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SIDE-FORCE ALLEVIATION ON 6°,ENDER t POINTED FORERODIES

AT HIGH ANGLES OF ATTACK

by Dhanvada !'7. Rao

research Associate, Old Dominion University Research

Foundation, Norfolk, Virginia

Abstract

A new device* has been proposed for alleviating high angle-of-atteck

side force on slender, pointed forebodies. A symmetrical pair of separation

trips in the form of helical ridges are applied to the forebody to disrupt

the primary lee-side vortices and thereby avoid the instability that produces

vortex asymnetry. Preliminary wind tunnel tests at Mach 0.3 and Reynolds

no. 5.25 x 106 on a variety of forebody configurations and on a wing-body

combination at angles of attack up to 56 degrees, demonstrated the effective-

ness of the device.

*Patent applied for.

Research supported by NASA under Grant no. NSG 1315.
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SIDE-FORCE ALLEVIATION ON SLEDDER, POINTED FOREBODIES

AT HIGH ANGLES OF ATTACK

1. Introduction

The emphasis on combat agility in the new generation of fighter aircraft

calls for controlled flight capability to increasingly high angles of attack.

The pointed, slender forebody shapes commonly employed on such aircraft

characterstically experience abrupt and relatively large out-of-plane aero-

dynamic loads when pitched to high angles. Accompanied by deteriorating

control effectiveness at high angles of attack, serious handling difficulties

in rapid maneuvering are encountered. The prevention of side force or its

alleviation is an important current technology need.

It is well established* that the origin of the out-of-plane loads lies

in an asymmetric development of the leeward vortex wake of slender, pointed-

nose lifting bodies. In the research so far, the two-dimensional impulsive

flow analogy has served as a useful framework for analytical prediction of

the oscillatory side force due to alternate vortex shedding along the body

length with increasing angle of attack. There is mounting experimental

evidence, however, that the onset and initial build-up of the asymmetric

loading is determined by flow development close to the apex. Lack of

detailed knowledge of the fluid-dynamics of apex vortices viz. their growth

6
and stability, impedes the search for aerodynamic means of side-force

suppression.

*See reference 1 for a recent summary of the subject and pertinent
references.
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From a practical viewpoint, any solution proposed for the high angle- 	 3

of-attack side force problem must not compromise the vehicle performance in

normal flight (e. S . cruise drag, stability etc.). Any modification of or

installation in the nose region is conditional to compatibility with the

radome electronic requirements. A passive device is preferred, and one

that would lend itself to retro-fitting without significant structural or

other modifications to in-service aircraft.

Although many devices have been proposed and wind-tunnel tested, no

universally acceptable method for side-force alleviation meeting all the

above criteria has emerged so far. Notable among successful aerodynamic

devices are the nose strakes l . However, strakes introduce undesirable

physical .discontinuities in the radome and also generate persistent trailing

vortices even at lower angles of attack which can adversely interact with

downstream aerodynamic components such as canards, air-intakes, wing leading-

edge devices and tail surfaces. Keeping in view such practical constraints,

an alternative approach towards side-force alleviation has been proposed.

2. A New Approach

The present approach is to modify in a basic manner the normal fluid-

dynamic process which generates the familiar contra-rotating pair of lee-side

vortices from forebody cross-flow separation. These primary vortices

represent concentrations of vorticity shed uniformly along a meridional

separation line on either side of the body, and their influence dominates the

lee-surface pressures. The twin vortices are symmetrically disposed initially,

but on reaching a critical angle of attack they begin to grow asymmetrically.

The resulting skewness in the perpheral pressure distribution then generates

a side-force component.
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Side-force suppression could be achieved by artificially stabilizing

the primary vortices or by preventing their formation. The latter option

was pursued and, recalling the experience of periodic-wake suppression on

circular cylinders in two-dimensional flow , it was reasoned that these

lee-side vorticity concentrations might be disrupted by imposing sufficient

non-uniformity in the vorticity flux along the separation lines. Accordingly,

a separation trip was devised in the form of a symmetrical pair of surface

ridges, starting at the top near the spex.following a, helical path around

the sides and terminating near the bottom rear of the forebody. This

trajectory not only passes through varying levels of boundary layer vorticity

along the body as desired, but also places the ridge favorably i.e. at an

angle approaching 90 degrees to the predominant boundary layer flow direction

with increasing angle of attack, for enhanced effectiveness as a separation

trip. At normal angles of attack, on the other hand, such a ridge would be

presented obliquely to the boundary layer streamlines and thus cause only a

minor disturbance.

With the helical ridges described above, it was envisioned that the

normal lee-side vortex pair would be replaced by a multiplicity of weaker

vortices. Such an ensemble of vortices was considered less likely to develop

a coherent asymmetry for significant side force to be generated. Also, a

multiple-vortex wake was expected to decay more rapidly and therefore

minimize interference effect-5 over the downstream components.

3. Wind Tunnel 'Tests

Proof-of-concept tests were carried out in the NASA-Langley 7 x 10 ft.

wind tunnel at low subsonic speed. The experimental program was in three

parts, according to the objectives and type of model used, as follows:

3
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I. Preliminary investigation on a general research fuselage model to

evaluate ridge variations, through forebody loads measured directly

on a separate balance,

II. Ridge effectiveness test on a fuselage-wing configuration obtained

by mounting a 60 deg. swept-back wing to the fuselage of (I),

through overall longitudinal and lateral-directional character-

istics, and

III. Tests on two pointed axi-symmetric bodies, an cgive-cylinder and a

cone-cylinder, in order to include additional forebody shapes tested

by other investigators.

The basic geometry and dimensions of the models are presented in figure 1.

A photograph of model (II) fitted with the anti-side-force device is shown

in figure 2. The ridges were 3.16 or 1.59 mm dismeteL solder wire attached

to the forebody by means of epoxy cement.

The free-stream conditions were maintained nominally coniitant in all the

tests at Mach 0.3 and Reynolds number 0.53 x 10 6 per meter. The angle of
attack ranged from -- 40 to 480 (models I and II) and 560 (models III) except
when excessive model vibration forced the test to be terminated at a lower

angle.

Six-component measurements were obtained on models (I) and (II) using

a dual balance system which permitted forebody loads to be recorded separately.

The balance data were reduced to coefficient form referenced to maximum

body cross-section area and length (for models I and III) or wing area, mean

aerodynamic chord and span for model II (with the exception of fig. 10

where fuselage data with and without wing are compared).

ORJCfJNAYL ?AUF; I
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4. Discussion of Results

I) Fuselage Alone:

The side force onset on the forebody occurred at a - 30° (fig. 3)

which is in fair agreement with the correlated data of reference 1 on the

basis of nose angle and length/diameter ratio. Comparison with some early

data available on the same model showed good repeatdoility.

With 3.18 mum diameter straight ridges installed along the side

meridians of the forebody, no improvement appeared in the side-force char-

acteristics (fig. 4). Similar finding has been reported on models with

full-length side strakes in reference 3.

The 3.18 amn diameter helical ridges reduced the forebody side force

essentially to zero, within the estimated accuracy of the balance (i.e.

+ 0.5+ of maximum side force capacity), over the entire angle of attack

range (fig. 5). The degree of side-force suppression was found to be

sensitive to asymmetry in the ridge pair; it is believed that the residual

side force (inconsequential as it is) was due to a small but noticeable

asymmetry of the ridges.

As an indirect test of the postulated mechanism behind the present

device, the model was rolled 180°. This would tend to aline the helical

ridge (now running bottom to top) approximately with rather than across the

boundary layer flow at ''high angles of attack, thereby neutralizing its

effectiveness as a separation trip. In this test as anticipated the

side-force suppression capability of the helical ridge was completely

lost (fig. 6).

*The ridge installation was carried out at the tunnel site without the
aid of any gigs etc.
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Returning the model to its original (0 0 roll) position, the 3.18 nun

helical ridges were truncated as shorn in figure 7. This ad-hoc modification

was tried mainly to assess the role of the apex formed by the ridge junction.

Some degradation in effectiveness appeared around 40 0 to 490 single of attack,

although the maximum side force recorded remained quite small. A more

definitive study of ridge truncation is needed to isolate the most critical

portions of the device, particularly in the nose region typically occupied

by a radome.

A full-length ridge pair identical in shape to the original helical.

ridges but of half the diameter (1.99 am) suppressed the side force up to

about a = 400 (fig. 8). From the limited daia available from the present

test, the optimum ridge height Reynolds number (based on free-stream unit

Reynolds number) would appear to lie between 0.1 x 10 5 and 0.2 x 105 (note

that this applies to the circular cross-section ridges tested; other

section shapes e.g. those having a sharp corner, may be found to be more

effective).

The forebody contribution to directional characteristics at 10 0 sideslip

remained essentially unaltered by the addition of 3.18 anm helical ridges,

up to 400 angle of attack (fig. 9). Beyond that angle, the ridges appeared

to produce a stabilizing trend by reducing the adverse side force and yawing

moment, in direct contrast to the "clean" forebody. Additional data, in the

form of detailed sideslip traverses at various constant angles of attack,

will be needed for a more complete assessment of the directional stability

effects of the present device.

I
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II) Fuselage/Ming Combination:

Addition of the wing to the aft-fuselage accentuated the forebody side

force development, and almost doubled the maximum side-force amplitude

(fig. 10). This reflects the increased normal force carried by the forebody

due to upwash ahead of the wing. Comparison of the nose balance and main

balance data indicates a significant side load developing over the rear half

of the model even before the onset of side .force on the forebow. . This is

attributed to misalinements in uu.m model assembly and/or support system

leading to a small effective side--slip of the configuration. (A repeatable

bias in the oil-flow visualizations of the zero-sideslip, high angle-of-

attack flow patterns obtained during a previous investigation with the same

model lends support to this contention).

Even with the relatively magnified side force and yawing moment on

this model the efficacy of 3.16 mum helical ridges was fully confirmed

(fig. 11). The rolling moment found on the "clean" model above the side-

force onset angle of attack (presumably arising froim the asymmetric forebody

vortices interacting with the wing) was eliminated at the same time.

The longitudinal characteristics of the configuration indicated that

the helical, ridges produced negligible change in the drag polar as well as in

pitch stability up to a = 26 0 (viz. the side-force onset angle), figure 12.

Beyond this angle of attack, the erratic lift behaviour of the "clean" model

was markedly smoothened and improved.

111) Axi-symmetric Bodies:*

The ogive-cylinder model in "clean" condition produced a steadily

increasing side force starting at u = 350 , but at 520 went into a violent

*These data were furnished by Mr. Charles H. Fox, 5r., of NASA Langley

7
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and potentially dangerouo sideways oscillation (pae:wuaably due to unsteady

vortex-shedding induced excitation of the sting-support at its natural

frequency), requiring the test to be stopped. With 3.18 mm helical ridges

installed over the forebody, the side force was practically eliminated and

no unsteadiness encountered up to the maximum available angle of attack

(fig. 13A).

The "clean" cone-cylinder modea. similarly could not be tested above

a = 440 . With 3.18 mm helical ridges affixed to the conical portion, the

side force was essentially suppressed and normal testing could proceed to

the angle of attack limit (fig. 1310.

5. conclusions

These preliminary nests, covering a few basic configurations of practical

interest, fully confirmed the efficacy of helical ridges in alleviating the

high angle-of-attack side force on .Mender, pointed forebodies. Associated

benefits demonstrated on a fighter-type wing-body combination were the

elimination of rolling moment accompanying the side-force onset and a

smoothening of the erratic: post-stall lift behaviour, implying an overall

improvement in handling characteristics near maximum lift. Remarkably, the

precise trajectory of the helical ridges appeared not to be critical (within

limits as yet unknown); in all cases the ridge shape was aribtrarily specified

as a smooth curve and sa',ecess achieved in the very first trial on all models.

The helical ridges without question exert a powerful influence on the high

angle of attack separated flowfield of slender pointed bodies, and a

detailed experimental investigation appears to be in order to fully understand

the fluid dynamics involved.

8	
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