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The finite-step method has been progrémmed for computing
the span 1oadin§ and stability derivatives of trapezoidel shaped
wings in symmetric, vawed, and rotary £flight. cCalculations were.
made for a sgries of different wing planforms and the results
compared with several available-mefhods for estimating these de-~
rivatives in the linear angle of attack range. The agreement
shown was generally good except in a few cases.

An attempt was made to estimate the nonlinear variation of
. 1Lift with angle of attack in the hggh o range by introéucing the
measured airfoil section data into the finite-step method. The
numerical procedure was found to be stable only at low angles of

attack.
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I. INTRODUCTION

4 large number of linear methods exist for-estimating
the lift and other force and momént components of arbitrary wing
planforms at subsonic speedsﬂ The vortex lattice technigue éf
references 1 and 2 and the distributed singularity methods of
references 3 and 4 have demonstrated both versati;ity and ac-
curacy and have contributed significantly to the design process.
However, most of the analytical work done has been limited to the
linear or near-linear 1lift coefficient range and have pexrtained
mainly to symmetric flight. Also, the above-named references are
fairly sophisticated and require a significant amount of calcula-
tion time on a large computer.

The present study was aimed more specifically to the reguire-
ments of General Aviation ajrcraft, where the sweepback angles
are smaller, the airfoil sections conform more towards the NACA
sefies of airfoils, the flow is incompressible, and less computer
avallability is assumed. Tt was considered worthwhile also to
provide a capability in the subject computer program for estima-
ting the aerodynamic force and moment coefficients and stability
derivatives in asymmetric (yawed) £light and in steady maneuver-
ing flight as well as in symmetric équilibrium £light. An
attempt was made also to extend the angle of attack range into
the nonlinear region near stall.

The finite-step method described in references 5 and 6 is
adopted in the subject study. The wing span is divided into a

number of segments and & single horseshoe vortex is used to



simulate each of these segments. In this fashion a fewer number
of simultaneous equations are required to determine the

spanwise distribution of circulation than in those methods,
References 1-4, where vortices are distributed in the chordwise
direction- also. It was assumed that sideslipping motion could
be treated by using horseshoe vortices with ‘cranked! trailing
elements. The trailing elements were assumed to follow the

chord lines from the line of gquarter chords until the trailing

" edge of the wing was reached. Following the trailing edge the
vortex lines were rotated so that they lie 'in planes parailel

to the (yawed) free stream velocity vector. This assumption

was based on the Weissinger method as described in reference 7.
It was further assumed that the position and shape of the crankad
horseshoe vortices were unaffected by the steady angular velocity
of the wing in maneuvering flight.

The nonlinear lift estimation in the stall region ﬁas to be
accomplished by replacing the estimated linear circulation
strength at each spanwise station by the strength corresponding
to an airfoil section, as determined experimentally, at the
effective angle of attack calculated at the guarter chord. This
scheme is essentially that used by Sivells and Neely,
reference 8. However, the finite¥step method was used instead
of lifting-line theory as in reference 8.

Several iterétions were made to adjust the span loading
.after substitution of the (noniinear) section data. The process

was found to be convergent'at the lower angles of attack, but
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divergent as socon as the effective angle of attack at any span-
wise station exceeded the stall angle of the airfoil at that
station. Recewnt papers dealing with tﬁis problem, references 9
ande, have shown similar difficulties and reference 9 indicates
a method for obviating them.

A computér program has been prepared, based upon the
above analysis, which has the capability of estiméting the inviscid
incompressible, linear five component aerodynamic coefficients
of arbitrary wing planforms at a general angle of attack and
sideslip angle, while undergoing steady rotary motion (P, Q, R).
The wing geometry was limited to a single trapezoidal shaped
panel per sidé, and includes sweepback, twist, differential
twist (left~ to right-hand wing panels) and dihedral. The wing
can have arbitrary root and tip airfoil sections., However,
high lift devices and/or control surfgce are precluded, as are
fuselage and nacelle strut interference, and propulsive slip-
stream effects.

Numerous computer‘runs were made on a serxries of wings of
different geometry and the stability derivatives calculated were
compared with the available methods for estimating these deriv-
atives in the linear angle of attack range. Very good agreement
is shown in all but a few derivatives and these are believed
to be of secondary importance.

| The computer program should prove most userful for straight
and relatively unswept wings (A<BSO) of moderate to high aspect

ratio (MR >2). Low aspect ratio wings and highly swept wings



will introduce separation at the tips and along the leading
edges at moderate and high angles of attack, neither of which

effect is taken into account in the present method.



II., SYMBOLS

A, AR
A
b

2

o/4

SRR o =S LN LR S

w

magnitude of

Aspect Ratio, bz/sref
Axial Force '

wing span measured in X,V plane
local choxd .'J__ine

tip chord

root chord

- wing chord coincident with left-hand side of wing strip

wing chord coincident with right-hand side of wing strip
/2
mean aerodynamic chord, c=2 c c:ly/SJ:_e £ (reference chord)

section drag coefficients D’/qmc

section 1ift coefficient (airfoil 1ift coefficient) s

' .
L /c_[ooc
section momaut coefficient measured about quarter
. 2
chord print, (m’/qooc )
wing axial coefficient: (A/qoosref)

wing drag coefficient: (D,/qoo Sag)

wing lift coefficient: (L/qoosref)

wing moment coefficients: (m/qmsre fE)

wing normal force coefficient: (J}I/qws

)

ref

side force coefficients: (Y/qms b}

ref

rolling moment coefficients ({/qoo .Sr.efb)

yawing moment .coeff:f..c:l.ent:._ _(n/.qcpsrefb) I
] a displacement vector, or designation of
of a point on c/4 :

total drag force, measured paralliel to free stream
relative wind wvector

5 ORIGINAL Bagm 15
OF POOR QuALITY



HS R

R

“ref

influence coefficients used for calculating the
induced velocity

elementary force vector

force wvector

coordinates of a point measured With respect to the
origin of a horseshoe vortex, see figure 6

normal distance of a point measured to the line of
action of a vortex segment

an integer used to count horseshoe vortices, Ffrom

- left to right

unit vectdr triad associated with =x,v,z axes

an integer used to ébunt'wing strips

factor of proportionality for reducing angle of
attack: OSkisl, see Appendix A

an integer used to coﬁnt the sagments of a horseshoe
voftex

vortex segment length of trailing elements

geheral reference length

total l1lift force, measured perpendicular to free
stream relative wind wvectoxr

total pitching moment measured. in plane of.symmetry.
moment vector measured relatiﬁe to position of the
cente: of gravity

Mach.nﬁmber.

total yawing moment

nunber of spanwise strip (equals horseshoe vortices)

~considered. Value includes strips on both left~ and



P,Q,R

right~hand sides of wing

normal force component

unit vector perpendiculaxr to local wing chord plane
with components n,. ng, N on left, and Ryge Bype Pyo
on right-hand sides of wing

unit vector normal to mean camber surface of wing at
the 3/4 chord line with components nl,'nz, n, on
left, and n,, Rgs Ng On right-hand side of wing
rolling rate, pitching rate and yawing rate,

respectively, radians per second

nondimensional rolling rate (P= 5%2—0: pitching
rate (Q= é%g—), and vawing rate (R = é%p } s respectively
co los!

free stream dynamic pressure

velocity vector, magnitude, and unit vector induced
at a point P owing to a single vortex segment

wit vector coincident with line of quarter chords
with components Tye Tgr Tg ON left, and rig’ Ty

T on right-hand side of wing

12
unit vector coincident with line of three-quarter
chords with components rqe Ty r3 on left, and r7,
Tgr Tg ON righf—hand sides of wing

displacement vector from airplane center of gravity

to the control point "cj“

displacement vectors from the initial and final ends,
;espectively, of a vortex segment to the point P

unit vector coincident with a vortex segment, positive

sign is chosen in agreement with right-hand rule for

7 .



m

3/4

>

1/4

u,v,w

=Y

u,v,.w

<l

v%o"%n

XV 2

XY, A

direction of circulation, Pi

semi~width of wing‘strip, also semi-span of horseshoe
vortex, measured in plane of vortex

reference wing area, the wing planform area projécted
on to %,y plane

unit vector tangént to the mean camber surface of
wing measured in a chord plane. The components of
%3/4 are £, t,, ty on left, and t,, tg, tg on right-
haﬁd gside of wing

unit vector coincident with local chord lines with
components t,, tg. tg on left, and €0’ tll’ tq

on right-hand side of wing

induced flow velocity components along the x,v,2Z axes
induced velocity at point P due to the entire system of
horseshoe vortices

total flow velocity components along the x,v,z axes
total relative wvelocity vector existing at a point P
owing to the sum of the free stream, rigid body
rotation, and induced velocities

magnitude and wvelocity vector of the free stream
orthogonal axes to which wing geometry is referred.

The x axis is coincident with tﬁe root chord line,

the y axis is normal to the plane of symmetry of the
wing, positiwve to the right, and 2z axis is defined

according to the right-hand rule

body force components



GREEK SYMBOLS

I-j

o 1.:11 ;.:._j

angle of attack
angle of sideslip

dihedral angle, positive for wing tip raised above the
¥y reference plane.

vortex strength of the ith horseshoe vortex.

= T,/7,

angle measured between mean camber line and chord line,
positive for positive camber (concave side on bhottom of
wing) . _ :

local twist angle

acute angle between ﬁl and ?2 or obtuse angle between
Rpand ¥, .

3 2 N
taper ratio of wing (A = cT/cR)

angle of sweepback of a constant percent chord line.

The guarter chord line is designated without a subscript;
other lines are subscripted according to fraction of
chord,

atmospheric density

angle of inclination when viewed from a line parallel
to the x axis between bound vortex segment and y axis.
Positive for clockwise rotation when locking forward.

angle of vaw of bound voriex segment. Positive for
counter clockwise rotation about 7 awis when viewed £rom
above.

angular rate of rotatlon of wing in space, components are
P, Q, R..

QRIGDIAL BACE



SUBSCRIPTS

( )B body axes
( )c; control points located at 3/4 chord line at midspan of
| the wing strips.
{ g center of gravity of airplane.
( )d. points coincident with origin of horseshoe vortices,
() ! points located at the 5/8 chord line at the lateral
®n edges of the wing strips.
{ )i deﬁotes.the 1th horseshoe vortex.
‘( )j denotes the jth spanwise strip.
( )l local value,
( )L left hand side.
( )m an integer used to count chordwise vortex segments.
{ )O root chord value
{ )R right hand side..
( )RB rigid bedy value.
( )S stability axes.
( )T' tip chord value.
)y wind axes.
' QUPERS CRIPTS
() a vector quantity, (except for.E)°
"y a unit vector. |
()” two dimensional or section value.,
BABBREVIATICNS
L.Eo. leading edge.
T.E. trailing edge.

10



III. ANALYSIS

The various calculations which were reguired for the
preparation of the computer program are presented in this section.
These calculations have been broken down into three main catém
gories, namely: (a) the determination of the wing geometrical
characteristices as required for determining the "no~flow”
boundary conditions, and calculating the effective angle of attack
as'requiredlin the nonlinear analysis, (b) the finite—étep linear
'analysis, and (¢) the modified finite-step method which incorpor-
ates the nonlinear airfoil section data.

A. Wing Geometry

Figure 1 presents the pianform geometry of the wing and
establishes the body axis system used. The X,y plane lies in the
Plane of the page and hence only the projection of the free stream
- velocity is shown. The wing shown in figure 1 is planar in that
neither twist nor dihedral ére indicated.

- Figure 2 presents a perspective drawing of the left hand
panel of the wing which has beeh twisted, (zero dihedral case).
‘"It has been assumed in this figure: (a) that the root chord lies
along the x‘axis, and (b) that twist is introduced by rotating the
tip chord in a plane parallel to the plane of symmetry about the .
quarﬁer chord point. The tip chord twist angle is defined és Epe
.and.is subscripted with an L orrR-Which designates the left- ox
right-hand paﬁels; respectively. Tﬁe ﬁwisﬁ angles of the left or
right hand panels can have different values in oxder to_study the
effect of twisﬁ asymmetry. Notice that the twist angle is defined

as being positive for the case of washin. Thig angle will normally

1



be negative as most wings are washed out. The leading and trail-
ing edgeé of the wings are assumed to be straight lines, which
causes the spanwise variation of the twist angle Eo be nonlinear
if the wing is tapered. '

The dihedral angle of the wing is produced by rotating
the quarter chord line (and hence the entire left or right hand
wing panel) about the x~axis through the angle T'. The twist and
dihedral angles are assumed to be relatively small so that the
_order in which the rotations take place is inconseguential. In
the analysis which follows the twist angle.rotation is assumed
to occur prior to the dihedral angie rotation.
| The purpose of this section is to present the results of
an anaiysis for (a) calculating the spanwise variation of the
twist angle, (b) determining the uﬁit tangentiai and noﬁmal vectors
 required to satisfy the "no—£low" boundaxry conditions_at the three-
quéiter chord controi points, énd (¢} determining the iocal angles
of attack and sideslip at the quartexr choxd line., The left hand

side of the wing is treated first, and then the right.

‘Left hand side of wing, y<0

The local twist angle of the left hand wing panel, e at

LJ‘
the y station, (y=0). is calculated for a wing without dihedral
using the relationship:

: o o=

" Upon determining expressions for the X,z positions of the leading .~

(1)

énd-trailing edges as a function of y, and using the definition

for taper ratio, namely that“xﬁ:fcw/cgk_equafion'l'cah bé-expreSSéd .

12



ass: A (sin e ) v
tan e = - L B/ ; (y=0) (2)
an e = 1+ (l—k CoS g, ) v P\Y
L’ 5/32 |

This equation could serve for the right hand panel also, (with

certain sign changes), except that in the general case en  can
L

differ from QTR. ‘

The '"no flow" boundary condition requires that the (total)
flow velocity vector be tangent to the mean camber surface of
the wing at the three-quarter chord location of the control
‘points. This boundary condition is prescribed most easily by
setting the scalar product of the velocity.and local unit normal
vector, defined as ﬁ3/4, equal to zero. In order to calculate
the unit normal vector, the 3/4 chord line unit vector, ?3/4,
and the local unit tangent vector, %3/4, must be determined.

Figure 3 presents a schematic. drawing of the vector triad, namely

A A A . . X . .
r3/4L, t3/4L‘and n3/4L which is used in the analysis given below.

Figure 4 shows a cambered airfoil section at a typical
spanwise station prior to the dihedral angle rotation. The inclina-
‘tion of the mean camber line relative to the chord line is defined
as 63/4 and this angle is assumed to have a linear spanwise varia-
tion as given by:

ORIGINAL BAGE Ib
834 = 53/40‘ [63/40"‘ 53/%]]_1%[ OF POOR QUALITY (3)

where 63/4 is the inclination measured at the 3/4 chord station
o _
of the root airfoil section and 53/4 is the value measured at the
. T
tip airfoil section. Equation 3 is seen to apply to both the left

and right hand wing panels. If the zero Iift angle of the roof

13



and tip chord airfoil sections are known, these are substituted

for 63/40 and 63/40, respectively.

.The unit tangential wvector, %T=0 is rotated @bout the =
axis through the dihedral angle T' to bring it to its £inal ori-

. A . s .
entation, namely t3/4 . This latter vectoxr is defined as:
' L

A A A A
ty /4" ty1 + t,J + 3k

which may be expressed more compactly as:
ta/ar, = Fyr Tar E3
where

tl = ~C0S (EL+63/4)

ot
1

5 ~gin (EL+53/4)sin T ' '- (4)

ct
1

3= sin (eL+53/4)cos T .

The displacement vector ﬁé/4 is defined as that vector
L
whose tail lies on the 3/4 chord point of the root chord and whose

head lies on the 3/4 chord point of the left tip chord. It may
be considered as that vector which passes through the locus of

- control points and its magnitude is given by:

. o 2 2 2 %
. dy =[(§$ - }% tanp - ?z'?' cose:TL) +(%) "‘(E@' SinE’TL" 5 tan T) ] (5a)

b

The vector §3/4 is the unit vector associated with the displace-

L
ment vector R and is defined as:
3/4, s
r = =X., Yo, T
3/4;, |E3 y, 41,‘ 1’ v2r 73 _

14



where

¢ c :
=({ R _Db - L
N =( 5 = ten A - c?s %%)/HL_ (5¢)
a5 %ZE' | ' . 54
L
“q b | |
Ty = (-2—- sin E:TI. - 5 tan I‘)/dL 7 (5e)

The unit normal vector, f A3/4 , is calculated as the vector

A A
produqt of r3/4 and_t3/4 agd 15 posmtlve in the upwards dlregH

Iy L
tion, (see Figure 3):
. =8, =zt / & z 8 ' :
: . A
3/4L 3/4L 3/4L | 3/4L 3/_L| | (6a).
and is defined as:
8., =n, a, n (6b)
3/4L_ 1’ 727 73
where
G r3tz)/§3/gn. | - | (6c)
.nz = (r3t1 - rlt3)/d3/4L | (64)
n, = (rjty - :C'?_tl)/n:13/4.1:1 (6e)
and
- . 2
_ d3/4L = [lrytgrgt, )+ (rgty r1t3) S
. - 0L (6E)
+(rlt2~r2ﬁl) 1= .

In order to calculate the "effective® anglé of'attadk of
__thls alrf01l at the quarter chozd p01nt as requlred by the nonm_
11near analy51s, the wvector trlad assoc1ated w1th the quarter

wcyo:§ Po;nt_Fl/4LL_ l/éﬁf'and;nl/gt“lsrCalgalatEdf.-Th;srﬁr?ad o

15



has the same general orientation as the three-quarter chord triad
which is shown in Figure 3. Note that the unit tangent vector,

@ + i1s now tangent to the chotd line, whereas % was tan-
1/4L _ 3/4L

gent to the-m_ean'canibe-r line. The quarter chord triad is defined

as:
21,4 = Te (7)
T1/4. % T4 T5 0 Tg .
& =t tl, £ S (8)

1/4.= Car Fsr g | '
L

ﬁ =n n n - (9)
Y1/4, = U4t U5 P |

where
x, = ~tanp/[1+tan® p+tan T (10a)
rs = -1/[1+tan?Atan’r T2 . | (10b)
T = -tanI‘/[l+tan2A+tan2I‘];£ (10e)
t4 = —-Q0S E:L (ll)
ty = -sin ey, sin T (11b)
tG = sin e, cos T (Llc)
e T (st - Tetg) /Ay, - (12a)
5 = (Tgty - r4t6)/d1/4L I 0
ns = (3:41:5' - rst_4)/dl/4L - : | (l_2c_)_

and

| - 2 12 12 .

16



Right hand side of wing, y=0

The subscript ( ) will be used below to designate the
rlght hand pariel as indicated earlier. The equations to be
glven reflect the mirror image of the left and rlght hand panels
except for the fact that the wing tip twist angles can have dif-
ferent values. The development of the equations for the right
wing panel parallels the analysis given above.

" The local twist angle for the right hand wing panel is

S Meime)gm | |
tan e = l—Ll-—?Lc:os - ]b/z . 7 (y=0) | (13)

) given by:

which, when compared with equatidn 2, shows sign and angle changes.
‘The unlt vectors associated with the vector triads located

at the three— and one-quarter chord statlons f0110W'd1rectly-

A |
£3/4.F tyr tgr Ty

where
t? = -cos (e 3/4) | : - {(14a)
t8 = sin (e 3/4) sin T .. 7 | (14b)
tg_é sin (33%63/41 cos T | __ | : - (l4e)
The magnitude of the displadement vector.'"‘R"'B/.4 is giﬁén by
. R
: 'b'. a a2 '-_b-z..'- :
dp = Rﬁtanﬂ+§2-cos ETRH EE) + (3) +(%fﬁan r
_ o (15)
o 52 sin € ) ]
TR

17



The unit three-quarter chord vector 93/4 of the right hand panel
R

is defined as:

r3/‘4RE Togr Zge Tg

where
cp a
Ty = (§—~— i-tan A ~ = cos eTR)/dR
= b
rg =5 /4y

o)
.
9 = (2 sin e -5 tan P)/dR

r
Tr

From Figure 5 it is seen that:

A A

D3/a = 3/4, * T3/4

R R

= 1174 118, 119

where
Ry = (tgrg - tgrs’/as/4R
ng = (tgr, - t7r9)/d3/'4R
ng = (t,rg - tar7)/d3/4R
and

_ ' 2 2
“3/4," [ltgrg-tgrg) "+ (tgr,—t,rg)

2%
+ (t7r8~t8r7) ]

The vector triad associated with the quarter~chord points:

A
where '
th =_—cos €

18
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(16c)

(17a)

(17b)

{(17c)

(174)

(17e)

(18a)



where

and

?l =1 n Il "'% X
/4.~ P1o0 P11 Tiz T CL/4p

where

nyp = (59710

a4
1/4q

tll = gin ;R sin T
t12 = gin ep coSs r- .
A Pl

10~ T4
1y T "Ts
T1g = Tg

(t

99 = 511712

g = (Epo¥11 - B1a¥10) /ey

Tyra. = Tior Fi1r Tia

- tlzrll)/dl/4R

-tlorlz)/dl/gR

_ 2 2
= [{tq 175197y ) “F (€171 97 E1 0712

+ (tyg%y1~E11%10) ]

(18Db)

(18c)

{19a)

(1.9b)

(19e)

(20a)

(20b)

(20¢c)

(20d)

sufficient geometric information has been determined so that

the finite-step method and its subsequent non-linear modification

can be applied.
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B. Finite-Step Method, Linear Case

The spanWise variation of circulation along a wing is
estimated in the Finite-Step Method using a set of single horseshoe
vortices in the chordwise direction and N such sets of vortices dis-
tributed in the spanwise direction. A reasonable nunber for N
is 40; which corresponds to 20 vortices per eide-of the wing.

The flnltE—StEP calculatlon used here is similar to that pre-
sented by Campbell (reference 5) and Blackwell (reference 6).
The'horeeshoe vortex elements considered herein have bound
elements which are both swept and 1nc11ned to the x,¥ plaae as
those of Margason and Lamar (reference l), but lie in the plane
of the wing rather than belng centered in the x,y plane ‘of the
wing as assumed in reference (1). The trailing legs of the
horseshoe vortices follow the'cﬁord lines initially and then
have a crank at the trailing edge of the wing, see Figure 6.
Those segments which are located downstream of the tralllng edge
lie more nearly in the free stream_d;rectlon. in the case of
'sideslip these segments have a deflectioﬁ.angle B with respect
to the plane‘of symmetry, SO0 they are streamwise with respect
+o the sideslip variation. Tn +he case of angle of attack the
. trailing segments have 2 deflectlon Whlch is proportional to the
angle of attack in order to smmulate the KuttamJoukowekl cond1~
tion'at.the trailing edge. (It has been suggested that the
‘constant of propertionality he one~half in reference 2.} waever,

the cdnstant'of-propertionality,'ki; ean.be varied at the option



of the user.*

Figure 6 presents the plan view of the wing and illustrates
the spanwise distribution of the horseshoe vortices and shows a.
typical wing segment. The semi-width of the horseshoe vortes
is defined as s, where s is calculated:

je,

S = FHcosT

(21)

Referring to this figure, it can be seen that the point x;, ¥;.
z; is the origin of the ith vortex. This voritex has a spanwise
or bound segment which is coincident with the line of guarter
chords of the wing and is therefore displaced vertically From
the horizontal reference plane, the x,v plane. The axes of the
ith vortex, namely, £,9.h, are parallel to the x,y,Z axes but
are displaced by the distances X;, ¥;: 2. The chordwise seg-
ments are assumed to be parallel to the x axis, and hence the
twist angle is not simulated exactly. The maximum twist angle
of the typical wing is less than 5° everywhere, so that the
physical displacement of the horseshoe vortex and wing segment
should not be significant. The boundary condition on the jth
segment at the control point xcj, ch: ch has been moved to the
plane of the vortex. (The inclination of the unit vector 33/4,

which defines the normal direction to the mean camber surface oEf

the wing, has been calculated in the preceding section. The

'*The value k, equals zero causes the downstream segments to lie
in the plane of the wing, and the value k, equals unity causes
these segments to be parallel to the free-stream veloclity vector.
Further details are given in Appendix A.
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components of 33/4 are determined at the contrql point which is
designated with the subscript f )c)e

The velocity induced at the jth controllpoint due to the
ith'horseshoe vortex is caleculated according‘to an algorithm
which is presented in Appendix A. fThe general horseshoe vortex
is considered in this Appendix to have Ffive straight-line seg-
ments: a bound or spanwise segment which was Previocusly described
as lying along the quarter-chord line of the wing, two chordwise
segments which lie on, (r near. if the wing has twist), the left
and right-hand edges of each segment, and two segments which
extend downstream from the trailing edge to a diétance of
approximately one-thousand root chords, which approximates
infinity. These Ffive segments are designated K=1.5 where the
segments are.counted clockwise when viewed from above. They will
be referred to as the bound, chordwise, or trailing segments in
the discussions which follow.

The velocity induced at the point P by the ith horseshoe

vortex can be expressed functionally in the forms:

v - i [F f4w Ser ﬁ]
P90 Zw Wuy, (p) Yy () Ty o

where the influence coefficicnts are defined as E.+ E,, and E,
These influence coefficients can, in turn, be expressed in
functional form:

F':F (f!gthl =) LII: fpl Ly B’kl' CMIICPL). .

The analytical expressions of these functions will be exceedingly
lengthy and~while impressive, have no particular virtue in them-

selves. fTherefore the velocity induced by each vortex segment
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is calculated separately and then summed by the computer Ffor
K=1.5., For the special case of p=0 and k,=0, the calculations
© agree with results obtained using the influence coefficient
formulas given in references (1), (5) and (8).

The spanwise variation of circulation is determined by
calculating the induced veloecity at a control point, “cj", for
the N system of horseshoe vortices where each of these vortices
has an assigned but unknown strength Ty - This velocity is then
added to the sum of the free stream velocity and the velocity
produced by the angular rotation vector w at cj. . The boundary
condition requires that the total velocity vector is tangent
to the mean camber surface at the control point. The control
point is located at the midspan, three-quarter-chord line of each
wing strip. The simultaneous matching of the flow tangency re-
guirement at the N control points leads to a set of ¥ linear alge-
braic equatioﬁs which are solved for fhe vortex sﬁrength values.
The Kutta-Joukowski theorem is applied to calculate the incremental
forces which act on thé bound and chordwise segments of the
horseshoe vortices. Incremental moments due to these elementary
forces are determined also using the center of gravity as refer-
ence center. The incremental forces and moments are integréted
over the entire wing in order to determine the force and moment

coefficients desired for both body and stability axes.

1. calculation of the Induced Velocity, ch

The location of the origin of the ith vortex, counting from

i=1 on the left wing tip to i=N on the right wing tip, is given
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by the following eguations:
=_Db ; -
¥;= - 5 +(2i-1)s cosl ; i=1 to N
5= = {y; frana o (22)
The location of the jth control point, "cj“, is given by the

following equationss

Y., = - 5 +{2j-1)s cosT ; =1 to N
Cj 2 .

: i i 1-
Roy™ = ey leann- 5 o3~ 21y, ) (23)
zcj= -~ ]ycjftanr

The displacement distances are calculated as:

f = ch - Xi
9= Yo, - ¥3 (24)
h=z_k « 2z,

The induced veloecity at the control point, "cj“,IGWing to the

system of i=l to N vortices distributed evenly over the wing

- 8pan is calculated as:

Vo, = Ug., Va.r Vs, | o (25)

where
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o Ty

Wg.= z: 2o 26
o™ ), Zm By | (26)
i=1

The influence coefficients are given by equatiqns (p24),

(A25), and (A26), which are presented in Appendix A.

2. Determination of Spanwise Variation of Circulation

th

The unit normal wvectors located at the j control point

have been calculated in the geometry section as:

a = (n n ng) Va.= 0
3/4L' is “a a _ C5*
A ' ‘

*R J
The velocity at the control point will be tangent to the wing

surface when the scalar products of the unit normal vectors and

the total velocity vectors are zero:

ﬁcj- ﬁ3/4 = 0 o (28)

where the total velocity vector V., is the sum of the free
' J

stream relative velocity vector, (ﬁbo), the relative wvelocity

—

produced by the angular rate of rotation (uaxRCG )}, and the
: _ o
induced velocity (v, ): ]
J
V6_= vboﬂwXRCG + vc.. (29)
J Cj 3

The boundary condition, equation (28), becomes, after substi-
tution of eguation (29} and rearranging:

(30)
Ca v
J .cj

jod s = %7 - _ - /\_.
v O3 /4 (_Vbo+wacg_ ) T3 /4
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The left~hand side of equation (30) contains the unknowns I‘i,
i=1 to N, while the right-hand side is known. The veloecity on
the right-hand side of ‘equation (30) is recognized as the
rigid body velocity at the control point and for simplicity

+he termg are conbined:

VR.'BC.E - vd:>+ wXRCGc_ (31)

J J
where

_ A A LA N o

¥V = -v_ (cospcosg itsing J+cosBsind k) (32a)

lee) oot _

w =P, Q;, R o (32b)

R = £ 5 :l]\{ 33)
J . - J

Equations (29) to (33) are normalized by division of the magni-
tude of the free stream velocity vector. The nondimensional
rolling, pitching and yawing rates 5; '5, and R are introduced

also where:

o~ Pb ~
P=go— 1 Q= s R = 55— (34)
:_zvcjo' | ZVOD 2V _ o _

den

The nondimensional rigid body velocity components become:

1) .
RB z2,.72 Y.. Y
(o X1 . S CcG I =X ce
~———1'v —L =cogpeos gl (-*—"—-“_:_I. ) - R(—L—)
e e/2 b/2
v | |
' RBcj ] - xchXCG ~ ch—ZCG
v =sing + R(“‘W) - P( /2 ) (35)
W o
. RBc:j - N(ycj—YCG) i (ch_xCG)
= =gosgsing + Pl—%m—) - Q——
Vs B /2 <2
. .'wﬁﬁ-ﬁ
jemial
%EF POOR Qﬂm
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‘The left-hand side of eguation (30), divided by V_,, for the

left-hand wing panel can be written as:

N
g Ej Eé;{n F.  +n,.F. gL F ), §=1 to Z
41T : VCD 1j 'I.lij 23 Vij aj Wij ’ 2

A
3/
453'- i=1

<yl
g |0

(36)
The simultaneous equations for I, i=1 +to N are obtained by

substitution of equations (35) and (36) into equations (30):

1
Z (v—-—) (nljFu_ _+n‘,aiji_-t-n,3 Fo. )

© ij I J %413
i=1
UR]E‘: VRB WRB
[ °3 3 °3 (372)
= dy|—— Nyt n,.+ na.] a
Veo . Vo = Veo A
for j3=1 to %
N
i
=) (n,.F +n, . N g.. T
2 G gy, e sTy, ey )
1:
URB VR'B WRIB
[ Cj Cj Cj (37b)
= 47 n,.+ Ng.t —— ng.]
v 3 VED 87 Vd: 3

for j= 3 +1 to N

Equations (37) represents N linear, algebraic equations which
are used to determine the N values of (ri/vba)" For simplicity
Ti is defined as the ratio of Ti to V6O, and this variable

will be used subsequently.

3. cCalculation of Linear Force and Moment Coefficients

The elementary force producéd by a vortex filament of
length ( immersed in a flow is calculated using the Kutta-

Joukowski Theorem, as applied by Prandtl:
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iF = o7 s (38)

where VL is the local velocity vector determined at the mid-
point of the vortex segment under consideration. Equation (38)
will be used to calculate the forces acting on the chordwise

and bound segments separately, in that order.

a) Chordwise segments

There are N+l chordwise segments and the subscript m will
be used to number these segments, see Figure 7. The right-
hand chordwise segment on the jth wing strip is coincident

with the left-hand chordwise segment on the (jth+l) strip.
..The force on the combined segment will be caleulated ﬁsing.
the net circulation acting. The first and last segments, on
the left and right-hand wing tips, respectively, will have a
circﬁlation which corresponds to the value existing on the
horseshoe vortices located at the respective wine tips. The
chordwise vortex segments are counted using the integer
variable m, where m varies from 1 to N+1l, and the counting
~again proceeds from left to right beginning at the left wing
.tip chord. The het vbrtex strength aéting on the m#h ségmenﬁ

‘are calculated accprding to the equations given in the table:

gélue of m T (m) value of 1

rﬁ?lzri=l i=m=1
m, m=2- Tm:ri“ri—1 i=m {39)
N+1 T T. =N

m#N+l= i=N *
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The midpoint of the chordwise segments are subscripted ( )e

and the induced velocity at these points are.calculated using
the method described in Appendix 2. .The induced velocity due
to a (single) 'segment at a point which lles anywhere on that
segment or on the straight line extension of that segment is
equal to zero. A test is provided by calculating the perpen-—
dicular distance between every line.segment and the point in
question. If the perpendiqular distance is zero (the pPractical
criterion used is A4=0.ls), the induced veloecity from that
segment is not calculated, which avoids the indeterminate Fform
which would result were the computer to evaluate the eguations
for the inducgd velocity at that point.

The position of t+he points e, are calculsted:

Y = = §-+2(m~1)s cosI', w=1 fo (N+l)

®m

% = - —g—- e~ |y€ Itanj\s/s (40)
®m m

z =~ |y. [tenT
€m m

where
-2
tan; sg=tan - 2A ST (41)

The induced velocity at the péint . is caleculateds
v N
g s
Y-~ Bp Bp D
7 yye T [Fu1+ij +E k] - (42)
e i=1

usings:

(43)
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where.fi are those vaiues obtained by the solution of equatibn
(37 The influence coefficients are again those defined by
equations (A24),A25, aﬁd(A2Q. | |

~ The vector F&Iis_determined_using the magnitudes Pm
as per egquation (39) and the unit veétors £2 =§ which correspond
to the left-hand chordwise vortex segments'ﬁgiz) as.defined in

Appendix A, except for the right—hand wing tip segment (m=N+1)

A
where the negative of the 1 unit vector is used:

Ty = Iy 1. m=1to N
and . ' (44)
Tyl Ty 3, - B=F+ L

The lengths of the chordwise segmenits are calculated

., 3. o e o
b = F Syt : m=2%XtoN, m=j
and d (45)

= 3 = 3
o 7 (Ger) =7 op
The total velocity is calculated at the points €t

v = v -

. . Ve + m=ltoN+l (46).

RB

€m

determination is now € rather than cj as in that equation. The

where V. is defined by equation (31) except that the point of

terms or components of E%B /vm are given by eguation (35) upon .:
®m

replacing the values X, ¢ Yq ’.Zc withx , v , 2 .

i i i m  fm  Cm

The incremental forces on the chordwise segments are
caleulated by substitution of the results of equations (39)., @4),

(45) and (46) into equation 38), to wit:
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and

6'.5' o 3 :
(&) =-7 x(r ) 2o, 7 mewel (47D)
P /w4l eyt N 4T R,

These expressiohs may be nondimensionalized by division of both

sides of the egquation by é Vz Srag.® Defining the free-stream

dynamic pressure, d =‘% gvi ; the nondlmen51onal incremental

force eguation becomes:

— . . e .
( Gg ) = 32 (% CMI) (F )_'El' x i; mel to N {483)
. ref'm ref m = .

and

) e 23 ) (B )L = & 5 mewes (48b)
q ref N+ ref ' o

The total force produced by the chordw1se segments is:

) -G V) e

CH N+l m=1

" The resolution of the body axes force components along stability

axes is given following the derivation of the bound segment forxrce
vectors.

The incremental moments, referenced to the center of
gravity, produced by the chordwise segment is:

Smm = Rog X 68 : _ $49a)

The body axes moment coefficients are defined by the eguation:

" 3
M=2¢g, S8 q;h i+ C

%B ref

my Sref 9o cref'j + an ref %w b k
|  (49b)

3L

rFa]




.The moment is nondimensionalized by the £factor qoosref£ref

and is calculated using equations (48c) and (49):

- 0 ’ v -—

= : RCGe &F N RCGe 5F '
M C oL N+L o ¢ N+1)+Z Mo T
qaasrefiref CH fres qODSref =1 {ref qcosref

h) Bound vortex segments

There are elemental forces on the N bound vortex segments
which must be summed in order to £ind their contributions to
the overall forces and moments. The increment forces are ob-
tained using equation (38), where the local velocity is again
evaluated at the midpoint of the segment, which in this case
is the origin of the horseshoe vortices. This point is_defined
as point d, and the coordinates of d are given by egunation (22).
For the sake of completeness, the displacements and the induced

velocity at the point d are written:

£ = deT 3]
g = yd-_ Yl (51&1)
J
h = zd - Z;
5 ORIGINAL BAGE I3
where ' OF POOR QU&IETﬁ
Y = - 1;— +(23-1)s cosT , ¥;= - %— +(2i-1)s cosT
x5 = = |vq [tana » %=~ ly; |tana
J 3
a - I etz g e (520
J ]
j=1 to N ' i=]l +o N

‘and the induced velocity is .calculated:
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[~ &

g Lo

~ A A A
I [Fui +FJ +F k] (51c)

L
am
i=1

where Fur F

ot Ty are summed over X as shown in equations (A24),

(A25), and (A26), except the terms K=3 are omitted, since the
point dj lies on bound vortex segments. The total veloecity is

calculated at the point d.:

J
Va.” Va.” Vrs, (52)
] J =5
where ﬁRB« is defined by equation (31) except that the point of

determinazaon is now dj rather than cj as in that eqguation. The
components of ﬁde_/vCD are given by equation (35) upon re-
placing the values (x,y,z)cj with (x,y,z)dj as given by equation
(51b) .

The length of the spanwise segments, and their circula-

tion strengths are given by:

1

4 = 2s[l+cos?®Ttan?j]? (53)

B.=r.2 :  i=j (54)
j titejR=3 7 *7I

These results, equations (52), (53), and (54), are substituted
into (38).and the increment force on the jth bound vortex
segment is calculated:

8F . '
(“El)BND= Vaj X T5(25[1+cosgrtan9A]%) 7 =1 to N

- - L] a »
Division by % vbosref leads to the nondimensional equation:
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EF . -
4s : T
) [1+cos?Ttan?p ] (I‘

BND S ef !

8<€LQ<H

)
o X ¥,
,qo:: Sn:'na.f °3.K=3

j=1 to N . (55}
The total force on the bound segments is given by:

F ..
(—— ND —_—) . s J=3 {56)
qcnsref B Zl co ref ]

The incremental moment coefficient, measured about the c.g.

of the jth bound segment is:

—

R
8., CCy.. 6F
e ) Bp™ L g ) Bwp (57)
Qoo ref'tref Yrer Ton ref
The total moment is obtained by summing equation (57):
N —
— M
M J
( ) ( ) (58)
9o ref’f‘ref BND jZl oosref’{"ref BND

Finally we sum the force and moment coefficients on the
chordwise and bound segments using the results given by (48¢)

and (56), and (50) and (58), respectively:

F F F
{ o = ) { ) (59a)
qoosref T ! Sr g BND- q Sref CH
¥ M M
( ) = { ) + )
qoo ref‘t C'{n::e ref'f“ BND qoo ref'f‘ ef CH
(59b)

The total force is defined using body axes components

- Al A A
FT=XJ_+Y3+Z}: ‘

where X is the negative of the conventional awizal force (¥=-a).
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The coxpponent ¥ is positive in the forward direction (thrust);
v is the side force, positive to the right; Z is the :Ilegativé

of the conventional normal force (Z=-N.). The component Z is |
positive in the downwards direction. -

mhe body axes force coefficients are determined:

X Y - B
a.= , C = & QS (60)
* qoo S:ref ¥ cloosre.f 2 qcosref
The moment coefficients are likewise defined:
c Jrefy . o - Uy Jrety
iy qcosref'{‘ref b g qcosref‘r‘ref c
M _
T g E‘:Z 1 (%ei) (61)
B m S refiret

the 1ift, drag and side force coefficients are calculated
relative to stability axes:

CL = CXSlna—CZCOSa

CY = CY (62)

CD = - (C_cosatC_sina)
b z

and' the moment coefficients are obtained:

CfL = C cosa-l-cn sina;
S B.

¢, = ¢C (63)
s ™ :

cn = - C s::.ncx.-i-cn cosQ

S B
" which completes the linear analysis.

The above analysis has been programmed, see Appendix B,
and values for I'; for i=1 to N éppeai‘ as output data as well
as the force and moment coefficients listed above in eguations

(60), (61), (62), and (63).
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C.‘ Modified Finite-Step Method: Nonlinear Case

The analysis of the previous section resulted in a procedure
fér calculating the span loading and integratéd wing force and
moment coefficients which correspcnd to the linear case. (Actually
the results were not strictly’linearﬁsince trigonometric terms
involving angle of attack and sides;ip were not réplaced by the
usual small angle approximations). The linear analysis, however,
does not preﬁict the stall characteristics of the wing, i.e. it
leads to an over-estimation of the lift and an under-estimation
- of the drag at angles of attack above ~1l0°., It seems reasonahle
to expect that a more realistic.estimation of the wing coefficients

could be achieved-by replacing the thineairfoil—theory section char-
“acteristics, (ab= 2T 1/rad), with the section aerodynamic character-
istics as determined from wind tunnel measurements, references 11 or
12, or as predicted by some of the more advanced airfoil theories
"which taﬁe into account the viscous forces in the boundary layer,
;sge references 13 and 14. While this calculation appears to be

'straightforward, it has not been possible to achieve the desired

results.

' The idea of replacing the theoretical airfoil section character-
istics with experimental values &s not particularily new, (see

‘Reference 12, p. 20). Sivells and Neely, reference 8, have adopted
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this procedure using lifting line theoxy, and it seemed that such
a procedure would also be adaptable o the Finite-Step Method.
" The procedure adopted for estimating the nonlinear aerody-
namic coefficients of”the‘wing is basically tnat of using'finitem
step calculations to estimate the span 1oad1ng of the w1ng ini-
‘tlally. The effective angle of attack at the quarter chord is calcu~
lated from the span loading as in lifting—line theory. These ef~
fective angles are ueed to determlne the local llft coeff1c1ents
from test data of a;rfomle A new span loadlng can be determlned
u51ng this alrf01l 1ift data and the effectlve anglee of attadk re-
estlmated in an 1terat1ve fashlon.
The procedure used in the computer.program ig ampllfled below,
and the difficulties encountered are described.
1. The effective angie of attack at each.wing segment ie

calculated using the following eguation:

-— A
V -/v ) - Il;‘_j

( /v) ‘,t;y:j

tan q., = (64)

where the values of Va are determined from the linear
analysis. This equation is similar to the effective
- angle of attack calculated in Prandtl's lifting line '

-

theory:
¥ 8§Igmn, PAGE I
_ | OOR QUALITY |
O'cf_ifiﬁj - cc';na'-om-;,_;"f-.Wj/_ VFD’ o w85
2. The airfoil section data CL. d' cm = f(m) are determlned

'at each segment u51ng the value of cj determlned from
'equatlon 64. Data for the tlp and root alrf01l sectlons -
Jare 1nterpolated llnearly from root to tlp to account
fcr the spanw1se varlatlon of alrf011 sectlon. . The span—

w1se dlstrlbutlon of clrculatlon is computed from these

.ﬂlocal 1ift Lcefflclents u51ng._
: 37.




"t

Toriginal (¥) = ctj_cj/2

Values.of-f

g ' ter
original 3PPear as output from the compute:

. ) -~
program. It was intended that the values of T as

computed in this step be used to replace the linear

finite-step values used in (1) and these steps repeated

until no further significaﬁt changes in the loading oc-

The values of i;

P

curred. However, values of Porig neaxr the wing tips in-
duced numerical instabilities which necessitated the ad-
dition steps which are described next. A fuller explana-

tion of the difficulties is given below.

rig’ 25 computed in step 2 above for
those segments which are located in a region of approximately
one chord inboard from each of the wing tips, are

discarded. The finite-step method is then employed to

calculate replacement values. The procedure used is

- similar to that used in the linear finite-step analysis

portion of the wing are held fixed and eqﬁal to T

except that the values of the circulation in the central

original’

This is equivalent to replacing lifting-line theory values

near the wing tips with lifting surface theory values. The
_:esults.of this calculation are labelled IEIMQ and also ap-
pear in the computex output.
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It was necessary tq “fair"_the.ﬁalues-of fSIMQ calculated
in the tip regions in step 3 into the denﬁrai wing values
determined in step 2 and a polynomial curve fitting
technique was employed to accomplish this. The central
wing vaiues of fSIMQ' éince_they'were'détermined from
lifting-line theory which is_known to overestimate the

1ift, were reduced. using Jones' edge correction factor

 obtained from reference 15. This correction is:

-~

= Ibri

sIMO T E

al )

b +b
(- 3+ cpl<y < (3 - e

where E is the complete elliptical integral with modulus

k, i.e.:
/2

B = j NI - ¥sinfs de = E(k,T/2) = 1
0

and.

k=41~ ()2

After aéplication of the Jones® factor, the level of ?,
from the finite-step calculations, joined the central
wing values and the overall distribution could be faired
using ﬁhe subroutine MARIAN. The faired'circulétion

va}ugs_we?Q labelled PMRREAN°  ¢h§_value$_§lso appear 1n

the computer output.
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These stratagems were partially successfui in overcoming the
inherent instabilities which exist in the nonlinear caloulation.

The first iﬁstﬁbility was uncovared at'iow angles of attack
where the Lift coefficient angle of attack relationship is lineaxr.
The net downwash at the gquarter chord of any wing segment, the
term.wj/vm in equatién {65), can be regarded as the algebraic
sum of the downwash produced by the segmeni. on itsel £ plus the
upwash contributed by every other segment, assuming they are all
llftlng segments. Suppoaathat, for some reason, the circulation
at one par“1cular wing segment is unduly large compaled with its
neighboring segments. When the effective angle of attack is
calculated on the next iteration, this segment will have a down-

wash contribution on itself which is tpo large and & _ce will be

too low. The segments which are adjacen£ Eo this segment will exper-
ience a large upwash and thedir effective angles of attack and Lift co-—
efficients will be too large. As a result, it can be seen that the
high 1ift on the fixst segment will start an oscillation of effective
angle of attack with attendant changes in section lift and circulatilon
upon itself, and that this oscillation will spread laterally to the
adjacent segments. This oscillation will continue to propagate span-.
wmse'w1th each new lteratlon. Thls First 1nstab111ty arose because

of the difficulty of calculatlng ﬂownwash near the wmng tips as

described in step 2 above.
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Prof. J. Werner suggested that it would be possible to suppress
this oscillation by using the finite-step method to calculate the
wing tip loading while retaining the use of section data to deter-—
mine the loading on the central portion of the wing. The palynomm
ial épproximation used to "fair" the loading in the tip and central
regions served to eliminate the instability. - ~

‘The second instability occurred at the higher angles of attack,
once the airfoil section 1ift slope became negative. The second
_.instability can be visualized by assuming that one wing segment,
presumably the one with the highest effective angle of attack and
the lowest stall angle on the winé, reaches an angle where its sec-—
tion 1ift curve slope is negative. On the next iteration the effec-
tive aﬁgle of attack of this segment will be increased because the
downwash due its own circulation will decrease, which in turn will
produce a decrease in 1lift coefficient. The process is unstable
and coptinues until the 1ift curve slope of this segment becomes
positive again above the stall angle of attack. The work described
in references 9 and 10 shows similar results in the steady flow
-calculationf Tt is indicated in these references that 1s necessary
to go to unsteady flow theory in order to achieve even the qualita-
tive behavior of the wing lift in the stalled region.

Figure 8 presents the variation of wing lift coefficient with
angle of attack for an unswept wing of aspect ratio 8.04. The ex-
perimentally determined pitch characteristic of this wing, compared
with the results of nonlinear lifting-line theory, are presented in
reference 16. Both the linear and nonlinear finite-step method
computer results for'fiVE'iteratigns are also shown. The linear -
results as expected, are seen to over—estimate the 1ift coefficient
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by a substantial margin above an angle of attack of 129, Since
t+he linear curve values are used in the £irst step of the non-~
1inear calculation, and they will clearly lead to downwash angles
which are too large; curve #1 is seen to fall below the tesé data
by a substantial margin. On the second iteration, the under—-esti-
mated local 1lift coefficients can result in high effective angles
of attack some of which, at the higher geometric angles of attack,
exceed the local stall angles. Thereafter the stall propagates
across the wing with the result that the 1ift coefficients are
larger than the test data below above o < 14° (they approach the
1inear theory results), but rapidly drop at the higher angles. The
1ift coefficient on the second iteration at a = 92° is off scale

as are the values at che lower angles as the nunber of iterations

increases.
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IV. DISCUSSION OF RESULTS

A parametric study was coﬁducted'with the.program described
in the previous sections in order 'to validate the accuracy of
the methods used. The lift, lift curve slbpe, and longitudinal
and directional stability derivatives of a series of wings were
computed. The aspect ratios considered varied between A = 2 and
A = 7. Sweepback angles of A = 0 and 45°_and taper ratios of
A= 0.25, 0.50 and 1.00 were used. Computer runs were made fox
only select combinations of these variables in order to make di-
rect comparisons with the theoretical and/or experimental results
available.

Figures 9, 10 and 1l compare the present results for the
computation of lift curve slope, static margin, and induced drag
factor with the vortex-lattice results presented in reference 1.

It can be seen from these comparisons that the results obtained
compare quite well with the vortex lattice method results. The re-
sults should compare exactly for the vortex lattice method using
one chordwise vortex, (ﬁe = 1), except for the fact that the vortex
lattice method uses streamwise vortices in the Treffetz plane and
moves the "no-flow" boundary condition to this plane also. The
present method places the vortices'on the wing plane. Also, the
downstream trailing legs lie one-half way Eetween the wing chord
plane and the free stream velocity direction, as recommended by
Ruppert, reference 2. The largest discrepancy occurs in Figure 11
for the swept wings of taper ratio esqual to one—half,_but percentage-
wilse the difference is small. -

ORIGINAL, RAGH Iy

43 OF POOR QUALITY



Figures 12 and 13 present the variation of the pitch damping
derivatives Cp and Cn with aépect ratio for £WQ sweep angles,

0 and 45°, and two taper ratios,” &t = 1.0 and 0.5*.‘ The computer
results are compéred with the theoretical reéults obtained from
reference 17. The agreement between these methods is satisfactory
except for some differences noted for the high aspect ratio swept
wiﬁgs. '

Figures 14 to 17 present the static lateral-directional
stability derivatives, C, <, and C , estimated by the computer
program with the theoretical agd experimental results available
from va:ious NACA/NASA reports, references 7, 18 and 19.

Figure 14 presents the variation of c{’/cL with aspect ratio.
The ;esults obtained using thelpresent nethod have been compared
with three different analyvtical methods, see Figures l4a and 14b.
The present method agrees best with the method of reference 7 for
the unswept wings, which is not surprising since the computer pro-
gram is based upon 'the vortex modelling system suggested therein.
The calculations for the swept and ta?ered wings,'see Figure 14b,
agree more closely with the results of reference 192, however.
Figure l4c presents the variation of CL /CL with taper ratio for
the swept and unswept wings of aspect ratio 7. which illustrates
the better agreement between theory and coﬁputer results for the
highly swept wings.

A detailed examination of the computer output revealed the oh-

* _
The standard NASA stability derivatives are used in this section
of the report and in the figqures.
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vious: that the rolling moments contributed by the vortices lo-
cated near the wing tips were the most significant and that the
integrated values of the rolling moment was the éifference in

the bending moments at the wing root of the left- and right~£and
wing‘panels. Thus the value of C& /CL calculated for the straight
wing is equal to the difference of two large humbers of nearly
identical magnitﬁde. The actual value of C,p /CL for large aspect
ratio straight wings therefore is sensitive Eo the minor asymmetry
. of the span loading due to sideslip angle. In the case of the low
aspect ratioc and/or swept wing the differemces become more pro-
nounced and hence better agreemenf with theory is achieved.

Separation of the flow from the leeward wing tip due to the
greate£ amount of spanwise flow of the boundary layer might cause
the tip chordwise vortex segment to leave the wing panel and tfail
streamwise rather than chordwise as assumed in the present calcu~
lations. This effect would produce a significant loading distrib-
ution change at ti.e leeward tip and alter both the rolling and
vawing moments due to éideslip angie appreciably. This effect has
" not been investigated numerically. ‘

Figure 15 presents a comparison of the results cbtained with
the present method with those from references 18 and 20 for esti-
mating the effect of wing dihedral angle upon Cp - It can be seen
that better agreement is reached with the data and theory (Weiss-
inger) presented in reference 20.

Figure 16 presents the estimated directional stability deriva-
tives for the wings compared with the values obtained from refer-—
ence 18. As pointed out from this reference, the directional

stability derivative is very difficult to predict and so the dis-
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agreement shown between the two sources is not unexpected. (It
should also be pqinted out that there is a much more recent and
advanced source of information concerning the estimation of
stsblllty derivatives, namely reference 22, and that it is real-
lZEd that all of the derivatives presented herein should be com-
pared with this source. How3ver the methods of reference 22 are
necessarily longer and more tedieus and the line had to be drawn
somewhere) .

Figure 17-presents +he estimated values of CY with those
obtained using reference 17. The zZero sweepback values compare
fairly well but there is considerable disagreement between the
.swept wing values. Reference 18 suggests that the theory of ref-
erence 17 is prebably nnt too suitable for estimating CY of the
Wing, The possibility remains that the present method vglues are
reasonable. ‘

Flgure 18 presents the damp-i in-roll derivative, C& . Com-

_ puted values are shown for g = = 0° and 10°. It is seen Ehat the
values of C{p increase sllghtly with angle of attack. This effect
. is not taken into account in the method presented in reference 18
and deserves further verification.

Figure 19 presents the variation of the yaw—due—to roll .
derivative, (AC l/CL which contains only the contribution due to
wing Lift and 1nguced drag forces. There is another contribution
Vdue to.the variation of profile drag with angle of attack which of
| course is not taken 1nto account by the present method lineaxr
case. Reference 18 1nd1cates that the theoretlcal values presented

._thereln are in agreement Wlth the experlmental data, all taper

ratios, which suggests that further work is requlred on the present
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method.

Figure 20 presents the variation of the side force-due—to
- roll derivative and fairly good agreemeﬁt is shown. On the

basis of the results shown in Figure 19 this agreement mighg
be fortuitous, and further study may be warranted here too.

Figures 21, 22, and 23 present the vaw rate derivatives
.C&r/c ' (Aan)l/cLz, and cyr/cLz' Figure 21 shows that the roll-due-
to~yaw derivative has a variation with aspect ratio which runs count-
-&8r to the theoretical values given in reference 18. However, as in-
dicated in this reference, certain empirical coriections'are required
to adjust the theoretical wvalues of ctr/CL in order to agree with
wind tunnel measured values. On this basis the preéent method results
remain questionable and further verification is reguired,

Thé vaw damping derivative, (ﬂcn?)l/c 2, presented in Figure 22
has the proper variation with aspect ratio but the agreement with the
level of the theoretical curves is poof for the straight wings and is
worse for the swept Wings. Further investigation here is suggested
also.

Figure 23 presents the side force-due-to-yaw derivative and
good agreement is shown for the straight wing cases ﬁhile the swept
wing cases differ by several orders of magnitude. - Reference 18 in-
dicates that experimental data show that the theory (obtained from
reference_l?) is inadegquate.. Thus-tﬁE“"goqd" agreement shown for

the straight wing cases is suspect.
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Ve CONCLUSIQL\T

The linear Ffinite-step method resulis for.estimating the
force and moment coefficients in symmetric, sideslipping, and
rotary £light has’beén shown to predict values which are, fof
the most part, reasonable. However, it would appear that Ffurther
refinement in the estimation of the lateralmdirectional rotary
derivatives is rgquired.

The nonlinear Ffinite—step mefhgd at low angles of attack
converges to a solution'wﬁich is reasonable bu£ does not agree too
well with the experimental data. At angles of attack above the
stall the steady flow numerical‘procedure becomes unstable and is

unusable in its present form.
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APPENDIX A: Calculation of the Induced Velocity Influence Coefficents

The velocity induced at a general point, P, by a horse-

. shoe vortex having a bound segment with both sweepback and dihedral,
and fxailing legs which are cranked, is developed in this apgendix.
The planview and a sectional view of a horseshoe vortex is shown
in Figure aA-1, included at the end of this éppehd;k.

The bound segment, bc; lies on the line of guarter chpxds
of the appropriate wing panel, see Figuré A~l. The bound segment
thus has the sweepback and dihedral angles of tﬁis line, and is dis-
placed vertiecally from the xy reference plane for a wing with non-
zero dihedral. The.éhordwise éééments, ab ahd:cd;‘are parallel
to the x axis.. The“trailing segments, ®,a, and dmz_arg inclined
at the angle'ﬁ‘with respect to the plane.of symmetry and their
projection in the plane of symmetry iIs inclined at the angle klm
with respect to the x axis. For kl equal to unity the trailing
segments are parallel to the frée stream velodity.ve¢£or, thle

for k, equal to zero these vortices lie in the chord plane'of the

1
wing with the twist anéle removed. The structure of Ehese vortices
is described further below.

The wing twist angle has not been simﬁlated by the
horseshoe vortices, because iffit were, the chordwise segménts
of a typical horseshoe vortex would not be_parallel for a Wiﬁg_
.with twist...What has been déne is tﬁ ﬁssﬁme thaﬁ ali the bound
and chordwise segments on each side of the wing_@ie in a common

ORIGINAL PAGE I -
OF POOR QUALITY! - 52




plane which contains the quarter chord line and the root chord.
These planes (one on tﬁe left and another on the right sides of
the wings) are inclined at the angles I’ with respect to the xy
reference plane. In order to simulate twist more accurately: it
would have been necessary to introduce a twist angle rotation

of the chordwise segments and this was considered an unnecessary
complication. However the wing twist angle is accounted for

properly when calculating the "no flow" condition at the control

points.

The velocity induced at a general point P by the K#h

rectilinear vortex segment, with strength ri’ is derived with the

aid of Figure A-2. The vectors Ei and Eé are displacement vec-
K X

tors from the beginning and end, respectively, of the Kth segment

to tie point P. The unit vector ?2 serves to define the dir-
) K

ection cosines of the segment and is poéitive according to the
right hand rule for the assumed direction of Ti, The magnitude

of the velocity induced at P is given by:

T,

—_ i

lq I = cos B + cos 8 (a-1).
K 4l 1x 3k

where

h.o=|rR, =2 | =1r, |sin © (a-2) .
K 3K | 2K | 3K 3K

cos Bl = Ei ° 92 /lii l (a-3).

K K L8 28 . . .

53



3 3

cos §, = -R, - 2’2 /l§3 | (A-4 ),
K K X K :

The velocity at P is calculated:

@, = gl & | (A=5 )
K K K ' . ) .
wheze '92 % El 2. 0x El 92 % -1-{3
A _ K K. 'K K K K (A—6)
WoIE wE 1T B T By -
K K
hence
ri ( >(
— A —
Q.. = o5 |lcos © + cos B ki X R (a-7),
K 4ﬁhK 1K 3K y 2K _ 31{
The Upr Vs W components of q, are found:
—_ A Co—_ A — A ' )
B = Gl Ve m At o Wy = gtk (a-8).

The vectors R R £ . and E are defined in terms of

1 2 3

K K K
their components
RlK = Rll ’ R12 r By
K X 3
£ =®R. ,R. , R X =1,2,3,4,5 (a-9) .
2y 2, 2, 2,
K K K
K X R}

The unit vectors f‘z can be expresses in terms of the geometry
K .
presented in Figure A-L. Their components are given in the fol-~

lowing table:
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TABLE A-l - Components of EEK for K= 1l—5

K=1 R=2 =3 =4 K=5

cosB cos ki 1 cos¢tan¥/Vl+cosa¢tanzY -1 —Rey

sin B ¢} cosb/Jl+c052¢tan?Y 0 ~Ra g

cos B sin k

10 'O_ siné/Vl+cosz¢tan?Y _ 0 ~Re 3

Where:

A, @8 =1, for yi<a

Y
Y = A, & = -I' for yi>0

The vector R3 for a particular valie of K becomes the vector
R. for the next higher value of K, e.g., R. =R , and this
1 K=2 3K—3

simplifies the calculation somewhat. There are basically only

3

six vectors which need to be considered and these are the vectors

which mark the ends or corners of the cranked horseshoe vortices,

— —

nam;ly: R l'_Ra' Rb’ RC' Rd' and Rm2' It is noted that the ends

o

of the trailing legs are not taken to be located at infinity but
rather at approximately 1000 root chords downsfream for ease of
computation-‘ The value cos Gl for Kl, aﬁd cos 93 forlK#S, are
nearly equal to unity at such a great distance downstream. ' The

aerodynamic influence of the trailing legs at a distance beyond

1000 n is negligible. The cbmponénﬁs of ii and Eé For K=l—5§
. K X

are given in Table A-2. = Notdce that x,y,2 have been replaced with

. £,g,h, respectively in this table since the latter varigbles
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will be the ones used in the formulation given in the main body

of the report, see equation 24.

—

Table A—2 Components of R1K and RaK ?o; K ~1~5
X Rig i' Rag
Ry Ry Ry Ra Rs Rs
'K ”K - *r 2K K
lOOOcRcosB° lOODquinB lOOOCRcosﬁ s cos@tan? s cps¢ + gls sin¢‘+ h
K=1 codlk, o) +s- |+ s cosd dsin(k; a) 4 + ?4?MI
cos¢tan¥ + " 5 sin¢ '
:ydzc +E£ g + £
MT
+ h -
5 - R R r s coshtan¥ls cosd + gis sind + h
31 32 33 £
i 1 1 1 + _
K3 R, ﬁ3 R s’ costany s cosl) + gl -s Eln¢
- 1 2 33 +.£ +
2 2 2 '
R R R - cosf- —~S cOs¢ ~g sind +h
- 1.3 i 23 33 t%n‘f “+ . + g
_ ¥y PL + £
10000§COSB 10009R51ns lOOOcRcoge
5" R3 R3 R, °coskla)~ ~s cosé +g| -sin(kq o) -
1 2 3 s cosftant ts sind + n
4 4 4

kS
.

T

4

The inaﬁced velocity components given by equation A-8

are found by performing thé‘steps indicated in equations A-2, A-3,

A-4, and A-7. For the sake of completeness the amplified equa-

tions used are given below.
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— s
—_ 4 . 2 =] 2 -
RlK = lRlKI = Rll + Rl2 + R13 (A-11)
K X K
e _ 2 - -
RBK = |R3KI = R3l + 332 + 333 (A~12)
X X X
| cos Ble Rll Rzi + R_lz R22 + Rl3 323 /RlK (a-13)
K K K “R X K
QoS 93K= - le R?_:L + 332 R22 + R33 R23 /513K (A-14)
X K K “x K K

T R - -
= T h:;{ )(322 R33 R23 R32 ) (A-15)
_ K K R K
F..cos By + cos Ba
i, K i, - -
R 4'rr< | = >(R23 R3l Rzl 333 ) (2-18)
. ' ¥ "R K K -
', cos 8, + cos Bz
i K K _
YK am =2 (Rzl Ry, "Rz, Fa ) (A-17)
' K “K K K
u. —
5 (n-18)
V. =
3 (A_19)
W.. — Y
J (A-20)
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The influence coefficents are defined:

ri
uj = Fuij ' (a-21)
T, .
v, = — Py (a-22)
. a1t ij
I\:'.
Wy =g Fwij . | (3-23)
hence 5
61 .. s 0 R R - R
Fu, .= 08 g T PR Pm (T2, T3y T T2y R32 (A—24)
1] h;:- K °K X “K
5 / ; ‘
cos 61, + cos B3 R R - R R
® R 2 3 2 3
, v 4= E 7 K c lK 1, "3 /(a-~25)
F=1
_ 5 _ _
o B cos 91K 4+ cO0s BSK R21 R32 - Rzz R31 (a-26)
ij h‘;{ K “K K K
K=1 '

In the calculation of the influence coefficents, eguations A-24,
A-25, and A-26, for the case where the.general point P corresponds
to the point dj {(which lies on the bound vortex segment, see Sec-
tion III.B.3.b.) it is necessary to omit the terms for K=3 when
i=j, 1In this case and others where the numerical evaluation

of the influence coefficents may have become difficult owing to
the fact that 68;- 0, i.e., the poin£ P approaches the line upon which
the segment lies and equation A-l becomes indeterminate, the
computer omits the induced velocity of that segment. A general
test is made and the computer omits the induced velocity com-—
ponents of any vortgx segment when £he value hK becomes less

than 0.l=s.
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FIG. A-l PLAN AND SECTIONAL VIEW OF A
| TYPICAL HORSESHOE VORTEX
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FIG A-2 VECTOR DIAGRAM
VELOCITY INDUCED
SEGMENT
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Appendix B: Tnstructions for Operating the Computer Program

1. Program Description

The program‘coﬁputes the spanwise distribution of circulation,

e
T(y) = I‘i/vm , and the linear force and moment coefficients for

a wing alone in a steady, incompressible.inviscid filuid £low using'
the finite-step method. Provisions are included foxr studying
variatiohs of angle of attack, angle of sidesliﬁ, énd thé angulax
rates of rotation P, Q, and R.o

The wing geometry is limited to a single trapezoidal panel
per side and left-to~right geoﬁetric symmetry is assumed, except
that differential wing twist is considered in oxder to pexrmit the
study of manufacturiﬁg sanomalies. The wing is divided into an
even number, N, of segments of equal spanwise dimensions. The
numbexr chosén for N can be varied bhetween twenty and one hundred
in the program. The éegments are numbered 1 to N; from left to
right, beginning on the left wing tip. The program solves N
equations for the spanwise distribution of circulation in every
case. Rdvantage could have been taken of aerodynamic symmetry
for those cases deallng with symmetrlc fllght only, and N/2

equatlons solved instead. The program is 1neff1c1ent to this -

. - extent.

A provision has also been made for the calcuiatidn of the



nonlinear aerodynamic coefficients of +he wing but this part of
the program is not working satisfactorily as described previously.
This calculation may be deleted as described in section 3 below.
There are also sﬁme.minor variations provided for preparing £he

input data concerned with wing geometry.

2. Operating Information
Core and Time Requirements:
Computer: CDC 6600
Core = 77 Ké to load
70 ¥, to execute

8

Time Approximately 4 minutes

3. Input Data

There are two options £for loading the basic wing gepmetry.
In the First option, the span and root and tip chord dimensions
are given and the planform area, aspect ratio. and taper ratio
are computed. In the second option, the area. aspect ratio and
taper ratio are loaded directly. The root chord iz assumed equal
to unity in the second option.

The angles of attack and sideslip ané the angular rates P,
Q; R ave varied in the following manner. Five D@ 1@@ps are nested
from the outermost variable R, to the innermost varizble g, in the

order R, O, P, a, B. The calculations proceed by selecting the
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first set of values, namely, Rl' Ql' Pl' @y and varies g from 8, o

Brge Upon completion of this calculation, the next a ig chosen

holding Rl'
g values. After calculations have been made for all the angle

Ql’ Pl fixed and calculations are made for the various

of attack wvalues considered, the computer then repeats these
calculations for the different roll raées. Subsequently, all

the preceding galculations are repeated for the different pitch
‘rates and then the different yaw rates in that oxrder. Tt is more
efficient usually to use different cases to consider separately
+he effects of these variables than to use the nesting providea
in the-program.

Multiple cases can be run consecutively by repeating the

information required for & single case, see description given for

card (:) below.

Card
No. Variable Format : Description
) (:) N@CASE 15 Number of cases to be run. The
) program is presently arranged so that
only cards @ to @ ox. can be
modified. Changes to cards (:) . etce,
requires a complete reloading of the in-
put. ‘
(:) CRF 8F10.0 C g MeaD aerodynamic chord, or

3



Card
No. Varliabhle

Format

Description

(2 (contd.)

CLD

CGD

ETLD

ETRD

D34@D

8F10.0

3]

referencelchord length., (wm/ft.)
Sweepback angle of quarter chord
line, A, dégrees, positive for sweep-
back.

Dihedral éngle of guarter chord

iine, T, degrees. positive for tip
chord elevated above root chord.
Twist angle of the left wing tip

choxd, €qp degrees, positive for

R
washin. (negative for washoutu).

Twist angle of the right wing tip

., degrees, positive for
R

chord, €
washin.
The angle the mean camber line makes
with the chord line at the wing root
{y=0) . (53/4)O , degrees, positive
for positive camber, see Figure 4.
This value is egual to the gecmetric
value for the linear case only, and

should equal the negative of (aLO)0 .

approximately when the airfoil aero-
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Card

No.

©)

Variable

Format

Description

D34TD

2Ce

YCGE

ZCG

8Frl0.0

[}

n

from the plane of symmetry, v

“chord plane; when k

dynamic data is known.

The same as D34fD , except that this
value pertaing to the'wing.tip rather
than the wing root.

The longitudinal position of the
center of gravity, measured from. the
quarter chord point of the root chord,
Ko {(m/£t.), positive for the CG
ahead of the % CR point, see Figure 1.
The lateral displacement of the cG

ce’
(m/ft.) , positive for a displacement
to t@g right.

The vertical displacement of the CG
from the x,y reference plane, Zag?
(m/ft.), positive for a displacement
below the reference plane, see Figure 2.
The value; kl, where kl is the
fractional value of the displacement
angle of the wing wake @bove the wing
l=0, the wake trails

G
OF POOR quas gy
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Card

No. variable

Format

Description

' (g) - (contd.)
e

ATORD

ITA.

Las

ALOTD .

8¥10.0

in the'wiﬁg chord plane and when

klél, +he wake trails parallel to

V_. Nominal value is klé%.

angle of zero liff of fhé root chofd,
(QLO)O, dégrees,-obtained from airfoil

section data. Value ghould be negative

for a positive camber.

Angle of zero 1ift of the tip choxd,
(gL )0, degrees, from airfoillsection'
0

data.

| Number of wing segments, 20 < N < 100,

N 40.

;nominal=
Number of angles of attack used in
the table of alrfoil section character-

igtics, see card (:) below. The

maximum value for ma is 20.

Option for laading'planform_geometry,

LAS <0 calls for card @ whereon

spah;'root and tip chord, and air
_speed_are_placed. For nas > O, card

: (39 is used instead, wheron reference
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Card
No. Variahle Format

(®) (contd.)

I3 1015
IB 11

IR "

n
IR e
LIN ' u

v '. :

Description

area, aspect ratio, taper ratioc and
alr speed are placed.

The number of angles of attack to
be considered are indicated by the
varigble Ia, TA = 25,

_ max

The number of angles of sideslip

to be considered are indicated by the

variable IB, IB = 5,
: max

The number of roll rates, pitch

rates, and yaw rates to be considered
are indicated by the variables IP,

IQ and IR, respectively. A maximum

of five values of each may be considered.
The varisble LIN exercises the option

to calculate the linear aerodynamiq
fesﬁlts only,.LIN = +1l.; or the combined
linear and nonlinear results, LIN = -1,
In the linear only case, Tt is un-

necessary to lead cards () to s .

The following card is.an

‘card must be _usec‘i.

cptional card, but either it or

In order for @ to be used, -
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T.AS < 0, see card @

Card )
No. Variable  Foxrmat
@ " B 8F10.0

cT L
‘CR n
v :

g@_ SR

A
ST
VI

'Tip chord, C

‘Root ¢hord, C

Description

Wing span, b, (m/£t.)
- (m/£t. )
g (W/EE.)

Adr speed, V_, (m/sec. or ft./sec.)
Win? planform area, S__g (m? /££3)
Aspect ratio, A, nondim.-

Taper ratio, A, nondim.

Air speed, V_ , (m/sec. oxr f£t./sec.)

The airfoil section characteristics are placed on the.next

group of cards which are ITA in number. The root chord

values are listéd First, followed by the tip values., If

LIN > 0, omit these cards.

IO TA(T)

CLR(X)

CDR(I’

7F10.4

1

Angle of attéck, g, degrees

Root section lift coefficient; c

- nondim.

Root section drag coefficient,

.
nondim.



Card

No.

S

Varizhle Format Description

CMR (T) 7F10.4 Root secéion pitching moment co-
efficient, ¢ , nondim.

MNe/4

CLT () " Tip section lift coefficient, cL ;o
nondim. o

CDT (T) u Tip section drag coefficignt, cq *
nondim.,

CMT (1) " Tip section pitching moment coefficient,

e .., nondim.
c/4

.~

The next group o

£ cards list the values of the anglefs) of

-attack, angle(s) of sideslip, roll rates, pitch rates. and

yvaw rates for which calculations are to be made.

(1)

AT
|

I
I

l

|
¥
AL

(Ia)

8rl0.0

value(s) of the angle(s) of attack, o,
degreés for which calculations are
to be made. A maximum of 25 values

may be considered.
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Card : ’ -

No. Varisble  Format _ Description .
@i) BE%l) ‘ 8F10.0 Vaiue(s) of rhe angle(s) of siﬁeslip,
- B, degrees.. A maximum of 5 wvalues
Bg*iB)_ | may be considered.
P (1) " value(s) of the xoll rate@), p, rads./sec.
P (IP) - A maximum of 5 values may be considered.
Q(l) " value(s) of the pitch rate(s), Q.

rads./sec.

Q(IQ) A maximum of 5 values may be considered.
@E) R(L) n Velue(s)'of tﬁe yaw rate (s}, R,

| rad./sec.

R(IR) A maximum of 5 values mey he considered.

additional cases may be 1isted by repeating the input cards listed |
gbove from 2 to B5a or ©5b . Table. B-~l presents the general

arrangement of the input cards.

4. Output Data

The output will be described for the case where the combined
11near/nonllnear optlon has been chesen. {In 1inear case only,
the nonllnear output w111, of course, not appear )

The output is arranged 1n four basrt grouplngs.

a. The wing geometric variables are listed together wmth



some input constants which serve to identify the case:

CREF = ¢ __.= ¢, ETL = 2 , (DELTA 3/4)0 = (53/4)3,

XCE = x ZC6 = z__, GAMMA = T'°, BTR = ¢©

ce’ cG TR

o o - —_ o Q
(63/4 o ¥CG = Yo’ Kl = kl, LAMBDA = AC = Ac/4 '

ALPHA = a; s V INF = V_ (ft./sec. or m/sec.), CT = c_ ,
a

B =", CR = (or alternatiwvely SREF = S A = A,,

°r ref’

LAMBDA = ), E = E. These values are not repeated any-

where in the run.

The angulir velocity-components R, Q, P (rads./sec.)

and tﬁe angle of attack and angle of sideglip are listed

on the next line.

The linear data is listed in the following manner:

1. The 1inear—ana1§sis spanwise values of the circulation
fi= (ri/v;) is listed left to right, for the N

segments, beginning of course with the value I = 1,

continuing to I = N. (I = 1 corresponds to the segment
on left wing tip and I = N corresponds to the segment
on the right wing tip.)
2. The linear, integrated, force coefficients Cx' c,
C_ and the moment coefficients: CIB = C ; CMB = C
and-CNB = CHB for the body axes are printed on the

next line., A title appears in the preceding line.

3. The above data is transferred to stability axes,
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followed by the wvalues of iy

labelled as such, and printed on a single line,

The force coefficients are CL =-CL' CY = Cy,, arid

CD = Cy. ; the moment coefficients are CLS = C
induced 5

CMS = C » and CNS = C_ ,
Mg Dg
nonlinear data is listed in the :ollow1ng mannex :

The N values of F T are prlnted for the wing
original _

sedgments, beginnlng with the left tip value and

ending with the right tip value, from left to right

across the page. These values correspond to the

first iteration,

Lad

. In a similar fashion, the values I, g 2¥e printed,

Sim

Marian®
The N values of the pairs of number TCLJ (J) = 2?i/tj

and CLJ(J) = a, arve printed side-by-side. The value
3

TCLJ(J) is the "theoretical" section Lift coefficient
LE .
at the j h segment corresponding to the value of the

circulation {at that- segment) determined by linear

theory, while CLJ(J) is the section lift coafflclent

at the 3 th segment determlned from the wind tumnel

datd tabulations corresponding to the computed value

of o..
q]

The effective angle of attack, qj,'is printed foxr

ORIGINAL RAGE IS
OF POOR QUALITY]
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each of the N segments.

The integrated nonlinear force and momeht coefficients
for the body and stability axes, as was done for' the
1inear calculation, are printed next.

Four more iterations follow the first before the
angle of attack or angle of sideslip change {oxr

P, Q, R change) to the next wvalue.

5. Programming nformation

Purpose of Subroutines:

EEL2

SIMQ

FUVW

MARIAN

ebﬁfﬂ

Computes the complete elliptical integral

E(k, m/2) where k=d&~(b/a)2 and a/b=T 3a/4, for
correcting lifting-line theory according to

R.T. Jones: ¢ ,=2Ta, f[E.

Solution of simultaneous linear algebraic equations
used primarily for the determination of the ; vector
which satisfies the no-flow boundary condition in the
linear calculation, but also used in the nonlinear
calculation for determining the 1ifting surface value
of the circulation in a region one tip chord in length

located at the wing tips.

Calculates the induced-flow velocity influence coef-

ficients.

A seventh order polynomial curve-fitting procedure
which smooths the spanwise distribution of gcirculation,
joining the section values in-board to the lifting-

surface theory values near the tips.

There is no interdependence of these subroutines.
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FIG.3 LEFT HAND WING PANEL DEFINING
7 UNIT TANGENT AND NORMAL VECTORS
ALONG THREE-QUARTER CHORD LINE

| AGE 18
ORIGINAL BAG
O POOR QUALTHY
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MEAN CAMBER
LINE

FIG.4 TYPICAL CHORD PLANE DEFINING
BOUNDARY CONDITION AT THREE -

(WUARTER CHORD POINT
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FIG. 5 RIGHT HAND WING PANEL DEFINING
UNIT TANGENT AND NORMAL VECTORS
ALONG THREE-QUARTER CHORD LINE

" ORIGINAL BAGE I§
OF POOR QUALITY
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FIG.© PLANFORM GEOMETRY SHOWING
HORSESHOE VORTEX ELEMENTS
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