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SUMMARY

A Lagrangian method is developed to solve the Euler equations of gas
dynamics. The solution of the equations is obtained by a numerical computa-
tion with the well-known Flux-Corrected-Transport (FCT) numerical method.
This procedure is modified so that the boundary treatment is accurate and
relatively simple. Shock waves and other flow discontinuities are captured
monotonically without any type of fitting procedures. The Lagrangian method
is employed so that the problem of mesh generation is completely avoided.
The method is applicable to all Mach numbers except the low subsonic range
where compressibility effects are small. The method is applied to a one-
dimensional Riemann problem (shock tube) and to a two-dimensional supersonic
channel flow with reflecting shock waves.

I. INTRODUCTION

One of the outstanding problems in numerical, transonic-flow calcula-
tions is the exact treatment of boundary conditions. Dramatic changes in the
transonic flow field are caused by small changes in the boundaries, thus
exact computation of the boundary conditions is mandatory. For example, a 1%
change in the thickness ratio of an airfoil can change the total lift coeffi-
cient more than 10%. Such a strong influence is also seen in the effect a
body has on the flow over the airfoil in a three-dimensional wing-body con-
figuration. Furthermore, the curvature at the leading edge of a transonic
airfoil has a strong influence on the downstream flow field. Thus, accurate
drag polars, for example, are difficult to compute efficiently by present
numerical methods.

The current workhorse for numerical computation of inviscid transonic
flows is the small-disturbance theory (ref. 1). It can handle steady,
unsteady, inviscid, and three-dimensional transonic flows. The boundary
conditions are easily satisfied by the small-disturbance theory, but not all
types of aerodynamic configurations or flow situations are properly computed
within the small-disturbance assumptions. The strong feature of the theory
is the simplified treatment of the boundary conditions. The boundary condi-
tions (airfoil slopes) are applied on some mean-surface slit instead of the
actual airfoil surface. Multielement and wing-fuselage configurations are
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thus easily handled. The main drawback of the small disturbance theory is
that it is not valid at the wing leading edge, especially wings with blunt
leading edges, such as the shock-free peaky airfoils (ref. 2), and for wings
at high angles of attack. Another disadvantage is that the small-disturbance
shock jump conditions no longer satisfy the Rankine-Hugoniot relations for
Mach numbers greater than 1.3.

A more exact approach is to use the full potential equation of transonic
flow. These include the method of Jameson (ref. 3) and the hodograph method
of Boerstoel (ref. 2). While both methods can treat the boundary condition
accurately, they are not straightforward and simple. The Jameson two-
dimensional procedure requires that the exterior flow field be mapped numer-
ically into the interior of a circle. The hodograph method is limited to
two-dimensional flows, with presently little hope for extension to three
dimensions. Of course the potential equation has the same limitation as the
small-disturbance equation in that the flows are limited to isentropic flows.
Thus no shock Mach numbers greater than 1.3 are allowed.

The Mach number limitation can be overcome by using the full Euler
equations. This approach is taken by the finite volume method (ref. 4), the
body coordinate transformation (ref. 5), and the Euler-Lagrange method (ref.
6). The most promising seem to be the methods of Rizzi and Thompson. How-
ever, the body coordinate method of Thompson is rather complicated and
numerically inefficient, especially in the case of an oscillating flap-
airfoil configuration. The Euler-Lagrange methods of the Los Alamos group
(ref. 6) are rather disappointing for transonic flows in that the shock
waves are not captured very well and their schemes require large computa-
tional effort. The good feature about all the above approaches is that the
boundary conditions can be included to the same order of accuracy as the
numerical schemes employed.

Rather than try to improve any of the above methods, we have chosen a
different approach altogether. It is a purely Lagrangian approach, unlike
the methods of Harlow and Amsden, which still use the physical coordinates
as the independent variables. In the purely Lagrangian approach the inde-
pendent variables are the Lagrangian coordinates (ref. 7). To obtain the
Lagrangian equations of gasdynamics for inviscid, adiabatic and ideal gases,
the two-dimensional (say) Euler equations of gasdynamics are transformed
into the Lagrangian divergent free form. To the resulting set of equations
expressing conservation of mass, momentum, and energy, are added the two
kinematic relations defining the location (x,y) of a fluid element identified
by the Lagrangian coordinates (a,b). The numerical computation is carried
out in the Lagrangian plane.

The salient feature of this approach is that the physical plane is
automatically transformed into a rectangular computation plane. No explicit
transformation computation as in Thompson's method is required. Another fea-
ture is that the initial distribution of fluid elements or particles is com-
pletely arbitrary. Thus more particles can be clustered close to the
aerodynamic configuration for better resolution. The secular mesh distortion
which usually destroys the accuracy of the Lagrangian calculation does not



occur for transonic flows without shear except at stagnation points. All
these points will be discussed in section II along with the derivation of the
governing equations in terms of an arbitrarily moving mesh system given in
Appendix A.

The main disadvantage of Lagrangian methods are the lack of good numeri-
cal solution techniques applicable to them. Most of the present "standard"
numerical methods were developed for Eulerian systems and do not necessarily
work well for Lagrangian systems. Much experimentation with different types
of numerical methods was required to arrive at the best method. The results
of this experimentation are given in section III.

Several sample problems solved by the present approach are presented in
section IV. These include a one-dimensional Riemann problem (bursting dia-
phragm) and the ordinary oblique shock wave reflection off a channel wall for
a two-dimensional case.

In the following sections, we restrict ourselves to one or two dimen-
sions. However, extending the Lagrangian approach to three dimensions is
simple and adds no extra complexity other than an extra independent variable.
The three-dimensional Lagrangian equations are given in Appendix B.

II. FORMULATION

Governing Equations

The equations of gasdynamics in two dimensions for an arbitrarily moving
coordinate system are in conservative form (see appendix A for the derivation),
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The four equations for xa, xfc, ya, and y^ are obtained by differentiating
the last two equations. They are added to keep the system strongly conserva-
tive. The first eight equations are sufficient to obtain the velocity,
density, and pressure field; the last two are required only to locate the
position of the moving coordinates.

The fluid velocity components resolved in the moving coordinate system
(a,b) are given by

M

M

vb xb

TU'TV

(2)

The Jacobian matrices of system (1) are given by 8F/9U and 9G/8U , and the
system can be rewritten as

U + AU + BU, + H = 0
t a b

(3)



with
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and those of B are
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, (v - v m ± T

0

where c2 = YP/P and y = ratio of the specific heats.

The system of equation (1) is the most general set of equations describ-
ing two-dimensional, inviscid, ideal gasdynamics in any arbitrarily moving
coordinate system (a,b). The equation describing the conservation of mass,
momentum, and energy may be written as
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where superscript M is defined by equation (2). The conserved quantities
are U; (u - u^) and (VM - vy) are the (a,b) components of the relative
convection velocity; and S are the source terms. The eigenvalues of the
Jacobian matrices of equations (4) are

M M M

= (vM - v\ m ' m —



It is interesting to note that the eigenvalues depend strictly on the
convective speed and the relative velocities between the convective speed and
the sonic speed times some cell distortion factor. This fact remains true
for any arbitrarily moving coordinate system. Initially the two coordinate
systems can coincide so that x = a and y = b, but this is not required.
The equations may now be specialized by specifying the mesh velocity.

Eulerian system.- The Eulerian system is characterized by a stationary
M
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The last six equations are trivial and contain no unknowns,
of the Jacobian matrices are

The eigenvalues

X = u, u + c, u

B = v, v + c, v

Thus we have recovered the familiar Eulerian description of the two-dimensional
gasdynamic equations. If we set the mesh velocities to a nonzero constant,
we obtain a system of equations very similar to the Eulerian description
except for the convective velocities. Let um = constant, vm = constant.
This results in xa = 1, y^ = 1, x^ = 0, y^ = 0, and J = 1, since we have
x = um(t - tg) + a and y = vm(t - t0) + b. The system of equations becomes
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Again the last six equations are trivial. The eigenvalues now become

A = (u - u ) , (u - u ) + c, (u - u )
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We have gained the flexibility of controlling the magnitude and sign of the
eigenvalues with no extra computational effort beyond the regular Eulerian
description. However difficulties can arise at the boundaries.

Parametric system.- Suppose we do not require that initially x = a and
y = b, and let um, vm be arbitrary; a parametric system (ref. 7) is then
obtained. For comparison with the Eulerian system assume um = vm = 0. We
then obtain
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The last six equations are the same as in equation (6) and are not shown.
The eigenvalues of the Jacobian matrices are

M M . cu ± 22 u

and

,M ± 4 Jx2 + M

This set of equations is the transformed Euler equations in conservative form,
where the usual notation is a H 5 and b = n with £ = C(x,y) and n = n(x,y)
being arbitrary.

Lagrangian system.- The Lagrangian description is obtained by setting
UH, = u and vm = v, that is, the mesh moves with the fluid.
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Here only the first equation is trivial and states that the mass of an element
of volume Aa Ab remains constant. The eigenvalues of the Jacobian matrices
are

0, ±

and

B5,...,10 = 0

The Lagrangian description of the gasdynamic equations in three dimensions is
similar to the two-dimensional case. It is given in appendix B.

The eigenvalues of the Lagrangian system are not directly dependent on
the flow velocities but depend strongly on the mesh configuration. The eigen-
values are identical, whether the gas is polytropic or isentropic, and whether
only the first four equations of the system (8) are used to determine the
Jacobian matrices (4x4) 3F/9U and 9G/3U with xa, x^, ya» and yb held con-
stant, or if the full system of eight equations is used to obtain the (8 x 8)
Jacobian matrices.

Before we go into a discussion of the properties and modifications of
the Lagrangian system (eq. (8)), we will discuss the function of eigenvalues
in finite difference methods. It is well known that a system of one-
dimensional hyperbolic equations can be decoupled. If

U.. + [F(U)1 = 0
t • 3.

then

-f AU =0t a



where _>.
A 8F
A = —

3U

is the Jacobian matrix. We can now find a similarity transformation T which
will diagonalize A, namely

C1

C2 0
T"1 AT = I " IE C

The C^'s are the eigenvalues of the matrix A and are real for a hyperbolic
system. The system becomes (T-1Ut) + T^ATCT"

1^) = 0. Assume that T can
be brought under the differentiation (true, in general, only for the linear-
ized case) and set u = T-1U to obtain

The system is now decoupled

u. + Cu
t a

(u±) + Ci(ui)a = 0

We now solve this system by a Lax-Wendroff scheme. The truncated form
of the actual differential equation, termed the modified equation by Warming
and Hyett (ref. 8), being solved by the finite difference scheme is for con-
stant C

(U1)t + Ci(ui)a + - ( A a 2 - c At
2

)] - 0At'

where Aa, At are the spatial and temporal step used to discretize the sys
tem. The Courant-Friedrich-Lewy number CFL = CAt/Aa < 1 for stability of
the scheme. If CFL = 1, the numerical scheme solves the original differen
tial equation exactly.

Unfortunately, for a system, the Ĉ 's are not constant, thus the
CFL = 1 condition can be satisfied for only one equation; the others will
introduce truncation errors. For the Lagrangian system, however, the eigen
values can be adjusted by an appropriate mesh configuration. We now choose
the mesh points so that (the signs of the eigenvalues are irrelevant)

- * = constant

10



for all points in the computational domain. The modified equation now becomes

(ui). = X(u±) +-£ (Aa
2 - X2At2)(Ui)

t. o O

(Aa2 - X2At2)(Ui) + o[xn(Aa2 - X2At2)] = 0
aaaa I \ / J

Setting the time step to the maximum allowable At = Aa/X results in

+ Uu) = 0

In other words, the finite difference scheme solves the system of partial
differential equations exactly. Two sources of error can still occur; namely,
the inaccuracies in determining the mesh configuration and nonlinearity. The
above analysis is for the linear case only. For the nonlinear case such as
the inviscid gasdynamic equations, the above procedure of mesh adjustment
will increase the accuracy of the numerical scheme by at least one order.
This can be seen from Lerat and Peyret's analysis of the numerical solution
of the inviscid Burger's equation by a generalized Lax-Wendroff scheme.

The above ideas are still in flux and no numerical verifications have
been made. This is the end of the digression and now some properties and
variations of the Lagrangian system (8) will be given.

Jump conditions for Lagrangian system.- Let o(a,b,t) = 0 define a dis-
continuity surface in the Lagrangian space, then the jump conditions of system
(8) are

• + ^ + ^ = °
where [f] indicates the jump in the value of f in crossing the discontinuity
surface a = 0. The last two equations of system (8) are not included since
they do not enter in the solution of the previous eight equations.

Total enthalpy form of the energy equation.- Consider the energy equa-
tion

[pJE] |£ + [JpuM] || + [JpvM] |£ = 0
o L oa 0 D

or setting on

M a , M b ^M

|f + Jpq-M. Va)l= 0

11



We have

and

hence

9a _ 3a 3a
9t ~ 3a 9t

da
dt

9b at o

3a , 3a , 3a= u —— + v T— 4- ——a 3x a 3y 3t

and similarly for

3t

Ik
3t

9a da

3b 3b
ua 3x Va 3y

The Cartesian velocity components of the discontinuity surface in the
Lagrangian coordinate system are ua and va. Substituting into 9a/3t re-
sults in

3o /ybUo - *bvo\ 9o /-Va + xava\ 9o
3t ~ \ J / 9a " \ J / 9b

or

12. = _ M 12. M 9o
3t Uo 3a ~ Va 3b

Vo

M

(10)

where ua and va are the Lagrangian (moving mesh) components of the discon-
tinuity surface in the Lagrangian coordinate system. The discontinuity veloc-
ity in the Lagrangian system can be expressed in terms of Cartesian velocities,
that is,

+M -+M -vq = q - qM M M

where qoe» Q the discontinuity and mesh velocity, respectively, in the
Cartesian system given, however, in terms of the Lagrangian components. The
mesh velocity is, of course, the fluid velocity. Hence

9o
-37

-*M Va - q M
ac Va

The energy jump condition is now

12



In terms of the differential equation this becomes

£ J'(E + ?)+£(Jp«,")+ &(JPv)- °
If the flow is stationary, q =0, the energy equation reduces to

The equation shows that the total enthalpy ht = E + p/p is constant along a
particle path if the flow is stationary. Since equation (13) was derived
using the proper jump conditions (eq. (9)), we have the condition that the
total enthalpy is not discontinuous across o = 0, that is,

[ht] = 0 (14)

for steady flows, even for Lagrangian systems which always contain time deriv-
atives.

Pressure form of energy equation.- The energy equation of system (8)
can be reduced to

* / \
- 0 (15)

by combining the equation of system (8), assuming the polytropic (not isen-
tropic) gas relation

and noting that

3j-37
Another form of equation (15) is obtained by combining it with the continuity
equation and the state equation relating the entropy in terms of the pressure
and density for polytropic gases

s = s0 + Cv In —
Py

to obtain

= 0 (16)

13



The physical meaning of the-energy equation (15) is that the entropy, s, of a
fluid particle is a constant for adiabatic flows. This is as expected if the
flow is continuous. Unfortunately, equations (15) or (16) do not satisfy the
jump conditions (eq. (9)). The proper form of equation (16) must be derived
from the entropy transport equation which is not included in the Euler Equa-
tions of gasdynamics. The Lagrangian form of the entropy equation for adia-
batic flows is

-ĵ - (pJs) > 0 (17)

which has the jump condition

tpJs]|f > 0 (18)

which is quite different from that of equation (16). However, equation (15)
or (16) is still useful for transonic flows where the entropy changes are of
0(Ap3).

Lagrangian Coordinates

The Lagrangian coordinates serve to identify the fluid particles. At
some initial time a distribution of particles (or cells) is chosen in the
physical plane (fig. 1). Each particle is identified by the Lagrangian co-
ordinates (a-£,bj). For simplicity we set a± = i, and bj = j where
i = 1,2,...,L and j = 1,2,...,M with the total number of cells being L*M.
The Lagrangian plane will then consist of unit square cells with any bound-
aries appearing as slits as in figure 1. Single or multielement boundaries
are possible. Unlike the procedure followed by Lamb (ref. 7), the initial
distribution of points is not uniform, that is, a £ kjx, b ^ k2Y, ki, \f-2
are constants. This nonuniform distribution allows the particles to be
clustered around boundaries and be identified by integer values, which sim-
plify the numerics.

Boundary Conditions

There are four types of boundary conditions to be considered: inflow,
outflow, free stream or far field, and impermeable surface condition. All
boundary conditions are first predicted by the FCT method and then the follow-
ing procedures are utilized to correct the predicted values. This is very
similar to Abbett's procedure (ref. 9), except his is restricted to steady
supersonic flows. To predict the boundary terms by the FCT method without
turning the flux limiter off, the flow field is linearly extrapolated two
points beyond the boundary. The procedure will be derived for two dimensions
but it is also valid for three-dimensional flows.

The inflow boundary condition is simple. The dependent variables of
system (8) are set to the specified inflow conditions. The outflow boundary
is not so simple. If the flow is supersonic, then the particles along with
their properties are allowed to flow out undisturbed, that is, a linear

14



extrapolation will do and will not disturb the upstream conditions. If the
outflow is subsonic, then some outflow boundary conditions are required to
set the dependent variables of system (8). What these outflow boundary con-
ditions should be is yet unknown.

The far-field boundary condition will be treated similarly to the imper-
meable surface boundary and this requires that some analytic representation
of the far-field streamline be given. Let both the far-field streamline and
the surface streamline be given by

y = f(x) (19a)

We have used the term streamline loosely. It includes particle paths and
thus the streamlines coincide with the Lagrangian coordinate b = constant.
Differentiation (eq. (19a)) with respect to time obtains

yt = f'(x)xt (19b)

We assume that f(x) is differentiable as many times as necessary. From the
last two equations of system (8) we have

xt = u (19c)

yt = v (19d)

thus v = f'(x)u (19e)

Differentiating equation (19a) with respect to "a" and equation (19b) with
respect to "t" obtains

ya = f'(x)-xa (20a)

vt = f'(x) • ut + f"(x) • u
2 (20b)

The two momentum equations of system (8) are cross multiplied and summed to
eliminate the p^, terms to obtain

where use has been made of equations (20a) and (20b). The time may now be
eliminated by the x-momentum equation of system (8) to obtain

xa(l + f'2)pb - (xb + ybf')pa + (PJ)u
2f" = 0 (21)

15



This is the normal momentum equation in the Lagrangian coordinates. Since
we are solving system (8) by a time-splitting procedure, the boundary values
along the two boundary streamlines are required only during the "b" sweep.
Hence we are only solving part of system (8); namely,

at 9b

Only G is required along the two streamlines. G is determined by u, v, x ,
ya, and p. We have equations (19a) , (19b), (20a), and (21) available. To a

obtain the remaining relation we need to specialize the equations to steady
or unsteady and isentropic or poly tropic flows.

Polytropic unsteady.- If the flow is unsteady and polytropic, then we
simply extrapolate x and u to surface, y is computed and xa, xb and yb are
obtained by second order accurate finite differencing, either central or
one-sided as required. The pb of equation (21) is approximated by a one-
sided difference and the pa by a central difference to obtain a scalar
tridiagonal system for the unknown p at the surface. The density is
obtained from the continuity equation

- xbya)

v from equation (19e) and E from the equation of state.

Polytropic steady.- If the flow is steady, then use is made of the
steady-state version of the energy equation

ht - W + * C°nStant (22)

Substituting this into the normal momentum equation to eliminate the u2

term obtains

2YJf" 2(pJ)f"h
xa(l + f '

2)pb - (xb + yb f •) pa - (y . i}(i + f.2) P - (i + f »2) (23)

The same procedure may now be followed as previously except u is not
extrapolated. Once p, xa, ya, xb, and y^ have been obtained, u and v
result from equations (22) and (19d), respectively. The determination of
E is also the same as previously described.

Transonic unsteady or steady.- The only additional simplification in
transonic flows is that it can be assumed to be isentropic, thus

p = kpY (24)

16



The density is now computed from this relation and y^ is computed from

. fupl _ ]/xb L p b aJ/a

to keep the system consistent.

Parametric form of y = f(x).- If the bounding streamline behaves such
that f and/or f'1 do not exist, then equations (19a,b) and (20a,b) are
replaced by their parametric representation. Let the arc length along the
curve y = f(x) be given by a, then equations (19a) and (19b) become

y = n(o) \
/x = 5(0)

vx = u-ya

and equations (20a) and 20b) become

y x = x y (20a')Ja o ajo

x3v = y x2 u + (x y -y x ) u2 (20b')o t •'oat a aa 7a aa

Equation (19a') is the parametric counterpart to equation (19a) and n and £
are given continuous and smooth functions of a. We require that the function
be smooth so that y and x remain finite. The continuity condition guar-
antees the boundedness of y0 and x . These restrictions mean that the
streamline is continuous without any kinks or sharp corners.

III. NUMERICAL SOLUTION METHODS

The numerical solution of system (8) is obtained by an explicit hyper-
bolic differential equation solver. Of the ten equations of system (8) only
nine need by solved by the D.E. solver. Unfortunately, most of the present
numerical schemes have been devised for Eulerian systems and it does not
necessarily follow that they will be efficient for Lagrangian systems. The
procedures devised for Lagrangian or Euler-Lagrangian systems, such as by the
Los Alamos group (ref. 6) are not applicable to system (8). Most of the vari-
ous Lagrangian procedures devised by the Los Alamos group and others operate
on the Cartesian space and not the Lagrangian space as required by system (8).
We also required that any discontinuities in the flow field be captured accu-
rately without excessive and spurious nonphysical oscillations by the numeri-
cal procedure, as we did not want to add the additional complications of shock
fitting procedures.

We finally required that a time-step splitting procedure be used so that
the number of equations to be solved during each sweep in the two spatial
directions is reduced to six. This requirement is necessary to make the
numerical computation in the Lagrangian system competitive with that in the
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Eulerian system. The Eulerian system requires that four equations be solved
during each sweep. For these reasons several different numerical schemes
were tried of which only four will be given here. They are the MacCormack,
generalized Lax-Wendroff, Shasta flux corrected transport FCT, and the "fourth-
order phase error" FCT schemes. All schemes will be given for the one-
fimensional, nonlinear, hyperbolic system ft + [F(r

t)]x+ S = 0. Here
(x,£) _^is a column vector of m components and the Jacobian matrix

A = F'(f) has m real and distinct eigenvalues A(f).

MacCormack and Generalized Lax-Wendroff Schemes

The MacCormack schemes are special cases of the generalized Lax-Wendroff
schemes devised by Lerat and Peyret (ref. 10), thus only the latter schemes
will be given. The schemes are given in a predictor-corrector form:

P: f,- (1-B) f'+Bd-00 (Fi+l-Fin)-

n-l
C:

+ (1 - a - 3) FI_I + F - F±_

where

t = nAt

x = iAx

a = At/Ax

a,3 = two arbitrary parameters with a ̂  0

The predictor f^ is an approximation to the solution at x = (i + 3) Ax and
t = (n + a) At. The schemes are three-point, second-order accurate for'all
values of a ^ 0 and 3, and stable for Amaxo < 1. Setting a = 1 and
3 = 0, 1 yields the two MacCormack schemes. Lerat and Peyret determined that
the optimum values are ct = 1 + /5/2(=2.118) and (J = 1/2 using the inviscid
Burgers equation as the model system in their analysis of the truncation
errors. They were not able to analyze the truncation errors using the full
Euler equations. If the scheme (1) is applied to a linear system ft + cfx = 0,
then the actual differential equation, called modified equation by Warming
and Hyett (ref. 8), solved by the scheme is

f + cf + f (Ax2 - c2At2) f + £-££- (Ax2 - c2At2) f 4- ... = 0
t x 6 xxx 8 xxxx

Nothing can be said about the parameters a, 3 from linear analysis. This is
not the case, however, for the nonlinear system as shown by Lerat and Peyret.
For our Lagrangian system, both the MacCormack schemes and the optimum Lerat
and Peyret scheme were tried with equally disappointing results to be shown
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in section IV. The introduction of an artificial viscosity to the scheme (1)
did not improve the results, in fact, the results were even slightly more
degraded.

Shasta Flux Corrected Transport Algorithm

The flux corrected transport algorithms developed by Boris and Book
(ref. 11) require that the nonlinear hyperbolic system be written in the form

ft + (ul)x + S - 0
->•

where u is the convective velocity transporting f. It is similar to the
previous form of the hyperbolic system. Thus we have for the one-dimensional
Euler Equation

P
pu

e
• _

; and s =

0

PvX

(pu) x .

where for a polytropic ideal gas

e =
P . puf
Y-l + 2

The Shasta FCT scheme (ref. 12) is as follows. Let f 0 and
be given for i = 1,2 ..... N. First, the untransported and a diffused
solution are computed

f 0 = I /f 0 _ f 0\
i+i 8 \ i+1 i /

f
D _ f Oi. — r .i i

f O _ f Or | — i .
i+i i-

where the superscripts given here and later will stand for

0 - initial
D - diffused
T - transported
TD - diffused and transported
C - corrected

Now determine the convective transport factors

£
i
± = \ ± V

Q. = 1 - Q .
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and source terms for S = 3p/3x

- pj)

or if S = p, then

The transported diffused solution is

T̂D

The changes due to transport alone are

T TD D
6fJ-ff-fJ

and differences in the diffused transported fluxes are

.. ,TD -ID .TD
f - f

and initial fluxes are modified by the convective transport

T _ o 1 /. ,T . . T
~ ~ 6fi

These fluxes are now corrected by the nonlinear flux limiter

f?,, = Sgn • Max 10, Min/Sgn • 6 f^_1? l^.uJj Sgn • 6
l_ \

where
Sgn =

The final flux corrected transported solution at the new time step is obtained
by

fl _ f
TD_/fc _ fci. — t. it.., — r.

ft

The corrected flux f - . 1 nas four different possible values; namely, 0,
TD T TD

6f. ,, f.,i, or 6..3. Therefore, the final time corrected transport solution
1—3 i+± 1+5

has a total of 16 different finite difference representations. We will ana-
lyze only the two most prevalent ones; namely, the cases for
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and
"

ORIGINAL PAGE IS
OF POOR QUALITY

To analyze the Shasta FCT scheme we will drop the source terms and assume
the u^'s to be constant = c. Define a = uo. For the first case (f?j.i = 0)
we have

f1 - f
i i

f° - -a(f° - f° ^ + (-a2 + -\(f° - 2f° -f f°
° i+1 i-1 2° 8 i+1 i i-l

which has the modified equation

c . c
f t + cfx -

Q"Ax c /Ax2 o . ?\ ..+ ~ " C f

The modified equation shows that for this case, that is, null flux correction,
the scheme is only first-order accurate. For the second case (f?+i = f -+JL)
we have

f± = f i - (
f ° - a[A

l\

- fO >

i-1
2

/

3
4

The modified equation is

i-2
-4-+

24

2 f i / \ /-f -4-9 +
«1 -I/fO - 2f° + f° I + 1 f 1+2

2 2 lri+l /ri + ri-l J 2 I

c /4x2 ,. 2\
6^— -<"J

i+2

- 30f .° + 16f? . - f

12

At
8 |Ax - xxx

i — n
^1 • • • ~~ v

Here the scheme has second-order accuracy and this modified equation shows
that the dispersion error is approximately only one-fourth the dispersion of
the Lax-Wendroff scheme as shown -by the coefficients of the fXxx term of
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the modified equations of the two schemes. This is one of the reasons for
the improved performance of the FCT scheme over the generalized Lax-Wendroff
schemes. The standard Fourier (Von Neumann) stability analysis of the two
methods confirms this conclusion. Figure 2 shows the amplification factor
|?| and dispersion (or phase) error <f>/<l>e f°r tne two methods at two CFL
numbers. For both CFL numbers shown the dispersion error is substantially
less for the FCT method. Another reason is that the flux limiter sets the
flux correction f±+± to zero near discontinuities and thus insures that the
solution remains monotonic near these discontinuities, where the Lax-Wendroff
schemes usually show spurious nonphysical oscillations. The FCT scheme has
only first-order accuracy in this situation. However, this condition usually
occurs only in a small neighborhood of the discontinuity, so the FCT scheme
is essentially second-order accurate over most of the computational domain.

The condition for stability is |u|maxo< 1 and for monotonicity is
S /3/2.

Although it is not immediately apparent from the scheme given, the essen-
tial features of the FCT scheme are:

1. The conserved quantities f^ are changed by the convective trans-
port and source terms. Enough nonphysical damping is provided so that the
solution remains monotonic if initially monotonic.

T
2. Flux antidif fusion terms f±+$ are computed so that the excessive

damping of step one can be eliminated where not needed.

_ 3. However, before the solution is antidif fused, the antidif fusion terms
f±+̂  must be modified to f±+± by the nonlinear flux limiter to preserve the
monotonicity of the antidif fused solution of step one.

The effect of these three steps of the Shasta FCT scheme is shown graph-
ically for a one-dimensional Riemann bursting diaphragm problem in figures 3a,
b, c. These figures show the pressure profile at the initial state and at a
later time. The first figure shows the solution after the diffused transport
step. This solution is smooth and monotonic. The antidif fused solution with-
out the flux limiter is shown in figure 3b. Large overshoots occur near the
shock which has been steepened from that of the first step. The last figure
shows the final solution where the antidif fusion fluxes have been limited by
the nonlinear flux limiter. The solution is nearly monotonic and most of the
shock jump occurs over two cells compared to six or seven cells after the
first step. The final solution is not quite monotonic, and that is due to
the pressure being determined from the three conserved quantities: density,
momentum, and total energy, all three of which are computed monotonically by
the FCT scheme. The three phases of the FCT algorithm are more obvious in
the third order FCT described below.

Third-Order FCT

The third-order FCT scheme is the l-atest and most accurate scheme devised
by Boris and Book (ref. 11) who call it the "Fourth-Order Phase Error" FCT.
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The procedure shown here differs from that of Boris and Book in two respects:
(1) the computational mesh is rectangular and fixed but not necessarily uni-
formly spaced, and (2) the cell node positions are shifted by 1/2 cell width
from that of Boris and Book. The notation of the mesh configuration is shown
in figure 4.

Figure 4 has N grid points and N - 1 interfaces. The interface posi
tions are denoted by

To determine the interface fluxes, we need the interface velocities

6 Ui+i = ~2 I Uj + "•• ̂ ' i = X N ~

and the interface conserved quantity

:0 - » i = 1, ..., N - 1_ i( f
- 2\f

TThe transported f . due to convection and source terms can now be computed

for i = 2, ..., N - 1. And for i = 1, N

We assume that the source S is given by 9p/9x. Extensions to other types
of source terms are obvious. The cell volume is

Ai = i
The diffused transport is now determined by

for i = 2, ..., N - 1, and set f^ = f° for i = 1, N. The interface vol
umes are defined as

Ai+i = r±+1 - T± for i = 1 N - 1

The diffusion coefficient will be defined later. The uncorrected antidiffu
sive fluxes are defined as
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- f i f o r i = 1' •••» N-
where Pi+i is the antidiffusion coefficient. The raw antidiffusive fluxes
are now corrected.

= Sgn • Max

where

JG, Min [j F.+i | , Sgn - A±+1(f™2 - f™^, Sgn • A.(ff - f

/TO _ TD\

Vi+1 i/
Sgn = sign

for i = 2, . .., N - 2. The corrected fluxes 3̂/2 an^ F§-i are determined
by the above relation, dropping the undefined terms outside the boundary.
The final results are now obtained

fl = fTIri ri

for i = 2, . .., N - 1. The diffusive and antidiffusive coefficients are

I
6

with

* At

~ 6 ui+ i T

These choices make the scheme third order accurate as shown below.

If we now assume that we have uniform mesh spacing so that Ax = Ar =
l/2(ri+i - ri_i) = Aj_ and constant convective velocity ui = C, then the
modified equation of the scheme is

Ax2 .
t x At ly V Z / xx At \ b 5 I xxx

f +...=0- T- - .At I 4 \ 6 / 12 2 I xxxx

where e is the CFL number = CAt/Ax. With the above choices of v and
the modified equation becomes
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f + cft x + rr 77 («2 - 1)24 At xxxx
= 0

That is, the scheme is third order accurate, 0(Ax /At). In the neighborhoods
of discontinuities the flux limiter essentially sets y = 0 and the scheme
becomes accurate of 0(Ax2/At). It can be shown that the CFL restriction for
stability is CFL < 1 and for monotonicity also <1.

For nonlinear problems, both of the FCT algorithms require the solution
to be advanced in two half-time steps to arrive at the final time (n + l)t
where At < Ax/A^x to maintain the same order accuracy for nonlinear prob-
lems as for linear ones. This procedure is equivalent to the predictor-
corrector steps of the Lax-Wendroff schemes.

Another comment is that for the Lagrangian system (8) there are no con-
vective velocities and thus it might be argued that the FCT algorithms are
not applicable for this system. However, the convective transport can be
considered to be by the eigenvalues of the Jacobian matrix rather than the
actual fluid convective velocity. For example, Boris and Book (ref. 11) argue
that for a one-dimensional Eulerian system, the effective convective veloci-
ties are u, u, and (1 + p/e)u for the continuity, momentum, and energy
equations, respectively. Thus, even for a Lagrangian system, the energy
transport is by the convective velocity (p/e)u. It is more valid, however,
to consider the eigenvalues to be the effective transport velocities. Con-
sider the Eulerian system in one dimension

ft + wx 0

where

rif = pu

Le _

w

PU

pu2 + p

(e + p)u

Now define the Jacobian matrix A = 9w/8f, to obtain

ft + (Af)x = 0

where we have used the homogeneous property of the Eulerian system (ref. 13).
A similarity transformation T can now be defined so that Jacobian matrix A
is diagonalized and f = T~*f where the fj/s differ from the fi's only
by a constant factor, that is

D = T-1AT

and . The system after .some manipulation becomes
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(T~1f)t + (DT~
1f)x - (Tt*

or

ft + (Df)x -1-8

where S are the source terms

S = -(T̂ f

The inverse similarity transformation is

ORIGINAL PAGE IS
OF POOR QUALITY

Y(Y -

1 / c2 u£\
- 1\J - 1 ~ 2 J

1 -I
Y - 1 Y - 1

UC

Y -
- u

uc

With this transformation we can compute f to be f = T
stant coefficients k^ are unity. The source terms are

= f, so the con-

S =

0

ax (Y - Du

Here we have a system, completely equivalent to the original system, which
gives the proper jump conditions and which has the eigenvalues as the effec-
tive convective velocities. This shows that the convective terms of the
Eulerian system play no major role in the FCT algorithms. Similarly for the
Lagrangian systems, which have some nonzero eigenvalues, but zero convective
velocities. The lack of convective velocities does not prohibit the use of
the FCT algorithms.

IV. NUMERICAL RESULTS

In this section the numerical methods of section II are compared for a
one-dimensional Riemann problem (bursting diaphragm). The most effective
method will then be applied to a two-dimensional problem of the ordinary
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oblique shock wave reflection off a channel wall. To check the boundary
conditions, the Riemann problem consists of a shock tube with reflecting end
walls. For the two-dimensional problem, the boundary procedures described in
section II are used even for the case of straight walls where reflection
principles would be much simpler.

The initial conditions and geometry of the Riemann problem are shown in
figure 5. As a standard of comparison, this problem was solved in the Eulerian
coordinates with the MacCormack scheme. Initially the pressure profile is a
step function as in figure 6. After the burst a shock wave propagates to the
right and a rarefaction wave to the left. At later times these two waves
reflect off the end walls. The shock and rarefaction waves are resolved quite
well except for the slight spike of the reflected shock wave and slight oscil-
lation at the foot of the rarefaction wave. The spatial step Ax = 0.002 is
quite small and good resolution is to be expected. Changing to the Lagrangian
system with everything else fixed results in the solution shown in figure 7.
The oscillations at the root of the expansion wave are larger and the spike
at the reflected shock wave is much larger. The particles are at first
equally spaced at Ax = 0.002 so the masses in each cell (pJ = pxa) are
not uniform initially. The temperature (p/p) profiles are shown in figure
7b.

If the initial particle distribution is such that we have equal mass in
all the cells, then the results shown in figure 8 are obtained. Large oscil-
lations trail from the shock waves. The expansion waves seem to be resolved
better. Thus nothing is gained by adjusting the fluid cells to contain equal
masses.

Relaxing the restriction of equal masses and using the generalized Lax-
Wendroff method with the optimum values of the two arbitrary parameters of
Lerat and Peyret (ref. 10) obtains a much improved solution (fig. 9). The
oscillations at the shocks are much smaller, but the expansion wave oscilla-
tions are about the same as previously. Including an artificial dissipation
of the Lapidus type (ref. 10) does not improve the solution as it does for an
Eulerian calculation (fig. 10). Other values of the two parameters did not
improve the results.

Somewhat improved results are obtained from the FCT method of Book, Boris
and Hain (ref. 12). Figure 11 shows that the oscillations at the expansion
wave and outgoing shock wave are gone. A spike appears at the reflected shock
and also at the contact surface. The contact surface oscillations disappear
if equal-mass fluid cells are chosen. The spike appears at the reflected
shock since the flux limiter of the original FCT method is partially turned
off at the boundaries.

All the methods tested tend to give comparable results with the FCT
method giving slightly better results. However, all the cases considered so
far have a very fine mesh distribution of Ax = 0.002 or 500 points. For
two or three dimensions this is excessive. Reducing the number of points to
50 obtains quite different results. These results are shown in figures 12 .
through 15 for the optimum generalized Lax-Wendroff method for the Eulerian
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coordinates and Lagrangian coordinates, and for the 1/8 (Shasta) FCT, and
third order FCT method with Lagrangian coordinates, respectively. The re-
sults for the Lax-Wendroff method are not very satisfactory, but for the
Eulerian calculation additional damping can be added to the scheme to control
the large oscillations. This does not work for the Lagrangian computation.

The FCT calculations are shown in figures 14 and 15. Figure 15 gives
the results of the third order FCT method using Boris and Book's (ref. 11)
version of the Lagrangian code. This code keeps the cartesian coordinates as
the independent variables. The FCT results are much better than the Lax-
Wendroff results. The third order FCT is slightly better than the Shasta FCT
except for the terracing of the expansion wave. This is because Boris' form-
ulation does not compute the xa, x^, ya, yj, explicitly as in the present
method.

The second problem solved was a two-dimensional reflection of an incident
shock wave off a straight wall. The initial conditions and geometry are pre-
sented in figure 16. The incident shock wave is generated by the 1:5 wedge
placed along the bottom wall of a straight channel. This shock wave reflects
off the top wall as shown. The flow properties are chosen so that the reflec-
tion is regular and so that the flow is supersonic throughout thus the bound-
ary computation of the present method can be compared with Abbett's scheme
(ref. 9). Abbett's scheme is valid only for steady supersonic flow, so only
the steady state results are shown. Another reason for choosing supersonic
flow is that then the outflow conditions do not influence the upstream flow
field.

The initial condition for computation is simply a straight channel with
a Mach number 2.2 flow throughout. At t = 0+ the bottom wall aft of x = 1
rotates upward about x = 1 until the final ramp angle of tan"1(1/5) is
reached. The computation proceeds until all the transients are washed down-
stream, which at this Mach number required a particle travel of approximately
2.2 ramp lengths, after the final ramp angle was attained. In physical time
the ramp growth required 1 sec and the steady state was reached in another
second. The total CPU time on a CDC 7600 for convergence was 135 sec, and
the total number of time steps amounted to 300.

The results in terms of pressure profiles are shown in figures 17 and 18,
for the Prandtl-Meyer (Abbett's scheme) and the normal momentum equation
boundary correction. The oblique shock does not reach the foot of the ramp
since a fairing function was fitted between x = 0.9 and 1.1 to eliminate
the discontinuity in the surface slope and curvature at x = 1. The fairing
function is a quintic polynomial whose value, slope, and curvature matches
the prescribed boundary at the fairing positions.

The shocks are captured quite well, usually over three or four mesh
points. The total number of mesh points is 51 x 21. It should be mentioned
that the shocks cross the cells at an angle of approximately 45°, so there is
no mesh alignment with the shock wave. The Prandtl-Meyer boundary correction
gives slightly better results than the normal momentum correction; the latter
has slight overshoots for the boundary streamlines. A comparison of the exact
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solution with the computed results is shown in table 1. The incident shock
angle is computed quite accurately; the reflected shock angle differs by
8-10%. This error in the Prandtl-Meyer boundary correction is caused by the
violation of the isentropic condition as required by Abbett's scheme.

If the boundary method of Book, Boris and Hain (ref. 12), based on simple
reflection principles, is followed for the above problem, no converged solu-
tion can be obtained. If the ramp angle was reduced to tan"1(1/20) the re-
sults shown in figure 19 were obtained. Large overshoots appear in the
streamlines near the boundary. The streamlines indicated by NY = 1 and
NY = 15 are 1/2 cell from the surface. The surface pressures can be obtained
by extrapolation. This is not done here since the results would be even worse
than shown.

All of the two-dimensional results were obtained with the Shasta FCT
algorithm. The third order FCT was not stable with the splitting procedure
used in this report. The reason is not clear, but it seems that the coeffi-
cient of the fourth-order diffusion term of the modified equation, that is,
[(Ax'*/24At)c2(€2 - 1)] has the wrong sign (it is negative for «2 < i) for
linear stability. It is conjectured that the nonlinear stability dominates
the linear stability for the one-dimensional case but not for two-dimensional
splitting procedures.

V. CONCLUDING REMARKS

A Lagrangian method has been developed to solve the unsteady inviscid
gasdynamic equations by the FCT method. Unfortunately the boundary conditions
as given by the original FCT method were not satisfactory and these were
worked out for the special problems considered in this report. Shock waves
and other flow discontinuities were captured accurately and monotonically.

The method works well, but only with the inclusion of the proper bound-
ary conditions. The results are much better than those obtained by the mixed
Euler-Lagrange methods of the Los Alamos group. The purely Lagrangian
approach used here avoids the problem of mesh generation. However, we have
avoided highly sheared flows so that the method did not require any mesh re-
adjustment to maintain stability and accuracy, which can be a problem with
Lagrangian methods.
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APPENDIX A

DERIVATION OF GOVERNING EQUATIONS OF GAS DYNAMICS

FOR AN ARBITRARILY MOVING COORDINATE SYSTEM

We start with the Euler Equations

U + F + G
t x y

= 0 (Al)

with

U =

""p
pu

pv

PE

F̂ —

pu

pu2 + p

puv

(pE + p)u

^; and G =

pv

puv
o .pvz + p

(pE + p)v

where

(Y -

We now want to transform to another arbitrarily moving coordinate system,
call it (a, b, T) where

and

(A2)

I _ 3(x. y) _
D " 3(a, b)

is the Jacobian of the transformation (a, b, T) to (x, y, t).

Viviand's transformation technique (ref. 14) for a conservative
system of equations applies and results in

Since we have a = a(x, y, t) and b = b(x, y, t)

_ _ . . _ _ _
dt ~ 3x 9t 9y 3t 3t
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where we require that a, b, t be independent variables.

Setting 9x/9t = Uj, and 9y/9t = v , i.e., the coordinate mesh veloc-
ity, we obtain

9a
~ vtn ay

and, s imilarly,

9b , ,
— = -u b - v ba t m x m y

ORIGINAL PAGE IS
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Substituting into equation (A3) and simplifying

-̂ r3b I
Jb (I - u U) + J by (G - v

x m J m
U) =
J 0 (A4)

Now we need to invert the partial derivatives a , a , b , and b ,
x y x y

ax =~

ay = — ; and

b -2s
x J

x

VT
and setting T = t results in

(A5)

where

JU =

Jp
Jpu

Jpv

JpE

->•

; c =

0

y p

~xbp
p(ybu - xbv)
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and

-yap
xap

p(-ya
u + xa

v_

System (A5) are the first four equations of system (1). The remaining
six equations are the kinematic relations describing the mesh velocities.
We have previously defined

93C

9t
um and

3t m

Differentiating these two with respect to a and b obtains the last six
equations of system (1).
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APPENDIX B

THREE DIMENSIONAL LAGRANGIAN GASDYNAMICS EQUATIONS

The system of equations is

U + F + G, + H + 3 = 0
a b c.

with

u =

Jpu

Jpv

Jpw

JpE

X

y
z

; F =

p(Vc - ycV
p(Vb - Vc:

p(Vc -M
Xc7b)

pJu

0

0

0

(Bl)

P(yc2a ' Vc)

p(Vc - XcV
p(Va - Vc)

PJv
M

0

0

0

; H =

p(Vb - ybZa)

p(Va - XaV
p(xayb - Va)

PJw
M

0

0

0

; and S

0

0

0

0

0

-u

-v

-w

The nine other kinematic relations obtained by differentiating the last
three equations of system (Bl) with respect to a, b, and c have not been
included. They are required only to keep the system strongly conservative.
The Jacobian of the transformation (a,b,c,t) to (x,y,z,t) is
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T _ 3(x,y.z)
3(a,b,c)

= x (y z - y z ) H- y (x z - x z ) + z (x y, - x y )
a b c c b b a c c a c a b b a

The superscript M again refers to the velocity components in the moving
coordinate system (a,b,c). Thus,

u = a u + a v + a w
x z z

Mv = b u + b v + b w
x y z

w = c u + c v + c w
x y z

where

•Mvc-
-H
= M

ax
1 ja = — < x z - x 2

y J (, c b b

a
z J l V

z - y z
x J I' c a a c

b = — { x z - x z i
y J I a c c a /

b = ~ < x y - x y >
z J I c a a c J

c = j{xhz - x z.„ — — \ *v- ** rf^ •*.y J I b a a b

and
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TABLE 1.- COMPARISON OF EXACT SOLUTION WITH THE PRANDTL-MEYER
AND NORMAL MOMENTUM BOUNDARY CORRECTION
FOR THE REGULAR SHOCK WAVE REFLECTION

Exact

Prandtl-
Meyer

Normal
momentum

Ml

2.2

2.2

2.2

M2

1.87

1.8

1.81

M3

1.47

1.42

1.4

(deg)

37.2

37.2

37.8

e
(deg)

46.6

50.3

51.6
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Figure 1.- Transformation of physical to computational plane.
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Figure 2.- Von Neumann stability properties for the Lax-Wendroff and
SHASTA FCT method.
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solved by the FCT method.

39



3

2.6

2.2

1.8

1.4

1

. t = 0.2190

: ^\
\

~ \
'̂ L. #^^

^^^

—

.

c.s. f!
t = 0.21 90 jl

1^1- 4 Jl !
"" **J\ /. ;\ 1 1 ~*~1 1 .1 \ • 1

• i 1

1 -• .\.̂ -
1 1 1 1 1 1 I ' l l

^

\\x
\\

///
/

\
0 .1 .2 .3 .4 .5 .6 .7 .8 .9

X
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Figure 3.- Continued.
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Figure 4.- Rectangular network of the third-order FCT algorithm.
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Figure 5.- The one-dimensional Riemann problem.
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Figure 7.- Riemann problem, Lagrangian coordinates, solved
with MacCormack's scheme.
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Figure 7.- Concluded.
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Figure 8.- Riemann problem, Lagrangian coordinates, solved with MaCormack's
scheme. Pressure as a function of x and t. Equal masses in the fluid
cells, 500 points, CFL = 1.0, and reflecting boundaries.
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fluid cells, 500 points, and reflecting boundaries.
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