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ABSTRACT

The objective of this research is fo fully investigate the Ribbon-to-
Ribbon (RTR} approach fo silicon ribbon growth. An existing RTR apparatus is
to be upgraded to its full capabilitics and operated routinely to investigate
and optimize the eftects of various growth parameters on growth results. A
new RTR apparatus is to be constructed fo incorporate increased capabilities
and improvements over the first apparatus and to be capable of continuous
growth. Material analyses and solar cel| fabrication process optimization
are to be performed with a goal of 12% cel} efficiency.

During this quarter the laser |ab was relocated and operation resumed:
New high power lasers have been impiemented and this has led to major improve-
ments in growth velocity -- 4"/min. growth has been demonstrated. This high
growth capabilify has been accompanied, however, with the appearance of
dendritic growth. A major step in demonstration of the full feasibility
of the RTR process Is reported in the demonstration of RTR growth from CVD
polyribbon rather than sliced polyribbon ingotfs.

Cell and material evaluations have continued. Average solar cell
efficiencies of >9% and a best cell efficiency of 11.7% are reported.
Processing has been shown to provide a substantial improvement in material
minority carrier diffusion [ength.

An economic analysis is reported which treats both The polyribbon fab-
rication and RTR processes. Indications are that the long term DOE goals

may be met.



SUMMARY

During this quarter, significant progress has been realized on various
aspects of tha RTR program:

Relocation of the iaser lab and instaliation of the new higher pover
laser systems have been completed. RTR#! has been modified and is now fully
operational although a water accident caused considerable damage and delay.

The new growth station, RTR#2, is nearing complietfion.

With increased capabilifties of laser power, RTR ribbons have been grown
at the highest rate ever -- 2cm wide at t0cm/min. Accompanying This increase
In growth velocity capability_has been the emergence of a new growth phenomenon
in the form of dendritic growth. THis results in a non-planar surface. The onset
of dendritic growth is related to attainment of a critical velocity which is a
function of the thermai environment. With modifications to the thermal profile,
non~dendritic growth has been achieved at velocities up to 7.5cm/min. Numerous
growth runs have been completed with growth velocities ranging from 2.5 - 9cm/min.
Many of these samples are being processed into solar cells, others are being
used for material analysis.

Another major achlevement this quarter has been the demonstration of RTR
growth with true polyribbon feedstock; i.e., doped polysilicon ribbon obtained
from a unique CVD process capable of ultimately supplying low cost, high purity, -
polyribbon for the RTR process. Initial SPV evaluations of this regrown
material indicates equivalent performance to material regrown from single
crystal feedstock.

Solar cell evaluations have continued. Recent lots of celis have been

disappointing in performance. Two lots have been evaluated with a fotal of



41 and 20 ribbon ceils. Average and best efficiencies for these lots were
7.5%, 9.4% and 7.7%, 9.5% respectively. However, for all of these cells, a
metallization degradation effect has rsen observed; measurement of VOC before
and after metall|ization for one lot o+ cells showed an average loss of 40mV.
This is also accompanied by a degradation of fill factor. Had these degradation
effects not been in effect, average eificiencies of greater than 9.5% would
have been realized. Experiments with alternative metallizations are now in
progress.

A processed ribbon wi{h numerous sclar cells has been studied in some
detail by correlating OCPY measurements of diffusion length on finished cells,
SPV measurements on the same celis after etch removal of the junction, and
Wright-deiineated dislocation densities. These studies demonstrate the following;
1) large diffusion lengths (>100um) are obtained on RTR Solar cells; 2) the
substrates indeed exhibit these large diffusion {engths; 3) positive
correlation of diffusion lengths and dislocation density are found; 4) diffusion
lengths on grain boundaries show a variety of values.

The large diffusion lengths observed on processed substrates are in contrast
To the relatively [;w values measured on as-grown ribbons. Examination of
processing steps has shown that the |ifetime improvement occurs during the
Junction diffusion and AR coating steps.

Material and device analysis have been proceeding. EBIC mode SEM photos
are reported which show that -- as reported by others in ribbon and non-
perfect crystal technology -- not all visible structure 1s electrically active.
Moreover, it Is demonstrated that a one-to~one correlation of EBIC exhibited
activity with device performance cannot be made.

Beam size effec?s‘have been characterized for the SPV technique. When

the beam size is comparable to the diffusion length, anomalous effects are



present which can lead to erroneous or uninterpretable resulfsﬂ\ Experimental
results illustrating these effects arc presented.

Economic analysis of the RTR process has been performed with the inclusion
of proposed processes for feedstock pclysilicon ribbon. |In addition, the SAMICS
procedure has been applied fo our prooosed systems and an established poly-
silicon factory to compare projections made by this technique with our pro-

Jections and estabiished data respeciively.
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1.0 LASER LAB

1.1 LAB STATUS

The RTR growth {ab has now been .ompletely relocated and all major
Items have been Instalied. This rel ation effort has caused a great deal
of effort to be expended in setting vr the new stations. Figures 1 - 5 are
photos of the new lab showing the var'ous {asers, beam tables, and experimental
tables.

RTR#1 was completely reconstructed on a new table. Figures 6 and 7 are
photos of RTR#1 with cover removed while figure 8 shows the protection/
environmental conftrol cover in place. By use of beam directing mirrors, any,
or ali, of the three laser systems may be brought to one experimental tfable.

One major new item has been added to RTR#! which is visibie in figures
6 and 7. This is the polygon scanner system which allows scans of over 3"
in width at rates of up to 5kHz. Figure 9 is a schematic 11lustration of

the operation of the scanner while Figure 10 is a photo of an actual scanner.

Further discussicon of  the poiygon scanner operation will occur in later
reports.
1.2 "FLOOD"

Just as RTR#1 was being complieted and initial tests were beginning, and
Jjust after the photos of the previous tigures were taken, a water hose
fitting burst and the entire RTR#1 experimental table was totally fiooded with
water. Considerable damage was incurred by expensive lenses and the polygon
scanner system. The water was removed quickly enough to prevent corrosion
damage to most mechanical parts, buf numerous lens surfaces were ruined, and the
polygons were damaged. These components have now been repaired, but a consider-

able amount of lost time resulted.
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FIGURE 1: GTE 1.2kW LASER AND CONTROL STATION
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FIGURE 2: GTE 1.2kW LASER.

NOTE ACTIVE REGION DISCHARGE IN CENTRAL
REGION OF LASER.




FIGURE 3: Nd:YAG LASER SYSTEM AND POWER SUPPLIES




FIGURE 4: Nd:YAG LASER SYSTEMS (2) ON RAILS
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FIGURE 5: ORIGINAL 375W CO, LASER. NOTE BEAM TABLE WHICH DIRECTS
BEAM TO EXPERIME% TABLES.




FIGURE 6: RTR#1 EXPERIMENTAL TABLE AND CONTROL/MONITOR ELECTRONICS

(IN BACKGROUND) .




FIGURE 7: RTR#1 NOTE BEAM PCRTS (4) TO RIGHT OF TABLE. SHOWN ARE TWO
POLYGON SCANNERS, A RIBBON TRANSPORT, AND BEAM DIRECTING MIRRORS.
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FIGURE 9: POLYGON SCANNER OPERAT ION




FIGURE 10: HIGH SCAN FREQUENCY POLYGON SCANNER




In the interim, while the various components were being resurfaced,
repaired, etc., RTR#1 was rebuilt using the osciliating mirror scan system

and/or a cylindrical beam shaping sysiem. This system is now operational.

2.0 BEAM SHAPING SYSTEMS

2.1 POLYGON _SCANNER

During the period of relocation and rebuilding after the "flood", few
growth runs have been achieved anc thcse have been primarily test runs. Just
prior to the "flood", a few test runs were made with the polygon system to
determine its performance. These tests were disappointing in that the power
distribution is non-uniform -~ tending to be much higher at the extremities
of the scan. This is contrary to initial assumptions of operation since at
the extremities of the scan, the beam will start fo divide with one portion
being at the end of a scan and the remalining portion at the beginning of the
next scan. Consequently one would have expected a power drop-off at the
extremities. What appéars to be the problem is that abberations of the imaging
cylindrical lens cause smalier amounts of deflection near the edges of the
scan than in the middle with fthe result that more fime is spent near the extremities
than in the middle. Further testing and analysis will be performed when the

polygon scanner is again operational.

2.2 CYLINDRICAL LENS BEAM SHAPING SYSTEM

Without the poiygon scanner, a cylindrical lens beam shaping technique
has been investigated. This technique is shown in Figure 11. A beam which

Is nominally a 1 - 2cm diameter cylindridal beam is first diverged in one

12
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dimension and fthen focussed in the other dimension. This gives a wide, but
vertically thin, beam incident on the ribbon.

A drawback of this system s that a uniform power distribution cannot
result since the initial beam has complex sfructure. The great
advantage of this system is simplicity and the fact that no moving parts are
required., Combinations of fwo or more cylindrical iens systems may offer the

possibility for obtaining a more uniform melt.

3.0 CRYSTAL GROWTH
3.1 APPEARANCE OF DENDRITIC STRUCTURE AND RELATION TO CRITICAL GROWTH
VELOCITY

One of the most significant achievements during this period has been the
demonstration of ribbon growth at 10cm/min., the highest rate reported for
ribbon growth as far as {s known by the authors. It is alsoc of interest to
note (see below) that the attained velocity is in fact greater than the
theoretical "maximum" ve}ocify predicted by some authors. In fact, this
predicted "maximum" velocity is in reality simply a critical velocity,
marking a transition in growth behavior. This growth was achieved with 2.5cm
wide feedstock while operating in the ratioc growth mode. The resulting ribbon
is about .15mm thick and 2cm wide.

Of particular inferest is the occurrence of dendritic growth in these
high growth velocity ribbons. Observation of the melt zone during growth
shows That above a cerfain critical velocity, the molten zone length increases
dramatically. This effect is first noticed in the central portion of the
ribbon. Figure 12 i!IusT;a+es typical behavior of the melt zone as the
velocity becomes larger than the critical velocity. |+ is after the occurrence

of this lengthening of the melt zone that the dendritic structure

14
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appears on the ribbons. Figure 13 - 15 show photographs of the dendritic
structure. Figure 13 is a sample grown in the non-ratio mode with a grown
sample thickness of about .33mm. The onset of the non-planar, dendritic
structure occurred for this sample ai around 3.8cm/min. Figure 14 shows a
sample grown in the ratio mode with & grown thickness of about .15mm. Figure
15 is a close-up of the region near tre onset of the dendritic structure. The
velocity was steadi)y increased durirs growth until a maximum growth velocity
of 10cm/min. was attained; then the vclocity was held constant until growth
was terminated. The onsef of me!t elongation occurred at about 5.7cm/

min.

The lengthening of the meit zone is evidence of +he critical velocity
expected on the basis of thermal modeling of ribbon groﬁfh processes. Most
authors have simply stated that there exists a limiting growth velocity
determined by the condition that the convective transport of the latent heat
of fusion match the heat removal rate due to conduction in the solidified
ribhon; viz.,

-K 3. T
S X

- x=0_solid
Vc H

where K. is the Thermal conductivity of the solid, and H is the latent heat

of fusion per unit volume. This author, however, has considered this velocity
as a critical velocity, in exactly the sense as we have observed; i.e., above
this velocity the melt length will rapidly increase with increased input power
or growth velocity. A%fempfing growth for velocities above this critical
velocity simply Increases the possibility of growth instabilities due to an

increased melt length.

i6



FIGURE 13: RTR RIBBON EXHIBITING DENDRITIC STRUCTURE. SAMPLE WIDTH
IS “2.5cm, MAXIMUM GROWTH VELOCITY ~5cm/min.




FIGURE 14: RTR RIBBON GROWN AT A MAXIMUM VELOCITY OF

10cm/min. DENDRITIC STRUCTURE OCCURS AROUND
5.7cm/min.




FIGURE 15: CLOSE-UP VIEW OF SAMPLE OF FIGURE 3 SHOWINC
ONSET OF DENDRITIC GROWTH.




Of the three parameters invoived in VC’ Kg and H are supposedly known,
and fixed parameters, only —BXT|X=D+ is under experimental control. Affecting
this parameter are numerous experimental and environmental parameters:
radiation envirenment, ribbon thickness, location of temperature sources and
sinks, convective heat loss properties, and groyfh velocity. In the June
1976 Quarteriy Report (ERDA/JPL 954376-76/2), there was presented a thermal
mode! which allowed calculation of the required thermal gradient parameter and
also allowed calculation of the length of the excess molten region. These
calculations assumed radiation losses to an isothermal ambient, conduction
along the ribbon, and atmospheric convection losses from the surface.

The modeling reported differs In detall from our actual experimental
growth environment because it did not treat the influence of a post heater
on the interface gradient (modeling now in progress will include such effects).
The presence of the post heater will reduce the inferfacg gradient and thereby
reduce the predicted critical velocity. An estimate of the impact of The‘
post heater on critical velocity may be obtained by assuming an ambient
temperature commensurate with the experimental ly measured femperature at the
interface region due to the post heater alone. Experimentally this has been
determined o be ~1000°C. Figure 16 shows calculated critical velocities for
various thickness ribbons as a function of an assumed ambient temperature.

As can be seen, the addition of a post heater markediy reduces the critical
velocity from that of a room temperature environment. The estimated conditions
due o the post-heater, and the experimentaily observed critical velocities

for the samples of Figures 13 - 15 are also indicated. The agreement is rather
good, but possibly fortuitous.

The observed meit elongation behavior of Figure 12 may be explained on
fwo counts; first, there is a slight additional heat loss mechanism af

the edges due to edge radiation; second, and more important, the central

20
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region Is thicker than the edges and this means a lower critical velocity
in the central region than at the edy~s. This latter fact is advantageous to
high speed growth since an increased melt width at the edge is much more
+roublesome fo growth stability.

Dendritic growth requires that a certain amount of supercooling exist
in the melt in order that the latent heat given off during solidification
may be rejected to the melt. The driving force for all crystal growth processes
in a pure crystal is the degree of supercooling. It is possible that The
velocities now being achieved are requiring such a degree of supercocling
that dendritic growth is a feasible process. Another possibility, however,
is the assumption that as the melt elongates due to growth velocities exceeding
the critical velocity, surface radiation losses cause a high degree of super-
cooling at the surface. The surface is highly conducive to dendritic growth,
which first propagates along the surface, then through the bulk.

The influence of The dendritic structure on material characteristics and
device performance remains to be seen. One noticeable effect, which may or
may not be related to the appearance of the dentrites, is the elimination
of buckling in The samples. This may be, as suggested by M. Leipold, a
mechanical stiffening effect dus to the thickness of the dendrites. Another
possibility Is a straightening of the thermal profile (fending to remove the "dip")
and a consequential reduction in stresses. Dislocation efching and SPY character-

ization of these samples are in progress.

3.2 ROUTINE_GROWTH OF RIBBON SAMPLES

RTR# 1 has been used for routine growth from 2.5cm wide feedstock.

Various conditions of growth were used to supply a variety of ribbon types

22



for characterization and for processing info solar cells. The parameters
which were varied were ratio or non-ratio growth, and planar or non-planar
growth. That 1s, both ratio and non-ratio sampies were grown under conditions
1) which resulted primarily in planar, non-dendritic surfaces, and 2) which
had a large amount of dendritic structure.

These samples were all grown with a constant temperature profile similar
to that used for the samples of Figures 13 - 15. Another group of samples
has also been processed with a new, higher gradient thermal profile. This
had the effect of shifting our operating point fo the left in Figure 16. With
this new profile we have been able to achieve 7.5cm/min. growth velocities

of .15mm thick ribbon without the appearance of dendrites.

3.3 STRESS MEASUREMENTS AND BUCKL ING OBSERVATIONS

Stress-birefringence evaluations were performed on several ribbon samples.
in evaluating the samples it was found that maximum stresses measured on
samples fell into two groups. One group had typical maximum stress levels of
700 - 2000 PSI (4.8.107 - 13.8.107 dynes/cmz) while the second group had
stress levels of less than 350 PSI (2.4.107 dynes/cmz). Review of growth
conditicns showed that an adjustment was made for the melt-furnace distance
coincident with an improvement in residual stresses. The 350 PS| levels of
stress are probabiy typical of the maximum stress levels occurring in properiy
grown samples. These samples represented non-ratio and ratio growth runs as
growth velocities of 2.5 - 4em/min. and 5 - 5.7cm/min. respectively.

Most of our thin samples have shown significant buckling if no dendritic
structure is present. A substantial improvement in ribbon flaftness is observed

when The critical velocity is approached and dendritic structure occurs.

23



3.4 GROWTH OF RTR RIBBONS FROM CVD POLYRIBBON

All previously reported RTR growth runs have utilized feedstock (either
singie cyrstal or polycrystaliine) which was sawn (under considerable hazard
of breakage) from large ingots -- hardly an economical process for obtaining
polyribbon feedstock. However such feedstock has bsen perfect|y adequate for
investigation of growth processes and material quality since, once the
fesdstock is melted, it loses all "memory" of its origin, except for purity
(impurity confributions).

0f course, for the ultimate viability of %he RTR process, an economical,
high purity, polyribbon process must be available. Such a process has been
under development at Motorola, and its basic feasibility demonstrated. Economic
viability has aiso been considered, and is reported in section 8.1. Basically,
this process uses CVD techniques to deposit doped polysilicon onto a subsfrate
from which a uniform polyribbon may be detached. The substrate is reusable, the
deposition process is efficient, and the throughput can match tThe RTR growth
process.

Figure 17 is a photograph of two large CVD polyribbon samples. Figure 18
shows a 2cm wide sample af%er RTR growth. Visuai examination of such samples
reveals substantially the same’crysfaliographic structure as is obtained from
single crystal feedstock.

RTR-grown CVD polyribbons will soon be processed info solar cells, SPV
measurements have been made on one RTR-grown CVD polyribbon. This particular

sample was doped to approximetely .7 - 1.00cm and exhibited a diffusion fength

of about 6um -- typical of as-grown RTR ribbons although heavier doped.

4.0 SOLAR CELL PROCESSING/EVALUATION
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FIGURE 17: LARGE AREA SAMPLES OF CVD POLYRIBBON

FIGURE 18: DOPED CVD POLYRIBBON REGROWN BY THE RTR PROCESS
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4.1 EVALUATION RESULTS

Several groups of solar cells have been evaluated during this report

period. Tables | and || summarize rcsults from two lots.

TABLE |

LOT # FIi21

GROWTH PARAMETERS: Startinu Material Cz, (100}, [100}, 59-cm P type
Transletion Mode Lock
taser Power - ~360W

Growth Velocity =~ 1"/min
taser lrradiation - Both sides
Furnace Profile - A4, A5
RIBBON CELLS RIBBON CONTROLS CONTROLS
41 00D, 5 REJECT 10 CELLS 6
MAX AVG MAX AVG MAX AVG
VOC .505 .485 573 .553 .574 .573
JSC 27.9 24.9 34 31.8 35.5 341
9.4 7.5 13.8 12.3 14.4 i3.9
F.F. .67 .62 .71 .70 715 .71
TABLE |1
LOT # R122
GROWTH PARAMETERS: Starting Material - Cz (100), [100}, 5Q-cm P type
Transtation Mode - Ratio - 2" uptake/1" feed
Laser Power - ~380W
Llaser lrradiation - North Side Only
Furnace Profile - A5
RIBBON CELLS CONTROLS
2Q CELLS 7
MAX AVG MAX AVG
VOC .496 .464 .558 .548
JSC 29.1 27 36.1 35,1
9.5 7.7 14 13.3
F.F .66 .615 .695 .689
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4.2 DISCUSSION OF SOLAR CELL EVALUATIONS

The ribbon controls and the pure controls demonstrate high efficiencies
and little variation. This points our that the processing sequence ufilized
was quite good, although ImprovémenTs in fill factor might be expected.

The ribbon cells, however, exhib.t+ disappointingly low efficiencies --
this i1s in consideration of the rathel good visual appearance of the cells.
Much of the relatively poor performance of these groups can be accounted for,
though. |+ has been found that the present metallization process being used,
while evidently normaily acceptable for single crystal samples, is degrading
VOC (and probab}y the fill factor too) on ribbons. V_. measurements were made

oc

on {ot R112 before and after the metallization step, and an average bVOC=-4OmV
was observed. This is & significant loss and cannot be accounted for by metal
coverage. Assuming an improved average Voo for these cells fo .504 from .464,
aqd an improved fill factor to .7 from .65, the average efficiency would have
been 9.52%. Experimentally these effects have also been observed on single
crystal samples when improper metallizaton procedures were used. |t 1s possibie
that because of the more numerous defects and grain boundaries, the RTR ribbons
are more susceptible for this probliem.

The present metallization process utilizes a palladium surface activation
with a subsequent nickel plating, then a solder dip. The degradation is associated
with the palladium activation step which incorporates a sintering process. (t
is felt that possibly a lower sintering temperature may be appropriate. For
this reason the most recent batch (lot #124) of ribbon solar cells was split
into two groups, one for high and one for low Temperature metallization. FEach
group was comprised of wide (2.5cm) and narrow (1.25cm) samples. Unfortunately,

it was subsequentiy found +hat both groups had been exposed to a high temperature
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sintering cycle. Average efficiency for the narrow ribbon cells is 7.6%.
The wider ribbon cells averaged 6.5%, with about half of the wide ribbon
cells (including control cells) being casualties due to poor photoresist
adherence.

I+ should be noted, however, that in this case many of the control
cells were also severely degraded -- consequently some other processing
problems may have occurred to these samples.

Experiments are planned to test alternative: metallization schemes which
hopefully will not degrade the solar cell characteristics. Low femperature
(T<200°C) anneal ing cycles are being tried on test wafers, and will be usad
on the next lot of ribbon celis. In addition, evaporated titanium-silver

or aluminum contacts will be fried.

5.0 MATERIAL EVALUATION

In order to study the etectrical activity of planar defects in RIR
sillcon, an array of Imm diameter diodes was fabricated on RTR sample 294.
The short circuit current (SSC} under AM? illumination was measured for each
diode, and was used as a figure of merit in evaluating the diode quality.
Control diodes fabricated on single crystal Czochralski silicon generated ISC
~0.26mA under AM1 illumination. After faking an optical microgreph of each
dio&e, SEM micrographs were taken using he AC Electron Beam Induced Current
(EBIC) mode. Figures 19a, 20a, 21a, and 22a are EBIC micrographs of selected
diodes, while Figures 19b, 20b, 21b, and 22b are optical micrographs of the
corresponding diodes. Unfortunately, the quality of the optical micrographs
is poor.

Figure 19a, b, show diode 7-3. This diode is a relatively poor performer,
with i ~0.20mA. The strongest features in the EBIC micrograph are the

SC

three grain boundaries which intersect the numerous parallel twins in the
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FIG.19 -a
EBIC Mode Photo
of

Diode

T =5

FIG19 -b

Optical Micrograph
of
Diode
7-3
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Fig. 20-a
EBIC Mode Photo
of
Diode
5~-6

Fig.20 -b

Optical Micrograph
of
5-6
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Fig. 21 -a

EBIC Mode Photo
of
Diode
11-2

Frg. 21 ~b

Optical Micrograph
of
Diode
11-2
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Fig. 22-3

EBIC Mode Photo
of
Diode
5-5

Fig.22°<b

Optical Micrograph
of
Diode
5-5
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sample. Roughly half the parallel boundaries seen in Figure 19 are revealed
as electrically active defects in 192, although they are not as strongly
active as the "crossing" boundaries. Several inclusions, which cannot be
seen in 19b, are shown as strongly aciive in 19a. However, they do not cover
a significant fraction of the ftotal d.ode area.

Figures 20a, b show diode 5-6. tis ISC = 0.26mA, matches The short
circﬁif current generated in the contiol diodes. The faint double line running
vertically through the diode is only # synchronous interference (it appears
somewhere in most of our EBIC micrograpns). The parallel fwin boundaries
which can be seen faintly in 20b do not appeéf in 20a. Thus diode 5-6 is
a simple case: (T performs well and Is relatively defect-free in bolh the
optical and +he EBIC micrographs.

Figures 21a, b show diode 11-2. This diode is a poor performer, [SC
~0.19mA, although both the EBIC and the optical micrographs are relatively
free of grain boundaries, twins or stacking faults. Diode 11-2 is thus a
counter example to diode 5-6, since it shows that ofther factors, e.q., a
high dislocation density, or a distributed impurity, are reducing the generated
current.

However, we can also find a counter exampie to diode 7-3. Figures 22a, b,
are micrographs of diode 5-5. This diode generated an ISC ~ 0.25mA, almost
matching the ISC ~ 0.26mA of diode 5-6. Figure 22a shows ~ 5 reasonably well-
defined active planar defects, plus a number of barely visible lines. Hote
that the dense parallel twin bundles seen in Figure 22b are not electrically
active. It is also apparent that one cannot predict from 22b which would be
the most active boundaries in 22a.

Since only one RTR sample has been examined, these EBIC results are
pretiminary. Several tentative conclusions can be drawn, however. FParallel

GE Id
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twin boundaries are often not innocuous, as shown most clearly in Figure 22.
Intersecting grain boundaries are strongly active, and significantly reduce

cell performance. Diode 11-2, howevci, shows that other "distributed" factors,
such as a high dislocation densify o1 a distribufted impurity, can be respcnsible -

for reducing cel! performance.

6.0 DEVICE AND PROCESSING STUDIFS
6.1 DISLOCATION LENGTH AND DISLOCATION DENSITY MAPPING ON RIBBON SOLAR
GELLS

A single RIR ribbon which had been processed info solar ceils, except for
the last metalllization step, was studied in detail. Figure 23 iliustrates The
analyzed ribbon. Seven solar cell regions measuring 2.1 x .85cm, or 1.79crr;2
each, were available. Device 1 was a control cell -- i.e., 8 cell residing
on ribbon which was not regrown. It did, however, experience some elevated
temperatures -— as high as 1200 - 130000. This is because this portion of the
ribbon was in the linear profile furnace prior to growth initiation. Samples
#2 and #7 both are partly on control regions and partly on regrown regions.
Typically, the worst performance occurs in these regions due to the special
(high) stresses in these regions and the fact that these regions are held at
high temperatures for a longer pericod of time than central, steady state regions.

Open~circuit~photovoltage (OCPV) measurements of diffusion length were
performed at numerous points on each cell in order o map regions of long and
short diffusion {engths. All measurements were performed with a light spot
diameter of ~Zmm. After mapping the OCPV diffusion lengths, the entire ribbon

was first stripped of AR coating and then silicon efched to remove both the
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tront n+p, and back p+p junctions. SPV measurements were then made at the
same spatial locations where the §0!a1 celi OCPV measurements were made.
This was to verify that the two tTechniques Indeed measure The substrate
diffusion length and that no énomalouu readings occur due to the presence of
the junctions.

Results of these measurements are shown in Figures 24 through 27. Two
values are indicated where both OCPV and SPV diffusioﬁ lengths were made. From
these data we conclude the foilowing:

1) Processed RTR ribbon soilar cells are now exhibiting very high diffusion
lengths, comparable to starting single crystal values. Diffusion
lengths of 178ym have been measured on ribbon cells.

2) The agreement of the OCPV and SPV diffusion |engths shows that
substrate diffusion lengths are indeed quite high compared to un-
processed substrates (typically 6 - 15um).

3) The average diffusion lengths are high also, but local regions of
short diffusion iength stiil exist.

4) Regions near initial and final melt exhibit anomalous behaviour
in That the control sides have very iow diffusion lengths but +he
adjacent regrown regions are much better. This is in spite of higher
dislocation densities in the regrown region. Thts again points fo
purely thermail/impurity effects as bad actors.

In performing these measuremenis, some were made near or over grain
boundaries, buf most were measured in areas containing twins but no large
angle grain boundaries. Measurements over large angle grain boundaries were
widely scattered -- 25 - 170um.

After compietion of the OCPV and SPV measurements for diffusion length,
the ribbon was then Wright efched to reveal dislocations. Dislocation density

counts were made where possible -~ some grain orientations were not conducive
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to dislocation counting. Figure 28 exhibits the correlation obtained between
measured diffusion lengths and dislocation densities. Note the good correlation
obtained for all points nof over grain boundaries. Regions including g%aan
boundaries do not fatl within the general trend. But note that even these
points can give respecfable diffusion lengths. From Figure 28 i may be seen
that, away from grain boundaries, diffusion lengths commensurate with efficient
solar cell operation can be obtained with >105 dislocafions/cmz.

Figure 29 indicates measured dislocation densities near the initial melt
region. This is similar to previously reported dislocation density dis¥ributions
near a melt interface and serves to emphasize the improvement obtained as steady-

state growth is achieved.

6.2 D1SCUSS ION

These results are very encouraging when it is emphasized that as-grown
diffusion fengths are only 6 - 15um while processed substrates are dramatically
increased. Obviously a "ge}fering" step is involved. Contrary to this observation
is the fact that previous attempts at pure gettering experiments have not
resulted in diffusion length enhancement. This indicates that the "right”
gettering cycle has not been achieved but that it occurs during our process
sequence,

tn our process sequence, several high temperature cycles are involved:

A boron back surface p+ diffusion, a phosphorous diffusion for the front
Junction, oxidations, and a Si3N4 deposition. Previously reported experiments
have shown that virtually any high temperature processes attempted hereto-
fore —- gettering, oxidafioq, énnealing, etc. ——'all have either degraded

|ifetime or at best retained initial |ifetimes.
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6.3 GETTERING STUDIES

In order to ascertain at what step(s) the iifetime is being improved
on ribbon sampies, SPV measurements have been made after the various high
temperature processing steps. Evaluation of diffusion lengths on samples affer
the back surface P+ diffusion 'have indicated no enhancement after this step.
But samples undergoing the phosphorous diffusion and AR treatment have shown
substantial improvemenfz A typical ribbon underwent the phosphorous diffusion
and AR coating procedures typical of standard processing. The diffusion
lengths before and after each step were compared. Average diffusion lengths
for the as-grown sample were 7um. After the phosphorous diffusion for the
formation of the n-on-p junction, average diffusion lengths were about 20um.
Subsequently, an AR treatment involving growth of a layer of Si3N4, was performed.
The Aé fayer was then removed and diffusion lengths again measured. Resulting
average diffusion lengths were then about 47um. =

Consequently, a definite "gettering"” sequence has been established. An
increased level of study wil! now concentrate on optimizing this procedure and
further elucidating The exact mechanisms involved. In particular, it may be
the specific atmospheres in the high temperature processing which further
enhance the diffusion ifength, or it may be a stress-induced effect due to the
nitride layer in conjunction with the n+ layer. Alfernatively, 1t may simply
be the annealing cycle represented by the temperatures and times of the AR
sequence. Phosphorous ge++er5ng has been widely used in The semiconductor
Pndgsfry, but previous attempts using 'standard™ phosphorous gettering have been

unsuccessful. We hope to find out why this sequence works.

7.0 MEASUREMENT TECHNOLOGY

ORIGINAL PAGE IS
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7.1 HIGH RESOLUTION DIFFUSION LENGTH MAPPING

For purposes of diffusion length mapping of wafers using the SPV technique,
It s necessary to empioy smai| beam sizes. However, we have observed that a
small beam size (~1mm) does not result in a straight line on the | vs a_1 plot.
We have, therefore, sfudied the effect of beam size (in comparison to diffusion
length) on the SPV measurement.

Figure 30 shows typical plots of light intensity, I, (required to keep SPV
constant), and the reciprocal absorption coefficient, a—t, with beam size, d,
as The‘paramefer. I+ is seen tThat (1) reduction in beam size resuits in a
larger value of diffusion length L (1 vs d—1 still remains a straight line);
(2} as the beam size is reduced below a value such that d/L = 10, the lines
begin to curve and in such a case it is not possible to get a unique value for
the diffusion length.

Experiments were carried out using Si wafers, both p and n type, with
diffusion lengths up to 300um (resistivity range: 0.1 - 102-cm). Figure
31 shows an experimentally determined plot of L/Lm vs d/L, where L is The
diffusion length obtained with a large beam size. Such a plot gives a correction
for diffusion length when a small beam size is empioyed in order to get high
spatial resolution mapping.

It should be pointed ouf that wafers with large surface roughness may show
deviation from the previous résu]fs. E.g, Texture etched silicon wafers and
solar cells do not follow exactiy the same behaviour as shown in Figure 31.
This is due to the fact %haT surface roughness increases the effective beam
size due tTo scattering.

A theoretical study of this effect has also been undertaken.

8.0 ECONOMIC ANALYSIS

ORIGINAL: PAGE 1S
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g1 EVALUATION OF SAMICS MODEL

Tabie | is a comparisch of the actual prices of a Motorola production
operation with both the SAMICS model and the model we have used in our economic
analysis. The actual prices have been assigned a value of 100, and the other
prices have been scaled accordingly. The "actual" and "Motorola' columns
include att the items considered in ths SAMICS model except the "start-up" costs.
Assuming these costs would increase prices in the range of 5 - 10%, the SAMICS
model would produce an overasstimate of 10% - 5%. This is excellent agreement
for a general equation applied 1o a specific operation.

When spacitic categories were compared, however, the agreement is poor.
Part of the disagreement is simply due to the assignment of profit: In the
SAMICS model, the profit is derived from the capital investment, while we
have simply distribufed the préfit as a percentage of production cost. This
factor can account for the difference in the "Labor" and "Utility" cateqgories,
and a major fraction of the difference in the "Capital! Equipment" category.

The SAMICS estimate of The factory component of the cost, however, remains foo

high.

8.2 POLYCRYSTALL INE FEEDSTOCK

A preliminary eccnomic analysis of two proposed methods of producing the
polycrystal | tne feedsftock needed for RTR growth was carried out. The first
method uses conventional CVD to deposit a pelycrystalline silicon ribbon on
a moving substrate (this method has been successful ly demonstrated on fixed
subsfrates, using both SHCI3 and SECI4 as source gases). The economic analysis
assumes SEHCI3 is the source gas, at $7/Kg silicon -- the present price of
trichlorosilane. Figure 32 shows the price of a 100um ribbon as a function of

growth rate, assuming a 10MW plant.
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TABLE |

CATEGCRY ACTUAL PRICE MOTOROLA MODEL PRICE SAMICS MODEL PRICE

Capital Equip- 100 83 161
ment

Factory 100 85 334
Labor 100 100 77
Materiais 100 100 100
Utility 100 100 80
TOTAL 100 97 115
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The second method for producing the poly feedstock uses a plasma deposition
process which is presently under development at Motorola. High deposition
rates have been achieved using SICl,, SiHCi; or SiH, as source gases. The
economlc analysis for this process assumes S,iH4 as the source process at $5/Kg-
siticon (this is the projected cost of the Union Carbide silane production
process). Figure 33 shows the price of a 100um ribbon as a function of growth
rate, assuming a 500MW plant.

Figures 32 and 33 also show the price of the polyribbon obtained using
the SAMICS model. The two methods of obtaining the ribbon price are obviously
in good agreement.

The polyribbon feedstock could thus be sold at a price of ~$7.5/M2,
$0.082/watt or ~3$36/Kg-silicon in a 10MW plant using conventional CVD or at

~$3.5/M2, $0.032/watt, or ~$15/Kg~Si in a 500MW plant using plasma deposition.

8.5 RTR CRYSTAL GROWTH

Figure 34 is a projection of the add-on price of the RTR ribbon as a
function of growth rate. In this case, the SAMICS price estimate is about 30%
higher than our estimate, Figure 35 shows the price of the RTR ribborn including
buying the polyribbon at $0.065/watt (CVD method, produced in a 500MW plant).
The SAMICS price estimate is ~20% higher than our estimate. Using the SAMICS
price estimate, RTR ribbon could be sold at a price of $0.19/waft using poly-
ribbon prouced by CVD, or ~30.16/watt using polyribbon produced by plasma
deposition.

These prices demonstrate that the LSSA goal of 50¢/watt solar celis could
be achieved using RTR ribbon. The RTR process can reach this goal basically
because it uses a minimum of raw materials, can reach a high throughput (>1OOcm2/

min.) per ribbon, and should not require a high labor cost.
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9.0 PROBLEMS

Problems experienced this quarter have been numerous due fo the
retocation of the laser lab and the "Flood" referred 1n the test. These
problems have delayed the program, but no serious problems exist at
present which wili prevent the accomplishment of our major goals.

10.0 PLANS

Plans this next quarter will be towards completion of major
program goals. Emphasis wil! be placed on demonstration of wide ribbon
growth and high efficiency ribbon solar cells. Solar cells fabricated
from CVD poly~-ribbon will receive special attention.

1.0 NEW TECHNOLOGY

The following New Technology item has been developed on this
program:

I+ Description - Polygon Scanner System
Innovator - Dr. Richard Gurtier

Progress Reports — Technical Progress Report No. 14
October 1977

Pages - Pages |, 10, liA, and ||

2.0 PROGRAM PLAN/MILESTONES

Activities associated with the total program are shown 1n the
Program Plan/Milestone charts contained in Appendix I.

13. ENGINEERING DRAWINGS

Drawings of the improved +répspor+ stage and preliminary drawings
of components for the RTR apparatus ége contained in Appendix i1.
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Model 2 RTR Apparatus

WORK BREAKDOWN SCHEDULE NO. 2

MOTOROLA PROJECT NO.
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WORK BRLAKDOWN SCHEDULE NO. 2 (CONT.)

Model 2 RTR Apparatus MOTOROLA PROJECT NO. 2320

DESCRIPTION MAR APR | MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB
- Active Cooling B
Studies
- Passive Cooling R
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¥Yeed Mechanisn o
Development
Q)
& 5
SE
Ly
S
g 2
25 &
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Thermal Stress Analysis

WORK BREAKDOWN SCHEDULE NO., 3

MOTOROLA PROJECT NO. 2321

DESCRIPTION

MAR APR MAY

JUN JUL | AUG SEP 0CT NOV
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JAN

FEB

Computer Code

for Ribbon Thermal

Analysis

Theoretical Modeling

of Growth
Interfaces and
Stresses

Experimental Stress

Analysis vs,

Growth Parameters
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WORK BREAKDOWN SCHEDULE NO. 4
Ribbon Characterization

MOTOROLA PROJECT NO. 2322

DESCRIPTION MAR APR MAY JUN JUL AUG SEP oCT NOV DEC JAN FEB
Structure Analysis L“_J
Electrical Analysis

Chemical Analysis

Development of

Characterization
Techniques

Ribbon Samples
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WORK BREAKDOWN SCHEDULE NO. 5

LEGEND /7

SCHEDULED A COMPLETED

/A DELIVERY SCHEDULE

Solar Cell Dev, Fab and Testing MOTOROLA PROJECT NO. 2323
DESCRIPTION MAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB
g‘g%iicgﬁiin Starts #A A ‘ ‘ A A A A
‘Solar Cell Analysis
Process Development M:
10% 11% 127
Solar Cell Sampl.es A A A A \ 45 .
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WORK BREAKDOWN SCHEDULE HO. 6
Economic Analysis

MOTOROLA PROJECT NO. 2324

DESCRIPTION MAR APR MAY | JUN JUL | AUG SEP OCT NOV DEC JAN

Economic Analysis
of RTR Growth
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WORK BREAKDOWN SCHEDULE NO. 7

Program Management and Documentation

MOTOROLA PROJECT No. 2325

DESCRIPTION
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Documentation

Work Breakdown
Structure

Baseline Cost Est.
Financial Management
and Cost Reports
(NASA Form 533Q,

JPL 3645)

Program Plan

Monthly Technical
Progress Reports

Quarterly Reports
Interim Report
Annual Report
Draft Final Report

Phase I & Phase II
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APPENDIX II

Engineering Drawings
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