15 is a close-up of the region near t-e onset of the dendritic structure. The
 

velocity was steadijy increased durir, growth unti Ia maximum growth velocity
 

of 10cm/min. was attained; then the vclocity was held constant until growth
 

was terminated. The onset of melt elongation occurred at about'5.7cm/
 

min.
 

The lengthening of the melt zone is evidence of the critical velocity
 

expected on the basis of thefmal modeling of ribbon growth processes. Most
 

authors have simply stated that there exists a limiting growth velocity
 

determined by the condition that the convecti've transport of the latent heat
 

of fusion match the heat removal rate due to conduction in the solidified
 

ribbon; viz.,
 

=-KsxT x=o solid
 
c H
 

where Ks is the thermal conductivity of the solid, and H is the latent heat
 

of fusion per unit volume. This author, however, has considered this velocity
 

as a critical velocity, in exactly the sense as we have observed; i.e., above
 

this velocity the melt length will rapidly increase with increased input power
 

or growth velocity. Attempting growth for velocities above this critical
 

velocity simply increases the possibility of growth instabilities due to an
 

increased melt length.
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FIGURE 13: RTR RIBBON EXHIBITING DENDRITIC STRUCTURE. SAMPLE WIDT
 

IS ~2.5cm, MAXIMUM GROWTH VELOCITY ~5cm/min.
 



FIGURE 
14: RTR RIBBON GROWN AT A MAXIMUM VELOCITY OF
 
10cm/min. DENDRITIC STRUCTURE OCCURS AROUND
 
5.7cm/min.
 



FIGURE 15: CLOSE-UP VIEW OF SAMPLE OF FIGURE 3 SHOWING
 
ONSET OF DENDRITIC GROWTH.
 



Of the three parameters involved inVC, Ks and H are supposedly known,
 

and fixed parameters, only -3 Tjx=o+ is under experimental control. Affecting
 

this parameter are numerous experimental and environmental parameters:
 

radiation envl'ronment, ribbon thickness, location of temperature sources and
 

sinks, convective heat loss properties, and growth velocity. Inthe June
 

1976 Quarterly Report (ERDA/JPL 954376-76/2), there was presented a thermal
 

model which allowed calculation of the required thermal gradient parameter and
 

also allowed calculation of the length of the excess molten region. These
 

calculations assumed radiation losses to an isothermal, ambient, conduction
 

along the ribbon, and atmospheric convection losses from the surface.
 

The modeling reported differs in detail from our actual experimental
 

growth environment because itdid not treat the influence of a post heater
 

on the interface gradient (modeling now in progress will include such effects).
 

The presence of the post heater will reduce the interface gradient and thereby
 

reduce the predicted critical velocity. An estimate of the impact of the
 

post heater on critical velocity may be obtained by assuming an ambient
 

temperature commensurate with the experimentally measured temperature at the
 

interface region due to the post heater alone. Experimentally this has been
 

determined to be -1000 0C. Figure 16 shows calculated critical velocities for
 

various thickness ribbons as a function ot an assumed ambient temperature.
 

As can be seen, the addition of a post heater markedly reduces the critical
 

velocity from that of a room temperature environment. The estimated conditions
 

due to the post-heater, and the experimentally observed critical velocities
 

for the samples of Figures 13 - 15 are also indicated. The agreement israther
 

good, but possibly fortuitous.
 

The observed melt elongation behavior of Figure 12 may be explained on
 

two counts; first, there is a slight additional heat loss mechanism at
 

the edges due to edge radiation; second, and more important, the central
 

20
 



-r " 

12--

I: 

0 

11 

10 -"--

9 "-L":4.,"-.­'-
.o7 - -­

7~ 

-
,-

-

-

- ...... 

" ....­

. 

J-

>--"U 

C'-
0 

-" 

7---
5 

- - - - - ' . . 

-

CD 

< 4 
3­

> 

10.0) 30 400 500 600 700 So0 900 

Ambient Tempeldture (C0G) 

FIGURE 16: EFFECTS OF AMBIENT TEMPERATURE ON CRITICAL
GROWTH VELOCITY. 

1000 1100 



region Is thicker than the edges and lhis means a lower critical velocity
 

In the central region than at the ed-'. This latter fact is advantageous to
 

high speed growth since an increased melt width at the edge is much more
 

troublesome to growth stability.
 

Dendritic growth requires that a certain amount of supercooling exist
 

in the melt in order that the latent heat given off during solidification
 

may be rejected to the melt. The driving force for all crystal growth processes
 

in a pure crystal is the degree of supercooling. It is possible that the
 

velocities now being achieved are requiring such a degree of supercooling
 

that dendritic growth is a feasible process. Another possibility, however,
 

Is the assumption that as the melt elongates due to growth velocities exceeding
 

the critical velocity, surface radiation losses cause a high degree of super­

cooling at the surface. The surface is highly conducive to dendritic growth,
 

which first propagates along the surface, then through the bulk.
 

The influence of the dendritic structure on material characteristics and
 

device performance remains to be seen. One noticeable effect, which may or
 

may not be related to the appearance of the dentrites, is the elimination
 

of buckling in the samples. This may be, as suggested by M. Leipold, a
 

mechanical stiffening effect due to the thickness of the dendrites. Another
 

possibility Is a straightening of the thermal profile (tending to remove the "dip")
 

and a consequential reduction in stresses. Dislocation etching and SPV character­

ization of these samples are in progress.
 

ROUTINE GROWTH OF RIBBON SAMPLES
 

RTFRV has been used for routine growth from 2.5cm wide feedstock.
 

Various conditions of growth were used to supply a variety of ribbon types
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for characterization and for processing into solar cells. The parameters
 

which were varied were ratio or non-ratio growth, and planar or non-planar
 

growth. That is, both ratio and non-ratio samples were grown under conditions
 

1) which resulted primarily In planar, non-dendritic surfaces, and 2) which
 

had a large amount of dendritic structure.
 

These samples were all grown with a constant temperature profile similar
 

to that used for the samples of Figures 13 - 15. Another group of samples
 

has also been processed with a new, higher gradient thermal profile. This
 

had the effect of shifting our operating point to the left in Figure 16. With
 

this new profile we have been able to achieve 7.5cm/min. growth velocities
 

of .15mm thick ribbon without the appearance of dendrites.
 

3.3 STRESS MEASUREMENTS AND BUCKLING OBSERVATIONS
 

Stress-birefringence evaluations were performed on several ribbon samples.
 

In evaluating the samples it was found that maximum stresses measured on
 

samples fell into two groups. One group had typical maximum stress levels of
 

700 - 2000 PSI (4.8.107 _ 13.8.107 dynes/cm2 ) while the second group had
 

stress levels of less than 350 PSI (2.4.107 dynes/cm ). Review of growth
 

conditions showed that an adjustment was made for the melt-furnace distance
 

coincident with an improvement in residual stresses. The 350 PSI levels of
 

stress are probably typical of the maximum stress levels occurring in properly
 

grown samples. These samples represented non-ratio and ratio growth runs as
 

growth velocities of 2.5 - 4cm/min. and 5 - 5.7cm/min. respectively.
 

Most of our thin samples have shown significant buckling if no dendritic
 

structure is present. A substantial improvement in ribbon flatness is observed
 

when the critical velocity Is approached and dendritic structure occurs.
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3.4 GROWTH OF RTR RIBBONS FROM CVD POLYRIBBON
 

All previously reported RTR growth runs have utilized feedstock (either
 

single cyrstal or polycrystalline) which was sawn (under considerable hazard
 

of breakage) from large ingots -- hardly an economical process for obtaining
 

polyribbon feedstock. However such feedstock has been perfectly adequate for
 

investigation of growth processes and material quality since, once the
 

feedstock is melted, it loses all "memory" of its origin, except for purity
 

(impurity contributions).
 

Of course, for the ultimate viability of the RTR process, an economical,
 

high purity, polyribbon process must be available. Such a process has been
 

under development at Motorola, and its basic feasibility demonstrated. Economic
 

viability has also been considered, and is reported in section 8.1. Basically,
 

this process uses CVD techniques to deposit doped polysil icon onto a substrate
 

from which a uniform polyribbon may be detached. The substrate is reusable, the
 

deposition process is efficient, and the throughput can match the RTR growth
 

process.
 

Figure 17 is a photograph of two large CVD polyribbon samples. Figure 18
 

shows a 2cm wide sample after RTR growth. Visual examination of such samples
 

reveals substantially the same crystallographic structure as is obtained from
 

single crystal feedstock.
 

RTR-grown CVD polyribbons will soon be processed into solar cells. SPV
 

measurements have been made on one RTR-grown CVD polyribbon. This particular
 

sample was doped to approximately .7- I.Ocm and exhibited a diffusion length
 

of about 6m -- typical of as-grown RTR ribbons although heavier doped.
 

SOLAR CELL PROCESSING/EVALUATION
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FIGURE 17: LARGE AREA SAMPLES OF CVD POLYRIBBON
 

Vt 
FIGURE 18: DOPED CVD POLYRIBBON REGROWN BY THE RTR PROCESS
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4.1 EVALUATION RESULTS
 

Several groups of solar cells hove been evaluated during this report
 

period. Tables I and II summarize rczjlts from two lots.
 

GROWTH PARAMETERS: 

VOC 

JSC 

p 

F.F. 

RIBBON CELLS 
41 GOOD, 5 REJECT 
MAX AVG 

.505 .485 

27.9 24.9 

9.4 7.5 

.67 .62 

GROWTH PARAMETERS: 

TABLE I
 

LOT # P'21
 

Startir, Material 

Translatlon Mode 

Laser Power 

Growth Velocity 

Laser Irradiation 

Furnace Profile 


- Cz, (100), 

- Lock
 
- -360W
 
- l"/min
 
- Both sides
 
- A4, A5
 

RIBBON CONTROLS 

10 CELLS 


MAX AVG 


.573 .553 


34 31.8 


13.8 12.3 


.71 .70 


TABLE II 

LOT # R122
 

Starting Material - Cz (100), 


[100], 59-cm P type
 

CONTROLS 
6 

MAX AVG 

.574 .573' 

35.5 34.1 

14.4 13.9 

.715 .71 

[100], 52-cm P type
 
Translation Mode - Ratio ­ 2" uptake/I" feed 
Laser Power - -380W 
Laser Irradiation - North Side Only 
Furnace Profile - A5 

RIBBON CELLS CONTROLS 
20 CELLS 7 

MAX AVG MAX AVG 

VOC .496 .464 .558 .548 

JSC 29.1 27 36.1 35.1 

n 9.5 7.7 14 13.3 

F.F .66 .615 .695 .689 
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4.2 DISCUSSION OF SOLAR CELL EVALUATIONS
 

The ribbon controls and the pure controls demonstrate high efficiencies
 

and little variation. This points ou- that the processing sequence utilized
 

was quite good, although improvements in fill factor might be expected.
 

The ribbon cells, however, exhib.t disappointingly low efficiencies -­

this is in consideration of the rathei good visual appearance of the cells.
 

Much of the relatively poor performan(e of these groups can be accounted for,
 

though. It has been found that the present metallization process being used,
 

while evidently normally acceptable for single crystal samples, is degrading
 

VOC (and probably the fill factor too) on ribbons. V0C measurements were made
 

on lot R112 before and after the metallization step, and an average AV c=-4OmV
 

was observed. This is a significant loss and cannot be accounted for by metal
 

coverage. Assuming an improved average V0C for these cells to .504 from .464,
 

and an improved fill factor to .7from .65, the average efficiency would have
 

been 9.52%. Experimentally these effects have also been observed on single
 

crystal samples when improper metallizaton procedures were used. It is possible
 

that because of the more numerous defects and grain boundaries, the RTR ribbons
 

are more susceptible for this problem.
 

The present metallization process utilizes a palladium surface activation
 

with a subsequent nickel plating, then a solder dip. The degradation is associated
 

with the palladium activation step which incorporates a sintering process. It
 

is felt that possibly a lower sintering temperature may be appropriate. For
 

this reason the most recent batch (lot #124) of ribbon solar cells was split
 

into two groups, one for high and one for low temperature metallization. Each
 

group was comprised of wide (2.5cm) and narrow (1.25cm) samples. Unfortunately,
 

it was subsequently found that both groups had been exposed to a high temperature
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5.0 

sintering cycle. Average efficiency for the narrow ribbon cells is 7.6%.
 

The wider ribbon cells averaged 6.5%, with about half of the wide ribbon
 

cells (including control cells) being casualties due to poor photoresist
 

adherence.
 

It should be noted, however, that in this case many of the control
 

cells were also severely degraded -- consequently some other processing
 

problems may have occurred to these samples.
 

Experiments are planned to test alternative metallization schemes which
 

hopefully will not degrade the solar cell characteristics. Low temperature
 

(T<2000C) annealing cycles are being tried on test wafers, and will be used
 

on the next lot of ribbon cells. In addition, evaporated titanium-silver
 

or aluminum contacts will be tried.
 

MATERIAL EVALUATION
 

In order to study the electrical activity of planar defects in RTR
 

silicon, an array of 1mm diameter diodes was fabricated on RTR sample 294.
 

The short circuit current (ISC) under AMI illumination was measured for each
 

diode, and was used as a figure of merit in evaluating the diode quality.
 

Control diodes fabricated on single crystal Czochralski silicon generated ISC
 

-0.26mA under AMI illumination. After taking an optical micrograph of each
 

diode, SEM micrographs were taken using he AC Electron Beam Induced Current
 

(EBIC) mode. Figures 19a, 20a, 21a, and 22a are EBIC micrographs of selected
 

diodes, while Figures 19b, 20b, 21b, and 22b are optical micrographs of the
 

corresponding diodes. Unfortunately, the quality of the optical micrographs
 

is poor.
 

Figure 19a, b, show diode 7-3. This diode is a relatively poor performer,
 

with ISC -0.20mA. The strongest features in the EBIC micrograph are the
 

three grain boundaries which intersect the numerous parallel twins in the
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FIG. 19 -a 
EBIC Mode Photo
 

of
 
Diode
 
7 -3 

FIG 19 -b 
Optical Micrograph
 

of
 
Diode
 
7-3
 

D5ORIGINAL PAGE 

OF POOR QUALITY 
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Fig. 20-a
 
EBIC Mode Photo
 

of
 
Diode
 
5 - 6
 

Fig.20 -b
 

Optical Micrograph
 
of
 
5 - 6
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Fig, 21 -a 
EBIC Mode Photo
 

of
 
Diode
 
11-2
 

Fig. 21 -b 
Optical Micrograph 

of
 
Diode
 
11-2
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Fig. 22-a
 
EBIC Mode Photo
 

of
 
Diode
 
5-5
 

Fig.22 -b
 
Optical Micrograph
 

of
 
Diode
 
5-5
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sample. Roughly half the parallel boundaries seen in Figure 19 are re\ealed
 

as electrically active defects in 19a, although they are not as strongly
 

active as' the "crossing" boundaries. Several inclusions, which cannot be
 

seen in 19b, are shown as strongly acfive in 19a. However, they do not cover
 

a significant fraction of the total d.cde area.
 

Figures 20a, b show diode 5-6. :fs I = 0.26mA, matches the short 

circuit current generated in the coniol diodes. The faint double line running 

vertically through the diode isonly ?, synchronous interference (itappears 

somewhere inmost of ourEBIC micrographs). The parallel twin boundaries 

which can be seen faintly in20b do not appear in20a. Thus diode 5-6 is 

a simple case: Itperforms well and Isrelatively defect-free inboth the
 

optical and the EBIC micrographs.
 

Figures 21a, b show diode 11-2. This diode isa poor performer, ISC
 

-0.19mA, although both the EBIC and the optical micrographs are relatively
 

free of grain boundaries, twins or stacking faults. Diode 11-2 isthus a
 

counter example to diode 5-6, since itshows that other factors, e.g., a
 

high dislocation density, or a distributed impurity, are reducing the generated
 

current.
 

However, we can also find a counter example to diode 7-3. Figures 22a, b, 

are micrographs of diode 5-5. This diode generated an ISC - 0.25mA, almost 

matching the ISC - Q.26mA of diode 5-6. Figure 22a shows - 5 reasonably well­

defined active planar defects, plus a number of barely visible lines. Note 

that the dense parallel twin bundles seen in Figure 22b are not electrically 

active. It isalso apparent that one cannot predict from 22b which would be 

the most active boundaries in22a. 

Since only one RTR sample has been examined, these EBIC results are
 

preliminary. Several tentative conclusions can be drawn, however. Parallel
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twin boundaries are often not innocuous, as shown most clearly in Figure 22.
 

Intersecting grain boundaries are strongly active, and significantly reduce
 

cell performance. Diode 11-2, howevci, shows that other "distributed" factors, 

such as a high dislocation density or d distributed impurity, can be responsible­

for reducing cell performance. 

6.0 	 DEVICE AND PROCESSING STUDItS
 

6.1 	 DISLOCATION LENGTH AND DISLOCATION DENSITY MAPPING ON RIBBON SOLAR
 

GELL$
 

A single RTR ribbon which had been processed into solar cells, except for
 

the last metallization step, was studied in detail. Figure 23 illustrates the
 

analyzed ribbon. Seven solar cell regions measuring 2.1 x .85cm, or 1.79cm
 

each, were available. Device I was a control cell -- i.e., a cell residing
 

on ribbon which was not regrown. It did, however, experience some elevated
 

temperatures -- as high as 1200 - 13000C. This is because this portion of the
 

ribbon was in the linear profile furnace prior to growth initiation. Samples
 

#2 and #7 both are partly on control regions and partly on regrown regions.
 

Typically, the worst performance occurs inthese regions due to the special
 

(high) stresses in these regions and the fact that these regions are held at
 

high temperatures for a longer period of time than central, steady state regions.
 

Open-circuit-photovoltage (OCPV) measurements of diffusion length were
 

performed at numerous points on each cell inorder to map regions of long and
 

short diffusion lengths. All measurements were performed with a light spot
 

diameter of -2mm. After mapping the OCPV diffusion lengths, the entire ribbon
 

was first stripped of AR coating and then silicon etched to remove both the
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#1 	 #2 #3 #4 
 P5 	 #6 


1cm
 

FIGURE 23: 	 RIBBON SOLAR CELLS UTILIZED FOR 
OCPV/SPV/OI SLOCATIO' DENS ITY CORRELATIONS 
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front n+p, and back p+p junctions. SPV measurements were then made at the
 

same spatial locations where the sola cell OCPV measurements were made.
 

This was to verify that the two techtihues Indeed measure the substrate
 

diffusion length and that no anomalou- readings occur due to the presence of
 

the junctions.
 

Results of these measurements arc shown in Figures 24 through 27. Two
 

values are indicated where both OCPV and SPV diffusion lengths were made. From
 

these data we conclude the following:
 

1) 	Processed RTR ribbon solar cells are now exhibiting very high diffusion
 

lengths, comparable to starting single crystal values. Diffusion
 

lengths of 178pm have been measured on ribbon cells.
 

2) 	The agreement of the OCPV and SPV diffusion lengths shows that
 

substrate diffusion lengths are indeed quite high compared to un­

processed substrates (typically 6 - 15gm).
 

3) 	The average diffusion lengths are high also, but local regions of
 

short diffusion length still exist.
 

4) 	Regions near initial and final melt exhibit anomalous behaviour
 

in that the control sides have very low diffusion lengths but the
 

adjacent regrown regions are much better. This is in spite of higher
 

dislocation densities in the regrown region. This again points to
 

purely thermal/impurity effects as bad actors.
 

In performing these measurements, some were made near or over grain
 

boundaries, but most were measured in areas containing twins but no large
 

angle grain boundaries. Measurements over large angle grain boundaries were
 

widely scattered -- 25 - 170m.
 

After completion of the OCPV and SPV measurements for diffusion length,
 

the ribbon was then Wright etched to reveal dislocations. Dislocation density
 

counts were made where possible -- some grain orientations were not conducive
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DEVICE #2
2DEVICE "1
13] 170 

120 3 

300 275 235 190 
235 215 

53 3015 
30 12 8 

9 

27 162 

250 

25 

1 

50 

0 

JQ 
FIGURE 24 OCF'V DIFEFUSION LENGTHS (NUJMf3E9S ON FIGCURE), SPy 
~DIFFUSION LENGTHS (0) AND DISILOCAl ION DENSITIES 

MEASURED ON RIBBON SOLAR eV[ IS). DISLOCATION 
DE'NSI1T IES AMC TI MLS lO4cm 

(0) 



DEVICE #3 
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DEVICE #4 

35 

26 

.4 

---. 123/ /2. 

0SO 

0 

0 
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1CELLS R74 D L T DESTE ARE TIMES-10- -. -

FIGURE 25: OCPV DIFFUSION LENGTHS (NUMBERS ON FIGUIRE), SPV DIFFUSION 
LENGTHIS (0) AiND DISLOCATION DESITIES (0) fEASU MOQN RIBBON 
SOLAR CELLS. DISLOCATION DENSITIES ARE TIMES 10-m"' 
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FIGURE 27. OCPV DIFFUSION LENflTHS (NUMBERS ON FIGURE), SPV DIFFUSION
S LENGTHS ( 0) AND DISLOCATION DENSITIES (0) MEASU2ED.QN RIBBON 

SOIA CVII. DISLOCATION DEISITI['S ARF TIMES 10-cm. 

a­
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to dislocation counting. Figure 28 exhibits the correlation obtained between
 

measured diffusion lengths and dislocation densities. Note the good correlation
 

obtained for all points not over grain boundaries. Regions including grain
 

boundaries do not fall within the general trend. But note that even these
 

points can give respectable diffusion lengths. From Figure 28 it may be seen
 

that, away from grain boundaries, diffusion lengths commensurate with efficient
 

.
solar cell operation can be obtained with >105 dislocations/cm2


Figure 29 indicates measured dislocation densities near the initial melt
 

region. This is similar to previously reported dislocation density distributions
 

near a melt interface and serves to emphasize the improvement obtained as steady­

state growth is achieved.
 

6.2 DISCUSSION
 

These results are very encouraging when it is emphasized that as-grown
 

diffusion lengths are only 6 - 15pm while processed substrates are dramatically
 

increased. Obviously a "gettering" step is involved. Contrary to this observation
 

is the fact that previous attempts at pure gettering experiments have not
 

resulted in diffusion length enhancement. This indicates that the "right"
 

gettering cycle has not been achieved but that it occurs during our process
 

sequence.
 

Inour process sequence, several high temperature cycles are involved:
 

A boron back surface p+ diffusion, a phosphorous diffusion for the front
 

junction, oxidations, and a Si3N4 deposition. Previously reported experiments
 

have shown that virtually any high temperature processes attempted hereto­

fore -- gettering, oxidation, annealing, etc. -- all have either degraded
 

lifetime or at best retained initial lifetimes.
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FIGURE 28- DIFFUSION LENGTH -- DISLOCATION DENSITY CORRELATIONS 
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6.3 GETTERING STUDIES
 

In order to ascertain at what step(s) the lifetime is being improved
 

on ribbon samples, SPV measurements have been made after the various high
 

temperature processing steps. Evaluation of diffusion lengths on samples after
 

the back surface P+ diffusion'have indicated no enhancement after this step.
 

But samples undergoing the phosphorous diffusion and AR treatment have shown
 

substantial improvement: A typical ribbon underwent the phosphorous diffusion
 

and AR coating procedures typical of standard processing. The diffusion
 

lengths before and after each step were compared. Average diffusion lengths
 

for the as-grown sample were 7pm. After the phosphorous diffusion for the
 

formation of the n-on-p junction, average diffusion lengths were about 20Pm.
 

Subsequently, an AR treatment involving growth of a layer of Si3N4, was performed.
 

The AR layer was then removed and diffusion lengths again measured. Resulting
 

average diffusion lengths were then about 47m.
 

Consequently, a definite "gettering" sequence has been established. An
 

increased level of study will now concentrate on optimizing this procedure and
 

further elucidating the exact mechanisms involved. In particular, it may be
 

the specific atmospheres inthe high temperature processing which further
 

enhance the diffusion length, or it may be a stress-induced effect due to the
 

nitride layer in conjunction with the n+ layer. Alternatively, it may simply
 

be the annealing cycle represented by the temperatures and times of the AR
 

sequence. Phosphorous gettering has been widely used in the semiconductor
 

industry, but previous attempts using "standard" phosphorous gettering have been
 

unsuccessful. We hope to find out why this sequence works.
 

7.0 MEASUREMENT TECHNOLOGY
 
ORIGINAL PAGE IS 
OF POOR QUALITY 

44
 



7.1 	 HIGH RESOLUTION DIFFUSION LENGTH MAPPING
 

For purposes of diffusion length mapping of wafers using the SPV technique,
 

it is necessary to employ small beam sizes. However, we have observed that a
 

small beam size (-1mm) does not result in a straight line on the I vs a-I plot.
 

We have, therefore, studied the effect of beam size (in comparison to diffusion
 

length) on the SPV measurement.
 

Figure 30 shows typical plots of light intensity, I, (required to keep SPV
 

constant), and the reciprocal absorption coefficient, a- , with beam size, d, 

as the parameter. It is seen that (1) reduction in beam size results in a 

larger value of diffusion length L (I vs a1 still remains a straight line); 

=
(2) as the beam size is'reduced below a value such that d/L 10, the lines
 

begin to curve and in such a case it is not possible to get a unique value for
 

the diffusion length.
 

Experiments were carried out using Si wafers, both p and n type, with
 

diffusion lengths up to 300vm (resistivity range: 0.1 - lOf-cm). Figure
 

31 shows an experimentally determined plot of L/L vs d/L, where L is the
 

diffusion length obtained with a large beam size. Such a plot gives a correction
 

for diffusion length when a small beam size isemployed in order to get high
 

spatial resolution mapping.
 

It should be pointed out that wafers with large surface roughness may show
 

deviation from the previous results. E.g, texture etched silicon wafers and
 

solar cells do not follow exactly the same behaviour as shown in Figure 31.
 

This is due to the fact that surface roughness increases the effective beam
 

size due to scattering.
 

A theoretical study of this effect has also been undertaken.
 

8.0 	 ECONOMIC ANALYSIS ORIGINAL PAGE 

OF POOR QUAITY 
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8.1 EVALUATION OF SAMICS MODEL
 

Table I is a comparison of the actual prices of a Motorola production
 

operation with both the SAMICS model and the model we have used in our economic
 

analysis. The actual prices have been assigned a value of 100, and the other
 

prices have been scaled accordingly. The "actual" and "Motorola" columns
 

Include all the items considered in the SAMICS model except the "start-up" costs.
 

Assuming these costs would increase prices in the range of 5 - 10%, the SAMICS
 

model would produce an overestimate of 10% - 5%. This is excel lent agreement
 

for a general equation applied to a specific operation.
 

When specific categories were compared, however, the agreement is poor.
 

Part of the disagreement is simply due to the assignment of profit: In the
 

SAMICS model, the profit is derived from the capital investment, while we
 

have simply distributed the pr6fit as a percentage of production cost. This
 

factor can account for the difference in the "Labor" and "Utility" categories,
 

and a major fraction of the difference inthe "Capital Equipment" category.
 

The SAMICS estimate of the factory component of the cost, however, remains too
 

high.
 

8.2 POLYCRYSTALLINE FEEDSTOCK
 

A preliminary economic analysis of two proposed methods of producing the
 

polycrystalline feedstock needed for RTR growth was carried out. The first
 

method uses conventional CVD to deposit a polycrystalline silicon ribbon on
 

a moving substrate (this method has been successfully demonstrated on fixed
 

substrates, using both SHCI3 and SICI4 as source gases). The economic analysis
 

assumes SiHCI3 is the source gas, at $7/Kg silicon -- the present price of
 

trichlorosilane. Figure 32 shows the price of a 100m ribbon as a function of
 

growth rate, assuming a IOMW plant.
 

ORIGINAL PAGE IS 

OF POOR QUALI= 
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TABLE I
 

CATEGORY ACTUAL PRICE MOTOROLA MODEL PRICE SAMICS MODEL PRICE
 

1. Capital Equip- 100 83 161
 

ment
 

2. Factory 100 85 334
 

3. Labor 100 100 77
 

4. Materials 100 100 100
 

5. Utility 100 100 80
 

TOTAL 100 97 115
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8.3 

The second method for producing the poly feedstock uses a plasma deposition
 

process which is presently under development at Motorola. High deposition
 

rates have been achieved using SICI4, SiHCI3 or SiH 4 as source gases. The
 

economic analysis for this process assumes SiH 4 as the source process at $5/Kg­

silicon (this is the projected cost of the Union Carbide silane production
 

process). Figure 33 shows the price of a bO0rm ribbon as a function of growth
 

rate, assuming a 500MW plant.
 

Figures 32 and 33 also show the price of the polyribbon obtained using
 

the SAMICS model. The two methods of obtaining the ribbon price are obviously
 

in good agreement.
 

2
The polyribbon feedstock could thus be sold at a price of -$7.5/M
 

$O.082/watt or -$36/Kg-silicon in a IOMW plant using conventional CVD or at
 

-$3.5/M2, $0.032/walt, or -$15/Kg-Si in a 500MW plant using plasma deposition.
 

RTR CRYSTAL GROWTH
 

Figure 34 is a projection of the add-on price of the RTR ribbon as a
 

function of growth rate. Inthis case, the SAMICS price estimate is about 30%
 

higher than our estimate. Figure 35 shows the price of the RTR ribbon including
 

buying the polyribbon at $0.065/watt (CVD method, produced in a 500MW plant).
 

The SAMICS price estimate is -20% higher than our estimate. Using the SAMICS
 

price estimate, RTR ribbon could be sold at a price of $0.19/watt using poly­

ribbon prouced by CVD, or -$0.16/watt using polyribbon produced by plasma
 

deposition.
 

These prices demonstrate that the LSSA goal of 50't/watt solar cells could 

be achieved using RTR ribbon. The RTR process can reach this goal basically 

uses a minimum of raw materials, can reach a high throughput ( 100cm /
because it 


min.) per ribbon, and should not require a high labor cost.
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9.0 PROBLEMS
 

Problems experienced this quarter have been numerous due to the
 
relocation of the laser lab and the "Flood" referred in the test. These
 
problems have delayed the program, but no serious problems exist at
 
present which will prevent the accomplishment of our major goals.
 

10.0 PLANS
 

Plans this next quarter will be towards completion of major
 
program goals. Emphasis will be placed on demonstration of wide ribbon
 
growth and high efficiency ribbon solar cells. Solar cells fabricated
 
from CVD poly-ribbon will receive special attention.
 

11.0 NEW TECHNOLOGY
 

The following New Technology item has been developed on this
 
program:
 

I. Description - Polygon Scanner System
 

Innovator - Dr. Richard Gurtler
 

Progress Reports - Technical Progress Report No. 14
 
October 1977
 

Pages - Pages I, 10, IIA, and II
 

12.0 PROGRAM PLAN/MILESTONES
 

Activities associated with the total program are shown in the
 
Program Plan/Milestone charts contained in Appendix I.
 

13. ENGINEERING DRAWINGS
 

Drawings of the improved trA.sport stage and preliminary drawings
 
of components for the RTR apparatus The contained in Appendix II.
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Model 1 RTR Apparatus MOTOROLA PROJECT NO. 2319 

DESCRIPTION 

Operate Daily 

MAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB 

Thermal Profile 
Optimization 

- Active Heating i 
- Active Cooling 

_­

- Passive Heating 
& Cooling 

00 

FIGURE 1 PROGRAM PLAW/MILESTONE CHART 
LEGEND G SCHEDULED W COMPLETED A DELIVERY SCHEDULE A DELIVERED 



WORK BREAKDOTN SCHEDULE NO. 2
 

Model 2 RTR Apparatus MOTOROLA PROJECT NO. 2320 
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Model 2 RTR Apparatus 

WORK BREAKDOWN SCHEDULE NO. 2 (CONT.) 

MOTOROLA PROJECT NO. 2320 
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WORK BREAKDOWN SCHEDULE NO. 3
 

Thermal Stress Analysis MOTOROLA PROJECT NO. 2321 
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