@ https://ntrs.nasa.gov/search.jsp?R=19780016875 2020-03-22T04:45:40+00:00Z

General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

' peronautics and Space Administration)
i RC A02/MF 201 ¢cscr 09k

NASA TECHNICAL MEMORANDUM NASA T™M-T5322

STRUCTURED PROGRAMMING - PRINCIPLES, NOTATICN,

PROCEIURE
by
Jost
(NASA-TH-75322) STRUCTURED éBOGRAHBING: N78-24818
PRINCIPLES, NOTATION, PROCEDUEE (National
20 f
Unclas

63/61 212217

Translation of "Strukturierte Programmierung
- Prinzip, Notetion, Vorgehensweisse",
Siemens Aktiengesellschaft, (West Gemany),
Repuit, 209 gf/J/Nou,November 22, 1974, 23 pp.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D, C. 20546 MAY 1978

s STANDARD TITLE PAGE
1. ll-o.nn ".ﬁA A TM-T5322 2, ‘Gonm.um Afeooflof Ne. 2 Recipient’s Catelog Ne.)
4. Title ond Subsitle o ' S. Repest Date 1978
STRUCTURED PROGRAMMING - PRINCIFLE NOTATION 9
PROCEDURE ’ 6. Porforming Orgenizetion Code
7. Auther(s) 8. Performing Orgenizstion Repert Ne.
Jost) : 10. Work Unit No,
9. Performing Orgonizction Nome and Address 11, Contrect or Grant Neo.
© SCITRAN NASW-2T791
P. 0 Box 5h56 13. Type of Report end Period Covered
SANTA BARBARA, CA 108
: ’ 3 Translation
12. Sponsoring Agency Nome and Address’ - .
Netional Aeronautics and Space Administration Y14, spensering Agency Code

Weshington, D. C. 20546

15. Supplementery Netes

Translation of "Stnﬂ:ﬁux_-ierte Programmierung - Prinzip, Notation,
Vorgehensweise", Siemens Aktiengesellschaft, (West Germany),
Report 209 gf/J/Nou, November 22, 197k, 23 pp.

i16. Abstrect

18. Distribution Stetement

17. Koy Words (Selected by Author(s)) .
7 Unclassified - Unlimited

2% Neo. of Peges
21

2. Secwrity Classif, (of this pege) 22,

*‘Unclassified

g 19. Security Classil, (of this report),
Unclassified

STRUCTURED PROGRAMMING - PRINCIPLE, NOTATION, PRCCEDURE

Jost
Siemens Aktiengesellschaft
Text pages/Appendices 15/N ZL anl 4177, pages 1-8
Classification Symbol: 209 gf/J/Nou

27T

Specialty or Main Division: N ZL
Location: Fg ZL VS 3

e ORIGINAL PAGE IS
Date: Novemver 22, 197& : OF POOR QUALITY
Agency: Fg ZL Lab 366
Teicphone Number: 47097 //%h;y:4L
Verificatio:: \. \/, ./\,\.—:

X2y Words: 5-10 termc which characterize the content:

Software, structured programming, program structure, sys-
tematics, symbols, design, testing.

SUMMARY

Structured programming is known as a method of developling a
specially clear programs with low maintenance. At our
3teps have been taken for application of this method.
intended as an introduction to the principle and the prczedure.

The structured programming method brings about transparciicy of
the programs by strict adhesion.to the block principle, and by reduc
tac 2ontrol to only three basic types. A block 1s part of one input and

oné output eac:, FEach program 1s a block, and its inner desi

3

o

= 09
¢ ’

—

<

=~

represented as a continucd block encapsulation. Three cont
types are cllowed for structuring 2 bleck into new blocks:

- sequence, a sequence of two bleocac

- selection: alternatives between two blocks in connection with
& condition,

- repetition: repetition of a block in connection with a fincl

f e
¢riterion.

STRUCTURED PROGRAMMING - PRINCIPLE, NOTATICN, PRCCELCURE

Jost

Siemens Aktiengesellschaft
Text vages/Appendices 15/N 2L anl 4177, pages 1-8
Classification Symbol: 209 gf/J/Nou
Speclalty or Main Division: N ZL
Location: DPg ZL VS 3
Men H ORIGINAL PAGE IS

B “Date: November 22, 107L OF POOR QUALITY

8

7097 /lﬁw,/#

.t as - Iy , { —
Verification: ARV
K2y Words: 5-10 termc which characterize the content:

Software, structured programming, program structure, sys-
tematiecs, symbsls, design, fest .

v Structured programming is known as a method of developing a
specially clear programs with low maintenance. At our
steps have been taken for application of this method. This r:ipcrt is
intended as an introduction to the principle and the prcreaurs.

The structured programming method brings about transpareicy o
the programs by strict adhesion.to the block principle, enc by reduc
tne control to only three basic types. A bloex 1s part of one Iinput &
one cutput each. Fach program 1s a block, and 1ts inncr design can be
represented as a contlinucd blocek encapsulatlion. Throee control [luz
types are ollowed for structuring s blcck into new blocks:

- sequence, a seguence 2f two blecgae

- selection: alternstives between two blocks i+w ccnrncction wilh
& condition,

- repetltion: repetition of a block in connection wivn a JTindl

2 4 L
crliérion.

Structured programs are best represented using a notation de-
veloped by Nassil and Shneiderman, which gives a clear representation
of the block encapsulation. In this report, we will suggest a set of
symbols which can be used until binding directives are republished.

tructured programming also allows a new mcthed of procedure
for design and testing.' Programs can be designed "top down", that is,
they can start at the highest program plane and can penetrate to the
lowest plane by step-wise refinements. The testing methodclogy also
is adapted to this procedure. First, the highest program plane 1is

=

tested, and the programs which are not yet finished in the nzxt lower

plane are represented by so-called "dummies". They are gradually

-

'3
[y
|

placed by the real programs.

&

PA
oBle"L UALITY
o 200 &

CONTENTS
Zach Ay i i

Introduction
Principles of Structured Programming

Notation

Testing Procedure

AL BN
ﬁ%ngon qual™

W)

L. INTRODUCTION

In the development of programs, it 1s customary to represent
the program in the form of a flow diagram. By using connesctors, it is
possible to arbitrarily branch the control flow and to bring it back
togvther‘again. Later on, duriné coding, jumps are put in at the points.
f | The unrestricted use of jumps leads to programs which are meshed
-In a complex manner, and are therefore characterized by the following
features;

- they are difficult to under;tand

- they are difficult to test

- they are difficult to change

- they are difficult to mainfain.

Structured programming removes

branches and node points only according to a fixed basic model. Strict
adhesion to the structure rules allows the possibility of designing &
program "top down", that is, starting in the highest plane. The test
me ceeding 1is

ethod is also based on this principle. The method of pro
somewhat contradictory to conventional practice, where a major prog
15 considered for the most part as a collection of a series of ele
tary,K components, and the overall function is built up {from below in a
certain sense (by bottom-up).

This report gives a short introduction into the nature and
method of structured programming. More detalled information is given in
the extensive reference list in [1].

. Principles of Structure

Structured programming is based on the dock concept. A block
is a program part with one input and one output. The block can only be

entered through the input and only can be left through the output. Jumss
from the outside into the interior of the bloek, and Jumps from the in-
terior of the block into the other program parts are not allowed. How-
ever, subprogram Jumps are allowed. The convention is established that

the subprogram will return to the calling point. The running of the zro-
gram occurs as though the subprogram were contained in the bl

5 .

Each block can be divided into subblocks, and only three types
of control flow are al.owed. It can be proven that these structural
types are sufficien® for all problems.

a) Seq'.ence: a block can be divided into a sequence cof two

b) Selection: a block can be divided into two bloccks which

are executed depending on the conditlon:

1

5 1]
|

a block can contain another block, which 1s

¢) Repetition:
executed several times, until a final criterion is reached.

All new blocks are then divided further, according

structure types.
A program buillt cccordin these principles 1s it:zel
(S =] &

U1l

v.

Its inner structure is characterized by a continued block encapsulation.

A program of this type 1s called "well-structured".

3. NOTATION

Wéil-structured programs, of course, can be represented by flow
agrams. However, a notation of Nassi and Shneiderman is more advan-
tageous, which gives an exact representation of the block encapsulation.
is is brought about by drawing the symbols inside one ancther, and not
next to one another as in a flow diagram. In this way, violations of
the structuring rules are practically eliminated. The symbols of struc-
tured programming are not specified yet in norms. Usually, they are
selected so that they can be directly transformed into a statement of
the programming language which is used later on. At the prcsent time,
only the assembler language is a candidate for communications applica-
tions, One has relatively a large amount of freedom in the selection of

[

the symbols, because no specified language constructions have to be con-
sidered. We suggest the use of the following symbols; they contain the
basic types and are complemented by several varlants which are often

ed. Figures i-3 show the symbols and their flow diagram equivalents.

3oL . Blogk

Each block is represented by a recrvangle. .The size and side ratio are
arbitrary. The block can be embedded in a larger block, and itselfl can
again be decomposed in the blocks.

- - /5

3.2 Branches

ORIGINAL PAGE IS
OF POOR QUALITY

This symbol describes the branches based on the condition bed. If the
condition is satisfied, block a is executed, and if it 1s not satisfied,
block b is executed. Each of these blocks can be empty. The sides for
J and N can be selected arbitrarily. The symbols can be drawn asymme-
trically, for example, when a block 1s empty, and the other must be sub-

divided further.

A CASE

3

T

This symbol describes a multiple branch; depending on the value of the
variables i, exactly one of the blocks a, b, ¢, ... 1s executed.

3.3 Loops /9

0o i:m)n[,k]

Q

This symbol describes a counting loop.' Block a2 i1s executed several
times, and the loop index i runs from an initial value n to a final
value n. The increment is k. If k is missing, it 1s assumed to be

-

-

DC WHILE bed ‘ 30 UNTIL bed

o ' -

These symbols descrlbe data-dependent loops. The repetition o: plock
2 1s controlled by the condition bed. It 1s interrogatcc before exec-

-

ution of block a.

In the WHILE form, bed is a repetition condition. As long as the
condition is satisfied, block a 1is repeated.

In the UNTIL form, bed is an interruption condiction. As soon &s
the condition is satisfied, the loop is terminated.

By negation of this condition, one form can be transformed into
the other. : /10

If upon entry into the DO-block in the WHILE form, the condition
is not satisfied, but the condition is satisfied in the UNTIL form,
then the block a 1s not execucsad.

a . Co
l :

D0 WHILE bed ‘ DO UNTIL bed

Also these symbols describe data-dependent loops. In contrast to the
previous ones, the condition is interrogated zfter execution of block
a. This means that block a 1s executed at least cnce.

- L

What was stated above applies for the condition for tane WHILE
and UNTIL form. '

CYCLE [nameT)

ORIGINAL PAGE IS
OF POOR QUALITY

This symbol describes a loop which can be interrupted at an
arbitrary point. The interruption point is characterized by the spe-
cification BREAK inside of block a. Several interruptio
oe present.

If several CYCLE's are encapsulated within one another, each
can be characterized by a name. By means of BRIAK, one can spe-
¢ify which CYCLE is to be interrupted. If the name 1is not given in
BRZAK, then always the innermost CYCLE which encloses BREAXK 1s assumed.

The CYCLE construction can only be used when the other loop
constructions are not appropriate.

. DESIGN PROCEDURE /11
The development of a well-structured program i1s done in several

B s

unirform steps. One starts in the highest program plane, and advances
tc the lowest plane by continued refinement. First of all, the rough
svructure of-the entire program is outlined on a sheet of peper. Blocks
-.are-used- for which relatively large program parts are avallable, but in
‘this first phase, they are not given any additional structure. Each
of these blocks has a name, and is detailed on an additional sheet in
the next lower plane (Figure 4). This procedure 1s repeated until only
blocks are present which consist of é linear execution plan.

Sheets 5 and § show this procedure, for example, of an assembly
controller program. Figure 5 shows the rough structure. The pro

consists of two blocks. The first one

w
ct
)
W
w
ot
g W
3
ct
b
= | -
(139
L5
Q
5
ot
'l
5 |
o
"
5O
}Jc
o

S ted once during the turn-on proced

It describes the typical endless loop, which is charac

eal time systems. The body of the CUCLE is

of seven blocks. The second block is a branch, and 1¢
ou

empty. The third and fifth blocks are counting loops. The seventh

block 1s a data-dependent block. All of the blocks given capital let-
ters represent major program parts, which have to be structured fur-

ther The bloca STIMULUS DETERMINATION is given in detail in Figure
6. "It again coc:xtains & block called SYMBOL PREPROCESSING, which must
be detailed in the next lower plane.

According to the advance from the highest to the lowest pro- /12
gram rlane, this method is called the "top-down" design method. One
f its advantages 1s that it decomposes a major complcx problem, which
cannot be overseen entirely into several planes naving a limited com=-
c

plexity. The use of blocks which only later on have to be structured
can be interpreted as though in each plane one had available a very
high programming language with a corresponding statement. The func-

tion of each statement i1s defined in the next plane, until one comes
fo the lowest plane which contains the statements of the actual pro-
gramming language. When the problem is decomrosed into several planes,
one must make sure that units are created which translate the sta
structure of the translated program. Each sheet should represent a
module which 1s closed off by itself. All of the mecdules then will

lie next to one another in the working memory, even though ac

npther ™
10Caer, <N

rn

to their functions they are encapsulated within one

exceptional cases, it 1s also permissible to embec the code off a lower
plane into the next higher plane. For example, the block SYMBOL PRE_
PROCESSING in Figure 6 will be glven on a new sheet. FHowever, the cor-
responding program can be included in the modulus STIMULUS DETERMINATION.
In any case, in a design one must make sure that the sheet 1imits at the

same time also represent module limits.

5. PROCEDURE DURING CODING

The coding of a program in the structured representation 1s done
just as for a flow diagram. Zach symbol is converted according to
1ts meaning. In the higher prog amming languages, such &s ALGOL or
PL-1, this is especially simple, beca se a language element corresponas
directly with each siructure elemen In the Assembler lan t 35

a
necessary to also program the logic implied by the symbols, un
responding macros are created.

When the control flow is divided into simple branches and mul-
tiple branches, it is useful to work out blocks next to oné anothe
a fixed sequence, for example, from the left to the right. It then is
o)

ct
(e}
ct
re)
()
e
b

o)
ct

found advantageous to always put emptly blocks in
Pigure T shows a segment from a well-structred program, and th resul-
ting structure of the primary code. If one obtains blocks which are
only completely structured on the next lower plane, then two possi
1ities exist, which were indicated In the previous section: the block
can then ue looked upon as an independent quule. It is then necessary
to supply and call this module by a code at the proper location. How=-
ever, one can also drop down to the lower plane and embel the coce in-
to the higher plane. Figure 8'shows the two possibilitlies for & simple

6. PROCEDURE FOR TESTING ‘ "

The top-down method of procedure éuring the
also leads to a corresponding test methodology. Testing starts &s
scon as the rough structure of the progranm ras been specified, and
coded, in the highest plane. In order for the entire system to be able
to run, the non-structured blocks are replaced by so-ral’leld:
ndummies". These are program parts which do not yet satisly the func

, ' ORIGINAL PAGE I8
a ‘A OF POOR QUALITY

anéd which later on will be required at this.point, and which at ¢t
point orly formally satisfy the requlrements at the interface. Uslng
these cdurmies, it is possible to test the uppermost program planes.
TP wo errors are found, then the second plane is tested. The dummies
are renlaced gradually'by the real blocks, and sonetl i
occur for blocks of the third stage. h*s process 1s continued untl
all of the real blocks are available, and hav e been
The "top-down" procedure is exa ctly opposi

testing methodology, where one goes from a component test throuzh a
composite test up to the tota test. The advantage 1 3
+rhat one can start testing very early, anc each component
ia the true program surroundings, and no

rouna-ng. The dummles do represent an additional effort. Zoweve
hecause they are used, test environments for conventional components

end composite tests are not reqguired.

1 Sorgenfrei, "Structured Programmi“o, a Method of DevelopiIng
F*ee Programs" 209a/Sor/Ch of May 2, 1974.

OKIGINAL, PAGE 1§
POOR QUALITY

Figure 1:

i .
- o b ce e e e

i ,
. i

C e

Symbols of Structured

-
-
.....
.
-
)

L
!

ewv e

Programming and Flow Diagram Equivalents.

ORIGINAL PAGE IS
OF POOR QUALITY

idVé-

£

agram equ

-~

34

p e

L form.

AT
N L

Symbols of structured programming and flow
lents (continuation).

ke

or the U

~

J and N must be exchanged

o
-

. -
.
4
-
- o
1 1 e 1 = v
;. 13
RELAEE) -
- A N s .
. : : g '
* e g em—e® B @ - - - - - — pap— : - - s S L ELE g tee wec @ mew e = 4 oiia -
. ~ . % N :
] e . 1 ’ ¢ ! ®
S| e frw s R T i g« = g cege i messe e b ey e e w emet Tgmea e e
L S . s . . ¢ et s 3.3
S 2 s 0 T)% [R A
- g weew - -— .- ebae o -~y . ..u«.‘.l‘ol.,u.n..lA. - o - o— o ~omeo 3 3 -
. - ' : : . : : t ! i “ . . i 1 i
: [~ A e RS !
- oo o ° 3 . -y L e AR LR SR ia. [I = b e ook = 2reme b - Seone'R oves P
2l S5 F ok oz 1 St SNl EHEN : . A
2 ' £ " i ' ' i . : g waiE ¢
- o - . v .- - ot st L . - - . # LugT-e v - ses s e sem o . -
: e ! == < fa | Sty . SRR ey ! @
iy ' [: T ST | . i ' t-
- - . « . . -9 . ‘ u.i..n - ceime g . R 69 + roprroed o Geew - . s Pid 9
s . i .
: b e b ! { " Ty R i
. - e i B e e mrered iy S 8- 3 —omeeee oo 3 et S
. 3 : ' ?] » ,?
Rl Y e Vooyo T S e s 2
. Lo . c8 mmgeiiie sme s mmpeiemmia s g e $ee g gomegensmiadon 8 b s ol o9 nd
. ‘ i ' : i . 3 $ 1 “ i . 0 .
. i - . ” ' : i . t .
L e e e) o et B et S
. H H [!
1 . . H i
. . aEi e L Ly e e e ..-d..:_:...... o -% s
| | . i 3
i ; g o I e D
~ . . B }ormmemm o me b g bmiie o Semese o
. i . H 1aoik
- / i . - ; '
n - srm- . — e e = B b b " B BB g B @ E
o 3 ’ G O T s L =
Ml'...|..I.unlc-O.l.t.v..a.,:»l iy g —
. 5 Al
g o0 LR T I R 0=
u - . . n oo o - o . ws A(l..ltluuur. 9 - - . w
. 1 . :
-3 . . 4 o ' ' | m n
[s .
.- S ACTRCTEDE SEERRER-SR: SIS S et SO O, ! .
i
'
o i e e : (@]
. 2 o st wmasastpie = messesicie o ot .
D ! i " 5 s ' ~ [} . D
.v . 0 e e e Iﬂlllel-..v'.ﬂl ——— e
: H H v 7 . : ' . '
) - .* . - - v o - - PO RPIST (e DRSSPI S LA TR i & SN A U | . -
] . ' i .]] ' £ . . | " v .

Flgure 2

-

DO WHILE bed o d 2 bc,J.>

J and N must be exchanged
for the UNTIL form :

Sappdee il

o= - - —

|J“Q?‘I:’_E
RREAK

|
Lo

Figure 3: Symbols of structured programming and flow dlagram equliva-
lents (continuation)

op Joad umop-doy, :y

=

T s B

. . . es ® . T T o P, o T S S SRR e R s T R e ARG 1 e i SN

.......................
....................................

Assembly Contrdoller Program

Startroutine

Cycle . §

Adjust neutrsl relay, output data

N Input available?

e

s

Processing

A

DO Assembly address = 0, 1

i Stimulus Determination
{

Adjust By Stable Relays

LO Assembler Addéress = C, 15

Time-Structure Processing

Stimulus Response

Setback Adjustment Information

DO UNTIL Timing Change

Routine Test

T
|
|
|
|
-

uuKHNAlfPAGEls
OF'POOB,QUAIITﬂ

Figure 5: Asscrbler Controller Program - Rough Struc

STIMULUS DETERMINATION

Simultaneous devermination of Guaranteed Ramps for all
Indication Points

No indication with a ramp?

J N
DO Indication Point = 0, 7
N J
Ramp = Stimulus
J
STIMULUS Store Stimulus
PREPRCCESSING

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 6: Detail of the STIMULUS DETERMINATION Block

Figure

rd .

i

a
bed
J ‘ N
b c
L ’
Code for a
!
I
i Calculated and test bed
[
| I
._i_. — Jump to ¢ at XN
: |
b
g Code for b
:‘ -
iy
r— — a Jump to d
-l o
't
Code for ¢
3
2 N N, .
t
k code for d
Converslor of structured representation into program code

bcf&,/’f//27/1

b4

Code for a

Code for c

calculate and test bed

Jump at N

code for Bl

|
'g_.'.'.
A

a3t

L
F

Jump back

Figure 8: Handling of subordinate blocks

a) independent module

b) embedded

———

1

~

]. =3

!
1
!
1
\
]
]
1
Yome
Y -~ M - ~ ~ -~
R calculate and tes
! bed
i1 JcQ
t
Ol |
—e e
! 2y =A NI
Ay Jump TO N
%!
¥ A -
£l cocde for 3,
by -
1A .
—_—a— =eh
E"
by
.. - -
b coce Tor c
&
—}';
T

